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Abstract

Fire blight is a destructive plant disease caused by Erwinia amylovora affecting pome fruit

trees, and responsible for large yield declines, long phytosanitary confinements, and high

economic losses. In Portugal, the first major fire blight outbreaks occurred in 2010 and

2011, and although later considered eradicated, the emergence of other outbreaks in recent

years stressed the need to characterize the E. amylovora populations associated with these

outbreaks. In this regard, CRISPR genotyping, assessment of three virulence markers, and

semi-quantitative virulence bioassays, were carried out to determine the genotype, and

assess the virulence of thirty-six E. amylovora isolates associated with outbreaks occurring

between 2010 and 2017 and affecting apple and pear orchards located in the country cen-

tral-west, known as the main producing region of pome fruits in Portugal. The data gathered

reveal that 35 E. amylovora isolates belong to one of the widely-distributed CRISPR geno-

types (5-24-38 / D-a-α) regardless the host species, year and region. Ea 680 was the single

isolate revealing a new CRISPR genotype due to a novel CR2 spacer located closer to the

leader sequence and therefore thought to be recently acquired. Regarding pathogenicity,

although dot-blot hybridization assays showed the presence of key virulence factors,

namely hrpL (T3SS), hrpN (T3E) and amsG from the amylovoran biosynthesis operon in all

E. amylovora isolates studied, pathogenicity bioassays on immature pear slices allowed to

distinguish four virulence levels, with most of the isolates revealing an intermediate to

severe virulence phenotype. Regardless the clonal population structure of the E. amylovora

associated to the outbreaks occurring in Portugal between 2010 and 2017, the different viru-

lence phenotypes, suggests that E. amylovora may have been introduced at different

instances into the country. This is the first study regarding E. amylovora in Portugal, and it

discloses a novel CRISPR genotype for this bacterium.
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1. Introduction

Erwinia amylovora, an Erwiniaceae bacterium species [1], is the etiological agent of fire blight,

a destructive plant disease that affects the productive potential of trees, and the entire pome

fruit trees production sector, of enormous value in Portugal, belonging particularly to the

Amygdaloideae subfamily, previously named Spiraeoideae [2] of the Rosaceae family [3, 4]. E.

amylovora susceptive fruit tree species include major commercial species like pear (Pyrus com-
munis.), apple (Malus domestica), quince (Cydonia oblonga) and loquat (Eriobotrya japonica),

some ornamental species, and wild species [3, 5–8]. The symptoms of fire blight manifest in

the form of blighted shoots, trunks, leaves and roots, which usually become brownish, leading

the infected hosts to develop a burnt aspect, as if they were consumed by fire [4]. E. amylovora
enters through natural openings and wounds in host plants, colonizing the intercellular spaces,

migrating into the vascular system, and producing biofilms that block xylem vessels inhibiting

water transport. This excessive biofilm production can lead to originate bacterial exudates [9–

12]. These exudates are acknowledged as major sources of E. amylovora dissemination to other

nearby hosts through wind, water, insects and by cultural practices, namely pruning using con-

taminated tools [11, 13].

The lack of efficient phytosanitary measures to control and prevent fire blight outbreaks,

which is essential to prevent the dissemination of this disease, has led to the classification of E.

amylovora as a quarantine species, ranked in the list of the ten most important bacterial plant

pathogens alongside other phytopathogens [14–16]. A major challenge faced by phytosanitary

authorities concerning fire blight is the difficulty to timely detect the entry of E. amylovora in a

new area/country, and to implement scientifically informed containment measures [7].

Fire blight originates from North America and has spread to numerous countries in differ-

ent continents, namely Europe, Oceania and Western Asia. The disease was first reported in

Europe in 1957 in England, and has rapidly spread to other European countries, such as

France, Spain, Serbia, Croatia, Tunisia, Hungary, and Switzerland [17–22]. This worldwide

distribution of E. amylovora genotypes may have been particularly favored by the commerce

of infected rootstocks and saplings of host plants, on which the disease passes easily unnoticed,

as the bacteria can live as an endophyte or epiphyte [23, 24].

Comprehensive epidemiological surveys based on non-sequencing typing molecular

approaches namely, ribotyping, random amplified polymorphic DNA fragment (RAPD) [25–

27], amplified fragment length polymorphism (AFLP) [26, 28, 29], amplified ribosomal DNA

restriction enzyme analysis (ARDREA) [30], pulsed field gel electrophoresis (PFGE) [23, 26,

31, 32], variable number of tandem repeats (VNTR) [33], and comparative genomics analysis

studies [34–37], reveal a low genetic and genomic diversity within the E. amylovora Amygda-
loideae-infecting strains.

This is likely explained by low recombination and a narrow host-range, evoking a speciali-

zation, which is further supported by several pseudogenes and genome reduction of genes,

particularly associated with energy metabolism [38]. Regardless this genomic homogeneity,

efforts have been made to disclose E. amylovora population structure and to chronologically

trace back the origin of fire blight outbreaks [7, 33, 38–41], in order to identify the emergence

of bacterial lineages associated to new outbreaks and unveil their dispersion patterns, which is

important to advise phytosanitary authorities about the most suitable measures for contain-

ment of fire blight and evaluate their efficacy.

The clustered regularly interspaced short palindromic repeat sequences (CRISPR) and the

CRISPR-associated (Cas) proteins, known as the CRISPR-Cas system, integrate short DNA

sequences, designated as spacers (usually between 28 and 34 bp), namely from bacteriophages,

plasmids, or other laterally-transferred DNA sequences, in a temporal sequence manner and
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separated by direct repeats (DR), with the first acquired spacer located at the 3’ end of each

array and the latest spacer at the 5’ end, i.e. close to the leader sequence [as reviewed by 42–44].

These features make CRISPR a fast-evolving loci in bacteria, providing a fine-tune genotyping

method to assess the genetic diversity of bacteria characterized by a high clonality and, most

importantly, a chronological record with previous encounters with heterogeneous DNA, and in

a less extent with endogenous DNA (self-target), which is particularly useful for epidemiological

source tracking [as reviewed by 42, 43, and 44]. In fact, CRISPR genotyping has been widely

used to assess the population structure of several Enterobacteriaceae human pathogens, such as

Escherichia coli, Yersinia pestis, and Salmonella enterica [42, 45–47], but also of plant pathogenic

E. amylovora clones [21, 38–40, 48, 49]. The works of McGhee and Sundin [40], and Rezzonico

et al. [39] have set up the bases of a CRISPR genotyping scheme for E. amylovora by the identifi-

cation and characterization of three CRISPR arrays in E. amylovora, namely CRISPR1 (CR1),

CRISPR2 (CR2), and CRISPR3 or 4 (CR3 or 4), which allowed to discriminate several E. amylo-
vora genotypes and identify the most prevalent lineages in different world regions.

Previous studies of comparative genomics, CRISPR and MLVA genotyping, have grouped E.

amylovora in four different clades, all with the same epidemiological origin (North America),

and mainly distinguished by their host preference (Amygdaloideae- or Rubus-infecting strains),

supporting the high clonality observed within the species [33, 35, 37, 39–41]. Other studies have

shown that E. amylovora strains display different levels of virulence [7–8, 36, 50–52].

Regardless these efforts, direct assessment by hybridization-based methods of genetic deter-

minants of pathogenicity and virulence in E. amylovora, namely of genes coding for the type

III secretion system (T3SS), genes coding for the corresponding effector proteins (T3E), largely

acknowledge as essential to modulate the plant defense system in several pathosystems [38,

53], and genes from the exopolysaccharide (EPS) amylovoran biosynthesis operon, described

as a major virulence factor for E. amylovora (as reviewed by Pique et al., 2015 [38]), have only

been scarcely reported. Furthermore, studies have shown that dot-blot hybridization assays

under high stringency conditions, are particularly suitable to specifically detect several diag-

nostic and virulence markers simultaneously [54, 55].

Portugal, where E. amylovora is considered by EPPO to be present but under eradication,

the first indisputable evidence of fire blight outbreak occurred in 2010, affecting several apple

and pear orchards in the main production regions of the country [56]. Since then, several reoc-

curring outbreaks have been reported [56], and despite the major impact that fire blight might

have in Portuguese agribusiness, attending the 257 kha of apples and pears producing area

[57], there is no knowledge about the E. amylovora lineages responsible for these outbreaks,

neither about their origin, nor virulence.

This work aimed to characterize the population of E. amylovora associated to fire blight

outbreaks occurring in Portugal from 2010 until 2017, through CRISPR genotyping comple-

mented by dot blot hybridization detection of three virulence markers and immature pear

slice bioassays to determine symptoms severity. The data gathered showed a clonal population

within which distinct virulence phenotypes could be observed. Furthermore, the finding of a

new spacer leading to a new CR2 pattern, may suggest the appearance of a new evolving E.

amylovora genotype. These results call for the need of attentive phytosanitary surveillance, par-

ticularly of the higher virulent strains.

2. Materials and methods

2.1. Bacterial isolates and culture conditions

The 36 E. amylovora isolates used in this study were isolated between 2010 and 2017 from

fruits, trunk exudates, and branches from symptomatic apple and pear orchards trees, located
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at the main production region of pome fruits in Portugal (Table 1, S1 Fig), and were cultured

at 28˚C on King’s B medium (20 g of Peptone protease number 3; 10 mL of glycerol; 1.5 g of

K2HPO4; 1.5 g of MgSO4.7H2O; 18 g of agar; distilled water up to 1L) [58]. Bacterial cultures

were stored in King’s B medium at -80˚C in 30% glycerol. In the present study, E. amylovora
isolates and the type strain LMG 2024 (used as a positive control for polymerase chain reaction

amplification (PCR), dot blot hybridization and immature pear assay), were recovered and cul-

tured on King’s B medium at 28˚C.

Table 1. Portuguese Erwinia amylovora isolates used in this work.

Strain Host Isolated from Geographic origin Year

Species Cultivar

Ea 230 Pear Rocha Exudate Alcobaça 2010

Ea 240 Pear Rocha Exudate Alcobaça 2010

Ea 250 Pear Rocha Branch Alcobaça 2010

Ea 260 Pear Rocha Branch Alcobaça 2010

Ea 270 Pear Passe Crassane Branch Alcobaça 2010

Ea 280 Pear Rocha Exudate Alcobaça 2011

Ea 310 Pear Rocha Exudate Alcobaça 2011

Ea 320 Pear Rocha Branch Alcobaça 2011

Ea 340 Pear Rocha Branch Alcobaça 2011

Ea 350 Pear Rocha Branch Alcobaça 2011

Ea 390 Apple Royal Gala Necrotic fruit Alcobaça 2011

Ea 410 Apple Royal Gala Semi-necrotic fruit Alcobaça 2011

Ea 430 Apple Royal Gala Semi-necrotic fruit Alcobaça 2011

Ea 450 Pear Rocha Exudate Alenquer 2015

Ea 460 Pear Rocha Exudate Alenquer 2015

Ea 470 Pear Rocha Exudate Alenquer 2015

Ea 480 Pear Rocha Exudate Alenquer 2015

Ea 490 Pear Rocha Branch Alenquer 2015

Ea 500 Pear Rocha Branch Alenquer 2015

Ea 510 Pear Rocha Exudate Alenquer 2015

Ea 520 Pear Rocha Exudate Alenquer 2015

Ea 540 Pear Carapinheira Branch Caldas da Rainha 2015

Ea 570 Pear Carapinheira Branch Caldas da Rainha 2015

Ea 580 Pear Carapinheira Branch Caldas da Rainha 2015

Ea 610 Apple Gala Branch Cadaval 2015

Ea 620 Apple Gala Branch Cadaval 2015

Ea 630 Apple Gala Branch Cadaval 2015

Ea 670 Pear Rocha Branch Cadaval 2015

Ea 680 Pear Rocha Branch Cadaval 2015

Ea 720 Pear Rocha Branch Cadaval 2015

Ea 730 Pear Unidentified Branch West� 2017

Ea 740 Pear Unidentified Branch West� 2017

Ea 750 Pear Unidentified Branch West� 2017

Ea 780 Pear Unidentified Branch West� 2017

Ea 790 Pear Unidentified Branch West� 2017

Ea 820 Pear Unidentified Branch West� 2017

� These isolates have been isolated in the West region of Portugal, which includes the municipalities Alcobaça, Caldas da Rainha, Alenquer and Cadaval (S1 Fig).

https://doi.org/10.1371/journal.pone.0250280.t001
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2.2. DNA extraction and quantification

For molecular diagnosis, CRISPR genotyping, and dot blot hybridization, genomic DNA was

obtained for all isolates from pure cultures using the E.Z.N.A.1 Bacterial DNA Kit (Omega

Bio-Tek, Carlsbad, CA, USA) following the manufacturer’s instructions. DNA quantification

was carried out using the Qubit1 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, Mas-

sachusetts, USA).

2.3. Erwinia amylovora PCR identification

Identification of the isolates as E. amylovora was carried out by PCR following the standard

diagnostic protocols for E. amylovora as recommended by EPPO [59], using three pairs of

chromosomal specific [60–62], and one pair of pEA29 specific primers [63] (Table 2). PCR

reactions were carried out using a reaction mixture containing 1x DreamTaq Buffer with 2.0

mM MgCl2 (Thermo Fisher Scientific, Waltham, Massachusetts, USA), 0.2 mM of dNTPs

Table 2. List of primers used in this work.

Primer Sequence (5’-3’) Reference Purpose

G1-F CCTGCATAAATCACCGCTGACAGCTCAATG [60] PCR identification

G2-R GCTACCACTGATCGCTCGAATCAAATCGGC [60] PCR identification

FER1-F AGCAGCAATTAATGGCAAGTATAGTCA [61] PCR identification

FER1-R AATTTAATCAGGTCACCTCTGTTCAAC [61] PCR identification

rgER2R AAAAGAGACATCTGGATTCAGACAAT [62] PCR identification

PEANT1 TATCCCTAAAAACCTCAGTGC [63] PCR identification

PEANT2 GCAACCTTGTGCCCTTTA [63] PCR identification

CR1-F1 CGCCGCCACGCTGCCATTT [40] CR1 amplification

C1-R0 TCCAGCGCCTGTAAAGCGGC [40] CR1 amplification

CR1RevRpt CGGTTTATCCCCGCTCACGC [40] CR1 amplification

CR1-F1-G1 CAAGCGACAACCTGTTTTTCAGT This work CR1 amplification

CR1-F1-G1-2_0 ACTGAAATTTAAAATCACCGCTAA This work CR1 amplification

CR1-F1-G1-3_0 CTATGCAGAAGCGGAGGG This work CR1 amplification

CR1-F1-G1-4_0 CAAGCGATCAACCTTTTT This work CR1 amplification

CR1-F1-G2 TCTCATCCCTCATGTTTTCCA This work CR1 amplification

C1-R0-G1 AGCAGTACGTTGACTGTAAA This work CR1 amplification

C1-R0-G1-2_0 AAGAACGTCAACAATTGCATT This work CR1 amplification

C1-R0-G2 TTGGCGGAGAGGATTTTACAAT This work CR1 amplification

C1-R0-G3 TTTCAGTGCTCATGCTCATGCGCAAT This work CR1 amplification

CR3-F1 TTTTCGCCGGGACAG [40] CR3 amplification

CR3-R1 AAGACCGGAAGCAAAGTA [40] CR3 amplification

CR2-F1 GCGGCCAACAGATGCGGAAAAG [40] CR2 amplification

CR2-R1 TGCGGGGAACACTCGACATCTAAT [40] CR2 amplification

CR2-F2 GTCTGGCGCAAAAACTGGAG [40] CR2 amplification

CR2-F3 CCGCCCTTCTGGTGTTTTGA [40] CR2 amplification

CR2-R2 ACACGTGGTTTCTGAGTCTGGA [40] CR2 amplification

hrpL-F GCTTAATATTGATTGGGAAGGC This work Dot-blot assay

hrpL-R ACCAGCATGTTCAACAGACG [64] Dot-blot assay

hrpN-F AATGCAAAGCCTGTTTGGTG This work Dot-blot assay

hrpN-R CCATGAACTGACCGATTTCC [64] Dot-blot assay

amsG-F GCTTTATGGCACGGATATGG [64] Dot-blot assay

amsG-R GAGTAATACGGGGGTCG This work Dot-blot assay

https://doi.org/10.1371/journal.pone.0250280.t002
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(GRiSP, Porto, Portugal), 0.2 μM of each primer, 1U of DreamTaq DNA Polymerase (Thermo

Fisher Scientific, Waltham, Massachusetts, USA), and 25 ng of DNA template. PCR cycling

conditions for the chromosomal specific primers (G1-F+G2-R, FER1-F+FER1-R, and FER1-F

+rgER2R) and for the plasmid specific primers (PEANT1+PEANT2) were the same as detailed

by the EPPO standard diagnostic protocol [59]. PCR products were separated by electrophore-

sis in a 0.8% agarose gel stained with GreenSafe Premium (NZYTech, Lisbon, Portugal), with

constant voltage (90V) in 1x Tris-EDTA (TE) buffer. The agarose gel was observed with a Gel-

Doc™ (Bio-Rad Laboratories, California, USA).

2.4. Assessing pathogenicity by dot blot hybridization

Pathogenicity potential of the 36 E. amylovora isolates were evaluated by dot blot hybridization

of three virulence markers designated by hrpNM, hrpLM, and amsGM, targeting respectively the

hrpL gene which is a transcriptional switch of the T3SS hrp operon [38, 65]; the hrpN gene cod-

ing for a translocator protein [66, 67]; and amsG, a gene coding the amylovoran biosynthesis

protein AmsG, involved in the ams gene cluster [38, 68].

DNA probes for dot blot hybridization were prepared by PCR amplification of the three vir-

ulence specific markers on E. amylovora type strain LMG 2024, using primers previously

described by Pester et al. [64] for each gene, and by designing their respective complementary

primers (Table 2), resorting to the full genome of the type strain LMG 2024 (AN:

CAPB00000000.1), to obtain DNA probes with the following sizes: 368bp for amsGM, 378bp

for hrpLM, and 410bp for hrpNM. A 50 μL PCR reaction mix consisted of 1x DreamTaq Buffer

with 2.0 mM MgCl2 (Thermo Fisher Scientific, Waltham, Massachusetts, USA), 0.2 mM of

dNTPs (GRiSP, Porto, Portugal), 0.5 μM of each forward and reverse primer, 1.25U of Dream-

Taq DNA Polymerase (Thermo Fisher Scientific, Waltham, Massachusetts, USA), and 10 ng of

DNA template. For negative control, H2O was added to the reaction mix instead of DNA tem-

plate. PCR cycle parameters were carried out with a first amplification cycle of 3 min at 95˚C,

followed by 30 cycles at 95˚C for 30 s, 50˚C for 30 s, and 72˚C for 60 s, and a final extension at

72˚C for 5 min. The obtained PCR products were purified using the illustra GFX™ PCR DNA

and Gel Band Purification Kit (GE Healthcare, Chicago, Illinois, USA), and sequenced (STAB

Vida, Caparica, Lisbon, Portugal) to confirm the identity of each amplicon used as probe.

Probes were labelled with digoxigenin using the DIG-High Prime kit, according to the manu-

facturer’s instructions (Roche Diagnostics, Basel, Switzerland). The dot blot hybridization with

labelled probes was carried out using 100 ng bacterial DNA from the 36 E. amylovora isolates,

that were spotted onto nylon membranes (Roche Diagnostics, Basel, Switzerland) using a Bio-

Dot apparatus (Bio-Rad, Hercules, California, USA). Each membrane was hybridized over-

night at 68˚C to ensure high stringency with a final probe concentration of 100 ng/mL, and

stringency washes were performed following manufacturers recommendation. Probe-target

hybrids were detected with chemiluminescent alkaline phosphatase substrate (CDP-Star1)

reagent (Roche Diagnostics, Basel, Switzerland) and the images were acquired using a Molecu-

lar Imager ChemiDoc™ system (Bio-Rad, Hercules, California, USA). Three dot blot hybridiza-

tion replicates for each probe were carried out.

2.5. CRISPR amplification and sequencing

Complete CR1, CR2, and CR3 arrays were sequenced for the 36 E. amylovora isolates, using

primers detailed in Table 2. The PCR cycling parameters were 5 min at 94˚C, followed by 40

cycles of 94˚C for 30 s, 58˚C or 55˚C (CR1/2, and CR3 respectively) for 30 s, 72˚C for 4 min or

45 s (CR1/2, and CR3 respectively), and a final extension at 72˚C for 7 min. PCR reactions

were established in a final volume of 50 μL containing 1x DreamTaq Buffer with 2.0 mM
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MgCl2 (Thermo Fisher Scientific, Waltham, Massachusetts, USA), 0.2 mM of dNTPs (GRiSP,

Porto, Portugal), 0.4 μM of each primer, 1U of DreamTaq DNA Polymerase (Thermo Fisher

Scientific, Waltham, Massachusetts, USA), and 10 ng of DNA template. PCR amplicons were

separated by electrophoresis in a 0.8% agarose gel stained with GreenSafe Premium (NZY-

Tech, Lisbon, Portugal), at a constant voltage (90V) in 1x TE buffer, and purified using the

Illustra GFX™ PCR DNA and Gel Band Purification Kit (GE Healthcare, Chicago, Illinois,

USA) following manufacturer’s instructions. Sequencing of the three CRISPR arrays was out-

sourced to STAB Vida (Costa da Caparica, Lisbon, Portugal), and primer walking sequencing

was employed to obtain the full sequence of the CR1/2 arrays.

2.6. CRISPR array analysis

Raw CR1/2 and 3 array sequences were assembled using the Geneious program version 11

(Biomatters, Auckland, New Zealand) and Benchling Life Sciences RandD Cloud (Benchling,

San Fransisco, USA). CRISPR array spacers and DRs patterns were generated with resource to

CRISPRs finder tool (https://crispr.i2bc.paris-saclay.fr/). Both spacers and DRs of the CR1/2

and 3 arrays were further assessed by BLASTn for existing homology in GenBank database

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). To identify novel spacers and patterns, the CRISPR

array patterns of the 36 E. amylovora isolates, together with the E. amylovora type strain LMG

2024, and the North American reference strain ATCC 49946, were compared with CRISPR

array patterns previously described [39, 40, 49].

2.7. Nucleotide sequences accession numbers

DNA sequences corresponding to the three CRISPR regions (CR1, CR2, and CR3) of the 36 E.

amylovora Portuguese isolates were deposited in the National Center for Biotechnology Infor-

mation (NCBI) database with the following AN: MK778646 to MK778682 for CR1; MK784021

to MK784056; and MN402458 for CR2; and MK764044 to MK764080 for CR3 (S1 Table).

2.8. Virulence assays in immature pear slices

Pathogenicity assays were conducted as described by EPPO [59] on slices of immature pear

fruits (P. communis cv. General Leclerc), previously surface sterilized with 70% ethanol.

Briefly, 10 μL of bacterial suspensions of colonies of each E. amylovora isolate (Table 1) were

inoculated on stab wounded slices (three 5 mm superficial wounds per slice), at a concentra-

tion of 109 cfu.mL-1 in PBS (10 mM, pH 7.2), followed by an incubation at 25˚C during 7 days

under high relative humidity conditions. Results were considered positive when necrotic

lesions and bacterial ooze appeared on the injured tissue. Photographic records of the symp-

toms were made, and the virulence of each isolate was evaluated seven days after inoculation,

using an ordinal categorical scale of damage (0 to 6) adapted from Schwarczinger et al. [69],

namely, 0 –symptomless; 1 –low exudate production with browning in ¼ of the slice; 2 –pro-

duction of exudate with browning in half of the slice; 3 –production of exudate with light

browning of the slice; 4 –production of exudate with dark browning of the slice; 5 –enhanced

production of exudate with intense dark browning of the slice; 6 –scorched slice. Analysis of

damage was made using a blind evaluation to avoid bias errors and ensue impartiality. All

pathogenicity assays were repeated in three independent experiments with two biological rep-

licates and three technical replicates per experiment and inoculated isolate (i.e., two pear slices

of different pear fruit and three wounds per slice were used for each experiment and inocu-

lated isolate). PBS was used as negative control, and type strain LMG 2024 as positive control.

The data is reported as the frequency values of the different damage categories observed for

the 36 E. amylovora isolates.
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3. Results

3.1. Erwinia amylovora PCR identification

The 36 bacterial isolates were identified as E. amylovora, using four species-specific DNA

markers recommended by EPPO for diagnosis [59]. For the 36 bacterial isolates tested, all four

markers were amplified with product sizes corresponding to the expected length of the mark-

ers (187, 391, 458, and 1296 bp, for G1-F+G2-R, PEANT1+PEANT2, FER1-F+rgER2R, and

FER1-F+FER1-R, respectively), except for the isolate Ea 630, for which no amplification was

obtained with primers PEANT1+PEANT2, targeting the plasmid pEA29 specific marker (Fig

1). The type strain LMG 2024 was used as positive control for the four markers, confirming

the expected length size of each marker, whilst no amplification was obtained for the negative

control whatever the marker.

3.2. Pathogenicity evaluation by dot blot hybridization

To investigate the putative pathogenicity, and to further confirm the identity of the 36 E. amy-
lovora isolates, three genes known to be important for E. amylovora infection, namely hrpL,

hrpN, and amsG, were assessed by dot blot hybridization. Consistent hybridization dots were

observed for the three virulence markers (hrpNM, hrpLM, and amsGM) for all the 36 E. amylo-
vora isolates studied (Fig 2), further confirming the identification of these isolates as E.

amylovora.

3.3. CRISPR spacers array patterns/genotype and profile

CRISPR array diversity was analyzed using the CRISPRs finder tool, for the 36 E. amylovora
bacteria isolated between 2010 and 2017 from Portuguese outbreaks affecting apple and pear

orchards (Table 1, S1 Fig). E. amylovora type strain LMG 2024 was used for comparison. DRs

of the three E. amylovora CRISPR array systems were shown to be identical to what has been

described previously [39]. In fact, DRs of CR1/2 array patterns have a length of 29 nt each, and

show a high similarity differing in two nt, namely, a guanine instead of an adenine, and an ade-

nine instead of a thymine in positions 14 and 15, respectively, of CR1 DR. The CR3 array pat-

tern has a DR with 28 nt, and showed no similarity with the CR1/2 DRs.

CRISPR genotyping led to the identification of 75 unique spacers within the set of the 37 E.

amylovora strains used in this study (i.e., the 36 E. amylovora isolates, plus the type strain

LMG 2024, Fig 3, S2 Table). From these 75 unique spacers identified, 74 have been previously

Fig 1. Identification of Erwinia amylovora Portuguese isolates by PCR, using specific primer pairs, according to

EPPO protocol [59]. Bacterial isolates are identified by strain numbers on the top. Primers used are listed on the right,

and DNA product sizes in bp are indicated on the left. Positive control (C+): Type Strain LMG 2024. Negative control

(C-): H2O.

https://doi.org/10.1371/journal.pone.0250280.g001
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characterized [39, 40], and a novel CR2 spacer (NS) was identified and located next to the

leader sequence in Ea 680. This spacer, composed of 32 nt (NS, 5’–TGTATGGCATATTG
CGGGCGGGTGCTTGTCAT– 3’), lacked similarity to other spacers of the CRISPR database

(https://crispr.i2bc.paris-saclay.fr/crispr/BLAST/CRISPRsBlast.php). Interestingly, BLASTn

analysis of this new spacer allowed to find 100% identity with an intergenic genomic region

located between a putative Major Facilitator Superfamily (MFS) fosmidomycin resistance

(Fsr) transporter and Kef family K(+) transporter of 10 E. amylovora, and 90.62% identity to

Erwinia pyrifoliae Ejp617 (Table 3).

The results showed that CR3 array patterns, or genotypes observed for the 37 E. amylovora
strains have been previously described [39, 40]. CR3 array pattern consisting of 5 spacers, cor-

responds to pattern 38 as defined by McGhee and Sundin [40], or genotype “α” as determined

Fig 2. Dot blot results. Dot blot using three probes (hrpLM, hrpNM and amsGM) and genomic DNA from 36 Erwinia
amylovora isolates. The top grid represents the position of the DNA from each E. amylovora isolate in the nylon

membrane. Positive control (C+): Type Strain LMG 2024. Negative control (C-): TE Buffer.

https://doi.org/10.1371/journal.pone.0250280.g002

Fig 3. CRISPR arrays patterns of the 36 Portuguese Erwinia amylovora isolates and type strain LMG 2024. CR1/2

and 3 array patterns for the strains ATCC 49946, were retrieved from McGhee and Sundin [40] and Rezzonico et al.

[39]. Isolates identification are listed on the left of each color pattern. Each spacer is represented by a single color for

each CRISPR array. Spacers were considered unique if they contained at least 5 nucleotide differences compared to

other spacers. Each spacer is identified by a color and a number in the upper side of each CR. Spacers that are equal are

aligned in column for the different isolates in study. The blank intervals represent a spacer that it is not present in that

CR pattern. Patterns/genotypes are identified by a number and a letter respectively in the right side of the color

pattern. Nomenclature of each spacer, and pattern/genotype were based on the classification of McGhee and Sundin

[40], and Rezzonico et al. [39], respectively.

https://doi.org/10.1371/journal.pone.0250280.g003
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by Rezzonico et al. [39], for the 37 E. amylovora strains. Concerning the CR1 array patterns

that consists of 35 spacers, whilst the 36 Portuguese E. amylovora isolates correspond to pat-

tern 5, or genotype “D”, the type strain LMG 2024 presented pattern 4, or genotype “A” as pre-

viously reported by both of the mentioned studies (Fig 3). Regarding CR2, two patterns/

genotypes were identified for the Portuguese isolates, namely pattern 24, or genotype “a”, con-

sisting of 34 spacers observed for 35 E. amylovora Portuguese isolates (Ea 230–670 and Ea

690–820), identical for the E. amylovora type strain LMG 2024, and a new pattern/genotype

discerned for strain Ea 680 consisting of 35 spacers and originated by the inclusion of a novel

spacer (NS), herein designated as pattern 60, or genotype “n”.

When the three CRISPR array patterns were combined, although the majority of the 37 E.

amylovora bacteria studied could be distributed in one common CRISPR profile (5-24-38 / D-

a-α), the E. amylovora Portuguese isolate Ea 680 revealed a new profile (5-60-38 / D-n-α)

(Table 4). Even though these results disclose a high clonality for the Portuguese isolates (35

presented the same profile), the new CRISPR profile observed indicates a putative new trend

of E. amylovora diversity.

3.4. Pathogenicity bioassays and levels of virulence

Pathogenicity was demonstrated for the 36 E. amylovora Portuguese isolates through inocula-

tion of 109 cfu.mL-1 of each strain in immature pear slices. When assessing symptom severity

using a damage scale, it was possible to observe four distinct levels of virulence (Fig 4), ranging

between scale values 3 and 6. Fourteen isolates (38.8%) produced exudates and caused dark

browning of the pear slice (scale value 4, Fig 4C), and 19 isolates (52.8%) produced enhanced

exudate and caused intense dark browning of the pear slice (scale value 5, Fig 4D). The

Table 3. BLASTn results of the nucleotide sequence of the novel spacer.

Strain Query Cover E Value Identity Accession number Sequence Range Origin

Erwinia amylovora strain FB-20 100% 7e-07 100% CP050240.1 2662948–2662979 South Korea

Erwinia amylovora strain FB-86 100% 7e-07 100% CP050258.1 2663421–2663452 South Korea

Erwinia amylovora strain FB-207 100% 7e-07 100% CP050263.1 2663421–2663452 South Korea

Erwinia amylovora strain FB-307 100% 7e-07 100% CP050242.1 2663299–2663330 South Korea

Erwinia amylovora strain TS3238 100% 7e-07 100% CP050244.1 2663420–2663451 South Korea

Erwinia amylovora strain E-2 100% 7e-07 100% CP024970.1 1143072–1143103 Belarus

Erwinia amylovora strain TS3128 100% 7e-07 100% CP056034.1 1109120–1109151 South Korea

Erwinia amylovora IL-5 100% 7e-07 100% FR719189.1 44473–44504 USA

E. amylovora CFBP1430 100% 7e-07 100% FN434113.1 1106308–1106339 France

E. amylovora ATCC 49946 100% 7e-07 100% FN666575.1 1143796–1143827 USA

Erwinia pyrifoliae Ejp617 100% 0.035 90.62% CP002124.1 2369652–2369683 Japan

https://doi.org/10.1371/journal.pone.0250280.t003

Table 4. CRISPR array profile/genotype found in Erwinia amylovora isolates.

CRISPR array profilea/genotypeb

(CR1-CR2-CR3)

Number of profile/genotype E.

amylovora isolates found

Regions previously found

5-24-38 / D-a-α 35 Portuguese Western U.S. / Europe / Middle East

/ New Zealand

5-60-38 / D-n-α 1 Portuguese (Ea 680) First reported in Portugal / Newly

reported in this work

a as described by McGhee and Sundin [40]
b as decribed by Rezzonico et al. [39]

https://doi.org/10.1371/journal.pone.0250280.t004
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remaining three isolates were observed as outliers, with isolate Ea 680 (2.8%) causing exudates

with light browning (scale value 3, Fig 4B), and isolates Ea 620 and Ea 630 (5.6%) scorching

the pear slice (scale value 6, Fig 4E). Taking into account epidemiological relevant data of the

36 E. amylovora isolates, namely year of isolation, geographic origin, host species or host culti-

vars (Table 1, S1 Fig), no evidence for a connection with the virulence symptoms was found.

4. Discussion

Fire blight disease caused by E. amylovora continues to be a major concern in pome fruit pro-

ducing countries, including Portugal, where severe outbreaks have been reported since 2010,

causing high economic damage in pear and apple orchards, located on the country’s central-

west, known as the main producing region. Although the E. amylovora isolates associated to

these outbreaks have been cryopreserved, no data about its genetic diversity, pathogenicity,

and virulence were available, impairing an epidemiological characterization and inferences

about the origin of these outbreaks.

In the present study, following the identification of these isolates as E. amylovora, we pro-

ceeded with CRISPR genotyping and pathogenicity bioassays in order to unveil the population

structure of E. amylovora associated to these outbreaks. Conventional PCR using four E. amy-
lovora specific pair of primers, targeting for three chromosomal markers [60–62], and a

pEA29 plasmid marker [63], as recommended by EPPO [59], has shown specific amplification

for the four markers for all the isolates, with exception of the pEA29 plasmid marker for strain

Ea 630. However, this result does not weaken the identification as E. amylovora, since previous

studies provided evidence that some E. amylovora wild-type strains cured for plasmid pEA29

did not compromised its pathogenicity potential [70, 71].

To further confirm the identity of the 36 E. amylovora Portuguese isolates and concomi-

tantly address their pathogenicity potential, the presence of essential virulence-related genes
namely, hrpL [38, 65], hrpN [65, 66], and amsG [38, 68] were investigated by dot blot hybrid-

ization. Although dot blot using species-specific markers has not been used as a diagnostic tool

Fig 4. Virulence assay results. Symptoms observed in immature pear slices 7 days after infection with Erwinia
amylovora isolates, were categorized according a damage scale adapted from Schwarczinger et al. [69]. Positive control

(C+): Type Strain LMG 2024. Negative control (C-): PBS Buffer.

https://doi.org/10.1371/journal.pone.0250280.g004
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for E. amylovora, it has been used as a fine-tuned technique for diagnoses of a broad range of

plant and animal pathogens, capable to overcome the limitations of PCR-based methods, par-

ticularly the occurrence of false-negatives due to primers’ mismatches [55, 72, 73]. In addition,

dot blots allow the simultaneous screening of numerous samples and may conciliate both taxo-

nomic and functional markers, which may contribute to determine different typing features

[74]. These results acknowledged that the virulence related genes used for dot blot hybridiza-

tion, are suitable molecular markers for E. amylovora, as shown by the positive hybridization

signals obtained for all screened isolates, suggesting that all isolates hold a pathogenicity poten-

tial and are positive for amsG, which is a signature marker for E. amylovora. Furthermore, dot

blot hybridization assays consistently supported PCR-based E. amylovora identification using

primer pairs targeting a gene coding for glucosyltransferase-I precursor (G1-F+G2R), two

hypothetical protein coding loci as predicted by Glimmer/Critica (FER1-F+FER2-R, FER1-F+-

rgER2R), and one intergenic region (PEANT1+PEANT2) [59]. These data confirm that the

isolates associated to Portuguese fire blight outbreaks between 2010 and 2017 were indeed E.

amylovora.

In order to disclose the genetic diversity of these isolates and to make possible a compre-

hensive genotyping assessment with a worldwide collection of E. amylovora strains, CRISPR

loci were sequenced for all the 36 isolates. CR3 array, acknowledged as the shortest and most

conserved CRISPR locus in E. amylovora, showed the presence of five spacers revealing pattern

38, according to McGhee and Sundin [40] or genotype “α” according to Rezzonico et al. [39]

nomenclature. This pattern/genotype was identical to what has been extensively described for

most Amygdaloideae-infecting E. amylovora strains characterized so far, therefore holding

poor discriminatory resolution.

Regarding CR1 locus, it was possible to identify pattern 5 or genotype “D”, for all the 36

Portuguese isolates which were shown to miss the duplication of spacer 7/1029, differing from

the type strain LMG 2024 that contains the mentioned duplication, and from the representa-

tive North American strain ATCC 49946, which lacks the spacer 68/1022. This CR1 pattern/

genotype has been reported to occur commonly in other European, Middle East, New Zealand,

and Western U.S. Amygdaloideae-infecting E. amylovora strains [40].

Pattern 24, or genotype “a”, was observed for CR2 locus in 35 out of the 36 Portuguese E.

amylovora isolates used in this study. This pattern/genotype is identical to what was reported

for type strain LMG 2024 and differ from the North American strain ATCC 49946 by the pres-

ence of spacers 69/2023 and 70/2004, similarly to what has been found in several Amygdaloi-
deae-infecting E. amylovora strains with a broad distribution, namely in North America,

Europe, Middle East, and New Zealand [40]. Interestingly, isolate Ea 680 was shown to differ

from the other 35 E. amylovora isolates by the presence of a novel spacer (NS) in CR2 locus

next to the leader sequence. This NS that has not been reported so far, discloses a novel CR2

pattern/genotype, herein designated 60/”n”, according to the nomenclature of McGhee and

Sundin [40] and Rezzonico et al. [39], respectively. The high identity of the NS to non-coding

regions located outside the CRISPR loci of ten E. amylovora strains and of E. pyrifoliae Ejp617,

as shown by BLASTn analysis, further confirms its CR2 spacer signature. This may be due to a

recent acquisition derived from foreign genetic elements or from its own genome as a self-tar-

get, as has been described to occur in some bacteria [43]. In addition, and with the exception

for E. amylovora strain FB-306, which showed a new CR2 pattern/genotype due to the loss of

two spacers (54/2017 and 55/2016), the CR2 patterns/genotypes for the other nine E. amylo-
vora strains, namely CR2 pattern 22 and 24, have been acknowledged to occur in other Amyg-
daloideae-infecting E. amylovora [40, 49]. Regarding the E. pyrifoliae Ejp617, isolated from

Rubus in Japan, the NS was not present in the CRISPR loci of this strain, although the DRs of
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CR2 are identical to CR2 of Amygdaloideae-infecting E. amylovora, which is in line with what

has been previously described for the Rubus-infecting E. amylovora IL-5 strain [40].

When the CR1, 2, and 3 loci are combined, the CRISPR profile observed for the 35 Portu-

guese E. amylovora isolates (5-24-38 / D-a-α) was identical to strains from Europe, namely Ea

322, UPN 527, ACW 64132, ACW 63230; from Middle East, namely LebA-3 and LebA-18, iso-

lated from pear trees in Lebanon; from New Zealand, namely NZR3, NZR5, and NZS24; and

to strains from Western U.S., namely 87–73 and 87–70 [39, 40]. This profile is aligned with the

global distribution of this genotype and suggests a high clonality but unknown origin for the E.

amylovora isolates associated to Portuguese outbreaks reported in Portugal from 2010 to 2017.

The new CRISPR profile 5-60-38/D-n-α observed in the Portuguese isolate Ea 680, does not

refute the high clonality of the Portuguese E. amylovora population neither a distinct origin

from the other 35 isolates, since it was due to the likely recent acquisition of a single new spacer

by CR2 and, therefore, can be used as a strain-specific marker to investigate the dispersion and

prevalence of this strain in new outbreaks. These results are aligned with comparative geno-

mics studies [35–37]. In fact, when comparing the profiles of the 35 E. amylovora Portuguese

isolates with the strains described in these genomics studies, they fit in the ‘Widely-Prevalent’

clade, which is broadly distributed around the world, as mentioned above.

CRISPR has been used as a resourceful genotyping tool to disclose E. amylovora population

structure, and has already been hypothesized that it can affect pathogenicity and virulence to

some extent in E. amylovora [75]. However, it is inefficient to inform about pathogenicity and

virulence of E. amylovora, attending that genetic determinants of pathogenicity and virulence

are located in distinct genomic regions (e.g., plasmids; pathogenicity genomic islands). There-

fore, these determinants are exposed to distinct selective pressures and consequently to distinct

evolutionary dynamics as emphasized by comprehensive comparative and functional geno-

mics studies (as reviewed by Llop et al., [76]; Llop, [77]; Yuan et al., [78]). Despite genetic dif-

ferences between E. amylovora strains showing distinct virulence phenotypes being reported,

the genomic landscape responsible for a higher or lower virulence is still unknown as empha-

sized previously [36]. Accordingly, pathogenicity and virulence phenotypic characterization

are still the most robust approaches to distinguish E. amylovora strains regarding strain-spe-

cific fitness to cause disease and for risk assessment analysis [36]. Pathogenicity bioassays car-

ried out in immature pear slices coupled with a scale to measure symptoms’ severity to

determine distinct levels of virulence allowed to confirm that all the 36 Portuguese E. amylo-
vora isolates were pathogenic but showed four distinct virulence phenotypes. While most of

the isolates revealed to be considerably virulent (scale value 4 and 5), two isolates showed the

most severe virulence phenotype (scale value 6: Ea 620 and Ea 630), and only a single isolate

resulted in a milder virulence phenotype (scale value 3: Ea 680). Interestingly, it has been sug-

gested that the low virulence in a strain can be caused by a single nucleotide polymorphism in

the hfq gene, that is responsible of encoding a small RNA chaperone [36] or due to the lack of

the plasmid pEI70 [71]. On the other hand, other studies suggest that higher virulence is gener-

ally linked to a higher gene expression of the amsG gene encoding for amylovoran [79]. Inter-

estingly these three isolates (Ea 620, Ea 630, and Ea 680) isolated in 2015 from pears and

apples at the same location (Cadaval), showed distinct virulence phenotypes, which may sug-

gest different origins worth being further investigated by whole genome sequencing.

5. Conclusion

In this work we showed that the fire blight outbreaks affecting the main pear and apple pro-

duction area in Portugal between 2010 and 2017 were caused by a highly clonal population of

E. amylovora similar to a well-represented genotype distributed worldwide, namely present in
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Europe, New Zealand, Middle-East, and Western U.S., as evaluated by CRISPR genotyping.

Regardless this low genomic diversity, the work allowed to disclose a new CRISPR genotype

due to a new CR2 spacer, which sequence shows full similarity to intergenic regions of other E.

amylovora, suggesting an episode of self-target acquisition.

Dot blot hybridization analysis, besides further confirming the identity of E. amylovora iso-

lates, suggested that all the 36 Portuguese isolates were pathogenic. To unveil distinct virulence

behaviours among the Portuguese isolates, pathogenicity tests in pear slices, combined with a

scale to categorize symptoms damage, revealed four distinct virulence phenotypes, which

could not be attributed to host species, year of isolation, or geographic origin.

Taken together, the results call for the need to identify virulence expression markers that

may resolve the genotypic homogeneity of E. amylovora isolates as revealed by CRISPR or

other sequence-based genotyping methods.
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