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Optimal Sampling Pattern for the Free Final Time
Linear Quadratic Regulator

Pedro Balaguer and Carlos Ariño

Abstract—The optimal sampling problem is the selection of
the optimal sampling instants together with the optimal control
actions such that a given cost function is minimized. In this
article we solve the optimal sampling problem for the free final
time linear quadratic regulator. Each optimal sampling instant is
computed as the minimization of a maximum eigenvalue problem
that is formulated at each stage by previously applying dynamic
programming. The solution provides the optimal sampling in-
stants, control actions, and the optimal final time in a recursive
and constructive way. Furthermore, the solution is optimal for
any arbitrary number of control moves N ≥ 1, as it is not based
on asymptotic arguments. Two application examples show the
feasibility of the approach.

Index Terms—Optimal sampling, linear quadratic regulator,
control design, dynamic programming, optimal control, net-
worked control, real-time systems.

I. INTRODUCTION

THE technological developments of sensor networks (SN),
the Internet of Things (IoT), and networked control

systems (NCS) result in a multitude of nodes sending infor-
mation for supervision [1], estimation [2], and control [3].
The reduction of the number of sampling instants N saves
energy consumption, computing power, and communication
bandwidth, which may be scarce resources.

Digital control systems were initially developed on the basis
of periodic sampling [4]. However, for a given number of
sampling instants N , non-periodic sampling may lead to a
better performance than a periodic one. The optimal sampling
problem, as defined in [5], is the selection of the N interarrival
times τk := tk+1 − tk for k ∈ {0, 1, . . . , N − 1} and control
inputs uk for k ∈ {0, 1, . . . , N − 1}, such that a given cost
function J is minimized.

The analytical solution of the sampling problem by deriving
necessary conditions for the optimum is not feasible. Instead,
numerical gradient based optimization algorithms are derived
from necessary conditions, which are of high complexity.
In [5] a numerical optimization algorithm is proposed that,
for systems of order n and N sampling instants, only the
computation of the gradient has complexity of O(N2n3).

The optimal sampling problem has similarities with the
control of switched systems [6], [7]. The optimal control of
switched systems is the selection of optimal continuous inputs
and optimal switching sequences among a family of dynamical
systems so as to minimize a given cost function. The proposed
solutions are also based on numerical optimization methods.
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Expressions for the gradient of the cost function with respect to
switching times are derived, and gradient descent optimization
algorithms are employed for numerical minimization. The
derived numerical algorihtms are computationally costly, not
scalable with the number of sampling instants N , and, being a
nonconvex problem, they lack any guarantee to find the global
minimum [6], [7].

To overcome these problems, a new approach to solve
the optimal sampling problem is proposed in [5], called the
quantization-based sampling. The basic idea of quantization-
based sampling is to approximate the optimal continuous-
time control input u(t)∗ by a piecewise constant function
that provides the optimal interarrival times. Once the optimal
interarrival times are calculated the optimal control inputs are
computed by standard linear quadratic regulator (LQR). The
approach is computationally tractable because for LQR the
optimal control action u(t)∗ is readily calculated. Furthermore,
it is shown in [5] that quantization based sampling is optimal
for first-order systems for a large number of samples N .

In this article we solve the optimal sampling problem for
general order multiple-input multiple-output (MIMO) systems
with quadratic cost function and free final time TN . This is in
contrast with the problem proposed in [5] where the final time
T is fixed beforehand. As a result, we not only provide the
optimal interarrival times τ∗k and optimal control inputs u∗k but
also the optimal final time T ∗N . It is the free final time condition
TN that allows the scalability and constructibility properties
of the optimization algorithm derived in this article.

The solution of the optimal sampling problem is a complex
problem. In a first step we keep the complexity of the problem
bounded by applying dynamic programming, which is well
suited for optimal control with quadratic cost function [8]. The
application of dynamic programming does not solve the opti-
mal sampling pattern per se. Instead, dynamic programming
yields a family similar interrelated optimization problems for
which the optimal interarrival time can be computed as the
minimization of a maximum eigenvalue problem that must be
performed at each stage. The resulting algorithm is
• optimal for arbitrary N ≥ 1 because it is not based on

asymptotic arguments.
• scalable because the optimal interarrival times are ob-

tained by solving N one-dimensional optimization prob-
lems.

• recursive because the optimal interarrival times are com-
puted backwards from the last stage in a sequential
manner.

• constructive because given the N optimal interarrival
times, the solution for the new problem with N + 1
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interarrival times just requires to solve one more one-
dimensional optimization problem to calculate the new
optimal interarrival time.

II. PROBLEM STATEMENT

Consider the free final time TN linear quadratic regulator
problem

PTN
: min

u∈UN

∫ TN

0

(xTQx+ uTRu)dt+ x(TN )TSx(TN )

(1)
s.t.

ẋ = Ax+Bu

x(0) = x0

where x(t) ∈ Rn is the state, u(t) ∈ Rm the input signal, A ∈
Rn×n, and B ∈ Rn×m are the dynamical system matrices,
Q ∈ Rn×n, R ∈ Rm×m, and S ∈ Rn×n are the cost function
weights, with Q and S positive semi-definite, and R positive
definite. The control input signal u(t) is constrained to be in
the set UN of N-complexity piecewise constant signals, where
by piecewise constant N-complexity we mean that u(t) is a
linear combination of N indicator functions of intervals

u(t) = uk ∀t ∈ [tk, tk+1), k = 0, 1, . . . , N − 1

with 0 = t0 < t1 < . . . < tN = TN , where uk is given
as an state feedback uk := Fkxk without loss of generality.
The sequence {t0, t1, . . . , tN−1, tN} is the sampling pattern T,
while tk for k ∈ {0, 1, . . . , N} are called sampling instants.
For t0 = 0, the sampling pattern information is also given by
the sequence {τ0, τ1, . . . , τN−1} of interarrivals τk := tk+1 −
tk for k ∈ {0, 1, . . . , N −1}, defined as the time between two
consecutive sampling instants. Consequently, in what follows
the sampling pattern T is defined by the interarrival sequence.

The previous problem is solved by providing the optimal
sampling pattern T∗ := {τ∗0 , τ∗1 , . . . , τ∗N−1} and the optimal
control action gain sequence F∗ := {F ∗0 , F ∗1 , . . . , F ∗N−1}.

III. PROBLEM DISCRETIZATION

For an arbitrary sampling pattern T = {τ0, τ1, . . . , τN−1},
with

∑N−1
k=0 τk = TN , the exact discretization of the LQR

problem PTN
is

min
uk,τk

N−1∑
k=0

(xTkQkxk + uTkRkuk + 2xTk Pkuk) + xTNSxN

(2)
s.t.

xk+1 = Akxk +Bkuk (3)
xk=0 = x0 (4)

with

Ak := eAτ (5)

Bk :=

∫ τ

0

eA(τ−µ)dµB (6)

Qk :=

∫ τ

0

ATkQAkdµ (7)

Rk :=

∫ τ

0

BTk QBkdµ+Rτ (8)

Pk :=

∫ τ

0

ATkQBkdµ (9)

This result follows by direct integration of the cost function
and exact discretization of the dynamical system with the
arbitrary sampling pattern T = {τ0, τ1, . . . , τN−1}. The details
can be found in the Appendix A.

Remark 1: Note that cost function parameters Qk, Pk, and
Rk, except S, become a function of the interarrivals τk of the
sampling pattern T. The same happens to the discrete-time
system parameters Ak and Bk. On the contrary xk and uk are
the state and control action values at sampling instant tk, that
is xk := x(tk) and uk := u(tk).

Remark 2: The cost function of the discretized problem
depends on the product xkuk by means of cost weight Pk
despite the continuous cost function lacks it. However, this is
not a problem for optimization by dynamic programming.

If the continuous time dynamic matrix A is invertible (i.e.
A is either stable or unstable but has no poles at origin), and
there exists a matrix M that solves the following equation

ATM +MA = Q (10)

equations (5)-(9) can be analytically computed yielding the
following expressions for a given τk:

Ak = eAτk (11)
Bk = (eAτk − I)A−1B (12)
Qk = ATkMAk −M (13)
Rk = BTA−T (τkQ+ (I −ATk )A−TQ+

+QA−1(I −Ak))A−1B +Rτk (14)
Pk = (ATkMAk −M +A−1(I −ATk )Q)A−1B (15)

Problem PTN
and its discrete-time counterpart are finite

time problems. An infinite time cost is more desirable in order
to take into account the future behaviour of the cost function
once the N control actions have been applied. This can be
accomplished by proper selection of the final stage cost S.
For stable systems the cost of the free response (i.e.u(t) = 0)
is equal to −M , with M given by equation (10). In fact, in
the free response case Rk and Pk are equal to zero, and Qk,
as given by equation (13), tends to −M as τk → ∞, that is
limτk→∞Qk = −M because limτk→∞Ak = 0n×n due to
stability of A. As a result setting the final cost S = −M we
are considering an infinite time optimization problem.

For unstable systems an appropriate feedback control action
is required for stability. In this case we can consider a discrete-
time periodic LQR with sampling time τ∞ with τ∞ ≥ τN−1
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and cost Md. Setting the final cost S = Md we are also
considering an infinite time cost.

IV. DYNAMIC PROGRAMMING

The objective is to find the optimal sampling pattern T∗ :=
{τ∗0 , τ∗1 , . . . , τ∗N−1} and the optimal control gain sequence
F∗ := {F ∗0 , F ∗1 , . . . , F ∗N−1}, with uk = F ∗k xk, that solve
the problem given by equations (2)-(4). In this section we
make use of dynamic programming to divide the original
optimal sampling problem into N nested subproblems from
which we can compute the optimal interarrival time. As shown
in Fig. 1, at each stage we have to decide not only the
optimal control gain F ∗k but also the optimal interarrival time
τ∗k . The use of dynamic programming is an intermediate
step to keep the complexity of the optimization problem
bounded but it cannot solve the optimal sampling problem by
itself. We begin by considering an arbitrary sampling pattern
T = {τ0, τ1, . . . , τN−1}, with

∑N−1
k=0 τk = TN .

x0 x1 xk xN

F0

τ0

F1

τ1

Fk−1

τk−1

Fk

τk

FN−1

τN−1

Fig. 1. Dynamic programming problem. At each stage k ∈ {0, 1, . . . , N−1}
a control action uk = Fkxk is applied during the interarrival time τk .

For an arbitrary intermediate stage k, the cost-to-go is given
by

Jk = xTkQkxk + uTkRkuk + 2xTk Pkuk + J∗k+1(xk+1)

(16)

with J∗k+1(xk+1) the optimal cost-to-go from stage k + 1,
calculated in the previous iteration of the dynamic program,
and given by

J∗k+1 = xTk+1K
∗
k+1xk+1 (17)

Substituting the discrete dynamic system xk+1 = Akxk +
Bkuk in equations (16)-(17) we obtain

Jk = xTk (Qk +ATkK
∗
k+1Ak)xk + uTk (Rk +BTk K

∗
k+1Bk)uk

+2uTk (Pk +BTk K
∗
k+1Ak)xk

The optimal control action is obtained by minimization of Jk
with respect to uk resulting in

u◦k = −
(
Rk +BTk K

∗
k+1Bk

)−1 (
Pk +BTk K

∗
k+1Ak

)︸ ︷︷ ︸
Fk

xk

(18)

Note that we have written the optimized control action as u◦k
instead of u∗k. This is to stress the fact that u◦k depends on the
interarrival time τk trough Ak, Bk, Rk, and Pk. We reserve
the optimal control action u∗k as the control action u◦k for the
optimal sampling interarrival τ∗k , that is u∗k := u◦k(τ

∗
k ).

Coming back to u◦k in equation (18), for an arbitrary
interarrival τk it follows that the control action is proportional
to the current state through Fk like in the classical LQR.
Substitution of the optimal control action u◦k on the cost-to-go
function yields the following cost-to-go at stage k

Jk = xTkKkxk (19)

with

Kk := (Qk +ATkK
∗
k+1Ak)− (Pk +BTk K

∗
k+1Ak)

T

(Rk +BTk K
∗
k+1Bk)

−T (Pk +BTk K
∗
k+1Ak) (20)

The cost-to-go function is proportional to the squared state
through Kk, again like in the classical LQR. However, in
contrast to periodic LQR [8], the proportional factors Fk and
Kk are not constant but dependent on the interarrival τk.

The optimal interarrival time τk can be obtained by min-
imizing the cost function (20) with respect to τk. In this
article we consider the minimization of equation (20) for any
direction xk leading to a guaranteed cost minimization, as
discussed in Section V.

Assume we have computed the optimal interarrival τ∗k by
any means, thus the optimal control action u∗k and optimal
cost-to-go function J∗k are given, for k = {N − 1, N −
2, . . . , 1, 0}, by

u∗k := Fk(τ
∗
k )︸ ︷︷ ︸

F∗
k

xk (21)

J∗k := xTk Kk(τ
∗
k )︸ ︷︷ ︸

K∗
k

xk (22)

Note that for k = N − 1 we have that K∗N = S, so the
cost-to-go function from stage N − 1 is

JN−1 = xTN−1QN−1xN−1 + uTN−1RN−1uN−1

+ 2xTN−1PN−1uN−1 + xTNSxN

(23)

A. Dynamic Programming Approach

Given the optimal cost-to-go gain at stage k + 1, that is
K∗k+1, it is possible to derive the cost-to-go function gain at
stage k, Kk, as shown by equations (16)-(17). By computing
the LQR optimal control action u◦k given by equation (18) we
are able to obtain the optimal cost-to-go Kk as a function
of the interarrival time τk. Note that dynamic programming
itself does not solve the optimal sampling pattern problem.
Instead dynamic programming defines, for each cost-to-go
function k, an optimization problem which solution provides
the optimal sampling pattern τ∗k . Furthermore, the optimization
of interarrival times can be embedded into a family of similar
problems such that each member of the family is easily related
with the solution of the previous problem.

By the minimization of cost-to-go k defined by equa-
tions (19)-(20) we obtain at stage k the optimal interar-
rival τ∗k and the optimal cost-to-go gain K∗k . In this way,
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starting from the last stage N − 1, with cost-to-go gain
defined by equation (23), we are able to compute backwards
the optimal sampling pattern {τ∗N−1, τ∗N−2, . . . , τ∗0 } by solv-
ing N one-dimensional optimization problems. Finally, we
compute the optimal control action gain sequence F∗ :=
{F ∗0 , F ∗1 , . . . , F ∗N−1} as defined by equation (18).

V. SAMPLING PATTERN COST FUNCTION

The cost-to-go function is a quadratic form of the gain Kk,
that is

Jk := xTk

(
(Qk +ATkK

∗
k+1Ak)− (Pk +BTk K

∗
k+1Ak)

T

(Rk +BTk K
∗
k+1Bk)

−T (Pk +BTk K
∗
k+1Ak)

)
xk (24)

with Qk, Pk, Rk, Ak, and Bk functions of τk and given by
equations (11)-(15). In this article we consider the minimiza-
tion of the interarrival time τk for any state xk, leading to
a guaranteed cost minimization. This problem is equivalent
to the minimization of the maximum eigenvalue of matrix
Kk with respect to the interarrival τk. Hence the optimal
interarrival time τk at each stage is obtained by solving the
following optimization problem

min
τk∈(0,∞)

λmax(Kk(τk)) (25)

In the next section we show the existence of solution of this
optimization problem.

A. Well-Posedness Optimization Problem
A necessary condition for the maximum singular value of

problem (25) to be depend on τk is that the rank of A−1B
is equal to the rank of Q, that is, the input is able to change
the cost induced by the state x(t). Otherwise the maximum
eigenvalue might be insensitive to the control u(t) an hence
to the value of τk. In this case, one possible solution is to
minimize the trace instead of the maximum eigenvalue, that
is

min
τk∈(0,∞)

trace(Kk(τk)) (26)

because now the effects of the control action are captured in
the cost function value. A similar discussion can be performed
with the cost function dependent on the dynamical system
output

min
u∈UN

∫ TN

0

(yTQy + uTRu)dt+ y(TN )TSy(TN )

(27)
s.t.

y = Cx

ẋ = Ax+Bu

x(0) = x0

where y(t) ∈ Rp is the output of the dynamical system
with Q ∈ Rp×p, S ∈ Rp×p, and C ∈ Rp×n, in such a
way that CA−1B has rank p. In this case both optimization
problems (25) and (26) are well-posed.

B. Boundedness of τk

At each stage we have to compute the optimal interarrival
time τk. In this section we show that the range of τk is a
bounded interval and that there exists a value τ∗k inside this
interval that provides a minimum.

Consider the standard discrete LQR with constant sampling
time. The cost-to-go gain Kk is obtained in this case as
an iteration of the Riccati Difference Equation (RDE) taken
τk = τ∗k+1 and, as initial matrix, K∗k+1. By the convergence
and monotonicity properties of the RDE [9], the cost-to-
go gain Kk is monotonically decreasing, then we have that
Kk(τ

∗
k+1) < Kk+1(τ

∗
k+1). In case that τk = 0 there is no cost

reduction 1, that is Kk+1 = Kk. As a result τk = 0 is not
optimal, thus it must be the case that τ∗k > 0.

Now we show that the value τk is upper bounded. For stable
systems if τk = ∞ the cost-to-go gain is equal to the free
response Kk = −M , hence the optimum τk must be finite
for effective cost reduction. For unstable systems τk must be
finite otherwise Kk = ∞. As a result τk < ∞. For practical
purposes τk may be bounded by the system settling time.

VI. PROPOSED OPTIMIZATION ALGORITHM

In this section we design the optimization algorithm
to solve the optimal sampling control problem. The al-
gorithm computes the optimal sampling pattern T∗ :=
{τ∗0 , τ∗1 , . . . , τ∗N−1} and the optimal control action gain se-
quence F∗ := {F ∗0 , F ∗1 , . . . , F ∗N−1} in a reverse order, as
can be seen in the pseudocode of Fig. 2. The amplitude of
the optimal control action uk is computed in closed-loop as
uk = F ∗k xx for k ∈ 0, 1, . . . , N − 1.

The optimal sampling pattern at stage k is computed by
minimizing the maximum eigenvalue of Kk, as show in the
minimization problem (25). For the optimization algorithm it
is important to stress that Kk is a function of the decision
variable τk and the optimal cost-to-go of stage k + 1, that is
Kk(τk,K

∗
k+1). Note that the initialization is to set K∗N = S. In

this way the optimal sampling pattern is computed backward
from stage N − 1 to stage 0.

Being the optimization problem univariate and with decision
variable domain convex and bounded (i.e. 0 < τ∗k < τmax),
we propose its minimization by a gradient-descent algorithm.
Recall that τmax is the settling time of the dynamical system
free response.

The proposed optimization approach is able to provide a
certificate of global optimality by solving the optimization
problem twice at each stage. One optimization with starting
point at τk = 0, and the other optimization with starting
point at τk = τmax. If the optimal decision variables of both
problems are equal, then the optimum is global.

At the same time that the optimal sampling pattern is
computed, the optimal control action gain Fk(τ∗k ), as given by
equation (18), is also computed. Finally, we obtain the optimal
control action amplitude in closed loop as uk = F ∗k xx .

1We assume that the LQR formulation provides a solution that is different
to the free response, otherwise uk = 0 is optimal.
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Fig. 2. Optimal Sampling Pattern algorithm
1: procedure OPTIMALSAMPLING(N , Q, R, S, A, B)
K∗N ← S

2: for k ← (N − 1), 0 do . Compute T∗ and F∗
3: τ∗k ← minτk Kk(τk,K

∗
k+1) . Defined by eq. (25)

4: K∗k ← Kk(τ
∗
k ,K

∗
k+1) . Defined by eq. (20)

5: F ∗k ← Fk(τ
∗
k ) . Defined by eq. (18)

6: end for
7: end procedure

VII. APPLICATION EXAMPLES

A. Example 1: Second Order SISO System

Let us define a SISO continuous system as:

ẋ = Ax+Bu

y = Cx (28)

A =

(
−10 −5
5 −10

)
, B =

(
1
0

)
, C =

(
1 0

)
Where the cost function weights are:

Q = 100

(
1 0
0 0

)
, R = 1

The optimal interarrival times and control gains are obtained
by the algorithm in Fig. 2 with N = 4. Figure 3 shows
the maximal eigenvalue of the quadratic k-step cost Kk as
a function of τk. As can be seen, all functions fit to the
same curve as τ is increased. This curve corresponds to
the standard discrete LQR optimal cost for constant sample
time τ . The optimal sampling pattern is T∗ := {τ∗0 =
0.0242, τ∗1 = 0.0317, τ∗2 = 0.0464, τ∗3 = 0.0876}. Note that
all interarrival times are decreasing. The figure also shows
that all the cost functions are quasiconvex and therefore there
is an unique minimum value. The computation time for the
complete algorithm was 62ms in an Intel i7-8565U 1.8GHz.

Figure 4 compares the continuous time LQR optimal con-
trol action u∗(t) with the optimal sampling pattern control
action u∗k. The piecewise control action u∗k approximates the
continuous time control action u∗(t) for the first time instants,
however beyond 0.2 sec there is no similarity between both
control actions.

Finally, Figure 5 compares the optimal continuous time
LQR output y∗(t) with the output y∗k obtained with optimal
state feedback controller with optimal sampling pattern previ-
ously computed in Fig 3. The numerical difference between the
cost of the continuous time LQR cost and the cost achieved
with the optimal sampling pattern with N = 4 is only of
0.32%.

In order to compare our proposed algorithm with the one
proposed in [5], the quantization-based sampling has been
implemented for this example. In the cited work, the final
time has to be set before the optimization. A first final
time guess could be the optimal continuous state feedback
controller settling time of Tf = 0.5s. With N = 4, the
quantization-based sampling cost is 2.31% greater than the
optimal continuous controller. If the algorithm is set with the
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Fig. 3. Evolution of the maximum eigenvalue of the cost-to-go gain Kk(τ)
as a function of the interarrival time τ . The filled dots mark the optimal
interarrival time τ∗k for k = 0, 1, 2, 3 that minimizes the maximum eigenvalue
of Kk(τk).
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Fig. 4. Optimal control action u∗k (blue) for the optimal sampling pattern
with N = 4 compared to the continuous-time optimal LQR control action
u∗(t) (red).

optimal final time T ∗f = 0.2s the cost is only 0.82% greater
than the continuous one and closer to the optimal of 0.32%
obtained with our algorithm. Therefore, it can be stated that
the knowledge of optimal final time is a decisive parameter
for [5].

It has been also tested that both algorithms tend to the
continuous cost as N is increased. For our presented algorithm,
the error is 8.6 · 10−4% with N = 100 and the computation
time is 0.54s, thus showing convergence.

B. Example 2: IoT Heating System

In this example we consider the control of a home heating
system. The house is divided into 5 rooms as presented in
Fig. 6. Each room is equipped with a water radiator. Each
radiator in rooms 1, 2, and 3 are equipped with a wireless
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Fig. 5. Output of the system y∗k (blue) obtained with the optimal sampling
pattern with N = 4 compared to the continuous-time optimal LQR output
y∗(t) (red)
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Fig. 6. House rooms distribution for the home heating system.

battery powered solenoid valve actuators. Radiators in rooms
4 and 5 share a unique wireless battery powered solenoid valve
actuator. In this case limiting the movements in the solenoid
valve is decisive in order to preserve the battery life.

The system has been modelled by considering that the tem-
peratures of the five rooms are known together with the outside
temperature. The control actions are measured in Watts. The
thermal conductivity of the interior walls is Ki = 0.887 W

m2oK ,
and that of the exterior walls is Ki = 0.298 W

m2oK . We have
also considered the conductivity of the doors Kd = 2.32 W

m2oK .
The ceiling height is 2.5m, the specific heat capacity is
C = 1005.3 J

KgK and its density ρ = 1.22Kgm3 . Taking into
account this parameters, the next model is obtained:

ẋ = Ax+Bu+ Ev (29)

where x = [T1, T2, T3, T4, T5]
T are the room temperatures in

Celsius, u = [Q1Q2, Q3, Q45]
T are the water radiators power
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Fig. 7. Optimal sampling pattern control actions for each solenoid valve.

in Watts and v is the outside temperature. The dynamical
system matrices are:

A = 10−4


−5.17 1.79 1.34 0.81 0
1.79 −5.46 0 2.61 0
1.43 0 −5.35 0.86 1.91
1.85 5.97 1.85 −19.23 6.99
0 0 1.19 2.04 −4.24



B = 10−5


2.02 0 0 0
0 2.02 0 0
0 0 2.16 0
0 0 0 1.39
0 0 0 0.94


E = 10−4

(
1.21 1.06 1.13 2.55 1.01

)T
The optimization problem allows only 4 solenoid valve

movements, that is N = 4, and the cost function weights
are:

Q = 100


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

 R =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The optimal sampling pattern control is solved with a

computing time is of 0.313s. The optimal control actions for
the actuators are shown in Fig. 7. As in the previous example
the interarrival time of the optimal sampling pattern increases
with time.

The controlled system response is presented in Figure 8. It
can be seen that temperature of room 4 is not controlled as it
has weight 0 in the cost function.

The final cost of the trajectory for the optimal sampling
strategy is J = 172.517. The optimal cost of the continuous
LQR controller is Jc = 170.572. The relative error is J−Jc

Jc
=

1.1%. As a result with the optimal sampling pattern the cost
with respect to the optimal continuous solution is increased



7

0 2000 4000 6000 8000 10000

time (sec)

15

16

17

18

19

20

21

22

23
T

em
pe

ra
tu

re
 (

C
el

si
us

)
Evolution of Rooms Temperature

T
1

T
2

T
3

T
4

T
5

Fig. 8. Evolution of temperatures in each room. Note that temperature of
room 4 is not taken into account in the cost function.

only in 1.1%. If the number of movements are increase to
N = 9 the relative error is decreased to 0.25%.

VIII. CONCLUSION AND FUTURE WORK

In this article we have solved the optimal sampling problem
for free final time LQR of arbitrary order and with multiple
inputs and outputs. We have shown how the optimal sampling
pattern problem, that is to decide the optimal sampling in-
stants, can be embedded into a family of similar problems
yielding an algorithm that is optimal for any value of N ≥ 1,
scalable with respect to N , recursive, and constructive. The
proposed strategy is natural for many potential real-world ap-
plications of chemical, biological or medical processes, where
the treatment application times is also a variable of interest.
A current area of research is the extension of the presented
results to include robustness properties on the sampling pattern
and its extension to problems that are non-linear.

APPENDIX A
EXACT PROBLEM DISCRETIZATION

Consider the linear quadratic regulator problem

PTN
: min

u∈UN

∫ TN

0

(xTQx+ uTRu)dt+ x(TN )TSx(TN )

(30)
s.t.

ẋ = Ax+Bu

x(0) = x0

The exact discretization of the dynamic equation with t > tk,
is

x(t) = eA(t−tk)︸ ︷︷ ︸
Ak

xk + (eA(t−tk) − I)A−1B︸ ︷︷ ︸
Bk

uk (31)

Given a sampling pattern T = {τ0, τ1, . . . , τN−1}, cost func-
tion (30) can be rewritten as the sum of N integrals

∫ TN

0

(xTQx+ uTRu)dt+ x(TN )TSx(TN ) =

N−1∑
k=0

∫ tk+1

tk

(xTQx+ uTRu)dt+ x(TN )TSx(TN )

(32)

For each integral term in (32) let us substitute the state x(t)
by (31)

∫ tk+1

tk

(xTQx+ uTRu)dt =∫ tk+1

tk

(Akxk +Bkuk)
TQ(Akxk +Bkuk) + uTkRukdt

= xTk

∫ tk+1

tk

ATkQAkdt︸ ︷︷ ︸
Qk

xk +

+2xTk

∫ tk+1

tk

ATkQBkdt︸ ︷︷ ︸
Pk

uk +

+uk

∫ tk+1

tk

(BTk QBk +R)dt︸ ︷︷ ︸
Rk

uk

Computing the integrals Qk, Pk, and Rk results in

Qk = ATkMAk −M
Rk = BTA−T (τkQ+ (I −ATk )A−TQ+

+QA−1(I −Ak))A−1B +Rτk

Pk = (ATkMAk −M +A−1(I −ATk )Q)A−1B
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