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“You don't choose your family. They are God's gift to you, as you are to them.”  

Desmond Tutu 
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Resumo 

A frescura do peixe é considerada um dos parâmetros mais importantes na 

caracterização da qualidade dos produtos aquáticos. No entanto, esta é inevitavelmente perdida 

devido ao processo de autólise que, por sua vez, desencadeia o crescimento de microrganismos 

e, consequentemente, a perda progressiva de qualidade. Este fenómeno é visível através das 

alterações das características sensoriais tais como a aparência, odor, paladar e textura assim 

como alterações químicas, bioquímicas e microbiológicas. 

 O preço de mercado do peixe depende da previsão exata da frescura e do tempo de vida 

útil. Prever o tempo de armazenamento no gelo define-se como o número de dias que o peixe 

está armazenado no gelo e é possível utilizar este valor para estimar o tempo de vida útil 

remanescente. O método do índex de qualidade (QIM) é atualmente o método mais completo e 

direto para descrever a frescura do peixe. No entanto, é um método lento e subjetivo e que não 

é exequível para aplicações em grande escala. 

 A espectroscopia na zona do infravermelho próximo (NIR) provou ser um método 

rápido e não destrutivo para avaliação dos constituintes do peixe (água, proteína, gordura, …) 

assim como exibiu bons erros de previsão do tempo de armazenamento. O objetivo desta 

investigação é testar a possibilidade de utilizar esta técnica para prever de forma não destrutiva 

níveis de frescura em amostras de solha em Flandres, Bélgica. 

 No estudo preliminar, análise espectral assistida pela técnica PLSDA foi utilizada em 

amostras de solha (n=10) sujeitas a diferentes tempos de armazenamento e os resultados 

indicaram que a espectroscopia na zona do infravermelho próximo tem um grande potencial 

para a discriminação não destrutiva da frescura da solha. Na etapa seguinte, o estudo principal, 

realizado no modo de reflectância difusa, em amostras de solha (n=90) classificadas pelo 

sistema de pontuação QIM na ILVO (Flandres, Bélgica) em conjunto com a técnica PLS, 

culminou em dois modelos aperfeiçoados para previsão da frescura expressada em dias de 

armazenamento em gelo (obtidos pela conversão dos pontos QIM): um para as medições na 

parte da pele escura, com parâmetros de 1.82, 2.22 e 0.804 para RMSECV, RMSEP e R2
p no 

intervalo de comprimento de onda entre os 1400 e os 1580 nm; e um segundo para as medições 

na parte da pele branca, com parâmetros de 2.36, 2.59 e 0.677 para RMSECV, RMSEP e R2
p 

utilizando a extensão completa de comprimentos de onda estudados de 940 a 1700 nm. 

 

Palavras-chave: Solha, Espectroscopia de infravermelho próximo, Método do índex de 

qualidade, Frescura, Qualidade.  
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Abstract 

Fish freshness is regarded as one major parameter for seafood quality. However, it is 

lost inevitably in practice after catching and fish death, owing to the natural autolysis process 

which, in turn, trigger the growth of microorganisms and, consequently, the progressive loss of 

food characteristics and quality. This phenomenon is perceptible by changes in the sensory 

characteristics such as appearance, odour, taste and texture of fresh fish as well as in chemical, 

biochemical and microbiological changes. 

Fish market prices is highly depended on accurately predict its freshness and shelf-life. 

Predicted storage time in ice is defined as the number of days that the fish has been stored in 

ice and it is possible to use these results to estimate the remaining shelf life. Quality Index 

Method (QIM) is currently the most wholesome and straightforward method of describing 

freshness. However, it is time consuming and subjective and it is not always suitable for large-

scale applications. 

 NIR spectroscopy has been proven to be a rapidly and non-destructive method for 

evaluating fish components (moisture, protein, fat, …) as well as it has shown good predictions 

errors associated with fish storage time prediction. The purpose of this research is to test the 

possibility of using NIR spectroscopy for non-destructively predicting freshness levels of plaice 

fish in Flanders, Belgium. 

In the preliminary study, spectroscopic measurements were performed on tested plaice 

samples (n=10) subjected to different storage times assisted with Partial Least Squares 

Discriminant Analysis (PLSDA) indicated that NIR spectroscopy had great potential for non-

destructive plaice freshness discrimination. In the next step, the main study employing NIR 

diffuse reflectance measurements for plaice samples (n=90) graded using commercial QIM 

scoring method at ILVO (Flanders, Belgium) together with Partial Least Squares (PLS) 

regression culminated on two different calibration models for predicting freshness expressed as 

storage days in ice (converted from the graded QIM scores): one for dark skin measurements 

with prediction performances of 1.82, 2.22 and 0.804 for RMSECV, RMSEP and R2
p, 

respectively, using the selected wavelength range of 1400 to 1580 nm; and one for white skin 

measurements with those parameters of 2.356, 2.59 and 0.677 for RMSECV, RMSEP and R2
p, 

respectively, using the full wavelength range studied of 940 to 1700 nm.  

 

Keywords: Plaice; NIR spectroscopy, QIM, Freshness, Quality 
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I. Introduction 

Quality analysis and evaluation of fish and other seafood products is a significant subject 

of study (Cheng & Sun, 2014) due to its microorganism vulnerability and perishability (Cheng 

et al., 2013) but also due to its important role in human diet (Liu et al., 2013).  

 Fish quality is not a straightforward concept and involves a whole range of factors which 

vary accordingly to the markets in which the fish is traded. Quality factors include the expected 

physical attributes such as species, size and product type, as well as subtler elements such as 

seasonal condition, the effects of capture method, and ethical factors, such as assurances of the 

fisheries sustainability and the protection of marine mammals. However, besides these factors, 

fish freshness is considered as the most important attribute of fish quality (Luten et al., 2003). 

In several occasions, fish is priced accordingly to its freshness which is usually based 

on sensory analysis. Although it is one of the most important attributes related to fish quality, 

it is not a single attribute itself and it can be measured by different analytical methods (sensory, 

chemical, physical and bacteriological analysis) (Chebet, 2010). 

 Traditional methods and techniques for measuring fish quality are tedious, laborious, 

expensive, time-consuming, destructive, and often need trained personnel and produce waste 

(analysed products, chemicals …), which makes them unsuitable for on-line detection and/or 

large-scale operations. (Cheng & Sun, 2014). Further information on these techniques can be 

found in Appendix 1. Additionally, traditional microbiological and chemical methods are not 

advisable to be employed in the early stages of fish deterioration because they are more 

sensitive in the latter phases. Therefore, highly sensitive, non-destructive, inexpensive, precise 

and rapid methods are required to be developed for fish freshness assessment (Dowlati et al., 

2013). In that sense, a new platform technology, spectroscopy technology using the Visible 

(VIS) and Near infrared (NIR) wavelength range has been studied as a non-invasive tool for 

quality assessment of aquatic products.  

 

1. Fish constituents 

1.1 Composition 

 It is well known that fish products comprise an important part of balanced and nutritional 

diets specially owing to its constituents, such as high-quality and digestible animal proteins, 

vitamins, minerals and valuable fatty acids (Cheng & Sun, 2014). The main chemical 

components of fish are water, protein and lipids which make up about 98% of the total mass. 
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Other components such as carbohydrates, vitamins and minerals while in minor quantity, play 

a significant role in the biochemical dynamics of live fish (Venugopal & Shahidi, 1996). 

 The chemical composition of fish varies accordingly with the species, age, sex, size, 

feeding habits, geographic location, season, microbiological load and methods of catching 

(Huss, 1995).  

 

1.1.1 Water 

 The major constituent of fish is water, accounting for about 66-81% of the weight of a 

fresh fish fillet (Liu et al., 2013). Some species are described to have water content between the 

extremes of 30 and 90% (Murray & Burt, 1983).  

The percentage of water is related with the percentage of lipids since normally both 

constitute around 80% of the fillet (Huss, 1995). 

 

1.1.2 Lipids 

 In terms of lipid content, it is possible to discriminate three categories: lean, medium 

fatty and fatty species (Venugopal & Shahidi, 1996). The first group, lean or low-fat species, 

includes fish species that store lipids only in the liver, like cod and hake (Huss, 1995), and 

contain less than 2% (w/w) lipid (Venugopal & Shahidi, 1996). The second group, medium or 

moderate fat species, consists of fish which store lipids in limited parts of their body tissues or 

in lower quantities than fatty species (Huss, 1995) and present lipid contents between 2-5% 

(Venugopal & Shahidi, 1996). Finally, the third group, corresponds to fish storing lipids in fat 

cells distributed in other body tissues, which is the case of herring and mackerel (Huss, 1995) 

that comprehends more than 5% of fat (Venugopal & Shahidi, 1996). 

 Marine fish lipid includes triacylglycerols, phospholipids, sterols, wax esters, some 

glyceryl esters, glycolipids, sulfolipids and hydrocarbons. Triacylglycerols presents more 

variation than others and phospholipids show less (Venugopal & Shahidi, 1996).   

It is known that fish is highly rich in unsaturated fatty acids, like tetradecane acid, 

palmitoleic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Rodriguez-

Casado et al., 2007).  

 

1.1.1 Proteins 

 Protein of fish muscle is rich in essential amino acids, has a high biological value and 

can be easily digested (Rehbein & Oehlenschläger, 2009). There are three major classes of fish 
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proteins: structural proteins which represent 70 to 80% of the total protein content; sarcoplasmic 

proteins which embodies 25 to 30% of the proteins; and finally, connective tissue proteins, 

constituting approximately 3% of the protein in teleostei and about 10% in elasmobranchii 

(Huss, 1995).  

 The first group, that includes actin, myosin, tropomyosin and actomyosin, is responsible 

for the structure and the rheological characteristics of the muscle tissue, usually denoted as 

tenderness/ toughness and coarseness/ fibrousness (Dunajski, 1980).  

 Most of the sarcoplasmic proteins are enzymes which participates in the cell 

metabolism. It was suggested to use sarcoplasmic proteins as a method for differentiating fresh 

from frozen fish. This proposal was based on the assumption that the composition of the 

sarcoplasmic protein fraction changed when the organelles were broken upon freezing which 

sometimes is not the case (Huss, 1995).  

 The connective tissue proteins form a supporting network through the whole fish muscle 

that is evenly distributed and plays a crucial role in textural properties (Kiessling et al., 2006). 

 

1.1.2 Nitrogen compounds from non-protein nature 

 These class can be defined as water soluble, low molecular weight, nitrogen-containing 

compounds of non-protein nature. The principal elements in this fraction are: volatile bases (for 

example, ammonia), trimethylamine oxide (TMAO), creatine, free amino-acids, nucleotides 

and purine bases (Huss, 1995). 

 The most important constituent of the amines is TMAO, which upon reduction 

contributes to fishy odours (Venugopal & Shahidi, 1996). This component is found in all marine 

fish species in quantities ranging from 1 to 5% of the muscle tissue (dry weight) but is virtually 

absent from freshwater species (Huss, 1995). 

 

1.1.3 Vitamins and minerals 

The vitamin contents in fish can vary considerably with species, age, size, sex, season, 

diet, state of health and geographic location. In fish farmed by aquaculture, the contents of 

vitamins reflect the composition of the corresponding components in the fish feed and, 

therefore, vitamin content will be different from wild fish (Rehbein & Oehlenschläger, 2009). 

 Fishes are rich in fat-soluble vitamins (A, D, E and K) and also in vitamin B (riboflavin 

- vitamin B2, niacin – vitamin B3, pantothenic acid – vitamin B5, vitamin B6, biotin – vitamin 

B7, folic acid – vitamin B9 and vitamin B12) (Rehbein & Oehlenschläger, 2009). 
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 Concerning minerals contents, fish tissue is regarded as a valuable source of calcium 

and phosphorus but also of iron, copper and selenium. Iodine can likewise be found in saltwater 

fish, contrary to sodium which content is very low in fish (Huss, 1995). The regular intake of 

selenium and iodine through food for human is of great importance because population in many 

European countries is not sufficiently supplied with these elements and the insufficient intake 

can lead to goitre and other diseases (Rehbein & Oehlenschläger, 2009). 

 

1.1.4 Carbohydrates 

 Carbohydrates content in fish muscle is very low and it is usually present in striated 

muscle in the form of glycogen (Huss, 1995). 

 

2. Post mortem alterations in fish 

Immediately after death, many biochemical reactions start in the fish, which are of 

utmost importance for quality and shelf life of seafood products. These reactions depend on 

several different factors: fish species, physiological conditions of the fish, the environmental 

influences to which the living fish had been exposed, as well as, catching and harvesting 

methods, killing procedures and slaughtering performance (Rehbein & Oehlenschläger, 2009). 

Even during the catching process, the concentration of ammonium ions in the fish 

increases and glycogen storages are reduced. Afterwards, when the fish is death, anaerobic 

glycolysis continues, leading to increasing the concentration of L-lactate with a simultaneous 

decrease in the pH value. The concentration of creatine phosphate and adenosine triphosphate 

(ATP) decreases, and when the concentration of ATP is no longer sufficient to remove the 

connection between thick (myosin) and thin (actin) filaments of the myofibrils, the onset of 

rigor mortis starts (Rehbein & Oehlenschläger, 2009). By this time, the fish texture becomes 

harder, a phenomenon that can last for a day or two (Luten et al., 2003). 

Fishes’ freezing directly after catch standstills most of the enzymatic reactions. 

However, during thawing, glycolysis, proteolysis, lipolysis and other enzymatic reactions 

continue and may result in quality losses (Rehbein & Oehlenschläger, 2009). 

The resolution of rigor mortis causes the muscle relaxation and the texture smoothing 

(Luten et al., 2003) due to the action of endogenous proteases. Although the meat became 

smoother it will never reach the same elasticity as before rigor. Several proteolytic systems are 

involved in the degradation of the structural proteins of fish muscle including acid cathepsins 
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located in lysosomes, alkaline proteinases, proteasomes (multi-catalytic proteinase complexes), 

calpains, aminopeptidases, collagenases and elastases (Rehbein & Oehlenschläger, 2009). 

During storage in melting ice or at higher temperatures in the refrigerator, enzymes are 

gradually released such as mitochondrial enzymes which are involves in ATP degradation and 

the increase of calcium ions (Ca2+) in the sarcoplasm (Rehbein & Oehlenschläger, 2009). 

 As the muscle tissue of living marine fish is sterile, the quality of fish stored in melting 

ice is initially mainly influenced by autolytic reactions. Later (±10 days after catch), bacterial 

reduction of trimethylamine oxide (TMAO) to trimethylamine (TMA) starts, a process that 

dominates during further storage of the fish or fillet (Rehbein & Oehlenschläger, 2009). 

 Immediately after the catch, the muscle tissue of fish is free from bacteria except for the 

gills, skin and intestines. The bacteria penetrate the fillet mainly through the gills and body 

cavity, accompanied by changes in the composition of the bacterial flora and leading to the 

formation of biogenic amines (Rehbein & Oehlenschläger, 2009).  

 As lipids contained in fish are not stable during storage, lipolysis and lipid oxidation 

may occur even in frozen fish, at a lower rate. These processes led to the development of 

unpleasant flavours and tastes due to the carbonyl compounds and short-chain carbonic acids 

formed. Moreover, the binding of free fatty acids to fish muscle proteins results in texture 

deterioration (Rehbein & Oehlenschläger, 2009). 

 

2.1 Sensorial alterations 

Fish flesh deteriorates rapidly, even at refrigeration temperatures, and produces off-

odours and off-flavours, which have been described by many researchers. Spoiled odours and 

flavours, which are developed as spoilage proceeds, lead to seafood rejection by the consumers. 

(Pearson & Dutson, 1994). 

 The first sensory changes of fish during storage are concerned with appearance and 

texture. The characteristic taste of the species is normally developed in the first couple days 

during storage in ice (Huss, 1995). 

 According to Huss (1995) there is a characteristic pattern of the deterioration of fish 

stored in ice and is divided into the following four phases (Figure 1): 

o Phase 1 (approximately 2 days) where the fish is very fresh and has a sweet, seaweedy 

and delicate taste; 

o Phase 2 (approximately 4 days) where there is a loss of the characteristic odour and 

taste. The flesh becomes neutral but has no off-flavours and the texture is still pleasant; 
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o Phase 3 (approximately 6 days) when appears some sign of spoilage and a range of 

volatile, unpleasant-smelling substances is produced depending on the fish species and 

type of spoilage (aerobic, anaerobic). At the beginning of the phase the off-flavour may 

be slightly sour, fruity and slightly bitter, especially in fatty fish. In the end, sickly sweet, 

cabbage-like, ammoniacal, sulphurous and rancid smells develop. The texture becomes 

either soft and watery or tough and dry. 

o Phase 4 when the fish can be characterized as spoiled and putrid. 

 

 

Figure 1 - Changes in the eating quality of iced (0ºC) cod (Huss, 1995). 

 

According to Council Regulation (EC) No 2406/96 of 26 November 1996 laying down 

common marketing standards for certain fishery products there are three categories of freshness: 

Extra; A category and B category. In Extra category, fish must be free of pressure marks, 

injuries, blemishes and bad discoloration. In A category, fishes are required to be free of 

blemishes and bad discoloration but slight pressure marks and superficial injuries are still 

tolerated. In the last category, it is still required the absence of blemishes and bad discoloration 

but then again small proportion of fishes with more serious pressure marks and superficial 

injuries are endured. Fish presented in market is not admitted to have dull pigmentation or in a 

more advance stay of decay. 

QIM Eurofish have estimated the shelf life of some fish species stored in ice and it 

fluctuates between 6 up to 20 days – Annex 1 (Martinsdóttir et al., 2001). 
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2.2 Physic and chemical alterations 

After death, fish flesh experiences post mortem changes due to a certain number of 

biochemical and physicochemical reactions like anaerobic glycolysis, pH changes, degradation 

of ATP, rigor mortis, autolysis and spoilage (Cheng et al., 2015). 

 

2.2.1 pH 

Post mortem glycolysis results in the accumulation of lactic acid which in turn lowers 

the pH of the muscle. The amount of lactic acid produced is related to the amount of stored 

carbohydrate (glycogen) in the living tissue. In general, fish muscle contains a relatively low 

level of glycogen and thus a smaller amount of lactic acid is generated after death. Also, the 

nutritional status of the fish and the amount of stress and exercise encountered before death will 

have a dramatic effect on the levels of stored glycogen and consequently on the ultimate post 

mortem pH (Huss, 1995). 

 The natural pH of live fish is just above 7.0, typically about 7.3, but in most species, 

falls till the range of 6.0-6.8 (Rehbein & Oehlenschläger, 2009). 

The post mortem reduction in the pH of fish muscle influences the physical properties 

of the muscle. As the pH drops, the net surface charge on the muscle proteins is reduced, causing 

them to partially denature and lose some of their water-holding capacity. Loss of water has a 

detrimental effect on the texture of fish flesh and it has been shown that there is an inverse 

association between muscle toughness and pH, unacceptable levels of toughness (and water-

loss on cooking) occurring at lower pH levels (Huss, 1995). 

 After one week in ice storage, an increase in the pH value is verified due to the 

production of alkaline bacterial metabolites in spoiling fish which coincide with the increase in 

Total Volatile Basic Nitrogen (TVBN) (Abbas et al., 2008). 

 

2.2.2 Nucleotide catabolism  

Nucleotides are the 5’-phosphate esters of nucleosides. The most important nucleotide 

in all living organisms is adenosine 5’-triphosphate (ATP), which consist of the nucleoside 

adenosine linked to three phosphate groups. ATP functions as the universal carrier of energy, 

transferring energy from chemical bonds to endergonic reactions within the cell (Rehbein & 

Oehlenschläger, 2009). 

Although the fishing operation causes the death of the animal within minutes, the 

muscles continue to metabolise while ATP is present (Pearson & Dutson, 1994). In the post 
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mortem process, the decomposition of ATP generate some metabolites: ADP – adenosine 

diphosphate, AMP – adenosine monophosphate, IMP – inosine monophosphate, HxR - inosine, 

Hx – hypoxanthine, Xa – xanthine and uric acid (Cheng et al., 2015). 

The autolysis of ATP in the muscle begins soon after death and is enhanced by high 

temperature, rough handling, pre-mortem struggling and failure to bleed. ATP is rapidly 

degraded to IMP by endogenous enzymes and further breakdown to HxR and Hx (Özogul et 

al., 2005a). The sequence of nucleotide degradation in teleost fish muscle is as follows: ATP 

 ADP  AMP  IMP HxR  Hx (Wills et al., 2004). The breakdown of IMP to Hx is 

slow and it is caused by both autolytic and microbial enzymes (Chebet, 2010). 

The presence of IMP and HxR is associated with the desirable sweet flavour in fresh 

fish but the presence of Hx usually characterizes the fish flavour as undesirable and bitter 

(Chebet, 2010). The measurement of ATP and its breakdown concentrations is therefore 

believed to be considered as an indicator of fish freshness changes (Özogul et al., 2005a).  

 

2.2.3 Volatile compounds 

Volatile compounds (related to nitrogen, amine, ammonia, alcohols, sulphur-containing 

compounds, and others) are one of the vital parameters of fish freshness determination and they 

are the result of microbial activity and endogenous enzymes decompositions (Cheng et al., 

2015). These compounds can be divided into three categories according to the origin of volatile 

compounds during fish storage: 1) fresh fish odour, mainly related to C6 – C9 alcohols and 

carbonyl compounds; 2) microbial spoilage odour, related to ammonia, trimethylamine (TMA), 

hydrogen sulphide and methyl mercaptan; and 3) lipid oxidation odour, mainly related to 

hexaldehyde and 2,4,7-decatrienal (Olafsdottir et al., 2004). 

 Fish odours are complex and each species has a characteristic aroma for which the 

concentration of the determined compounds and their odour thresholds are important factors. 

These compounds are derived from polyunsaturated fatty acids that are susceptible to 

autoxidation during prolonged storage (Rehbein & Oehlenschläger, 2009). 

 Ammonia and TMA are the predominantly basic compounds present in spoiling fish and 

are responsible for the strong ammoniacal and characteristic fishy odour (Huss, 1995). 

Extensive microbiological investigations have shown that TMA is formed by reduction of 

trimethylamine oxide (TMAO) by some species in the bacteriological flora of spoiling fish 

(Rehbein & Oehlenschläger, 2009). The TMAO reduction is mainly associated with the typical 

bacteria of the marine environment (Alteromonas, Photobacterium, Vibrio and S. putrefaciens), 



21 

 

but is also carried out by Aeromonas and intestinal bacteria of the Enterobacteriaceae (Huss, 

1995).  

 Volatile sulphur compounds are common components of spoiling fish and most bacteria 

identified as specific spoilage bacteria produce one or several volatile sulphides. S. putrefaciens 

and some Vibrionaceae produce H2S from the sulphur containing in amino acid 1-cyteine. 

Methylmercaptan (CH3SH) and dimethyl sulphide ((CH3)2S) are both formed from another 

sulphur containing amino acid, methionine (Huss, 1995). The volatile sulphur compounds are 

very foul-smelling and can be detected even at ppb levels, so even minimal quantities have a 

considerable effect on quality (Huss, 1995). 

 

2.2.4 Biogenic amines 

Biogenic amines are basic nitrogenous compounds formed mainly by decarboxylation 

of amino acids or by amination and transamination of aldehydes and ketones. Biogenic amines 

are organic bases of low molecular mass and according to the chemical structure can either be 

aliphatic (putrescine, cadaverine, spermine, spermidine), aromatic (tyramine, β-

phenylethylamine) or heterocyclic (histamine, tryptamine) (Rehbein & Oehlenschläger, 2009). 

Most of the biogenic amines present in fish are the result of the action of exogenous 

enzymes released by microorganisms associated with the seafood products. Histamine, 

putrescine, cadaverine, tyramine, tryptamine, β-phenylethylamine, spermine and spermidine 

are considered the most relevant biogenic amines in foods, although the last three are not the 

end products of bacterial decomposition in fishery products (Rehbein & Oehlenschläger, 2009). 

Endogenous decarboxylase enzymes naturally occurring in fish or shellfish tissue may 

also contribute to the production of biogenic amines but this pathway is insignificant compared 

with exogenous production (Rehbein & Oehlenschläger, 2009). 

 

2.2.5 Protein and free amino acids 

 Proteins account for almost 20% of fish and are an important nutritional component of 

fish flesh. However, proteins are also susceptible to decomposition by unsound handling and 

processing and by microbial and enzymatic activities. Therefore, after fish have been caugth, it 

is normally stored in low temperature or in ice to slow down microbial growth and proliferation 

and to reduce the enzyme activities and, subsequently, maintaining its freshness. Inevitably, the 

structure and fishes’ properties undergo some changes during storage, thus impacting the taste, 

flavour, nutritional and commercial values (Cheng et al., 2015). 
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 Many proteases have been isolated from fish muscle and the effects of proteolytic 

breakdown are often related to extensive softening of the tissue. The low molecular weight 

peptides and free amino acids produced by the autolysis of proteins not only lower the 

commercial acceptability of pelagics, but in some cases, autolysis has been shown to accelerate 

the growth of spoilage bacteria by providing a superior growth environment for such organisms 

(Rehbein & Oehlenschläger, 2009). 

 Several proteolytic systems, consisting of enzymes and inhibitors, are involved in the 

degradation of structural proteins of fish muscle: acid cathepsins located in lysosomes, alkaline 

proteinases, proteasomes, calpains, aminopeptidases, collagenases and elastases. Autolytic 

enzymes are activated due to the pH drop and the increase of calcium ions in the sarcoplasm, 

causing an increase in tenderness of the muscle (Rehbein & Oehlenschläger, 2009). 

 

2.2.6 Lipids 

 As stated before, fish is rich in unsaturated fatty acids, including tetradecane acid, 

palmitoleic acid, eicosapentaenoic acid and docosahexaenoic acid, which are susceptible to 

oxidation (Rodriguez-Casado et al, 2007). 

 There are two major distinct reactions in fish lipids for quality deterioration: oxidation 

and hydrolysis. They both result in the production of diverse substances some with unpleasant 

(rancid) taste and smell and others which may contribute to texture changes by binding to fish 

muscle proteins (Huss, 1995). 

 On the other hand, lipid oxidation can be divided into three types: autoxidation, photo 

oxidation and enzymatic oxidation. Autoxidation takes place when the unsaturated fatty acids 

are exposed to oxygen and proceeds through an autocatalytic chain reaction. Free radicals are 

formed when hydrogen ions are extracted from the fatty acids (Nollet, 2012). Successively, free 

radicals react with oxygen to produce fatty acids peroxides. The fatty acid peroxides are free 

radicals which can attack another lipid molecule, resulting in a peroxide and a new free radical. 

The primary product of lipid oxidation is the fatty acid hydroperoxide, measured as peroxide 

value (PV) (Özogul et al., 2005b). Peroxides are not stable compounds and they break down 

into low molecular weight substances such as aldehydes, ketones and carboxylic acid groups 

originating smell, texture, colour and nutritional changes of fish (Trocino et al., 2012). 

 Fatty fish, such as sardine, are particularly sensitive to oxidation during storage, giving 

rise to rancidity due to the fat content and the presence of highly unsaturated fatty acids. The 

smaller the fish size and higher the surface area/volume ratio, the faster the deterioration 
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(Rodriguez-Casado et al, 2007). Therefore, lipid oxidation can be used to evaluate fish 

freshness (Cheng et al., 2015). PV and thiobarbituric values (TBA) are the major chemical 

indices of oxidative rancidity. TBA consists mainly of malondialdehyde as a representative of 

aldehydes (Özogul et al., 2005b). 

 The lipid hydrolysis occurs by the action of endogenous enzymes, especially digestive 

enzymes and, therefore, this phenomenon in more profound in gutted fish. The formed 

compounds, the free amino acids, do not affect directly sensorial properties although could 

confer a little soap flavour (Huss, 1995). 

 

2.3 Microbiological alterations  

 Foods of muscle origin, as in the case of fish, are sensitive to contamination and provide 

the growth of microorganisms involved in spoilage and foodborne illness. In unprocessed 

products, microorganisms multiply rapidly, particularly at non-refrigeration temperatures, 

resulting in quality losses and/or public health problems (Pearson & Dutson, 1994). 

 Fish contain microorganisms in the skin, gills and intestines and the extent of this 

bacterial contamination depends on fish quality and the sanitation prevailing during fishing, 

processing and storage. Usually, contamination is higher on fish from warmer waters and from 

those originating in areas of untreated human waste disposal. Likewise, the place of origin is a 

relevant factor in the initial type of contamination present on fresh seafood. Cold water fish are 

generally contaminated with gram-negative psychrotophs (e.g. Pseudomonas, Moraxella, 

Shewanella, Acinetobacter, Flavobacterium, Aeromonas, Cytophaga and Vibrio) while fish 

from the tropics are mostly contaminated with Gram-positive mesophiles (e.g. Micrococcus 

and Bacillus spp.) (Pearson & Dutson, 1994). 

 According to Huss (1995) the proportion of microorganisms on the surface and 

gills/guts of fish is 102-107 cfu (colony forming units)/cm2 and between 103-109 cfu/g 

respectively. It may seem multitudinous but the strong defensive mechanism of live fish, 

prevents fish spoilage. Only a part of spoilage microflora participates in the spoilage process, 

the microorganisms include in this fraction are known as a specific spoilage organism (SSO). 

The qualitative ability to produce off-flavour (spoilage potential) and the quantitative ability to 

produce spoilage metabolites (spoilage activity) are essential in the identification of a SSO 

(Gram & Dalgaard, 2002). 
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 Following fishes’ death, microorganisms or enzymes are free to invade or diffuse into 

the flesh where they react with the complex mixture of natural substances present (Özogul et 

al., 2005a). 

 In overall, the growth of specific bacteria and the accumulation of their metabolic 

products constitute the major spoilage changes in fish during storage. Essentially, freshly 

caught fish are usually characterised sensorially by “fresh fish flavours” (sweet, seaweedy). 

Later, during storage, it is reached a period where the odours and flavours are described as 

neutral or non-specific. This is the first indications of off-flavours that will progressively 

become more pronounced and lastly turn the fish unacceptable for consumption (Chebet, 2010). 

 

3. NIR spectroscopy 

3.1 Visible and near infrared light 

In 1873, James Clerk Maxwell proposed that visible light consists of electromagnetic 

waves. Electromagnetic radiation is the emission and transmission of energy in the form of 

electromagnetic waves. Figure 2 shows various types of electromagnetic radiation, which differ 

from one another in wavelength and frequency (Chang, 2009). 

 

 

Optical radiation covers the wavelength range of 100 nm -1000 μm of the 

electromagnetic spectrum. It is subdivided into the ultraviolet (UV) region from 100 to 380 nm, 

Figure 2 - Types of electromagnetic radiation (Chang, 2009). 
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the visible (VIS) light ranging from 380 to 780 nm, and the infrared (IR) radiation of 

wavelengths above 780 nm (Porep et al., 2015). 

The near-infrared (NIR) window defines the range of wavelengths from 780 - 2526 nm 

according to America Society for Testing and Materials (ASTM) and can be divided in two 

regions: short wave near infrared spectral region (SW-NIR) of 780-1100 nm and long wave 

near infrared region (LW-NIR) of 1100-2526 nm.  

 

3.2 Interactions between light and biological materials 

The rationale for the development of a spectroscopy-based measurement system as a 

tool for non-destructive food quality analysis is based on the physical understanding of the 

interaction of light photons with the molecular structure of food samples (Sun, 2010). The most 

common interactions between NIR light and biological samples are absorption and scattering. 

Different parts of the electromagnetic spectrum have very different effects upon 

interaction with matter. Spectroscopy is the study of electromagnetic radiation and matter’s 

interaction involving  radiation absorption, emission or scattering (Pérez-Juste & Faza, 2015).  

 

3.2.1 Light absorption 

A beam of light (one wavelength) passing through a medium containing absorbing 

molecules transfers its energy to the molecules as it proceeds, and thus decreases progressively 

in intensity. This absorption process is described by the Beer-Lambert law which states that 

absorbance or optical density of the sample (A) equals the molar extinction coefficient or molar 

absorption coefficient (ε) times the concentration of the sample (C) (Parson, 2007). An 

important corollary of the Beer-Lambert law is that the absorbance of a mixture of 

noninteracting molecules is just the sum of the absorbances of the individual components 

(Parson, 2007). 

NIR radiation absorption bands are related with overtones and combinations of 

fundamental vibrations. Overtones occur when there are transitions between energy levels that 

differ by two or more vibrational quantum number units (Siesler et al., 2002). In other words, 

a molecular vibration absorption takes place when it is excited by a radiation with a specific 

frequency or its multiples. On the other hand, the phenomenon known as combination describes 

the situation when several group vibration absorptions happen at the same time and that 

unexpected absorptions bands can appear as well as overlapping of different absorptions 

resulting in broader peaks (Saeys, 2006). 
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Overtones and combinations of fundamental vibration contains feature information 

from the chemical bonds (such as O-H, N-H, C-H and C-O, etc.) of organic molecules (Cheng 

et al., 2013). Since all biological substances contain numerous molecular bonds of C–H, O–H, 

and N–H, the exposure of this sample to NIR radiation results in a complex spectrum that 

contains qualitative and quantitative information about the physical and chemical properties of 

that sample (Sun, 2010). 

 

3.2.2 Light scattering 

Scattering of light is common in NIR spectroscopy due to internal heterogeneities in 

refractive index of biological samples. This refractive index heterogeneity results in multiple 

changes in light propagating directions when penetrating biological samples, known as 

scattering phenomena. Shorter wavelengths are scattered much more than the longer ones 

(Rayleigh scattering) (Flammer et al., 2013). Different materials and even different states of 

the same material have different refractive index and these parameters are crucial to determine 

the angle of deviation of the incident light beam that moves from one medium to the other. 

(Saeys, 2006) 

The light that come in contact with the matter is dispersed into a wide range of angles 

(Siesler et al., 2002). Light that is scattered by more than a certain angle with respect to the 

incident beam misses the detector and is registered as an apparent absorbance (Parson, 2007). 

 

3.3 Principles of NIR spectroscopy 

Near Infrared (NIR) spectroscopy is a molecule-vibration measurement technique which 

offers a straightforward, rapid, and cost-effective alternative to traditional analytical methods 

for food quality evaluation (Sivertsen et al., 2011). Spectroscopic methods provide internal 

information of the biological sample to be analysed using physical characteristics of the 

interaction between electromagnetic radiation and the sample material (Sun, 2010). 

NIR Spectra can be recorded in diffuse reflection, transmission, and transflection modes 

and can provide complex information (compositional and structural) of the measured samples 

thanks to the relation of the vibrational behaviour of molecular bonds such as C-H, O-H and N-

H of the sample composition (Liu et al., 2013). The SW-NIR light (780-1100 nm) can penetrate 

relatively deep into biological materials thanks to the lower absorption property at this region, 

which makes NIR a good spectral region for performing non-destructive measurements on thick 

or bulky biological samples (ElMasry & Nakauchi, 2016; Liu et al., 2013). 
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 In diffuse reflection, both the light source and the detector are placed at the same side 

relative to the sample. Detectors combined with an integrating sphere or mounted under an 

angle of 45ºC are usually used to collect signals (Saeys, 2006). 

Diffuse transmission mode is characterized by the measurement of the light that passes 

straight (collimated transmittance) as well as the light that has been scattered (diffuse 

transmittance) through the sample. In this mode, the sample is positioned between the light 

source and the detector (Saeys, 2006). 

The final mode, transflectance, is a combination of the two previously mentioned. The 

sample, detectors and light source are arranged like in the case of diffuse reflection. Then a 

highly reflective material is placed in contact with the sample on the other side of the 

illumination. The light goes through the sample after being partially absorbed, scattered and 

changed. After reaching the far side of the sample it is sent back through the sample to the 

illumination side thanks to the highly reflective material and then being again absorbed, 

scattered and changed. The detector will measure this diffuse transflected light coming out of 

the sample. This mode is ideal for situations where the other approaches do not obtain enough 

signal (Saeys, 2006). 

 

3.4 Seafood applications 

Preliminary studies and implementations of NIR technology for at-line, on-line, in-line 

and off-line applications have been reported in order to facilitate food quality control, 

traceability, authentication, and production optimization (Weeranantanaphan et al., 2011).  

Many studies based on NIR spectroscopy has confirmed its ability to predict the main 

chemical components such as water, protein, fat and moisture in fish (Khodabux et al., 2007; 

Liu et al., 2013; Huang et al., 2003; ElMasry & Wold, 2008; Folkestad et al., 2008; Herrero, 

2008). It is also proven to provide useful information on quality parameters such as freshness 

and detection of nematodes (Rehbein & Oehlenschläger, 2009). Visible/near infrared 

(VIS/NIR) spectroscopy have been also positively evaluated for differentiation between thawed 

and frozen red sea bream (Uddin et al., 2005) and horse mackerel (Uddin & Okazaki, 2004); 

for freshness assessment of cod (Chau et al., 2009; Nilsen et al., 2002; Sivertsen et al., 2011); 

for QIM (Nilsen and Esaiassen, 2005) and volatile compounds quantification (Armenta et al., 

2006; Armenta et al., 2006).  

Recently, near infrared hyperspectral imaging system was studied for measuring colour 

distribution in salmon fillets. The results showed that both computer vision and hyperspectral 
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imaging had potential in fish colour measurement in a rapid and non-invasive way (Wu et al., 

2012b; Dowlati et al., 2013). He et al. (2012, 2014) also proved that Vis-NIR hyperspectral 

imaging technique can rapidly and non-destructively predict pH value and its spatial 

distribution with good accuracy in salmon fillets. 

Meanwhile, VIS/NIR spectroscopy was applied in texture analysis of farmed Atlantic 

salmon and the results confirmed that this technique offered fair predictions of Kramer shear 

force (Coppes et al., 2002). However, measuring texture in whole fish is still challenging due 

to inhomogeneous structure (density of muscle fibre, contents of fat and collagen) and difficulty 

in preparation of standard size of fish samples. 

Lin et al. (2006) showed that NIR spectroscopy could correctly classify rainbow trout 

samples as fresh or spoiled after several days of storage at 4ºC as well as produce models to 

quantify the number of bacteria present. In the field of foreign contaminant detection, new 

methods have been developed to overcome the disadvantages of human vision inspection such 

as multispectral imaging in the VIS/NIR region for automatic detection of parasites (Wold et 

al., 2001).  

 

3.5 NIR spectroscopy – Multivariate evaluation 

Although being suitable for off-, in- and on-line applications for quality control and 

process monitoring (potential to be used both as a small handheld device and as an online 

instrument for non-contact measurements on a conveyer belt during production) (Sivertsen et 

al., 2011). NIR is based on indirect measurements and almost impossible to interpret with 

unaided eye and therefore, it requires calibration with mathematical and statistical tools 

(chemometrics) to extract analytical information (Porep et al., 2015). 

NIR bands are usually broad and severely overlapped resulting in strong 

multicollinearity which means further analysis of the spectrum is needed in order to extract 

analytical information (Porep et al., 2015). To overcome this phenomenon, pre-treatment 

approaches such as noise reduction (e.g. Savitzky-Golay smoothing method), baseline 

correction (e.g. derivatives methods, Multiplicative Scatter Correction – MSC, Orthogonal 

Signal Correction – OSC, Standard Normal Variate – SNV), centering, normalisation and 

resolution enhancement (for overlapped and hidden bands) are required (Porep et al., 2015). 

The objective of multivariate data analysis is to take advantage of the correlation 

structure by substituting patterns of measurements for the single values. A sample is then 

characterised by an amount of each member of a usually small set of such patterns, and the 
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difference between samples expressed as the difference in amounts (Rehbein & 

Oehlenschläger, 2009).  

Discriminant analyses are applied as multivariate classifications for qualitative 

determinations where it is possible to classify unknown samples into groups (Porep et al., 

2015). The most used techniques are Principal Component Analysis (PCA), Partial Least 

Squares (PLS), Partial Least Squares – Discriminant Analysis (PLSDA) and Soft Independent 

Modelling of Class Analogies (SIMCA) (Rehbein & Oehlenschläger, 2009).  

 PCA is used as an explorative technique where the data subject to analysis is 

decomposed into few uncorrelated components/variables that define the majority of the dataset 

differences as well as the random measurement error (Saeys, 2006). The objective of this 

method is to reduce noise and, consequently, reduce the complexity of the systems and 

minimize the effects of the measurements errors (Gemperline, 2006). 

The most common multivariate technique used for quantification is PLS and its 

principal aim is to find the latent variables that describe the variance in the data and also reache 

maximum correlation between predicted variables Y and predictor variables X. As it happens 

in PCA, PLS can reduce the problem dimensionality significantly (Roffel & Betlem, 2006). 

The aim of PLSDA is to find a model that separates classes according to the X-

observations. PLSDA is used when a maximum separation between classes is needed. In this 

approach, the number of classes must not be too high, working better within 2-4 classes 

differentiation. Additionally, Discriminant Analysis also does not work when the classes are 

not homogenous and spread along the X-axis (Erikson et al., 2013). 

The calibration model performances can be evaluated by analysing some indicators: 

coefficients of determination (R2), root mean square errors in calibration (R2
C, RMSEC); in 

cross-validation (R2
CV, RMSECV) and in prediction (R2

p, RMSEP) respectively, and residual 

predictive deviation (RPD). A reasonable, comparable model should have higher values of R2
C, 

R2
CV, R2

P and RPD and lower values of RMSEC, RMSECV and RMSEP as well as small 

difference between them (Cheng & Sun, 2014). 

  

 

 

 



30 

 

4. Research Objectives 

 The aim of this study is to test the possibility to evaluate the freshness of plaice fish that 

can be widely accepted by both consumers and companies using NIR spectroscopy as a non-

invasive, objective, and rapid method in combination with multivariate statistical models. The 

successfulness of this research would provide a basis for industrial exploitation of multi-sensor 

techniques for real time application for fish quality assessment.  
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II. Preliminary study 

1. Materials and Methods 

1.1 Sample preparation 

Ten freshly caught European plaice fishes (Pleuronectes platessa) were killed and 

transported on ice from Institute for Agricultural and Fisheries Research (ILVO) to the 

Biophotonics Lab, MeBioS Division, KU Leuven, Belgium. Upon arrival, all the fishes were 

taken out of the ice, cleaned and covered tightly with PE plastic film. They were then 

equilibrated to room temperature (19ºC) and were considered as the samples at 0 hours of 

storage for spectral measurements.  

 

1.2 Spectral acquisition 

Near-infrared spectra were acquired for the fish samples in diffuse reflectance mode 

with a MPA FT-NIR spectrophotometer (Figure 3) operating from 800 to 2700 nm (Bruker 

Optics, Germany) at 0, 4, 24 and 28 hours of storage. During spectral measurements, standard 

white reference was measured regularly every 30 minutes and dark noise correction was 

automatically implemented by the instrument before acquiring any sample spectrum.  

 

Figure 3- MPA FT-NIR spectrophotometer. 

  

At each designed storage time, spectra of a fish were acquired at five locations (Figure 

4) on the sample surface on the dark skin side and also five locations on the white skin side 

with the white skin removed using a sharp knife and a peeler. Then the fish sample were 

covered tightly in PE plastic film and the same measurement procedure was also implemented 

through the film for that designed storage time. Each acquired spectrum by the instrument at 

one location on the fish sample was the averaged spectrum obtained from 32 consecutive scans 

at that location. All the sample spectra were collected at room temperature. After the spectra 
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acquisition for each designed storage time, the samples were stored at room temperature and 

covered tightly in plastic film to minimize moisture loss until the next measurements. 

 

 

 

1.3 Data analysis 

The spectral data obtained were divided accordingly to the designed sample preparation 

they belonged in: 1-skin; 2-muscle (skin removed); 3-skin with plastic foil; or 4-muscle (skin 

removed) with plastic foil. The spectral data for each sample preparation contained 200 

reflectance spectra corresponding to the 4 different storage times. 

Multivariate statistical models were constructed using the spectral data for classification 

of fish freshness levels. Two different strategies were performed:  

- First strategy: classifying the fishes into two classes: fresh class, defined as the fish 

samples subjected to 0 hours of storage and unfresh class, containing the other 

samples (after 4, 24 and 28 hours of storage);  

- Second strategy: classifying the fishes into four classes, each class consists of the 

fish samples subjected to one designed storage time (0, 4, 24, and 28 hours).  

 

1.3.1 Data arrangement for calibration and validation of the 

multivariate statistical models 

It is crucial assessing the prediction performances of the calibration models on future 

samples which were not included in model construction. Therefore, the sample spectra were 

divided into a calibration set for building the multivariate statistical models and a separate 

validation set that was not included in building these models. If the whole spectral data were 

used for model calibration, the obtained prediction performance on those sample spectra would 

be overoptimistic for future unknown samples (Porep et al., 2015). 

Figure 4- Illustration of the five measured locations on the dark skin of a plaice. 
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Regarding the first strategy (2 classes), 50 spectra at 0h of storage were considered as 

fresh fish and the other 150 spectra (4h, 24h, 28h) as unfresh fish. The spectra at 0h of storage 

were orderly divided into a set containing 38 spectra for model calibration and a set containing 

12 spectra for model validation. At storage times 4h, 24h and 28h, 12, 13, and 13 spectra were 

selected in order, respectively, for model calibration; and the remaining spectra were used for 

model validation. This resulted in a calibration set containing 38 fresh fish spectra and 38 stored 

fish spectra from the whole spectral data. The validation set, therefore, contained 12 fresh fish 

spectra and 112 stored fish spectra. 

 For the second strategy (4 classes), the spectra at each time of storage (0h, 4h, 24h, 28h) 

were orderly divided into 35 spectra for model calibration and 15 spectra for validation, 

respectively. This resulted in a calibration set containing 140 spectra (35 at each storage time) 

and a validation set containing 60 spectra (15 at each storage time).  

 

1.3.2 Development of the calibration models 

Non-destructive fish freshness classification in this preliminary study was carried out 

using multivariate models such as Principal Component Analysis (PCA) and Partial Least 

Squares Discriminant Analysis (PLS-DA). Spectral data handling and model construction and 

validation were conducted in Matlab (version R2013a, The MathWorks, MA, Natick, USA) 

and PLS toolbox (version 8.1, Eigenvector Research, Manson, USA). 

PCA was firstly used to evaluate separability of the sample spectra into classes or its 

grouping characteristics, and then PLS-DA was applied to classify the sample spectra in both 

calibration and validation sets into the defined classes. Before model calibration, different pre-

processing algorithms were also implemented on the sample spectra to minimize or remove 

irrelevant variations in the input spectra.  

Contiguous blocks cross-validation and the percentage of misclassification points were 

used for optimizing the complexity (number of latent variables) of the constructed multivariate 

statistical models during model calibration procedure. 

 

1.3.3 Selection of important wavelengths 

The selection of specific wavelength ranges which are important for the model 

prediction can quicken the prediction operation in the future in the industry and reduce the 

sensor costs. A new model can be obtained using only the feature wavelengths selected instead 

of all the spectral range (Kamruzzaman et al., 2012). In this study, the wavelength selection 
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was conducted using i-PLSDA method. Then the newly obtained models using these selected 

wavelengths were then compared to the previously built models using the full range regarding 

to their prediction performances. 

 A complete flow chart of the procedure described can be found in Appendix 2.1. 

 

2. Results and Discussion 

2.1 First strategy: 2-class discrimination 

The NIR spectra acquired on the dark skin side and on the muscle, both without and 

with plastic foil are shown in Appendix 2.3. Firstly, PCA was carried out on the spectral data 

using different pre-processing techniques and combination of them (Mean center, derivatives, 

smoothing, MSC, autoscale) until the best model was found for each sample preparation. The 

best model was selected through the visualization of the grouping characteristics. The PC score 

plots of the selected PCA models for each of the four configurations are shown in Figure 5. 

These score plots show a clear grouping between fresh (red points) and stored samples (green 

points), defined as unfresh, for each case. These results suggest that NIR can be used as a 

freshness indicator for plaice.  
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1) Dark skin 2) Muscle (white skin removed) 

  

3) Dark skin with plastic foil 4) Muscle (white skin removed) with 

plastic foil 

  

Figure 5 - PC scores plots for fresh (0h) and unfresh (4h, 24h and 28h) for the four types of sample preparations. 

 

In the next step, PLS-DA models using contiguous block cross validation procedure and 

different pre-processing methods was performed until reaching the best model. The best models 

were selected based on model’s characteristics as lowest number of latent variables and high 

percentage of corrected prediction values for both classes of freshness. Subsequently, i-PLS-

DA was implemented for important wavelength selection, which aimed at maintaining the 

prediction performance even if the wavelength range is reduced. The table below summarizes 

the best results obtained for each of the four sample preparations with the full wavelength range 

used and the best selected wavelength range in model calibration and validation. 
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Table 1 - Summary on the PLS-DA results for 2-class discrimination of all four sample separations. 

Sample 

preparation 

Pre-processing 

methods1 

Points 

excluded 

Full wavelength range Best selected wavelength range using i-PLSDA 

No. Latent 

Variables 

Sensitivity 

Specificity 

Accuracy (%)2 

No. Latent 

Variables 

Wavelength 

range (nm) 

Sensitivity 

Specificity 

Accuracy (%)2 

Dark Skin MSC + D1 + AS 1 6 100 

99.1 

99.2 

2 [1063:1271] 100 

100 

100 

Muscle D1 + AS 1 6 100 

98.2 

98.4 

6 [801:2782] 100 

98.2 

98.4 

Dark Skin + 

Plastic foil 

D1 + AS 1 5 100 

98.2 

98.4 

2 [1063:1271] 100 

100 

100 

Muscle + Plastic 

foil 

SM + AS 2 9 100 

93.8 

94.4 

5 [914:1701] 100 

94.6 

95.2 

                                                 

1 MSC – Multiplicative Scatter Correction; D1 – First Derivative (Savitzky-Golay); AS – Autoscale; SM – Smoothing (Savitzky-Golay). 

2 Misclassified points: Appendix 2.5 
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The specificity, sensitivity and accuracy parameters were determined in order to assess 

the performance of the classification models on the prediction of the validation set. The 

following formulas were used for calculating the above parameters. 

 

 Sensitivity = Number of correctly classified fresh 

spectra/ Total number of fresh spectra 

 

II.1 

 

 Specificity= Number of correctly classified unfresh 

sepctra/ Total number of unfresh spectra 

 

II.2 

 

 Accuracy= Number of correctly classified spectra/  

Total number of spectra 

II.3 

 

 

During the calibration, outliers were identified and removed. If not removed, outliers 

can have a significantly larger and detrimental effect on the model, leading to misleading 

statistics. Outliers were identified by: 1- an atypical spectrum resulting in a large spectral 

residual, 2- an extreme leverage, resulting in a large distance to the model center and 3- a large 

residual in the dependent variable, or a combination of these (Kamruzzaman et al., 2012). 

From Table 1, it is clearly observed that the selected PLS-DA models could provide 

good classification on freshness for the fish samples in this research as it is perceptible through 

the high values of sensitivity, specificity and accuracy provided from all the classification 

models. 

The PLS-DA models of the dark skin (without and with plastic foil) of plaices showed 

equal accuracy percentages of 100% using the reduced wavelength range of 1063:1271 nm, 

which means that it would be possible to correctly predict all samples. By reducing the 

wavelength range it was possible to increase the performance parameters of specificity and 

accuracy while reducing the model complexity. 

The results obtained from the muscle side presented sensitivity and specificity 

percentages of 100 and 98.2 for without plastic foil and 100 and 93.8 for with plastic foil. 

Although in the last case, with a reduction of the wavelength range to 914:1701 nm, 

improvements in the evaluated parameters were verified, this outcome did not happen for the 

muscle side without plastic foil where the best model includes all the wavelength range 

measured. Moreover, by covering the plastic foil, the prediction performance of the model 
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slightly deteriorated as observed for the cases of dark skin vs dark skin + plastic foil and muscle 

vs muscle + plastic foil. 

Given that the relevant changes in fish muscle are due to the microbial growth which 

has its relevant activity in approximately 10 days after the catch (considering that the fish is 

stored in ice) (Rehbein & Oehlenschläger, 2009), in the early stages of storage the changes in 

muscle freshness must be less noteworthy than the those in the skin side which naturally had 

higher initial microbial load. Thus, the obtained higher misclassification percentages for muscle 

as compared to those for the dark skin side could be easily explained in this preliminary study 

in which the fish samples were stored at much higher temperature (ambient temperature).  

The higher misclassification for muscle with plastic foil as compared to without plastic 

foil could be obviously explained due to the fact that by introducing another material layer with 

completely different optical properties, the recorded diffuse reflectance spectra for the case of 

plastic foil contained also spectral properties of the plastic foil besides those of the muscle, 

which added more irrelevant variations in the input spectra which deteriorate the model 

prediction performance. As an illustration, the absorption spectra of the used plastic foil are 

recorded in Appendix 2.2. 

Further investigation on the obtained results indicated that the misclassification points 

of the models of muscle without and with plastic foil mainly happened in the storage group of 

4 hours, which again confirmed the aforementioned reasoning of increasing difficulty to 

discriminate in the early stages of storage for the flesh (skin removed).  

 The regression coefficient plots displaying the contribution of each wavelength to the 

selected PLSDA calibration model are shown in Figure 6.  

In the 2-class discrimination, the regression coefficient plots exhibit important 

wavelengths. In the dark skin model, the important wavelength ranges, corresponding to the 

higher values of regression coefficient, were approximately around 1150, 1250, 1700, 1800, 

1850 and 1950 nm. The first three wavelengths (1150, 1250 and 1700 nm) and 1850 nm are 

related with C-H vibration (Workman & Weyer, 2012). Absorption in the wavelength range 

between 1680 and 1760 nm (1700 nm) is currently related with C-H bands of fatty acids (Liu 

et al., 2013). As stated before, fish is rich in unsaturated fatty acids which are oxidized over 

time contributing to fish odours (Rehbein & Oehlenschläger, 2009).  

The peaks at 1800 and 1950 nm are connected with O-H from water vibration and acids 

and esters vibration, respectively. Although water is one of the principal components in the fish 

constitution, it does not provide useful information on fish freshness loss over time and 
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consequently, on the discrimination process. However, esters or at least 5’-phosphate esters of 

nucleosides as ATP and its degradation, are an important phase in fish deterioration (Rehbein 

& Oehlenschläger, 2009). 

 According to the region of 1063-1271 nm, that has been selected by i-PLSDA as most 

important range, is mainly related with the absorption of O-H, C-H (aromatic), C=O and C-H 

interaction (Workman & Weyer, 2012), is well appropriate for predicting freshness. O-H bond 

absorption is related to alcohols and water molecules and, as described previously in this 

document, alcohols formation is the result of microbial activity and endogenous enzyme 

decompositions (Cheng et al., 2015) in the same way as aromatic compounds and carbonyl 

compounds (C=O), and therefore related to post mortem alterations in fish.  

 

1) Dark skin 
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2) Muscle  

 

3) Dark Skin + Plastic foil 
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4) Muscle + Plastic foil  

 

Figure 6- Regression coefficients of the PLSDA model for the four sample preparations (2-class discrimination). 

 

In the muscle case, the important wavelength regions were approximately around 1200, 

1250, 1700 and 1800 nm, corresponding to the absorption of C-H bond (1150-1250 nm) and to 

C-H bond of aromatic compounds (1650 nm) (Workman & Weyer, 2012) that are formed just 

as fish rot (Cheng et al., 2015). 

The regression coefficient plot for the third case (dark skin with plastic foil) presents 

approximately six important wavelength regions at around 1100, 1200, 1300 and 1700 nm. The 

wavelengths peaks in the beginning and the end of the range were not taken deeply into 

consideration due to higher noise effects present in the input spectra. Similar to the first case 

(dark skin), the regions before 1063 nm and after 1271 nm were considered by the i-PLSDA 

program to not contribute or contribute in fewer amount to the model prediction process. The 

peaks included in the previous region are related with C-H bond and C-H bond associated with 

aromatic compounds (Workman & Weyer, 2012). These results are similar to those obtained in 

the first case which is expected since the only difference is the covering with plastic foil. 

In the last case (muscle with plastic foil), protruding wavelengths were found in the 

regions of approximately 1150, 1200, 1300, 1500, 1700 and 2250 nm. The wavelength region, 

which has more important information for the correct classification between classes of fresh 

and unfresh plaice, is 914-1701 nm according to i-PLSDA. Within this range, all the peaks are 

mainly associated with O-H from water or alcohol, N-H amine, C-H methyl or ether associated 
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as R-O-CH3 (Workman & Weyer, 2012) and C-H bonds of fatty acids (Liu et al., 2013). All the 

compounds described are related with fish quality degradation over time (Cheng et al., 2015). 

The peak at 2250 nm it is not include in the region provided by i-PLSDA software probably 

because it is subject to noise effects but it can be associated with protein, specifically N-H bonds 

absorption (Liu et al., 2013). 

When comparing results with and without plastic foil it is possible to see that excepted 

for the peak at 2250 nm in the last case, the models built with measurements with plastic foil 

do not present peaks after the wavelength of 1800 nm (approximately) while the other peaks 

are very similar. This situation is better perceptive in the next figure where 10 samples of dark 

skin at 4h with and without plastic foil are plotted. The graphic clearly show more variability 

after 1800 nm for plastic foil samples. This is probably due to the plastic absorption capability 

as possible to check in Appendix 2.2 and also more challenge for the NIR light in this range, 

which inherits low penetration depth for biological media, to penetrate the fish tissue through 

the plastic layer.   

 

Figure 7 - Spectra of dark skin samples points at 4h with and withou plastic foil. 

 

2.2  Second strategy: 4-class discrimination 

The NIR spectra acquired on the dark skin side and on the muscle, both without and 

with plastic foil are shown in Appendix 2.4. Similarly to the 2-class discrimination, PCA was 

first carried out on the spectral data using different pre-processing techniques and combination 

of them (Mean center, derivatives, smoothing, MSC, autoscale) until the best model was found 



43 

 

for each sample preparation. The best model was selected through the visualization of the 

grouping characteristics. The PC score plots of the selected PCA models for each of the four 

sample preparations are shown in Figure 8. 

These score plots show a clear grouping between samples at 0h (red points) and stored 

samples (4, 24, and 28h; other colours), defined as unfresh. Groups subjected to storage are not 

well separated. These results suggest that NIR spectra can be used as a freshness indicator for 

plaice but that other multivariate methods are needed for assigning or classifying fish samples 

subjected to different storage times. 

 

1) Dark skin 2) Muscle (white skin removed) 

  

3) Dark skin with plastic foil 4) Muscle with plastic foil 

  

Figure 8 - PC scores plots for fresh (0h) and unfresh (4h, 24h and 28h) for the four types of sample preparations. 

 

PLS-DA with contiguous block cross validation procedure and different pre-processing 

methods in addition with wavelength selection using i-PLSDA, was subsequently performed 

until reaching the best model. The table below summarizes the best results obtained for each of 

the four configurations. 



44 

 

 The accuracy and the misclassification percentage were determined in order to assess 

the performance of the classification models and the formulae used for calculation were the 

following: 

 

 Accuracy = Number of correctly classified spectra/Total 

number of spectra 

II.4 

 

 Misclassification percentage = Number of fish incorrectly 

classified/Total number of fish 

II.5 

 

 

The misclassification percentage was determined taking into consideration the majority 

vote on the 5 points measured, that is that if 3 or more points of one fish are wrongly 

misclassified then the fish is considered wrongly classified, otherwise, if just one or two points 

on the 5 measured are not correctly classified then the fish is considered well classified. 

For the 4-class discrimination, only samples from the last 3 fishes corresponding to 15 

spectra in each designed storage time were included in the validation dataset (fish 8, 9 and 10). 

Considering the four storage times (0h, 4h, 24h and 28h) this results in 12 fishes (60 spectra) 

evaluated in the validation steps.  

Only one outlier was identified and removed from the muscle measurements. If not 

removed from the cross-validation dataset it would contribute to a model calibration with more 

errors associated. Outliers were identified in the similar way as described in the 2-class 

discrimination, through analysis of spectrum and plots displaying distance to the model and 

residuals in the dependent variable (Kamruzzaman et al., 2012). 

It is also possible to see in Table 3, that the accuracy percentages for the case of muscle 

(without and with plastic foil) were higher than the ones obtained in the case of dark skin 

(without and with plastic foil). Additionally, and with exception for the case of dark skin with 

plastic foil, the other cases present the best results when using full wavelength range (801 to 

2782 nm). 



45 

 

 

Table 2 - Summary on the PLS-DA results for 4-class analysis of all four sample preparations. 

Sample 

preparation 

Pre-processing 

methods3 

Points 

excluded 

Full wavelength range Best selected wavelength range using i-PLSDA 

No. Latent 

Variables 

Accuracy 

Misclassification 

(%)4 

No. Latent 

Variables 

Wavelength 

range (nm) 

Accuracy 

Misclassification  

 (%)4 

Dark Skin D1+AS - 4 70.00 

33.33 

4 [801:2782] 70.00 

33.33 

Muscle D1+AS 1 4 90.00 

0.00 

4 [801:2782] 90.00 

0.00 

Dark Skin + 

Plastic foil 

D1+AS - 5 61.67 

33.33 

4 [801:1063] 70.00 

33.33 

Muscle + Plastic 

foil 

D1+AS - 5 83.33 

0.00 

5 [801:2782] 83.33 

0.00 

                                                 

3 D1 – First Derivative (Savitzky-Golay); AS – Autoscale. 
4 Misclassification points: Appendix 2.6 
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The PLS-DA best models for the dark skin side after wavelength selection with i-

PLSDA provided the same accuracy percentage (70%) and misclassification percentage 

(33.33%) both for without or with plastic foil. For the dark skin with plastic foil this result was 

obtained with only a part of the full wavelength range, between 801 and 1063 nm. 

As for data collected from the plaice muscle, better models were developed resulting in 

higher percentages of accuracy, 90.00% and 83.33% for data without and with plastic foil as 

compared to those of the dark skin. These models were based in the whole range of wavelength 

measured. 

In contrast with the previous results, there is a significant difference between the 

accuracy and misclassification percentages of the data measure in the dark skin and in the 

muscle. Clearly, the models built with muscle samples provided better results: higher accuracy 

percentages and lower misclassification percentages. The results indicate that, although some 

points were erroneously classified, considering all of 5 measured points to classify a fish, none 

of the fishes were incorrectly classified (misclassification percentage equals to zero). 

 In the beginning of fish freshness decaying, autolytic processes are the main responsible 

for rigor mortis and afterwards, the autolysis of proteins and fats happen. This produces 

nutrients that allow bacterial proliferation which is the second phase of fish degradation (Li et 

al., 2014). Fish skin is a less suitable surface for microbial growth than the flesh for most 

spoilage microflora and as a consequence, the spoilage process on the flesh side proceeds faster 

than on the skin side (Lin et al., 2006). It has already been proven that NIR spectroscopy could 

be used for measuring protein, fat and moisture in fish (Khodabux et al., 2007; Liu et al., 2013; 

Huang et al., 2003; ElMasry & Wold, 2008; Folkestad et al., 2008; Herrero, 2008). Considering 

that protein and fat are degraded in the first stage of freshness loss that may explicate why the 

NIR models are able to correctly classified samples with short storage time. 

 Microbial activity is the main culprit behind the quality changes in fish during the last 

stages of spoilage (Hernández et al., 2009). According to Cheng et al. (2013), NIR spectroscopy 

have been proven to be a useful and trustworthy technique for detecting and accurately 

quantifying microbial load in fish which could explain why it is easier to correctly classified 

spectra of later hours with the model created using the spectral data collected from the muscle 

side (where the microbial growth is predominant in later phases). 

  In this analysis, the points wrongly classified were mainly associated with the groups 

of 24 and 28 hours. This could be explained by the fact that the spectra of these two groups are 

highly overlapping probably because the fish samples were already heavily degraded after 24 
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hours at room temperature and consequently the differences in properties of the two groups are 

not substantial.  

Regression coefficient plots of the PLSDA models are displayed in Figure 9. In each 

plot, each line shows the importance of individual wavelengths for classifying samples in each 

group (one storage time) against others.  

In the first case (dark skin), the important wavelengths, having relatively higher 

regression coefficients, are in the regions of 1200, 1450, 1600-2000, 2200 and 2500 nm. These 

wavelength regions could be associated with C-H bond, O-H bond from water and other 

molecules, C-H bonds of aromatic compounds, S-H from sulphur compounds, C=O from 

carbonyl compounds and N-H bonds from protein (Workman & Weyer, 2012; Liu et al., 2013). 

All the compounds containing the bonds previously mentioned are related with the formation 

of volatile compounds between others which are mainly the result of microorganism 

proliferation (Cheng et al., 2015).  

The analysis of the muscle, the wavelengths highlighted were in the regions of 1000-

1300, 1600-1800 and 2500 nm. It is estimated that these wavelengths ranges are linked to the 

absorption of C-H bond from aromatic compounds, S-H bond from sulphur compounds and O-

H combination from water (Workman & Weyer, 2012). 

The regression coefficient plots for the third and four cases, both with plastic foil, do 

not show any pertinent wavelength which do not permit any basic interpretation of the 

composition of the sample throughout time. This situation could be related to the influences of 

the plastic foil since the only differences between the first and the third, the second and the 

fourth case, respectively, is the use of PE plastic film. 
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1) Dark skin 

 

2) Muscle  
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3) Dark skin with plastic foil 

 

4) Muscle with plastic foil 

 

Figure 9- Regression coefficients of the PLSDA models for the four sample preparations (4-class discrimination). 
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3. Conclusions 

Referring to the results obtained both in the first analysis (2-class classification) and in 

the second analysis (4-class classification), PLSDA models provided a good tool for correctly 

classifying plaice into the defined classes. This indicates that NIR spectroscopy has great 

potential for non-destructive plaice freshness evaluation and therefore will be used for the next 

measurements which will be elaborated on more number of samples subjected to commercial 

plaice quality grading method.  As the majority of wavelength peaks selected by i-PLSDA were 

between the range of 1000 and 1800 nm in the next study a restriction of the NIR range will be 

use: 940 to 1700 nm, Short Wavelength – Infrared Region, aiming for cheaper sensor costs for 

future applications in the fish industry. 

NIR spectroscopy offers obvious advantages with respect to costs, rapidity and mass-

evaluation, comparing with traditional methods such as Quality Index Method (QIM). It should, 

however, be emphasized that this study was performed on a limited number of samples (10 

fishes) which, therefore, does not allow to take concrete straightforward conclusions. In the 

next section, a much bigger experiment using higher number of plaice samples combined with 

commercial QIM plaice quality grading will be implemented.   
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III. Materials and Methods 

1.1 Sample preparation  

Ninety caught European plaice fishes (Pleuronectes platessa) were killed and 

transported carefully on ice to the Institute for Agricultural and Fisheries Research (ILVO). The 

fish samples were assigned into three different classes according to their sizes - Appendix 3.1. 

Then, they were evaluated using the Quality Index Method (QIM) by experts at ILVO. 

Afterwards, the fishes were transported carefully on ice to the Biophotonics Lab, MeBioS 

Division, KU Leuven, Belgium, where they were stored on ice in the fridge having temperature 

controlled at 1 ºC during all the subsequent experiments.  

 

1.2 Spectral measurements 

Shortwave infrared (SWIR) spectra of the fish samples were acquired using a Corona 

Fibre VISNIR spectrophotometer (Zeiss, Germany) (Figure 10, Left), operating from 940 to 

1700 nm coupled with an external OMK head (OMK 500, Zeiss, Germany) (Figure 10, Right) 

for acquiring diffuse reflectance spectra for the fish samples. The OMK head has an integrated 

halogen light source illuminating light to the sample placed on a sample placement support at 

a distance of 1 cm from the OMK glass surface (non-contact measurement mode). Several 

optical fibres were circularly aligned surrounding the light source to collect the diffusely 

reflected light coming from the measured sample and guide it to the spectrometer for spectral 

acquisition. The measured area was a circle having the diameter of 6 cm.  

 

 

 

Spectral measurements were implemented on all the fish samples after one day, two 

days, four days, seven days, nine days and eleven days of storage in the fridge (6 different 

Figure 10 – (Left) Measurement setup using the Corona Fibre VISNIR spectrophotometer (Zeiss, Germany); (Right) The OMK 

head used for diffuse reflectance spectra acquisition 



52 

 

storage times). Before collecting the sample spectra, the dark reference was measure. The white 

reference was measured after fifteen measurements (approximately each half an hour). Both 

were used for automatically compensating for dark noises and variations in the intensity of the 

illumination to get the sample diffuse reflectance spectrum in each measurement.  

At each storage time, the diffuse reflectance spectra for each fish was acquired on both 

sides (white skin (WS) and dark skin (DS)) at two different surface locations each side (Figure 

11). Each spectrum at one location was the average of 64 continuous scans with a 40-ms 

exposure time for each scan. The sample spectra were collected at room temperature. At each 

storage time, 360 spectra were obtained. 

 

1.3 Data analysis 

The spectra obtained were divided accordingly to the surface of the fish measured: dark 

skin (DS) or white skin (WS) to evaluate which of those has more potential for freshness 

evaluation.  

The evaluated QIM scores for the fishes were reported in Appendix 3.2. These scores 

were then used to estimate the real storage days in ice of each fish using the following formula 

specifically applicable for plaice (Martinsdóttir et al., 2001): 

 

 Quality Index = 1.28 x days in ice + 0 (R2 = 0.89) III.1 

 

QIM analysis is considered the foremost and straightforward method for measuring fish 

freshness in industry. Therefore, QIM is use nowadays as the reference technique for predicting 

fish shelf life.  

Figure 11 – Illustration for 4 measured locations for a fish sample. 
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According to the obtained values of storage days in ice, the spectral data of each side 

(dark skin and white skin) was reorganized according to its storage time (Appendix 3.3). In this 

research, the converted days in ice was used for all the analyses. 

 

1.3.1 Data arrangement for calibration and validation of the 

multivariate statistical models  

To assure good prediction performances of the constructed multivariate models on 

future samples, the spectral data was divided into a calibration set for building the multivariate 

models and a separate validation set which was not incorporated in building the models to test 

their prediction performances (Porep et al., 2015).  The ninety fishes were measured at 6 

different storage times, 2 locations for each side: dark skin and white skin, which resulted in 

1080 measurements per side. After rearranging the samples using the converted days in ice, 

each storage time had different number of spectra: 6, 6, 36, 108, 108, 96, 94, 52, 68, 72, 90, 86, 

82, 90, 48, 24, 6, 6 and 2 spectra for 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 

and 21 days in ice, respectively. 

For each storage time, the spectra were divided into two groups: two thirds of the total 

number of the spectra went into the calibration set and the remaining one third were assigned 

into the validation set. This resulted in the calibration and validation sets which contained 720 

and 360 spectra, respectively.  

 

1.3.2 Development of the multivariate calibration models 

Data analysis using Partial Least Squares (PLS) Regression was conducted using Matlab 

(version R2013a, The MathWorks, MA, Natick, USA) and PLS toolbox (version 8.1, 

Eigenvector Research, Manson, USA). Different pre-processing strategies were also 

implemented on the input spectra for searching the best calibration model. Three different data 

transformations applied for Y-values (storage days in ice) individually in order to obtain the 

best correlations between spectral data X and Y were investigated: no transformation, using 

log(Y) and using 1/Y. 

The complexities of the calibration models or the selected number of latent variables 

was optimized by internally cross-validating the performances of those models in predicting 

the quality parameters of the samples in the calibration set. Two different cross validation 

methods were used in this research: in the first method, iteratively leaving one group 

corresponding to one designed storage time out for cross-validation; and in the second method, 
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one third of the number of spectra in each group corresponding to one storage time were left 

out for cross-validation. The optimized PLS models were the ones that minimized Root Mean 

Square Error of Cross-Validation (RMSECV) or did not significantly improve this value. The 

optimized model was then applied on the validation set for evaluation of its performance in 

predicting new samples. The model prediction accuracy was represented by Root Mean Square 

Error of Prediction (RMSEP). 

The RMSECV and RMSEP are projections for the prediction error in cross validation 

and in the validation process and can be calculated using the following formula:  

 

 

𝑅𝑀𝑆𝐸𝐶𝑉 (𝑜𝑟 𝑅𝑀𝑆𝐸𝑃) =  √∑
(ŷ𝑖 − 𝑦𝑖)2

𝑁

𝑁

𝑖=1

 

III.2 

 

 

Where N is the number of samples in the test set, ŷi is the predicted value and yi is the 

measured value for the ith sample (Saeys, 2006). 

The best PLS model corresponding to each Y-value transformation was selected 

referring to several important parameters: number of latent variables, RMSECV, RMSEP and 

the coefficient of determination for predicting the validation dataset (R2
p). Generally, good 

models provided low RMSECV, RMSEP values and small number of latent variables and high 

R2
p. 

 

1.3.3 Selection of important wavelengths  

Similar to the preliminary study, i-PLS Variable Selection Interface was used for 

important wavelength selection. This wavelength selection aimed at reducing the number of 

measured wavelengths necessary to obtain similarly good prediction results and thus, reducing 

the sensor costs and operation time in future practical applications.  

A complete flow chart of the procedure described can be found in Appendix 3.4. 
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IV. Results and Discussion 

1. Prediction of storage time 

1.1 Dark skin spectral data 

Figure 12 presents the measured mean SWIR spectra of dark skin samples from 940 to 

1700 nm with increasing days in ice. It is observed that over storage time the mean diffuse 

reflectance spectrum has a trend to go up, which means that as the plaice degrades there were 

changes in optical properties of the fish tissue (scattering and absorption). Absorption in the 

region of 940 to 1000 nm is related to O-H bond associated with water, alcohols and phenolic 

compounds (Workman & Weyer, 2012). The region 1100-1250 nm is mostly related with the 

second overtones of C-H bond (Siesler et al., 2002) of aromatic compounds and also in C=O 

bond of carbonyl compounds (Workman & Weyer, 2012). All the compounds mentioned exist 

in large number of organic molecules containing in the fish tissue and in the products of fish 

degradation (Cheng et al., 2015). A small peak between 1250 and 1350 nm is verified that is 

correlated with C-H bond absorption. The broad valley between 1400 to 1700 nm is 

concomitant with O-H bond absorption from phenolic, alcoholic and aromatic compounds as 

well as water; C-H bond absorption from aromatic compounds; N-H bond absorption from 

aromatic amines and proteins; and C=O bond absorption from carbonyl compounds (Workman 

& Weyer, 2012). 

 

Figure 12 – Measured mean SWIR spectra of the fish samples on the dark skin side with increasing days in ice. 
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The best selected PLS models after testing different pre-processing strategies in combination with transformation of Y-variables are reported 

in Table 6.    

 

Table 3 – Selected PLS models to predict storage time using dark skin spectra. 

Cross-

Validation 

Y Pre-processing5  Points 

excluded 

Full wavelength range Best selected wavelength range using i-PLS 

No. Latent 

Variables 

RMSECV 

RMSEP 

R2
p 

(days in ice) 

Wavelength 

range (nm) 

No. of 

Latent 

Variables 

RMSECV  

RMSEP 

R2
p 

(days in ice) 

Custom 1 -- D2 + AS 1 8 2.017 

2.269 

0.745 

940:1030, 

1400:1580 

10 1.8239 

2.2226 

0.804 

Custom 2 Log MSC + D2 + AS -- 8 2.4235 

2.3323 

0.677 

940:1700 8 2.4235 

2.3323 

0.677 

                                                 

5 MSC – Multiplicative Scatter Correction; D2 – Second Derivative (Savitzky-Golay); AS – Autoscale. 
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One outlier was removed on the first approach because it presented an uncharacteristic 

spectrum that resulted in higher distance to the model center and a huge residual in the 

dependent variable. 

The first method of cross-validation, leave-one-group-out, is useful for assessing 

linearity relation between X spectral data and Y values of the calibration set. Therefore, due to 

the lower values of RMSECV, RMSEP and sufficiently higher value for R2
p, linearity relation 

between X and Y it observed with the PLS calibration model. Notwithstanding the fact that this 

method usually constructs overly pessimist models, this has not been the case since the results 

obtain were better than those from the second cross-validation approach.  

The second method, where one third of all the groups were used for the cross-validation, 

presented results to some extent slightly worse than the first cross-validation. Slightly better 

prediction performances obtained for the custom 1 as compared to custom 2 could possibly be 

explained by more number of samples included during model calibration for custom 1. 

Prediction performance in the first approach was improved by selection of wavelength 

region by i-PLS software. Although there was an augmentation on the number of latent 

variables and, subsequently on the model complexity, the decrease of wavelength range used 

plays a contradictory effect. The overall result is an increase in the coefficient of determination 

of the validation dataset (R2
p) and decrease in the RMSECV and RMSEP.  

As it is also possible to see, in the second case, the best wavelength range corresponds 

perfectly to the all wavelength region used and therefore, there was no shortening that provided 

better prediction results. 

The prediction errors, RMSECV and RMSEP, are however possibly relatively high 

when comparing to plaice shelf life of 13 days in ice. It would not be so crucial if it was not the 

case that the numbers obtained were a representation of the mean deviation of the total errors 

committed when predicting the days in ice of plaice samples. In other words, it means that there 

are errors of predicting with higher and lower values. Consequently, there could be plaice fishes 

which are classified as fresh when they may not be that fresh and vice versa. This is an 

extremely delicate topic because unfresh fish being classified as fresh are going to be sell to the 

consumer without fulfilling the criteria of freshness and fresh fish classified as unfresh when it 

may not be, will be going to the garbage, decreasing the profit of the company. 

The industry had mentioned that the errors obtained should reduce if possible. Despite 

there are not any error criteria in literature nor by the industry, these values do not compare to 

some of the results obtained in the majority of other studies, for example: 1.04 days in ice for 
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cod freshness evaluation (Nilsen et al., 2002), 1.20 days in ice for salmon freshness estimation 

(Nilsen et al., 2002) and 1.60 days in ice for cod fillets freshness determination (Sivertsen et 

al., 2011).  

It should be noted that most published studies using NIR spectroscopy for fish freshness 

prediction are done on fish fillets, while in this work whole body with skin and not gutted plaice 

fish samples were used. Obviously, measuring the optical properties of the flesh through the 

intact skin as done in this work would have incorporated more unwanted variations and/or more 

challenges for the constructed multivariate models. 

As cod as a similar shelf life as plaice (15 and 13 days in ice, respectively) in this work, 

comparison between plaice and cod studies will be of interest. Despite the better cod freshness 

results obtained by Nilsen et al. (2002), it must be also highlighted that it was obtained in the 

visible range of 400 to 700 nm in the muscle side. The measurements in the skin in another 

research, however, presented poorer results of 3.54 days in ice as an error of prediction. In the 

other cod research, Sivertsen et al. (2011) were able to determine cod fillets freshness with the 

prediction accuracy of 1.6 days in ice which is better than ours. However, it is noted that the 

wavelength range used in their work was definitely very different: 410 to 1010 nm, which is 

similar to the range used in the previously referred study by Nilsen et al. (2002), and also that 

it was not used the entire fish, only the fish fillet and on different fish rather than plaice. 

 Kimiya et al. (2013) obtained a prediction accuracy of 2.4 days using VIS/NIR 

spectroscopy (400–2500 nm) for predicting freshness expressed as storage days in ice of 

Atlantic salmon (Salmo salar L.) fillets, which is comparable to our result. When comparing 

this result with those obtained by Nilsen et al. (2002) it is possible to see a huge difference. 

Even though they both used salmon fillets as object of the study, Nilsen et al. (2002) managed 

to obtained better results by using again a smaller range of wavelength in the infrared region: 

700 to 1100 nm. The reduction of wavelength range is not only preferred in terms of model 

complexity reduction but also in economical point of view since broader ranges in the further 

NIR region would lead to higher sensor costs for future implementation in practical 

applications. 

   Covering the visible range would positively reduce the sensor costs and possibly 

incorporate the colour changes of the fish during storage into the model for future sample 

prediction. It could work in the case of plaice since skin alterations are visible, going from 

bright, iridescent pigmentation to dull, mat and discoloured (Martinsdóttir et al., 2001). 

However, the downsides are that there are usually large variations in colour for one type of fish 
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(coming from different origins, having eaten different feeds…) and that the colour changes in 

fish might not always directly correlate to fish freshness degradation, which could deteriorate 

the robustness of the constructed PLS models. 

 It must be mentioned that the values of days in ice were calculated through the QIM 

scores provided by ILVO. The mathematical formula used for the conversion of QIM scores 

into days in ice has a R2 = 0.89 which means that before data processing there was already 

prediction error from the imprecisions in the predicted values for storage time in ice. Therefore, 

it should be considered that these results obtained are also not only due the accumulation of the 

inherent errors from spectroscopy analysis but also from the primary transformation of the 

dataset. 

Plots of the measured versus predicted days in ice for the two selected PLS models in 

Table 6 are shown in Figure 13. 

In Figure 13, the first model (figure on the top) shows a pattern of overestimating the 

number of days in ice in almost every storage time, more pronouncing at small values of days 

in ice. Whereas, on the figure below, the model is overrating in the beginning of the prediction 

and underestimating the number of days in ice in the final days of prediction.  

In general, when days in ice increases, with both PLS models the predicted values also 

increase in general. This clearly confirmed the possibility of using NIR spectroscopy for plaice 

freshness prediction. 
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The regression coefficient plots of the two selected PLS models are displayed in Figure 

14. In the first model, the relevant wavelengths are exhibit only for the important wavelength 

range set up before (940:1030 and 1400:1580 nm) while in the second model all wavelength 

range of the study is considerate vital (940.37:1698.9 nm). Higher regression coefficients 

correspond to the wavelength of approximately 1000, 1500 and 1570 nm for first model and 

1000, 1520 and 1640 nm for the second. It is also noted that the selected wavelength ranges 

here cover the previous important wavelengths analysed in the preliminary study.  

Figure 13- Predicted versus measured days in ice for first (top) and second (bottom) PLS models using the spectra of 

dark skin samples in the best wavelength range. 
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Phenolic compounds and aromatic compounds are associated with absorption in the 

wavelength of approximately 1000 nm (N-H 2nd overtone), while amines are typically absorbed 

between 1520-1570 nm (N-H 1st overtone) and near 1650 nm (C-H 1st overtone) (Workman & 

Weyer, 2012). Although the only information given by wavelength interpretation of those 

graphics is the functional group of compounds, the data provided converged with the knowledge 

of the compounds related to fish decaying (development of aromatic compounds, ammonia, 

between others) (Rehbein & Oehlenschläger, 2009).  

  

Figure 14 - The regression coefficients in the first (top) and second (bottom) PLS calibration models using the spectra 

of dark skin samples in the best selected wavelength ranges. 



62 

 

1.2 White skin spectral data 

Figure 15 shows the evolution of SWIR spectra, ranging from 940 to 1700 nm, measured 

on white skin samples over storage time. There is generally a shift in reflectance spectra of the 

white skin when comparing with those of the dark skin. The valley from 940 to 1050 nm is 

related to O-H bonds absorption which is associate with alcohols and phenolic compounds 

(Workman & Weyer, 2012). A broad peak between 1150 and 1250 nm is correlated with C-H 

bond absorption and a valley between 1400 and 1500 nm is linked with C-H, O-H, N-H and 

C=O bonds from aromatic, phenolic, alcoholic and carbonyl compounds, aromatic amines and 

proteins (Workman & Weyer, 2012). 

 

 

Figure 15 - Measured mean SWIR spectra of the fish samples on the white skin side with increasing days in ice. 

 

The best models were selected, after testing all different pre-processing strategies and 

Y-variables transformations, based on lowest RMSECV, RMSEP and number of latent 

variables and higher R2
p, and are display in Table 4. 
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Table 4- Selected PLS models to predict storage time using white skin sepctra.. 

Cross 

Validation 

Y Pre-processing 6 Points 

excluded 

Full wavelength range Best selected wavelength range using i-PLS 

No. Latent 

Variables 

RMSECV  

RMSEP 

R2
p 

(days in ice) 

Wavelength 

range (nm) 

No. Latent 

Variables 

RMSECV  

RMSEP 

R2
p 

(days in ice) 

Custom 1 -- MSC + D2 + AS -- 7 2.3564 

2.5933 

0.677 

940:1700 7 2.3564 

2.5933 

0.677 

Custom 2 -- MSC + D2 + AS -- 8 2.3601 

2.5307 

0.699 

940:1700 8 2.3601 

2.5307 

0.699 

                                                 

6 MSC – Multiplicative Scatter Correction; D2 – Second Derivative (Savitzky-Golay); AS – Autoscale. 
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The prediction results in Table 4 are slightly worse than those for the dark skin side in 

Table 3. For both cross-validation strategies in Table 4, the best selected wavelength ranges 

correspond to the whole wavelength range measured: 940 to 1700 nm. 

Although the first model has proven to have a slightly better result for RMSECV, the 

others parameters of RMSEP and R2
p are slightly surpassing with the second one. However, the 

differences between this last two parameters are minimal (0.0626 days in ice for RMSEP and 

0.022% for R2
p). It is important to denote that the first model utilizes one less latent variable 

than the second one and thus, it has less complexity without discarding the necessity of accuracy 

and efficiency for freshness prediction. 

Nevertheless, the obtained errors of 2.5 / 2.6 days in ice are considered high by the 

industry and also according to the commercial shelf life of 13 days in ice for plaice. Although 

errors criteria for freshness prediction on plaice fish are not described in literature, it is 

interesting to compare them to similar publishing studies performed in other fish species. 

 The results obtained in this work is marginally higher than those attained by Kimiya et 

al. (2013) regarding the prediction of storage days in ice of salmon fillets using VIS/NIR 

spectroscopy (2.4 days in ice); and remarkably higher than 1.04 days in ice for cod (Nilsen et 

al., 2002); 1.20 days in ice for salmon (Nilsen et al., 2002) and 1.6 days in ice for cod fillets 

(Sivertsen et al., 2011). Most these studies were performed in the muscle side of the fish (skin 

removed) and using a wavelength range mostly including visible light. 

Figure 16 below it is possible to see the plots of predicted days in ice versus the actual 

converted days in ice for the first and second models. 

Considering the first model, on Figure 16  (top plot), it is observed that until the 

fourteenth day in ice, the estimations were overrated. The same circumstances were found in 

the dark skin models. After the 14th day, underestimation for the predicted values is observed 

but, as previously discussed, it is not worth worrying because it is past the plaice commercial 

shelf-life (13 days in ice). In the bottom side of Figure 16, for the second model, before 

approximately the 15 days in ice, the red line is on the top of the green line which leads to the 

overestimation and after 15 days in ice, underestimation of prediction occurs. In general, and 

similarly to the case of dark skin side, when days in ice increases, with both PLS models the 

predicted values also increase. This also clearly confirmed the possibility of using NIR 

spectroscopy for plaice freshness prediction.   
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 Figure 17 shows the regression coefficient plots of the two PLS models. It is easily 

recognized that the important wavelengths for the two models are generally the same. Peaks 

can be found around 1300, 1520, 1560, 1630 and 1640 nm. Some of these are in compliance 

with the ones obtained in the case of dark skin side.  

 

Figure 16 – Predicted versus measured days in ice for first (top) and second (bottom) PLS models using the spectra of 

white skin samples in the best wavelength range. 
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Amides and amines are related with absorption at 1520 and 1560 nm (N-H 1st overtone) 

(Workman & Weyer, 2012). Amines are one functional group with great representability in 

fishes’ degradation: volatile compounds, trimethylamine, dimethylamine and biogenic amines 

(Rehbein & Oehlenschläger, 2009). The chemical information used by the PLS models show 

good agreement with chemical constituents existing during fish degradation as stated in theory.  

Finally, it is concluded that predicting plaice storage days in ice could be based on 

spectral measurements either on the white skin or darks skin side and slightly better prediction 

performance was obtained when using the dark skin spectra. 

Figure 17-  The regression coefficients of the first (left) and second (right) PLS calibration models using the spectra 

of white skin samples in the best selected wavelength ranges. 
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V. General Conclusions 

NIR spectroscopy proved its capacity to hastily and in a non-destructive way to predict 

plaice freshness expressed as storage time in ice.  

Good results were obtained in the preliminary study where accuracy between 95.2 and 

100.0 % were found for 2 class discrimination (fresh and unfresh) and 70.0 and 83.3 % for 4 

class discrimination (0h, 4h, 24h and 28h at room temperature). In the first case (2-class 

discrimination), better results were performed by the dark skin side measurements while in the 

second case (4-class discrimination), the muscle side measurements culminated in highest 

accuracy percentages and lowest misclassification percentages. The best models included the 

selected wavelength ranges of [1063:1271] nm and [801:2782] nm for the first and second case, 

respectively.  

The followed main research was to evaluated NIR spectroscopy model’s robustness in 

predicting plaice’s storage time in ice converted from graded QIM scores using the wavelength 

range of 940 to 1700 nm. The best model for dark skin samples, using the whole wavelength 

region, culminated in errors of prediction of 2.017 and 2.269 for RMSECV and RMSEP; and 

0.745 for R2
p. However, buy reducing the wavelength range to two selected regions, 940 to 

1030 nm and 1400 to 1580 nm, model parameters were improved, resulting in 1.8239, 2.2226 

and 0.804 for RMSECV, RMSEP and R2
p. White skin samples best model was obtained with 

the full wavelength range and lead to 2.3564, 2.5933 and 0.677 for RMSECV, RMSEP and R2
p. 

All prediction errors determined were considered slightly higher than those obtained in other 

studies (Nilsen et al., 2002) and also when compared relatively with the commercial storage 

time in ice of plaice (13 days in ice).  

 With respect to commercial use of this NIR technology, the fact that blood stains 

presence on the used plaice samples and the fish size variation did not affect the ability to 

predict days in ice is considered a strength. NIR spectroscopy is also recognised for being a fast 

inspection technique without the need of samples preparation.  
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VI. Future Work 

Although the objectives of this research were attained, future research should be done 

in corresponding the selected wavelength range of each model to the specific deterioration 

process. This research could be performed by evaluating the correlation between the 

spectroscopy results with other measurement methods such as sensory evaluation and 

chemical/biochemical methods. 

In upcoming work, it should be of upmost importance to consider other fish handling 

and storage parameters as well as seasonal or regional variations. Visible range of the 

electromagnetic spectrum should also be studied since this optical region access human sensory 

perception and would provide lower sensor costs. Since plaice skin evolves from bright and 

incandescent to dull and mat, visible light might register these changes and therefore, be 

effective and efficient in freshness determination. 

Hyperspectral imaging using the NIR and visible ranges could also be further 

investigated for plaice freshness evaluation since this imaging technology has a big advantage 

of providing spatial distribution (at pixel level) for the quality attribute of interest on a certain 

fish sample. This could help to retain the parts that are still fresh and cut off the unfresh parts 

on a fish to save food materials and to reduce waste. 

In the future, some further large-scale on-line studies in the fish industry conditions 

would be needed to verify the accuracy of NIR spectroscopy under real conditions. 

Nevertheless, NIR spectroscopy has already been proven to be suitable for freshness quality 

control for plaice fish. 
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VII. Annexes 

Annex 1: Estimated shelf life of some fish species stored in ice 

 

Table 5 - Estimated shelf life of some fish species stored in ice (Martinsdóttir et al., 2001). 

Species Estimated shell life in ice 

Brill (Rhombus laevis) 14 days 

Cod (Godus morhua) 15 days 

Depp water shrimp (Pandalus borealis) 6 days 

Farmed salmon (Salmo salar) 20 days 

Fjord shrimp (Pandalus borealis) 6 days 

Haddock (Melanogrammus aeglefinus) 15 days 

Herring (Clupea harengus) 8 days 

Peeled shrimp (Pandalus borealis) 6 days7 

Plaice (Pleuronectes platessa) 13 days 

Pollock (Pollachius virens) 18 days 

Redfish (Sebastes mentella/marinus) 18 days 

Sole (Solea vulgaris) 15 days 

Turbot (Scophtalmus maximus) 13 days 

  

                                                 

7 The storage life before peeling. 
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VIII. Appendix 

Appendix 1: Quality evaluation of fish quality 

Fresh fish is commonly understood as fish being caught/harvested and then chilled and 

stored for a short period before use (Sivertsen et al., 2011b). 

In the sense of providing fish products of high quality, several methods and techniques 

have been developed to evaluate fish freshness. These approaches may be based on biochemical 

and instrumental measurements, methods using refractive index or spoilage and freshness 

indices and techniques based on sensor technology such as colorimetric sensor array, 

semiconducting metal-oxide sensor array, gas sensor or electronic nose (Cheng et al., 2015). 

  

a) Sensory methods 

 Sensory methods are used to interpret food characteristics as they are perceived by the 

senses of sight, smell, taste related to odour, flavour and texture. It is considered a useful tool 

due to its wide range of applications in fish freshness evaluation (Cheng et al., 2015). 

 Sensory testing can be both objective and subjective. The objective tests include 

discriminative (triangle test and forced choice, which indicate whether there is a difference 

between the samples) (Ólafsdóttir et al., 1997), descriptive (profiling, quality index method and 

structured scaling) and affective tests (market test) (Huss, 1995). For the first two types of tests, 

a trained panel is used but affective tests are subjective consumer tests that are based on a 

measure of preference or acceptance (Ólafsdóttir et al., 1997). 

 Flavour changes can be measured by difference tests such as triangle tests, paired 

comparison tests, ranking tests, between others as well as by instrumental means, gas 

chromatography, high-performance liquid chromatography or piezo electric crystals-mass 

balance measurement (Pearson & Dutson, 1994). 

The most common methods of sensory evaluation include European Union (EU) scheme 

and Quality Index Method (QIM). QIM has been gradually replacing EU scheme (or EU 

freshness grading scheme) and it has become the reference method for freshness evaluation. 

(Cheng et al., 2015). 

 In the United Kingdom, Torry Sensory Assessment scheme is also used. Although there 

are variations on the execution of these schemes, they all rely on using the physical 

characteristics of raw seafood to determine a score or rating indicating the freshness quality of 

the products. In Torry and QIM the score is used to estimate the “days in ice” of the seafood, 

although the QIM also allows to estimate the remaining shelf-life (Archer, 2010). 



71 

 

1. Grading schemes: EU-scheme and Torry scheme  

Grading is the process of applying a categorical value to a lot or group of products. 

Generally, it involves a process of integration of perceptions by the grader. The grader is asked 

to give one overall rating of the combined effect of the presence of the positive attributes, the 

blend or balance of those attributes, the absence of negative characteristics and the comparison 

of the products being graded with some written or physical standard (Rehbein & 

Oehlenschläger, 2009). 

Specific for seafood, the EU regulation “Council Regulation (EC) No 2406/96 of 26 

November 1996, laying down common marketing standards for certain fishery products” has 

only one sensory method in place: the EU-scheme for fresh fish. This method is to be used at 

first point of sale and implies freshness and other quality items (parasites, pressure marks, 

injuries, blemishes and bad discolouration). There are different schemes depending on the fish 

species and it is supposed to be used by experts or by the competent authority (inspection body). 

The method is not suitable for predicting the shelf life, nor for statistical analyses of reliability 

and reproducibility (Rehbein & Oehlenschläger, 2009). 

The Torry scale is the first detailed scheme developed for evaluating the freshness of 

cod and it is most frequently used on industry scale for evaluating the freshness of cooked fish. 

It is a descriptive 10-point scale that has been developed for lean, medium fat and fat fish 

species. Some results showed a high correlation between Quality Index Method scores and 

Torry scores (Rehbein & Oehlenschläger, 2009). 

 

2. Quality Index Method 

 The Quality Index Method (QIM) was developed at the Tasmanian Food Research Unit 

(TFRU), Australia in the late 1970s and early 1980s with the purpose of overcoming the 

inherent limitations contained in the EU grading scheme. It has been adopted in different 

countries as an alternate sensory technique using specific descriptive attributes for selected 

species that are evaluated (Alasalvar et al., 2011).  

 QIM has turned out to be the foremost reference method for quality assessment of fresh 

fish based upon an objective evaluation of the pertinent attributes of raw fish using a demerit 

points scoring system (0-3) that gives scores of zero for very fresh fish and increasingly larger 

total result as the fish deteriorates (Table 6) (Cheng et al., 2015). 
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Table 6 - Quality Index Method (QIM) scheme for plaice (Archer, 2010). 

Quality parameter Descriptions Point 

Appearance Skin (both dark and 

white side) 

Fresh, bright, metallic, no discolouration 0 

Bright, but without shine 1 

Matt, rather dull,  

slight green/blue or  

purple discolouration 

2 

Dull, green/blue, purple discolouration 3 

Mucus Clear, not clotted 0 

Slightly clotted and milky 1 

Clotted and slightly yellow 2 

Yellow and clotted 3 

Eyes Form Convex 0 

Convex but slightly sunken 1 

Flat or swollen (like a balloon) 2 

Flat, sunken in the middle 3 

Brightness Clear, black shining pupil 0 

Rather matt, black pupil 1 

Matt, opaque pupil 2 

Milky, grey pupil 3 

Gills Odour Fresh oil, seaweedy, metallic, peppery 0 

Neutral, oily, grassy, slightly musty 1 

Musty, bread, beer, malt, slightly rancid 2 

Rancid, sour, rotten, sulphurous 3 

Colour Bright, light red 0 

Slightly discoloured, especially at the end 

of gill filaments 

1 

Discoloured 2 

Yellowish, brown, grey 3 

Mucus No mucus 0 

Clear 1 

Yellowish, slightly clotted 2 

Yellow, brown, clotted 3 

Flesh, fillets Colour Fresh, translucent, bluish 0 

Waxy, milky 1 

Dull, slightly discoloured, yellowish 2 

Opaque, discoloured, yellow, brown 3 

Quality Index 0-24 
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QIM reflects the different quality levels in a simple, reliable and documented way, in 

addition of being rapid, cheap to use, non-destructive and objective compared with other 

sensory methods (Rehbein & Oehlenschläger, 2009). 

 

(b) Biochemical and chemical methods 

 Chemical measurements are mainly associated with chemical composition changes of 

fish and are indispensable for evaluating fish freshness (Cheng et al., 2015). There are available 

various chemical methods for monitoring fish quality and safety which are mainly associated 

with moisture measurement, volatile compounds measurements, ATP decomposition, K value 

measurement (Cheng et al., 2015), protein degradation measurements techniques, lipid 

oxidation and compositional changes of amino acids and fatty acids (Cheng & Sun, 2014). 

 

1. Moisture measurement 

 Moisture content is a very important parameter for fish freshness evaluation because it 

is related to fat content and affects microbial growth (He et al.,2013) which can affect the 

muscle of fish and consequently the texture (Cheng et al., 2015). 

 The moisture is unevenly distributed, with high shares in the thick loin parts and much 

lower in the thinner belly flaps and tail. The surface of fish is usually much drier than the interior 

and is normally covered by a layer of salt which can make it difficult to get good results. The 

water content is the most important criterion in the market: low percentage of moisture gives 

higher price per kg fish. (Wold et al., 2006). 

Traditional technique for measure the moisture content is oven-drying method, although 

some new methods have been tested: freeze-drying or lyophilisation, electronic moisture 

analyser and NIR spectroscopy (Khodabux et al., 2007; He et al., 2013).  

 

2. Volatile Compounds Measurements 

 Odour is one of the main indicators that consumers use to assess fish freshness. The 

smell of fish changes rapidly according to the product’s degree of freshness and it can be used 

as a quality indicator by the measurement of the key volatile compounds (Duflos et al., 2010). 

 Analysis of volatile components in food is still a challenging process due to the presence 

of extremely low levels of volatile solutes in highly complex non-volatile matrices and thus, it 

is required isolation or sampling of volatiles prior to instrumental analysis (Alasalvar et al., 

2011). 
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Headspace methods for the analysis of volatile compounds involve the collection and 

concentration of the volatiles for subsequent chromatographic separation to identify and 

quantify the separated compounds. Extremely volatile, low molecular weight compounds can 

be analysed by static headspace methods. More efficient, dynamic headspace methods are 

necessary for collecting and concentrating less-volatile compounds such as those contributing 

to “fresh fish” and “oxidized” odours (Ólafsdóttir et al., 1997). If the interested compounds are 

low-boiling then solvent extraction and evaporation are not appropriate methods because of its 

high percentage of lost recovered compounds (Pearson & Dutson, 1994).  

After extraction, instrumental analysis of the components is required. There are new 

methods and techniques for detection that have been developed such as solid-phase micro-

extraction headspace analysis (Triqui & Bouchriti, 2003), gas chromatography (GC) mass 

spectrometry (Duflos et al., 2010), the electronic noise (EN) technique (Ólafsdottir et al., 2004; 

Limbo et al., 2009; Dini et al., 2010; Ólafsdóttir et al., 1997, 2004) and the computer screen 

photo-assisted technique (CSPT) based gas sensor array (Alimelli et al., 2007). 

 

i. Amines – Total Volatile Basic Amines 

Total volatile basic amines is one of the most widely used measurements of seafood 

quality. This term generally includes the measurement of trimethylamine (TMA) (produced by 

spoilage bacteria), dimethylamine (DMA) (produced by autolytic enzymes during frozen 

storage), ammonia (produced by the deamination of amino acids and nucleotides) and other 

volatile basic nitrogenous compounds associated with seafood spoilage (Huss, 1995).  Many 

industries have used TVBN (total volatile basic nitrogen) and/or TMA as indicators of fish 

freshness (Cheng et al., 2015). 

 The principle for measuring TVBN is very straightforward: a suspension of fish muscle 

or an extract of fish muscle is made alkaline and the free bases are distilled, usually at boiling 

point at atmospheric pressure, collected, and estimated using standardised acid or alkali. 

(Rehbein & Oehlenschläger, 2009). The reference method involves steam distillation of an 

extract deproteinised by perchloric acid (Castro et al., 2006). 

Fish exceeding certain limits of the TVBN value is considered unsuitable for human 

consumption. TVBN cannot identify the early stages of deterioration of freshness quality and 

is generally considered unreliable for the measurement of spoilage during the first 10 days of 

chilled storage of cod as well as other species but it can identify later stages of spoilage and it 

is routinely used as the standard method to determine spoilage of chilled, frozen, dried and 
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canned seafood (Özogul et al., 2005a). Özogul et al, (2005a) suggested that the acceptability 

limit of TVBN level could be about 10 mg TVBN per 100g flesh.  

 Additionally, an innovative method using ammonium ion-selective electrode (NH4-ISE) 

to measure the signal changes of NH4
+-ISE, due to the changes of the ammonia content of the 

fish were developed and the results were correlated well with the content of volatile amines 

(TVBN) in cod fillets (Heising et al., 2012). 

 

ii. Ammonia 

Ammonia is formed by the bacterial degradation/deamination of proteins, peptides and 

amino acids. There are two convenient methods which are specific for identifying ammonia: 

the first involves the use of the enzyme glutamate dehydrogenase, NADH and alpha-

ketoglutarate. The molar reduction of NH3 in a fish extract yields one mole of glutamic acid 

and NAD which can be monitored conveniently by absorbance measurements at 340 nm. The 

second method uses a modification of the glutamate dehydrogenase procedure to determine the 

ammonia levels semi-quantitatively without the use of a spectrophotometer, but with a 

formazan dye, which changes colour (Huss, 1995). 

 

iii. Trimethylamine (TMA) 

 TMA is an important smelly odour and can indicate the spoilage degree of fish (Cheng 

et al., 2015). It is present in spoiling fish due to the bacterial reduction of trimethylamine oxide 

(TMAO) which is present in the living tissue of many marine fish species (Huss, 1995). 

 Analytical methods for TMA determination have been described – picrate method, 

specific ion electrode, high performance liquid chromatography (HPLC) and enzymatic flow 

injection. Unfortunately, these methods seem more suited to use in research laboratories and 

need further evaluation before possible use in commercial quality assurance (Rehbein & 

Oehlenschläger, 2009). 

The picrate procedure, developed by Dyer, is described as follows: an aliquot of a 

trichloroacetic extract of fish muscle is taken, formaldehyde added, and the mixture made 

alkaline. The free bases (ammonia, dimethylamine and TMA) are extracted into toluene and 

reacted with picric acid to give a yellow-coloured picrate salt that can be measured in a 

spectrophotometer. Potassium hydroxide is used as the alkaliser due to the fact of being more 

efficient in suppressing interference from dimethylamine and in giving higher recoveries of 

TMA than the potassium carbonate used previously. The equipment requires is quite cheap and 
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the procedure can be performed by any competent laboratory assistant (Rehbein & 

Oehlenschläger, 2009). 

 

iv. Dimethylamine (DMA) 

Dimethylamine (DMA) is produced by autolytic enzymes during storage conditions. 

This compound is only formed in fish species that contain a specific enzyme, trimethylamine 

oxidase demethylase (TMAOase), which catalyses the cleavage of trimethylamine oxide 

(TMAO) into equimolar quantities of DMA and formaldehyde (FA) (Rehbein & 

Oehlenschläger, 2009). 

DMA is usually measured as the dithiocarbamate by a procedure first applied to fish by 

Dyer and Mounsey (1945) and later modified to replace benzene as the solvent by chloroform, 

or by gas liquid chromatography (GLC) (Rehbein & Oehlenschläger, 2009). 

 

v. Biogenic Amines 

Biogenic amine determination is taken very seriously due to its potential toxicity as well 

as the possibility to using them as markers of food quality. Mietz and Karmas (1977) proposed 

a chemical quality index to establish the extent of decomposition in fresh tuna before canning. 

The relationship of five amines (histamine, putrescine, cadaverine, spermine and spermidine) 

in canned fish was quantified and calculate on a part per million basis in order to be used as an 

index of tuna decomposition: 

    

 
𝐼𝑛𝑑𝑒𝑥 =

𝐻𝑖𝑠𝑡𝑎𝑚𝑖𝑛𝑒 (𝑝𝑝𝑚) + 𝑃𝑢𝑡𝑟𝑒𝑐𝑖𝑛𝑒(𝑝𝑝𝑚) + 𝐶𝑎𝑑𝑎𝑣𝑒𝑟𝑖𝑛𝑒(𝑝𝑝𝑚)

1 + 𝑆𝑝𝑒𝑟𝑚𝑖𝑛𝑒 (𝑝𝑝𝑚) + 𝑆𝑝𝑒𝑟𝑚𝑖𝑑𝑖𝑛𝑒 (𝑝𝑝𝑚)
 

VIII.1 

 

In general, the use of more than a single biogenic amine is advised to overcome the 

limitation of possible variability in the concentration of one amine, and has been considered a 

more appropriate quality indicator (Rehbein & Oehlenschläger, 2009). 

There are several methods for histamine determination in fish products: amine oxidase-

based flow biosensor, capillary zone electrophoresis (CE), colorimetric method with imidazole 

reacting p-phenyldiazonium sulfonate, DAO-based amperometric sensor, electrochemical 

biosensor, enzyme sensor array, enzyme-based screening test, flow injection determination with 

a histamine dehygrogenase-based sensor, fluorimetric method, HPLC-post column method, Ion 

chromatography-integrated pulsed amperometric detection, monoclonal anti-body based 
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ELISA, oxygen-sensor based method, thin-layer chromatography method, etc. (Rehbein & 

Oehlenschläger, 2009). 

 

vi. Nucleotide Catabolites 

While there is no single biochemical marker compound which may be used universally 

to indicate freshness or to predict future shelf-life, nucleotide degradation has been used as a 

biochemical indicator of fish freshness in several species (Wills et al., 2004). 

ATP alone cannot be used as a chemical index of fish freshness because it is so rapidly 

converted to inosine monophosphate (IMP). Concentrations of its intermediate degradation 

products rise and fall, making them unreliable indexes of freshness. Thus, attention has focused 

on inosine (HxR) and hypoxanthine (Hx), the terminal catabolites of ATP. HxR accumulates in 

some species of fish whereas Hx accumulates in others as terminal catabolites (Ólafsdóttir et 

al., 1997). HxR and Hx concentrations in fish increased during storage and either of the two 

can be used as freshness indicators. However, the use of a single compound as freshness 

indicator is not advisable because many factors can affect nucleotide degradation such as the 

type of spoilage bacteria, mechanical handling of fish and the disappearance of the degradation 

products differs from one species to another (Nollet & Toldrá, 2010). 

 In that sense, and based on ATP decomposition, the quality indicator K value was 

introduced and it is defined as the ratio (%) of the total amount of HxR and Hx to that of ATP-

related compounds, as described by the formula below: 

 

 K value = 
𝐻𝑥𝑅+𝐻𝑥

𝐴𝑇𝑃+𝐴𝐷𝑃+𝐴𝑀𝑃+𝐼𝑀𝑃+𝐻𝑥𝑅+𝐻𝑥
× 100   VIII.2 

 

 A fresh fish will have a low K value. This parameter is dependent on: species, post 

mortem time, temperature storage conditions, handling conditions, method of killing, among 

others and therefore, it must be established a profile of K value versus time for each specie and 

its specific handling and storage conditions before K value can be used to evaluate freshness 

(Ólafsdóttir et al., 1997). 

 Nevertheless, ATP, ADP and AMP disappear early post-mortem, generally within 1 day 

of storage in ice after death in all fish species and, consequently, a revised K value, often 

designed K’ value is more often considered. K’ value is defined as the ratio of HxR and Hx to 

the sum of IMP, HxR and Hx (Nollet & Toldrá, 2010). 
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 The most common methodology used to evaluate ATP and its breakdown products is 

based on extraction of the nucleotides and derivatives in acid (perchloric and trichloroacetic 

acid), neutralization of the extracts and further separation by high performance liquid 

chromatography (HPLC) (Rehbein & Oehlenschläger, 2009). Other methods included ion 

mobility spectrometry technique (Wills et al., 2004), nuclear magnetic resonance spectroscopy 

(NMR), high-performance capillary electrophoresis (HPCE), radioimmunoassay, thin-layer 

chromatography (TLC), reversed-phase high-performance liquid chromatography (RP-HPLC) 

with and without ion-pair, ion-exchange HPLC, ion chromatography (IC) and enzymatic assays 

(Nollet & Toldrá, 2010). 

 

vii. Oxidative rancidity 

Once the lipid oxidation initiated, the extent of lipid oxidation can be followed using 

either the reactants or the products. Measurements of oxygen consumption can be monitored 

with an oxygen electrode, whereas the loss of fatty acids and antioxidants can be measured 

using gas chromatography (GC) and high-performance liquid chromatography (HPLC) 

(Ólafsdóttir et al., 1997). Free fat and the total fat can be measured using Soxhlet method and 

acid-hydrolysis method, respectively (Khodabux et al., 2007). 

 Although several methods for measurement of hydroperoxides as lipid oxidation indices 

have been proposed, instability and diversity of such compounds in a complex food system 

hinder accurate and simple analysis. The widely accepted iodometric titration and the enzymatic 

assays have inherent problems with sensitivity, selectivity and interference with contaminations 

(Alasalvar et al., 2011). The PV (peroxide value) is the most common measure of lipid 

hydroperoxides, also called primary lipid oxidation products (Ólafsdóttir et al., 1997). Besides 

the titration method, several colorimetric methods can be used to determine this value, such as 

colorimetric ferric thiocyanate method or the International Dairy Federation (IDF) method. 

High-performance liquid chromatography (HPLC) can also be used to determine individual 

peroxides (Nollet & Toldrá, 2010). 

Several studies have already related Raman spectroscopy to traditional methods to 

determine modifications in lipids of muscle foods, for example, Raman spectroscopy results 

and oxidation levels, determined by a traditional colorimetric method such as peroxide values, 

were related to lipids extracted from both mackerel and horse mackerel (Herrero, 2008). 

To overcome the difficulties of sensibility and selectivity of traditional methods, the 

developed a flow injection analysis (FIA) system coupled with a fluorescence detection system 
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enables the determination of hydroperoxides in fish muscle at picomole levels during early 

stages of lipid oxidation (Alasalvar et al., 2011). 

Peroxides are unstable and rapidly metabolised into secondary oxidation products and 

thus, PV must be combined with secondary products determination such as thiobarbituric acid-

reactive substances (TBARS) and anisidine value (AnV). The conjugation of the previously 

referred outcomes in the Totox value (Totox value = 2*PV + AnV) (Nollet & Toldrá, 2010). 

Tertiary products, arising from interactions between oxidizing lipids and nitrogen-

containing compounds, can be followed using fluorescence spectroscopy or, in later stages, by 

visual assessment or colorimetry (Ólafsdóttir et al., 1997). 

The thiobarbituric acid (TBA) value is considered as a helpful indicator for predicting 

the degree of lipid oxidation and it is usually expressed as mg melonaldehyde (MDA) per kg 

muscle (Cheng et al., 2015).   

 

3. Protein Changes 

 It is possible to determined changes on the size of proteins by electrophoretic and 

chromatographic techniques although these techniques are unsuitable for industrial use 

(Ólafsdóttir et al., 1997). Electrophoretic methods consist on: native isoelectric focusing 

(nIEF), urea IEF and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

(Rehbein & Oehlenschläger, 2009). SDS-PAGE technique has been studied for indicating 

protein changes, thus the freshness quality of fish but its measurement process is very tedious 

and the pH of the solution is difficult to control (Cheng et al., 2015). 

In the last decades, several attempts have been made to establish HPLC as an alternative 

to electrophoresis techniques due to its shorter time of sample preparation and possibility of 

automation (Rehbein & Oehlenschläger, 2009). 

 

(c) Physical methods 

1. Colour 

 Colour is one of the most significant physical property indicating fish freshness quality 

to consumers (Cheng & Sun, 2014) and results from the detection of light after it has interacted 

with an object (Luten et al., 2003). For fish, skin and flesh discoloration is a very important 

problem since the skin and flesh colour must be very vivid (Nollet, 2012). The colours of eyes 

and gills are also parameters often used to estimate fish freshness. Normally they are analysed 

using the Quality Index Method but they can also be measure by machine vision although the 
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results obtained depend on the method used since both eyes and gills are very reflective (Genç 

et al., 2016). 

The measurement of colour can be carried out by visual inspection, using a trichromatic 

colorimeter or a spectrophotometer. This last one is the most accurate type of colour-measuring 

instrument (Pearson & Dutson, 1994). Spectrophotometer uses a light source to illuminate the 

object in study. The reflected light passes to a grating which breaks it into a spectrum that is 

then processed and transformed in the CIELAB values: L*, a* and b* (Rehbein & 

Oehlenschläger, 2009). In this system, L* denotes lightness on a 0–100 scale from black to 

white; a*: (+) red or (-) green; b: (+) yellow or (-) blue (Ólafsdóttir et al., 2004). 

 

1. Electrical Properties 

Changes in fish freshness can also be determined by measuring the electrical properties 

of the fish muscle (Ólafsdóttir et al., 1997). Measuring the electric properties of fish either 

transversal to the body axis or parallel with the body is a characteristic that can be measured by 

rapid, non-destructive and non-invasive methods and that can be carried out by untrained non-

scientific personnel (Luten et al., 2003). 

 Three different instruments are available to measure the changes in electrical 

properties: the Torrymeter, the Fishtester and the RT-Freshness Grader, which all show good 

correlations with sensory scores of fish freshness, when used within their applicable range of 

operation. The advantage of electrical testers is their immediate responses and their suitability 

for field use and for use by personnel without previous experience (Ólafsdóttir et al., 1997). 

 

2. pH and Eh 

 An important quality characteristic of seafood is pH value, which is closely related with 

protein, fat and other quality attributes. Commonly, pH is measured by using a pH meter by 

placing the electrodes either directly into the flesh or into suspension of fish flesh in distilled 

water (Huss, 1995). Nevertheless, this process is invasive and time-consuming which makes it 

unsuitable for evaluating large amounts of samples. Furthermore, pH measurements using pH 

meter does not allow visualize the pH distribution which is critical and necessary for the quality 

and safety inspection and control of fish products (He et al., 2012). 

 Eh is a fish freshness measurement based on dielectric properties on fish tissue which 

shows the relationship between the occurrence of O2 and microorganism measured by an 

electrometer. The redox or oxidation-reduction (O-R) potential (Eh) measures the potential 
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difference in a system generated by a coupled reaction in which one substance is oxidized and 

the other is reduced. Redox potential values measured depends on pH, each measurement of 

redox potential should be accompanied by a statement on pH (Susanto et al., 2011). 

 

3. Texture 

 The firmness of raw fish muscle is a critical parameter that determines the acceptability 

of the seafood products (Casas et al., 2006). The texture of fish flesh depends on intrinsic 

biological factors related to muscle fibres, collagen (responsible for tensile strength) and 

myofibrils (myosin and actin) (Wu et al., 2012), as well as the acidity of the muscle which itself 

depends on the pre-slaughter stress or activity of the fish (Alasalvar et al., 2011). After death 

and resolution of rigor mortis the autolytic spoilage disrupts the fibres and the muscle becomes 

softer and less elastic (Luten et al., 2003). 

There are several methods and techniques for measuring texture but they can be divided 

in two main approaches: organoleptic assessment and instrumental methods. The first approach 

uses trained taste panels that perform routine assessments of fish, which includes visual 

examination and hand touch with raw materials (Wu et al., 2012). The execution of the design 

described is time-consuming, laborious, tedious, inconsistent, requires skilled personnel 

(Ashton et al., 2010) and is considered a subjective method as it relies in human inspection 

(Pearson & Dutson, 1994; Khoshtaghaza et al., 2016). 

  In that sense, instrumental methods are preferred as their assessments may reduce 

variation among measurements due to human factors and are more precise (Casas et al., 2006). 

Among textural attributes (hardness, adhesiveness, cohesiveness, springiness, chewiness, 

gumminess and fracture ability) (Nollet, 2012), hardness is the most important to consumer 

and, therefore, is decisive on the commercial value of the meat. (Nollet & Toldrá, 2010). 

  Besides existing diverse instrumental methods for texture analysis, not all the techniques 

can be applied to fish (Khoshtaghaza et al., 2016). Moreover, there is no ideal texture 

measurement equipment or system. Khoshtaghaza et al. (2016) used the compression test 

method to analyse fish texture. This method is equivalent to the traditional and widely used 

method of finger-like compression test which is used for fish freshness detection. In this test, if 

the pressure region returns to its initial state, then the fish is fresh, otherwise, if the shape is 

changed, then the sample is not fresh.  
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 Other possible instrumental texture methods are the Kramer test, Warner-Braztler 

(Peasron & Dutson, 1994), puncture, tensile and viscoelastic methods such as stress relaxation, 

creep and oscillatory measurements (Rehbein & Oehlenschläger, 2009). 

 One of the problems that restricts the routinely use of instrumental methods by the 

industry is its non-representability due to its impossibility to measure several samples and the 

fact that the measurements are not done to the whole fish. Besides this, instrumental methods 

are destructive, laborious, costly and require lengthy sample preparation (Wu et al., 2012). 

 

(b) Microbiological methods 

 Microbial deterioration process is one of the main contributors to the post mortem 

changes of fish, causing fish spoilage and therefore, affecting its shelf life (Cheng et al., 2015). 

Microbial growth and metabolism result in the formation of amines, sulphides, alcohols, 

aldehydes, ketones and organic acids with unpleasant and unacceptable off-flavours, as well as 

some discolouration (Gram & Dalgaard, 2002). 

 Microbial methods can provide useful measures of fish freshness; however, the most 

promising results have been achieved with relatively slow detection methods such as plate count 

and other growth techniques that involve a period of incubation (Ólafsdóttir et al., 1997). 

 

1. Total Viable Counts 

 The total viable counts (TVC) is the traditional method used to assess the freshness of 

different kinds of aquatic products. Based on TVC index, most countries have established 

standards, guidelines and specifications of fish freshness under diverse storage conditions of 

temperature, time and atmosphere. This indicator is convenient for accurate detection of the 

degree of fish freshness and for predicting the remaining shelf life of fish (Cheng et al., 2015). 

 Upon fishing, seafood is not exempted of microorganism, containing an initial value of 

TVC of approximately 102-104 CFU/g (Gram & Dalgaard, 2002). 

 TVC method is time-consuming and inconvenient both in terms of operation and 

collection of data. Several methods have been explored to improve the efficiency of the viable 

cell count procedure as the spiral plating method, the counting spiral-plated colonies, the 

autoplater, the isogrid system, the petrifilm system, the redigel system, the direct epifluorecent 

filter technique and the double-tube method (Pearson & Dutson, 1994).  This led to the 

development of a faster alternative for inspection of microorganisms, the EN (electronic noise) 



83 

 

technique which have revealed to be able to classify in three freshness stages a sardine sample 

that were according to the results obtain with TVC values (Barbri et al., 2009). 

 

2. Spoilage Bacteria 

 Studies on bacteria that can produce smelly odours, like the common sulphide producer 

Shewanella putrefaciens, could be an indicator to determine the time to sensory rejection 

(Kyrana & Lougovois, 2002; Lougovois et al., 2008). This microorganism was determined as 

the specific spoilage organism (SSO) of some chilled fresh fish and can be enumerated in iron-

containing agar. Correlation coefficients as high as 0.97 were achieved when comparing log 

numbers of S. putrefaciens with the remaining shelf life of aerobically stored fish, as determined 

by sensory evaluation (Ólafsdóttir et al., 1997). 

 Photobacterium phosphoreum was considered a SSO in some modified-atmosphere 

packed (MAP) fish and it can be specifically identified using a conductance technique which 

has proved to have a good correlation with the remaining shelf life of MAP cod fillets 

(Ólafsdóttir et al., 1997). 

 

3. Pathogenic Bacteria 

Fish and fish products are known vehicles for transmission of foodborne diseases. 

Pathogenic bacteria associated with seafood can be categorised into three general groups: 

bacteria (indigenous bacteria) that belong to the natural microflora of fish (Clostridium 

botulinum, pathogenic Vibrio spp., Aeromonas hydrophila); enteric bacteria (non-indigenous 

bacteria) that are present due to faecal contamination (Salmonella spp., Shigella spp., 

pathogenic Escherichia coli, Staphylococcus aureus); and bacterial contamination during 

processing, storage or preparation for consumption (Bacillus cereus, Listeria monocytogenes, 

Staphylococcus aureus, Clostridium perfingens) (Rehbein & Oehlenschläger, 2009). 

The prevalence of pathogenic bacteria in samples can be very low and it is possible that 

there is a lack of proper selective microbiological media for their detection. Therefore, 

enrichment in liquid media is often needed. In such cases, serial dilution tests measuring the 

concentration of a target microbe in a sample with an estimate – the most probable-number 

(MPN) methods – can be used (Rehbein & Oehlenschläger, 2009). 

Standards methods for recovering microorganism from foods may include enrichment 

culture, streaking out onto selective or differentiating media or direct plating onto these, and 

identification of colonies be morphological, biochemical and immunological tests. This 
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requires manual labour, is expensive and usually needs between 2 and 5 days. Furthermore, the 

results may be incorrect due to the influence of cultivation conditions or the fact that certain 

bacteria might not grow on the medium used (Rehbein & Oehlenschläger, 2009). 

 

4. Foreign Contaminant Detection 

Although human consumption of parasites in fish muscle is not considered a healthy 

issue if the fish is exposed to normal cooking temperatures, the finding of nematode infection 

in fish muscle will cause immediate consumer rejection of the product (Heia et al., 2007).  

In wild-caught marine fish, Anisakis simplex is among the most frequently occurring 

parasites and besides the considerable quality-reducing effect of Anisakis larvae with respect to 

seafood products. They are of direct human health concern, especially regarding the increasing 

interest in Asian-inspired seafood dishes based on undercooked, brined or marinated, or even 

raw fish meat (Werner et al., 2010). Currently, there is no effective method available to detect 

parasites except manual vision inspection on candling tables. Still, manual vision inspection is 

inaccurate, time-consuming and laborious (Cheng et al., 2015). The fillets are placed onto a 

white light table, and parasites embedded to a depth of 6 mm into the fillet can be spotted and 

removed manually, although the efficiency rate is only 60 to 70 % (Heia et al, 2007). 
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Appendix 2: Preliminary study  

Appendix 2.1: Flow chart 

 

 

10 fresh plaice fishes
- Transported on ice

- Storage in poly-ethylene (PE) plastic film at 19ºC

NIR measurements:
- MPA FT-NIR spectrophotometer (800 to 2700 nm)

- Dark skin vs muscle (white skin removed)
- With vs. without PE plastic film

Statistical analysis:
- PCA and PLS-DA

- Cross validation method: Contiguous blocks

Pre-processing treatment:

- Outliers removal
- Noise reduction: smoothing method

- Baseline correction: derivatives methods and MSC
- Removing unwilling variation: autoscale

2 class discrimination:
- Fresh (0h) vs. unfresh (4, 24 and 28h of storage) 
- Calibration set: 38 fresh and 38 stored spectra
- Validation set: 12 fresh and 112 stored spectra

i- PLDA method

Determination of sensibility, specificity and   
accuracy

Interpretation of regression coefficient plots

4 class discrimination:
- 0h vs. 4h vs. 24h vs. 28h

- Calibration set: 35 spectra at each storage time
- Validation set: 15 spectra at each storage time

i- PLSDA method

Determination of accuracy and misclassification 
percentage

Interpretation of regression coefficient plots
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Appendix 2.2: Plastic foil spectra  

 

Figure 18 - Plastic foil spectra. 
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Appendix 2.3: Spectra plot: 2-Class discrimination 

1) Dark Skin 

 

 

 

 

 

 

 

 

 

 

 

 

2) Muscle 

 

Figure 20 - Muscle samples spectra in 2 class discrimination. 

 

 

Figure 19 - Dark skin samples spectra in 2 class discrimination. 
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3) Dark Skin with plastic foil 

 

Figure 21 - Dark skin with plastic foil spectra in 2 class discrimination. 

 

 

4) Muscle with plastic foil 

 

Figure 22 - Muscle with plastic foil spectra in 2 class discrimination. 
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Appendix 2.4: Spectra plot: 4-Class discrimination 

1) Dark Skin 

 

Figure 23 - Dark skin samples spectra in 4 class discrimination. 

 

2) Muscle 

 

Figure 24 - Muscle samples spectra in 4 class discrimination. 
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3) Dark Skin with plastic foil 

 

Figure 25 - Dark Skin with plastic foil samples spectra in 4 class discrimination. 

 

4) Muscle with plastic foil 

 

Figure 26 - Muscle with plastic foil samples spectra in 4 class discrimination. 
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Appendix 2.5: Misclassification points: 2-Class discrimination 

 

1) Full wavelength range 

a. Dark skin 

Table 7 - Misclassification points in dark skin samples model for 2 class discrimination. 

Point Real Classification Predicted Classification 

19 Unfresh (4h) Fresh (0h) 

 

b. Muscle 

Table 8 - Misclassification points in muscle samples model for 2 class discrimination. 

Point Real Classification Predicted Classification 

17 Unfresh (4h) Fresh (0h) 

28 Unfresh (4h) Fresh (0h) 

 

c. Dark Skin with plastic foil 

Table 9 - Misclassification points in dark skin with plastic foil samples model for 2 class discrimination. 

Point Real Classification Predicted Classification 

30 Unfresh (4h) Fresh (0h) 

51 Unfresh (24h) Fresh (0h) 

 

d. Muscle with plastic foil 

Table 10 - Misclassification points in muscle with plastic foil samples model for 2 class discrimination. 

Point Real Classification Predicted Classification 

16 Unfresh (4h) Fresh (0h) 

28 Unfresh (4h) Fresh (0h) 

36 Unfresh (4h) Fresh (0h) 

41 Unfresh (4h) Fresh (0h) 

42 Unfresh (4h) Fresh (0h) 

61 Unfresh (24h) Fresh (0h) 

109 Unfresh (28h) Fresh (0h) 
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2) Selected wavelength range 

a. Muscle 

Table 11 - Misclassification points in dark skin samples model for 2 class discrimination using a selected wavelength. 

Point Real Classification Predicted Classification 

17 Unfresh (4h) Fresh (0h) 

28 Unfresh (4h) Fresh (0h) 

 

b. Muscle with plastic foil 

Table 12 - Misclassification points in muscle samples model for 2 class discrimination using a selected wavelength. 

Point Real Classification Predicted Classification 

28 Unfresh (4h) Fresh (0h) 

29 Unfresh (4h) Fresh (0h) 

38 Unfresh (4h) Fresh (0h) 

41 Unfresh (4h) Fresh (0h) 

41 Unfresh (4h) Fresh (0h) 

59 Unfresh (24h) Fresh (0h) 
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Appendix 2.6: Misclassification points: 4-Class discrimination 

 

1) Full wavelength range 

a. Dark Skin 

Table 13 - Misclassification points in dark skin samples model for 4 class discrimination. 

Point Real Classification Predicted Classification 

25 4h 24h 

31 24h 28h 

33 24h 4h 

36 24h 28h 

38 24h 28h 

40 24h 28h 

41 24h 28h 

47 28h 24h 

48 28h 24h 

49 28h 24h 

50 28h 24h 

51 28h 24h 

52 28h 24h 

54 28h 24h 

55 28h 24h 

58 28h 24h 

59 28h 24h 

60 28h 4h 

 

b. Muscle 

Table 14 - Misclassification points in muscle samples model for 4 class discrimination 

Point Real Classification Predicted Classification 

23 4h 24h 

30 4h 28h 

36 24h 28h 

41 24h 4h 

43 24h 28h 

52 28h 24h 
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c. Dark Skin with plastic foil 

Table 15 - Misclassification points in dark skin with plastic foil samples model for 4 class discrimination 

Point Real Classification Predicted Classification 

16 4h 24h 

20 4h 24h 

21 4h 24h 

22 4h 24h 

23 4h 24h 

26 4h 24h 

27 4h 24h 

31 24h 28h 

32 24h 28h 

33 24h 4h 

35 24h 4h 

36 24h 28h 

38 24h 28h 

40 24h 4h 

44 24h 4h 

49 28h 24h 

51 28h 4h 

52 28h 24h 

53 28h 24h 

54 28h 24h 

57 28h 24h 

58 28h 24h 
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d. Muscle with plastic foil 

Table 16 - Misclassification points in muscle with plastic foil samples model for 4 class discrimination 

Point Real Classification Predicted Classification 

16 4h 24h 

28 4h 24h 

30 4h 24h 

36 24h 28h 

37 24h 4h 

42 24h 4h 

44 24h 4h 

46 28h 24h 

48 28h 4h 

55 28h 4h 

 

2) Selected wavelength range 

a. Dark skin  

Table 17 - Misclassification points in dark skin samples model for 4 class discrimination using the selected wavelength. 

Point Real Classification Predicted Classification 

25 4h 24h 

31 24h 28h 

33 24h 4h 

36 24h 28h 

38 24h 28h 

40 24h 28h 

41 24h 28h 

47 28h 24h 

48 28h 24h 

49 28h 24h 

50 28h 24h 

51 28h 24h 

52 28h 24h 

54 28h 24h 

55 28h 24h 

58 28h 24h 

59 28h 24h 

60 28h 4h 
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b. Muscle 

Table 18 - Misclassification points in muscle samples model for 4 class discrimination using the selected wavelength. 

Point Real Classification Predicted Classification 

23 4h 24h 

30 4h 28h 

36 24h 28h 

41 24h 0h 

43 24h 28h 

52 28h 24h 

 

c. Skin with plastic foil 

Table 19 - Misclassification points in dark skin with plastic foil samples model for 4 class discrimination using the selected 

wavelength. 

Point Real Classification Predicted Classification 

16 4h 28h 

17 4h 28h 

18 4h 28h 

20 4h 24h 

22 4h 28h 

23 4h 24h 

24 4h 28h 

25 4h 24h 

31 24h 28h 

35 24h 28h 

43 24h 4h 

49 28h 24h 

51 28h 4h 

52 28h 24h 

55 28h 24h 

56 28h 4h 

57 28h 24h 

58 28h 24h 
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d. Muscle with plastic foil 

Table 20 - Misclassification points in muscle with plastic foil samples model for 4 class discrimination using the selected 

wavelength. 

Point Real Classification Predicted Classification 

16 4h 24h 

28 4h 24h 

30 4h 24h 

36 24h 28h 

37 24h 4h 

42 24h 4h 

44 24h 4h 

46 28h 24h 

48 28h 4h 

55 28h 4h 
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Appendix 3: Main study 

Appendix 3.1: Plaice Classes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 - Plaice class 301. 

Figure 28 - Plaice class 401. 

Figure 29 -  Plaice class 601. 
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Appendix 3.2: QIM scores 

Table 21- QIM scores for plaice samples class 601. 

Fish number QIM score  Karen QIM score  Daphné 

1 5 4 

2 5 6 

3 7 6 

4 5 6 

5 6 7 

6 7 6 

7 9 9 

8 4 2 

9 5 7 

10 5 7 

11 9 7 

12 11 9 

13 6 6 

14 8 8 

15 2 3 

16 6 6 

17 8 8 

18 11 8 

19 7 8 

20 4 5 

21 6 5 

22 4 5 

23 6 7 

24 8 7 

25 6 6 

26 7 8 

27 8 7 

28 4 5 

29 8 9 

30 8 8 
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Table 22 - QIM scores for plaice samples class 401. 

fish number QIM score  Karen QIM score  Daphné 

1 7 7 

2 4 7 

3 7 7 

4 5 9 

5 3 6 

6 7 8 

7 6 7 

8 7 8 

9 12 9 

10 7 11 

11 5 6 

12 4 7 

13 5 7 

14 6 6 

15 6 8 

16 5 8 

17 13 10 

18 6 7 

19 4 6 

20 6 6 

21 5 9 

22 7 8 

23 5 8 

24 8 8 

25 8 8 

26 7 7 

27 7 7 

28 6 8 

29 9 7 

30 5 7 
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Table 23 - QIM scores for plaice samples class 601. 

fish number QIM score  Karen QIM score  Daphné 

1 8 7 

2 4 6 

3 2 4 

4 4 7 

5 7 8 

6 7 7 

7 9 7 

8 9 9 

9 8 7 

10 6 6 

11 9 9 

12 11 12 

13 8 9 

14 6 7 

15 5 7 

16 5 7 

17 6 6 

18 13 9 

19 6 7 

20 8 8 

21 4 5 

22 9 8 

23 3 6 

24 5 7 

25 9 10 

26 8 8 

27 5 6 

28 13 13 

29 7 9 

30 5 5 
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Appendix 3.3: Spectral data reorganization 

 

Table 24 - Spectral data reorganization 

Days 

on 

ice 

20/June 21/June 23/June 26/June 28/June 30/June 

601 401 301 601 401 301 601 401 301 601 401 301 601 401 301 601 401 301 

3 8, 15  3                

4    8, 15  3             

5 

1, 2, 

4, 20, 

21, 

22, 

28 

2, 5, 

11, 12, 

19 

2, 4, 

21, 

23, 

27, 

30 

               

6 

3, 5, 

6, 9, 

10, 

13, 

16, 

23, 

25 

1, 3, 4, 

7, 13, 

14, 15, 

16, 18, 

20, 21, 

23, 26, 

27, 28, 

30 

6, 10, 

14, 

15, 

16, 

17, 

19, 

24 

1, 2, 

4, 20, 

21, 

22, 

28 

2, 5, 

11, 12, 

19 

2, 4, 

21, 

23, 

27, 

30 

8, 15  3          
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7 

11, 

14, 

17, 

19, 

24, 

26, 

27, 

30 

6, 8, 

22, 24, 

25, 29 

1, 5, 

7, 9, 

20, 

26, 

29 

3, 5, 

6, 9, 

10, 

13, 

16, 

23, 

25 

1, 3, 4, 

7, 13, 

14, 15, 

16, 18, 

20, 21, 

23, 26, 

27, 28, 

30 

6, 10, 

14, 

15, 

16, 

17, 

19, 

24 

            

8 
7, 18, 

29 
10 

8, 11, 

13, 

22, 

25 

11, 

14, 

17, 

19, 

24, 

26, 

27, 

30 

6, 8, 

22, 24, 

25, 29 

1, 5, 

7, 9, 

20, 

26, 

29 

1, 2, 

4, 20, 

21, 

22, 

28 

2, 5, 

11, 12, 

19 

2, 4, 

21, 

23, 

27, 

30 

         

9 12 9  
7, 18, 

29 
10 

8, 11, 

13, 

22, 

25 

3, 5, 

6, 9, 

10, 

13, 

16, 

23, 

25 

1, 3, 4, 

7, 13, 

14, 15, 

16, 18, 

20, 21, 

23, 26, 

27, 28, 

30 

6, 10, 

14, 

15, 

16, 

17, 

19, 

24 

8, 15  3       



104 

 

10  17 
12, 

18 
12 9  

11, 

14, 

17, 

19, 

24, 

26, 

27, 

30 

6, 8, 

22, 24, 

25, 29 

1, 5, 

7, 9, 

20, 

26, 

29 

         

11   28  17 
12, 

18 

7, 18, 

29 
10 

8, 11, 

13, 

22, 

25 

1, 2, 

4, 20, 

21, 

22, 

28 

2, 5, 

11, 12, 

19 

2, 4, 

21, 

23, 

27, 

30 

8, 15  3    

12      28 12 9  

3, 5, 

6, 9, 

10, 

13, 

16, 

23, 

25 

1, 3, 4, 

7, 13, 

14, 15, 

16, 18, 

20, 21, 

23, 26, 

27, 28, 

30 

6, 10, 

14, 

15, 

16, 

17, 

19, 

24 

      

13        17 
12, 

18 

11, 

14, 

17, 

19, 

24, 

26, 

27, 

30 

6, 8, 

22, 24, 

25, 29 

1, 5, 

7, 9, 

20, 

26, 

29 

1, 2, 

4, 20, 

21, 

22, 

28 

2, 5, 

11, 12, 

19 

2, 4, 

21, 

23, 

27, 

30 

8, 15  3 
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Appendix 3.4: Flow chart 

  

 

  

90 fresh plaice fishes
- Transported on ice to ILVO

- Evaluation by Quality Index Method
-Transported on ice to Biophotonics Lab 

- Storage in the frigde at 1 ºC (controlled temperature)

SWIR measurements:
- Corona Fibre VISNIR spectrophotometer (940 to 1700 nm)

- Dark skin vs white skin
- 1, 2, 4, 7, 9 and 11 days of storage

Data analysis:
- Convertion from Quality index to storage days in ice

- Reorganization of the data according to the days in ice calculated

Statistical analysis:
- PLS Regression

- Cross validation method: 2 personalized Custom methods

Pre-processing treatment:

- Y transformation: normal, log(Y), 1/Y
- Outliers removal

- Noise reduction: smoothing method
- Baseline correction: derivatives methods and MSC

- Removing unwilling variation: autoscale

- Calibration set: 720 spectra
- Validation set: 360 spectra

i- PLS Variable Selection Interface

Evaluation of number of latent variables, RMSECV, RMSEP and R2
p

Interpretation of predicted vs measured days in ice

Interpretation of regression coefficient plots
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