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Abstract—Many models have been proposed for the
location-allocation problem. In this study, based on sectoriza-
tion concept, we propose a new single-objective model of this
problem, in which, there is a set of customers to be assigned to
distribution centres (DCs). In sectorization problems there are
two important criteria as compactness and equilibrium, which
can be defined as constraints as well as objective functions.
In this study, the objective function is defined based on the
equilibrium of distances in sectors. The concept of compactness
is closely related to the accessibility of customers from DCs.
As a new approach, instead of compactness, we define the
accessibility of customers from DCs based on the covering
radius concept. The interpretation of this definition in real life
is explained. As another contribution, in the model, a method
is used for the selection of DCs, and a comparison is made
with another method from the literature, then the advantages
of each are discussed. We generate benchmarks for the problem
and we solve it with a solver available in Python’s Pulp library.
Implemented codes are presented in brief.

Index Terms—Location-Allocation Problem, Sectorization,
Covering Radius, Python, Pulp, Linear Programming

I. Introduction
The aim of the location-allocation problem (LAP) is

to find the optimal location of service centres as well as
allocating demand zones to each of them [1]. In this study,
we address this problem based on the idea of sectorization.
In sectorization problems (SPs), a large region is split into
smaller ones for administrative goals. SPs have several
applications in territorial management of sales, water,
healthcare, public transportation, internet networking,
municipality, electric power, emergency service, police
patrol, social facilities, etc [2]–[10]. Two important criteria
for SPs are compactness and equilibrium, which can be
added to mathematical models as both constraint and
objective function [11]–[14].

In the problem of this study, there is a set of customers
in a region whose coordinates are known in advance. They
have predetermined demands so that they are assigned to
distribution centres (DCs) in order to meet the demands,
taking some criteria into account. A subset of the DCs
is chosen, therefore, some of them may not be open,
in which case customers are not assigned to them. The

coordinates of them are also certain. Thus, the problem
consists of the selection of DCs and the assignment of
customers to them. Various solution methods have been
proposed in the literature for this problem. Teymourifar
et al. [14] proposed a two-stage method, in which a subset
of DCs is selected in the first stage and the corresponding
sectorization subproblem of the subset is solved in the
second stage. In the mentioned study, at the first stage,
different subsets are searched and since the model is multi-
objective and Pareto optimal solutions are found [14].
Unlikely, in this study, we do the selection of DCs and the
assignment of the customers in one stage. Also, instead of
compactness, we manage the accessibility of the customers
from DCs with a constraint defined based on the concept
of covering radius [15]. Different from previous studies that
used the covering radius concept for LAP, we integrate it
with the sectorization approach.

In other sections of the study, experimental results are
presented after problem definition. Then, implementation
is briefly described. The conclusion is the last part of the
study.

II. Problem Definition
The problem dealt with in this paper includes a set

of potential DCs and customers in different locations.
Considering the objective function, sectorization is done
by selecting a subset of DCs to be opened and assigning
a subset of customers to each. Thus, each DC and its
assigned customers creates a sector.

We provide an illustrative example that helps to better
understand the problem and the solution method. In Fig.
1(a), potential DCs and customers are represented as
squares and circles, respectively. As shown in Fig. 1(b),
two of DCs is selected to open and customers are assigned
to them so that the objective function is minimized. The
resulting two sectors are shown in green and blue colours.

Some of the used terminology and notations are sum-
marized in TABLE I.

In the model, we use binary decision variables Yj , and
Xij , which are defined as in Equations 1 and 2.
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Fig. 1. An illustrative example of the problem [14].

TABLE I
Used notations.

Objective functions:
f Objective function defined based on the equilibrium of distances in sectors

Sets and indexes:
i ∈ {1, ..., Ī} Index of customers
j ∈ {1, ..., J̄} Index of DCs and sectors

Parameters:
Dij Euclidean distance between customer i and DC j
D̄ Average distance of customers from DCs
rij Binary parameter about if customer i is in the covering radius of DC j or not
Dei Demand of customer i
D̄e Average demand of customers in sectors
τequ Tolerance for the equilibrium criteria
τr Tolerance for the covering radius of DCs

nmax Upper limit for the number of opened DCs
Variables:

Dj Total distance of customers from DC j in sector j
Dej Total demand of customers in sector j

Binary decision variables:
Yj Decision variable about if DC j is opened or not
Xij Decision variable about if customer i belongs to sector j or not

Positive decision variables:
Aj Positive variable to linearize the objective function
Bj Positive variable to linearize the objective function

Yj =

{
1, if DC j is opened

0, otherwise.
(1)

Xij =

{
1, if customer i is in sector j

0, otherwise.
(2)

There is a DC in each sector, so if customer i is in
sector j, which likewise implies that it is assigned to DC j.

The objective function is defined as in Equation 3, which
is related to equilibrium of distances in sectors:

f = Min
J̄∑

j=1

|Dj − D̄| (3)

where Dj =
∑Ī

i=1 Dij × Xij ∀ ∈ J̄ and
D̄ =

∑Ī
i=1

∑J̄
j=1

Dij

J̄
. It should be noted that D̄

is not dependent on decision variables. Hence, it is

calculated as a parameter, not a variable.

As defined in Constraint 4, at least one customer is
assigned to each sector.

Ī∑
i=1

Xij ≥ 1, ∀ ∈ J̄ (4)

In the reference [13], two definitions of compactness
are given, one of them as an objective function and the
other one as a constraint. Since these definitions are
based on the total distance of the customers from the
assigned DC, they cannot measure the accessibility of
each customer to the DC. In a different way, we use
constraint 4, which is a linear Constraint, to ensure the
accessibility of each customer from the related DC. The
linearity of the constraint also makes it easy to manage.
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Each customer is assigned to only one sector, which is
supplied by Constraint 5:

J̄∑
j=1

Xij = 1, ∀i ∈ Ī (5)

Constraint 6 is to ensure that all customers are on the
covering radius of at least one of the opened DCs.

Ī∑
j=1

rijYj ≥ 1, ∀i ∈ Ī (6)

rij is a binary parameter, which is equal to one
if customer i is in the covering radius of DC j, and
otherwise is equal to zero. rij is calculated based on
τr. Details are given in the section of experimental results.

Customers only receive service from one of the opened
DCs. However, as defined in Constraint 6, each customer
is in the covering radius of more than one DC. For
the customers, this can be an advantage in emergency
situations, which can be a case in which the DC that the
customers in the assigned sector ordinarily receive service
from, is damaged.

Customer i receives service from the opened DC j
only if it is in its covering radius, which is defined as in
Constraint 7.

Xij ≤ rij , ∀i ∈ Ī and ∀j ∈ J̄ (7)

Customer i can be assigned to DC j and receives
service from it only if DC j is open, which is guaranteed
by Constraint 8.

Xij ≤ Yj , ∀i ∈ Ī and ∀j ∈ J̄ (8)

DC j is open if at least one customer is assigned to it,
which is provided by Constraint 9.

Yj ≤
Ī∑

i=1

Xij , ∀j ∈ J̄ (9)

Applying Constraint 10, an upper limit can be specified
for the number of opened DCs.

J̄∑
i=1

Yj ≤ nmax ≤ J̄ (10)

It is expected that the equilibrium be provided in terms
of demands between the formed sectors, which is afforded
by Constraint 11.

|Dej − D̄e| ≤ D̄e(1− τequ), ∀j = 1, ..., J̄ , 0 ≤ τequ ≤ 1
(11)

where Dej =
∑Ī

i=1 Dei ×Xij , D̄e =
∑Ī

i=1

∑J̄
j=1

Dej
J̄

.

III. Implementation
In this section, we present some details about

implementation, which is done in the Pulp library of
Python on an Intel Core i7 processor, 1.8 GHz with 16
GB of RAM.

In Python, after installing Pulp library, it can be
imported using the following command:

from pulp import ∗

Since the Pulp library solves only linear models, using
positive variables Aj and Bj the objective function, which
is defined as in Equation 3, is linearized.

Dj − D̄ −Aj +Bj = 0, ∀j = 1, ..., J̄ (12)

Aj and Bj ≥ 0, ∀j = 1, ..., J̄ (13)

Min f =
J̄∑

j=1

Aj +
J̄∑

j=1

Bj (14)

More details about linearization can be found at the
reference [14].

Sets of customers and DCs are defined as follows:
setI = range(1, Ī)
setJ = range(1, J̄)

Decision varaiable Xij is defined as follows:
xV ars = LpV ariable.dicts(name = ”xV ars”, indexs =
(setI, setJ), lowBound = 0, upBound = 1, cat =
LpInteger)

In the reference [14], although in the problem definition
part more than one binary decision variable is introduced,
only one of them is used in the solution process, which is
Xij . In this study, we use Yj too, which is defined as in
Equation 1. It is included in the model as follows:

yvars = LpV ariable.dicts(name = ”yvars”, indexs =
setJ, lowBound = 0, upBound = 1, cat = LpInteger)

Also, the positive variables used for linearization are
defined as follows:
A = LpV ariable.dicts(name = ”A”, indexs =
setJ, lowBound = 0, cat = LpInteger)
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B = LpV ariable.dicts(name = ”B”, indexs =
setJ, lowBound = 0, cat = LpInteger)

The name and type of the implemented model are
defined as follows:
prob = LpProblem(”MIP_Model”, LpMinimize)

Constraints are included to the model as follows:
Constraint 4:

for j in setJ :
prob+ = lpSum(xV ars[i][j] for i in setI) >= 1, ””

Constraint 5:
for i in setI :

prob + = lpSum(xV ars[i][j] for j in setJ)
== 1, ””

Constraint 6:
for j in setJ :

prob+ = lpSum(r[i, j] ∗ Y [j] for i in setI) >= 1, ””

Constraint 7:
for i in setI :

for j in setJ :
prob + = xV ars[i][j] <= r[i, j], ””

Constraint 8:
for i in setI :

for j in setJ :
prob + = xV ars[i][j] <= yV ars[j], ””

Constraint 9:
for j in setJ :

yV ars[j] <= lpSum(xV ars[i][j] for i in setI), ””

Constraint 10:
lpSum(yV ars[j] for j in setJ) <= nMax, ””

As the constraints defined based on the absolute value
cannot be employed directly in Pulp, Constraint 11 is
managed with two following constraints:

for j in setJ :
prob + = lpSum(de[i] ∗ xV ars[i][j] for i in setI) −

deBar <= dej[j] ∗ (1− tau), ””

for j in setJ :
prob + = lpSum(−de[i] ∗ xV ars[i][j] for i in setI)+

deBar <= dej[j] ∗ (1− tau), ””

where deBar and dej[j] are D̄e and Dej in TABLE I,
respectively.

Constraint 12:
for j in setJ :

prob + = lpSum(d[i, j] ∗ xV ars[i][j] for i in setI) −

dBar − A[j] + B[j] == 0, ””

where dBar is D̄ in TABLE I.

The linearized objective function illustrated as in Equa-
tion 14, is appended to the model as follows:
prob + = lpSum(A[j] for j in setJ) + lpSum(B[j]
for j in setJ)

But the real value of the model’s objective function,
determined in Equation 3, is acquired like following:
sum = 0

for j in setJ :
for i in setI :

sum + = abs(d[i, j] ∗ xV ars[i][j].varV alue −
dBar)

We utilize the solver GLPK_CMD in the Pulp library
using the following command:
prob.solve(GLPK_CMD())

IV. Experimental Results
Three benchmarks are created as 30×5, 450×75

and 900×150, which are indicated as the Number of
customers × Number of potential DCs. To calculate
the value of rij , we use parameter τr. Suppose that
the maximum distance between all customers and
DCs in a benchmark is dmax. In this case, if the
distance between customer i and DC j is equal to or
less than dmax × τr, rij is equal to one, otherwise, it
is equal to zero. The value of one for rij means that
customer i is reachable from DC j, thus is assignable to it.

In the benchmarks, two-dimensional coordinates of
customers and DCs and also customers’ demands, are
generated according to N(50;10) and U(100;10), which are
normal and discrete uniform distributions, respectively.

In Table II, the results are given according to the
different values of τequ and benchmark size. Parameter
τequ varies within the interval [0, 1]. At first, it is checked
in which range of this parameter feasible solutions can be
obtained, and then the tightest value is selected for each
benchmark. The outcomes are given in TABLE II, which
are for the case in which nmax = J̄ . The results in the
table are for τr = 0.5, but the same results are obtained
for τr = 0.33.

V. Conclusion and Future Works
In this study, based on the concept of sectorization, a

new model is suggested for a LAP, in which the selection
of DCs and the assignment of customers to them are
done at the same stage. Its difference with a model
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TABLE II
Obtained results for the benchmarks

Benchmark size τequ f
30 × 5 0.79 1.9e+03

450 × 75 0.98 5.92e+05
900 × 150 0.99 2.37e+06

from the literature that solves the same problem in two
stages is discussed. The objective function of the model
is defined based on the equilibrium of the distances in
sectors. Different from the studies in the literature, the
accessibility of customers from DCs is managed with a
constraint, which is defined based on the covering radius
instead of the compactness concept. The advantages of
this definition are: (i) it is a simple linear constraint
that can be included in solvers easily, uses a measure
of accessibility for each customer, rather than the total
distance within the sectors, and (iii) in real-life problems,
it can be easily interpreted in terms of accessibility.

This study also has some limitations. For example,
D̄ in objective function 3 and D̄e in Constraint 11
are defined independently from the decision variables.
Therefore, they are parameters and not variables. This
is because the Pulp library could not find results for
the case where they are declared as variables. It may be
possible to find the result for this case with a different
solver. In addition, although it is defined as nmax ≤ J̄ in
Constraint 10, it is used as nmax = J̄ in the experimental
results. In future studies, more comprehensive results will
be presented considering this matter.

In future studies, new models will be proposed for the
multi-objective version of the problem.
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