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a b s t r a c t

In various usage scenarios, smartphones are used as measuring instruments to system-
atically and unobtrusively collect data measurements (e.g., sensor data, user activity,
phone usage data). Unfortunately, in the race towards extending battery life and
improving privacy, mobile phone manufacturers are gradually restricting developers in
(frequently) scheduling background (sensing) tasks and impede the exact scheduling
of their execution time (i.e., Android’s ‘‘best effort’’ approach). This evolution hampers
successful deployment of smartphones in sensing applications in scientific contexts, with
unreliable and incomplete sampling rates frequently reported in literature. In this article,
we discuss the ins and outs of Android’s background tasks scheduling mechanism, and
formulate guidelines for developers to successfully implement reliable task scheduling.
Implementing these guidelines, we present a software library, agnostic from the under-
lying Android scheduling mechanisms and restrictions, that allows Android developers
to reliably schedule tasks with a maximum sampling rate of one minute. Our evaluation
demonstrates the use and versatility of our task scheduler, and experimentally confirms
its reliability and acceptable energy usage.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Today, mobile phones are sensor-packed devices, capable of capturing valuable real-time information about the users
nd their environment. The ubiquity of smartphones and their prevalence in broader society made them the measurement
nstrument of choice for a variety of use cases, ranging from participatory sensing applications, where crowd-gathered
ensing data provides insights in environmental, social and urban phenomena [1], to highly personalized applications,
here users and their environment are actively and passively monitored to provide value-added services, such as indoor
ositioning [2], mobility [3] or (mental) health services [4,5]. Particularly in mobile health applications, unobtrusive sensor
ata collection brings early detection and continuous monitoring for various health conditions, such as Parkinson, tremor,
ack of physical activity and fall detection [6]. Smartphones are also widely recognized as the next wave in mental health
reatment, capable of detecting, monitoring and treating mental health disorders [7,8]. Hereby, so-called ‘‘ecological
omentary assessments’’ [9] and ‘‘ecological momentary interventions’’ [10] rely on prolonged data collection for the
ssessment of psychological symptomatology and corresponding real-time, in-situ interventions. In these health scenarios,
here the smartphone is essentially used as a scientific measurement instrument, the accuracy of the derived health
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conclusions and provided treatments hinges on the capability of the mobile device to systematically and reliably capture
mobile sensor data.

Despite the broad range of passive sensing applications described in literature and the essence of accurate data
ollection for mobile health applications, there are important yet under-reported technical issues with using mobile
hones as scientific sensing devices: they are notoriously difficult to program and generally suffer from unreliability in
erms of frequently capturing sensor data over prolonged time periods. Even though the reliability of mobile phones as
ensing devices has been recognized as a critical issue early on [11], researchers continue to struggle with unforeseen and
nexplained loss of scheduled sensor data capture. Recent studies in mobile health report up to 50% of unexplained data
oss [12,13], and, not being the main focus of the study, researchers accept the unreliability [12] and/or only generally hint
o possible technical issues, such as operating system and device model [13]. Far from questioning the scientific validity
f such studies, we here only highlight the problem and the general lack of insight in its causes. Recent reliability studies
n data collection with mobile platforms shed some light on the problem. In [14], the authors underline the problem of
assively gathering sensing data in a reliable and continuous way. Without going deeper in the loss of data, the authors
oint to the source of problem: ‘‘in most cases, they [gaps in collected data] result from the restrictions of the operating
ystem’’. Indeed, increasingly harsh energy-consumption and privacy policies enforced in mobile operating system’s
ackground services, significantly and artificially constrain the re-purposing of smartphones as passive sensor nodes [15].
dditionally, further restrictions and compatibility issues over different device manufacturers [16] are complicating
ross-device reliability, and effectively impede mobile devices to be full-fledged scientific measurement instruments.
eveloper-driven initiatives such as ‘‘Don’t Kill My App’’1 or ‘‘AutoStarter’’2 illustrate the extent of the issue. The recent
tudy of Bärh et al. [16] evaluates the missingness of passively scheduled geolocation sensor data (with a 30 min sampling
ate) in Android-based smartphones based on analysis of results of a previously performed social science study gathered
rom 625 participants. Results show that over 50% of scheduled data measurements are missing due various reasons,
ncluding a majority attributed to device or app specific issues, such as OS and manufacturer-related restrictive policies.
nterestingly, statistical analysis shows that the likeliness of missing observations increases under specific power-saving
onditions (display turned off) and restrictions (Doze standby mode), and with more recent Android versions.
Smartphones – more concretely Android phones – provide several mechanisms to perform tasks while the user is not

ctively using an app. On one hand, there are services, which are meant to execute arbitrary code without any execution
ime constraint. Services can, ideally, run forever (although real experiments prove this statement wrong [15]) or for a
inite amount of time (i.e., until the task to be executed has finished). Starting from Android 8.0+, a new kind of service was
ntroduced, the foreground service, created to provide visual feedback to the user (i.e., via a permanent notification) when
n app is performing an operation which potentially can hurtle user’s privacy (e.g., acquire the location of the phone).
n the other hand, there are alarms, which are meant to delay the execution of any code. Alarm handlers (i.e., broadcast
eceivers) limit the execution time to a maximum of 10 s, notwithstanding, they can be combined with services to delay
he execution of lengthy tasks. Each mechanism has its advantages and pitfalls.

In this article, we experimentally demonstrate the reported problem of unexpected loss of measurements in scientific
ongitudinal data collection tasks (i.e., missing scheduled task executions), and we discuss the technical (programming and
ngineering) challenges to reliably schedule prolonged and systematic (background) task executions, as for the collection
nd processing of passive sensor measurements on mobile (Android) phones. Then, we formulate guidelines for mobile
hone developers to ensure reliable background (sensing) task scheduling in various usage scenarios. Finally, we present
novel software library to reliably schedule (sensing) tasks at various sampling rates, independent of the underlying low

evel operating system mechanisms. In doing so, we answer Regli’s plea for computer scientists as toolsmiths [17] by
roviding a software tool, grounded in ingenious engineering and algorithmics, that addresses an obstacle for conducting
olid science in a wide range of application domains that aspire the use of mobile phones as ubiquitous, reliable scientific
nstruments. Hereby, we focus the design and evaluation of our work on two key concepts: reliability of task scheduling
i.e., the ability to correctly execute scheduled tasks – i.e. sensor measurements – in a systematic manner over a prolonged
ime period, in terms of completeness and accuracy) and efficiency (i.e., assuring an acceptable energy consumption of
he smartphone’s battery).

To the best of our knowledge, such guidelines or implemented solutions for flexible and reliable background task
cheduling on (Android) phones (e.g., sensor measurements) are currently not available in the literature. There exist
pecific data collection solutions, of which the AWARE [18] and Beiwe [19] frameworks are representative examples, or the
ARP Mobile Sensing framework [20] for sensing and data handling tasks in Mobile Health. Yet, all of them come with a
redetermined set of tasks (mainly data collection tasks), which in few cases can be extended or reduced (i.e., optimized).
ur solution could be used to implement (the Android version of) any of them, leading to more reliable operation, as
or all these solutions, online sources (i.e., bug reports, code repository comments, forums) report systematic loss of
easurements in longitudinal data collection (background) tasks. Respective authors report to be working on ways to
itigate this problem, some partly overlapping with our proposal. However, the most popular workaround is the use of
continuously running foreground service, combined with alarms to restart it when killed. We discuss the disadvantages
f such an approach (most importantly, battery drain) in Section 2.
Our software solution is released as open source [21] and can be used in Android-based applications requiring reliable

nd systematic scheduling of background tasks, such as sensor measurements.

1 https://dontkillmyapp.com/.
2 https://github.com/judemanutd/AutoStarter.
2

https://dontkillmyapp.com/
https://github.com/judemanutd/AutoStarter
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2. Scheduling tasks in a timely manner: pitfalls and guidelines

The development guidelines introduced in this section are the result of 3+ years of experience with SyMptOMS,
n ecological momentary intervention framework to provide smartphone-based psychological treatment for a range of
ental health disorders based on real-time patient monitoring [22]. Under the umbrella of SyMptOMS, we developed
n Android-based smartphone application which passively collects sensor data at various frequencies, with a highest
ollection rate of 1 min. Throughout its lifetime, the SyMptOMS mobile app suffered from increased restrictions in four
onsecutive Android versions, provoking continuous updates and rigorous testing to maintain operation.
Our solution works on a heterogeneous set of phones, from a variety of manufacturers, even in those running the latest

nd most restrictive Android versions (tested up to Android 11 — API 30), while keeping support for old phones (Android
.4 — API 19 and onwards). It uses an alarm-based mechanism to schedule data collection tasks over time, produces a
ercentage of missing data considerably lower than reported in literature (which is about 50% [12,13,16]) and has proven
o be successful in different case studies [23,24].

In the next subsections, we share our experience in reliable task scheduling in Android. First, we review the different
ndroid mechanisms for scheduling tasks, comparing them and explaining known workarounds for common pitfalls. We
hen formulate development guidelines to reliably schedule tasks, followed by the necessary mobile phone configurations
o ensure Android’s energy-savings mechanisms do not interfere.

.1. Android task scheduling: the ins and outs

In essence, Android supports three ways to run tasks while the user interface is not visible: using a foreground service,
background service or alarms. A foreground service performs an action, possibly long-lived, that is noticeable by the
ser (e.g., playing music). Foreground services have the advantage that they act as if the application user interface is
isible, which means that they do not suffer from certain data access restrictions as background services do (e.g., ability
o get frequent access to sensitive data, i.e., GNSS locations or WiFi fingerprints), but on the downside, they keep the
pp continuously running (causing battery drain) and display a permanent sticky notification on the phone’s task bar,
amaging the user experience and possibly causing more app uninstalls. On the other hand, a background service performs
n action which is not noticeable by the user (e.g., a backup process, a sensor measurement). It has the advantage of
nobtrusive monitoring, yet on the downside of lacking access to up-to-date values of what the OS considers sensitive
ata. In either case, both can get killed at any time by the OS if the device is running low on RAM [15].
Finally, alarms allow the developer to schedule time- and interval-based tasks, even outside the lifetime of the

ssociated app. Alarms are more energy efficient, as no continuous foreground or background service needs to be running,
ut they suffer the main disadvantage that alarms do not trigger when the device is idle (i.e., in Doze mode). Alarms
re early-available low-level mechanisms that, in successive Android versions, have gradually been made available to
pplication developers through higher-level abstractions (e.g., Job Scheduler and WorkManager APIs). From Android
ersion 6.0 onwards, battery life has been prioritized over reliability, by penalizing alarms below 15 min and not
uaranteeing timely triggering of alarms, to the point where the provided high-level abstractions no longer allow
cheduling them.
Under the increasingly restrictive policies in later Android versions, high frequency and time accurate alarms (pre-

ented by Doze mode in Android 6.0+), jointly with silent sensitive data access in background (prevented by the limitations
ntroduced in Android 8.0+) did not work anymore. A good workaround for doing background work began to gain
raction, the use of always-running background (or foreground) services. However, not without some problems [15,25]: a
ontinuously running foreground service, with the aforementioned downsides of battery drain, decreased user experience
nd caused unexpected shutdowns.
Unless real-time or close-to-real-time data or computations (<1-min interval) are needed, our suggestion is to use

larms instead of background (or foreground) services all the time. The key advantage of alarms is that they allow the
evice to sleep after the task is finished (battery gain). Furthermore, they can be combined with foreground services to
vercome certain system limitations (frequent geolocation updates can only be reliably collected in foreground). Possibly,
n experienced reader will argue that alarms cannot be reliably scheduled every minute over a prolonged time period,
ainly after Android 6.0, when Doze mode was introduced. However, our experience shows that – with special care –
larms can be reliable.
First of all, attention needs to be paid with the periodicity of the alarm-scheduled task. By design, Android will not

et an app trigger more than one alarm per minute (or will penalize the app that does so too often). This restricts the
olution to a minimum time interval of 1 min,3 and also causes problems when multiple tasks need to be run in short
ime intervals. However, this problem can be solved by grouping tasks by their proximity in time, using a single alarm
hat runs in a <1 min time span.

Secondly, alarm-scheduled tasks should not exceed their periodic frequency (e.g., for tasks scheduled every 60 s, their
orkload should not exceed 60 s), and as a good practice we recommend using timeouts for app tasks. If the task is

3 Even though, within this one minute, multiple sensor readings can be scheduled — as long as the overall task time does not overlap with a
future alarm execution.
3
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longer – i.e., another alarm will fire before it finishes – the developer should try to split it into simpler tasks instead.
From Android 8.0 and onwards, users will get a notification if an app is doing intensive work in background for a longer
time period, and since Android 10, the system classifies (and penalizes) apps based on their battery usage in background.
Hence, continuous background work should be avoided, and it is recommended to let the phone ‘‘breathe’’ from time
to time when running intensive background tasks. Even more, the use of timeouts prevents faulty tasks from running
unlimitedly in background, which will eventually lead to Android blacklisting the app.

Thirdly, the developer needs to keep in mind that alarms will not persist after a system reboot. Therefore, an app
hould keep track of the alarms that have been scheduled and those that have been triggered, in order to reschedule
asks that were not triggered due to a system boot.

Fourthly, the developer needs to be aware that Android – for reasons we have not been able to determine – sometimes
tops triggering alarms of an app. This does not happen often, but we anyway recommend to implement some counter-
easurements against this behavior. The developer can for example perform an alarm status check (i.e., verify the status
f the alarm’s pending intent) every time the app is launched by the user, as to re-set up alarms if needed, combined
ith an alarm watchdog, checking if alarms are still scheduled, over a longer time period. In our experience, a repeating
larm outside the battery savings danger area (every 15 min) – to avoid the watchdog itself to be penalized or canceled
y Android – does the job, allowing relatively fast recovery in case of failure.
Finally, we advise to implement any optimization which avoids running a task unnecessarily. For example, in the

ommon case of collecting geolocation measurements, it is not needed to continue collecting samples every minute while
eing stationary for a long time (e.g., the user is not carrying his/her phone, sitting down, sleeping). In such a case, an
ptimization could be to use Android’s activity recognition API, which is highly energy-efficient and can notify activity
hanges, in order to stop/resume alarm scheduling during non-active states. The app will make a better use of the available
esources and the users will appreciate the reduction in battery consumption. In general, while designing background
asks, take a moment to think of possible contextual triggers for your background tasks, along with the possible time
riggers.

.2. Development guidelines

After reviewing Android’s capabilities for systematically scheduling tasks, with the associated pitfalls, solutions and
ecommendations, we now move on the concrete implementation. As our focus is on alarm-based background tasks,
asically two issues arise: alarm scheduling and alarm handling. The first two guidelines cover alarm scheduling, while
he last two are centered on alarm handling.

uideline 1: use the right alarm scheduling mechanism
The Android system offers multiple alarm scheduling mechanisms. It is important to understand and use them well

n order to obtain timely alarm triggers while the device is idle. The first version of the AlarmManager4 introduced the
et() method. This method allows scheduling highly reliable alarms in phones running Android 4.3 (API 18) or lower.
owever, starting from Android 4.4 (API19), alarms scheduled with the set() method became inaccurate, i.e., the system
ow decides when it is best to trigger them, instead of triggering them (exactly) when they were scheduled. In its place,
ndroid 4.4 introduced setExact(), a new method to accurately schedule alarms.
Once again, in Android 6.0 (API 23), the AlarmManager was updated with the introduction of the Doze5 power saving

ode and the setExactAndAllowWhileIdle() method. This method allows to wake up a phone that is idle in Doze mode,
ith a maximum frequency of 9 min. If a higher frequency is needed, then the Doze battery optimizations need to be
eactivated. However, at the same time (from Android 6.0), the setExact() method that was introduced in Android 4.4 –
ontrary to its name – is no longer reliable (‘‘exact’’) to trigger alarms if the device is idle.
Given this mishmash of alarm scheduling methods and associated functionality under different versions of Android, it

s imperative for the developer to select the correct alarm scheduling method, depending on the Android version of the
lient. Listing 1 shows how.

1 int alarmType = AlarmManager.RTC_WAKEUP;
2 long timeInterval = 60 * 1e3; // Trigger in 60 seconds
3 long triggerAtMillis = System.currentTimeMillis() + timeInterval;
4
5 PendingIntent receiverPendingIntent = PendingIntent.getBroadcast(context, 0,
6 new Intent(context, Receiver.class), 0);
7 AlarmManager manager = (AlarmManager) context.getSystemService(Context.ALARM_SERVICE);
8
9 if (Build.VERSION.SDK_INT >= 23) { // Android 6 or higher

10 manager.setExactAndAllowWhileIdle(alarmType , triggerAtMillis , receiverPendingIntent);
11 } else if (Build.VERSION.SDK_INT >= 19) { // Android 4.4 (KitKat) or higher
12 manager.setExact(alarmType , triggerAtMillis , receiverPendingIntent);
13 } else { // Any version older than Android 4.4

4 https://developer.android.com/reference/android/app/AlarmManager.
5 https://developer.android.com/training/monitoring-device-state/doze-standby.
4

https://developer.android.com/reference/android/app/AlarmManager
https://developer.android.com/training/monitoring-device-state/doze-standby
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14 manager.set(alarmType , triggerAtMillis , receiverPendingIntent);
15 }

isting 1: Example setup to ensure accurate alarms over different Android versions (up to current latest version, Android
1).

uideline 2: reschedule one-time alarms for recurrent alarms
In case of recurrent alarms, from Android 4.4 (API 19) ‘‘all repeating alarms are inexact’’, as stated in Android docs.6

Therefore, systematic rescheduling is a better alternative. It can be done by setting the next alarm immediately after the
current alarm got triggered, before executing the real task.7 Even though this induces minimal time drift between alarms
(i.e., a couple of hundreds of milliseconds per trigger) – not an issue for the vast majority of applications – it is better
than delays in the order of tens of minutes which high frequency recurrent alarms will suffer.

Guideline 3: use broadcast receivers instead of services
In our experience, recent Android versions and certain phone manufacturers, may penalize a service being run because

of an alarm trigger, and consequently delay the alarm trigger until the screen is turned on. Nonetheless, it is perfectly
possible to start a service from a broadcast receiver. Therefore, we recommend to use broadcast receivers for triggers,
as intermediary to run a service. Next to improved reliability, this also promotes separation of concerns, whereby each
software component has its own responsibility. Broadcast receivers thus act as alarm handlers and services act as runners.
For example, it allows to decide the kind of service to be executed depending on the task to perform (e.g., a foreground
service for opportunistic location acquiring or a background service for inertial sensor sampling). It is also possible to start
a runner service from a boot receiver to execute pending tasks at phone’s restart.

Once the responsibilities of each software component have been defined, we have to deal with the fact that our code
might be stopped in the middle of its execution and resumed a few minutes or hours later. Android docs state that an
app started in background has approximately 10 s to do some work.8 Once that deadline passed, the phone’s processor
enters in sleep mode until the next wake up. In our experience, in phones from certain manufacturers, these 10 s can be
reduced to even 2 s or less.

Guideline 4: use wake locks to ensure proper task execution
After the alarm handler (i.e., the broadcast receiver) time execution window (< 10s) finishes, the execution of any

ongoing code will be paused and it will resume with the next alarm trigger or screen turn on. To prevent the processor
from sleeping at this point, there is a low level mechanism, called wake lock.9

A wake lock allows to control the power state of the smartphone and force the processor to stay active. However, wake
locks are a double-edged sword: when misused, they may lead to huge battery drain. Therefore, it is good practice to set
an expiration timeout when acquiring a wake lock. Notwithstanding, depending on the variety of tasks to be performed
by the app, it can be difficult to fix a time limit for staying awake at the moment the alarm is raised. For example,
in applications where multiple tasks can be scheduled depending on several external factors and each task complexity
(i.e., average execution time) is different, additional processing will be required right after the alarm trigger in order to
estimate the suitable timeout for each case. It is important to know that wake locks can be acquired with and without
a time limit. In addition, wake locks can be acquired multiple times but its acquisition is reference counted. This means
that in order to release a wake lock the release() method needs to be called for as many times the acquire() method
has been called first.10 However, wake locks can be configured as non-reference counted to change this behavior, which
leads to them to be released with the first release() method call or acquisition time expiration, even though one of the
acquisitions is unbounded.

Therefore, we recommend to use non-reference counted wake locks, which can be acquired many times, but are
released with the first call to the release() method. The proposed usage workflow is as follow: 1/ an alarm is raised,
2/ create the wake lock, set it as non-reference counted and perform an unbound acquire, 3/ obtain the information of
the task(s) to be executed, calculate timeout time based on them and re-acquire the wake lock with a time limit (if the
timeout happens, the wake lock will be released, even the first acquisition), 4/ perform the task and 5/ manually release
the wake lock before the timeout rises, to save battery.

Note that it is important to avoid transitive wake locks. This means that if we have a recurrent task, our timeout should
be placed before the next alarm gets triggered, in order to allow the smartphone to sleep (and save energy) at least for
some time.

6 https://developer.android.com/reference/android/app/AlarmManager#setRepeating(int,%20long,%20long,%20android.app.PendingIntent).
7 Note to set it immediately, to avoid losing the iteration in case our task execution is interrupted or canceled — see guideline 4.
8 https://developer.android.com/reference/android/content/BroadcastReceiver.
9 https://developer.android.com/reference/android/os/PowerManager.WakeLock.

10 A time limit expiration counts as a release() method call.
5
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2.3. Target system configuration

Once the background tasks workflow has been designed and scheduled, it is paramount to configure the target
martphone, in order to prevent Android’s power saving measures from interfering with correct task execution. Depending
n the phone, this process will be more or less straightforward.
In phones running Android stock layer, a special permission can be added in the application manifest11 that allows

the app to ask the user to exclude it from the default system battery optimizer through an in-app dialog. Of course,
not every app can have this permission and Google will ban apps from the Play Store that ask for it when it does
not correspond.12 However if scheduling is part of the core functionality of the app, and the background task is well
designed (see Section 2.1), the application will pass the filter quite safely. Unfortunately, many hardware manufacturers
(e.g., Samsung, Huawei, Xiaomi, etc.) provide custom Android versions which, in an attempt to extend battery life,
incorporate more stringent battery optimizers. These proprietary solutions are not generally accessible to app developers
and hence, users have to manually disable them for specific apps from their phone settings.

The way to access those settings varies from one manufacturer to another, and sometimes even from different custom
Android versions within the same manufacturer. Nonetheless, we can summarize them in two settings: allow the app
to automatically start in background (i.e., auto-launch setting) and allow the app to use phone computational resources
without restrictions (i.e. white-list app from battery savings).

While phone manufacturers do not provide developers with a mechanism to manage these settings programmatically,
some community efforts provide alternatives such as ‘‘Don’t kill my app’’see footnote 1 and AutoStarter See footnote 2.
The first one is a curated list of steps to take to disable these battery optimizations, classified by phone manufacturer. The
second tries to discover undocumented manufacturer APIs to disable the optimizations via software. Efforts as the latter
have uncovered obscure details which developers can deploy to access certain energy savings settings clandestinely, or
bypass them. For example, Samsung allows an app to trigger alarms in a timely manner, if the app package name includes
a special keyword (i.e., alarm, clock or alert); otherwise, it will restrict them to a highest frequency of 5 min.

In light of the variations of the Android OS between manufacturers, we recommend developers to include links to
step-by-step manuals, such as provided by the ‘‘Don’t kill my app’’ See footnote 1 community, in the installation process
of their application, possibly combined with detecting phone manufacturer and Android version to provide more specific
instructions. For that later purpose, there are approaches like ‘‘Doki’’13

Fig. 1 presents a flowchart as a summary of the aforementioned guidelines, recommendations and configurations for
the sake of helping developers on deciding which mechanisms and which optimizations to implement, depending on each
specific use case. Nevertheless, keeping all these findings in mind and implementing them in an Android app is not a trivial
task. Therefore, we have developed a software library which implements the aforementioned guidelines and mechanisms
to conduct background tasks scheduling, abstracting from the underlying details (e.g., setting recurrent alarms, selecting
the correct alarm setting method for each Android version, acquiring and releasing wake locks, etc.). Next, we present
this library.

3. A library to schedule them all

The ‘‘NativeScript Task Dispatcher’’ (NTD) library [21] is a software tool that abstracts development complexities
in the implementation of reliable task scheduling, needed for example in data collection apps. The library provides
fundamental building blocks in the form of software components (see Section 3.1) for defining and scheduling (data
collection) tasks overcoming the restrictions and issues posed by the newest Android versions (see Section 2). The library
follows the development guidelines defined in Section 2.2, and requires the mobile phone configuration settings as defined
in Section 2.3.

Based on the NativeScript14 framework, the NTD library (or plugin in NativeScript’s terminology) follows a hybrid
pproach, i.e. it combines web and native technologies. NativeScript is a mobile application development framework
hich allows to develop apps both for Android- and iOS-based devices. Common logic for both platforms is coded in
ypeScript,15 a JavaScript language super-set which adds types, interfaces and enumerations, among other elements, to
he parent language and can be back-compiled to standard JavaScript code. NativeScript allows to code platform-specific
unctionalities using native languages (i.e., Java or Kotlin for Android and Objective-C or Swift for iOS), and also offers
ynamic constructs to call native components from JavaScript code (i.e., Java/Objective-C classes) and vice-versa (via
allback functions). Compiled JavaScript code runs on both platforms using the V8 JavaScript engine. Custom HTML views
re transformed into native UI components to reduce user interaction latency. Although the NTD library does not support
OS devices yet, it has been designed to meet this requirement: all the code has been implemented in TypeScript, except
or native interfaces for programming alarms written in Java. Therefore the rest of the section stitches to Android devices.

11 https://developer.android.com/reference/android/Manifest.permission#REQUEST_IGNORE_BATTERY_OPTIMIZATIONS.
12 https://developer.android.com/training/monitoring-device-state/doze-standby#whitelisting-cases.
13 https://github.com/DoubleDotLabs/doki.
14 https://nativescript.org/.
15 https://www.typescriptlang.org/.
6
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Fig. 1. Background task design decision flow.

Before entering into detail in the next subsections, we summarize the main rationale for the library. It allows to create
apps implemented as a workflow of event-driven tasks. Developers encapsulate custom code to be run in background in
standalone units called tasks. Tasks are triggered by events and produce events as a result. A series of tasks are logically
chained by events, which can be time-based events (i.e., triggered after a specified time), external events (i.e., emitted
by the user interface, hardware or server side code) and task events (i.e. a result of a task). Therefore, tasks receive and
produce events, ensuring that a task is never invoked directly by third-party components, but indirectly through external
events. However, reversely, tasks can access external components. The motivation behind this behavior is to allow tasks to
carry out certain side effects, which are strongly coupled to data collection processes, outside the plugin context. Beyond
the resulting event, a task can for example store data locally, deliver a notification to the user, or submit collected data
to a server, which are necessary actions in data collection apps.

3.1. Building blocks

The NTD library building blocks or essential components are tasks, events, the task graph and an entry point, which
are covered in detail next.

3.1.1. Tasks
A task can be virtually any custom code block written by mobile application developers. A developer creates a new task

either by extending the Task base class or by instantiating a new SimpleTask with a standalone function which represents
the custom code.

1 export class DataProviderTask extends Task {
2 constructor(
3 name: string, // A way to refer to the task later
4 private dataProvider: DataProvider // Dependencies can be injected via constructor
5 ) {
6 const taskConfig = {
7 outputEventNames: [ " dataAcquired " ], // The event(s) which can be emitted
8 foreground: false // Optional, specify foreground requirements
9 };

10 super(name, taskConfig);
11 }
12
13 async checkIfCanRun(): Promise<void> {await this.dataProvider.checkIfHasPermission();}
14
15 async prepare(): Promise<void> {await this.dataProvider.askPermission();}
16
17 protected async onRun(
7
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18 params: TaskParams ,
19 invocationEvent: DispatchableEvent
20 ): Promise<void | TaskOutcome > {
21 // Gracefully stop data acquisition if task gets canceled by a timeout. e.g.:
22 this.setCancelFunction(() => this.dataProvider.stopDataAcquisition());
23
24 const data = await this.dataProvider.acquire();
25 return {eventName: " dataAcquired " , result:data};
26 // Event name property is optional here, given task declared only one output event
27 }
28 }

isting 2: Example which defines a task that obtains data from a sensor by using Task class inheritance.

Listing 2 provides an example of the former case, where a new task extends the Task base class by class inheritance. A
ask can specify external dependencies via constructor injection (ln 2–5). Task dependencies must be instantiated at the
pplication start. Otherwise, lazy loading can be implemented at dependency level. A task also declares the event(s) that
t produces (ln 7). This allows to check inconsistencies in the task graph at the entry point (see Section 3.1.4). By default,
asks are executed in background, but developers can also indicate foreground execution (ln 8). Task execution can be
ynchronous or asynchronous. Next, the checkIfCanRun() (ln 13) tests the task’s pre-conditions for execution (e.g. lack
f permission). Then, prepare() (ln 15) provides code to correct such unmet conditions (e.g. asking the user to grant
ermission). These last two methods can be asynchronous too (e.g., they can wait for user’s answer to permission request).
he core method of the task is onRun() (ln 17–27). Developers must override it with custom code that implements their
pecific task. The method gets as inputs the external parameters configured in the task graph (see Section 3.1.3) and the
etadata and payload from the event which triggers the task. A task can declare a callback (ln 22) in case the task is
anceled before finishing its job (e.g. due to a timeout). Other utility methods available are log(), remainingTime() and
unAgainIn(), which respectively allow to add monitoring messages, get remaining time (i.e., time before timeout) and
e-run the task at a given time.

The second way to define a task is by creating instances of the SimpleTask class. Unlike the Task base class, which
s intended for sophisticated code with dependencies, SimpleTask instances are primarily used for data transformation.
evelopers can succinctly provide a function through the task constructor, at the expense of not relying on external
ependencies or not specifying pre-execution checks. However, these tasks can still access globally available dependencies
nd utility functions such as log(), remainingTime() or runAgainIn(), which are part of the task context object that is passed
o the custom function. The same holds true for the task parameters and the execution invocation event. Listing 3 shows
he definition of three tasks using the SimpleTask instance creation method. The first task (ln 2–5) invokes two utility
unctions. The second task (ln 6–9) is triggered by an event (evt) with payload and manipulates it. The last one (ln 10–19)
s a recurrent task with a variable execution interval. The interval for every subsequent execution is computed in the
ask itself and it is rescheduled by the runAgainIn() method. In general, tasks are independent of how they are scheduled.
owever, tasks that use the runAgainIn() method, such as the third example in Listing 3, are an exception; they need, by
efinition, to codify internally how the scheduling interval varies.

1 export const appTasks: Array<Task> = [
2 new SimpleTask( " someTask " , async ({ log, remainingTime }) => {
3 log(‘Time left: ${remainingTime()}‘);
4 // Other code to be executed
5 }, { foreground: false /* Optional */ }),
6 new SimpleTask( " eventTriggeredTask " , async ({ evt, log }) => {
7 log(‘ " someTask " result: ${evt.data.result}‘);
8 return { result: ‘${evt.data.result} changed‘ };
9 }, { outputEventNames: [ " dataProcessed " ] }),

10 new SimpleTask( " recurrentTaskVariableInterval " , async ({ params, runAgainIn }) => {
11 const incrementFactor = 2; // Two minute increment per run
12 const execCount = params.execCount ? params.execCount : 1;
13
14 // Do some processing
15
16 // Reschedule again for next execution
17 const nextRun = toSeconds(execCount * incrementFactor , " minutes " );
18 runAgainIn(nextRun, { execCount: execCount + 1 });
19 })
20 ];

isting 3: Example defining a simple task, an event triggered task and a recurrent task with variable interval.

At this point, we have explained how to define tasks, we do not yet know how to schedule them, which is handled
y the task graph (Section 3.1.3). An advantage of enforcing the separation of concerns between definition and schedule
s that the testability of tasks is greatly improved.
8
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3.1.2. Events
Events are the mechanism for providing the flow of data between tasks and between the library and external

omponents. The event data model is composed of a name, an event chain ID, an expiration timestamp and the payload
ata. The name (a string, typically in camelCase) identifies a type of event. Event chain identifiers are version 4 Universal
nique Identifiers (UUIDv4), ensuring that the combination of event name and chain ID will always be unique (i.e., a
hain cannot have more than one event with the same name). Event chain IDs are used to track event propagation, as
e will explain below. The expiration timestamp is a UNIX timestamp specified for the first event in the task chain (see
ection 3.1.3). It is used by the remainingTime() method to calculate the time available for execution before the timeout
ncreases. Finally, the event payload data (encoded as a plain JavaScript object or array of objects) contains information
hared by the event, either plain values or class instances (i.e., a JavaScript function instance).
Understanding how event chain IDs work is key to track event propagation. When a task (T1) is triggered by an event

evt1), and if evt1 is the first event in the chain (e.g. it is an external event dumped in the library context), a unique chain
D is created. Once T1 finishes its execution, it checks whether another task (T2) is interested in its output event (evt2). If
o, T1 creates the new event evt2, which will trigger T2, but keeping the original chain ID. If no other task is interested in
vt2, the task T1 emits a special event called ‘‘taskChainFinished’’ instead of its declared output event (evt2). That special
vent signals the end of a task chain. When all the ongoing task chains finish their execution, the phone goes back to
leep mode. There is a diagram illustrating this behavior on the public code repository.16 There are exceptions to this
ehavior though, for example, a task chain can be divided in two children chains with their own chain IDs. The parent
hain waits for all child chains to finish execution. However, these details are completely abstracted from the developer,
ut it is important to know them when analyzing the execution logs generated by the library.
Events can be created in the application and broadcasted through the NTD library context via the emitEvent() method

laced at the library’s entry point. We refer to Section 3.1.4 for more details.
The NTD library also includes utility functions to facilitate asynchronous testing of events: create(), emit() and

istenToEventTrigger(). They allow to create events without immediately emitting them, to emit manually created events
nd to listen to events from outside the plugin context (i.e., to check if an event has been emitted by a task). These
ethods are for testing purposes only, as they are unpredictable when not used in isolation (as in test cases).

.1.3. Task graph
The task graph allows the developer to define a task workflow of any complexity, agnostic from the underlying OS’s

echnical details. It describes how the involved tasks are triggered and how they relate to each other. While a task is about
locks of code, the task graph is about scheduling the tasks. A developer creates a task graph by extending the TaskGraph
ase class to describe how and when each task is triggered. Per each task, a task graph describes how it is scheduled
ased on a wide variety of events such as time-based events (i.e., every minute, at a certain date, in a certain amount of
ime or a combination of recurrent and delayed execution), external events (e.g., button taps, built-in or external sensor
hanges, server sent events) and task events (emitted by other tasks).
Listing 4 shows an example of task graph. Each line typically starts with the on() method, which takes two arguments:

he name of an event that will trigger a task, and the definition of how that task will be executed (i.e., immediately after
he event trigger or at some point in the future), including any parameter if needed. To simplify the composition of the
xecution description of a task, there exists the run() function. It specifies if the task runs immediately (ln 7 and 10) or in
he future (ln 4, 13, 16, 19–21 and 24), by means of the event-based scheduler or the alarm-based scheduler, respectively.
ue to tasks can be scheduled in different ways, the run() method can be optionally chained with other methods: every()
or recurrent tasks (ln 4), at() for tasks scheduled at a certain date (ln 13), in() within a concrete amount of time (ln 16),
r a combination of thereof (ln 19–21 and 24).

1 class DemoTaskGraph implements TaskGraph {
2 async describe(on: EventListenerGenerator , run: RunnableTaskDescriptor): Promise<void> {
3 // Recurrent task at fixed interval , scheduled at event trigger
4 on( " startEvent " , run( " recurrentTask " ).every(1, " minutes " ));
5
6 // Single-run task, on event trigger. Receives a runtime parameter
7 on( " startEvent " , run( " instantTask " , {param: " a param " }).now());
8
9 // Execution is immediate by default

10 on( " recurrentTaskFinished " , run( " eventTriggeredTask " ));
11
12 // Single-run task to be executed on a date, as long as the event triggers before
13 on( " startEvent " , run( " dateTask " ).at(new Date(/* Future instant */)));
14
15 // Single-run task to be executed in 5 minutes, starting at event trigger
16 on( " startEvent " , run( " delayedTask " ).in(5, " minutes " ));
17
18 // Task to be executed on a date, then at recurrent interval
19 on( " startEvent " , run( " dateRecurrentTask " )
20 .at(new Date(/* Future instant */)

16 https://github.com/GeoTecINIT/nativescript-task-dispatcher/blob/master/img/alarm-scheduler-lifycle.png.
9
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Fig. 2. Built-in task schedulers: (a) an example of an alarm-based scheduling in which T2 and T3 execution is grouped due to their proximity in
time; (b) an example of alarm-based and event-based scheduling in which T1 is recurrently being scheduled and whose finalization triggers T2.

21 .every(5, " minutes " ));
22
23 // Task to be executed in 5 minutes, then at recurrent interval
24 on( " startEvent " , run( " delayedRecurrentTask " ).in(5, " minutes " ).every(1, " minutes " ));
25 }
26 }
27 export const demoTaskGraph = new DemoTaskGraph(); // Generate a singleton instance

isting 4: An example of a task graph describing how the tasks must be executed and how they relate to each other.

As pointed out above, the NTD library provides an alarm- and event-based scheduler. The alarm-based scheduler allows
o plan the execution of one or more tasks in a concrete instant of time. Take the simple example of three tasks (T1, T2
nd T3), each one runs once (one-time execution) and all are triggered by the same event. T1 is executed in 60 s, T2
n 120 s, and T3 in 140 s. Fig. 2(a) depicts how the alarm-based scheduler works in this example. T1 is set to run in
0 s from the start time (red dot), so the system alarm is scheduled to activate in 60 s (top-left diagram). After 1 min,
he alarm-based scheduler triggers the execution of T1 and reschedules itself for the execution of T2 in 1 min (60 s)
central-left diagram). After 1 min more, the alarm-based scheduler triggers the execution of T2, but also T3 due to its
roximity in time (bottom-left diagram). This relates to one of the recommendations in Section 2.1 in that tasks that run
ess than 1 min apart are scheduled together. By design, our alarm-based scheduler joins tasks when their execution time
ifference is less than 30 s, due to a limitation of Android alarms (see Section 2). If the time difference between the current
ime and the scheduled time of a task is less than 30 s, it will be executed in the current execution window. Consequently,
ome tasks can have their execution advanced or delayed up to 30 s. In other words, given four tasks scheduled at 60s,
0s, 91s and 120s respectively, only two alarms at 60s and 120s will be triggered; the first two tasks will be executed on
he first alarm trigger and the other two tasks on the second. This behavior applies equally to recurrent tasks.

The event-based scheduler allows to trigger tasks as a reaction to an event, depending on internal (task result) or
xternal events. This scheduler can be used in isolation (e.g., when a push notification arrives) or in combination with the
larm-based scheduler, allowing complex task configurations. Consider the following example: T1 runs recurrently every
0 s, while T2 depends on the result of T1, so the event-based scheduler is used every time T1 ends its execution, which
roduces an event. Fig. 2(b) shows the execution workflow for this scenario. T1 is set to run in 60 s from the start time
red dot), so the system alarm is scheduled for 60 s (top-right diagram). After one minute, the alarm-based scheduler
riggers the execution of T1, and reschedules itself for the next execution of T1 (central-right diagram). When T1 ends
he first execution, it emits an ending event which triggers the execution of T2 through the event-based scheduler. This
s a typical situation for a periodic task that gathers data (T1) to be processed later (T2).

Notwithstanding, here are two important things to keep in mind. First, the execution of T1 may fail. In this situation,
2 will not run. Second, the developer needs to consider timeouts. Tasks triggered by external events have to finish in
10



A. González-Pérez, M. Matey-Sanz, C. Granell, S. Casteleyn Pervasive and Mobile Computing 81 (2022) 101550

s
s
o

3

p
t
5
p

a
i
f
p

3

i

less than 3 min. In addition, recurrent tasks have to finish before their next execution. The due time is calculated and
attached to the first event of the task chain. Tasks exceeding this time limit will be canceled, their cancellation code will
be executed and the task chain will terminate prematurely due to the timeout.

The combination of scheduled tasks and event-driven tasks is a powerful mechanism to define tasks which, for example,
ystematically collect data over time and perform JIT analyses afterwards. The result of the data collection can be remotely
ent or stored locally for further analysis or visualization. Furthermore, an event can be consumed by multiple tasks, thus
pening up endless possibilities for task composition.

.1.4. Entry point
The NTD library initialization and configuration is handled from a global class instance (singleton pattern), called entry

oint. It takes a list of tasks and the task graph instance every time it starts — even in background. Optionally, it allows
o enable the built-in logging (i.e., console logging) or to pass by a custom logger to monitor the task executions. Listing
shows how to initialize the entry point with a list of tasks (e.g., Listing 3) and a task graph (e.g., Listing 4), which are
laced in the application folder structure.
1 import {taskDispatcher} from " nativescript -task-dispatcher "
2 import {appTasks} from " ./tasks " ; // A list of tasks placed on another file
3 import {demoTaskGraph} from " ./tasks/graph " ; // A global instance of the app task graph
4
5 // Library initialization
6 taskDispatcher.init(appTasks , demoTaskGraph , {
7 enableLogging: true
8 // It is possible to inject a custom logger instead
9 })

Listing 5: Example of how to initialize the NTD library by providing the tasks and the task graph (i.e. init() method)

To ensure that all pre-execution conditions are met for the tasks to be executed, the entry point offers two methods:
isReady() and prepare(). The isReady() method checks if the library and tasks meet all of the execution requirements
(global requirements, e.g., battery optimizations are disabled). This is done by consulting the checkIfCanRun() method
for all tasks (see Section 3.1.1). The prepare() method has the same semantics as the prepare() method of the Task
context (Section 3.1.1): take appropriate steps to enable the execution of all tasks (e.g., showing up a permission dialog
if permission is required).

In addition, developers are provided with two convenient features: the tasksNotReady property and the emitEvent()
method. First, the property returns the list of tasks with unmet execution conditions, which is useful for example to display
some preliminary information about the action before requesting user’s permission. Second, the emitEvent() method
allows injecting external events into the system by taking the event name, with an optional payload in the form of a
plain JavaScript object. In case the latter is not provided, an empty object is used as payload. The method can be used to
trigger the execution of tasks by an external event (e.g., a tap on a button, when a remote push notification is received,
etc.). Listing 6 shows how to use these methods together to verify and prepare the application for the task execution.

1 import {taskDispatcher} from " nativescript -task-dispatcher "
2
3 const ready = await taskDispatcher.isReady();
4 if (!ready) {
5 const notReady = await taskDispatcher.tasksNotReady;
6 console.log(‘These tasks are not ready: ${notReady}‘);
7 await taskDispatcher.prepare(); // Async call, wait for user intervention
8 }
9

10 taskDispatcher.emitEvent( " startEvent " , {withData: " start event payload (optional) " });

Listing 6: Example of how to check for tasks prerequisites (i.e., isReady() method), solve them (i.e., tasksNotReady
property and prepare() method) and emit an event once ready (i.e., emitEvent() method).

Finally, it is important to note that as part of the pre-execution checks, the entry point automates the process of
sking for disabling battery optimizations when necessary (i.e, there is at least one task to be run in less than 15 min
n the application task graph), partly supporting the process described in Section 2.3. However, this process only works
or devices running Android stock layer. For custom layers we provide a curated list of resources to deactivate OEM’s
roprietary battery optimizers.17 This list can be used to guide users during app setup.

.2. System architecture

Once the key components have been described, we outline the system architecture and how the low level components
nteract. Fig. 3 shows the overall architecture of the NTD library.

17 https://github.com/GeoTecINIT/nativescript-task-dispatcher/blob/master/docs/disable-android-battery-saving.md.
11
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Fig. 3. NTD library architecture overview.

Starting with the Schedulers box, the task graph is interpreted and the required event listeners are registered
n the Event-based Scheduler. When an external event is received (e.g., a button tap, a sensor change, etc.), a
unning context is bootstrapped, permitting to schedule tasks, even when the main application view is closed. Once the
xternal Event Runner is running (within an Android service), it maps the received event to an internal event and
asses it to the Master Scheduler, which schedules the tasks described in the task graph. At this point, two options are
ossible.
If a task is going to be executed in the future, it is sent to the Alarm-based Scheduler, which verifies the task and

forwards it to the Alarm Manager. This manager schedules and stores the task metadata in the Planned Tasks Store. If a
task runs immediately, it is sent to the Immediate Scheduler, which forwards the task to the Internal Event Runner
or immediate execution. The Internal Event Runner bootstraps an instance of a Single-task Runner, which
nforces timeout restrictions for the task being executed and stores metrics in the Planned Tasks Store before and
fter the execution of the task.
In the Android box, the Android-specific components responsible for the correct functioning of the alarm-based

cheduling are represented. Previously named, the Alarm Manager is in charge of configuring the Android alarm
echanism following the suggestions listed in Section 2.2. Once an Android alarm is triggered, the Alarm Receiver

orwards the control to the Alarm Runner, in order to run the tasks that need to be executed. These are obtained by
uerying the Planned Tasks Store, applying temporal filters.
The Alarm Runner bootstraps an Android service to run the tasks related to the alarm trigger, which in turn serves as

running context. The service is usually meant to run in background, but if any of the tasks to run or their dependents
ust run in foreground, the service will run in that mode instead. This service in turn bootstraps a Batch-task runner,

o run all the tasks to be run by the alarm in parallel, using a Single-task runner instance for each one of them. Given
avaScript is single-threaded, tasks do not run truly in parallel, but they benefit from interleaving asynchronous calls.

Other components in the Android box are the Power Manager and the Watchdog. They are used to hold wake locks
nd ensure alarm setup every 15 min (i.e. outside the power manager danger area) respectively, thus meeting the rest of
he recommendations from Section 2.2. Furthermore, the Power Manager is used to ask the user to disable the battery
ptimizations and ensuring these remain disabled – as long as the phone runs with Android stock layer – as specified in
ection 2.3.

. Does it truly work?: Experiment setup

We set up and ran three experiments to validate our approach. First, we conducted an initial exploratory experiment
experiment 0 — see Section 4.1) to scientifically demonstrate typical missingness of scheduled task executions (i.e. data
easurements), as anecdotally reported in literature. We hereby rigidly followed the official Android docs to implement
ystematic background task scheduling. The two remaining experiments aim to evaluate the NTD library and the
nderlying guidelines (which are summarized in Fig. 1). The first experiment (Section 4.2) consists of the recurrent
xecution of a simple task to evaluate the two key concepts seen earlier in the introduction: reliability and efficiency.
e use two criteria to address reliability: (O1) completeness — the extent to which all scheduled tasks are executed,

O2) accuracy — the extent to which scheduled tasks are executed at the time it was instructed. As regards efficiency, we
omputed (O3) battery usage — the power consumption of the proposed solution. The second experiment (Section 4.3)
ubsequently focuses on reliability under a more complex scenario, taken from a real-life case study, with multiple tasks
cheduled at distinct time intervals. Based on the results, scientists/developers can decide whether the reported reliability
s acceptable, depending on the requirements of the use case at hand.

Various Android-based mobile devices from different manufacturers were used (Table 1). As per our guidelines (see

ection 2), battery saving mechanisms were disabled for all devices. During the experiments, the A1 and PO devices were

12
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Table 1
Mobile devices used for experimentation.
ID Device Android OS Exp. 0 Exp. 1 Exp. 2

NV Nvidia Shield Tablet (Gen 1) 7.0 ✓ ✓ ✓

BQ BQ Aquaris V Plus 8.1 ✓ ✓ ✓

A1 Xiaomi Mi A1 9.0 ✓ ✓ ✗

H9 Honor 9 (STF-L09) 9.0 ✓ ✓ ✓

PO Poco F2 Pro (M2004J11G) 11 ✗ ✗ ✓

Table 2
Percentage of data loss (lack of completeness) with a 1 min sampling rate over a 48 h
time period. Average missing executions was 84%.
ID No. planned executions No. real executions Missing executions (%)

NV 2,976 350 88.24%
BQ 2,975 165 94.45%
A1 2,973 1,199 59.67%
H9 2,880 181 93.72%

used as a personal phone, while the others were dedicated for the experiment. Note that not all devices have been used for
both experiments. Research data and code supporting both experiments, along with execution instructions, are available
on Zenodo, see [26].

4.1. Experiment 0: demonstrating the problem

To scientifically demonstrate the issue of missing data measurements (i.e., missing task executions) reported in
iterature, we designed a 2-day exploratory experiment, whereby a periodic task for unobtrusive data collection task was
un every minute on different mobile phones (see Table 1). We hereby strictly followed the official Android documentation
o schedule work in background.18 Accordingly, two options are available: expedited works and exact alarms. The latter
ption – a repeating exact alarm, scheduled every minute – was chosen, as the former does not allow to schedule tasks
ore frequently than every 15 min. As prescribed, the repeating alarms were handled by a broadcast receiver, which

ocally logged the execution and the remaining device’s battery life in a CSV file (hereby excluding any other point of
ailure, such as a failed sensor capture). As we used exact alarms, battery savings were not disabled because their execution
s guaranteed according to the documentation. Therefore, according to the official Android guidelines, the task should be
ccurately executed every minute.
However, results demonstrated the lack of completeness and largely confirmed the approx. 50% data loss from

iterature (Table 2). In fact, the average missing executions exceeded 80%, which roughly means that only 2 out of 10
cheduled tasks are executed. For applications systematically correcting data, such behavior is not acceptable, regardless
f the target application.

.2. Experiment 1: simple task scheduling

For this experiment, we deployed two applications: 1/ an ad-hoc application written in Java that rigorously follows
ur task scheduling guidelines (Section 2), but without an alarm watchdog, 2/ a NativeScript application that uses the
TD library. Both applications ran a simple recurrent task – without logic or complex computations to produce a minimal
xecution overhead – every minute for 2 weeks.
In each task execution, we stored the ‘‘planning timestamp’’ and the ‘‘execution timestamp’’ in a local CSV file. The

ormer is a UNIX timestamp which captures when a task was scheduled, i.e., when the alarm was triggered. The latter is
UNIX timestamp which captures when the task actually executed, i.e., the start of a task execution. In general, if given
asks were consistently scheduled every 60000 ms (i.e. one minute), subtracting two consecutive execution timestamps
hould exactly yield this value.
To examine completeness (O1), we computed the percentage of missing alarms (i.e., missing data) for each device-

pplication pair by contrasting the actual number of tasks execution against the (theoretical) total number of scheduled
asks. Hence, the lower the missing data percentage, the better the reliability of the scheduling mechanism.

To measure accuracy (O2), the ‘‘delay’’ in task execution was calculated as the difference between two consecutive
xecution timestamps and subtracting the target alarm execution time (i.e., 60 s), obtaining an objective value that
epresents the real difference between the expected and the actual execution time. Examining this further, the delay
n starting the execution after the alarm triggered was also calculated for both apps. To do so, we computed the time
eeded to schedule a task, by subtracting the ‘‘planning timestamp’’ of the next alarm from the ‘‘execution timestamp’’.

18 https://developer.android.com/guide/background.
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Fig. 4. Distribution of task execution delay per device and type of application (O2). Percentage of missing task execution at the top (lower is better)
(O1). Devices are sorted from the oldest to the newest version of Android. Green represents ad-hoc application, orange the NTD-based application.

Consequently, we calculated the average delay between each alarm trigger and task execution for both apps by subtracting
the corresponding timestamps. By comparing these delays of the ad-hoc and NTD application, we quantify the library’s
execution overhead.

To examine battery usage (03), in both applications, the task being executed was in charge of collecting the
evice’s remaining battery percentage at task execution time. During the data analysis, we calculated the hourly battery
onsumption by taking the first remaining battery percentage every hour, and subsequently subtracted consecutive values
air-wise. This was done on each phone, each time running only one of both applications. This allows us to compute the
nergy consumption of both the ad-hoc and NTD-based application, and calculate the battery consumption overhead of
he NTD library.

The ad-hoc application allows us to systematically assess the completeness (O1) and accuracy (O2) of the proposed
uidelines, as well as the impact on battery consumption (O3). We hereby purposely did not implement a watchdog, as
his is a process running in parallel which does not directly influence task scheduling, yet its absence allows us to detect
ndroid’s unexpected (and undocumented) interference with recurring tasks over a longer time period. On the other hand,
he NativeScript application uses the NTD library, which implements all our guidelines, including the watchdog.

The premise is that the ad-hoc application should exhibit good completeness (O1) and accuracy (O2) over relatively
horter time periods - as per our guidelines - yet may fail (less complete - O1) over extended time periods (due to the
ack of a watchdog). On the other hand, we expect the NTD application to exhibit better completeness overall (O1), due
o the use of the watchdog, yet with unavoidable minor loss of accuracy (O2) and energy consumption (O3) overhead due
o use of the NTD library (see above).

As regards the results, Fig. 4 shows box plots with the distribution of task execution delays for each pair of
evice-application. In addition, on top, percentages reflect the missing data for each device-application pair. Regarding
ompleteness (O1), we observe that two of the four ad-hoc applications show a significant amount of missing data: the
V (82.59%) and the A1 (46.66%) devices. These devices abruptly stopped their execution – due to Android canceling
he alarm planning and the lack of a watchdog in this application – before finishing the experiment and were unable to
ecover. In contrast, all NTD-based applications successfully finished the experiment, with only between 1.24% and 0.39%
f missing task executions, demonstrating a completeness (O1) far exceeding the ones reported in literature (i.e., around
0%, see Section 1), maintained over longer time periods. Even the ad-hoc application, developed according to our task
cheduling guidelines, shows better results than those reported in the literature, yet the need for a fail-safe mechanism
uch as the watchdog is clearly demonstrated by the two failing devices.
Regarding accuracy (O2), a total of 138,653 measurements were collected, from which 99.94% are represented in Fig. 4.

he rest (77 values) were omitted for the sake of readability, from which a delay of 3+ hours (NV device with NTD-based
pplication) and another one of almost 2 h (H9 device with NTD-based application) stand out. The first one happened
ver night, and the watchdog was able to recover the task (note that the ad-hoc application failed to complete on this
evice). The second one was due to a singular external event (a battery problem) which blocked the entire phone, and
oincidentally only happened during the NTD-based run. All other outliers do not exceed 7 min. When interpreting the

oxplot diagram in Fig. 4, we first need to emphasize that for the devices NV and A1, which both failed to complete

14
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Table 3
Elapsed time from alarm trigger to task execution start comparison (unit: ms) (O2).
Descriptor BQ H9 BQ+H9

Ad-hoc NTD Ad-hoc NTD Ad-hoc NTD

Minimum 16 49 11 29 11 29
25th percentile (Q1) 30 78 50 78 35 78
Median 35 85 58 82 45 84
75th percentile (Q3) 39 93 67 91 59 92
Maximum 708 953 1,692 1,990 1,692 1,990
Standard deviation 16 27 27 19 26 24

the experiment with the ad-hoc application, only the data until the failure of the application is represented. For these
devices, we see a large spread above the 75th percentile for the NTD-based application (up to 10 s of delay), which is not
present in the ad-hoc application simply due to the fact it prematurely halted its execution. That said, for these devices,
the NTD-based application presents an average scheduling delay of 0.75 s for the NV device and 0.24 s for the A1 device.

Next to this, in general, we see that the median in all cases is around 0 (no delay), and data points generally fall well
ithin acceptable limits for real-life measurement delays, both for the ad-hoc (between 0.02 and 0.48 s for the 25th–75th
ercentile; and 99.98% within 10 s) and NTD-based application (between −0.37 and 0.87 s; and 99.92% within 10 s). The
ata points for the ad-hoc applications tend to be more concentrated around the median. For the two devices (BQ and H9)
n which both the ad-hoc and NTD-based application successfully finished the experiment, we cannot determine a clear
attern, with a larger spread outside the 75th percentile for the ad-hoc application for the H9 device, and the opposite
or the BQ device.

To dig deeper into the accuracy (O2) of the BQ and H9 – the devices that successfully completed the experiment – we
alculated an execution overhead metric to examine the time difference between the planned and the actual execution
ime of a task. This metric represents the execution expense, in milliseconds (ms), to ensure systematic scheduling. For
he ad-hoc application, this consists of running the service and ensuring only one instance of the service is running
t the same time (i.e., to handle Android mistakenly triggering alarms double, or crashed/blocked task executions). For
he NTD-based application, this also includes all the library’s execution overhead, such as deciding execution modality
foreground, background), assembling tasks to run and create the corresponding task execution chains, and finally, trigger
heir execution.

Table 3 compares the time elapsed from the alarm trigger to the execution of the task (execution start delay), for
he BQ and H9 devices, both for the ad-hoc and NTD-based scheduling application, along with the overall task execution
verhead for both devices. As can be observed, the median delay difference between the NTD-based application and the
d-hoc application results in an execution overhead of 39 ms, and 25th and 75th percentile show a similar difference (43
nd 33 ms, respectively). Clearly, the benefits the NTD-based application brings in the long term (completeness and task
cheduling flexibility) outweigh the minimal and acceptable penalty in accuracy and variability.
Next to the evaluation of the execution start delay of the NTD-based versus the ad-hoc application, we explored

fficiency in terms of energy consumption during the experiment by calculating the average battery consumption per
our of the two solutions (O3). For a fair assessment, we hereby only considered the BQ device, which is the only one
hat successfully finished the experiment with both applications (excluding the NV and A1 devices) and ran the schedulers
n isolation (i.e., the H9 was used as personal phone) as to avoid measurement interference from other applications.

Fig. 5 shows the hourly battery consumption, in percentage of the total battery capacity (3400 mAh), for the ad-hoc and
TD application running on the BQ device. The upper part (A) of the figure shows the result of calculating the difference
f the first remaining battery capacity reading for each hour to the next (i.e., the hourly battery consumption/recharge),
hile the lower part (B) zooms in on the upper part (A) to look closer at the relative battery consumption in the range
f 0 and 3%, i.e. excluding charging times (the large negative spike in A). We observe stable battery consumption usage
etween 0% and 1% per hour for both the ad-hoc and the NTD application.
Fig. 5 also shows the average hourly battery consumption (horizontal lines, annotated with the mean and standard

eviation) when running the ad-hoc application and the NTD-based application respectively. Based on it, the NTD-based
olution executing a task every minute consumes an average of 0.4% of the total battery power per hour (i.e., 9.6% per
ay) versus 0.31% per hour for the ad-hoc task scheduling application (i.e., 7.44% per day). In other words, the NTD-based
olution consumes 0.09% of the total battery power more per hour than the ad-hoc scheduling application, i.e., 2.16% of
he total battery power more per day. Hereby, note that no other applications were running on the device, so in both
cenarios, only the regular OS battery usage and the task scheduling application’s battery usage was included in our
easurements. We argue that this can be considered an acceptable battery consumption, given a task was run every
inute, and the benefits of using the NTD scheduler outweigh its consumption overhead. However, we also point out

hat developers need to pay attention to the task payload, which could considerably increase battery consumption, and
eeds to be balanced with the task scheduling frequency.
In summary, both the ad-hoc and NTD-based applications generally have excellent accuracy, with a median delay

round 0 s (no delay) and the 25th–75th percentiles within 1 s of delay. Outside these percentiles, we observe various
preads (slightly more for the NTD-based solution), yet all within the 10 s delay. The NTD-based solution is generally
15
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Fig. 5. (A) BQ device’s hourly remaining battery usage (negative spikes mean charging time); (B) Same as A but omitting charging time to examine
elative hourly battery consumption (O3).

hown to be more reliable and flexible than an ad-hoc solution with a very small extra cost in terms of execution overhead
39 ms median) and hourly battery consumption (0.09% of the total battery power on average).

.3. Experiment 2: complex task scheduling

Beyond the simple task scheduling experiment, the second experiment mimics a more complex, real-life scenario to
valuate reliability of NTD-based apps. For that aim, we built a NativeScript-based data capturing tool – using our NTD
ibrary –, which includes a wide variety of tasks related to data gathering at different sampling rates, analysis, decision-
aking, and reporting. The application workflow is based on a well-known treatment in mental health, called exposure

herapy, which consists of confronting patients with their fears and phobias in a controlled way. Often, such fears are
elated to specific places (e.g., agoraphobia, claustrophobia, acrophobia). During exposure, clinicians expose patients to
hese places, while (electronically) monitoring relevant behavioral and physiological parameters, such as movement, heart
ate, anxiety level, etc. The capturing tool used in this experiment precisely covers this goal.

Fig. 6 represents the task graph for the experiment — the corresponding descriptive task specification is included in
upplementary material. The first task collects the patient’s location every two minutes. Once finished, it triggers another
ask to perform a geofencing analysis based on the location captured by the previous task. If the patient walks nearby
200 meters away) the area of interest for treatment, a new task is scheduled every minute to collect five (one every 10 s)
ocation samples. This allows us to obtain greater precision of the patient’s movement when within the area of exposure.
nce the patient is in, a one-time task delivers a welcome message as a notification, and a recurrent task is scheduled
very two minutes to prompt her with a single question questionnaire concerning her anxiety level. Once the patient
nswered the questionnaire, a task is triggered to properly process the response. Depending on the reported anxiety
evels, the application decides whether the patient can leave the area (exposure completed) or not. If so, the application
ends a notification rewarding the effort and inviting her to leave the area. When the patient leaves the exposure area (by
00 m), the multiple location gathering task stops and the application invokes again the single-location gathering task
first task above), scheduled every two minutes.

Fig. 6 also identifies each type of task. Recurrent (data collection) tasks are represented by blue solid-bordered boxes.
vent-driven tasks are represented by green dot-bordered boxes. Arrows represent events launched by tasks, whereby
16
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Fig. 6. Task graph used by the data capturing tool and the simulation application.

Table 4
Percentage of missing key events (blue-colored in Fig. 6) during the simulation. Bold event
marks exposure’s therapy end.
Key events Missing events (%)

NV BQ H9 PO

movedCloseToArea 0 1.28 0 0.85
movedInsideOfArea 0 0 0 0.21
exposureStarted 0 0 0 0.21
sendFakeMessageFinished 0.74 1.06 0.21 3.72
questionnaireAnswersAcquired 1.49 2.29 0.21 5.62
emotionLevelAcquired 1.49 2.29 0.21 5.62
processEmotionLevelFinished 1.47 2.30 0.19 5.28
exposureFinished 1.70 2.13 0.42 9.36
movedOutsideOfArea 0 0 0 0.21
movedAwayOfArea 0.21 0 0.21 0.21

black-solid arrows are events that trigger other tasks and orange-dashed arrows events that cancel tasks. Sharp blue label
events are analyzed to evaluate the reliability below.

We developed a simulation tool to simulate sensor readings and patient responses according to the task graph in Fig. 6.
he data capturing tool was used once (on the BQ device) to collect real data for about 45 min (typical duration of an
xposure therapy). Next, the captured data was cleaned and normalized to remove any device-specific bias. The processed
ata was then used to iteratively run simulations using the data capturing tool in combination with the pre-recorded data,
n different phones (see Table 1) uninterruptedly for two weeks (470 exposure therapy iterations per device). During
imulation, the application stored execution metadata of each task in a local database (i.e., task name, triggering event,
xecution timestamp, task duration, event emitted and outcome data). At the end of each iteration, the content of the
atabase was exported to a JSON file. With this setup, we were able to stress our library and devices with a complex
onfiguration of scheduled tasks for an extended period of time.
Table 4 shows the results of the experiments in terms of the percentage of key events missed on each device for the 470

imulated exposure iterations. Given real exposure therapy with a patient in clinical practice typically occurs twice per
eek, having 235 simulations per week signifies a considerable stress test. The results show that all events were triggered
ith high success. However, some differences between devices were identified. For example, the PO device showed the
orst completeness, with 5.62% lost events in the acquisition of questionnaire answers and subsequent processing tasks,
nd 9.36% lost ‘‘exposureFinished’’ events. Two reasons may explain this: the device runs the latest Android version,
ossibly with more restrictive battery usage policies, and it was being used as personal phone during the experiments.
At the other end, the H9 device showed the best results, with only 0.21% of lost events related to user data acquisition

nd processing events and 0.42% lost of ‘‘exposureFinished’’ events. Finally, the NV and BQ devices showed in-between,
enerally good results, with missing rates around 1.70% and 2.13% respectively for the previous events.
17
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Although the reliability of an application based on our library is partially dependent on the device’s OS and vendor, as
he previous results suggest, they show that the NTD library is able to schedule and handle multiple tasks in complex and
tressful configurations with high degree of reliability in real-world scenarios. Furthermore, as evidenced by the relative
implicity of the associated descriptive task representation, the NTD library significantly eases the development of mobile
pplications requiring such complex systematic (background) task scheduling, such as (scientific) monitoring applications.

. Limitations

Despite the good completeness and accuracy of the NTD library and the underlying guidelines, there are some
imitations regarding usage requirements, functionality and the evaluation method.

In terms of usage requirements, while the guidelines are applicable over all Android versions and variants, the library is
nly available as a NativeScript plugin, and thus only supports applications written in NativeScript. However, NativeScript
ode can be interwoven with fragments in e.g. Java or Kotlin, so developers can benefit from the NTD while still writing
heir custom code (such as the task payload) in their preferred programming language. Furthermore, while NativeScript is
nherently multi-platform, the NTD library currently only supports Android native instructions. Support for other platforms
s future work.

From an end-user point of view, as explained in Section 2, the NTD library relies on disabling battery optimizations
nd enable auto-launch settings in non-stock Android devices, for which there is no universal solution. It requires end
sers to manually apply these settings, and lack or failure in doing so is a major source of systematic task scheduling
ailures.

Regarding functionality, some improvements for more dynamic use of the library are possible. First of all, the library
oes not allow updating the task graph at run-time. For re-configuration, a restart is required. Secondly, a technical
imitation is the inability to stop the execution of a task through more than one event. Similarly, a single task cannot
e triggered by multiple events. All of the above technical limitations are due to low-level implementation details, which
e plan to overcome in future work.
Finally, we acknowledge limitations in the size and scope of the experiment. Even though this article reports on several

onths of experiments, further experimentation exhausting Android versions and device models are needed to confirm
ompleteness and accuracy of our solution over a broader Android market segment. Concretely, we have shown that our
olution successfully works in phones running Android stock and some non-Android stock systems, i.e. EMUI (Huawei
nd Honor phones) and MIUI (Xiaomi and POCO phones) OS layers, yet correct functioning of our solution using other
ustom layers needs to be experimentally confirmed.

. Conclusion

Increasingly, mobile phone manufacturers introduce more restrictive energy-saving and privacy policies in subsequent
ndroid versions and variants, complicating their use as systematic, scientific monitoring instruments. Based on our 3+
ears experience with developing mobile phone based monitoring applications, in this article we addressed a significant
nd under-reported problem over various application domains: missing sensor readings due to unreliable background
ask scheduling in Android-based systems.

In this article, we scientifically demonstrated the problem, and showed an average of over 80% missing task executions
ver 48 h, using 4 different Android devices and a sampling rate of 1 min. Then, we presented a set of recommendations
nd best practices to overcome these problems, within certain restrictions (i.e., a maximum scheduling frequency of
min). Based on these guidelines, developers can implement their own reliable scheduling application, yet we also present
NativeScript task scheduling library, which abstracts from the low level implementation details. It offers developers an
asy-to-use API to schedule complex task scenarios, based on an descriptive task graph specification.
The presented software library was evaluated in terms of completeness and accuracy, both in simple and complex

cenarios, each with experiments running over two weeks. The results show excellent completeness (between 0.39% and
.24% missing events in simple scenarios; between 0% and 3% in complex scenarios, with outliers at 5% and 9% on one
articular device) and accuracy (with execution delays for the 25th–75th percentile between −0.37 and 0.87 s; and 99.92%
f them below 10 s), both when applying the guidelines and when using our library. This far exceeds the scarce practical
esults reported in literature. Furthermore, we show an acceptable battery consumption, with an hourly 0.31% battery
sage on average (3400 mAh battery) for an ad-hoc implementation applying a 1-minute sampling rate, and 0.4% for the
TD library (i.e., an overhead of 0.09% of the total battery power per hour), while yielding significant benefits in terms of
eliability and scheduling flexibility.

To conclude, while we understand privacy and battery-life concerns of mobile manufacturers, we regret the negative
mpact their increasingly restrictive and mostly undocumented task scheduling policies have on using mobile devices as
reliable (scientific) measuring instrument. While some authors advocate a pragmatic solution (e.g., a dedicated Android
ersion for scientific experiments [15]), we think these forego the ubiquity of smartphones as a day-to-day consumer
roduct. Instead, we call upon smartphone manufacturers to acknowledge the status of a priority class of applications
such as scientific or medical ones), subjecting them to additional fierce scrutiny, yet granting them runtime privileges to
ypass restrictive policies that impede their correct functioning — evidently with explicit confirmation of the user.
18
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