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Abstract. In this paper, we consider the Bishop-Phelps-Bollobás point property for various classes

of operators on complex Hilbert spaces, which is a stronger property than the Bishop-Phelps-Bollobás

property. We also deal with analogous problem by replacing the norm of an operator with its numerical
radius.

1. Introduction

The study of the denseness of norm-attaining operators between Banach spaces was motivated by the
celebrated Bishop-Phelps theorem [10] published in 1961. J. Lindenstrauss [31] showed in 1963 not only
that such a denseness does not hold in general, but also that if a Banach space X is reflexive, then
it holds for operators from X into an arbitrary Banach space Y . After that, this result was improved
by J. Bourgain [14]. He showed that if X is a Banach space with the Radon-Nikodým property, then
every bounded (compact) operator T from X into an arbitrary Banach space Y can be approximated by
norm-attaining (compact) operators T +K with a finite rank operator K. A few years later, C. Stegall
observed that the above K can be chosen to be a rank one operator [36]. There is a vast literature about
this topic and we suggest the reader the survey paper [2].

On the other hand, B. Bollobás [11] refined in 1970 the Bishop-Phelps theorem quantitatively by
showing that both functionals and points where they almost attain the norm can be approximated by
norm-attaining functionals and points where they do attain the norm. In 2008, M. Acosta, R. Aron, D.
Garćıa, and M. Maestre began studying this theorem for operators between Banach spaces X and Y ,
and introduced the Bishop-Phelps-Bollobás property (see [3, Definition 1.1]): we say that the pair (X,Y )
has the Bishop-Phelps-Bollobás property (BPBp, for short) if given ε > 0, there is η(ε) > 0 such that
whenever T ∈ L(X,Y ) with ‖T‖ = 1 and x0 ∈ SX satisfy ‖Tx0‖ > 1− η(ε), there are S ∈ L(X,Y ) with
‖S‖ = 1 and x1 ∈ SX such that

‖Sx1‖ = 1, ‖x1 − x0‖ < ε, and ‖S − T‖ < ε.

Here, L(X,Y ) denotes the Banach space of all bounded linear operators from X into Y and SX the unit
sphere of X. When X = Y , L(X,Y ) is abbreviated to L(X) and we simply say that X has the BPBp
when the pair (X,X) has the BPBp. With this definition, the refinement given by B. Bollobás [11] means
simply that the pair (X,K) has the BPBp for every Banach space X, where K is either R or C. Although
there has been an extensive research on this property (see, for example, [5, 6, 20, 28]), we would like to
focus on the case when X is a complex Hilbert space H by considering classical operators on H.

Date: August 24, 2021.

2010 Mathematics Subject Classification. Primary 46B04; Secondary 46B07, 46B20.
Key words and phrases. Hilbert space; norm attaining operators; Bishop-Phelps-Bollobás property.
The first author was supported by Basic Science Research Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A09059788 and NRF-2018R1A4A1023590). The
second author was supported by the project OPVVV CAAS CZ.02.1.01/0.0/0.0/16 019/0000778, Centrum pokročilých
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It was showed in 2012 by L. Cheng and Y. Dong [18] that the complex Hilbert space H satisfies the
BPBp for normal operators, that is, given 0 < ε < 1/2, a normal operator T ∈ L(H) with ‖T‖ = 1 and
x0 ∈ SH such that ‖Tx0‖ > 1 − ε, there exist a normal operator S ∈ L(H) with ‖S‖ = 1 and x1 ∈ SH
such that ‖Sx1‖ = 1, ‖x1 − x0‖ 6

√
2ε + 4

√
2ε, and ‖S − T‖ <

√
2ε. To consider H as a complex space

is essential for that proof since spectral theory is used strongly. The analogous result for self-adjoint
operators was obtained in 2014 by D. Garćıa, H.J. Lee, and M. Maestre [25]. They also proved that
H has the BPBp for Schatten-von Neumann operators even with respect to the Schatten p-norm σp(·).
Moreover, H satisfies the BPBp for compact operators as a particular case of a more general result: if X
is uniformly convex, then the pair (X,Y ) has the BPBp for compact operators for every Y [20].

In this paper, we study a stronger property, so-called the Bishop-Phelps-Bollobás point property for
operators defined on complex Hilbert spaces such as positive, self-adjoint, anti-symmetric, unitary, com-
pact, normal, and Schatten-von Neumann operators as well as some intersections between some of these
classes. We say that the pair (X,Y ) satisfies the Bishop-Phelps-Bollobás point property (BPBpp, for
short) if given ε > 0, there is η(ε) > 0 such that whenever T ∈ L(X,Y ) with ‖T‖ = 1 and x0 ∈ SX
satisfy ‖Tx0‖ > 1− η(ε), there is S ∈ L(X,Y ) with ‖S‖ = 1 such that ‖Sx0‖ = 1 and ‖S − T‖ < ε. This
property was introduced in [22] (see also [21] for more recent results).

In parallel with the study of denseness of norm-attaining operators, a lot of attention was given also
to the study of the denseness of numerical radius attaining operators. O. Toeplitz [37] defined in 1918
the numerical range for matrices which could be naturally extended for bounded operators on the Hilbert
space H. The numerical range of T is defined by W (T ) = {〈Tx, x〉 : x ∈ SH} and its numerical radius
by ν(T ) = sup{|λ| : λ ∈ W (T )} = sup{|〈Tx, x〉| : x ∈ SH}, where the symbol 〈 , 〉 stands for the inner
product on H. Note that ν is a seminorm on L(H) satisfying ν(T ) 6 ‖T‖ for every T ∈ L(H). It is well-
known that for a complex Hilbert space H with dimension greater than 1, we always have ‖T‖ 6 2ν(T ) for
every T ∈ L(H) (see [27], pg. 114), which, on the other hand, it is not true for real Hilbert spaces. Recall
that an operator on H attains the numerical radius if there is x0 ∈ SH such that |〈Tx0, x0〉| = ν(T ).
These concepts can be extended for a general Banach space (see [8, 32]). For instance, the numerical
radius of an operator T ∈ L(X) is defined by ν(T ) = sup{|x∗(Tx)| : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}. We
refer the reader to the classical books [12, 13] for a complete background on the numerical range theory.

B. Sims showed that every self-adjoint operator on a Hilbert space can be approximated by self-adjoint
operators each of which attains the numerical radius [35, Theorem 3.9] and I. Berg and B. Sims proved the
denseness of numerical radius attaining operators on a uniformly convex space [9]. Also, many Banach
spaces, such as c0, `1, C(K) (where K is a compact Hausdorff space), L1(µ), uniformly smooth Banach
spaces, and Banach spaces with the Radon-Nikodým property were shown to satisfy the property that
the set of the numerical radius attaining operators is dense in the space of all bounded linear operators
(see [1, 7, 15, 16, 17]).

Motivated by the BPBp, some authors studied the Bishop-Phelps-Bollobás property for numerical
radius (see, for instance, [24, 26, 30]) by considering the numerical radius of an operator instead of its
norm. We say that a Banach space X has the Bishop-Phelps-Bollobás property for numerical radius (the
BPBp-ν, for short) if given ε > 0, then there is η(ε) > 0 such that whenever T ∈ L(X) with ν(T ) = 1
and (x, x∗) ∈ SX × SX∗ with x∗(x) = 1 satisfy

|x∗(Tx)| > 1− η(ε),

there exist S ∈ L(X) with ν(S) = 1 and (z, z∗) ∈ SX × SX∗ with z∗(z) = 1 such that

|z∗(Sz)| = 1, ‖z∗ − x∗‖ < ε, ‖z − x‖ < ε, and ‖S − T‖ < ε.

Among other results, a uniformly convex and uniformly smooth complex Banach space satisfies the
BPBp-ν (see [30, Corollary 7]). In particular, so do complex Hilbert spaces and complex Lp-spaces with
1 < p < ∞. Actually, a real Hilbert space and an L1(µ) space for every measure µ also satisfy the
BPBp-ν (see [29, Theorem 3.2] and [30, Theorem 9] (or [24, Theorem 9]), respectively). However, every
separable infinite dimensional Banach space can be renormed to fail the BPBp-ν ([30, Theorem 17]).
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Similarly to the BPBpp, we are interested in studying a stronger property than the BPBp-ν for classical
operators on complex Hilbert spaces. To be more precise, we introduce the Bishop-Phelps-Bollobás point
property for numerical radius: we say that a Banach space X has the Bishop-Phelps-Bollobás point
property for numerical radius (the BPBpp-ν, for short) if given ε > 0, there is η(ε) > 0 such that
whenever T ∈ L(X) with ν(T ) = 1 and (x, x∗) ∈ SX × SX∗ with x∗(x) = 1 satisfy |x∗(Tx)| > 1 − η(ε),
there is a new operator S ∈ L(X) with ν(S) = 1 such that

|x∗(Sx)| = 1 and ‖S − T‖ < ε.

It was recently discovered that if the numerical index of a Banach space X (the numerical index of X is
defined by n(X) = inf{ν(T ) : T ∈ L(X), ‖T‖ = 1}) is one and X satisfies the BPBpp-ν, then X must
be one-dimensional [23]. On the other hand, as we have mentioned before, L1(µ) satisfies the BPBp-ν
for every measure µ (see [30, Theorem 9]). Thus, since the numerical index of L1(µ)) is one, L1(µ) is an
example of a Banach space which has the BPBp-ν but not the BPBpp-ν.

Let us now give the contents of this paper. In Section 2, we recall some properties of a resolution
of the identity on a complex Hilbert space, and show a technical result which allows us to transfer the
BPBp-ν (resp. the BPBp) to the BPBpp-ν (resp. the BPBpp). In Section 3, we study the Bishop-Phelps-
Bollobás point property for some classes of operators defined on a complex Hilbert space as self-adjoint,
anti-symmetric, unitary, normal, compact, and Schatten-von Neumann. As a consequence of these results
and their proofs, we get the analogous for positive, positive Schatten-von Neumann, compact positive,
self-adjoint Schatten-von Neumann, and normal Schatten-von Neumann operators. Finally, in Section 4,
we consider similar problems for the Bishop-Phelps-Bollobás point property for numerical radius.

2. Preliminaries

In this section we show some technical results, which we need in discussing the problems that appear
in sections 3 and 4. We begin with giving the definition of the BPBp (and BPBp-ν) for a class of
operators A and recall the definition and some properties of the Schatten-von Neumann classes and some
basic notation and results from spectral measure. After this, we apply the fact that Hilbert spaces have
transitive norms in order to transfer the BPBp-ν (resp. the BPBp) to the BPBpp-ν (resp. the BPBpp).

The definition of the BPBp (resp. the BPBpp) for compact operators already appeared in [20, Defini-
tion 1.4] (resp. [21, Definition 5.1]) and the definition of BPBp-ν for A ⊂ L(X) appeared in [5, Definition
2.1]. Next, we state, for a Hilbert space H, the definitions of the BPBp (and BPBpp) for A ⊂ L(H) and
the BPBp-ν (and BPBpp-ν) for A ⊂ L(H) that we are working with in this paper.

Definition 2.1. Let H be a Hilbert space and A ⊂ L(H).

(a) We say that H has the BPBp for A if given ε > 0, there is η(ε) > 0 such that whenever T ∈ A
with ‖T‖ = 1 and x0 ∈ SH satisfy

‖Tx0‖ > 1− η(ε),

there are S ∈ A with ‖S‖ = 1 and x1 ∈ SH such that

‖Sx1‖ = 1, ‖x1 − x0‖ < ε, and ‖S − T‖ < ε.

If x1 = x0, then we say H has the BPBpp for A.

(b) We say that H has the BPBp-ν for A if given ε > 0, there is η(ε) > 0 such that whenever T ∈ A
with ν(T ) = 1 and x0 ∈ SH satisfy

|〈Tx0, x0〉| > 1− η(ε),

there are S ∈ A with ν(S) = 1 and x1 ∈ SH such that

|〈Sx1, x1〉| = 1, ‖x1 − x0‖ < ε, and ‖S − T‖ < ε.

If x1 = x0, then we say H has the BPBpp-ν for A.
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Let H be a complex Hilbert space. For a compact operator T 6= 0 on H, the operator |T | has the
spectral representation

(1) |T | =
n0∑
j=1

λj〈·, xj〉xj ,

where n0 ∈ N ∪ {∞}, {λj} is the sequence of non-zero eigenvalues of |T | (arranged in decreasing order
and counted according to their multiplicities), and {xj} is the corresponding orthonormal sequence of
eigenvectors. For 1 6 p < ∞, the Schatten-von Neumann class Sp(H) consists of all compact operators
T with

σp(T ) =

 ∞∑
j=1

λpj

1/p

<∞.

Sp(H) is a Banach space endowed with the Schatten p-norm σp(·). The elements of Sp(H) are called
Schatten-von Neumann operators. We define S∞(H) to be simply L(H). It is well-known that the
Schatten p-norm has the monotonicity property: for 1 6 p 6 p′ 6∞,

(2) ‖T‖ = σ∞(T ) 6 σp′(T ) 6 σp(T ) 6 σ1(T ).

In Theorem 3.1, we prove not only that H has the BPBpp for Schatten-von Neumann operators but also
that a given Schatten-von Neumann operator can be approximated by some operator of the same class
in the Schatten p-norm (see [25, Theorem 4.1]). To do so, we need the following generalization of the
Hölder inequality. Suppose that 1 6 r, s, t 6 ∞, t−1 = r−1 + s−1, R ∈ Sr(H), and S ∈ Ss(H). Then
RS ∈ St(H) and σt(RS) 6 σr(R)σs(S) (see, for example, [33, Theorem 2.3.10]).

Let M be a σ-algebra in a set Ω. A resolution of the identity (on M) is a mapping E : M → L(H)
with the following properties:

(1) E(∅) = 0, E(Ω) = IdH .
(2) Each E(ω) is a self-adjoint projection.
(3) E(ω′ ∩ ω′′) = E(ω′)E(ω′′).
(4) If ω′ ∩ ω′′ = ∅, then E(ω′ ∪ ω′′) = E(ω′) + E(ω′′).
(5) For every x ∈ H and y ∈ H, the set function Ex,y(ω) = 〈E(ω)x, y〉 is a complex measure on M

(see, for example, [34, Definition 12.17]). Recall that if T ∈ L(H) is normal, then there exists a unique
resolution of the identity E on the Borel subsets of σ(T ), which satisfies

T =

∫
σ(T )

z dE(z).

Furthermore, every projection E(ω) commutes with every S ∈ L(H) which commutes with T . Moreover,
with the same hypothesis, if f : σ(T ) → C is a bounded Borel function, δ > 0, B(δ) denotes the closed
disk centered at the origin with radius r > 0 in C,

N1 =

∫
σ(T )\B(δ)

f(z) dE(z) and N2 =

∫
σ(T )∩B(δ)

z dE(z),

then

(1) ranE(σ(T ) \B(δ) ⊂ ranT .
(2) ranN1 ⊂ ranE(σ(T ) \ B(δ)) and kerN1 ⊃ ranE(σ(T ) ∩ B(δ)). In particular, if |f(z)| > 0 for all

z ∈ σ(T ) \B(δ), then ranN1 = ranE(σ(T ) \B(δ)).
(3) ranN2 ⊂ ranE(σ(T ) ∩B(δ)) and kerN2 ⊃ ranE(σ(T ) \B(δ)).

This can be found, for example, in [18, Lemma 2.4]. Also, we denote by f(T ) the operator∫
σ(T )

f(z)E(z),

where f is a bounded Borel function on σ(T ). Moreover, we need the following result.
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Lemma 2.2. [19, Proposition 4.1]. If T is a normal operator and T =
∫
z dE(z), then T is compact if

and only if for every ε > 0, E({z : |z| > ε}) has finite rank.

In order to prove Theorem 2.5, we need the following two lemmas. The first one says the well-known
fact that Hilbert spaces have transitive norms. If T ∈ L(H), we denote by T ∗ the adjoint operator of T .

Lemma 2.3. ([6, Lemma 2.2]) Let H be a (real or complex) Hilbert space. Given x and y in SH , there
is a surjective isometry R ∈ L(H) such that

Rx = y and ‖R− IdH ‖ = ‖x− y‖.

Lemma 2.4. Let H be a complex Hilbert space. Given x, y ∈ SH , consider the surjective isometry
R ∈ L(H) from Lemma 2.3. Define Rx,y : L(H) −→ L(H) by Rx,y(T ) := R∗ ◦ T ◦ R for T ∈ L(H).
Then, for every T ∈ L(H), we have

(i) ν(T ) = ν(Rx,y(T )) and ‖T‖ = ‖Rx,y(T )‖.
(ii) 〈Ty, y〉 = 〈Rx,y(T )(x), x〉 and ‖T (y)‖ = ‖Rx,y(T )(x)‖.
(iii) ‖Rx,y(T )− T‖ 6 2‖x− y‖‖T‖.

Proof. (i) is clear, because R is a surjective isometry. For (ii), note that

〈Rx,y(T )(x), x〉 = 〈(R∗ ◦ T ◦R)(x), x〉 = 〈(T ◦R)(x), Rx〉 = 〈Ty, y〉

and ‖Rx,y(T )(x)‖ = ‖(T ◦R)(x)‖ = ‖Ty‖. Finally, (iii) holds since

‖Rx,y(T )− T‖ = ‖R∗ ◦ T ◦R− T‖
6 ‖R∗ ◦ T ◦R− T ◦R‖+ ‖T ◦R− T‖
6 ‖R∗ − IdH‖‖T ◦R‖+ ‖R− IdH‖‖T‖
= ‖x− y‖‖T‖+ ‖x− y‖‖T‖.

�

Now we are ready to prove the desired theorem that we will use in the next sections.

Theorem 2.5. Let H be a complex Hilbert space. Let A ⊂ L(H) be such that H has the BPBp-ν (resp.
the BPBp) for A and suppose that Rx,yA ⊂ A for every x, y ∈ SH , where Rx,y is defined as in Lemma
2.4. Then, H has the BPBpp-ν (resp. the BPBpp) for A.

Proof. We give a proof for numerical radius. Let ε > 0 be given. By hypothesis, we can consider η(ε) > 0
such that whenever T ∈ A with ν(T ) = 1 and x0 ∈ SH satisfy

|〈Tx0, x0〉| > 1− η(ε),

there are S̃ ∈ A with ν(S̃) = 1 and x1 ∈ SH such that

|〈S̃x1, x1〉| = 1, ‖x1 − x0‖ < ε and ‖S̃ − T‖ < ε.

Define S := Rx0,x1(S̃). By hypothesis, S ∈ A and ‖S̃‖ 6 2ν(S̃) = 2, because the numerical index of a
complex Hilbert space H is 1/2. It follows from Lemma 2.4 that |〈Sx0, x0〉| = 1 = ν(S) and

‖S − T‖ 6 ‖S − S̃‖+ ‖S̃ − T‖ < 4ε+ ε = 5ε.

�
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3. The Bishop-Phelps-Bollobás point property for A ⊂ L(H)

In this section, we prove that a complex Hilbert H satisfies the BPBpp for some classical operators
defined on H. It worth mentioning that in Theorem 3.1 the items (a), (h), and (i) can be obtained from
[4, Corollary 2.3] (see also [21]) combined with Theorem 2.5 due to the uniform convexity of a Hilbert
space and that items (b) and (f) can be shown, with the aid of Theorem 2.5, by using the facts from
[25] and [18], respectively. Nevertheless, in what follows, by elaborating a spectral measure technique,
we shall give a proof using symbolic calculus which will cover all these results and even more cases (see
Proposition 3.2).

Theorem 3.1. Let H be a complex Hilbert space. Then,

(a) H has the BPBpp for operators.
(b) H has the BPBpp for self-adjoint operators.
(c) H has the BPBpp for compact self-adjoint operators.
(d) H has the BPBpp for anti-symmetric operators.
(e) H has the BPBpp for unitary operators.
(f) H has the BPBpp for normal operators.
(g) H has the BPBpp for compact normal operators.
(h) H has the BPBpp for compact operators.
(i) H has the BPBpp for Schatten-von Neumann operators.

Proof. Let 0 < ε < 1 and T be a positive operator with norm 1 and ‖Tx0‖ > 1− ε2/4 for some x0 ∈ SH .
Let y0 ∈ SH be such that 〈Tx0, y0〉 > 1 − ε2/4. Since T > 0, we have that T is self-adjoint and
σ(T ) ⊂ [0,∞); hence it follows from [25, Theorem 2.1] that there are a self-adjoint operator R ∈ L(H)
with ‖R‖ = 1 and a vector x1 ∈ SH such that

〈Rx1, x1〉 = 1, ‖R− T‖ < ε, ‖x0 − x1‖ < 4
√
ε, and ‖y0 − x1‖ < 4

√
ε.

Indeed, R and x1 are constructed explicitly as

R = E(A) +

∫
B

z dE(z) and x1 =
E(A)x0

‖E(A)x0‖
,

where E is the spectral measure of (σ(T ),B(σ(T )), H),

A = {z ∈ σ(T ) : z > 1− ε}, and B = {z ∈ σ(T ) : 0 6 z 6 1− ε}

(notice that, since T > 0, A− = {z ∈ σ(T ) : z < −1 + ε} = ∅ and then y1 = x1 in [25, Theorem 2.1]).
Observe that the operator R can be rewritten as R = Tf(T ), where f : [0, 1]→ [0,∞) is defined as

(3) f(t) =

{
1 t ∈ [0, 1− ε],
1
t t ∈ (1− ε, 1]

and f(T ) denotes the symbolic calculus for T . With these considerations, we can start our proof.

For a general operator T ∈ L(H) with ‖T‖ = 1, we suppose that ‖Tx0‖ > 1− ε2/4 for some x0 ∈ SX .
Take y0 ∈ SH so that 〈Tx0, y0〉 > 1 − ε2/4. Consider the factorization T = U |T |, where U is a partial
isometry. Then, 〈

|T |x0,
U∗y0

‖U∗y0‖

〉
> 〈|T |x0, U

∗y0〉 = 〈U |T |x0, y0〉 > 1− ε2

4
.

By using the first part of the proof, we consider the operator |T |f(|T |), where f is defined in (3), and
x1 ∈ SH satisfying

(i) ‖|T |f(|T |)‖ = 〈|T |f(|T |)x1, x1〉 = 1,
(ii) ‖|T |f(|T |)− |T |‖ < ε,

(iii) ‖x0 − x1‖ < 4
√
ε, and

(iv) ‖U∗y0/‖U∗y0‖ − x1‖ < 4
√
ε.
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Now consider S := U |T |f(|T |) = Tf(|T |) and notice that x1 ∈ ranE(A) ⊆ ran|T | = (ker |T |)⊥ which
implies that U∗Ux1 = x1. We then have

〈Sx1, Ux1〉 = 〈|T |f(|T |)x1, x1〉 = 1

which implies ‖S‖ = ‖Sx1‖ = 1. Moreover, by (ii), ‖S − T‖ = ‖U |T |f(|T |) − U |T |‖ < ε. This proves
that H has the BPBp for operators. By Theorem 2.5, H has the BPBpp for operators and we get (a).

Next, we claim that S defined as above is self-adjoint, normal, compact, and Schatten-von Neumann,
whenever T is self-adjoint, normal, compact, and Schatten-von Neumann, respectively. We first show it
for normal operators. If T is normal, then the partial isometry U , which is actually unitary in this case,
can be chosen so that U |T | = |T |U and this implies that Ug(|T |) = g(|T |)U for every bounded Borel
function g (see, for example, [34, section 12.24]). Thus,

S∗S = (f(|T |)T ∗)(Tf(|T |))
= (f(|T |)T )(T ∗f(|T |))
= (f(|T |)U |T |)(f(|T |)T )∗

= (U |T |f(|T |))(U |T |f(|T |))∗ = SS∗,

so S is normal. An analogous argument proves that S is self-adjoint when T is self-adjoint. Since the
compact and Schatten-von Neumann operators are operator ideals, our claim is achieved. This proves
(b), (f), (h), and (i) and also (c) and (g). Notice that (d) is just a consequence of (b) and that (e) is
trivial.

Finally, we give a result that we can approximate a Schatten-von Neumann operator T ∈ Sp(H) not
only in the operator norm but also in Schatten p-norm. Suppose that ‖Tx0‖ > 1−ε2/4 for some x0 ∈ SX .
By [25, Theorem 4.1], S = U |T |f(|T |) ∈ Sp(H) and x1 ∈ SH satisfy

‖S‖ = ‖Sx1‖ = 1, ‖x1 − x0‖ < β(ε), and σp(S − T ) < 2εM,

where σp(T ) 6 M and T = U |T | is the polar decomposition of T . By Lemma 2.3, there is a surjective

isometry R such that R(x0) = x1 and ‖R − IdH ‖ = ‖x0 − x1‖ < β(ε). Define S̃ = S ◦ R. Since

Schatten norms are isometrically invariant, σp(S̃) = σp(S ◦ R) = σp(S), and S̃ ∈ Sp(H). Moreover,

‖S̃x0‖ = ‖(S ◦ R)(x0)‖ = ‖Sx1‖ = 1. Since ‖S̃‖ = ‖S ◦ R‖ = ‖S‖, we obtain that ‖S̃‖ = ‖S̃x0‖ = 1.
Finally, by using Hölder’s inequality, we get that

σp(T − S̃) = σp(T − S ◦R) 6 σp(T − S) + σp(S − S ◦R)

6 σp(T − S) + σp(S(IdH −R))

6 2εM + σp(S)‖ IdH −R‖
6 2εM + (σp(T ) + σp(S − T ))β(ε)

< 2εM + (1 + 2ε)Mβ(ε).

Notice from the monotonicity property (2) of Schatten p-norm that ‖T − S̃‖ < 2εM + (1 + 2ε)Mβ(ε)
automatically. �

Let us notice the following about Theorem 3.1. From the first part of the proof, we have that when
T ∈ L(H) is a positive operator with norm 1 and ‖Tx0‖ > 1 − ε2/4 for some x0 ∈ SH , there exists a
self-adjoint operator R = Tf(T ) ∈ L(H) which attains the norm at x1 ∈ SH with ‖x1 − x0‖ < 4

√
ε and

satisfies ‖R− T‖ < ε. Note that

〈Rx, x〉 = 〈E(A)x, x〉+

〈∫
B

z dE(z)x, x

〉
,

for every x ∈ H, where A = {z ∈ σ(T ) : z > 1− ε} and B = {z ∈ σ(T ) : 0 6 z 6 1− ε}. Since E(A) is a
self-adjoint projection (so, the set function Ex,x is a positive measure on Borel subsets of σ(T )),

〈E(A)x, x〉 = ‖E(A)x‖2 > 0 and

∫
B

z dEx,x(z) > 0.
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It follows that R is a positive operator. Therefore, if we start with a positive operator (resp. positive
Schatten-von Neumann operator), then we end up with another positive operator (resp. positive Schatten-
von Neumann operator). It is clear that the operator R = Tf(T ) above is compact whenever T is
compact positive and that S = U |T |f(|T |) is self-adjoint and normal whenever T is self-adjoint and
normal, respectively.

Thus, to sum it up, we have the following result.

Proposition 3.2. Let H be a complex Hilbert space.

(a) H has the BPBpp for positive operators.
(b) H has the BPBpp for positive Schatten-von Neumann operators.
(c) H has the BPBpp for compact positive operators.
(d) H has the BPBpp for self-adjoint Schatten-von Neumann operators.
(e) H has the BPBpp for normal Schatten-von Neumann operators.

4. The Bishop-Phelps-Bollobás point property for numerical radius for A ⊂ L(H)

In this section, we consider the analogue of Theorem 3.1 and Proposition 3.2 for the BPBpp-ν.

Theorem 4.1. Let H be a complex Hilbert space. Then,

(a) H has the BPBpp-ν for operators.
(b) H has the BPBpp-ν for self-adjoint operators.
(c) H has the BPBpp-ν for compact self-adjoint operators
(d) H has the BPBpp-ν for anti-symmetric operators.
(e) H has the BPBpp-ν for unitary operators.
(f) H has the BPBpp-ν for normal operators.
(g) H has the BPBpp-ν for compact normal operators.
(h) H has the BPBpp-ν for compact operators.
(i) H has the BPBpp-ν for Schatten-von Neumann operators.

Proof. Let ε ∈ (0, 1) be given. By [30, Corollary 7], there exists ε 7→ η(ε) such that whenever T ∈ L(H)
with ν(T ) = 1 and x0 ∈ SH satisfy

(4) |〈Tx0, x0〉| > 1−min {ε, η (ε)}

there are S̃ ∈ L(H) with ν(S̃) = 1 and x∞ ∈ SH such that

|〈S̃x∞, x∞〉| = 1, ‖x∞ − x0‖ < ε, and ‖S̃ − T‖ < ε

Following the proofs of [30, Proposition 4 and Proposition 6], one can observe that the operator S̃ is
constructed from a limit of a sequence of operators {Tn}, where

(5) Tn = T +Kn and Kn = α1

(ε
4

)
〈 · , x1〉x1 + · · ·αn

(ε
4

)n
〈 · , xn〉xn

for some α1, . . . , αn in SC and vectors x1, . . . , xn in SH . At the same time, the vector x∞ is obtained as
a limit of a sequence of vectors {xn} satisfying

(6) lim
n
ν(Tn) = lim

n
|〈Tnxn, xn〉|.

It follows that S̃ is compact whenever T is compact. Thus, (a) and (h) hold by applying Theorem 2.5.

To observe (b) and (c), we assume that the above T ∈ L(H) is a self-adjoint operator (resp. compact
self-adjoint operator). Since 〈Tx0, x0〉 ∈ R, we may assume that 〈Tx0, x0〉 > 0 (otherwise, we would work
with −T ). For some θ ∈ R, we have

〈S̃x∞, x∞〉 = eiθ|〈S̃x∞, x∞〉| = eiθ ∈ SC.

Set r := 〈Tx0, x0〉 ∈ R+. We have that 〈(e−iθS̃)x∞, x∞〉 = 1 and that

|eiθ − r| = |〈S̃x∞, x∞〉 − 〈Tx0, x0〉| 6 ‖S̃ − T‖+ 2‖x∞ − x0‖ < 3ε.
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So,

|eiθ − 1| 6 |eiθ − r|+ |r − 1| < 4ε.

Since ‖S̃‖ 6 2ν(S̃) = 2, we get

‖S̃ − (e−iθS̃)‖ 6 |1− e−iθ|‖S̃‖ 6 2|eiθ − 1| < 8ε,

which implies that

‖(e−iθS̃)− T‖ 6 ‖(e−iθS̃)− S̃‖+ ‖S̃ − T‖ < 9ε.

Note that we just proved that the operator (resp. compact operator) S′ := (e−iθS̃) ∈ L(H) satisfies

ν(S′) = Re 〈S′x∞, x∞〉 = 1 with ‖x∞ − x0‖ < ε and ‖S′ − T‖ < 9ε.

Now define S := S′+(S′)∗

2 ∈ L(H). Then S is self-adjoint (resp. compact self-adjoint), ν(S) = ‖S‖ 6 1,
and

|〈Sx∞, x∞〉| =
∣∣∣∣12 〈S′x∞, x∞〉+

1

2
〈S′x∞, x∞〉

∣∣∣∣ = Re 〈S′x∞, x∞〉 = 1.

Hence, ν(S) = |〈Sx∞, x∞〉| = 1. Finally, since T = T ∗, we have

‖S − T‖ 6 1

2
‖S′ − T‖+

1

2
‖(S′)∗ − T‖ =

1

2
‖S′ − T‖+

1

2
‖(S′)∗ − T ∗‖ < 9ε,

which completes the proof of (b) and (c) due to Theorem 2.5. Note that (d) follows directly from (b).

Next, we prove (i) by approximating a given Schatten-von Neumann operator by some operator in the
same class in the p-Schatten norm, which will imply that H has the BPBpp for Schatten-von Neumann
operators due to the monotonicity (2). Indeed, suppose that T ∈ Sp(H) with ν(T ) = 1 satisfies (4) with
the same ε 7→ η(ε) for some x0 ∈ SH . Note that the finite rank operator Kn in (5) belongs to Sp(H),
so Tn ∈ Sp(H). Also, σp(Tn+1 − Tn) = εn+1/4n+1 for every n ∈ N. This shows that {Tn} is a Cauchy
sequence in Sp(H), so Tn → T∞ for some T∞ ∈ Sp(H) (and hence ‖Tn − T∞‖ → 0 as well). Note that
σp(T∞ − T ) 6 ε/(4− ε) < ε and from (6) that

ν(T∞) = lim
n→∞

ν(Tn) = lim
n
|〈Tnxn, xn〉| = |〈T∞x∞, x∞〉|.

Since

|1− v(T∞)| = |ν(T )− v(T∞)| 6 ‖T − T∞‖ < ε,

we have ν(T∞) > 1− ε > 0. We define S̃ = 1
v(T∞)T∞ ∈ Sp(H), then v(S̃) = |〈S̃x∞, x∞〉| = 1. Since

σp(S̃ − T∞) = σp

((
1− v(T∞)

v(T∞)

)
T∞

)
=

∣∣∣∣1− v(T∞)

v(T∞)

∣∣∣∣σp(T∞)

6

(
ε

1− ε

)
σp(T∞)

6

(
ε

1− ε

)
(σp(T ) + σp(T∞ − T ))

<

(
ε

1− ε

)
(M + ε),

where σp(T ) 6M for some M > 0, we obtain

σp(S̃ − T ) 6 σp(S̃ − T∞) + σp(T∞ − T ) <

(
ε

1− ε

)
(M + ε) + ε.

Applying Theorem 2.5, we finish the proof of (i).
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We prove (e) directly. Let ε ∈ (0, 1) be given and T ∈ L(H) be unitary with ν(T ) = 1. Now pick

x0 ∈ SH be such that |〈Tx0, x0〉| > 1− ε2

2 . Let θ ∈ R such that 〈Tx0, x0〉 = eiθ |〈Tx0, x0〉|. Then

‖Tx0 − eiθx0‖2 = ‖Tx0‖2 + ‖x0‖2 − 2 Re 〈Tx0, e
iθx0〉

= 2− 2 |〈Tx0, x0〉|

< 2− 2

(
1− ε2

2

)
= ε2.

So, ‖Tx0 − eiθx0‖ < ε. Since ‖Tx0‖ = ‖eiθx0‖ = 1, by Lemma 2.3 there is a surjective linear isometry
R ∈ L(H) which maps Tx0 to eiθx0 and ‖R − IdH ‖ < ε. Let us notice the obvious fact that a rotation
of T is also unitary if T is unitary. Define S := R ◦ T ∈ L(H). Then S is unitary, ν(S) = ‖S‖ = 1,
|〈Sx0, x0〉| = |〈eiθx0, x0〉| = 1, and ‖S − T‖ = ‖R ◦ T − T‖ 6 ‖R− IdH ‖‖T‖ = ‖R− IdH ‖ < ε.

It remains to prove (f) and (g). Let ε ∈ (0, 1
2 ) be given. Suppose that T ∈ L(H) is a normal

operator with ‖T‖ = ν(T ) = 1 and |〈Tx0, x0〉| > 1 − ε for some x0 ∈ SH . If θ ∈ R is such that
〈Tx0, x0〉eiθ = |〈Tx0, x0〉|, then

‖T (eiθx0)− x0‖2 = 〈T (eiθx0)− x0, T (eiθx0)− x0〉
= ‖Tx0‖2 + ‖x0‖2 − 〈T (eiθx0), x0〉 − 〈x0, T (eiθx0)〉
< 2− 2(1− ε) = 2ε.

That is, ‖T (eiθx0) − x0‖ <
√

2ε. Let E be the corresponding spectral measure of T and consider the
following orthogonal decomposition: x0 = x1 + x2, where

x1 = E(σ(T ) \B(1−
√

2ε))(x0), x2 = E(σ(T ) ∩B(1−
√

2ε))(x0)

and let N1 and N2 be defined as

N1 =

∫
σ(T )\B(1−

√
2ε)

z

|z|
dE(z) and N2 =

∫
σ(T )∩B(1−

√
2ε)

z dE(z),

where B(r) denotes the closed disk centered at the origin with radius r > 0 in C. From [18, Theorem

3.1], we notice that ‖x1‖ > 1−
√

2ε, ‖x2‖ 6 4
√

2ε and moreover if we let xε = x1/‖x1‖, then ‖xε− x0‖ 6√
2ε+ 4

√
2ε. This implies that

‖T (eiθxε)− xε‖ =
1

‖x1‖
‖T (eiθx1)− x1‖

6
1

‖x1‖
(
‖T (eiθx0)− x0‖+ ‖T (eiθx2)− x2‖

)
6

1

1−
√

2ε

(√
2ε+ 2

4
√

2ε
)
.

Note now that

‖N1xε‖2 =
〈
E(σ(T ) \B(1−

√
2ε))xε, xε

〉
= 〈xε, xε〉 = 1,

because xε belongs to the range of E(σ(T ) \ B(1 −
√

2ε)). From [18, Lemma 2.4], we see that the

range space K := ranE(σ(T ) \ B(1 −
√

2ε)) is a closed subspace of H. By Lemma 2.3, there is a

surjective isometry R̃ ∈ L(K) such that R̃xε = N1(eiθxε) and ‖R̃ − IdK ‖ =
∥∥xε −N1(eiθxε)

∥∥ , because

ranN1 ⊂ K. Since E(σ(T ) \ B(1−
√

2ε)) is a self-adjoint projection, we can observe that H = K ⊕K ′,
where K ′ := ker(E(σ(T ) \B(1−

√
2ε))).

Let us define the operator R ∈ L(H) as R = R̃ ⊕ IdK′ , that is, R(x + y) = R̃(x) + y for x ∈ K and

y ∈ K ′. Since R̃ is a surjective isometry, so is R. The adjoint R∗ of R is given by R∗ = (R̃)∗ ⊕ IdK′ . We
claim that the operator R∗ ◦N1 is also a normal operator. To see this, note first that

(R∗N1)(R∗N1)∗ = R∗E(σ(T ) \B(1−
√

2ε))R,

and

(R∗N1)∗(R∗N1) = E(σ(T ) \B(1−
√

2ε)).



THE BISHOP-PHELPS-BOLLOBÁS PROPERTIES IN COMPLEX HILBERT SPACES 11

Now, if x ∈ K, we have

[R∗E(σ(T ) \B(1−
√

2ε))R](x) = R∗(Rx) = x and E(σ(T ) \B(1−
√

2ε))(x) = x.

If x ∈ K ′, we have

[R∗E(σ(T ) \B(1−
√

2ε))R](x) = R∗(E(σ(T ) \B(1−
√

2ε))x) = 0, E(σ(T ) \B(1−
√

2ε))(x) = 0.

This observation shows that R∗E(σ(T ) \B(1−
√

2ε))R = E(σ(T ) \B(1−
√

2ε)) and the claim is proved.

We define the operator S ∈ L(H) by

S = R∗ ◦N1 +N2.

To see that S is a normal operator, it suffices to check that R∗ ◦N1 and N2 commute with each other.
Indeed, from

ranN2 ⊂ kerN1 and ranR∗N1 ⊂ ranE(σ(T ) \B(1−
√

2ε)) ⊂ kerN2,

we obtain that (R∗N1)N2 = 0 = N2(R∗N1). Moreover,

‖Sx‖2 = ‖R∗N1x+N2x‖2

= ‖R∗N1x1‖2 + ‖N2x2‖2

6 ‖x1‖2 + ‖x2‖2 = ‖x‖2

for x = x1 + x2 ∈ K ⊕K ′, because ranR∗N1 ⊂ K and ranN2 ⊂ K ′. This implies that ‖S‖ 6 1. Now,
note that

|〈Sxε, xε〉| = |〈R∗N1xε, xε〉| = |〈N1xε, Rxε〉| = 1.

This shows that ν(S) > 1; hence ‖S‖ = ν(S) = 1. To assert that S is the desired normal operator, it
only remains to show that S is close to T . Indeed,

‖S − T‖ =

∥∥∥∥∥R∗N1 −
∫
σ(T )\B(1−

√
2ε)

z dE(z)

∥∥∥∥∥
6 ‖R̃− IdK ‖+

∥∥∥∥∥
∫
σ(T )\B(1−

√
2ε)

(
z

|z|
− z
)
dE(z)

∥∥∥∥∥
6 ‖R̃− IdK ‖+

√
2ε,

because |z/|z| − z| 6
√

2ε for all z ∈ σ(T ) \B(1−
√

2ε). Since

‖R̃− IdK ‖ =
∥∥xε −N1(eiθxε)

∥∥
6 ‖xε − T (eiθxε)‖+

∥∥T (eiθxε)−N1(eiθxε)
∥∥

6
1

1−
√

2ε

(√
2ε+ 2

4
√

2ε
)

+

∥∥∥∥∥
(∫

σ(T )\B(1−
√

2ε)

(
z − z

|z|

)
dE(z)

)
(eiθxε)

∥∥∥∥∥
6

1

1−
√

2ε

(√
2ε+ 2

4
√

2ε
)

+
√

2ε,

we conclude that

‖S − T‖ 6 1

1−
√

2ε

(√
2ε+ 2

4
√

2ε
)

+ 2
√

2ε.

In summary, we construct the normal operator S and xε ∈ SH satisfying:

ν(S) = |〈Sxε, xε〉| = 1, ‖xε − x0‖ 6
√

2ε+
4
√

2ε, and ‖S − T‖ 6 1

1−
√

2ε

(√
2ε+ 2

4
√

2ε
)

+ 2
√

2ε.

Therefore, (f) follows again by using Theorem 2.5.
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To prove (g), we only need to show that the operator S in the proof of (f) is compact when T is
compact and normal. To prove that S is compact, since S = R∗ ◦ N1 + N2, it suffices to show that N1

and N2 are compact. Recall that

N1 =

∫
σ(T )\B(1−

√
2ε)

z

|z|
dE(z) and N2 =

∫
σ(T )∩B(1−

√
2ε)

z dE(z)

and observe from Lemma 2.2 that

ranN1 ⊂ ranE(σ(T ) \B(1−
√

2ε))

is of finite dimension. Thus, N1 is compact. To see that N2 is compact, we let 0 < ε′ < 1−
√

2ε be given.
Now note that∫

σ(T )∩B(1−
√

2ε)

z dE(z)−

(∫
σ(T )∩B(1−

√
2ε)

z dE(z)

)
E(∆ε′) =

∫
σ(T )

z χB(1−
√

2ε)(z)χB(ε′)(z) dE(z)

=

∫
σ(T )

zχB(ε′)(z) dE(z),

where ∆ε′ = {z ∈ σ(T ) : |z| > ε′}. It follows that∥∥∥∥∥
∫
σ(T )∩B(1−

√
2ε)

z dE(z)−

(∫
σ(T )∩B(1−

√
2ε)

z dE(z)

)
E(∆ε′)

∥∥∥∥∥ =

∥∥∥∥∥
∫
σ(T )

zχB(ε′)(z) dE(z)

∥∥∥∥∥ 6 ε′.
Since 0 < ε′ < 1 −

√
2ε is arbitrary and (

∫
σ(T )∩B(1−

√
2ε)

z dE(z))E(∆ε′) is a finite rank operator, we

conclude that N2 is compact. �

As in Proposition 3.2, we would like to get more information from Theorem 4.1. Notice first that

the operator S̃ which appears in the first part of the proof of Theorem 4.1 is obtained from a limit of
a sequence of operators {Tn} (see (5)). Moreover, the argument used in the proof of [30, Proposition 4]
allows us to choose such α1, . . . , αn to be 1 when we start with the assumption that T is positive. Thus
we have that

〈Knx, x〉 =
〈(ε

4

)
〈x, x1〉x1 + · · ·

(ε
4

)n
〈x, xn〉xn, x

〉
=

(ε
4

)
|〈x, x1〉|2 + · · ·+

(ε
4

)n
|〈x, xn〉|2 > 0

for every x ∈ H, so Tn is a positive operator. It follows that S̃ is a positive operator which satisfies

〈S̃x∞, x∞〉 = 1, ‖x∞ − x0‖ < ε, and ‖S̃ − T‖ < ε.

This also shows that the operator T∞ that appears in the proof of item (i) of Theorem 4.1 is positive. On
the other hand, we can argue as in (b) and (c) of Theorem 4.1 to get the last two items of the following
result.

Proposition 4.2. Let H be a complex Hilbert space.

(a) H has the BPBpp-ν for positive operators.
(b) H has the BPBpp-ν for positive Schatten-von Neumann operators.
(c) H has the BPBpp-ν for compact positive operators.
(d) H has the BPBpp-ν for self-adjoint Schatten-von Neumann operators.

Comparing Proposition 4.2 with Proposition 3.2, we see that it is missing the Bishop-Phelps-Bollobás
point property for numerical radius for normal Schatten-von Neumann operators. Since this result requires
a little more of effort, we highlight it in the next proposition followed by its proof.

Proposition 4.3. A complex Hilbert space H has the BPBpp-ν for normal Schatten-von Neumann
operators.
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Proof. Let T be a normal Schatten-von Neumann operator with ν(T ) = ‖T‖ = 1 and x0 ∈ SH be such
that |〈Tx0, x0〉| > 1−ε. Suppose that σp(T ) 6M for some positive number M > 0. Let S = R∗◦N1+N2,
where R,N1, and N2 are the operators defined in the proof of (f) and (g) of Theorem 4.1. Observe that

σp(S − T ) = σp

(
R∗N1 −

∫
σ(T )\B(1−

√
2ε)

z dE(z)

)

6 σp (R∗N1 −N1) + σp

(∫
σ(T )\B(1−

√
2ε)

(
1

|z|
− 1

)
z dE(z)

)

6 ‖R̃− IdK ‖σp(N1) + σp

(∫
σ(T )\B(1−

√
2ε)

(
1

|z|
− 1

)
z dE(z)

)
.

By definition of N1, we have that

σp(N1) = σp

(∫
σ(T )\B(1−

√
2ε)

z

|z|
dE(z)

)

= σp

((∫
σ(T )

z dE(z)

)(∫
σ(T )

1

|z|
χ∆ε

dE(z)

))

6

∥∥∥∥∥
∫
σ(T )

1

|z|
χ∆ε

dE(z)

∥∥∥∥∥σp(T )

6
M

1−
√

2ε
,

where ∆ε = {z ∈ σ(T ) : |z| > 1−
√

2ε}. Similarly, we can see that

σp

(∫
σ(T )\B(1−

√
2ε)

(
1

|z|
− 1

)
z dE(z)

)
6

∥∥∥∥∥
∫
σ(T )

(
1− |z|
|z|

)
χ∆ε

dE(z)

∥∥∥∥∥σp(T )

6
M
√

2ε

1−
√

2ε
.

It follows, in particular, that S is a normal Schatten-von Neumann operator and

σp(S − T ) 6

(
1

1−
√

2ε

(√
2ε+ 2

4
√

2ε
)

+
√

2ε

)
M

1−
√

2ε
+

M
√

2ε

1−
√

2ε
.

�
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[1] M.D. Acosta, Operadores que alcanzan su radio numérico, PhD dissertation, Universidad de Granada, 1990
[2] M.D. Acosta, Denseness of norm attaining mappings, Rev. R. Acad. Cien. Serie A. Mat 100 (2006), 9-30.
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[25] D. Garćıa, H.J. Lee and M. Maestre, The Bishop-Phelps-Bollobás property for hermitian forms on Hilbert

spaces, Quart. J. Math. 65 (2014), 201-209.

[26] A.J. Guirao and O. Kozhushkina, The Bishop-Phelp-Bollobás property for numerical radius in `1(C), Studia
Math. 218 (2013), 41-54.

[27] P.R. Halmos A Hilbert space problem book, Van Nostrand, New York, 1967.

[28] S. K. Kim and H. J. Lee, Uniform convexity and the Bishop-Phelps-Bollobás property, Canad. J. Math. 66,
(2014), 373-386.
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