
Computers & Graphics 102 (2022) 349–359

a

b

c

u
(
3
d
e
d

e
o
3
T
v
e
d
o

(
(

h
0
n

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on SMI 2021

Extracting datums to reconstruct CSGmodels from 2D engineering
sketches of polyhedral shapes
Raquel Plumed a,∗, Peter A.C. Varley b, Pedro Company a, Ralph Martin c

Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellón, Spain
Department of Systems and Control Engineering, University of Malta, Msida MSD 2080, Malta
School of Computer Science, Cardiff University, Cardiff, UK

a r t i c l e i n f o

Article history:
Received 30 June 2021
Received in revised form 18 October 2021
Accepted 22 October 2021
Available online 28 October 2021

Keywords:
Sketch-based modeling
CSG models
Features
Datums

a b s t r a c t

Our goal is to automatically generate CAD 3D models from 2D sketches as part of a design chain where
models should be procedural, containing features arranged in a model tree and linked to suitable
datums. Current procedural models capture much about the design intent and are easy to edit, but
must be created from scratch during the detailed design state—given conceptual sketches as used
by designers in the early part of the design process, current sketch-based modeling approaches only
output explicit models. Thus, we describe an approach to extract high-level information directly from
2D engineering wireframe sketches and use it to complete a CSG feature tree, which serves as a model
tree for a procedural 3D CAD model.

Our method extracts procedural model information directly from 2D sketches in the form of a set
of features, plus a set of datums and relationships between these features. We detect and analyze
features of 2D sketches in isolation, and define the CSG feature tree by the parent–child relationships
between features, and combine this information to obtain a complete and consistent CSG feature tree
that can be transferred to a 3D modeler, which reconstructs the model. This paper focuses on how to
extract the feature datums and the extrusion operation from an input 2D sketch.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Engineers and designers typically start by sketching their ideas
sing pencil and paper, but current mechanical CAD applications
MCAD) are unable to use such sketches as a basis for producing
D CAD models, which must be created from scratch during the
etailed design stage. This produces a gap between the earli-
st stages of the design process and the rest of the product
evelopment process. Our purpose is to bridge this gap.
Our design tools must automatically extract the design intent

mbedded in a sketch, translate it into a CSG feature tree, and
utput it in some standard format, to automatically provide a
D solid model that contains the digital product geometry [1].
his would simplify the design process—including the review of
irtual prototypes [2]—by facilitating the creation of CAD mod-
ls (by providing an alternative to convert design sketches into
etailed CAD models), while maintaining the current advantages
f exchange of CAD model data between different CAD systems,

∗ Corresponding author.
E-mail addresses: plumed@uji.es (R. Plumed), peter.varley@um.edu.mt

P.A.C. Varley), pcompany@uji.es (P. Company), Ralph.Martin@cs.cardiff.ac.uk
R. Martin).
ttps://doi.org/10.1016/j.cag.2021.10.013
097-8493/© 2021 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
or between a CAD system and downstream application systems
(CAE, CAM, etc.).

This problem is addressed by sketch-based modeling (SBM),
which aims to automatically obtain 3D models from 2D sketches
[3]. The main approaches applied in reconstruction modeling
are optimization and inflation. Optimization has proved not to
provide reliable results for SBM tasks, in view of its intrinsic
numerical complexity and the possibility of being trapped in local
minima. Inflation is a fairly reliable approach as long as the input
is a high-quality image or drawing, but can be problematic in
the presence of sketching errors. Still, the main drawback here
is that these techniques provide boundary representation (B-
Rep) models [4], which explicitly store low level geometric and
topological information.

We propose a new strategy to extract high-level semantic
information from conceptual 2D sketches before obtaining the 3D
model, and construct a model tree using both procedural and ex-
plicit information. High-level semantic information captures the
design intent of the model, and translating this information into
procedural information allows building models in a more flexible
way, so easing their subsequent re-editing or modification.

The main ingredients of the CSG strategy are: (a) modeling
features and (b) datums.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.cag.2021.10.013
http://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2021.10.013&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:plumed@uji.es
mailto:peter.varley@um.edu.mt
mailto:pcompany@uji.es
mailto:Ralph.Martin@cs.cardiff.ac.uk
https://doi.org/10.1016/j.cag.2021.10.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


R. Plumed, P.A.C. Varley, P. Company et al. Computers & Graphics 102 (2022) 349–359

e
e
r
o

a
t
c
t
i

s
t
n
n
p
d
r
o
p
F
c

f
t
t
t
h
u

o
i
(
f
t
d
f
s
d

r
t
a
a
s
c

Fig. 1. Overall process to obtain a 3D model from an engineering sketch.
a
r
B
(
p
c
v
o
f

e
t
r
m
w
t
a
f
i
s
q
f
i

According to the ISO 5459:2011 standard [5], each reference
lement is a Datum, while the set of datums that define a ref-
rence system is a Datum System. A datum system acts as a
eference system, allowing unequivocal definition of the location
f any object or feature in the drawing or in space.
A datum is a geometrical element, which may or may not

belong to the model itself. For example, the common uses of a
datum plane are as a working plane or as a mirror plane. Faces of
a model may also act as ‘‘on the fly’’ datum planes. Contact faces
re those datum planes that represent planar surfaces belonging
o a parent feature face, which act as supporting surfaces for a
hild feature. A skewed symmetry plane is the result of the affine
ransformation of a bilateral symmetry plane (or mirror plane)
nto a parallel projection.

Fig. 1 summarizes our general approach. Our input data are
trokes, and our final goal is a 3D model. Sketch segmenta-
ion and vectorization provide a graph-like line-drawing, where
odes depict the vertices of the sketch and the lines linking the
odes depict the edges of the sketch. Low level graph recognition
rovides cues related to shape, such as subgraphs, faces, main
irections, etc. All of these provide the input from which feature
ecognition is carried out. Then the features are linked to each
ther by datums and ordered in a hierarchy based on their mutual
arent–child relationships (represented as a top down tree in
ig. 1). The last step consists of translating the information to a
ommercial CAD modeler to automatically obtain the 3D model.
We build on the work by Plumed et al. to determine the

eatures embedded in a sketch [6]. The present work addresses
he problem of completing the model tree data. It determines
he cross-sections used in sweep operations to construct the fea-
ures, and defines their related reference system. This information
as to be represented in a way that CAD modelers can later
nderstand.
To validate our proof of concept, we limit our polyhedral

bjects to solely contain features that represent prismatic solids,
.e. the result of linear sweeps (extrusions) of unchanging shapes
constant cross-section from end to end). The position of the
eatures is as well limited to having their faces parallel to one of
he orthogonal planes of the general reference system. Only basic
atums are used in the model, which requires only the default
ront, top and right planes of a general orthogonal reference
ystem; we do not yet detect complex datums or datums not
irectly linked to sweep operations.
The paper is organized as follows. In Section 2 we discuss

elated work. Section 3 introduces critical considerations on da-
ums. Section 4 explains how we determine reference datums
nd profile data, via use of an example. Section 5 validates the
pproach by analyzing some examples. Section 6 discusses the
trengths and limitations of the approach and summarizes our
onclusions.
350
2. Related work

2.1. Overview

The input required by our approach is a line-drawing: a list of
junctions and a list of lines, where each line connects two junc-
tions. The conversion of sketches into graph-like line-drawings,
which is typically the first stage in sketch-based modeling ap-
proaches, is not detailed here—we assume that a vectorized 2D
line-drawing is already available. A summary of the state of the
art in this topic to 2019 can be found in the introduction of [7].
More recently, Wang et al. propose a sketch recognition system
based on the multistroke primitive grouping method to obtain a
line-drawing [8,9].

Hitherto there has been much work on obtaining an explicit
model from an engineering sketch, but work aimed at obtaining a
procedural model from an engineering 2D sketch is more limited.

As noted in [4], 3D B-Rep models are the typical output of
SBM approaches. However, reconstruction of constructive solid
geometry (CSG) models is regaining interest due to recent ad-
vances in personal additive manufacturing in the form of 3D
printing, and computer-aided manufacturing systems for mass
customization [10]. Producing 3D digital models from sketches
may shorten and simplify the CAD/CAM process, easing modifi-
cations to customizable design features and allowing non-expert
end-users to produce their own designs.

There are few attempts to obtain CSG models from a single
xonometric view. Wang and Grinstein [11] produce a CSG rep-
esentation in which each feature is represented by a cuboid.
ranco et al. [12] presented the IDEG system, which uses WIMP
windows, icons, menus and pointer) interaction together with
erspective sketch input. Suh [13] noted that many mechanical
omponents can be represented by a combination of linear swept
olumes (LSV). Nevertheless, these pioneering approaches, most
f which require user interaction and are limited to simple form
eatures, have not been followed up.

Other approaches consider multiple orthographic views: Shum
t al. [14] proposed a two-stage approach to reconstruct ex-
ruded solids. Lee et al. [15] used a hint-based approach to
ecognize solids of revolution from orthographic views. Other
ethods applied interactive reconstruction and CSG operations
hen interpreting sketches, e.g. GIDeS, a gestured-based sys-
em by Pereira et al. [16]; Shesh et al. [17] used CSG oper-
tions in their sketch system (SMARTPAPER) in which user
eedback modifies the sketch input. Such work uses different
nput data from our approach (multiple orthographic views in-
tead of a single axonometric view), and in some cases re-
uires user interaction; furthermore, it only detects form
eatures (i.e. those which do not convey design or manufacturing
nformation).



R. Plumed, P.A.C. Varley, P. Company et al. Computers & Graphics 102 (2022) 349–359

a
b
i
m
g
p

i
f
p
t
p
v

e
t
(

3
f
d
g
a
o
c
i
d

l
o
l
m
o
a

t
r
q
o
n
t
i
f
i
t
e
n
m
d
o
t
f

a
b
r
S

m
i
s
t
E
t
s

Schmidt et al. [18] present an interesting strategy to create
utomated models with free forms, applying constraints defined
y means of 3D scaffolds. The main differences with our approach
s that a) the method did not search high-level semantic infor-
ation like recognition of design intent and b) this approach is
uided by the user as the sketch progresses, while in our case the
rocess is off-line, it stars once the sketch is finished.
The process of detecting features in a 2D sketch by seeking

ndirect cues was studied by Company et al. [19–21] (at least
or the case where features can be created as a result of one
articular type of sweep: extrusions). An approach to determine
he relationships between features to build a model tree was
resented by Plumed et al. [6]. Tanaka et al. have provided further
ariations and improvements on this approach [22–25].
The process of CSG feature tree construction used by Plumed

t al. (which searches for features in a 2D drawing) is similar
o the processes of feature simplification suggested in [26–28]
which work on 3D models).

Cheon et al. [29] also proposed an approach to provide editable
D data from a free-hand 2D sketch to a 3D CAD system. Our
inal goal is very close to theirs, but approaches can greatly
iffer depending on the nature of the input data, as they use
estural modeling—where the main problem involves differenti-
ting stroke commands from shape strokes—whereas we work
ff-line with no user-interaction. This means we lack not only
ertain data, which may help to disambiguate certain extracted
nformation, but also the construction history conceived by the
esigner.
Some recent work in the field [30] vectorizes the construction

ines of a sketch to convert them to 3D, and then fits the sketched
bject into the 3D framework generated from the construction
ines. Kato et al. [31] present a method for 3D reconstructing
odels outside the scope of engineering parts. Their approach
utputs a 3D origami model with a plausible outer shape from
n image of a flat origami piece.
Neural networks are currently a very popular research direc-

ion. One of the most effective tools found for the task for image
ecognition is Convolutional Neural Network (CNN). CNNs are fre-
uently used for image classification and recognition because
f their high accuracy, but ours is not a classification or recog-
ition problem. In recent work [32] a CNN strategy is applied
o interpret shape sketches as parametric modeling operations,
ncrementally creating the 3D model. An extensive review can be
ound in [33]. Tools which convert one 2D image to another 2D
mage (e.g.‘‘pix2pix’’ [34] can in principle be used to add labels
o images (colors are labels), but no current work uses them
xplicitly for image analysis. Advanced 3D reconstruction neural
etworks have achieved impressive results in recent times, but
ost of them still suffer from training difficulties and loss of
etails, due to their weak ability to extract features [35]. The
utput is usually voxelized 3D models, reconstructed by layers—
hey are not able to recognize high-level information of features
rom 2D engineering wireframe sketches.

Finally, we note that recognition of features from 3D input is
well-established problem in which significant advances have
een made [36], but this does not directly apply here since
ecognition requires 3D information which is not available in
BM.
Once we analyze the sketch to get the CSG feature tree of the

odel, we can obtain the reconstructed 3D model by inputting it
nto a 3D CAD modeler, instead of applying the usual 3D recon-
truction stages of sketch-based modeling approaches. This data
ransfer can be represented by explicit or procedural techniques.
ach has its own advantages. Explicit models provide quick access
o detailed geometric information that is important for down-

tream applications [37]. Procedural modeling techniques such as

351
history-based parametric feature-based modeling create 3D mod-
els from sets of rules [38], with the advantages of capturing all or
part of the design intent and being easy to edit [39]. Procedural
approaches which create 3D CAD models include feature-based
design (FBD) and constraint-based modeling [40,41]. In this paper
we only focus on obtaining a coherent and complete CSG feature
tree that preserves the design intent.

We note here that most current CSG model files use pro-
prietary formats, since standard formats for procedural models
have been fully defined only recently. STEP 242, first published
in 2014, is the choice for CAD import/export; the second edition
ISO 10303-242:2020 [42] includes new geometric capabilities and
additive manufacturing setup information.

2.2. Obtaining the CSG feature tree

Two similar approaches which obtain a CSG feature tree,
Suh [13], and Plumed et al. [6], propose building a feature ex-
trusion tree from a 2D sketch. Suh’s method implicitly generates
a procedure while the 3D model is being created. Plumed’s
approach relies on design features and considers the child–parent
relationship between features. The input is a 2D graph-like line
drawing, obtained by vectorizing a sketch that represents a single
2D wireframe view of a polyhedral object. The strategy used to
build the CSG feature tree (Fig. 2) is to apply the reverse design
order from child to parent: features more likely to be children are
first detected, added to the tree, removed from the drawing, and
then their parents searched for. The process continues recursively
until a top level shape is reached. This top level shape is the
primitive shape depicted in the simplified sketch which cannot
be further subdivided into features. It becomes the root node of
the tree.

Our novel ideas to complete the CSG feature tree are the stages
shown as shaded in Fig. 2. We elaborate them in Section 4.

In absence of depth information, the approach relies on in-
formation provided by indirect cues, those properties of a 2D
drawing that reveal properties of the 3D object that it represents.
As for example, the main directions of the axonometric view,
obtained as explained in Kang et al. [43]; a list of detected
and numbered faces [44]; information of subgraphs and edges
labeled following Varley’s extended approach [45]. Other useful
information can be extracted from the 2D drawing, before the
recognition feature stage, such as bilateral symmetry planes for
the model using the approaches of Plumed et al. [46] or Varley
et al. [47] and the perimeters of subgraphs [48].

At this point, the approach is able to create a CSG tree that
includes the following information about features:

• The feature’s place in a hierarchy of features, based on
the reverse order of feature extraction. Features extracted
earlier need to be nearer the leaves of the tree.

• Parent–child relationships, created when one feature is used
to construct another: for example, when a face of a feature
is selected as the working plane for a second feature. This
second feature is considered a child of the feature containing
the working plane.

To facilitate subsequent data exchange with CAD modelers, we
need to complete the CSG tree with information that focuses on
the reconstruction of 3D features, in particular:

• The feature’s location referenced by datums.
• Explicit information about feature geometry. This includes

detailed information about its profile and the extrusion op-
eration (length and direction).

This information completes the CSG feature tree and consti-
tutes the novelty of our current work.



R. Plumed, P.A.C. Varley, P. Company et al. Computers & Graphics 102 (2022) 349–359

3

3

t
a
g
t
s
o
e
c
w
f
(

E
m
t
t
c
m
e
l
t
r

p
t
m
b
t

Fig. 2. Overall approach, including the new stages (with shaded area) to complete the CSG feature tree information.
Fig. 3. Information included in the model tree (left-feature hierarchy, center-feature datums, right-geometric extrusion profiles).
. Previous considerations

.1. Reference systems

To complete the CSG feature tree we have to include informa-
ion about the position that each feature occupies in the model
nd its extrusion information (the ‘‘feature selection’’ stage of the
eneral process described in Fig. 2). Fig. 3 graphically explains
he strategy we use to build the CSG feature tree. Fig. 3 (left)
hows the simplification process, applying the reverse design
rder from child to parent, explained in the previous section—in
ach iteration the outcome of the recognition process is a list of
andidate features with a figure of merit in the range [0, 1]. Here,
e address the definition of datums (Fig. 3 center), to locate the

eatures and the information of the geometric extrusion profiles
Fig. 3 right) needed to complete the model tree.

Auxiliary reference systems must be defined for each feature.
ach reference system links the feature with the rest of the 3D
odel. When we define auxiliary reference systems we must

ake into account two main considerations: (a) that cluttering
he model with additional references could be detrimental or
onfusing—when creating auxiliary systems, it is good practice to
inimize the number of links between systems, so we create an
xplicit reference system for each feature and, whenever possible,
ink it to the main reference system of the top level shape; (b)
he reconstruction stage involves working with 3D objects, so our
eference systems must be 3D.

A datum plane can be created at any point in the modeling
rocess. When the user creates a datum plane explicitly, CAD
ools show the datum plane as a feature on the model tree. The
ain advantage of explicit datums is that they can be used as a
asis for future operations. Conversely, implicit datums belong to
he feature undergoing creation, and they are not available for use
352
by other features. When the user selects an implicit datum, the
datum does not show on the model tree and becomes hidden, as a
private property of the swept profile, after the feature is created.

Once the user defines an implicit or explicit plane, the CAD
system implicitly determines the rest of the elements necessary
to define an auxiliary reference system, and computes the trans-
formation matrices with other reference systems. This strategy
not only saves time, but also automatically links the new profile
to the current model. Current commercial CAD modelers store
datums defined by the user either on the fly (in this case, the
storage is internal), or as explicitly defined references (and then
the reference also appears in the model tree).

Our challenge is to define all these necessary 3D reference
systems from a 2D line drawing that represents an axonomet-
ric projection of the 3D model, and define their relationships
to reconstruct the model later. As we work off-line with no
user-interaction, we lack previous notable information like the
construction history conceived by the designer, so all our refer-
ence systems are defined by explicit plane datums. Thus, we first
define the pattern reference systems for each type of feature that
we can recognize in a 2D sketch.

3.2. Patterns of datum planes for each feature

We define a 3D reference system as the intersection of three
orthogonal planes. Thus, for each feature of the 2D line drawing,
we determine the 2D projections which best represent three
mutually-orthogonal datum planes. The intersection of these
three datum planes defines the origin of the auxiliary reference
system of the feature and it will also act as the insertion point of
the feature in the 3D model.

To date, the catalog of design features our approach can rec-
ognize in an engineering drawing is limited: isolated steps and



R. Plumed, P.A.C. Varley, P. Company et al. Computers & Graphics 102 (2022) 349–359

p
b
t
f
r
p
o

d
a
(
t
f
t
c

a
t
p
a
p

a
c
t
t
f
a
t
o

f
a

4

4

n
d
t
t
b
i
s
b
o
w

p
l
s
s
a
p
A
w
r
i
a

f
i
f
a

i
i
p
t
m
t
c
D
e
b

E

Fig. 4. Patterns of auxiliary reference systems and cross-sections for steps,
pockets, ribs and dividers.

Fig. 5. Patterns of candidate auxiliary reference systems for rails and slots.

Fig. 6. Cross-sections for each type of feature.

ockets, ribs, dividers, slots and rails. All of these features are
ased on extruded operations of polyhedral shapes. In addition,
he position of the features is limited in that the faces of any
eature are parallel to one of the orthogonal planes of the general
eference system (except the border face of ribs). Thus all datum
lanes are parallel to one of the default front, top and right planes
f the main orthogonal reference system.
Figs. 4a and 4b show the default auxiliary reference systems

efined for isolated steps and pockets as the intersection among
contact face (CTF1) and two faces of the corresponding feature

FACE1–FACE2). The origin of the reference system is chosen so
hat the node belongs to the face that is coplanar to the contact
ace and at the same time is the closest node to the origin of
he main subgraph (the one related to the top level shape that
ontains the nodes and lines of the top level shape).
In the case of ribs and dividers (Figs. 4c and 4d), the default

uxiliary reference system is determined by the intersection be-
ween two contact faces (CTF1–CTF2) and the skewed symmetry
lane of the feature. The origin of the reference system is obtained
s the node of the neutral plane of the rib (skewed symmetry
lane in the drawing graph) that belongs to both container faces.
Rails and slots are similar (Fig. 5), regardless of whether they

re through or blind. The set of datum planes consists of two
ontact faces (CTF1–CTF2) and one skewed symmetry plane of
he features (SYM1). The origin is the node of the symmetry plane
hat belongs to the intersecting edge between the two container
aces. This edge will form part of the cross-section of the feature
nd will be added to the drawing graph after the simplification of
he feature. In the case of through rails and slots, in addition, the
rigin will be the closest node to the origin of the main subgraph.
One of the datum planes will contain the cross-section of the

eature that will then be extruded. Fig. 6 shows the cross-sections

ccording to the type of feature.

353
Fig. 7. Indirect cues information.

. Obtaining 3D datums from 2D sketches

.1. Preparatory preprocessing

The input to our overall process is a Drawing Graph in which
odes depict vertices of the sketch and the lines linking the nodes
epict edges of the sketch. This Drawing Graph is the output of
he first step of the sketch-based modeling process, the vectoriza-
ion stage (illustrated in Fig. 1). After vectorization, a process of
eautification converts all the edges of the graph that are aligned
n the same direction into parallel lines [49]. Our approach is
till tolerant of small imperfections that sometimes remain after
eautification. We use thresholds that can be adjusted depending
n the quality of the sketching the examples presented in this
ork a threshold of 10◦ is used to recognize main alignments.
In the ‘‘Cue detection’’ stage 2, low level graph recognition

rovides indirect cues related to shape, such as list of subgraphs,
ist of faces, main alignments, perimeter, origin node of each
ubgraph and skewed symmetry planes. The origin node of each
ubgraph is the leftmost and bottom-most node of the subgraph,
nd it must also belong to the perimeter circuit. Indirect cues
rovide the input from which ‘‘feature recognition’’ is carried out.
ll this information will become fundamental input data from
hich we extract the set of datums that will define the auxiliary
eference systems for each feature. Fig. 7 shows an example of
ndirect cue detection in an L-shaped prism with two dividers and
single step. The step includes a slot in its upper face.
To build the CSG feature tree, a recursive strategy is applied

ollowing the reverse design order from child to parent, with each
teration selecting a feature and removing its lines and nodes
rom the Drawing Graph (the already known strategy of building
model tree).
Henceforth, our approach must feed the CSG feature tree by

ncluding information of extrusion operations and linking an aux-
liary reference system for the extruded feature before the sim-
lification process is carried out. This process takes place during
he ‘‘Feature selection’’ stage (Fig. 2). This information must re-
ain available outside the simplification process, so first (before

he simplification process starts) a copy of the original graph is
reated (henceforth Datum Graph), so that at the same time as the
rawing Graph is simplified in each iteration, the Datum Graph is
nriched with datum information. The datum planes are defined
y closed circuits in the Datum Graph.
Alongside the Datum Graph, a list of datum planes is created.

ach element stores the information of a datum plane including:

• The plane orientation according to the main directions of the
drawing.

• The subgraph to which the feature belongs.
• List of nodes of the plane. A vector where each node is stored
by its 2D coordinates.



R. Plumed, P.A.C. Varley, P. Company et al. Computers & Graphics 102 (2022) 349–359

c
a
e
n
s

f
s
d
t
s
s
w

j
t
r
o
c

C

• List of edges of the plane. A vector where the edge is stored
by its endpoints (should coincide with consecutive nodes of
the datum plane).

• A binary parameter to define whether the plane is a sym-
metry plane or not (Y/N).

• Location from the origin of the main subgraph.

Before starting the iteration process, the Drawing Graph is
opied as a Datum Graph and then the skewed symmetry planes
re included in the Datum Graph by adding their nodes and
dges. This means that the original edges are divided when new
odes are introduced into the Datum Graph. Furthermore, these
ymmetry planes are also added to the list of datum planes.
We assume that the geometrical imperfections inherent in

reehand sketching have been removed by the beautification
tage. Hence, the coordinates of any point represented in the line
rawing refer to a 2D orthogonal reference system located in
he screen, which represents the projection plane. In the current
tage, the data stored for nodes uses this 2D orthogonal reference
ystem located in the screen. In the next stage, this information
ill be translated to 3D.
The direction of viewing in the orthogonal axonometric pro-

ection causes a distortion in the dimensions of the drawing due
o foreshortening. Different scales along each of the three axes
eflect this distortion. These scales are calculated from the angles
f the main directions projected onto the sketching plane. In our
ase, we apply the following expression derived from [50]:

x =

√
cosŶZ

cosŶZ − cosX̂Z · cosX̂Y
(1)

Cy =

√
cosX̂Z

cosX̂Z − cosŶZ · cosX̂Y
(2)

Cz =

√
cosX̂Y

cosX̂Y − cosŶZ · cosX̂Z
(3)

In each iteration, our algorithm considers the pattern of the
reference system related to the selected feature and searches for a
triplet of datum planes that fulfills the requirements of the type of
feature and the cross-section defined by its nodes in the Drawing
Graph. This information is obtained in two stages explained in
Sections 4.2 and 4.3.

4.2. Extracting information from the 2D graph-like line drawing

The general process to extract information from 2D auxiliary
reference systems is shown in Fig. 8. It takes place during the
‘Feature selection’’ process (Fig. 2) and consists of storing data
from the Drawing graph of the cross-section and the closed
circuits that will later be translated into 3D coordinates.

Once the feature is selected and in order to obtain extrusion
information, the base faces of the feature are retrieved from
the Drawing Graph. These faces remain constant throughout the
extrusion and are parallel to the cross-section and perpendicular
to the extrusion direction. From the base faces, the extrusion
length is calculated as the average distance between paired nodes
of the base faces multiplied by the scale corresponding to the
extrusion direction.

Step and pocket features imply a subgraph disconnected from
the container graph. In order to later calculate locations between
nodes, all the subgraphs must be connected in the Datum Graph.
The node acting as the origin of the triplet of datum planes in the
step/pocket will be one of the end points of an auxiliary line that
will act as a bridge between the two graphs. This auxiliary line
must be the shortest line parallel to one of the main directions.
354
Fig. 8. Flowchart of the algorithm to extract information from the 2D Drawing
Graph.

Fig. 9. Drawing Graph with the origins of subgraphs (left), obtaining auxiliary
line that connects the subgraphs (center), Datum Graph including the auxiliary
line (right).

Fig. 9 shows an example with a step feature (fourth iteration
of the Drawing Graph in the example of Fig. 10), the origins of
each subgraph are represented on the left, the auxiliary line that
connects the two subgraphs is shown on the center (the rejected
auxiliary lines are also shown as dotted lines. This auxiliary line
intersects one of the edges of the container face and the new node
(xp, yp) divides the edge of the container face. The image on the
right depicts the Datum Graph in the same iteration including the
auxiliary line between subgraphs.

The first datum plane defined is the sketching plane, which
contains the cross-section of the feature. After obtaining the plane
orientation, if the new datum plane is not already included in the
list of datum planes, then it is added and the new nodes and edges
are also included in the Datum Graph.

The other two datum planes are chosen to define the pattern
of datum planes for the feature. Starting from the origin of the
triplet, the corresponding three planes are retrieved from the
Drawing Graph. The two planes with different orientation from
the cross-section plane are considered as datum planes. New
nodes and edges are included in the Datum Graph and the datum
plane is added to the list of datum planes if it was not previously
included.

Continuing with the example previously used, Fig. 10 shows
the iterative simplification process of the Drawing Graph until
the top level shape is reached. The Datum Graph is enriched in



R. Plumed, P.A.C. Varley, P. Company et al. Computers & Graphics 102 (2022) 349–359

i

o
i
o
d
e
r
a
w
r
d

i
n
i
d
(

Fig. 10. Example of the simplification process in the Drawing Graph and
nsertion of nodes and lines in the Datum Graph.

Fig. 11. Flowchart of the algorithm that calculates the position of Datum planes.

each iteration with new nodes and lines that depict new datum
planes. Datum planes are numbered according to the order they
are introduced in the list of datum planes.

Fig. 10 follows Plumed’s method. Suh’s method would start
with Fig. 10(4), an extrusion that contains all of the longest
lines in the drawing, it would then add another extrusion to get
Fig. 10(3), then the two dividers, and finally the slot, to get the
drawing in Fig. 10(0). Topologically, the results are the same, but
Plumed’s method gives branches of the tree in an order which
better reflects the parent–child relationships of the features.

4.3. Transforming the information to 3D

Once the top level shape is reached—when the simplification
process is finished (Fig. 2)—the Drawing Graph is empty and the
Datum Graph contains all the information needed to move to the
next stage.

In this stage, the approach converts the information from the
Datum Graph into 3D information and stores the information
necessary to locate and extrude each feature of the model tree.
The input information is supplemented by the information from
the model tree and list of datum planes.
355
Fig. 12. Different reference systems to locate an define the extrusion profile of
the feature.

The algorithm searches for axis-aligned planes but unlike
other methods such as [51], which work after inflation to 2 1

2D,
ur method is based on a path search algorithm where the
nputs are two nodes of a graph representing a line drawing that
nly contains 2D information about a 3D model. The algorithm
etermines locations, measuring distances between contiguous
lements and obtaining their absolute positions by combining
elative locations. This simple algorithm works correctly as long
s all the lines of the graph are connected. In the future, we
ill reduce errors by adding redundant distance calculations to
educe the impact of errors on the ‘‘beautification’’ of the vector
rawing.
Starting from the origin of the main subgraph, the algorithm

teratively picks an unvisited node connected to the last visited
ode. Of the possible nodes, the closest to the destination node
s selected. Then it calculates its location by adding the scaled
istance along the connecting line to the appropriate coordinate
x, y or z) of the visited node. The algorithm terminates when the
destination node is reached.

The algorithm is used in the following two sub-stages of the
approach: (a) defining the location of each Datum plane (from
the list of datum planes) with respect to the origin of the main
subgraph (in this case, the algorithm starts at the origin of the
main subgraph and finishes when the path reaches one of the
nodes belonging to the datum plane under consideration; the
searched location of the Datum Plane is the one stored in the per-
pendicular direction to the plane orientation) and (b) obtaining
the extrusion profile of each feature from the previously stored
cross-section (the profile is determined by the orientation of the
sketching plane and the insertion vertex defined by the triplet of
datum planes).

4.3.1. Locating datum planes with respect to the main origin
The nodes of the origins of the subgraphs previously defined

as a cue (Fig. 7e) were stored in the list of origin nodes. Now, we
calculate the locations from each origin to the origin of the main
subgraph.

Hence, we calculate the location from the origin to each entry
in the list of datum planes. The information is stored in each
element (datum plane) of the list of datum planes.

The general process to locate datum planes to the main origin
is shown in Fig. 11.

4.3.2. Defining the extrusion profile
Finally, the dimension of the extrusion profile can be calcu-

lated for each feature from the stored cross-section defined by the
2D coordinates of the nodes of the drawing graph. This process
implies several steps.

First, we transform the 2D cross-section nodes into 3D orthog-
onal vertices—each node of the cross-section is replaced by a 3D
vertex (x, y, z) whose coordinates store the position of the vertex
with respect to the origin of the main subgraph (Fig. 12). Next,
the vertices of the profile are moved to the insertion point of the



R. Plumed, P.A.C. Varley, P. Company et al. Computers & Graphics 102 (2022) 349–359

a

F

4

m
f

Fig. 13. Flowchart of the algorithm to define the extrusion profile of each
feature.

feature and the location of the insertion point is subtracted from
each vertex of the profile. Finally, the orthogonal 3D vertices of
the profile are translated into a 2D local system in the sketch-
ing plane. The origin of the 2D local system coincides with the
insertion point and the rules applied to define directions (x, y)
re:

• If possible, the x-axis of the sketching plane remains parallel
to the main x direction.

• Otherwise, the y-axis of the sketching plane remains parallel
to the main z direction.

The general process to define the profile extrusion is shown in
ig. 13.

.4. Output

The output shown here serves to proof the concept that our
ethod can build a procedural model. It consists of a text list of

eatures ordered from root to leaves. Each feature is defined by its
356
Fig. 15. Different views of the model obtained from the output.

extrusion information and the triplet of datum planes that locate
the feature in the main reference system. This information can be
used by a designer to create the 3D model using any commercial
modeler. Additional information, such as the subgraph and the
branch of the tree they belong to, helps convey parent–child links
between features.

Fig. 14 shows this output for the example used above (Figs. 7
and 10). The root of the model tree is the top level shape, which
the algorithm calls BLANK. The step and the slot belong to branch
1 and the order of the features defines that the step, which
appears closer to the blank than the slot, is the parent feature of
the slot and not vice versa. Dividers depict the leaves of the model
tree. In engineering practice, dividers and ribs are considered
features whose function is to increase the strength and rigidity
of the part, and for this reason they are usually added at the end
of the design process. The ID of each datum plane is a label that
represents the position of the plane in the list of datum planes.
The labels also help to determine whether features share datum
planes. For example, both dividers have in common the planes
ID 3 and ID 4, which depict the contact faces that support the
dividers. The list of datum planes for each feature define the
triplet of planes of its local reference system, which at the same
time, define the insert point position for the extrusion profile.

Fig. 15 shows a model created with AutoCAD 3D using the
output information in Fig. 14.

5. Examples

As noted above, the most complicated case when completing
the model tree data occurs with features that introduce discon-
nected subgraphs (steps and pockets). Here, we test an additional
example in order to analyze whether the algorithm works prop-
erly with several nested disconnected subgraphs (Example 5.1).
Next, a battery of examples is run with the algorithm and the

outputs are shown in Table 1.
Fig. 14. Output.



R. Plumed, P.A.C. Varley, P. Company et al. Computers & Graphics 102 (2022) 349–359
Fig. 16. Drawing Graph before simplification (left), Datum Graph after simpli-
fication (center), detail of the edge that connects the two disconnected graphs
(right).

Fig. 17. Output of Example 5.1.

Fig. 18. Reconstructed model of Example 5.1.

5.1. Example: L-shape prism with pocket and step nested

The first case represents a L-shape prism with a step and a
pocket nested (Fig. 16 left). The pocket is machined on the upper
face of the step, which in turn rests on a horizontal face of the
prism (the top level shape). The approach connects the pocket
subgraph to one of the edges of its container face, which belongs
to the step subgraph, by means of an auxiliary line. Next, the step
subgraph is connected to its container face, which belongs to the
top level shape. Fig. 16 right shows how the approach resolves
the case properly.

Fig. 17 shows the output. We tested it by reconstructing the
model (AutoCAD 3D), as shown in Fig. 18.

5.2. Other examples

After analyzing in detail the output in Section 4.4 and Example
5.1, a battery of new examples is shown in Table 1. Examples
are numbered in the first column, the second column depicts
the drawing graph before the simplification and the last column
shows the 3D model created with AutoCAD with the output data
of the approach.

Examples 1 and 5 contain a step and a pocket respectively
with extrusion direction parallel to the y-axis. They are useful
357
Table 1
Battery of examples. Column 2 represents the inputs. Column 3 depicts the 3D
models manually obtained to validate the output data.
Ex Drawing graph 3D model

1

2

3

4

5

6

7

8

9

to analyze whether the feature orientation causes failures in the
algorithm. The algorithm detects the features properly in each
example and creates successfully an edge that acts as a bridge
between the two subgraphs.

In addition, Examples 5 and 9 prove that although the ap-
proach is limited to work with features oriented parallel to one
of the main planes of the general reference system, the top level
shape can include slanted faces that are correctly depicted in the
extrusion profile as slanted edges.

Examples 2, 7, 8 and 9 break any bilateral symmetry plane of
the model, so features cannot define their location from a general
symmetry plane. Despite this, the algorithm defines properly the
position of each feature (the location of the insertion point of each
feature).



R. Plumed, P.A.C. Varley, P. Company et al. Computers & Graphics 102 (2022) 349–359

V
V
d
i
S

D

c
t

A

o
p
m

R

Fig. 19. Examples of features not supported by the approach.

Examples 3, 4 and 6 represent figures with nested features.
Example 3 could be interpreted as a prism with symmetric lat-
eral steps, instead, the approach recognizes two nested through
slots. In fact the second slot is not recognized since the first
one (the smallest one) is simplified in the first iteration. In the
case of Example 4, the partial slots could be considered as a
single through slot, but the approach consider two through slots,
and the pocket is not recognized until both slots are simplified.
Example 6 is considered as a prism with two through slots in
different directions.

6. Conclusions and discussion

We advocate shifting the semantic level of SBM so as to
generate procedural CAD models by (i) identifying features in
the 2D sketch and (ii) arranging them around suitable datums
also identified in the 2D input sketch. The procedure to identify
features was described in [6], while this paper describes a suitable
procedure to detect datums for linking features to enable gener-
ation of a CSG solid. This completes a demonstration that the two
main stages of the procedure are feasible.

We have described the second stage of a general approach
which is able to create a complete model tree from a vectorized
sketch of an orthogonal polyhedral shape depicted by a pictorial
axonometric-like view. The CSG feature tree depicts the reverse
design history and includes constructive information such as aux-
iliary reference systems, which locate each feature in the model.
These auxiliary reference systems are made up of datum planes
such as contact faces and symmetry planes.

We have shown examples which demonstrate that the ap-
proach works properly both when the line drawing is a fully-
connected graph and also for cases that contain disconnected
subgraphs. The information obtained as output from our ap-
proach serves as a proof of concept to demonstrate that it can
build a procedural model.

The CSG feature tree obtained in our approach conveys part
of the design intent of the model. The model tree can be non-
unique, as there are different solutions which reach the same final
model. The order and definition of parent–child relationships,
with which the designer includes the features in the model tree,
defines their importance according to the designer’s intention.

Nevertheless, some limitations remain as a matter of future
research. The range of features that the approach is able to detect
is limited to linear extrusion features with a constant profile. In
future work, the range of operations that can be recognized could
be extended to other modeling operations like Fig. 19a (sweep
with variable cross-section, revolution etc.). This would be added
to the Feature Detection stage.

The approach that has proved valid for extrusions seems read-
ily extensible to revolutions. Hence, only the detection of general
sweeps that could include variations in the profile remain to be
solved. The problem is challenging, but it has been solved in 3D,
where approaches to get procedural models from explicit ones
are currently available.

The approach does not as yet allow for features whose extru-
sion direction is not parallel to the main directions (Fig. 19b),
which rest in slanted planes (Fig. 19c) or whose edges in the
358
cross-section are not parallel to the main axes (Fig. 19d). In future
work, the approach should be extended to extract information of
Datum planes and extrusion profiles in slanted planes.

Extending the procedure to oblique planes seems solvable by
a similar strategy, while other datums like bilateral symmetry
planes or revolution axes depend on procedures that are available
for 3D shapes and have been studied to some extent for 2D
sketches.

The model tree still lacks information about symmetry be-
tween repeated features or the use of patterns to locate them.
This information can be considered as part of the design in-
tent and enriches the CSG feature tree, and this issue should be
considered in future work.

Finally, any SBM procedure must cope with the inherent im-
precision of sketches. A recent contribution by Favreau et al. [52]
allows vectorizing sketches with a varying level of detail, thus al-
lowing user control on the fidelity vs. simplicity of the vectorized
sketch. As a subject of future research, we advocate easing the
detection of the main features and their datums by maximizing
the simplicity while vectorizing, thus hiding imperfections and
small features. A second analysis increasing the fidelity could be
helpful to emerge complementary features (like fillets). This pro-
cedure seems suitable for an expert system trained to optimize
the level of detail required in each step.

Another question that remains unresolved is how to translate
model tree information into a standard language to complete
the automation process so that the model can be transferred
to a commercial modeler. We note here that most current CSG
model files use proprietary formats, since standard formats for
procedural models have been fully defined only recently.

Our next step will be to use that information to obtain a
representation compatible with the ISO 10303-242 standard (a
complex task since it is not a simple format). However, all the
information necessary to create a procedural model is already
available, so no further analysis of the 2D sketch is required.

CRediT authorship contribution statement

Raquel Plumed: Conceptualization, Methodology, Software,
alidation, Writing – original draft, Writing – review & editing,
isualization. Peter A.C. Varley: Supervision, Writing – original
raft, Writing – review & editing. Pedro Company: Conceptual-
zation, Supervision, Writing – review & editing. Ralph Martin:
upervision, Writing – original draft.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgment

This work was partially supported by theGeneral Directorate
f Science and Research of the Generalitat Valenciana through the
roject with ref. GV/2021/079, and the ‘‘Transformative agree-
ent’’ for open access publications of the Universitat Jaume I.

eferences

[1] Contero M, Company P, Vila C, Aleixos N. Product data quality and
collaborative engineering. IEEE Comput Graph Appl 2002;22(3):32–42.

[2] Horvat N, Becattini N, Martinec T, Škec S. Approach to analyse the use of
virtual prototypes in distributed design reviews. In: CAD conference; 2021,
p. 6–10.

[3] Olsen L, Samavati F, Costa Sousa M, Jorge J. Sketch-based modeling: A
survey. Comput Graph 2009;33(1):85–103.

http://refhub.elsevier.com/S0097-8493(21)00224-7/sb1
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb1
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb1
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb3
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb3
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb3


R. Plumed, P.A.C. Varley, P. Company et al. Computers & Graphics 102 (2022) 349–359
[4] Company P, Piquer A, Contero M, Conesa J, Naya F. A survey on geometrical
reconstruction as a core technology to sketch-based modelling. Comput
Graph 2005;29:892–904.

[5] Geometrical product specifications (GPS)—Geometrical
tolerancing—Datums and datum systems. ISO 5459:2011, ISO; 2011.

[6] Plumed R, Company P, Varley P, Martin R. Csg feature trees from engineer-
ing sketches of polyhedral shapes. In: Eurographics 2014, short papers.
2014, p. 33–6.

[7] Donati L, Cesano S, Prati A. A complete hand-drawn sketch vectorization
framework. Multimed Tools Appl 2019;78:19083–113.

[8] Wang S, Wang S, He W. Multistroke grouping of online freehand axono-
metric sketches for mechanical models. Math Probl Eng 2020;2020. art. ID
7439341.

[9] Wang S, Wang S, He W, Qin S. Tolerance zone-based grouping method for
online multiple overtracing freehand sketches. Math Probl Eng 2020;2020.
art. ID 7393846.

[10] Lipson H, Kurman M. Fabricated: The next world of 3D printing. John Wiley
& Sons; 2013.

[11] Wang W, Grinstein G. A polyhedral object’s CSG-rep reconstruction from
a single 2D line drawing. In: Proc. SPIE int. robots and computer vision iii:
algorithms and techniques; 1989. p. 230–8.

[12] Branco V, Costa A, Ferreira F. Sketching 3D models with 2D interaction
devices. Comput Graph Forum 1994;13(3):489–502.

[13] Suh Y. Reconstructing 3D feature-based CAD models by recognizing
extrusions from a single-view drawing. In: Proc. IDETC/CIE; 2007. p.
197–206.

[14] Shum S, Lau W, Yuen M, Yu K. Solid reconstruction from orthographic
views using 2 stage extrusion. Com-Aided Des. 2001;33:91–102.

[15] Lee S, Han S. Reconstruction of 3D interacting solids of revolution from
2D orthographic views. Comput Aided Des 2005;37(13):1388–98.

[16] Pereira J, Jorge J, Branco V, Ferreira F. Towards calligraphic interfaces:
Sketching 3D scenes with gestures and context icons. In: WSCG. 2000.

[17] Shesh A, Chen B. Smartpaper: An interactive and user friendly sketching
system. Comput Graph Forum 2004;23.

[18] Schmidt R, Khan A, Singh K, Durtengach G. Analytic drawing of 3D
scaffolds. ACM Trans Graph 2008;28(5). art. 149.

[19] Company P, Varley P. A method for reconstructing sketched polyhe-
dral shapes with rounds and fillets. In: Smart graphics. Springer Berlin
Heidelberg; 2010, p. 152–5.

[20] Company P, Varley P, Plumed R, Martin R. Perceiving ribs in single-
view wireframe sketches of polyhedral shapes. In: Advances in visual
computing. Springer Berlin Heidelberg; 2012, p. 557–67.

[21] Plumed R, Company P, Varley P, Martin R. From sketches to CAM models:
Perceiving pockets and steps in single-view wireframe sketches of polyhe-
dral shapes. In: ACM Conf. on pervasive and ubiquitous computing. Adjunct
Publication.; 2013, p. 951–8.

[22] Tanaka M, Kaneeda T. A method of reconstructing 3D models from sketches
by extracting features. J. Adv. Info. Technol 2014;5(3):74–8.

[23] Tanaka M, Kaneeda T. Feature extraction from sketches of objects.
Comput-Aided Des. Appl 2015;12(3):300–9.

[24] Tanaka M, Asano T, Higashino C. Isometric conversion of mechanical
sketches into 3D models. Comput-Aided Des Appl 2020;18(4):772–85.

[25] Tanaka M, Terano M, Asano T, Higashino C. Method to automatically
convert sketches of mechanical objects into 3D models. Comput-Aided Des
Appl 2020;17(6):1168–76.

[26] Thakur A, Banerjee A, Gupta S. A survey of CAD model simplification
techniques for physics-based simulation applications. Comput-Aided Des.
2009;41:65–80.

[27] Lee S. Feature-based multiresolution modeling of solids. ACM Trans Graph
2005;24(4):1417–41.
359
[28] Lee S. A cad-cae integration approach using feature-based multi-
resolution and multi-abstraction modeling techniques. Comput-Aided Des
2005;37(9):941–55.

[29] Cheon S, Kim B, Mun D, Han S. A procedural method to exchange editable
3D data from a free-hand 2d sketch modeling system into 3D mechanical
CAD systems. Comput-Aided Des 2012;44:123–31.

[30] Gryaditskaya Y, Hähnlein F, Liu D, Sheffer A, Bousseau A. Lifting freehand
concept sketches into 3D. In: ACM Trans Grap. 39, (6). 2020, art. 167.

[31] Kato Y, Tanaka S, Kanamori Y, Mitani J. Single-view modeling for layered
origami with plausible outer shape. In: Computer graphics forum (proc. of
pacific graphics 2019), vol. 38 (7); 2019. p. 629–40.

[32] Li C, Pan H, Bousseau A, Mitra N. Sketch2cad: Sequential CAD modeling
by sketching in context. ACM Trans Graph 2020;39(6). art. 164.

[33] Rawat W, Wang Z. Deep convolutional neural networks for image classi-
fication: A comprehensive review. Neural Comput 2017;29(9):2352–449.

[34] Isola P, Zhu J, Zhou T, Efros A. Image-to-image translation with conditional
adversarial networks. In: IEEE conference on computer vision and pattern
recognition (cvpr); 2017. p. 5967–76.

[35] Ma T, Kuang P, Tian W. An improved recurrent neural networks for 3d
object reconstruction. Appl Intell 2020;50:905–23.

[36] Lee S, Han S. Rapidly finding CAD features using database optimisation.
Comput Aided Des 2015;69:35–50.

[37] Pratt M, Anderson B. A shape modelling API for the STEP standard. Tech.
Rep, National Institute of Standards and Technology; 2000.

[38] Shah J, Mantyla M. Parametric and feature-based cad/cam. John Wiley &
Sons; 1995.

[39] Bianconi F. Towards a procedural CAD model for data exchange: problems
and perspectives. In: Proc. 17th ingegraf-15th adm; 2005.

[40] Salomons O, Van Houten F, Kals H. Review of research in feature-based
design. J. Manuf. Sys. 1993;12(2):113–32.

[41] Shahin T. Feature-based design- an overview. Comput-Aided Des.
2009;5:639–53.

[42] Industrial automation systems and integration—Product data representa-
tion and exchange. Part 242: Application protocol: Managed model-based
3D engineering. ISO 10303-242:2020, ISO; 2020.

[43] Kang D, Masrry M, Lipson H. Reconstruction of a 3D object from main
axis system. In: AAAI fall symposium series: making pen-based interaction
intelligent and natural; 2004.

[44] Varley P, Company P. A new algorithm for finding faces in wireframes.
Comput-Aided Des. 2010;42(4):279–309.

[45] Varley P. Automatic creation of boundary-representation models from
single line drawing [Ph.D. thesis], Dept. of Computer Science. Univ. of
Wales; 2003.

[46] Plumed R, Company P, Varley P. Detecting mirror symmetry in single-view
wireframe sketches of polyhedral shapes. Comput Grap 2016;59:1–12.

[47] Varley P, Takahashi Y, Mitani J, Suzuki H. A two-stage approach for
interpreting line drawings of curved objects. In: Sketch based interfaces
and modeling. The Eurographics Association; 2004, p. 117–26.

[48] Company P, Varley P, Plumed R. Perimeter detection in sketched drawings
of polyhedral shapes. In: STAG: Smart Tools and Applications in Graphics.
2017.

[49] Company P, Varley P, Plumed R. An algorithm for grouping lines which
converge to vanishing points in perspective sketches of polyhedral. Grap
Recog Curr Trends Chall 2014;LNCS 8746:77–95.

[50] Gomis J, Company P. La proyección en el proceso de representación y en los
sistemas de representación. Anales de Ingeniería Gráfica 1995;4(1):20–31.

[51] Varley P, Martin R, Suzuki H. Progress in detection of axis-aligned planes
to aid in interpreting line drawings of engineering objects. In: SBM. 2005.

[52] Favreau J, Lafarge F, Bousseau A. Fidelity vs. Simplicity: a global approach
to line drawing vectorization. In: SIGGRAPH Tech. Paper. 2016.

http://refhub.elsevier.com/S0097-8493(21)00224-7/sb4
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb4
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb4
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb4
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb4
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb5
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb5
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb5
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb6
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb6
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb6
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb6
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb6
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb7
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb7
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb7
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb8
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb8
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb8
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb8
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb8
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb9
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb9
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb9
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb9
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb9
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb10
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb10
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb10
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb12
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb12
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb12
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb14
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb14
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb14
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb15
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb15
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb15
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb16
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb16
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb16
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb17
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb17
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb17
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb18
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb18
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb18
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb19
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb19
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb19
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb19
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb19
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb20
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb20
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb20
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb20
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb20
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb21
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb21
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb21
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb21
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb21
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb21
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb21
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb22
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb22
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb22
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb23
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb23
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb23
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb24
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb24
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb24
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb25
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb25
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb25
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb25
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb25
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb26
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb26
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb26
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb26
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb26
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb27
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb27
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb27
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb28
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb28
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb28
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb28
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb28
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb29
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb29
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb29
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb29
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb29
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb30
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb30
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb30
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb32
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb32
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb32
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb33
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb33
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb33
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb35
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb35
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb35
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb36
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb36
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb36
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb37
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb37
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb37
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb38
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb38
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb38
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb40
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb40
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb40
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb41
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb41
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb41
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb42
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb42
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb42
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb42
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb42
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb44
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb44
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb44
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb45
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb45
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb45
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb45
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb45
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb46
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb46
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb46
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb47
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb47
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb47
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb47
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb47
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb48
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb48
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb48
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb48
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb48
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb49
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb49
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb49
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb49
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb49
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb50
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb50
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb50
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb51
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb51
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb51
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb52
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb52
http://refhub.elsevier.com/S0097-8493(21)00224-7/sb52

	Extracting datums to reconstruct CSG models from 2D engineering sketches of polyhedral shapes
	Introduction
	Related work
	Overview
	Obtaining the CSG feature tree

	Previous considerations
	Reference systems
	Patterns of datum planes for each feature

	Obtaining 3D datums from 2D sketches
	Preparatory preprocessing
	Extracting information from the 2D graph-like line drawing
	Transforming the information to 3D
	Locating datum planes with respect to the main origin
	Defining the extrusion profile

	Output

	Examples
	Example: L-shape prism with pocket and step nested
	Other examples

	Conclusions and discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


