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ABSTRACT

Spontaneous oscillations in a variety of systems, including neurons, electrochemical, and semiconductor devices, occur as a consequence of
Hopf bifurcation in which the system makes a sudden transition to an unstable dynamical state by the smooth change of a parameter. We
review the linear stability analysis of oscillatory systems that operate by current–voltage control using the method of impedance
spectroscopy. Based on a general minimal model that contains a fast-destabilizing variable and a slow stabilizing variable, a set of characteris-
tic frequencies that determine the shape of the spectra and the associated dynamical regimes are derived. We apply this method to several
self-sustained rhythmic oscillations in the FitzHugh–Nagumo neuron, the Koper–Sluyters electrocatalytic system, and potentiostatic oscilla-
tions of a semiconductor device. There is a deep and physically grounded analogy between different oscillating systems: neurons, electro-
chemical, and semiconductor devices, as they are controlled by similar fundamental processes unified in the equivalent circuit
representation. The unique impedance spectroscopic criteria for widely different variables and materials across several fields provide insight
into the dynamical properties and enable the investigation of new systems such as artificial neurons for neuromorphic computation.
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I. INTRODUCTION

Bifurcation is an abrupt qualitative change of the behavior of a
dynamical system by the smooth variation of a control parameter.
Hopf bifurcation1–5 causes the emergence of self-sustained oscillation
from a stable fixed point. Although bifurcations happen in highly non-
linear systems with large amplitude oscillations in unstable domains,
the linearized equations around a given stationary point contain signif-
icant information about the evolution of the system. The dynamical
regimes are classified by normal mode method analysis.6 In systems
that operate electrically or electrochemically, the linearized current–
voltage perturbation at different measuring angular frequencies x pro-
duces the method of impedance spectroscopy (IS). This technique is
widely used in electrochemistry and materials science for the analysis
of physico-chemical processes and the characterization of dynamical
behavior.7–9 The impedance spectra are measured at different steady
states, and are what allows us to formulate an equivalent circuit (EC)
model in which the circuit elements depend on the external parameter
as the voltage or current. The EC technique provides an excellent
approach to summarize the measured spectral shapes and obtain an
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interpretation of the internal mechanisms and dynamical evolution of
the system. In this paper, we show a unified analysis of systems that
have in common transition from rest to spiking state by Hopf bifurca-
tions using the method of small signal IS.

The analysis of oscillating systems using IS criteria has been amply
exploited in the field of electrochemical oscillators caused by catalytic, elec-
trodeposition, and electrodissolution reactions in metal10–12 and semicon-
ductor13,14 electrodes. In particular, the Hopf bifurcation has been
described bymeans of electrochemical impedance spectroscopy.15–18

Excitability of neurons is determined by Hopf bifurcation in
which the neuron starts to repetitively fire an action potential under
certain stimulus. For more than one century, the neuronal activity has
been analyzed by the methods of electrical circuits19–21 and the imped-
ance measurements were important to derive the paradigm of mem-
brane excitability by Hodgkin and Huxley (HH)21 that underpins the
current understanding of neuronal activity.22 The development of neu-
romorphic systems that use physical artificial neurons to do computa-
tions holds promise for building artificial intelligence closely coupled
to perceptual systems.23–26 Memristor devices can produce compact
and reliable artificial neurons and synapses for computation algo-
rithms based on neuron spiking.27–33 Recently, some equivalent cir-
cuits using inductors and memristors have been used for simulation of
repetitive neuron firing.34–37

In summary, bifurcations controlled by an external voltage u and
current Itot are found in electrochemistry,10 neuroscience,38,39 and semi-
conductor devices,40 but a unified analysis of insight obtained in different
fields is not complete. We present a general characterization of the
dynamics of two variable systems that show self-sustained oscillations
using IS. Since electrochemical and semiconductor processes exponen-
tially depend on the applied voltage, a rapid succession of very different
impedance spectra due to the changes of dynamical regimes and bifurca-
tions has been often reported.14,41 Our aim is to provide an integrated
view of different impedance spectra based on EC methods that enable to
recognize the underlying model starting from experimental measure-
ments of IS. We show that the bifurcation and dynamical properties can
be directly obtained from conditions of the EC elements.30

As an introduction, we revise in Sec. II the well-known stability
and linear response properties of a general minimal two-dimensional
non-linear system. Next, in Sec. III, we formulate the dynamical prop-
erties in terms of impedance criteria, introducing a set of characteristic
frequencies that completely characterize the impedance and dynamical
properties. In Sec. IV, we illustrate with several examples the applica-
tion of the IS characterization for systems that show rhythmic oscilla-
tions at fixed current. In Sec. V, we show the analysis of oscillation at
fixed voltage. In Sec. VI, we end with some conclusions.

II. Hopf BIFURCATION IN A TWO-DIMENSIONAL
DYNAMICAL SYSTEM
A. The model

The description of Hopf bifurcation requires separation of a fast
destabilizing variable (u) and a slow stabilizing variable (x).17 The sim-
plest approach to bifurcation in nonlinear systems consists, therefore,
of two-dimensional models. Models that use the essential oscillating
variables play a central role in neuroscience and in electrochemical
oscillators.38,42 When the nonlinear system of differential equations
undergoes Hopf bifurcation, there arises a limit cycle, that is, a closed
and isolated trajectory in the phase portrait u� x.

Consider the voltage u and current Itot and an additional internal state
variable x. The dynamical model is defined by the following equations:

su
du
dt
¼ f u; x; Itotð Þ; (1)

sk
dx
dt
¼ g u; xð Þ: (2)

su, sk are the characteristic times of the fast variable u and the
slow variable x, respectively, and we have su � sk, although the oppo-
site condition is formally possible.

The functions f and g are, in general, nonlinear functions that
define the properties of the model. As an example, we show the
FitzHugh–Nagumo (FHN) neuron equations,34

f ¼ � u3

3
þ u� RIx þ RIItot ; (3)

g ¼ 1
Rw

u� bx: (4)

The FHN model has been broadly studied by its rich phase por-
traits.38,43–45 The physical variables are the membrane voltage u, the
transmembrane current Itot , and an internal recovery current x, which
represents the changes in ion-channel conductance as a function of
the voltage. The model introduces a set of specific parameters that
establish possible bifurcations and qualitatively different dynamical
evolutions: the voltage response time su, the recovery current response
time sx , a channel resistor RI , a recovery current resistor Rw, and a
modulation constant b. All these numbers are positive. The dynamical
response is shown in Fig. 1. It is determined by the numbers indicated
in the figure caption: the set of FHN model parameters, the specific
voltage associated with the fixed current, the equivalent circuit ele-
ments, and the characteristic frequencies as discussed later.

Equations (1) and (2) are not symmetrical, as the external current
Itot appears only in the equation of the first variable. Equation (2), that
describes the slowing down kinetics, establishes a voltage-controlled sys-
tem as in the usual neuron models.21,38 It is otherwise possible to estab-
lish current-controlled systems by introducing hðItot ; xÞ in Eq. (2).46,47

Consider the steady state situation in which the time derivatives
are zero. The phase portrait of the system (1) and (2) is controlled by
the nullclines,

f u; x; Itotð Þ ¼ 0; (5)

g u; xð Þ ¼ 0: (6)

An equilibrium point is the solution of Eqs. (5) and (6). It is deter-
mined by the intersection of the nullcline curves, as shown in Fig. 1(c).
At any fixed point, we have a solution of Eq. (6),

x ¼ x uð Þ: (7)

Hence, introducing Eq. (7) in (5), we obtain the equilibrium
value,

Itot ¼ Itot uð Þ: (8)

This is the current–voltage curve of the system shown in Fig. 1(a)
for the FHN model. It is useful to plot the vector field f _u; _xg by the
representation of ff =su; g=skg. The field lines indicate the possible
trajectories, and the nullclines are the points of zero velocity, Figs. 1(c)
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and 1(d). We fix a value of the external current, as shown by the green
line in Fig. 1(a), and we solve Eqs. (3) and (4) starting from a point out
of equilibrium (orange in the phase portrait plot) that represents a per-
turbation of the system. In Figs. 1(c) and 1(d), we observe that the tra-
jectories, starting from any point in the plane, lead to a periodic stable
trajectory in the phase plane that never passes through the equilibrium
point, a limit cycle. The observable oscillations of the voltage are
shown in Fig. 1(e). We present in Fig. 1(b) the impedance spectrum
associated with the given point. We aim to show how to extract impor-
tant information from the spectral shape.

B. Dynamical stability

When we change the fixed current in Fig. 1, we move the f -null-
cline and generate different fixed point. To analyze the dynamics at a
given point, we consider a linear stability analysis of Eqs. (1) and (2).
The linearized equations are

su
dû
dt
¼ fuû þ fxx̂ þ fI Î tot ; (9)

sx
dx̂
dt
¼ guû þ gxx̂: (10)

FIG. 1. Dynamical properties in a realization of the FHN model. (a) Current–voltage curve. The green line is the current obtained at u ¼ 0:7. The red points are Hopf bifurca-
tions. (b) Impedance spectrum, indicating the characteristic frequencies x ¼ 0 (cyan) and the crossing of the horizontal axis (red, xc). (c) Nullclines, trajectories, and vector
velocities. The f-nullcline is the yellow line, and g-nullcline is the green line. The blue point is the fixed point at the nominal potential. The orange point is the starting condition.
Color streamlines indicate the norm of the vector field. (d) Trajectories at a different starting condition. (e) Voltage evolution with time. Parameters:
RI ¼ 0:5; b ¼ 0:8; r ¼ 1:2; � ¼ 0:4; sm ¼ 0:01; u ¼ 0:7, Ra;Rb; La;Cmf g ¼ 0:333;�0:980; 0:0104; 0:02f g, and xa;xb;xL;xc;xo;Rdc;�xL � xbf g ¼ f150;
�51; 32; 61:5; 56:3; 0:505; 19g.
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The Jacobian is

fu
su

fx
su

gu
sx

gx
sx

0
BBB@

1
CCCA: (11)

The eigenvalues k are determined by the following equation:

k2 � Tkkþ D ¼ 0; (12)

where Tk is the trace and D is the determinant of the Jacobian, which
expressions are given in Table I. The roots are

k1;2 ¼
1
2

Tk6
ffiffiffiffiffiffi
Dk
p� �

; (13)

where the discriminant is

TABLE I. Parallel circuit: Model parameters and derived quantities.

Parameters/variables Code Equivalent circuit General dynamical model FitzHugh–Nagumo Koper–Sluyters

su sm e
sx sx 1
RI RI 1

Specific parameters
b, Rw, e ¼

sm
sx
, r ¼ RI

Rw

ka uð Þ; keðuÞ

Cm
su
RI

sm
RI

e

Ra RIgx
fxgu

bRw 1
ke

ka þ keð Þ2

kek0a � kak0e
Rb �RI

fu
u2 � 1ð Þ�1RI

ka þ ke
kak0e

La �RIsx
fxgu

sxRw 1
ke

ka þ ke
k0ake � kak0e

Ra

La
� gx

sx
b
sx

ka þ ke

Rdc 1
Ra
þ 1
Rb

� ��1
� RIgx

susxD
RI u2 � 1þ r

b

� ��1 ka þ keð Þ2

k2e k
0
a þ k2ak

0
e

xa 1
RaCm

r
bsu

ke
e
kek0a � kak0e
ka þ keð Þ2

xb 1
RbCm

� fu
su

1
sm

u2 � 1ð Þ 1
e

kak0e
ka þ ke

�xb

xL Ra

La
� gx

sx
be
su

ka þ ke

xc xL xa � xLð Þ½ �1=2 b
sm

e
r
b2
� e

� �� �1=2

Z01 Rb

1þ RaRbCm

La
xd

xL �
xa

xb
� 1

� �1=2 b�
sm

r
b

1
1� u2

� 1

� �1=2

D xL xa þ xbð Þ 1
susx

fugx � fxguð Þ be
s2m

RI

Rdc
¼ e

s2m
b u2 � 1ð Þ þ r½ � 1

e
ka þ ke
Rdc

¼ 1
e
k2e k
0
a þ k2ak

0
e

ka þ ke
xo xL xa þ xbð Þ½ �1=2 D1=2 1

smsxð Þ1=2
b u2 � 1ð Þ þ r½ �1=2 1

e
k2e k
0
a þ k2ak

0
e

ka þ ke

� �1=2

Tk �xb � xL fu
su
þ gx

sx

1
sm
ð1� u2 � beÞ � ka þ ke þ

1
e

kak0e
ka þ ke

� �

uHopf ðxL ¼ �xbÞ RaRbCm

La
¼ �1 6 1� beð Þ1=2

k0e ¼ �e
ka þ keð Þ2

ka
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Dk ¼ T2
k � 4D: (14)

The Hopf bifurcation occurs when a pair of eigenvalues become
purely imaginary, i.e., the real part of the eigenvalue changes sign from
negative to positive.4,5 It happens for D > 0 when Re kð Þ ¼ 0 and
ImðkÞ 6¼ 0. We write k ¼ ixo and we obtain from (12),

�x2
o � iTkxo þ D ¼ 0: (15)

Tk ¼ 0 is the Hopf bifurcation, and the oscillation frequency is
xo ¼ D1=2.

For D > 0 and Tk > 0, the fixed point becomes an unstable
source and generates a limit cycle trajectory. In the region
Tk > 0; Dk > 0, the eigenvalues are real and positive indicating an
unstable node. For Tk > 0; Dk < 0 the eigenvalues are complex-
conjugate in an unstable focus in which the trajectories spiral away
from the fixed point. D < 0 indicates an unstable saddle region with
real eigenvalues of different signs. A complete classification of equilib-
ria and the local stability properties are explained in many excellent
books.3,6,38 Plotting the different quantities Tk; D and Dk, we can
observe the nature of the fixed point. In Fig. 2, we show different
dynamic regimes of the FHNmodel for two sets of parameters and the
corresponding stability graphs.

In Figs. 2(a)–2(c), the current–voltage is monotonic as D is
always positive. The stability plot in Fig. 2(c) indicates two different

regimes. For Tk < 0, the fixed point is stable, and the trajectory leads
to this equilibrium point as shown in Fig. 3. In the region Tk > 0, the
fixed point is unstable as shown in Fig. 1. The trajectories lead to a sta-
ble limit cycle, which spins around the fixed point, either starting
inside of the cycle, Fig. 1(c), or from outside in Fig. 1(d). This is the
domain of sustained oscillations of the voltage as indicated in Fig. 1(e)
as in a spiking neuron.

In Figs. 2(b)–2(d), the parameters lead to an unstable region of
observable negative resistance in which D < 0. The experiment can be
performed by fixing either the current (galvanostatic mode in electro-
chemistry) or the voltage (potentiostatic mode), When the current has
a N-shape as in Fig. 2(b), the voltage is single-valued but a fixed cur-
rent provides three different fixed points, a saddle, and two sinks. If
the current has an S-shape, the opposite situation happens, and the
curve will be single valued for a fixed current. In Fig. 2(b), fixed current
allows three fixed points. One example is shown in Fig. 4. The central
point is unstable, and the trajectories can lead to either A or C,
depending on the initial conditions, as shown by the flux lines. These
features are further discussed in Sec. IVA.

When we trace the current–voltage curve by changing the fixed
current parameter, the dynamical properties are reflected in qualita-
tively different measurable impedance spectra as shown in Figs. 1, 3,
and 4. The evolution of the spectra for an electrochemical model by
Koper and Sluyters (KS) is shown in Fig. 5 from their pioneering

FIG. 2. Two different realizations of the FHN model, indicating the current–voltage curves [(a) and (b)] and the stability parameters [(c) and (d)]. [(a)–(c)]
b ¼ 0:8; r ¼ 1:2; � ¼ 0:2; and sm ¼ 0:01; [(b)–(d)] b ¼ 1; r ¼ 0:8; � ¼ 0:1; and sm ¼ 0:01.
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papers48,49 and discussed later in Sec. IVB. Our objective in Secs.
IIIA–III C is to establish a general classification of the conditions that
generate different spectra and the related dynamics.

III. GENERAL EQUIVALENT CIRCUIT
OF A TWO-DIMENSIONAL SYSTEM
A. Impedance parameters

To calculate the ac impedance of the general model, we take the
Laplace transform of the small perturbation Eqs. (9) and (10),
d=dt ! s, where s ¼ ix. The following resistance will be considered
constant:

RI ¼ fI : (16)

We obtain

Z sð Þ�1 ¼ Î tot
û
¼ 1

RI
ssu � fu �

fxgu
ssx � gx

� �
: (17)

We can write the impedance function in terms of equivalent cir-
cuit elements defined in the fourth column of Table I,

Z sð Þ ¼ Cmsþ Rb
�1 þ Ra þ Lasð Þ�1

	 
�1
: (18)

This model corresponds to the equivalent circuit presented in
Fig. 6. The EC is highly characteristic for memristors,30,50 oscillat-
ing neurons,34 and electrocatalytic models.51 In this paper, the
capacitor Cm is considered a passive charging element, such as a
double layer or depletion region, and it is taken strictly positive.
The inductor La and the resistors Ra; Rb can be either positive or
negative. The inductor that arises from Eqs. (1) and (2) in Fig. 6 for
neuronal and electrochemical systems does not have the usual
interpretation from electromagnetism as a coiled wire. Instead it
has been denominated a “chemical inductor,” see Ref. 37 for a dis-
cussion of this point.

We remark that the ECs of impedance models can be expressed
in several equivalent formulation due to the possibility of internal

FIG. 3. Dynamical properties in a realization of the FHN model. (a) Current–voltage curve. The green line is the current obtained at u ¼ 0:9. The red points are the Hopf bifur-
cations. (b) Impedance spectrum, indicating the characteristic frequencies x ¼ 0 (cyan) and the crossing of the horizontal axis (red, xc). (c) Nullclines, trajectories, and vector
velocities. The f-nullcline is the yellow line, and the g-nullcline is the green line. The orange point is the starting condition. (d) Voltage evolution with time. Parameters:
RI ¼ 0:5; b ¼ 0:8; r ¼ 1:2; � ¼ 0:4; sm ¼ 0:01; u ¼ 0:9, Ra;Rb; La;Cmf g ¼ 0:333;�2:63; 0:0104; 0:02f g, and xa;xb;xL;xc;xo;Rdc;�xL � xbf g ¼ f150;
�19; 32; 61:4; 64:7; 0:382;�13g.
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FIG. 4. A FHN model behavior for a potential in point C of the I � u curve (a). The red points are Hopf bifurcations. (b) Map of characteristic frequencies. [(c) and (d)]
Nullclines, trajectories, and vector velocities. The f-nullcline is the yellow line, and the g-nullcline is the green line. The orange point is the starting condition. The blue point is
the fixed point at the nominal potential. (e) Impedance spectrum, indicating the characteristic frequencies x ¼ 0 (cyan) and the crossing of the horizontal axis (red, xc).
Parameters: RI ¼ 0:5; b ¼ 1:2; r ¼ 0:8; � ¼ 0:4; sm ¼ 0:01; u ¼ 0:85 (point C), Ra;Rb; La;Cmf g ¼ 0:75;�1:80; 0:0156; 0:02f g, and xa;xb;xL;xc;xo;Rdc;�xLf
�xbg ¼ f66:7;�27:7; 48:; 29:9; 43:2; 1:28;�20:2g.
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linear transformations.52,53 However, we use here the circuit in Fig. 6
that has the most direct physical interpretation. The negative capaci-
tance feature8 arises from the inductor element.

B. Classification of impedance spectra

The impedance function (18) associated with the EC of Fig. 6 can
be written in terms of certain characteristic frequencies,

Z sð Þ ¼ RI

su
sþ xb þ

xa

1þ s
xL

� �2
4

3
5
�1
: (19)

The frequencies are

xa ¼
1

RaCm
; (20)

xb ¼
1

RbCm
; (21)

xL ¼
Ra

La
: (22)

In Eq. (19), RI establishes the scale of the impedance, and su sets
the rescaling of the frequency/time. Below we plot the characteristic
frequencies in the dimensionless form xisu. Using different combina-
tions of the characteristic frequencies, a variety of qualitatively differ-
ent spectra can be generated as shown in Fig. 7.

The dc resistance

Z x ¼ 0ð Þ ¼ Rdc (23)

has the value

R�1dc ¼ Cm xa þ xbð Þ ¼
1
Ra
þ 1
Rb
¼ � RIgx

susxD
: (24)

According to the last equality, shown in Table I, the dc resistance
and the determinant D have the same sign if

gx < 0: (25)

As an example, this is satisfied in Eq. (4). Equation (25) is the
condition that x is the stabilizing variable, and we require that it is sat-
isfied. Hence, the sign of the dc resistance is a faithful representation
of the stability condition D > 0.

We establish the properties of the impedance spectra by calculat-
ing the points of intercept with the axis. The equation

Z00 xð Þ ¼ 0 (26)

that sets the imaginary part of the impedance Z00 to zero has a solution
at x ¼ 0. However, there can exist another crossing given by the
condition

Z01 ¼ RZ00¼0 ¼
Rb

1þ RaRbCm

La

: (27)

If we calculate the frequency of intercept in Eq. (27), we obtain

xc ¼ xL xa � xLð Þ½ �1=2: (28)

The hook in Fig. 7(b) is observed when xc is real. If xL > 0, then
Fig. 7(b) is obtained when

xa > xL: (29)

The condition of intercept with the vertical axis is

Z0 xð Þ ¼ 0: (30)

The resulting frequency is

xd ¼ xL �
xa

xb
� 1

� �1=2

: (31)

When there is interception of the vertical axis, xd is real, as in
Figs. 7(c)–7(m). If xa; xL > 0, then xd can be real only with negative
resistance Rb that causes xb < 0.

All the spectra in Fig. 7 correspond to distinct combinations of
the characteristic frequencies. Only the pairs k, m, and n, p, are quali-
tatively the same behavior, corresponding to both negative Ra; La.
This situation is termed “edge of chaos” in the work of Chua.46,54,55FIG. 6. Equivalent circuit of the two-dimensional general dynamical model.

FIG. 5. Qualitatively different impedance plots obtained at different parts of the cur-
rent–voltage curve in the Koper–Sluyters model. The arrows indicate the direction
of decreasing frequency, and H indicates the current value for which Hopf bifurca-
tion is observed under galvanostatic conditions. Reproduced with permission from
Koper and Sluyters, J. Electroanal. Chem. 149, 371 (1994). Copyright 1994
Elsevier.48
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FIG. 7. Complex plane impedance representation of the spectral patterns of the parallel impedance model in Fig. 6. Parameters Ra;Rb; La;Cmf g fxa;xb;xL;xc;

xd ;xo;Rdc;�xL � xbg. að Þ 1; 1; 0:5; 1f g f1; 1; 2; Im; Im; 2; 12 ;�3g, (b) {12 ; 1; 2; 1g f2; 1; 14 ; 0:657; Im; 0:866; 13 ;� 5
4g; cð Þ 1;�2; 0:5; 1f g f2;� 1

2 ; 1; 1; 1:73; 1:22;
2
3 ;�0:5g; dð Þ f12 ;�1; 1; 1gf2;�1; 12 ; 0:866; 0:5; 0:707; 1; 12g; eð Þf� 1

2 ; 1; 1; 1g f�2; 1;� 1
2 ; 0:866;�0:5; 0:707;�1;� 1

2g; fð Þ f� 1
2 ; 0:6; 0:11; 1g �2; 1:67;�4:54; Im;f

�2:03; 1:23;�3:00; 2:88g; gð Þ f1;� 1
2 ; 100; 1g f1;�2; 0:01; 0:0995; Im; Im;�1; 1:99g, hð Þ f� 1

4 ; 1; 0:11; 1gf�4; 1;�2:27; 1:98;�3:93; 2:62;� 1
3 ; 1:27g; ið Þ f1;� 1

2 ;

�100; 1g f1;�2;� 1
100 ; Im; Im; 0:1;�1; 0:201g, (j) f13 ;� 1

2 ;�100; 1gf3;�2;� 1
300 ; Im;�0:002 36; Im; 1; 601300g, (k) f�1; 2;�1; 1gf�1; 12 ; 1; Im; 1; Im;�2;�1:5g, (m)

f�1; 2;�100; 1g f�1; 12 ; 0:01; Im; 0:01; Im;�2;�0:51g, (n) f�2; 1;�1; 1gf�0:5; 1; 2; Im; Im; 1:; 2;�3g, and (p) f�2; 1;�100; 1gf�0:5; 1; 150 ; Im; Im; 0:1; 2;� 51
50g.
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C. Impedance characterization of stability and
bifurcation

The Jacobian (11) can be written in terms of the equivalent cir-
cuit elements as

� 1
RbCm

� 1
Cm

1
La

� La
Ra

0
BBB@

1
CCCA: (32)

The condition Tk ¼ 0 for the Hopf bifurcation is

Ra

La
¼ � 1

RbCm
: (33)

The existence of Hopf bifurcation requires that at least one of the
elements Rb, Ra, or La is negative to satisfy Eq. (33). (One or three ele-
ments can be negative but not only two at the same time.)

The stability analysis is often done in terms of the zeros and poles
of the impedance.52 Let us write Eq. (19) as

Z sð Þ ¼ RI

su

sþ xL

sþ xbð Þ sþ xLð Þ þ xaxL
: (34)

In galvanostatic operation, the Hopf bifurcations are given by the
poles of the impedance, i.e., the zeros of the admittance Y ¼ Z�1 at a
finite frequency.10 The denominator of Eq. (34) corresponds to the
characteristic equation (12), whose zeroes are the eigenvalues. Hence,
the poles correspond to the condition k ¼ ixo that determines the
Hopf bifurcation.4,5 It is satisfied when

xL ¼ �xb; (35)

or alternatively,

xd ¼ xo: (36)

Both these conditions correspond to Eq. (33).
The transition of the impedance spectra across the Hopf bifurca-

tion starts from the stable spectrum in Fig. 7(b). Close to the bifurca-
tion (in the stable side), the impedance develops a small real negative
part, Figs. 3(b) and 7(c). At the bifurcation, the impedance crosses the
origin at a finite frequency. Then, the intercept of the real axis passes
to negative values as in Figs. 1(b) and 7(d). This last spectrum indicates
the voltage oscillations as shown in Fig. 1(e), and xo is the frequency
of the oscillations.56 The sequence of the spectra is illustrated in Fig. 5
and in a video presented in the supplementary material.

A negative resistance sector in Rb is a frequent mechanism of
spontaneous oscillations. For example, in the FHN model, there is a
range of Rb < 0. Since Rdc > 0 and Rb < 0 in Fig. 1(b), this imped-
ance pattern is termed by Koper and Sluyters, the “negative hidden
resistance.”48 The causes for the occurrence of a negative differential
resistance have been reviewed.11

In the saddle-node bifurcation, Rdc crosses the origin at zero fre-
quency from positive to negative values. The negative dc resistance
spectra 7e, g, h, k, and m indicate the unstable condition D < 0 pro-
vided that (25) is satisfied.

For the potentiostatic oscillations, a series resistance is necessary,
not included in Fig. 7. This mode will be discussed in Sec. V. When
the voltage is fixed, the Hopf bifurcation occurs when the impedance

is zero at finite frequency or equivalently by the poles of the admit-
tance function.10 These conclusions can be obtained by the general
analysis of Koper based on the Nyquist stability criterion.57

As the stability conditions and the shape of the spectra are estab-
lished by the relative values of the characteristic frequencies
xa;xb;xL;xc;xd; andxo, a plot of the frequencies with respect to
voltage produces a full characterization of impedance spectra and
dynamical properties. The code of colors and general properties of the
characteristic frequencies are presented in Table I and summarized in
Table II, and examples are shown in Figs. 4(b) and 8(c). The oscillation
frequency xo is shown only in regions of self-sustained oscillations.

IV. THE PARALLEL MODEL: OSCILLATING SYSTEMS
AT CONSTANT CURRENT
A. The FitzHugh–Nagumo neuron model

Dynamical models for neuronal responses are formed by a non-
linear set of dynamical equations that emulate the actual output of a
biological neuron.42,58,59 The HH model21 is formed by the membrane
capacitance and several voltage-dependent conductance that describes
the activation and deactivation of different ion channels. IS of the HH
model shows correspondingly a complex response,20,30,60–62 and here,
we restrict the analysis to minimal dynamical models composed of a
two-dimensional system that contains the evolution of the membrane
potential u and a slower recovery variable.38 The first minimal model
was developed by FitzHugh63 and Nagumo et al.59 by reducing the
three slow variables of the HH model to just one refractory
current.38,43–45,64–69

Here, we consider the recent results of IS in relation to dynamical
properties.34 The bifurcation conditions in FHN are expressed by
parameters e; r; b (Table I). The line r ¼ b is a pitchfork bifurcation.
r=b > 1 corresponds to the single valued I � u with a positive Rdc.
The model realization shown in Fig. 8 is the same as those of Figs. 1,
2(b), 2(c), and 3. In Fig. 8, we show the stability plots, the resistances
and inductor, and the characteristic frequencies. As Tk > 0 in Fig. 8(a)
is the region of limit cycle oscillations, the borders of this regions are
Hopf bifurcations as indicated by red points in Fig. 8(c).

We examine the impedance and dynamical regimes. Figure 1 is
for a fixed current at u ¼ 0:7 that falls into the oscillation region in
the frequency diagram, as shown in Fig. 8(c). The impedance spectrum

TABLE II. Classification of dynamical properties by the plots of stability properties
and characteristic frequencies.

Properties
Stability
graph vs u

Frequencies
graph vs u

Positive Rdc Red> 0 Red> 0
Hopf bifurcation Red> 0, intercept

of brown and u axis
Red> 0, intercept
blue and purple

Self-sustained
oscillations

Red> 0,
brown> 0

Red> 0,
blue > purple

Inductive loop
in impedance

Orange> 0,
blue < purple

Crossing the
vertical axis of
the impedance

Gray> 0
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is that of a hidden negative resistance with the intercept at the fre-
quency xc in the negative real axis, Fig. 1(b). The associated motion in
the phase plane in Fig. 1(c) is a limit cycle around the fixed point at
u ¼ 0:7. The spikes with frequency xo are shown in Fig. 1(e). In

contrast to this behavior, at the voltage u ¼ 0:9, Fig. 3, the system
reaches a stable steady state. Since xc > 0, as shown in Fig. 8(c), the
impedance shows an inductive hook, Fig. 3(b), and the corresponding
trajectory produces an overdamped oscillation of the voltage. The gray
line in Fig. 8(c) indicates that the impedance crosses the vertical axis as
in Fig. 3(b), which happens when xb ¼ 0.

We turn to another set of parameters, r=b < 1, that cause D < 0
with a region of negative Rdc, Fig. 9. The fixed current intercepts I � u
at three points, a saddle, and two sinks. The saddle state B is clearly
unstable, but the system may evolve with time to A or C depending on
the nature of these fixed points. Since point C is situated in a potential
lower than the Hopf bifurcation, it is unstable. Hence, the perturbed
system will arrive to point A for any possible initial condition, as
shown in Figs. 10(a) and 10(b). Now, the local impedance indicating
oscillations in Fig. 10(e) is not able to describe the global trajectory
since the system chooses another destiny point. Figure 4 is presented
another set of FHN parameters. Now, point C at u ¼ 0:85 is stable,
and the trajectory in Fig. 4(c) is a damped oscillation to C as predicted
by the inductive hook in the impedance spectrum in Fig. 4(e).
However, a small change in the initial perturbation moves the trajec-
tory to the basin of attraction of point A, as shown in Fig. 4(d), and
again the local impedance does not describe the global trajectory.

B. The Koper–Sluyters (KS) electrochemical model

The properties of electrochemical oscillators have been classi-
fied,17 and the bifurcations and different regimes of oscillations are
well described by the impedance spectra.10–12,15,16,18,46–48,56,57,70–74 We
characterize the impedance and dynamical regimes in a representative
model due to Koper and Sluyters48 for an electrochemical reaction
with a potential dependent absorption rate that includes Hopf bifurca-
tion. It is described by the following functions:

f ¼ �ke uð Þx þ Itot; (37)

g ¼ ka uð Þ 1� xð Þ � ke uð Þ; (38)

and su ¼ �, sk ¼ 1. The physical variables are the electrode potential
u, the external current Itot , and a surface absorption variable
0 � x � 1. In the steady state,

x ¼ ka
ka þ ke

; (39)

Itot ¼ kex ¼
kake

ka þ ke
: (40)

For keðuÞ, it is assumed an N-shaped function,

ke uð Þ ¼ k0e1exp f auð Þ
1þ kd exp½fb2 u� udð Þ�

þ k0e2exp f auð Þ: (41)

For kaðuÞ, a sigmoidal function is adopted,

ka uð Þ ¼ 1
1=½k0a exp fb1 u� uað Þ

	 

þ 1=km

: (42)

The bifurcation behavior according to parameter ranges are
explained in the original reference by KS.48 Here, we describe the case
of Fig. 11(a) in which the negative resistance is visible in the I � u
curve (see Fig. 5). Now, we provide a detailed characterization of

FIG. 8. Representation of quantities as a function of voltage for the
FitzHugh–Nagumo model with parameters RI ¼ 0:5; b ¼ 0:8; r ¼ 1:2; � ¼ 0:4;
and sm ¼ 0:01. The code of colors is indicated in Table I. (a) Stability quantities.
(b) Resistances and inductor. (c) Characteristic frequencies. The frequency of oscil-
lations xo is indicated only in the region of oscillation between two Hopf bifurca-
tions, shown by red points at uH ¼ 60:8246.

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 9, 011318 (2022); doi: 10.1063/5.0085920 9, 011318-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/are


impedance spectra and associated trajectories by analysis of the fre-
quency graph Fig. 11(d). We note that this system is more complex
that the previously discussed FHN, since all the characteristic frequen-
cies in the KS model depend on the voltage. The following impedance
characteristics can be observed in Fig. 11(d). The letters in parentheses
correspond to Fig. 7.

u ¼ 0� 0:190: single positive arc (a).
u ¼ 0:190� 0:226: hook feature with resistances in the positive

axis (orange positive), (b). close to the Hopf bifurcation, at the onset of
the gray line, a negative real part of the impedance develops (c).

u ¼ 0:226� 0:321: Hidden negative resistance spectrum with
the intercept at the negative x axis (d). This is the oscillatory regime
shown in Fig. 12.

u ¼ 0:334� 0:400: negative dc resistance with double arc
feature (g).

u ¼ 0:400� 0:500: The inductor becomes negative, see Fig.
11(e), but xL is positive and xc is not a real number; hence, the spec-
trum is first a single positive arc (n) that becomes a double arc (p).

These results are illustrated in motion in a video presented in the
supplementary material.

V. THE SERIES MODEL: OSCILLATION AT CONSTANT
VOLTAGE

In a system of the type of Fig. 6, a fixed voltage will prevent any
periodic oscillation. However, most electrical systems have a resistance
in series due to the characteristics of the contacts. Once the series resis-
tance Rs is added, the voltage applied to the system V is divided into
two components,

V ¼ ItotRs þ u; (43)

where Itot is the external current and u is the voltage in the main subcir-
cuit. Now, there can be oscillations of the internal voltage u, as is
described in electrochemistry10–12,70 and semiconductor devices.40,75 By
the addition of Eq. (43) to the systems of Sec. III, the oscillations at fixed
voltage can be obtained. However, the circuit of Fig. 6 is then not a mini-
mal model. The reason for this is that the series resistance can stabilize
the negative resistance; hence, it is possible to remove the Rb line and
instead situate the negative resistance in Ra. To illustrate the impedance
of a such a system for potentiostatic oscillations, we use a model described
in Sec. VIB of Sch€oll’s book.40 The system consists of a circuit with capac-
itive current and conduction current ic (the slow stabilizing variable),

Itot ¼ Cm
du
dt
þ ic: (44)

The branch with conduction current is formed by an inductor
and a nonlinear element with voltage uc and characteristic conduction
function ucðicÞ, which includes a negative resistance behavior. We,
therefore, have

Cm
du
dt
¼ � u

Rs
� ic þ

V
Rs
; (45)

La
dic
dt
¼ u� uc icð Þ: (46)

These equations can be generalized to the form (1) and (2)
with V instead of Itot , producing a series rather than parallel
connection.

FIG. 9. FitzHugh–Nagumo model for RI ¼ 0:5; b ¼ 1:4; r ¼ 0:8; � ¼ 0:02; sm
¼ 0:01; and uH ¼ 0:9860. (a) Current–voltage curve. (b) Stability quantities. (c)
Resistances and inductor. (d) Characteristic frequencies.
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The linearized and Laplace transformed variables have the form

V̂ ¼ Î totRs þ û; (47)

Cmsû ¼ �
û
Rs
� îc þ

V̂
Rs
; (48)

Laŝic ¼ û � Ra îc; (49)

where

Ra ¼
duc
dic

: (50)

The impedance function V̂=Î tot has the following form:

Z sð Þ ¼ Rs 1þ xs

sþ xa

1þ s
xL

0
B@

1
CA: (51)

The frequencies are

xa ¼
1

RaCm
; (52)

xs ¼
1

RsCm
; (53)

FIG. 10. A FHN model behavior, same parameters of Fig. 9, in point C of the I � u curve. (a)–(c) Phase portraits and (c) and (d) voltage oscillations starting from different
points. (e) Impedance spectrum, indicating the characteristic frequencies x ¼ 0 (cyan) and the crossing of the horizontal axis (red, xc). Parameters: RI ¼ 0:5; b ¼ 1:4;
r ¼ 0:8; � ¼ 0:02; sm ¼ 0:01; u ¼ 0:85 (point C), Ra;Rb; La;Cmf g ¼ 0:875;�2:631; 0:3125; 0:02f g, and xa;xb;xL;xc;xo;Rdc;�xL � xbf g ¼ f57:1;�19:0;
2:80; 12:3; 10:3; 1:31; 16:2g.
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xL ¼
Ra

La
: (54)

The system can be represented by the small ac impedance equiva-
lent circuit of Fig. 13.

The Jacobian is similar to (32),

�xs �
1
Cm

1
La

�xL

0
BB@

1
CCA: (55)

The trace and determinant have the values,

Tk ¼ �xs � xL; (56)

D ¼ xL xs þ xað Þ: (57)

According to Eq. (56), the oscillation region Tk > 0 requires that
either Ra or La become negative, but not at the same time. The oscilla-
tion frequency is

xo ¼ xL xs þ xað Þ½ �1=2: (58)

We investigate here an S-shaped characteristic of the type,

uc ¼ Rw
i3c
3
� ic

� �
; (59)

where Rw is a constant resistor. The current–voltage curve is

FIG. 11. Koper–Sluyters model for �¼ 0:25; sm ¼ �; ke1 ¼ 1; a¼ 0:5; f ¼ 38:7; kd ¼ 250; b2 ¼ 1; ka0 ¼ 0:015; b1 ¼ 0:5; km ¼ 10; ua ¼ 0; ud ¼ 0:35; ke2 ¼ 0:0005;
uH ¼ 0:226; andu¼ 0:25. (a) Current–voltage, (b) stability graph, (c) resistances and inductor, (d) frequencies graph, and (e) detail of (c) showing the change of sign of the
inductor.
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Vdc ¼ RsIdc þ Rw
I3dc
3
� Idc

� �
: (60)

The dc resistance gives

Rdc ¼
Rs

r
r � 1þ I2dc
� �

; (61)

where

r ¼ Rs

Rw
: (62)

The intercept with the real axis Z00 ¼ 0 is at the frequency

xc ¼ xL xa � xLð Þ½ �1=2 (63)

and the intercept with the imaginary axis Z00 ¼ 0 is at

xd ¼
1
2
xL 2xa � xL þ x2

L � 4xaxL � 4xaxs

� �1
2

h i� �1=2

: (64)

FIG. 12. Oscillatory behavior of the Koper–
Sluyters model, same parameters as
Fig. 11. (a) Trajectory in the phase plane.
(b) Impedance spectrum, indicating the
characteristic frequencies x ¼ 0 (cyan)
and the crossing of the horizontal axis
(red, xc). (c) Voltage oscillations.

FIG. 13. Equivalent circuit for the series model.

TABLE III. Series circuit: Model parameters and derived quantities.

Parameters/variables Code Equivalent circuit

Cm

Ra duc
dic

Rs

La
Rdc Rs þ Ra

xa 1
RaCm

xs 1
RsCm

�xs

xL Ra

La
xc Z crossing the real axis xL xa � xLð Þ½ �1=2
Z01 Impedance at crossing
real axis

Rs þ
La

RaCm

xd Z crossing the imaginary axis
D xL xs þ xað Þ
xo xL xa þ xsð Þ½ �1=2
Tk(oscillation if Tk > 0) �xs � xL

uHopf
xs ¼ �xL

RaRsCm

La
¼ �1
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The results are summarized in Table III. As remarked earlier, the
presence of potentiostatic oscillations after Hopf bifurcation requires
that the admittance crosses the origin of the complex plane at finite
frequency.57 Accordingly, in Fig. 14, we plot the different impedance

patterns by the combinations of characteristic frequencies, and the
correspondent admittance pattern is shown in Fig. 15.

Figure 16 shows the stability, resistances, and characteristic fre-
quencies plots of the series model outlined above. The following imped-
ance characteristics and the correspondent admittance spectra can be
observed in Fig. 16(c). The letters in parentheses correspond to Fig. 14.

Idc ¼ 0� 0:240: single positive arc with Rdc > Rs (c).
Oscillations (up to the Hopf bifurcation) by magenta < blue, as shown
in Fig. 16(e).

Idc ¼ 0:240� 0:550: arc with inductive features (d).
Idc ¼ 0:550� 0:632: Intercept with the vertical axis (e). The arc

grows, Fig. 16(g), and the intercept with the x-axis passes the origin to
negative values at the Hopf bifurcation.

FIG. 14. Complex plane impedance plot representation of the spectral patterns of
the impedance model in Fig. 13, indicating the characteristic frequencies x ¼ 0
(cyan) and the crossing of the horizontal axis (red, xc). Parameters: fRa;Rs; La;
Cmgfxa;xs;xL;xc;xd ;xo;Rdc;�xL � xbg að Þ 0:5; 1; 0:1; 1f g 1; 2:; 10:;f
Im; Im; 5:48; 1:5;�12g; bð Þ f0:5; 1; 10; 1gf1; 2; 110 ; 0:3; Im; 0:547; 1:5;�2:1g,
cð Þ f2;�1; 0:1; 1gf�1; 12 ;�10; Im; Im; 2:24; 1; 9:5g, dð Þf6;�2; 10; 1gf� 1

2 ;
1
6 ;

� 1
5 ; Im; 0:258; 4;

1
30g, eð Þ 5:4;�2; 10; 1f gf� 1

2 ; 0:185;� 1
5 ; 0:245; 0:300; 0:251;

3:40; 0:0148g, fð Þ 2;�1; 15; 1f gf�1; 12 ;� 1
15 ; 0:249; 0:329; 0:182; 1;� 13

30g, gð Þ
f2;�1� 5; 1g f�1; 12 ; 15 ; Im; Im; Im; 1;� 7

10g, and hð Þ f2;�1;�100; 1gf�1;
1
2 ;

1
100 ; Im; Im; Im; 1;� 51

100g.

FIG. 15. Complex plane admittance plot representation of the spectral patterns of
the impedance model in Fig. 13, indicating the characteristic frequencies x ¼ 0
(cyan) and the crossing of the horizontal axis (red, xc). The same parameters as
Fig. 14.
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Idc ¼ 0:632� 1:00: Pattern (f).
Itot ¼ 1:00� 1:40: Rdc increases until the gray line disappears. At

this point, the arc passes to the positive x-axis (b).
Itot ¼ 1:40� 2:00: The inductive feature (orange line) vanishes

to pattern (a).

VI. CONCLUSIONS

In the models and experimental analysis of the impedance spec-
tra of oscillating current–voltage systems, there occurs a fascinating
succession of very different shapes that describe the changing dynami-
cal properties. We have analyzed a general fast–slow model leading to
a Hopf bifurcation and several specific models to interpret the mean-
ing of the impedance in terms of temporal dynamic characteristics.
We devised a new general method based on characteristic frequencies
that appear naturally in the impedance function and by the stability
conditions, which provides a visual map of the succession of imped-
ance forms and dynamic regimes. The method classifies all the behav-
iors in a two-dimensional fast–slow system, and, hopefully, it can be
extended to deal with more complex situations such as the
Hodgkin–Huxley model.

SUPPLEMENTARY MATERIAL

See the supplementary material for the Mathematica program to
calculate the graphs and a video with animated cartoons to explain the
evolution of impedances by the map of characteristic frequencies,
https://youtu.be/rTGfSfKLuDk (Ref. 76).
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