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Symmetrically processed splitting integrators for

enhanced Hamiltonian Monte Carlo sampling

S. Blanes,∗ M.P. Calvo,† F. Casas,‡ and J.M. Sanz-Serna§

November 10, 2020

Abstract

We construct integrators to be used in Hamiltonian (or Hybrid)
Monte Carlo sampling. The new integrators are easily implementable
and, for a given computational budget, may deliver five times as many
accepted proposals as standard leapfrog/Verlet without impairing in
any way the quality of the samples. They are based on a suitable mod-
ification of the processing technique first introduced by J.C. Butcher.
The idea of modified processing may also be useful for other purposes,
like the construction of high-order splitting integrators with positive
coefficients.

AMS numbers: 65L05, 65C05, 37J05
Keywords: Hamiltonian Monte Carlo method, splitting integrators, process-
ing

1 Introduction

In this paper we show how to construct symmetrically processed splitting
algorithms for efficient Hamiltonian (or Hybrid) Monte Carlo (HMC) sam-
pling.
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HMC is a widely used sampling technique; introduced in the physics lit-
erature [17], it has become very popular in statistics [28] and may provide
large improvements over alternative approaches [14]. All the many variants
of HMC share the need for integrating numerically a system of Hamiltonian
differential equations at each step of the Markov chain [34] and in fact the
gradient evaluations required by the numerical integrator dominate the com-
putational cost of obtaining the samples. It is therefore useful to identify
existing integrators or to construct new ones that are efficient in HMC sam-
pling. Even though the leapfrog/Störmer/Verlet method is the integrator
usually chosen, it is possible to cut down substantially the computational
cost of the integrations without impairing in any way the quality of the
sampling by using (multistage) splitting integrators which may be imple-
mented as easily as leapfrog and are time reversible and volume preserving,
two essential requirements for HMC use [5].

There are several families of possible splitting schemes and each family
includes free parameters. The paper [9] suggested a methodology for choos-
ing the splitting parameters so as to optimize the efficiency in the HMC
setting. As distinct from other works (see [26, 30, 31, 20, 22] among many
others), where the choice of parameters is determined by the behaviour of
the integrator as the step size h approaches 0, in [9] h is not assumed to be
small; it rather ranges in a suitable interval (0, h̄). This corresponds to the
fact that successful HMC simulations operate with rather large values of h
[28, 5]. Because free parameters are not used to boost the accuracy in the
limit h → 0, all the integrators constructed in [9] are second order. This
implies that they yield average energy errors of order four [4, 5]. Extensive
numerical experiments [9, 3, 18, 13, 25, 29, 1, 12, 20] in a variety of appli-
cations that range from Bayesian statistics to the Auxiliary Field Quantum
Monte Carlo method and theoretical results presented in [12] endorse the
soundness of the approach in [9]. In particular [12] shows experimentally
that for splitting formulas that use three gradient evaluations per step, the
parameter choice in [9] leads to better HMC sampling than any other param-
eter choices. The references [2, 32] extended the technique in [9] to modified
HMC algorithms that combine the basic idea of HMC with importance sam-
pling.

The idea of processing numerical integrators [7, Section 3.5] is due to
J.C. Butcher [10]. Given a one-step integrator, sometimes called the kernel,
a processed integration requires (i) preprocessing the initial condition, (ii)
integrating with the kernel and (iii) postprocessing the solution. Pre and
postprocessing should have negligible complexity, so that the cost of an
integration with processing is essentially the cost of integrating with the
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kernel. The interest of the idea lies in cases where the accuracy of the
processed integration is higher than the accuracy the kernel alone would
provide. For instance, the processed algorithm may converge with an order
ν higher than the order µ of the kernel; when this happens the kernel is
said to possess effective order ν. Processing did not become popular when
it was first suggested, due to the difficulties of its combination with variable
time steps. It reappeared [23, 24, 8] in the geometric integration scenario,
where the emphasis is in constant time steps [11]. Since processing may
considerably increase the efficiency of an integrator, it is natural to study
whether the splitting kernels for HMC applications successfully used in [9,
3, 18, 13, 25, 29, 1, 12, 20] may be processed. Unfortunately the standard
approach to processing, where the postprocessing map just inverts the action
of the preprocessor, will not work, as it leads to integrations that are not
time reversible.

In this paper:

1. We introduce (Section 2) symmetric (modified) processing, a modifica-
tion of standard processing under which time reversible kernels provide
time reversible integrations.

2. We provide (Section 3) a methodology to determine the parameters in
the kernel and the pre and postprocessor to optimize the performance
of the integrator in HMC sampling. This methodology extends the
material in [9].

3. We construct (Section 4) specific symmetric processed algorithms to
be applied within HMC simulations.

4. We show (Section 5) by means of numerical experiments that the sam-
pling efficiency of the new symmetric processed integrators may im-
prove on the standard velocity Verlet integrator by a factor of five or
more.

HMC sampling is not the only application where symmetric modified
processing may be useful and the final Section 6 briefly discusses another
possible application area: the construction of higher-order splitting methods
with positive coefficients.
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2 Symmetric (modified) processing

2.1 Definition

Given a system of differential equations (d/dt)x = f(x) in RD, each one-step
integrator is specified by a map ψh : RD → RD that advances the numerical
solution over a time-interval of length h. For instance ψh(x) = x + hf(x)
corresponds to Euler’s rule. If ψh is an integrator (sometimes called the
kernel) and πh : RD → RD is a map, one may consider the corresponding
so-called processed integrator defined by the map

ψ̂h = π−1
h ◦ ψh ◦ πh

(the superscript −1 denotes inverse map and ◦ means composition). N con-
secutive steps of the processed integrator correspond to the transformation

ψ̂N
h =

N times︷ ︸︸ ︷
ψ̂h ◦ · · · ◦ ψ̂h =

N times︷ ︸︸ ︷
(π−1

h ◦ ψh ◦ πh) ◦ · · · ◦ (π−1
h ◦ ψh ◦ πh),

that is,
ψ̂N
h = π−1

h ◦ ψ
N
h ◦ πh. (1)

In other words, to perform N steps of the processed method, one succes-
sively (i) applies once the map πh (preprocessing), (ii) takes N steps of the
kernel ψh and (iii) applies once the map π−1

h (postprocessing). Since πh
and its inverse are applied only once per integration leg, the computational
complexity of ψ̂h is not very different from that of ψh. Processing is ad-
vantageous in situations, among others, where ψ̂h is more accurate than the
unprocessed ψh (for instance ψ̂h may have higher order of convergence or
smaller error constants than ψh).

Recall that the true solution flow φt of the system being integrated is
time reversible (or symmetric), in the sense that φ−1

t (which maps the final
state into the initial condition) coincides with φ−t (which moves the initial
condition backwards in time). Correspondingly, an integrator ψh is said to
be time reversible (or symmetric) [35, Section 3.6] if (ψN

h )−1 = ψN
−h. From

(1) it is easily concluded that, even if the kernel ψh is time reversible, the
processed ψ̂h may not be expected to be so. The symmetric (modified)
processing approach suggested in the present paper is a modification of the
idea of processing that makes it possible to obtain time reversible integrators.

To perform an integration leg spanning a time interval of length Nh with
a symmetric modified processed integrator one applies the map

ψ̃N,h = π?h ◦ ψN
h ◦ πh, (2)
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where π?h denotes the adjoint of πh, i.e. the map such that π?−h = π−1
h

(see e.g. [35, Section 3.6] or [7, Section 1.2]). This differs from standard
processing (see (1)) in that the adjoint rather than the inverse is used as a
postprocessor. Since

(ψ̃N,h)−1 = π−1
h ◦ (ψN

h )−1 ◦ (π?h)−1

and
ψ̃N,−h = π?−h ◦ ψN

−h ◦ π−h = π−1
h ◦ ψ

N
−h ◦ (π?h)−1,

the symmetric modified processed integrator (2) will be time reversible if ψh

is time reversible.
For processing integrators, the map (1) that advances the solution over

a time interval [0, Nh] is the N -th power of the one-step map ψ̂h. For
symmetric processing the map ψ̃N,h in (2) is not obtained by means of a
similar N -fold composition of a one-step map.

2.2 The case of splitting integrators

Although the idea of symmetric processing is completely general, our at-
tention is restricted to the case where in (2) ψh and πh are constructed via
splitting (see e.g. the monographs [35, 21, 7] and the survey [27])). If the
system being integrated may be written in the split form

d

dt
x = f(x) = fA(x) + fB(x),

and φAt and φBt represent the exact flows of the split systems, we deal with
splitting kernels

ψh = φBb1h ◦φ
A
a1h ◦· · ·◦φ

A
ar−1h ◦φ

B
brh ◦φ

A
arh ◦φ

B
brh ◦φ

A
ar−1h ◦· · ·◦φ

A
a1h ◦φ

B
b1h. (3)

(Since it is possible to set ar = 0, this format includes integrators where the
central flow is φB rather than φA. Similarly one may set b1 = 0 to have
integrators where the extreme flows are φA.) The palindromic structure of
(3) ensures time reversibility. This integrator is consistent (in fact of order
≥ 2 due to symmetry) if

2a1 + · · ·+ 2ar−1 + ar = 1, 2b1 + · · ·+ 2br−1 + 2br = 1, (4)

and in what follows we always assume that these conditions hold.
Similarly, we choose πh to be a composition of 2s flows of the form

πh = φAcsh ◦ φ
B
dsh ◦ · · · ◦ φ

A
c1h ◦ φ

B
d1h, (5)

5



which leads to
π?h = φBd1h ◦ φ

A
c1h ◦ · · · ◦ φ

B
dsh ◦ φ

A
csh. (6)

We assume that

c1 + · · ·+ cs = 0, d1 + · · ·+ ds = 0, (7)

which imply that πh and π?h differ from the identity map by O(h2) terms. In
this way, it is clear that (2) is a time reversible integrator with even order
of accuracy ≥ 2.

We use the abbreviations

(b1, a1, . . . , ar−1, br, ar, br, ar−1, . . . , a1, b1),

and
(cs, ds, . . . , c1, d1), (d1, c1, . . . , ds, cs)

to refer to (3), (5), and (6) respectively. In this way, (2) is denoted as

(d1, c1, . . . , ds, cs)(b1, a1 . . . , br, ar, br, . . . , a1, b1)N (cs, ds, . . . , c1, d1); (8)

the palindromic structure is apparent.

2.3 The Hamiltonian case

We have in mind the integration of Hamiltonian systems of the form

d

dt
q = M−1p,

d

dt
p = −∇V (q), (9)

where M is a symmetric, positive definite d× d mass matrix and V denotes
the potential. Under the familiar q/p or potential/kinetic splitting, the split
flow φAt is the solution flow of the system

d

dt
q = M−1p,

d

dt
p = 0

and φBt corresponds to

d

dt
q = 0,

d

dt
p = −∇V (q).

In molecular dynamics the transformations φAt and φBt are known as drifts
and kicks respectively. Thus an integration leg with the symmetric processed
integrator (2) is a succession kick, drift, kick, . . . , kick with a palindromic
pattern and therefore time reversible. In addition the map (2) is volume
preserving as a composition of kicks and drifts. Time reversibility and vol-
ume preservation ensure that (2) may be used in HMC applications with
the simple standard recipe for the accept/reject probability applied with
leapfrog [5].
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3 Choosing the parameters

The paper [9] suggested a technique to identify “good” parameter values
in families of numerical integrators for the Hamiltonian system (9) in the
HMC context. Extensive numerical experiments in statistical and molecu-
lar dynamics problems reported in [13, 18, 12] show clearly the soundness
of the approach in [9] and it is this approach that we follow here. How-
ever the material in that paper cannot be directly applied to symmetric
modified processed algorithms and in this section we present the necessary
modifications.

The technique is based on discriminating between integrators by apply-
ing them to the one-degree-of-freedom model Hamiltonian p2/2 + q2/2 for
which the equations of motion correspond to the standard harmonic oscil-
lator and the target probability density function is ∝ exp(−(p2 + q2)/2) so
that q and p are independent with a standard normal distribution. (The
results obtained for the model problem apply to more general situations
[5, 12].) For the harmonic oscillator, N steps of a given palindromic split-
ting integrator (3) define a linear transformation (q0, p0) 7→ (qN , pN ) of the
form [

qN
pN

]
=

[
C χS

−χ−1S C

] [
q0

p0

]
. (10)

Here (q0, p0) is the initial condition, (qN , pN ) the numerical solution at the
end of the integration leg, C and S are abbreviations for cos(Nθh) and
sin(Nθh) respectively and χ = χh, θ = θh are quantities that change with the
step length h. A priori, θh may be complex-valued, but if h is of sufficiently
small magnitude, then the 2× 2 matrix above is power bounded (stability)
and, as shown in [9], this corresponds to θh being real, something we assume
hereafter. (In fact the format (10) is not specific to splitting integrators; it
is shared by any reasonable time reversible, volume preserving unprocessed
integrator for (9), see [9, 5].) If N varies, the points (qN , pN ) defined by
(10) move on an ellipse of the (q, p)-plane, whose eccentricity is governed by
χh. For χh = 1, the transformation in (10) is a rotation, the ellipse becomes
a circle and the energy error in the numerical simulation (1/2)(q2

N + p2
N )−

(1/2)(q2
0 + p2

0) vanishes: all proposals are then accepted.
Similarly to (10), for the standard harmonic oscillator, the preprocessor

πh and the postprocessor π?h in (5) and (6) are respectively associated with
2× 2 matrices of the form [

α β
γ δ

]
,

[
δ β
γ α

]
, (11)
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where α = αh, β = βh, γ = γh, δ = δh are polynomials in h, with αhδh −
βhγh = 1 by conservation of volume. In addition αh and δh are even in h
and βh and γh are odd so that[

δ−h β−h
γ−h α−h

]
=

[
δh −βh
−γh αh

]
=

[
αh βh
γh δh

]−1

,

as needed for a map and its adjoint. (It is perhaps useful to observe that in
standard processing (1), the matrix of the postprocessor would be[

αh βh
γh δh

]−1

=

[
δh −βh
−γh αh

]
,

which differs from the postprocessing matrix for symmetric processing given
in (11) in the sign of the non-diagonal entries; these entries are O(h) as
h→ 0.)

Combining (10) with (11), one integration leg for (2) is then given by[
qN
pN

]
=

[
A B
C A

] [
q0

p0

]
, (12)

with [
A B
C A

]
=

[
δ β
γ α

] [
C χS

−χ−1S C

] [
α β
γ δ

]
.

We multiply out the matrices to find:

A = C(αδ + βγ) + S(γδχ− αβχ−1),

B = C(2βδ) + S(δ2χ− β2χ−1),

C = C(2αγ) + S(γ2χ− α2χ−1).

The “ideal” preprocessor has αh = χ
1/2
h , δh = 1/αh, βh = γh = 0 leading

to A = C, B = S, C = −S. With this ideal processing, (12) is a rotation,
the symmetrically processed integrator conserves energy exactly and there
are no rejections in HMC sampling. Unfortunately such ideal preprocessor
cannot be realized by means of a splitting formula of the form (5) and our
aim now is to identify processors so that (12) is, in a suitable sense, as close
to a rotation as possible.

At this stage, we assume that q0 and p0 are independent random vari-
ables with standard normal distribution (i.e. that the Markov chain is at
stationarity) and consider the change in energy

∆(q0, p0) =
1

2
(q2

N + p2
N )− 1

2
(q2

0 + p2
0)

8



over one integration leg. Here (qN , pN ) and therefore ∆(q0, p0) are determin-
istic functions of the random initial condition and therefore random variables
themselves. By conservation of energy ∆(q0, p0) would vanish if the integra-
tor were exact; in HMC simulations small values of ∆ correspond to high
acceptance probability. We have the following result:

Proposition 1 With the preceding notation, E(∆) = (1/2)(B + C)2.

Proof. An elementary computation yields:

2∆ = (A2 + C2 − 1)q2
0 + 2(AB + CA)q0p0 + (B2 +A2 − 1)p2

0

and therefore taking expectations

2 E(∆) = 2A2 + B2 + C2 − 2.

The result follows because A2 − BC = 1 by conservation of volume.
Note that E(∆) ≥ 0, a well-known fact in HMC simulations [4]. The

proposition leads to our next result that extends to the situation at hand
the bound in [9, Proposition 4.3] valid for the unprocessed case.

Proposition 2 The expectation of ∆ may be bounded above as follows:

E(∆) ≤ ρh,

with

ρh = 2(αγ + βδ)2 +
1

2

[
(δ2 + γ2)χ− (α2 + β2)χ−1

]2
.

Proof. From the expressions for B and C

(B + C)2 =
(

2C(αγ + βδ) + S
[
(δ2 + γ2)χ− (α2 + β2)χ−1

])2
.

In the right hand-side we have the standard dot product of the vector v1 ∈
R2 with components 2(αγ+βδ) and (δ2 + γ2)χ− (α2 +β2)χ−1 and the unit
vector v2 ∈ R2 with components C = cos(Nθh) and S = sin(Nθh). The
magnitude of the inner product can then be bounded above by the length
of v1 and the result follows easily.

For a fixed symmetric processed integrator, the upper bound ρh is inde-
pendent of the number of steps N ; it only depends on h and does so through
the quantity χ associated with the kernel and with the quantities α, β, γ, δ
associated with the pre and postprocessor. Of course, in the case where a
family of integrators is considered, for each h the quantity ρh changes with

9



the specific choice of algorithm within the family. According to the strategy
in [9], one should pick up a value h̄ that represents the maximum value of
h to be used in the simulations of the model problem and then prefer the
member of the family that minimizes the expected energy-error metric

‖ρ‖h̄ = max
0<h<h̄

ρh.

It is proved in [12] that this is equivalent to maximizing the expected ac-
ceptance rate. In [9] it is recommended to set h̄ equal to the number of
evaluations of ∇V necessary to perform a single time step. Note that this
implies that making the integrator more computationally intensive by in-
creasing the number of gradient evaluations per step increases the value of
‖ρ‖h̄. (It is also possible [18] to adapt the value of h̄ to the specific Hamil-
tonian under consideration, but that line of thought will not be pursued
here.)

4 Specific integrators

Several specific (unprocessed) integrators were constructed in [9] by means
of the methodology introduced there. In the next section we will report
numerical results for a method (to be referred to as BlCaSa) of the form
(3) with r = 2. A single time step of BlCaSa uses four evaluations of
∇V , but, since the evaluation of ∇V at the first kick of the next time
step coincides with the evaluation at the last kick of the current step, the
computational cost is essentially three gradient evaluations per time step.
Integrators that use two or four evaluations per time step were also con-
structed in [9], but that reference found three evaluations per time step to
be preferable. With two evaluations, the resulting larger value ‖ρ‖h̄ offsets
the benefit of the smaller computational cost per time step. Four evaluations
lead to a marginal improvement of ‖ρ‖h̄, which does not really compensate
for the extra complication. In [12] BlCaSa was found to clearly outperform
in HMC applications other integrators of the family (3) with r = 2. For
these reasons we will use BlCaSa as a measuring rod to assess the efficiency
of the symmetric processed integrators to be constructed.

We focus our attention on symmetric processed integrators of the form
(8) with r = 2. After imposing the consistency requirement (4), we may
regard a = a1 and b = b2 as free parameters for the kernel. It is shown in
[13] that unless a = b/(6b − 1) the stability interval of the kernel is very
short, which makes the integrator uncompetitive. Therefore we impose this
relation and deal with a one-parameter family of kernels. To keep pre and
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h̄ b c d ‖ρ‖h̄ hs
3 0.381120 −−−−− −−−− 7× 10−5 4.602

3 0.348674 −0.075640 0.069720 6× 10−8 4.985
3.5 0.346660 −0.079510 0.070171 5× 10−7 5.010
4 0.343684 −0.084690 0.071880 5× 10−6 5.048
4.5 0.340200 −0.093500 0.072800 5× 10−5 5.095

Table 1: The last four rows give information on symmetric processed integrators
for HMC applications. The methods have been found by minimizing the expected
energy-error metric ‖ρ‖h̄ for the values of h̄ displayed in the leftmost column. The
first row corresponds to the BlCaSa integrator. The table provides the parameter
values to run the integrators and, in the last column, the length of the linear stability
interval of the kernel.

postprocessing as simple as possible, we set s = 2, the lowest value for which
the consistency relations (7) have a nontrivial solution. We thus work with
a three parameter family of integrators of the form

(d, c,−d,−c)
(

1

2
− b, a, b, 1− 2a, b, a,

1

2
− b
)N

(−c,−d, c, d),

where a = b/(6b− 1). An integration leg requires a total of 3N + 5 gradient
evaluations (two of them within the pre or postprocessing). Of course, if N
is large this is approximately 3N .

Initially we determined the values of the parameters b, c, d by minimizing
‖ρ‖h̄ with h̄ = 3, the value suggested in [9]. The values we obtained may
be seen in Table 4, along with the length hs of the stability interval of
the kernel, i.e. the supremum of the step sizes h for which the matrix in
(10) may be bounded independently of N thus guaranteeing that errors
do not grow exponentially as N increases. (Note that the stability of the
kernel determines the stability of the overall integrator, since the pre and
postprocessor are applied only once.) For comparison we have also included
in the first row of the Table the data corresponding to BlCaSa: symmetric
processing results in a reduction of ‖ρ‖3 by three orders of magnitude. This
reduction is achieved at the price of only four additional gradient evaluations
per integration leg.

The extremely small value of ‖ρ‖3 that may be achieved in this way,
prompted us to explore larger values of h̄, so as to obtain integrators meant
to operate with larger step sizes. Our results with h̄ = 3.5, 4 or 4.5 are
also reported in the table. The integrator specified in the last row, run with
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0 < h < 4.5, is (on the Gaussian model) as accurate as BlCaSa when run
with 0 < h < 3.

5 Numerical results

As in [9] our first test problem is the model multivariate Gaussian target
with density (qj is the j-component of q)

∝ exp

−1

2

d∑
j=1

j2q2
j

.
We have used the dimensions d = 256, d = 1024 and d = 4096: our in-
terest is in problems of large dimensionality, those where efficiency is more
important (for targets in very low dimension leapfrog/Verlet performs very
satisfactorily as a consequence of its optimal linear stability properties [5]).
As in [12], integrations were performed, for different stable choices of h, in
the interval 0 ≤ t ≤ 5 and we generated Markov chains of 5,000 elements
initialized from the target distribution. As discussed in detail in [12], the
efficiency of the algorithm and the quality of the samples is entirely deter-
mined by the acceptance rate and therefore we will focus on this metric. The
conclusions to be drawn as to the merit of the different integrators based
on the behaviour of the acceptance rate are the same that may be obtained
by considering other metrics such as mean square displacement, effective
sample sizes of the different components of q, etc.

Our results are summarized in Figure 1, where we compare the symmet-
rically processed integrators with b = 0.348674 and b = 0.340200 (see Ta-
ble 4) against the integrator BlCaSa and standard velocity leapfrog/Verlet.
The intermediate values b = 0.346660 and b = 0.343684 in the table were
also run; the results interpolate between those of b = 0.348674 and those
of b = 0.340200 and are not reported so as to not blur the plots. For the
symmetrically processed methods, the reported gradient evaluation count
includes the evaluations required by the pre and postprocessing.

The left subplots give, for the four integrators, acceptance rate as a func-
tion of the number of gradient evaluations per integration leg. Of course, for
each integrator, more gradient evaluations per leg (corresponding to smaller
values of h) provide higher acceptance rates. The advantage of the three
multistage integrators over Verlet is clearly borne out, and this advantage
becomes more pronounced as the dimensionality increases (i.e. as it be-
comes more important to have efficient algorithms). For the integrator with
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Figure 1: Gaussian model. Comparison of the symmetrically processed methods
with b = 0.348674 (blue circles) and b = 0.340200 (black diamonds) with the
integrators BlCaSa (red triangles) and leapfrog (green squares). The top, middle
and bottom panels have d = 256, d = 1024 and d = 4096 respectively. On the left,
acceptance percentage as a function of the number of evaluations per integration
leg. On the right, acceptance percentage divided by number of gradient evaluations
for different values of the step size h. For each integrator and d a star symbol on
the marker identifies the most efficient run.
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b = 0.348674, the runs with more gradient evaluations deliver acceptance
rates of virtually 100%, which is in agreement with the low energy errors
that correspond to the extremely low value of ‖ρ‖h̄ reported in the table.
Also note that b = 0.340200 operates very well for runs with fewer evalu-
ations (larger h) and this matches the fact that this method was derived
using a larger value of h̄.

Even though very low acceptance rates are unwelcome, very high ac-
ceptance rates are also undesirable. In fact, it is well understood [4, 5, 12]
that, for a given integrator, a very high acceptance rate signals that the
value of h being employed is too small: one would do better by using the
available computational budget to obtain longer Markov chains by getting
proposals at a lower computational cost per leg, even if that implies reject-
ing more proposals. For this reason, it is not easy to assess the efficiency
of the different integrators by examining the left subplots we have been dis-
cussing. This efficiency is best assessed from the right subplots that give,
for different values of h, the acceptance rate per unit computational cost,
i.e. the result of dividing the empirical acceptance rate achieved in a sim-
ulation by the number of gradient evaluations required. Larger values of
this metric correspond to more efficient sampling. The figure shows that
according to our discussion, for a given integrator, the best efficiency (i.e.
the highest marker) is not obtained when h is too small or too large. In
the figure the most efficient run for each of the four integrators has been
indicated by a purple star on the corresponding marker. The right panels
make it clear that BlCaSa is far more efficient than Verlet and the gap in
efficiency increases with the dimensionality. For d = 4096 the optimal value
of h for Verlet is ≈ 2 × 10−4 and then the acceptance rate divided by the
number of gradient evaluations is ≈ 1; for BlCaSA the optimal value of h
is substantially larger ≈ 8 × 10−4 and yields an acceptance rate per unit
computational cost ≈ 4, approximately a fourfold improvement on Verlet.
In turn the performance of the symmetrically processed integrators clearly
improves on BlCaSa. For d = 4096, the integrator with b = 0.340200 is
roughly five times more efficient than Verlet and approximately 50% more
efficient than BlCaSa.

We now present results (Figure 2) for a well-known Log-Gaussian Cox
problem in Bayesian inference, often used as a test [16, 19, 12]. The di-
mension is d = 4096. The details of the sampling (length of the chain,
burn-in, initialization, step sizes, time length of the integration legs, etc.)
are exactly as in [12] and will not be reproduced here. The general pattern
of the results is very similar to that in Figure 1. Again BlCaSa is roughly
four times more efficient than Verlet. Now b = 0.348674 and b = 0.340200
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Figure 2: Log-Gaussian Cox problem. Comparison of the symmetrically processed
methods with b = 0.348674 (blue circles) and b = 0.340200 (black diamonds) with
the integrators BlCaSa (red triangles) and leapfrog (green squares). On the left,
acceptance percentage as a function of the number of evaluations per integration leg.
On the right, acceptance percentage divided by number of gradient evaluations for
different values of the step size h. For each integrator a star symbol on the marker
identifies the most efficient run.

are equally efficient and their common efficiency is roughly 25% higher than
that of BlCaSa.

Since the number of gradient evaluations is 3N+1 for BlCaSa and 3N+5
for the symmetrically processed integrators, the advantages of processing
will decrease if the integration legs use very few time steps and become
more marked when many time steps are taken.

6 Other uses of symmetric modified processing

As we will discuss now, HMC sampling is not the only application where
symmetric modified processing may be useful.

In several problems, including the time-integration of parabolic partial
differential equations or the Schrödinger equation in imaginary time (as used
in path integral computations), all the coefficients appearing in a splitting
algorithm have to be positive (or complex with nonnegative real part). As is
well known (see [6] and its references) this sets an upper bound of two to the
order of accuracy that may be achieved by unprocessed splitting integrators.
On the other hand, by using modified potentials, it is possible [15, 33, 36]
to construct kernels with effective order four and positive coefficients and
this raises the question of how to construct suitable pre and post-processors
with positive coefficients. Unfortunately, for the standard processing format
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given by (1) and (5), the relations (7) imply that at least one ci and one
dj have to be negative. This difficulty may be circumvented by symmetric
modified processing as follows. If N ≥ 2, the kernel is time reversible and
we set κh = ψh ◦ πh, then the definition in (2) may obviously be rewritten
as

ψ̃N,h = κ?h ◦ ψN−2
h ◦ κh.

If now the map κh is sought in the form

κh = φAc′sh ◦ φ
B
d′sh
◦ · · · ◦ φAc′1h ◦ φ

B
d′1h
,

consistency demands

c′1 + · · ·+ c′s = 1, d′1 + · · ·+ d′s = 1,

and these relations may be satisfied with ci, di ≥ 0, i = 1, . . . , s. Details will
be presented in a forthcoming article.
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