
 September | 2021

Development and Analysis of an Open-source Platform
to Simulate Electric Vehicle Charging Needs
MASTER DISSERTATION

Manuel Joaquim Andrade Sousa Perez
MASTER IN INFORMATICS ENGINEERING

Development and Analysis of an Open-source Platform
to Simulate Electric Vehicle Charging Needs
MASTER DISSERTATION

Manuel Joaquim Andrade Sousa Perez
MASTER IN INFORMATICS ENGINEERING

ORIENTATION
Filipe Magno Gouveia Quintal

Development and analysis of an open-source platform to
simulate electric vehicle charging needs

JOAQUIM PEREZ, Universidade da Madeira

There is the need to improve the charging process of EVs. In order to do that, the field of smart-charging and
smart-charging algorithms emerged. Nevertheless, the studies involved in this field are complex, expensive, and
risky, leading to a need for prior simulations to analyze/predict the integration of EVs in the electrical networks.
There have been some solutions to solve this problem. However, they consist of either academic, proprietary, or
limited/rigid solutions. On that account, in this thesis, we have presented a solution that provides a handy and
intuitive tool for the researchers to simulate these scenarios with a decoupled and flexible simulation system. Its
decoupled architecture is accomplished by adopting open design approaches and the concept of containerized
micro-services, easing up the process of maintaining/extending it and providing high scalability. This solution
was evaluated in three assessments: migrating it to a remote production system, giving an external developer the
task of enhancing a given data model, and integrating this system with an external one. This solution delivered
good results in these three tasks. All in all, this solution was motivated by the good aspects of some solutions
found in the related work (and improving some of them), it fulfilled its objectives, and it solved the stated problem.
At the moment, this solution is already up and running on a production system while also being consumed
externally.

Additional Key Words and Phrases: Software Engineering, Energy, Smart-charging, Machine learning, Modelling,
Microservices

Author’s address: Joaquim Perez, jquim1@hotmail.com, Universidade da Madeira, Portugal.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • III

Contents

Abstract I
Contents III
Glossary VII
List of Figures IX
List of Tables XI
1 Introduction 1
1.1 Problem Statement 2
1.2 Proposed Solution 3
1.3 SMILE Project 4
1.4 Structure of the document 5
2 Related Work 7
2.1 Existing simulation tools 7
2.1.1 PerMod 7
2.1.2 SimSES 7
2.1.3 BLAST 8
2.1.4 SAM 9
2.1.5 FreeGreenius 9
2.1.6 PSIM 9
2.1.7 JANUS 10
2.1.8 V-Elph 11
2.1.9 SIMPLEV 12
2.1.10 ADVISOR 14
2.1.11 MARVEL 15
2.2 Data presentation 15
2.3 Simulators’ ideal architecture 18
2.4 Conclusions and Solution 19
3 Solution 23
3.1 Elicited requirements 23
3.2 Modelling the solution 23
3.2.1 Travels and battery consumption 25
3.2.2 Charging 26
3.2.3 Affluence 27
3.2.4 Summary and observations 29
3.3 Development tools 30
3.3.1 Core programming language 30
3.3.2 Machine learning 31
3.3.3 Microservices development 32
3.3.4 API development / Static file serving 32
3.3.5 Real-time communication 32
3.3.6 Message brokers 33
3.3.7 Containerization 33

IV • Joaquim Perez

3.3.8 Front-end development 34
3.3.9 Scripting 35
3.3.10 Object-relational mapping 36
3.4 Architecture 36
3.4.1 Simulator 36
3.4.2 Gateway 39
3.4.3 Data models 39
3.4.4 Web client 41
3.5 Functional overview 43
4 Implementation 47
4.1 Git flow 47
4.2 Docker images 47
4.3 Simulator 48
4.3.1 Docker volume 49
4.3.2 Webhook 50
4.3.3 ORM classes 51
4.3.4 REST API 52
4.3.5 WS messaging 52
4.4 Gateway 53
4.5 Data models 55
4.6 Web client 57
4.6.1 Application manifest 57
4.6.2 UI views 59
4.6.3 Configuration 61
4.6.4 REST API 62
4.6.5 WS messaging 62
4.7 Implementation final considerations 63
5 Evaluation and Analysis 65
5.1 Migration of the solution 65
5.2 Enhancement of a data model 65
5.3 Sharing with SMILE partners 67
5.4 Conclusions 67
6 Discussion 69
6.1 Development 69
6.2 Architecture 69
6.3 UI 69
6.4 Deployment and integration 70
6.5 Conclusions 70
7 Conclusion 73
7.1 Future work 74
References 75

Development and analysis of an open-source platform to simulate electric vehicle charging needs • V

A Appendix 77

Development and analysis of an open-source platform to simulate electric vehicle charging needs • VII

GLOSSARY
AMQP Advanced Message Queuing Protocol. 33, 53
ANL Argonne National Laboratory. 15
API Application Programming Interface. X, XI, 4, 23–26, 30, 32, 36, 43, 52, 53, 61–63, 65, 67

behind-the-meter applications energy applications that provide power that can be used on-site
without passing through a meter. 8

BESS battery energy storage systems. 7, 8, 20
BLAST Battery Lifetime Analysis and Simulation Tool. IX, 8, 20, 69, 70

CLI command-line interface. 47, 65, 66
CO2 carbon dioxide. 1, 2

DLR German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR). 9

EEM Empresa de Eletricidade da Madeira. 1
EV eletrical vehicle. I, IX, 1, 2, 4, 8, 10–12, 20, 23, 73

Git free and open-source distributed version control system designed to handle everything from
small to very large projects with speed and efficiency. 8

HEV hybrid eletrical vehicle. 10–12, 15, 20

IRR Internal Rate of Return. 9

LCOE Levelized cost of electricity. 9
Li-ion lithium-ion. 8

MVC Model-View-Controller architecture. 34, 41, 57, 59

NPV Net Present Value. 9
NREL National Renewable Energy Laboratory. 8, 9, 14

O&M operations & maintenance. 9
Ofgem Office of Gas and Electricity Markets. 1
ORM Object-relational mapping. 30, 37, 49, 51

PerMod Performance Simulation Model for PV-Battery Systems. IX, 7, 20, 69
PSIM Power eletronics simulator. 9, 10, 20, 69, 70

REST Representational state transfer. X, XI, 23, 30, 36, 43, 52, 53, 61–63, 65, 67
RPC Remote Procedure Call. 33, 39, 53, 63, 69

SAM System Advisor Model. IX, 9, 19, 20, 69, 70
SDK software development kit. 9
SIMPLEV simple eletric vehicle simulation program. IX, 12–14, 20, 70

VIII • Joaquim Perez

SimSES simulation of stationary energy storage systems. IX, 7, 8, 19, 20, 69, 70
SMILE Smart Islands Energy System. IX, XI, 4, 5, 18, 23, 24, 65, 67, 70, 73
stationary applications energy applications that are attached to a fixed site, being land, a building
or other immobile structure for extended use at that site, and includes stationary electrical power
systems which are transportable for temporary site power supply. 8

UI user interface. 16, 57–60, 63, 70, 71
UX user experience. 34

WS WebSocket. X, XI, 30, 32, 36, 41, 52, 53, 61–63, 65, 81, 82
WSGI Web Service Gateway Interface. 32

Development and analysis of an open-source platform to simulate electric vehicle charging needs • IX

List of Figures

1 EV usage - statistics 1
2 Functional diagram 3
3 PerMod - schematic structure 7
4 SimSES - modelling overview 8
5 BLAST - overview 8
6 SAM - overview 9
7 FreeGreenius - showcase 10
8 PSIM - overview 10
9 JANUS - overview 11
10 V-Elph - overview 12
11 SIMPLEV - initial screen 12
12 SIMPLEV - input prompts 13
13 SIMPLEV - simulation output 13
14 SIMPLEV - simulation output - graphics 14
15 ADVISOR - overview 14
16 MARVEL - input data and configuration 15
17 MARVEL - simulation results 16
18 Chevin 17
19 Fleetio 17
20 GFI Systems 17
21 Johns Hopkins COVID-19 Dashboard 17
22 SMILE Tukxi Dashboard 18
23 Travel route example 18
24 Monolithic approach vs. Microservice approach 19
25 Travel distance sample 26
26 Travel battery consumption sample 26
27 Charging period duration sample 27
28 Charging peak value sample 28
29 Affluence - results’ representation 29
30 Python - snippet 31
31 TensorFlow - snippet 31
32 Nameko - snippet 32
33 Flask - snippet 32

X • Joaquim Perez

34 websockets - snippet 33
35 RabbitMQ - snippet 33
36 Docker - snippet 34
37 OpenUI5 34
38 Chart.js 35
39 Makefile 35
40 SQLObject - snippet 36
41 Simulator - ER Diagram 37
42 Core component - architecture 38
43 Gateway component - architecture 39
44 Travel affluence model - architecture 39
45 Travel distance model - architecture 40
46 Travel duration model - architecture 40
47 Travel battery consumption model - architecture 40
48 Charging period duration model - architecture 40
49 Charging period energy consumption model - architecture 40
50 Client component - architecture 42
51 Use cases 43
52 Simulation flowchart 44
53 Travel flowchart 45
54 Charging period flowchart 46
55 Git flow 47
56 Build process example 47
57 Run process examples 48
58 SQLite database 50
59 Slack Webhook messages 51
60 i18n example 60
61 Event handling example 61
62 REST API usage 62
63 Example of WebSocket messages 63
64 Enhancement of a data model 66
65 Docker containers 77

Development and analysis of an open-source platform to simulate electric vehicle charging needs • XI

List of Tables

1 List of contributions 4
2 Related work - Summary 20
3 Elicited requirements 23
4 SMILE Tukxi API endpoints 24
5 Travels - results 25
6 Charging - results 27
7 Affluence - results 28
8 Data models - Summary 29
9 Simulator configuration 50
10 REST API endpoints 53
11 Gateway endpoints 55
12 Web client configuration 61
13 Types of WebSocket messages sent 81
14 Types of WebSocket messages received 82

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 1

1 INTRODUCTION
Global warming is one of the biggest challenges mankind is currently facing. To address this issue,

there has been a wide variety of measures taken around the globe involving a broad set of areas, namely
public campaigns, and greener technologies. This thesis will focus on work from two of the most critical
areas - energy and transportation.
One of the most prominent factors affecting global warming is the constant carbon dioxide (CO2)

emissions by the majority of the vehicles used in our day-to-day routines.
An approach taken to reduce these emissions is to shift the transportation sector towards less polluting

alternatives. One of these alternatives is the adoption of eletrical vehicles (EVs)[28] (its worldwide
adhesion is illustrated in Figure 1).

Fig. 1. EV usage - statistics

This shift promoted the ascension of EVs currently produced and offered by manufacturers. For
the same reasons, governments around the globe are also actively encouraging the adoption of these
vehicles through, for example, tax breaks or free parking. For example, in the case of Madeira Island,
according to a report from Empresa de Eletricidade da Madeira (EEM)[1], the quantitative adhesion in
Madeira Island is growing.
On the other hand, as much as the electrical networks have grown through the years[40], they still

end up behind the EVs’ evolution[18] and not able to sustain the growing demand for EVs. That is, the
increased usage of EVs leads up to a bigger demand in the electrical networks, and these networks are
considered outdated and not ready for this new demand[37]. For example, according to a Ofgem report,
it is estimated that about a third of the electrical networks across the UK would need to be upgraded if
approximately 40% of its customers shifted to EVs[32].
Consequently, it is expected that we will recur back to fossil fuels to produce enough energy to

address this increasing demand[25]. This obstruction takes us back to our original problem presented
in the first place (our CO2 footprint).

2 • Joaquim Perez

In other words, there is a necessity to effectively charge these EVs without overloading the electrical
networks while still being able to respond to its demand and leave fewer human footprint on our
ecosystem.
Traditionally, the charging process involves the plug-and-charge charging method, which consists of

plainly charging the vehicle in an uncontrolled/uncoordinated way whenever it needs to be charged.
This paradigm causes the theoretical issues involving the electric networks’ inability to address the
demand and be able to charge these EVs without overloading the network, as described in the paragraph
above. To address the issue mentioned previously, the field of Smart-Charging[49] emerged, bringing
up intelligent and coordinated charging methods that take into account several factors such as energy
cost and electricity network availability. Recurring to a diverse set of algorithms, these coordinated
charging methods lead up to a more balanced distribution of the load on the electrical networks and
lessened peak values[26][32]. As a result, these methods end up managing the electrical networks’ loads
in such a way that we can then safely and assuredly adhere to EVs (and effectively minimize our CO2
footprint).

1.1 Problem Statement
From the practical standpoint, the studies involving smart-charging algorithms are feasible yet

difficult, expensive, and dangerous, since it requires complex management and coordination in terms of
the electric power and road transport systems[23]. Thus, to successfully analyze/predict the integration
of EVs in the electrical networks and also (very importantly) for the grids’ safety, these studies are
usually firstly conducted recurring to simulations[23].
From the data standpoint, the lack of data is also an issue when it comes to evaluating algorithms

and machine learning in general[15], being that simulations will also help in augmenting/enlarging the
datasets and improving decision-making/prediction in this kind of systems[4].
Not to mention the additional impact of the Covid-19 pandemic has had on the lack of data, particularly

in areas such as energy and transportation, since there are not many drivers, cars, and travels to evaluate
proposed algorithms. Therefore, as usual in the area of smart-charging (and because of the reasons
mentioned previously), the lack of data (or the lack of non-noisy data) leads up to the testing being
done based on simulation of factors such as the usage of EVs, the grid’s load, the cost of energy and the
charging of batteries in general [27][43][16][49].
There are simulation solutions available that fit different scenarios. Still, they consist of either

academic, proprietary solutions, or limited/specific solutions to a particular context that require a bit of
effort from the researchers/practitioners to customize them to their intended context (even if the required
changes are minimal)[19][14]. Furthermore, the literature review carried out in this thesis disclosed
that, in terms of architecture, the existing solutions are usually made in a monolithic way, containing a
single code base and leading up to more rigid solutions and challenging to adjust/customize as intended
by the end-user. Besides that, technologically speaking, there are not many available frameworks that
integrate this kind of simulation while being open-source, extensible, and easy-to-use[19][14], which
obstructs its reusability or customization in other contexts.
To overcome this, we intend to develop a simulation platform that allows researchers to simulate any

set of smart-charging algorithms in different conditions. In other words, the main goal of this thesis
consists of building such a solution with enough abstraction to fit any charging simulation context.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 3

1.2 Proposed Solution
The solution will consist of an open-source system that simulates smart-charging algorithms, devel-

oped in an abstract way that will consider any context and a variable set of data models. Simply put, it
will be developed modularly both in terms of simulation algorithms (smart-charging algorithms) and in
terms of simulation components (described by a user-defined set of data models - e.g., battery, charger,
charging time).
Besides that, this simulation system will contain three other components - a Data Server (to expose

the simulation data in a Web Server), a Web Client (to provide an interactive dashboard regarding
this simulation system), and a Slack Webhook (to send notifications to a Slack channel regarding the
start/stoppage of simulations and possible errors/exceptions that may occur in the system).
It will also consist of a system that will be technically open and easily extensible to any energy

simulation context. Its functional representation can be observed at Figure 2.

Fig. 2. Functional diagram

This solution and its architecture will be designed to consider a case study (mentioned later in the
document). Still, it will be built abstractly and openly enough to fit any other kinds of contexts and
areas.
In terms of this thesis’ contributions, these are listed in Table 1.

4 • Joaquim Perez

Contribution Description
C1 State of the Art revision considering platforms for simulations
C2 Proposal of an architecture for the solution
C3 Construction and implementation of the system

Table 1. List of contributions

1.3 SMILE Project
The solution presented in this thesis will include a case study involving the project known as Smart

Islands Energy System (SMILE).
This project is funded by the European Union’s "Horizon 2020 research and innovation programme",

which consists of a demonstration of nine different smart grid technologies on three different islands[42].
The end goal of the project is to foster the market introduction of these nine technologies[42]:

• Integration of battery technology
• Power to heat
• Power to fuel
• Pumped hydro
• EVs
• Electricity stored on board of boats
• Aggregator approach
• Demand side management
• Predictive algorithms
It features the collaboration of nineteen partners from various European countries and includes

companies, research institutions, regional governments, and cluster organisations[42]. In terms of its
duration, it started on 1 May 2017, and it was scheduled to end on 30 April 2021. This project has been
the source of many scientific articles, such as [2][21][22].
As previously mentioned, the field of smart-charging emerged from the necessity of making the

electrical networks capable of sustaining the increased adhesion of EVs. Regarding the context of
the SMILE project in Madeira Island, a EV pilot came up to implement smart-charging techniques in
vehicles of small size and small energy requirements (e.g., scooters). As a result, a hardware/software
solution was developed that utilizes commercial equipment and low-cost sensors, allowing to cut and
provide energy at any charging point and provide an interface of visualization and control of the system.
This pilot also depended on the crucial collaboration of its drivers, who indicate the battery’s state on
a scale from 0 to 10 (being that 0 equals 0% and 10 equals 100%) and the traveled distance between
charging periods through a mobile application. The functionality of this solution is available through
an Application Programming Interface (API) that allows the charging algorithms to be implemented
separately from the control, granting the test of several algorithms with zero-cost integration. During
this project, this system was installed in a Madeiran company that offers a city tour around Funchal
and its surroundings through scooters, both electric-fueled and gasoline-fueled. These scooters are
known as Tukxis.
However, due to the Covid-19 pandemic, there is a lack of drivers and infrastructures to test the

solution mentioned above, making the project very adequate for the solution presented in this thesis.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 5

Therefore, this project’s data will be used to model the tool’s test case. In other terms, SMILE data
regarding Madeira Tukxi drivers’ will be gathered and modeled to build a test case for this thesis.

1.4 Structure of the document
This document is structured in the following chapters: Related Work, Solution, Implementation,

Evaluation and Analysis, Discussion and Conclusions.
The first section’s content will consist of a literature review and research targeting the subject

addressed in this thesis , alongside the gathered conclusions and points taken in the perspective of the
solution built on this thesis.
Then, the next section will describe the case study of this thesis (and its modelling), the solution’s

high-level architecture and requirements elicitation, together with its representation in diagrams (such
as a class diagram, event diagram), as well as its functional description and development tools .
In the same way, this thesis will include a section that will describe the solution’s implementation

process (e.g., development packages, the configuration used, snippets of relevant scripts/code) and the
technical approaches used.
The above section will be followed by another containing the results of the developed solution when

considering the case study provided by the SMILE project. This section will be able to answer questions,
namely "For how much time can we run the solution?" and "How easily can we add/remove a certain
module?".
The discussion chapter will discuss the results considering the literature review and the proposal

of the solution. Furthermore, the decisions made during its implementation will also be analyzed and
discussed regarding whether they were fulfilled or not and whether they were well-executed or not.
Lastly, the final section will be composed of the summary of the whole thesis, alongside indicating

the learned lessons and the future work associated with the thesis itself.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 7

2 RELATED WORK
As previously mentioned, some solutions are already targeted at the problem we identified for this

work. Thus, in this section, while fulfilling contribution C1, those solutions will be studied to gather
motivation for our approach. For each tool, we will briefly present its contribution. Their respective
pros and cons will also be analyzed in order to fulfill the idealization of this thesis’ solution.

2.1 Existing simulation tools
Since this thesis will involve a simulation tool, existing simulation tools will be presented and

discussed in this subsection.

2.1.1 PerMod

When it comes to battery energy storage systems (BESS), the necessity of reducing energy costs and
increasing its efficiency is always of the most importance.
Since there is a panoply of adjustable details related to a storage system design, the University

of Applied Sciences of Berlin developed a system in MATLAB - Performance Simulation Model for
PV-Battery Systems (PerMod)[47] - that enabled the end-user to simulate and analyze the performance
of a particular energy storage system. It considers several input parameters regarding power losses
(e.g., conversion losses, standby losses) processed in the simulation model. Its schematic structure is
shown in Figure 3.

Fig. 3. PerMod - schematic structure

As a limitation, in this tool, the BESS degradation is being neglected. Furthermore, given that this
tool was written in MATLAB, it results in a much inflexible and platform-rigid solution.

2.1.2 SimSES

Also in the context of evaluating BESSs, a software system with the capability of performing a
simulation of stationary energy storage systems (SimSES)[30] was developed.
This simulation system allowed the analysis not only from the technical but also from the economic

standpoint. In other words: from the technical perspective, it provides the capability of analyzing the
efficiency and the impact of specific control algorithms; from the economic point of view, it enables the
researcher to compare a set of different electronic components to optimize the device’s profitability.
The overview of its model can be observed in Figure 4.

8 • Joaquim Perez

Fig. 4. SimSES - modelling overview

In its initial phase, this tool was developed in MATLAB. Eventually, it ended up being ported to an
open-source Python software[41] (leading up to a more technically modern and flexible solution). Its
Git repository can be consulted at https://gitlab.lrz.de/open-ees-ses/simses.

2.1.3 BLAST

Focusing in the precise context of BESSs and electric vehicles, and with the goal of economically
evaluating EVs, stationary applications and behind-the-meter applications, the National Renewable
Energy Laboratory (NREL) developed the Battery Lifetime Analysis and Simulation Tool (BLAST)
system[31] - so as to predict battery responses, according to battery properties (such as its degradation
and its thermal performance), its usage (e.g. driving data) and historic climate data.
BLAST’s model and an example representation of its simulation results are shown in Figure 5.

(a) modelling illustration

(b) output example

Fig. 5. BLAST - overview

As a result, this tool eases up the process of optimization and deployment of Li-ion batteries.

https://gitlab.lrz.de/open-ees-ses/simses

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 9

Unfortunately, it is pretty restricted programming-wise since the researcher only has access to its
installer (and its binary files).

2.1.4 SAM

Under the more specific context of renewable energy, the National Renewable Energy Laboratory
(NREL) developed and distributed a simulation system called System Advisor Model (SAM)[5]. It consists
of a desktop application that allows the end-user to simulate renewable energy projects and examine
techno-economical factors, such as performance, financial metrics, and incentive options for that kind
of project.
The platform is implemented as an open-source platform built on top of C/C++, which brings up a few

pros and cons. On the positive side, it leads up to a more optimized and portable platform. However, it
also results in a more low-level development (and therefore, involving more rework and less reusability).
Nonetheless, besides it being open-source (thus easily allowing custom enhancements on it), its

versatile software development kit (SDK) enables the creation of additional simulation modules under a
set of possible programming languages that includes C/C++, C#, Java, Python, and MATLAB. Overall,
the usage of SAM can be described in Figure 6.

(a) output example
(b) supported programming languages

Fig. 6. SAM - overview

2.1.5 FreeGreenius

Within the same field of research (renewable energy), which is characterized by the unpredictability
of its sources (such as solar and wind), the German Aerospace Center (Deutsches Zentrum für Luft-
und Raumfahrt; DLR) (DLR) developed FreeGreenius[11]. Based on the given input (meteorological and
economic data), the tool is capable of simulating, from the economic point of view, renewable power
plants, taking into account investment costs, operations & maintenance (O&M) costs and financing
costs, considering a certain period. As a result, it displays a set of economic metrics, such as payback
times, IRR, LCOE, and NPV. This tool is illustrated in the pictures of Figure 7.

2.1.6 PSIM

In order to simulate power electronic converter and motor drives in general, the proprietary soft-
ware known as Power eletronics simulator (PSIM)1 was developed. This tool allows the develop-
ment/modelling of custom module boxes.
1https://powersimtech.com/products/psim

10 • Joaquim Perez

Fig. 7. FreeGreenius - showcase

In 2004, the development of custom module boxes targeting the simulation of automotive systems
arose[33]. As a result, these custom developments enabled this tool to simulate and study conventional
vehicles concretely, EVs and HEVs.
As similarly seen in the simulators above, this system outputs its simulation results graphically. An

example of a PSIM model and its output is shown in Figure 8.

(a) PSIM - EV model example
(b) PSIM - output example

Fig. 8. PSIM - overview

2.1.7 JANUS

Further on the same context (automotive systems), the JANUS[6] simulation package was developed
in the Engineering Department at Durham University. It consists of a program that allows the end-user
to evaluate the design, performance, and (energy) efficiency of vehicles (traditional, battery-electric, or
hybrid-electric ones).
Fortunately, during its development, the program was written so that it allowed possible extensions.

In order to do that, its structural approach consisted of separating each vehicle component in a separate
subroutine.
These subroutines are also subdivided into three sections - the initial section (responsible for handling

parameters and information about the vehicle itself), the dynamic section (the central computational
part of the program), and the output section (that displays simulation details such as the vehicle, its
components (and efficiencies/losses) and its driving cycle).
In Figure 9 we can observe a bit of its structure and an example of its output.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 11

(a) list of simulation routines
(b) TRANS routine - subdivision

(c) output example

Fig. 9. JANUS - overview

Unfortunately, JANUS was developed in FORTRAN, an outdated programming language. On one side,
FORTRAN is still relatively fast and frequently used for pure mathematical calculations. However, on
the other side, regarding factors such as connectivity and support in general, FORTRAN is considered
obsolete. Therefore, the programming language used ended up being a shortcoming of this tool.

2.1.8 V-Elph

Succeeding the subject of automotive systems, the Texas A&MUniversity developed aMatLab/Simulink
simulation/modeling package - V-Elph[7] - to ease the analysis and comparison of EV and HEV setups
and energy management strategies.
This tool allows the end-user to perform simulations based on the selected component model (includ-

ing component models included for general use-cases and user-defined/customized ones).
In addition, after simulating a specific component model, this package generates a graphical repre-

sentation of its results.
Then again, since this tool is written in MATLAB, it can be concluded that it is a much limited and

rigid solution. Figure 10 illustrates a model example and also showcases its selection screen and an
output example.

12 • Joaquim Perez

(a) HEV component model example

(b) selection screen

(c) results’ output example

Fig. 10. V-Elph - overview

2.1.9 SIMPLEV

G. H. Cole proposed a simple eletric vehicle simulation program (SIMPLEV)[10] as an alternative to
systems targeting vehicles’ simulations. It consisted of a program written in BASIC that provided the
end-user the possibility of performing parametric studies on EVs.
The execution of the program leads up to the rendering of an initial screen (visible in Figure 11), with

its main options.

Fig. 11. SIMPLEV - initial screen

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 13

By advancing to the simulation, a set of input prompts are displayed (that can be observed at Figure
12) to introduce any necessary data for the intended simulation.

...

Fig. 12. SIMPLEV - input prompts

As a result, the program prints out the simulation results in three paper sheet pages (including the
input data and all calculated results). An example of its printed pages is displayed in Figure 13.

Fig. 13. SIMPLEV - simulation output

Additionally, SIMPLEV also outputs its simulation results in a graphical format (being that it could
be shown on display or printed on paper). This output format is exemplified in Figure 14.

14 • Joaquim Perez

Fig. 14. SIMPLEV - simulation output - graphics

Considering it was developed in BASIC, SIMPLEV turns out to be a significantly restricted and
bounded solution due to the minimal capabilities of the programming language used to build it.

2.1.10 ADVISOR

Another tool with similar objectives, known as ADVISOR[48], emerged from NREL. The previous
simulators came up short when comparing to this one in terms of availability of its code (this one was
made publicly available, encouraging continuous development) and also in terms of flexibility (since
the developed modules sometimes did not fully represent certain scenarios, this simulator enabled
modifications/enhancements).
In a nutshell, in its first step, it allows the end-user to select a particular vehicle and to parameterize

its configuration. Accordingly, the end-user also has the capability of configuring the whole simulation
procedure. At last, after the simulation has run, ADVISOR outputs its results.
Figure 15 is used to showcase these three steps (selecting a vehicle, setting up the simulation, and

observing its results).

(a) vehicle input screen (b) simulation setup screen (c) results screen - example

Fig. 15. ADVISOR - overview

As ADVISOR was built on MATLAB, its portability and versatility are hindered compared with other
work reviewed in this section.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 15

2.1.11 MARVEL

Likewise, in order to analyze HEV systems, at Argonne National Laboratory (ANL) the MARVEL[24]
program was developed.
For the simulation itself, as presented in Figure 16, MARVEL prompts the end-user for input data

related to the driving cycle and the battery.

Fig. 16. MARVEL - input data and configuration

As illustrated in Figure 17, the output is shown in a table. In the following example, the table can be
used to compare the results in terms of the driving cycle and optimization criteria (life-cycle cost vs.
fuel efficiency).
Due to the core being built on FORTRAN, for the same reasons mentioned regarding the JANUS tool,

it results in a technologically antiquated tool since its language is outdated and limiting programming-
wise.

2.2 Data presentation
Besides the state-of-the-art revolving around the simulation tools, since the proposed solution involves

a web client serving as a dashboard for the simulations, it is also essential to consider and analyze
similar examples already available, such as fleet management systems.

16 • Joaquim Perez

Fig. 17. MARVEL - simulation results

That is, the web client addressed in this solution will consist of a dashboard with the capabilities to
browse/analyze simulation data and its metrics, alongside the execution of a set of actions. Since this
context involves cars, their travels, and their charging periods, it will resemble dashboards designed
for contexts such as fleet management systems. In fact, there are some examples found on the market,
namely Chevin2 (shown in Figure 18), Fleetio3 (represented in Figure 19) and GFI Systems4 (showcased
in Figure 20). Their UIs are designed following a Master-Detail user interface (UI) design approach with
plenty of data and metrics related to the selected object.
Furthermore, as a whole, depending on its nature, data can be represented in many forms. When it

comes to data (actual and simulation data) such as weather data, traffic data, pollution data, health data,
and country statistics, one of its possible representations is through a map to make it more intuitive and
easier on the eyes. Several examples can be found, such as the Johns Hopkins COVID-19 Dashboard5,
illustrated in Figure 21.

2https://www.chevinfleet.com
3https://www.fleetio.com
4https://www.gfisystems.ca
5https://coronavirus.jhu.edu/map.html

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 17

Fig. 18. Chevin

Fig. 19. Fleetio

Fig. 20. GFI Systems

Fig. 21. Johns Hopkins COVID-19 Dashboard

18 • Joaquim Perez

Another example can be found in the SMILE Tukxis administrative dashboard, where the administra-
tive users can consult the travel data and the representation of each travel route in a OpenStreetMaps
map (based on the GPS coordinates stored during the travel itself), as seen in Figure 22.

Fig. 22. SMILE Tukxi Dashboard

Regarding our case study, as similar to the examples mentioned above, the travel data is also suitable to
its representation on a map. In regards to the Tukxi data, we have the GPS coordinates registered during
the travels. Having those coordinates, similarly to the process presented in [8] (whose examples can be
observed in Figure 23), we can convert them to a routable road network, generate its corresponding
graph, and render it.

Fig. 23. Travel route example

2.3 Simulators’ ideal architecture
Architecturally speaking, we have concluded from the analysis presented above that the reviewed

work have adopted a more closed and rigid architecture. Consequently, it makes them hard to adapt to
other contexts, affecting their extensibility and scalability.
Therefore, a monolithic approach is not ideal for this kind of simulator. Instead, a microservice[36]

approach is more suitable since it results in higher scalability, maintainability, and versatility (in terms
of programming languages used in the several microservices). The comparison of both paradigms is
illustrated in Figure 24.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 19

Fig. 24. Monolithic approach vs. Microservice approach

2.4 Conclusions and Solution
Considering the study performed in the state-of-the-art regarding simulation platforms for the energy

field, we can summarize each platform as presented in Table 2.
As a result of its analysis, several points were taken into account for the functional and technical

aspects of the solution discussed in this thesis.
Most of the tools reviewed before were strict and closed (by adopting closed design patterns). There-

fore, it was decided that this solution would not only adopt open design patterns and approaches
but also be developed as a fully open-source program.
Additionally, most tools out there involved MATLAB (partially or fully), which lead to a set of

proprietary and inflexible solutions. On the other hand, SimSES was built in Python, leading to more
state-of-the-art and modern implementation. Therefore, our approach will be written in Python,
granting a more open development built upon a more up-to-date programming language with more
capabilities (technically speaking).
As observed in SAM, it allowed the creation of custom enhancements (in a set of possible programming

languages), which favored the system from the extensibility standpoint. Apart from this, the structural
approach presented in JANUS consisted of separating each vehicle component in a separate subroutine.
On that account, a similar approach will be used for this solution, making the codebase more readable
and more maintainable. Furthermore, V-Elph allowed the usage of user-defined/customized models.
Consequently, based on the points mentioned before, apart from adopting Python as the programming
language, in terms of architecture, this solution will adopt amicroservice approach. This will acquire
the solution bigger scalability, supporting smaller/easier deployments and, most importantly, allowing
a bigger versatility and technical agnosticism in terms of programming languages (being that each
component can be built upon any, independently).
Besides that, the vast majority of the tools above included some form of not-only textual outputs but

also in a graphical format. Hence, the graphical representation of the simulations will be added
as another inclusion to this thesis.
To finalize, we observed that most of the reviewed work consists of desktop applications. This type of

application often requires more time on setup/maintenance and specific software/hardware components

20 • Joaquim Perez

Tool Application Technology Publication
year

Summary

PerMod BESSs MATLAB 2020 Simulation and analysis of bat-
tery energy storage systems’ per-
formance energy-wise

SimSES BESSs Python
(MATLAB initially)

2019 Open-source techno-economic
simulator of stationary energy
storage systems

SAM Renewable energy C/C++ 2018 Versatile open-source renewable
energy projects’ simulator that
also includes the examination of
their techno-economical factors

FreeGreenius Renewable energy n/a 2018 Economic simulation of renew-
able power plants, taking into ac-
count meteorological data, and
several economic costs and vari-
ables

PSIM Automotive sys-
tems

n/a 2004 Simulation of power electronic
converter and motor drives (in-
cluding automotive systems)

JANUS Automotive sys-
tems

FORTRAN 1985 Simulation of vehicles regard-
ing design, performance, and ef-
ficiency

V-Elph Automotive sys-
tems (EVs + HEVs)

MATLAB 1999 Simulation tool for analysis and
comparison of EV and HEV se-
tups and/or energy management
strategies

BLAST BESSs n/a 2014 Prediction of EV batteries’ re-
sponse, based on its properties
and history

SIMPLEV Automotive sys-
tems (EVs)

BASIC 1991 Parametric simulations and stud-
ies on EVs

ADVISOR Automotive sys-
tems

MATLAB 1994 Parameterized vehicle simula-
tion

MARVEL Automotive sys-
tems (HEVs)

FORTRAN
(PL/I initially)

1995 Analysis of HEV systems, ac-
cording to a specific driving cy-
cle and optimization criteria

Table 2. Related work - Summary

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 21

to be runnable. However, by adopting a web approach for this solution, it assures the researchers that
they can easily access it through any device with minimal to no setup while also reducing development
costs and guaranteeing consistency across all kinds of systems.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 23

3 SOLUTION
Motivated by the analysis of the literature above (2.4) , in this section, the proposed solution will be

addressed. Firstly, we will present the process of requirements gathering. Afterwards, the architecture
of the proposed solution is explained, including its description, its modeling, the development tools
used, and its representation in diagrams (such as class diagrams and event diagrams).

3.1 Elicited requirements
Before the development itself, the requirements (both functional and non-functional) were gathered

alongside the investigation team associated with this project. They are listed in Table 3.

Requirement Requirement description
R1 The system must integrate third-party consumers as data models
R2 The system must be capable of being continuously modi-

fied/extended, e.g., with new data models
R3 The user shall be able to configure the execution of simulations
R4 The user shall be able to interact with the simulations
R5 The system must expose the simulation data in real-time
R6 The system must store its data in a database
R7 The user shall be able to export the database
R8 The system must expose external REST API endpoints for data

consumption and interactions with the simulator
R9 The system must be capable of sending notifications concerning

the simulations to a third-party
R10 The user shall be able to browse through data of previous simula-

tions
Table 3. Elicited requirements

3.2 Modelling the solution
The main goal of the work presented in this sub-section consists of creating the data models to use in

the case study of this thesis. Even though our contribution is not focused on a particular case study, the
process presented below illustrates how to integrate data from different data sources into the proposed
platform. This demonstration will serve as another proof regarding the flexibility of the solution.
As previously mentioned, the case study modelled on this solution is based on the data gathered from

the SMILE project. In the remainder of this sub-section (and its sub-sub-sections), the modeling process
of different aspects of the EV pilot will be described.
In practical terms, the process involved here consisted of the latter:
(1) Extracting the data from its data source
(2) Processing the data in an analysis tool
(3) Forming the mathematical models’ formulas

24 • Joaquim Perez

Technically speaking, the gathered data came from the SMILE Tukxis’ API located at
’https://smile.prsma.com/tukxi/api/’, which contains information related to the available Tukxis (e.g.,
its drivers, its travels). Its endpoints are listed in Table 4.

Endpoint Method Description
/auth/token GET/POST Get the access token
/drivers GET Get the list of drivers
/driver/{driver_id}/actions GET Get the actions history of a dri-

ver (e.g., start/end of a charging
period, pick-up, drop-off)

/driver/{driver_id}/travels GET Get the travels of a driver
/plugs/ GET Get the list of plugs
/plug/{plug_id}/actions GET Get the actions history of a plug
/plug/{plug_id}/state GET Get the state of a plug
/plug/{plug_id}/state/{state} POST Set a particular state for a plug
/plug/{plug_id}/historical-
consumption/{start}/{end}/{non_0}

GET Get the energy consumption his-
tory of a plug

/cars GET Get the list of cars
/cars/status GET Get the status of each car
/car/{car_id}/action/{action_type} POST Set a particular action for a plug
/car/{car_id}/actions GET Get the actions history of a car
/car/{car_id}/travel/start POST Start a travel for a car
/car/{car_id}/travel/{travel_id}/points POST Register a GPS coordinate for a

certain travel
/car/{car_id}/travel/{travel_id}/end POST End a travel for a car
/car/{car_id}/travels GET Get the list of travels of a car
/routes GET Get the list of Tukxi routes
/travel/{travel_id}/points GET Get the registered points of a

travel
Table 4. SMILE Tukxi API endpoints

The data came out to be categorized into the following data models:
• Travels and battery consumption
• Charging
• Affluence
The first data model embodies the information related to the traveled distances during the Tukxis’

routes, alongside their battery consumption. In the same way, the second one involves the data regarding
the Tukxis’ charging periods - their duration, their peak value (in terms of its toll on the electrical
network). The third model comprises the information linked to the travels’ affluence during the day.
After the development of the models mentioned above, our solution allows the researchers to simulate

the whole smart-charging process. In other words, it can simulate the three subprocesses behind it: the

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 25

travel process, the charging process, and the determination of the travel rate (depending on the time of
day).
The following subsections present the procedure previously described for each data model.

3.2.1 Travels and battery consumption

As mentioned above, this data model is composed of the traveled distances and their battery con-
sumption. For its modelling, the procedure was the following:
(1) Fetching the list of cars - via API endpoint ’/cars’
(2) Fetching the travels of each car - via API endpoint ’/car/{car_id}/travels’
(3) Filtering the travels, by the following criteria:

• Initial battery > 0
• Final battery > 0
• Initial battery >= Final battery
• Battery consumption > 0
• Traveled distance was registered (client-side distance > 0 OR server-side estimated distance > 0
)

• Traveled distance > 1 km
• Traveled distance < 40 km

(4) Calculating the average traveled distance in km and its standard deviation
(5) Calculating the average battery consumption per km and its standard deviation
The gathering and processing of this data lead up to the following calculations shown below in Table

5.

Calculation Value Standard deviation
Average travel distance (km) ~12.421 km ~8.967 km

Average battery consumption (per km) ~0.504 ~0.676
Table 5. Travels - results

Concerning the travel distance, its calculations paved the way to the formula below:

𝑡𝑑𝑖𝑠𝑡 = 𝑎𝑣𝑔𝑑𝑖𝑠𝑡 ± 𝑠𝑡𝑑𝑑𝑖𝑠𝑡

𝑡𝑑𝑖𝑠𝑡 = 12.421 ± 8.967 (1)

𝑡𝑑𝑖𝑠𝑡 Traveled distance (km)
𝑎𝑣𝑔𝑑𝑖𝑠𝑡 Average traveled distance (km)
𝑠𝑡𝑑𝑑𝑖𝑠𝑡 Standard deviation of the average traveled distance (km)
The formula above is illustrated in Figure 25.

𝑓𝑏𝑎𝑡 = 𝑖𝑏𝑎𝑡 − 𝑡𝑑𝑖𝑠𝑡 × (𝑎𝑣𝑔𝑐𝑜𝑛𝑠 ± 𝑠𝑡𝑑𝑐𝑜𝑛𝑠)
𝑓𝑏𝑎𝑡 = 𝑖𝑏𝑎𝑡 − 𝑡𝑑𝑖𝑠𝑡 × (0.504 ± 0.676) (2)

𝑓𝑏𝑎𝑡 Final battery
𝑖𝑏𝑎𝑡 Initial battery

26 • Joaquim Perez

Fig. 25. Travel distance sample

Fig. 26. Travel battery consumption sample

𝑡𝑑𝑖𝑠𝑡 Traveled distance (km)
𝑎𝑣𝑔𝑐𝑜𝑛𝑠 Average battery consumption (per km)
𝑠𝑡𝑑𝑐𝑜𝑛𝑠 Standard deviation of the average battery consumption (per km)
Figure 26 presents a couple of travel samples applied to the formula above (with a supposed 10 (that

is, 100%) of initial battery level).

3.2.2 Charging

Regarding this data model, it comprises the data of the charging periods (their duration and their
peak value). The modelling process went by the next set of steps:
(1) Fetching the energy consumption data - via API endpoint ’/plug/{plug_id}/historical-consumption/{start}/{end}/{non_0}’
(2) Filtering the energy consumption data, according to the following criteria:

• Energy consumption > 50 W
• Battery charged > 0

(3) Calculating the average charging period duration (in minutes) and its standard deviation
(4) Calculating the average charging peak value (in W) and its standard deviation

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 27

The calculations’ results can be observed in Table 6.

Calculation Value Standard deviation
Average charging period duration (minutes) ~142.889 ~44.898
Average charging period peak value (W) ~2666.817 ~221.847

Table 6. Charging - results

Subsequently, the calculations resulted in the formulas below:

𝑑𝑐𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑎𝑣𝑔𝑑𝑐𝑝𝑒𝑟𝑖𝑜𝑑 ± 𝑠𝑡𝑑𝑑𝑐𝑝𝑒𝑟𝑖𝑜𝑑

𝑑𝑐𝑝𝑒𝑟𝑖𝑜𝑑 = 142.889 ± 44.898 (3)

𝑑𝑐𝑝𝑒𝑟𝑖𝑜𝑑 Charging period duration (minutes)
𝑎𝑣𝑔𝑑𝑐𝑝𝑒𝑟𝑖𝑜𝑑 Average charging period duration (minutes)
𝑠𝑡𝑑𝑑𝑐𝑝𝑒𝑟𝑖𝑜𝑑 Standard deviation of the average charging period duration (minutes)

𝑝𝑘𝑐𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑎𝑣𝑔𝑝𝑘𝑐𝑝𝑒𝑟𝑖𝑜𝑑 ± 𝑠𝑡𝑑𝑝𝑘𝑐𝑝𝑒𝑟𝑖𝑜𝑑

𝑝𝑘𝑐𝑝𝑒𝑟𝑖𝑜𝑑 = 2666.817 ± 221.847 (4)

𝑝𝑘𝑐𝑝𝑒𝑟𝑖𝑜𝑑 Peak value of a charging period (W)
𝑎𝑣𝑔𝑝𝑘𝑐𝑝𝑒𝑟𝑖𝑜𝑑 Average peak value of a charging period (W)
𝑠𝑡𝑑𝑝𝑘𝑐𝑝𝑒𝑟𝑖𝑜𝑑 Standard deviation of the average peak value of a charging period (W)
These formulas are exemplified in Figures 27 and 28.

Fig. 27. Charging period duration sample

3.2.3 Affluence

This last model embodies the travel affluence data of a given hour of the day. It reused the data
extracted regarding the travels, in which we gathered the travel affluence per hour of day. By looking at
that same data, we can state that the travels occur mainly in the early morning and the early afternoon.
This affluence is shown with more detail in Table 7 and illustrated in Figure 29.

28 • Joaquim Perez

Fig. 28. Charging peak value sample

Time of day Travel count
0h00-0h59 0
1h00-1h59 0
2h00-2h59 0
3h00-3h59 0
4h00-4h59 0
5h00-5h59 0
6h00-6h59 0
7h00-7h59 0
8h00-8h59 10
9h00-9h59 20
10h00-10h59 17
11h00-11h59 17
12h00-12h59 8
13h00-13h59 9
14h00-14h59 7
15h00-15h59 11
16h00-16h59 10
17h00-17h59 7
18h00-18h59 3
19h00-19h59 3
20h00-20h59 3
21h00-21h59 0
22h00-22h59 1
23h00-23h59 1
Table 7. Affluence - results

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 29

Fig. 29. Affluence - results’ representation

3.2.4 Summary and observations

To recapitulate, the data models can be summarized in Table 8.

Variable Formula
Average travel distance (km) 𝑡𝑑𝑖𝑠𝑡 = 12.421 ± 8.967
Average battery consumption (per km) 𝑓𝑏𝑎𝑡 = 𝑖𝑏𝑎𝑡 − 𝑡𝑑𝑖𝑠𝑡 × (0.504 ± 0.676)
Average charging period duration (minutes) 𝑑𝑐𝑝𝑒𝑟𝑖𝑜𝑑 = 142.889 ± 44.898
Average charging period peak value (W) 𝑝𝑘𝑐𝑝𝑒𝑟𝑖𝑜𝑑 = 2666.817 ± 221.847

Affluence

0h00-7h59 = 0
8h00-8h59 = 10
9h00-9h59 = 20
10h00-11h59 = 17
12h00-12h59 = 8
13h00-13h59 = 9
14h00-14h59 = 7
15h00-15h59 = 11
16h00-16h59 = 10
17h00-17h59 = 7
18h00-20h59 = 3
21h00-21h59 = 0
22h00-23h59 = 1

Table 8. Data models - Summary

Also, for matters of simplification, the following assumptions were made:
• The travels will be roundtrip (they start and end in the same location)

30 • Joaquim Perez

• If a car ends up under 2 (that is, 20% battery), it means that then the car will be charged up (based
on the charging data model)

Regarding the charging periods, its model was formed using the plug energy consumption history’s
endpoint since it was difficult to isolate the charging periods (using the cars’ actions endpoint) and also
because the history endpoint leads to less variability.
Besides that, the travels extracted from the API will be used as templates for possible travels to be

done in the simulator, and their trajectories will be represented accordingly in the simulator’s map.
Then again, the data models presented here serve as a simple illustration of the process involving

integrating and modeling data from any external data source into the proposed platform in this thesis.
That is, reinforcing the concept of flexibility and versatility designed for this solution since it will easily
incorporate data from any data source. In other words, if any other area needs to be simulated or if any
other data source needs to be considered in the simulations, it can be accomplished by following the
process described above.

3.3 Development tools
In terms of the development itself, as mentioned before, its core and its main modules will be built in

Python6, being that its containerization will be made using Docker7 and that the whole scripting side
will be made recurring toMakefiles8.
Furthermore, SQLObject9 will be used to handle the connection between the Python objects and its

database through Object-relational mapping (ORM) classes.
For the implementation of the models themselves, the following frameworks will be used: Tensor-

Flow10 for their development and training, Nameko11 for the construction of the microservices and
RabbitMQ12 as a message broker for the microservices.
Moreover, thewebsockets13 library will be utilized to serve aWebSocket (WS) between the simulator

and its web client.
In addition, we will recur to Flask14 for the formation of the external Representational state transfer

(REST) API and to serve the web client’s static files.
Regarding the web client, OpenUI515 will be used as the front-end UI framework.

3.3.1 Core programming language

Again, the solution proposed in this thesis will be constructed using Python. This high-level and object-
oriented programming language provides plenty of libraries and capabilities such as data structures and
classes. Moreover, this language allows a modernized, intuitive, and productive implementation for this

6https://www.python.org
7https://www.docker.com
8https://www.gnu.org/software/make
9http://www.sqlobject.org
10https://www.tensorflow.org
11https://nameko.readthedocs.io
12https://www.rabbitmq.com
13https://websockets.readthedocs.io
14https://flask.palletsprojects.com
15https://openui5.org/

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 31

thesis[38]. In terms of this thesis, Python will compose the solution’s foundation - its main modules and
its integration with the remainder of the used frameworks to incorporate the communication protocols
between the solution and the microservices involved.

Fig. 30. Python - snippet

Alongside Python, the pipreqs[17] Python module is used in order to generate the Python depen-
dencies file named requirements.txt based on the imports defined in the source code, easing the
processing revolving around the installation of the dependencies in Python projects.

3.3.2 Machine learning

In the same way, TensorFlow is an open-source machine learning platform known for being able to
develop and train models from a high-level standpoint, easing up the creation of models and having
a flexible architecture[45]. Moreover, in the context of this thesis, TensorFlow will be used to create
and train the different data models that will be consumed as microservices in this solution while
incorporating machine learning and neural networks.

Fig. 31. TensorFlow - snippet

32 • Joaquim Perez

3.3.3 Microservices development

Nameko is a framework used for the creation of microservices without having to worry with its
low-level logic while having the built-in support for several communication features (e.g., HTTP
GET/POST, messages, event dispatching, event listening)[29]. On this thesis, it will be used to construct
the individual microservices for each data model.

Fig. 32. Nameko - snippet

3.3.4 API development / Static file serving

Flask consists of a Web Service Gateway Interface (WSGI) designed to ease the production of APIs, on
a largely open and extensible environment[13], while also providing the possibility of serving static files.
Regarding the simulator, this framework will be used as a means to create and maintain the solution’s
external API that will contain several endpoints with simulation functionalities. Considering the web
client, Flask will be used to serve the static files required for the web client itself.

Fig. 33. Flask - snippet

3.3.5 Real-time communication

In order to implement the communication between the web client and the simulator itself, the
websockets Python library will be used. It provides Python with a high-level and simple API to build
WebSocket servers and/or WebSocket clients[46]. Concerning this thesis, this library will serve a
WebSocket to be consumed by the web client.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 33

Fig. 34. websockets - snippet

3.3.6 Message brokers

In terms of message brokers, RabbitMQ[39] is one of the most popular in the industry, delivering a
lightweight solution that supports many communication protocols and provides high scalability and
high availability. It serves as a message-oriented middleware based on a Advanced Message Queuing
Protocol (AMQP), an open standard that provides interoperable communication between systems
independently of the platforms in question[3]. Through Remote Procedure Call (RPC) communication,
the RabbitMQ framework forms a message broker between the several microservices available in this
system.

Fig. 35. RabbitMQ - snippet

3.3.7 Containerization

One of the most prominent containerization platforms is Docker[12] since it enables the creation of
isolated and straightforward software units for applicationswithout any dependency on the environment
itself while maintaining consistency for the whole lifecycle revolving around its development and
deployment. These software units are named Docker containers. In the scope of this thesis, Docker will
be used to set up the workflow for the whole solution, setting up a container for its core, a container for
the Web client, a container for the gateway (used to centralize the communication to the microservices)
and a container for each data model.

34 • Joaquim Perez

Fig. 36. Docker - snippet

Furthermore, in order to streamline the effort involved in the configuration steps for each Docker
container, this thesis will recur to the Pack[35] tool. Maintained by the Cloud Native Buildpacks project,
this tool uses buildpacks to generate the runnable images (and all their configuration) solely based
on the source code found. As a result, the process of preparing/configuring, and building the Docker
images will be fully automated by such buildpacks.

3.3.8 Front-end development

Considering the simulator’s Web client, it will be based upon the OpenUI5[34] framework, built
on top of technologies such as Javascript, HTML5, CSS, and XML. This framework brings up many
benefits, such as its responsiveness, its feature-rich UI controls, its consistent user experience (UX), the
adoption of enterprise-level development concepts/principles, and following a Model-View-Controller
architecture (MVC).

Fig. 37. OpenUI5

In addition, for the renderization of the simulation stats, this web client will recur to the Chart.js[9]
framework. It includes a responsive and interactive set of possible charts to be rendered on any web
page.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 35

Fig. 38. Chart.js

3.3.9 Scripting

Concerning the steps involved in processes such as the build for each Docker container, we will recur
to Makefiles[20], that eases up the preparation of such steps with lesser code and higher flexibility
when compared to the traditional bash scripting.

Fig. 39. Makefile

36 • Joaquim Perez

3.3.10 Object-relational mapping

Regarding the data persistence on a database, SQLObject is a Python library made as a high-level
interface that connects the Python classes involved in a project to an actual database table and its
CRUD operations. The object attributes of these classes correspond to database columns and that
their instances correspond to database rows[44]. Accordingly, it will be used in this thesis to store the
simulation data in a database.

Fig. 40. SQLObject - snippet

3.4 Architecture
The architecture involved in this solution consists of the following modules (separated by Docker

containers, run independently, as illustrated in Figure 65):
• Simulator
• Gateway
• Data models
– Travel - Affluence
– Travel - Distance
– Travel - Duration
– Travel - Final battery level
– Charging period - Duration
– Charging period - Energy spent

• Web client

3.4.1 Simulator

The simulator’s core is implemented in the Simulator class, that serves as a wrapper class to the
main functionalities of this system, such as the start/stoppage of simulations, the WebSocket message
receival/sending process, and the database export.
Additionally, the core also contains the following set of helper classes: DataServer (that takes care of

the exposure of the external REST API endpoints), ConfigurationHelper (that wraps the operations
concerning the configuration file), Logger (that unifies the logging process),WebhookHelper (that
handles the whole notification process through a Slack Webhook), DBHelper (that abstracts both the
initialization of the database and the export of its data), DebugHelper (that provides some utility
functions targeted for debugging purposes), SingletonMetaClass (a Python metaclass made for the
formation of singleton classes) and StatsHelper (that encapsulates the logic involved in the preparation
of the simulation statistics).

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 37

Furthermore, the data objects involved in the simulation process are implemented in the following
classes: Simulation, Car, Plug, Log, Stat, Travel and ChargingPeriod. Recurring to ORM classes,
each of these objects has its respective model class that inherits the BaseModel class (that inherits from
the SQLObject class), that will handle its CRUD operations with the database. Thus, these model classes
follow the database structure represented in Figure 41. In other words, for each database table, there is
a corresponding subclass of BaseModel, being that its table columns correspond to class attributes and
that each instance represents a row of its table.

Fig. 41. Simulator - ER Diagram

Concerning their business logic, the model classes have a corresponding subclass of BaseModelProxy,
in which this logic will be implemented.
The architecture described above is illustrated in Figure 42.

38
•

Joaquim
Perez

Fig. 42. Core component - architecture

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 39

3.4.2 Gateway

The gateway is used to centralize the communication between the simulator and the data models. In
other words, it comes up as a microservice that serves a set of HTTP endpoints that, when called, dele-
gates its logic to its respective data model (via its respective RPC proxy). Afterwards, the corresponding
data model will handle the request and return a response accordingly to its business logic.
In technical terms, the gateway service contains the implementation of each entrypoint and their

associated RpcProxy instances (used to delegate the entrypoints’ handling).
Its architecture is represented in Figure 43.

Fig. 43. Gateway component - architecture

3.4.3 Data models

The data models’ architecture can be easily described by its name (used to distinguish and instantiate
the respective RpcProxy from the gateway) and its clean and encapsulated business logic implementation.
More specifically, regarding the travels’ affluence, its model (represented in Figure 44) consists on the

calculation of the travel affluence according to a certain hour of day as an input. Equally, its distance

Fig. 44. Travel affluence model - architecture

model (that can be observed in Figure 45) is implemented simply through a random generation of a
travel distance. In the same way, the logic involved in its duration model (drawn in Figure 46) plainly
revolves around a random generation of a travel duration. Similarly, the model concerning the final
battery level of a car in the end of a travel (illustrated in Figure 47) consists on a model that, based on
an initial battery level and a travel distance as input, generates a final battery level for the car.
Furthermore, in regards to the charging periods, its duration model’s implementation (that can be

observed in Figure 48) is described as a plain random generation of the duration value.

40 • Joaquim Perez

Fig. 45. Travel distance model - architecture

Fig. 46. Travel duration model - architecture

Fig. 47. Travel battery consumption model - architecture

Fig. 48. Charging period duration model - architecture

Concerning its energy expenditure model (drawn in Figure 49) is capable of, based on the charging
period’s progress (in percentage), randomly generating its energy expenditure value.

Fig. 49. Charging period energy consumption model - architecture

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 41

3.4.4 Web client

The web client that will interact with the simulator and consume its data is composed of controllers
(inheriting from a base controller with plenty of utility functions), a customized UI control, and two
helper classes.
A base controller (named BaseController) implemented several common methods regarding func-

tionalities such as UI handling and general data handling. Inheriting this controller, the client has a
controller for its core and one for each view present, following a MVC architecture. Each controller
handles UI operations such as UI events (such as the click event handling for a given button) and
view-specific UI formatting.
Moreover, the UI control StatsChart was developed in this thesis to render the charts related to the

simulation data gathered.
Likewise, two helper classes (MessageHelper and SocketHelper) were built to encapsulate both

the parsing process of the messages received through the simulator’s WebSocket and the WebSocket
handling revolving its connection and messages sent through the client, respectively.

42
•

Joaquim
Perez

Fig. 50. Client component - architecture

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 43

3.5 Functional overview
In this solution we can divide the end-users in two categories: the web end-users and the standard

end-users.
The first set of end-users consists of researchers that use the Web client for their tasks, such as

checking up on the simulation status, browsing through simulation data, starting a new simulation,
and exporting the whole simulator’s data. On the other hand, the second set is composed of users that
do not use the Web client and merely execute their actions through the simulator’s external REST API.
Figure 51 presents the use cases for each type of user.

Fig. 51. Use cases

More specifically, the simulator is composed by the following processes: simulations, travels and
charging periods. To help understanding them, each is illustrated in flowcharts (Figures 52, 53 and 54,
respectively).
In this section, the crucial points regarding the architecture and functionalities of the proposed

solution were described. In the following section, the implementation of those same points will be
addressed.

44 • Joaquim Perez

Fig. 52. Simulation flowchart

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 45

Fig. 53. Travel flowchart

46 • Joaquim Perez

Fig. 54. Charging period flowchart

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 47

4 IMPLEMENTATION
In this section, the technical aspects of the developments will be described, including the Docker

containers involved, alongside a set of code snippets.

4.1 Git flow
All the developments made for this thesis followed the usual Git flow branching model. In other words,

as illustrated in Figure 55, it consisted on three sets of branches: master (to store the developments
in final/productive state), develop (a branch for testing and integration of the developments) and the
dev/XXX branches (where each new functionality was implemented). In addition, for each container,
there is a corresponding Git repository.

Fig. 55. Git flow

4.2 Docker images
As stated before, from the Docker standpoint, it usually requires a certain degree of specificity and

manual steps to configure and build the Docker images. To overcome this, the makefiles recur to the
pipreqs module and the Pack command-line interface (CLI) in order to streamline this whole process.
That is, as exemplified in Figure 56, pipreqs is used in order to generate the Python dependencies list

(requirements.txt) according to the source code present in the given Python project, and the Pack CLI
handled the build of the Docker images (based on the source code found and its list of dependencies).

Fig. 56. Build process example

Having the Docker image built and ready, the next step consists of running the Docker image (as
addressed in Figure 57 as an example). In this step, several arguments are sent, namely the Docker
network name (applicable in the simulator, gateway, and model containers), environment variables

48 • Joaquim Perez

(mostly but not only to indicate the RabbitMQ settings), the port in which the container will be
published/run and the Docker volume name (used in the simulator, to point out the Docker volume
used to store its data persistently).

(a) example - gateway
(b) example - simulator

Fig. 57. Run process examples

4.3 Simulator
The source files that encompass this component are organised as:

simulator
base

BaseModel.py
BaseModelProxy.py
DebugHelper.py
SingletonMetaClass.py

config
ConfigurationHelper.py

core
constants

CarConstants.py
PlugConstants.py

events
CarEvent.py
ChargingPeriod.py
Travel.py

objects
Car.py
Log.py
Plug.py
SimulationObject.py
Stat.py

Simulation.py
Simulator.py

data
DataServer.py
Logger.py
SocketHelper.py
WebhookHelper.py

model
events

CarEventModel.py
ChargingPeriodModel.py
TravelModel.py

objects
CarModel.py
LogModel.py
PlugModel.py
SimulationObjectModel.py
StatModel.py

DBHelper.py
SimulationModel.py

stats
StatsHelper.py

main.py

That is, the source code is divided into six different packages: base (in which there are several general
utility and base classes), config (that contains a utility class that handles the simulator’s configuration),

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 49

core (where the business logic and every object involved is implemented), data (with classes that
operate the data processes revolving its exposure and communication), model (that includes the
implementation of every ORM class and a utility class to handle the database communication and export
processes) and stats (that encapsulates the preparation of the simulations’ statistics).

4.3.1 Docker volume

Moreover, the simulator uses a Docker volume to store data persistently. To be precise, the volume
used by the simulator stores persistently the configuration file and the SQLite database file.
Regarding the configuration file, it follows the structure shown in the following snippet.

{
"number_of_cars": 10,
"number_of_charging_plugs": 4,
"sim_sampling_rate": 900000,
"travel_affluence_multiplier": 1,
"minutes_per_sim_step": 15,
"number_of_steps": 96,
"gateway_request_base_url": "http://cont_energysim_gateway:8000/{}",
"enable_debug_mode": false,
"webhook_url": "https://hooks.slack.com/services/XXXXXXXXXX"

}

This configuration is fundamental for this solution, since it provides the researchers an easy and
flexible way to adapt the simulation process to their needs. Each possible configuration parameter is
described in Table 9.

50 • Joaquim Perez

Configuration key Description Suggested value
number_of_cars Number of cars per simu-

lation
10

number_of_charging_plugs Number of charging plugs
per simulation

4

sim_sampling_rate Sampling rate between
each simulation step

900000

travel_affluence_multiplier Travel affluence multi-
plier (1 = default, 0.5 =
half the affluence)

1

minutes_per_sim_step Number of minutes that
each simulation step rep-
resents

15

number_of_steps Number of steps per sim-
ulation

96

gateway_request_base_url Gateway URL template http://cont_energysim_gateway:8000/{}
enable_debug_mode Enable/disable de-

bug/verbose mode
false

webhook_url Slack notification web-
hook URL

https://hooks.slack.com/services/XXXXXX

Table 9. Simulator configuration

The database consists of a SQLite .db file, as shown in Figure 58.

Fig. 58. SQLite database

4.3.2 Webhook

Regarding the Slack webhook , the simulator sends messages through it by calling the method
send_message present in the WebhookHelper class. Technically speaking, it sends an HTTP request to
the configured webhook URL, being that the request body is composed of the given message and its
styling. An example of its usage is as follows in the following snippet.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 51

(. . .)
def on_stop(self):

self.end_simulation(True)
WebhookHelper.send_message('Simulation stopped!', 'INFO')

(. . .)

Some examples of webhook messages can be found in Figure 59.

Fig. 59. Slack Webhook messages

4.3.3 ORM classes

As mentioned before, concerning the database operations, we recur to ORM classes that consume the
SQLObject library and do all these operations under the hood. The nature of these operations is based
on how Python built-in objects work. In other words, a Python object instance represents a table row,
and each Python object attribute represents a column value for a given table row. Therefore, we can
create a new row by simply instantiating its class, and we can fetch or update its column values by
plainly accessing or changing its attributes. Each model class is constructed similarly as the following
example:

(. . .)
class LogModel(SimulationObjectModel):

csvFilename = 'Logs'
class sqlmeta:

table = 'Logs'

_message = StringCol(default = '', dbName = 'message', title = 'message')

def get_message(self):
return self._message

52 • Joaquim Perez

def set_message(self, message):
self._message = message

(. . .)

4.3.4 REST API

The REST API implemented in the proposed solution is exposed by the Flask framework. The
implementation of its endpoints is located in the DataServer class. An example is shown in the following
snippet.

(. . .)
@api.route('/is_simulation_running')
def is_simulation_running():

simulator = DataServer.__simulator

current_simulation = simulator.get_current_simulation()

response = None

if current_simulation:

is_simulation_running = current_simulation.is_simulation_running()

response = Response(json.dumps({ "is_simulation_running":
is_simulation_running }), mimetype = 'application/json', status = 200)

else:

response = Response(json.dumps({ "is_simulation_running" : False }),
mimetype = 'application/json', status = 200)

return response
(. . .)

The implemented API endpoints are listed in Table 10.

4.3.5 WS messaging

As mentioned before, the proposed solution exposes the data through a WebSocket which can send
and receive messages. That is, the simulator sends its state, its list of simulations alongside their data
via WebSocket to the web clients and has the capability of receiving commands sent by the latter to
trigger off a particular action.
Concerning the possible types of messages sent by the simulator, they are listed in Table 13 (present

in the appendix).

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 53

Endpoint Description
/plugs Get the current simulation’s list of

plugs
/plugs/{plug_id} Fetch info about a given plug of the

current simulation
/plugs/{plug_id}/set_status/{new_status} Set a new status for a given plug of the

current simulation
/export Export the entire database into .csv files
/is_simulation_running Get the current simulation state
/start_new_sim Start a new simulation
/get_sim_data_by_id/{simulation_id} Fetch info about a given simulation

Table 10. REST API endpoints

All the possibleWebSocket messages (or commands) that can be received and handled by the simulator
are enumerated in Table 14.

4.4 Gateway
The Gateway is a microservice that serves as a broker for the simulator, unifying the communication

between the simulator and the data models’ microservices.
This is implemented recurring to the RabbitMQ framework, which provides a message-oriented

middleware based on AMQP for the gateway and microservices’ Docker containers. Thus, an instance
of a RabbitMQ Docker image is executed alongside the simulator’s gateway.
An appropriate Docker image is started for the gateway based on the RabbitMQ connection settings

provided (host, port, username, and password). Then, in that sameDocker image, the Nameko framework
sets up and handles the connection between the container and the RabbitMQmessage broker. Having the
connection set up, the implementation class of the gateway service reaches the data models’ containers
through instances of RpcProxy (as illustrated in the following code snippet). These instances serve
as bridges to the corresponding RPC client (based on a given name), being that, from the gateway
standpoint, each RPC client represents a specific data model.

class GatewayService(object):
(. . .)
name = 'gateway_energysim'

rpc_model_travel_distance = RpcProxy('model_energysim_travel_distance')
rpc_model_charging_period_duration = RpcProxy('model_energysim_charging
_period_duration')
rpc_model_charging_period_energy_spent = RpcProxy('model_energysim_charging
_period_energy_spent')
rpc_model_travel_final_battery_level = RpcProxy('model_energysim_travel

54 • Joaquim Perez

_final_battery_level')
rpc_model_travel_affluence = RpcProxy('model_energysim_travel
_affluence')
rpc_model_travel_duration = RpcProxy('model_energysim_travel
_duration')
(. . .)

With the proxies ready, the gateway will serve a Nameko microservice which will dispatch its
requests to the appropriate data model through the respective RpcProxy. To dispatch the request to
its corresponding data model, as shown in the following snippet, it is required to call the intended
remote method through its RpcProxy. As a result, for every request made to the gateway, the request is
dispatched to the respective data model, and its response is brought back to the gateway to be returned
to the consumer.

class GatewayService(object):
(. . .)
@http(

"GET",
"/travel/distance"

)
def get_travel_distance(self, request):

travel_distance = self.rpc_model_travel_distance.get_distance()
return Response(

travel_distance,
mimetype='application/json'

)
(. . .)

The implemented gateway endpoints are enumerated in Table 11.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 55

Endpoint Description
/travel/distance Generate a travel distance
/travel/final_battery_level/<initial_battery_
level>/<travel_distance>

Generate the final battery level of a car
after a travel (based on its initial battery
level and the travel’s distance)

/travel/affluence/<hour_of_day> Generate a travel affluence (based on a
given hour of the day)

/travel/duration Generate a travel duration
/charging_period/duration Generate a charging period duration
/charging_period/energy_spent/<charging_
progress>

Generate a charging period energy ex-
penditure (based on its progress)

Table 11. Gateway endpoints

4.5 Data models
Similar to the gateway, the data models also consist of microservices. In the same way as the gateway,

their respective Docker images are started, and they connect to the same RabbitMQ message broker
through the Nameko framework. With the connection set up, the data models are ready to be called up
from the gateway.
As for the implementation class of each data model, it must name the implementing microservice to

be referenced and called by the gateway (via RpcProxy). To name it, the class needs to have an attribute
name in which we define it, as illustrated in the following snippet.

class ModelService:

(. . .)
name = 'model_energysim_travel_distance'
(. . .)

Having the service named, it is needed to implement the remote method (that will be called from the
gateway), which contains the business logic and returns its result to the gateway. In order to do that, in
the implemented method, it is required to annotate it with the Nameko decorator @rpc, as exemplified
in the following snippet.

class ModelService:

(. . .)
@rpc
def get_distance(self):

travel_distance = self.generate_distance()
response = json.dumps({ 'travel_distance': travel_distance })
return response

56 • Joaquim Perez

(. . .)

For the business logic revolving around data generation, we mostly used the TensorFlow framework
in this thesis. More specifically, according to a given average value and a given standard deviation,
TensorFlow was used to generate a random number. This is accomplished by utilizing its utility
methods that, based on a particular minimum value and maximum value and a specific tensor, creates a
TensorFlow session in which a random number is generated and gathered from a uniform distribution.
In the following code snippet, we can observe an example of its usage.

class ModelService:
(. . .)
TRAVEL_DISTANCE_AVG = 12.421
TRAVEL_DISTANCE_STDDEV = 8.967
(. . .)
def generate_distance(self):

shape = [1,1]
min_travel_distance = ModelService.TRAVEL_DISTANCE_AVG - ModelService.
TRAVEL_DISTANCE_STDDEV
max_travel_distance = ModelService.TRAVEL_DISTANCE_AVG + ModelService.
TRAVEL_DISTANCE_STDDEV

tf_random = tf.random_uniform(
shape=shape,
minval=min_travel_distance,
maxval=max_travel_distance,
dtype=tf.float32,
seed=None,
name=None

)
tf_var = tf.Variable(tf_random)

tf_init = tf.global_variables_initializer()
tf_session = tf.Session()
tf_session.run(tf_init)

tf_return = tf_session.run(tf_var)
travel_distance = float(tf_return[0][0])

return travel_distance
(. . .)

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 57

4.6 Web client
Recurring to the OpenUI5 framework, the web client follows a MVC and plenty of open standards /

developmental concepts, alongside a diverse range of usable UI controls. It followed the file structure
drawn below:

webapp
controller

util
base

BaseController.js
car

CarStatuses.js
data

MessageHelper.js
SocketHelper.js

stats
StatsCharts.js

App.controller.js
Cars.controller.js
CarsDetail.controller.js
ChargingPeriods.controller.js
Config.controller.js
Home.controller.js
Logs.controller.js
Plugs.controller.js
PlugsDetail.controller.js
Travels.controller.js

css
style.css

i18n
i18n.properties

libs
chartjs

chartjs.min.js
model

config.json
config.json.example
navigation.json
sim_state.json

view
fragment

SimMenu.fragment.xml
App.view.xml
Cars.view.xml
CarsDetail.view.xml
ChargingPeriods.view.xml
Config.view.xml
Home.view.xml
Logs.view.xml
Plugs.view.xml
PlugsDetail.view.xml
Travels.view.xml

Component.js
index.html
manifest.json

In other words, it is divided in the following packages: controller (in which the view controllers are
implemented), css (where the extra css stylesheets are located at), i18n (that contains the translatable
text bundles), libs (that includes external libs, such as Chart.js),model (that accomodates all application
models) and view (composed by all UI views and reusable fragments present in this web application).

4.6.1 Application manifest

The core of this web application is configured in the applicationmanifest (the file named as manifest.json).
Two of its key points consist of the configuration of the application’s models and views.
Concerning the models, they can be configured similarly to the following snippet.

{
(. . .)
"sap.ui5":
{
(. . .)

58 • Joaquim Perez

"models":
{

(. . .)
"sim_data":
{
"type": "sap.ui.model.json.JSONModel"

}
(. . .)

}
(. . .)

}
(. . .)

}

In regards to the process of constructing UI views, the application manifest requires the configuration
of a route pointing to a target that is attached to a given view, as shown in the snippet below.
{

(. . .)
"sap.ui5":
{

(. . .)
"routing":
{
(. . .)
"routes":
[
{
"pattern": "Cars",
"name": "Cars",
"target": ["Cars"]

}
],
(. . .)
"targets":
{
(. . .)
"Cars":
{
"viewName": "Cars"

}
(. . .)

}
(. . .)

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 59

}
(. . .)

}
(. . .)

}

4.6.2 UI views

The OpenUI5 framework has several approaches regarding the development of UI views. The most
prominent methodology is based on XML Views, consisting of .xml files in which the UI structure is
defined and designed, similarly to the following XML snippet.

(. . .)
<mvc:View

controllerName="com.perezjquim.energysim.client.controller.Config"
xmlns="sap.m"
xmlns:mvc="sap.ui.core.mvc"
xmlns:code="sap.ui.codeeditor">
<Page

title="{i18n>Config}">
<Label class="sapUiTinyMargin" text="{i18n>config_user}"/>
<code:CodeEditor

(. . .)

Since the UI5 applications follow aMVC architecture, for each view, there is a corresponding controller.
It can be observed in the following snippet.

(. . .)
<mvc:View
controllerName="com.perezjquim.energysim.
client.controller.Config"
xmlns="sap.m"
xmlns:mvc="sap.ui.core.mvc"
xmlns:code="sap.ui.codeeditor">
<Page
title="{i18n>Config}">
<Label class="sapUiTinyMargin"
text="{i18n>config_user}"/>

<code:CodeEditor
(. . .)

(. . .)
sap.ui.define([

"./util/base/BaseController",
"./util/data/SocketHelper"

], function(BaseController, SocketHelper) {
"use strict";
return BaseController.extend(
"com.perezjquim.energysim.client
.controller.Config", {
onConfigSave: function(oEvent) {
this.setBusy(true);

(. . .)

Besides that, the same framework provides data-binding capabilities, being that data from the appli-
cation models can be mapped directly to UI controls present on a given view. A suitable example is the

60 • Joaquim Perez

Fig. 60. i18n example

usage of translatable i18n texts (present in the i18n.properties file) in the application views. The
required steps are illustrated in the following snippet.

(. . .)
> HOME VIEW
ws_configured_url=WebSocket Configured URL
ws_connection_state=WebSocket Connection St
ate
ws_is_connected=WebSocket Connected!
ws_is_disconnected=WebSocket Disconnected!
(. . .)

(. . .)
<f:content>

<Label
text="{i18n>ws_configured_url}" />

<Text
text="{config>/WS_URL}"/>

(. . .)

Consequently, that text will be rendered as the label’s text, as observed in Figure 60.
The UI events are handled via implementation of the UI control event callbacks. The usual procedure

consists of naming in the XML view the controller method that will handle a given UI event. An example
is shown in the following code snippet.

(. . .)
<HBox justifyContent="SpaceBetween">

(. . .)
<Button
icon="sap-icon://excel-attachment"
press="onPressExport"
text="{i18n>export}"
type="Emphasized"

blocked="{= !(${sim_state>/is_connected
}

&& !${sim_state>/is_sim_running}
)}"/>

(. . .)
</HBox>
(. . .)

(. . .)
onPressExport: function(oEvent)
{

this.setBusy(true);

const oConfig = this.getModel("config");
const sAPIUrl = oConfig.getProperty(
"/API_URL");
const sExportUrl = `${sAPIUrl}/export`;
window.open(sExportUrl);

this.setBusy(false);
},
(. . .)

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 61

As a result, the implementation shown in the snippet above will result in the event handling shown
in Figure 61.

Fig. 61. Event handling example

4.6.3 Configuration

The web client has a configuration of its own, expected to be in the config.json file. Thus, a file
named as config.json.example is provided as a sample for this configuration. It can be described in
Table 12 and exemplified in the snippet below.

Configuration key Description Suggested value
WS_URL Simulator’s WebSocket

URL
ws://localhost:9002

API_URL Simulator’s REST API
URL

http://localhost:9001

SAMPLE_SIM_CONFIG Sample simulator configu-
ration {

"number_of_cars": 10,
"number_of_charging_plugs": 4,
"sim_sampling_rate": 900000,
"travel_affluence_multiplier": 1,
"minutes_per_sim_step": 15,
"number_of_steps": 96,
"gateway_request_base_url": "http://
cont_energysim_gateway:8000/{}",
"enable_debug_mode": false,
"webhook_url": "https://hooks.slack
.com/services/XXXX/XXXX/XXXX"

}

Table 12. Web client configuration

{

62 • Joaquim Perez

"WS_URL": "ws://localhost:9002",
"API_URL": "http://localhost:9001",
"SAMPLE_SIM_CONFIG":
{

"number_of_cars": 10,
"number_of_charging_plugs": 4,
"sim_sampling_rate": 900000,
"travel_affluence_multiplier": 1,
"minutes_per_sim_step": 15,
"number_of_steps": 96,
"gateway_request_base_url": "http://cont_energysim_gateway:8000/{}",
"enable_debug_mode": false,
"webhook_url": "https://hooks.slack.com/services/XXXX/XXXX/XXXX"

}
}

4.6.4 REST API

In the same way as the WebSocket, according to the configuration given to the web client, it connects
to the simulator’s REST API. It serves two purposes: for the database export (shown in Figure 61) and
to browse through data of previous simulations (illustrated in Figure 62).

Fig. 62. REST API usage

4.6.5 WS messaging

The connection to the simulator’s WebSocket is established recurring to a utility class that wraps
around the calls to the WebSocket Web API. That is, based on the web client configuration, it connects to
the intended WebSocket. Having the connection established, it can receive messages from the simulator
(such as state and data changes) and trigger actions on the simulator (namely, the start of a new
simulation). Some examples of WebSocket messages can be seen in Figure 63.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 63

Fig. 63. Example of WebSocket messages

4.7 Implementation final considerations
To recapitulate, the implementation of the solution was described above, from the Git flow and the

building process of the Docker images to the composition of each component of the solution. Firstly, the
general process behind the developments made follows a usual Git flow branching model. In the same
way, the build process of the Docker images is addressed, consisting of Makefiles that generate the
Docker images solely based on the source code found on the project in question (and its dependencies).
Similarly, the simulator’s implementation is also discussed, going through its file structure, the assembly
of the SQLite database (and its operations), the webhook that communicates with Slack, the exposure
of an external REST API, and its WebSocket communications. As for the gateway, it is a Nameko
microservice that serves as a broker for the remaining microservices, dispatching the requests from the
simulator to the respective data model through RPC proxies. The data models also consist of Nameko
microservices, built and ready to be consumed by the gateway. Finally, the web client is composed of
an OpenUI5 application that communicates with the simulator’s WebSocket and external REST API
and exposes its data on a enterprise-ready UI.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 65

5 EVALUATION AND ANALYSIS
We went through three assessments to evaluate this solution: migrating this solution into a remote

virtual machine, having an external developer enhance a given data model, and sharing this solution
with a SMILE partner. This evaluation is crucial since it will help to identify if, when used in real-life
scenarios, the implemented solution fulfills the objectives set in its proposal or not.

5.1 Migration of the solution
For the first assessment, access to a clean remote server (with Docker and Pack CLI pre-installed)

was given, in which the implemented system would be deployed. The process behind the deployment
consisted of cloning the Git repositories, configuring the simulator, and building the Docker containers.
Due to the isolated nature revolving around Docker, the assessment went smoothly, and the solution was
quickly migrated to the remote system, being hosted and widely accessible via web. However, two issues
came up: a memory issue and a timeout issue. The first issue was noticed when, after a few weeks, the
web clients could not establish a connection to the simulator’s WebSocket, some simulations would get
stuck, and there were some dumps/exceptions found on the simulator concerning the communication
between the microservices. After a thorough analysis, it was noted that the remote virtual machine
had an approximate 99% memory usage at the time. A large majority of this memory consumption
was due to a machine learning process (unrelated to this simulator) running in the same machine that
would consume more than half of the system’s memory (about 70% of it). As a result, an adjustment had
been made to limit the memory usage by the aforementioned memory-intensive process. Succeeding
that same adjustment, the memory usage of the whole machine was stabilized and went to an average
of 50%. With lessened memory usage, this problem never came up again. The second issue came up
when, after running for a long time, the simulator would sporadically fail to reach its microservices,
raising timeout errors. A research about the issue lead us to conclude that it was a common Docker
issue when simultaneously running a large set of containers (as in this case). As indicated by several
sources, the problem was solved by increasing the timeout values for the communications between the
microservices. Since then, the solution has been up and running for 2 months with no issues.

5.2 Enhancement of a data model
Heading to the second assessment, we recurred to a Software Engineering degree graduate to test

the installation/setup process and the easiness of addition/change of business logic into a particular
data model. In order to do that, he was given documentation about the solution, its Git repositories,
and its configuration, leaving him to perform the same procedure as in 5.1. Thus, he had prepared
and installed the whole simulator environment to be able to test it on his own and implement it. The
student found two setbacks in this process: a missing configuration file for the web client and a failing
build process for the data models’ containers. The first problem consisted of a missing configuration
file (config.json) on the web client, making it unable to connect to the simulator’s WebSocket and
REST API. It was missing since it was git-ignored in the Git repository from which the student cloned
the web client. Such files are git-ignored (in other words, not included in Git repositories) since they
contain system-specific configurations. Therefore, a sample configuration file was introduced in the
web client’s repository - config.json.example. As a result, in the setup process, we have a sample
configuration while git-ignoring the configuration file effectively consumed by the web client. The

66 • Joaquim Perez

second setback was caused by the fact that the student’s system had a higher Python version installed
locally (compared to the other systems in which the simulator was installed and set up), making the
Pack CLI build the Docker images considering that exact version. However, the TensorFlow Python
module was not available in that particular Python version. Consequently, the build process failed
since it did not find the required dependency for the data models’ Docker image. To overcome the
issue, a runtime.txt file was included in the data models’ Python projects with the one-lined content
"python-3.6.12", being that the mentioned Python version supports TensorFlow. This new file is used
to indicate the Pack CLI which runtime version of the environment (in this case, a Python one) is
intended for the generated image. Having the runtime version specified, the build process could now
successfully fetch the TensorFlow module and build those Docker images (independently of the local
version of Python).
With the system set up and running, the student was given the task of developing a more sophisticated

machine learning implementation on any data model present in the solution. More specifically, he
was tasked to adapt the travel affluence’s data model into a more advanced TensorFlow solution (as
illustrated in Figure 64).

Fig. 64. Enhancement of a data model

Before any modification to the data model, he researched through several websites about data
concerning the affluence of passengers on Funchal, resulting in the extraction of a pre-pandemic data
sample of passengers coming from a given cruise during the several hours of the day.
With the gathered sample, the next phase consisted of the student transitioning the data model

implementation from the hard-coded affluence values (based on the values gathered from SMILE

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 67

Project) into uniformly random generated values by TensorFlow (based on the new sample). The same
student quickly did this transition process.
Afterwards, the student was given the task of creating and implementing a self-learning TensorFlow

model into the travel affluence’s data model. Hence, the student followed an extensive and well-
documented tutorial regarding the intended goal, which led him to build an example of a functional
TensorFlow model successfully. However, due to the student’s lack of time, the student could not build
a model concerning the gathered sample and incorporate it into the travel affluence’s data model.

5.3 Sharing with SMILE partners
Additionally, the proposed solution was shared with a SMILE partner - Trakm816. This partner had

originally access to real data gathered from another SMILE pilot. However, due to the lack of data
brought by the Covid-19 pandemic, this solution will fill that gap and mitigate the lack of data. Therefore,
the partner’s route optimization planning production system17 would consume the REST API routes
available in this simulator. So, having their smart-charging algorithms, the partner would then act
upon the simulations and through the REST API. The tests revolving around this integration will be
mainly fundamental to evaluate this solution’s easiness of integration and not the efficiency of its
smart-charging algorithms. As for the API routes, during this integration, they had a few minimal
adjustments to fit the integration requirements of the partner’s system. On 30th August 2021, those
routes were successfully integrated and tested by the third-party mentioned earlier.

5.4 Conclusions
To summarize, we can conclude that this solution’s evaluation results were very positive since it

provided an easy installation/setup process. Most importantly, it provided an easy and agile environment
that facilitated anymodifications to it. Theminor setbacks revolving around the setupwere not impactful,
yet they were quickly solved and helped in improving the solution. In terms of the modifications to the
business logic, they were quickly made by an external Software Engineering degree graduate, even
though not all objectives were achieved. Regarding the integration with the SMILE partner (Trakm8),
the results showed that the solution fits their needs, and that their route optimization planning system
is successfully consuming it to be used for commercial purposes. Focusing on the primary goal of this
evaluation, the results indicate that the solution is easy to set up, easy to maintain/extend, and easy to
integrate, as intended.

16https://www.trakm8.com
17https://www.trakm8.com/route-optimisation-planning

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 69

6 DISCUSSION
In this section, the related work and the proposed solution (alongside its implementation) will be

recalled to compare the solution to the related work and to discuss the decisions made. This will help
to identify the points taken from the related work (and how they were implemented) and whether the
goals of the proposed solution were effectively fulfilled.
Recalling the proposed solution, it consisted of an open-source and easy-to-extend simulator of

smart-charging algorithms, widely accessible through a Web client and with a flexible and decoupled
architecture.

6.1 Development
Unlike existing tools such as PerMod[47], SAM[5], JANUS[6], V-Elph[7], SIMPLEV[10], ADVISOR[48]

and MARVEL[24] (and similarly to SimSES[41]), this solution is built on Python, a more developer-
friendly programming language that brings more code simplicity, readability and flexibility.
In the same way, in contrast to tools like PerMod[47], FreeGreenius[11], PSIM[33], JANUS[6], V-

Elph[7], BLAST[31], SIMPLEV[10] and MARVEL[24] (and as adopted in SimSES[41] and ADVISOR[48]),
this solution was made open-source and available to the public community.

6.2 Architecture
Besides that, based on SAM[5], PSIM[33], JANUS[6], V-Elph[7], and ADVISOR[48], this simulator

adopts an open architecture and recurred to open design approaches, making it more favourable to
future enhancements/modifications. The addition of microservices also accomplishes this, providing
higher scalability to the solution, easing up on the deploy process, largely reducing downtime, making
it simpler to maintain/extend, and enabling them to be programmed in any programming language.
If the simulator needs another data model, the following is needed: creating the microservice and its
implementation, including the respective RPC proxy in the Gateway, and then the corresponding HTTP
call on the simulator. Consequently, this results in a decoupled and flexible system to maintain and
develop on.

6.3 UI
By the same token as SimSES[41], SAM[5], FreeGreenius[11], PSIM[33], JANUS[6], V-Elph[7],

BLAST[31], SIMPLEV[10] and ADVISOR[48] (while not present in PerMod[47] and MARVEL[24]), it
also provides a visual representation of the simulated data, in order to provide an easy and hands-on
way to analyze that same data.
As opposed to all the related work found, this solution included a web client. This client gives the

researchers a solution within their reach, with no setup involved and no device specificity, bringing
more practicality and convenience. In addition, with this web approach, the simulation results can be
consumed by other researchers, even if not interested in the development of smart-charging algorithms.
Moreover, the use of WebSockets allows the end-users to start/stop simulations, configure the simulator,
and browse through the simulation data in real-time.

70 • Joaquim Perez

6.4 Deployment and integration
In terms of the goals of the proposed solution, the main ones were fulfilled. The implemented solution

provided a versatile and user-friendly simulator for researchers to simulate smart-charging algorithms
on. Moreover, according to the results analyzed in the previous section, this solution is abstract enough
to be smoothly adjusted if intended, as proven by the fact that a Software Engineering graduate student
was able to set it up and enhance it easily. In the same way, the flexibility of this solution is also proven
by the fact that we were able to integrate this solution into a commercial service of a third-party partner
associated with the SMILE project.

6.5 Conclusions
Concerning the decisions made, the selection of Python as the programming language was fruitful

since it provided a productive and easier development, as expected. Furthermore, by recurring to a
microservice-driven approach, it lead to a scalable solution with an eased build/deploy process since it
does not require the deployment of the entire system and has minimal impact/downtime. Moreover,
the decision regarding the development of a web platform turned out to be a good one, considering
it provided the researchers a user-friendly simulator within reach, regardless of the system and with
no installation required. Additionally, the graphical representation of the simulation data was also a
good addition because it favoured the data analysis that can be made on the simulator’s web client by
the researchers. Finally, the combination of the decisions mentioned above and the adoption of open
design patterns and approaches facilitated further extensions/adaptations of the developed solution, as
intended, fulfilling the primary goal of the proposal of this solution.
Summing up, it is implemented in Python, in the same way as SimSES[41], bringing simplicity and

intuitiveness to the development phase. In addition, equivalently to SimSES[41] and ADVISOR[48],
this solution was made open-source. Furthermore, based on the work done on SAM[5], PSIM[33],
JANUS[6], V-Elph[7], and ADVISOR[48], its implementation recurred to an open architecture, a set
of open design approaches and microservices. Hence, it improves the solution not only from the
modificability/extensibility standpoint, but also from the scalability, build and maintenance standpoint,
resulting on a more decoupled and versatile system. Following the work done on the majority of the
related work (SimSES[41], SAM[5], FreeGreenius[11], PSIM[33], JANUS[6], V-Elph[7], BLAST[31],
SIMPLEV[10], and ADVISOR[48]), a graphic representation of the data was also provided, giving the
researchers a visual and practical way to analyze its data. As an improvement over all the related work,
this solution included a web client, giving the researchers an accessible and user-friendly web platform
for them to simulate smart-charging algorithms without worrying about the processes revolving around
its setup.
In a general way, we can observe that the work done in this solution was based on the majority

of the related work, extending the good points from several existing solutions (such as SimSES[41],
SAM[5],PSIM[33], JANUS[6]). The architectures observed in the related work pale in comparison to
the implemented architecture in this solution. It recurs to more open design approaches and adopts the
concept of microservices, making it a much more flexible, scalable, and maintainable solution than the
existing ones. In the same way, the construction of a web platform for this solution surpasses the UIs
present in the existing solutions. This is because it provides the researchers a hands-on tool with no

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 71

setup required and with state-of-the-art design/look-n-feel when compared to the desktop UIs given by
the existing solutions.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 73

7 CONCLUSION
To sum up, following a necessity of improving the charging process of EVs, the field of smart-charging

and smart-charging algorithms emerged. However, the studies revolving around this field are complex,
expensive, and risky. Consequently, this leads to a need for prior simulations in order to analyze/predict
the integration of EVs in the electrical networks. Some simulators are already available, yet they consist
of either academic, proprietary, or limited/rigid solutions. Therefore, in this thesis, we have presented a
solution that provides a handy and intuitive tool for the researchers to simulate scenarios backed up by
a simulation system with a decoupled architecture. Such architecture is materialized by adopting open
design approaches and adopting the concept of containerized micro-services, easing up the process of
maintaining/extending it and providing high scalability. When evaluating this solution’s migration,
enhancement and integration processes, it delivered good results, fulfilling its objectives and solving
the stated problem. In addition, this solution is already up and running on a production system, while
also being consumed externally by a SMILE partner.
In regards to the objectives of this thesis, they were all fulfilled, except the development of a travel

route renderer, due to lack of time and also because it was a low-priority requirement without much
payoff. Essentially, it consisted of a travel route renderer, with the capability of visually representing on
a map the travels made during the simulations and their course. All the other contributions were fulfilled
since the rest of the work regarding the literature review, the solution proposal, and its implementation
were made.
The developments made are available in the following Git repositories:
• Simulator - https://github.com/perezjquim/smartcharging-simulator-core
• Web client - https://github.com/perezjquim/smartcharging-simulator-client
• Gateway - https://github.com/perezjquim/smartcharging-simulator-gateway
• Travel distance’s data model - https://github.com/perezjquim/smartcharging-simulator-service-
travels-distance

• Travel affluence’s data model - https://github.com/perezjquim/smartcharging-simulator-service-
travels-affluence

• Travel duration’s data model - https://github.com/perezjquim/smartcharging-simulator-service-
travel-duration

• Final battery level’s data model - https://github.com/perezjquim/smartcharging-simulator-service-
travels-final-battery-level

• Charging period duration’s data model - https://github.com/perezjquim/smartcharging-simulator-
service-charging-period-duration

• Charging period energy expenditure’s data model - https://github.com/perezjquim/smartcharging-
simulator-service-charging-period-energy-spent

On a personal note, one of the positive aspects of the work involved in this thesis is the fact that it got
me doing an extensive literature review, which I have not done previously on an academic level. Besides
that, another positive aspect is that this thesis brought me up to speed on several current software
engineering and programming trends, as intended and expected. Some consisted of containerization
(made with technologies like Docker), microservices, machine learning, and generally decoupled
architectures. As a result, I became more familiar with such technologies/approaches, and I evolved as
a software engineer.

https://github.com/perezjquim/smartcharging-simulator-core
https://github.com/perezjquim/smartcharging-simulator-client
https://github.com/perezjquim/smartcharging-simulator-gateway
https://github.com/perezjquim/smartcharging-simulator-service-travels-distance
https://github.com/perezjquim/smartcharging-simulator-service-travels-distance
https://github.com/perezjquim/smartcharging-simulator-service-travels-affluence
https://github.com/perezjquim/smartcharging-simulator-service-travels-affluence
https://github.com/perezjquim/smartcharging-simulator-service-travel-duration
https://github.com/perezjquim/smartcharging-simulator-service-travel-duration
https://github.com/perezjquim/smartcharging-simulator-service-travels-final-battery-level
https://github.com/perezjquim/smartcharging-simulator-service-travels-final-battery-level
https://github.com/perezjquim/smartcharging-simulator-service-charging-period-duration
https://github.com/perezjquim/smartcharging-simulator-service-charging-period-duration
https://github.com/perezjquim/smartcharging-simulator-service-charging-period-energy-spent
https://github.com/perezjquim/smartcharging-simulator-service-charging-period-energy-spent

74 • Joaquim Perez

7.1 Future work
As for the future, there is some work ahead to improve the proposed solution.
For instance, one of them is the development of the travel route renderer . More precisely, it should

involve developing an additional data model and its integration with the simulator, with its gateway,
and with its web client.
Another of them is the improvement/refinement of the data models to incorporate the full potential

of TensorFlow models, utilizing fully self-learning models to meliorate the simulation process. By
incorporating the full potential of TensorFlow, these data models can be advanced enough to be used
for other purposes besides this simulator.

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 75

REFERENCES
[1] 2019. 2019 Relatórios e Contas - Annual Report. Technical Report. Empresa de Eletricidade da Madeira. https://www.eem.

pt/media/733843/pt_eem_relatoriocontas_2019.pdf -.
[2] 2020. European island imaginaries: Examining the actors, innovations, and renewable energy transitions of 8 islands.

101491. https://doi.org/10.1016/j.erss.2020.101491
[3] AMQP. What is AMQP and why is it used in RabbitMQ? - CloudAMQP. https://www.cloudamqp.com/blog/what-is-

amqp-and-why-is-it-used-in-rabbitmq.html
[4] Maja Barring, Bjorn Johansson, Erik Flores-Garcia, Jessica Bruch, and Mats Wahlstrom. 2018. CHALLENGES OF DATA

ACQUISITION FOR SIMULATION MODELS OF PRODUCTION SYSTEMS IN NEED OF STANDARDS. IEEE, 691–702.
https://doi.org/10.1109/WSC.2018.8632463

[5] Nate Blair, Nicholas DiOrio, Janine Freeman, Paul Gilman, Steven Janzou, Ty Neises, and Michael Wagner. System
Advisor Model (SAM) General Description (Version 2017.9.5). Technical Report. National Renewable Energy Laboratory.
https://www.nrel.gov/docs/fy18osti/70414.pdf

[6] J. R. Bumby, P. H. Clarke, and I. Forster. 1985. Computer modelling of the automotive energy requirements for internal
combustion engine and battery electric-powered vehicles. 265–279. https://doi.org/10.1049/ip-a-1.1985.0059

[7] K.L. Butler, M. Ehsani, and P. Kamath. 1999. A Matlab-based modeling and simulation package for electric and hybrid
electric vehicle design. 1770–1778. https://doi.org/10.1109/25.806769

[8] Lili Cao and John Krumm. 2009. From GPS traces to a routable road map (GIS ’09). Association for Computing Machinery,
3–12. https://doi.org/10.1145/1653771.1653776

[9] Chart.js. Chart.js | Open source HTML5 Charts for your website. https://www.chartjs.org/
[10] G. H. Cole. 1991. SIMPLEV: A simple electric vehicle simulation program, Version 1.0. Technical Report DOE/ID-10293. EG

and G Idaho, Inc., Idaho Falls, ID (United States). https://doi.org/10.2172/10167537
[11] Jürgen Dersch and Simon Dieckmann. 2015. Techno-Economic Evaluation of Renewable Energy Projects using the

Software greenius. 17–24. https://doi.org/10.5383/ijtee.10.01.003
[12] Docker. Empowering App Development for Developers | Docker. https://www.docker.com/
[13] Flask. Flask. https://palletsprojects.com/p/flask/
[14] Holger Hesse, Michael Schimpe, Daniel Kucevic, and Andreas Jossen. 2017. Lithium-Ion Battery Storage for the

Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. 2107.
https://doi.org/10.3390/en10122107

[15] Jordan Hoffmann, Yohai Bar-Sinai, Lisa M. Lee, Jovana Andrejevic, Shruti Mishra, Shmuel M. Rubinstein, and Chris H.
Rycroft. 2019. Machine learning in a data-limited regime: Augmenting experiments with synthetic data uncovers order
in crumpled sheets. eaau6792. https://doi.org/10.1126/sciadv.aau6792

[16] Qilong Huang, Qing-Shan Jia, Zhifeng Qiu, Xiaohong Guan, and Geert Deconinck. 2015. Matching EV Charging Load
With Uncertain Wind: A Simulation-Based Policy Improvement Approach. 1425–1433. https://doi.org/10.1109/TSG.
2014.2385711

[17] Vadim Kravcenko. pipreqs: Pip requirements.txt generator based on imports in project. https://github.com/bndr/pipreqs
[18] James Larminie and John Lowry. 2003. Electric vehicle technology explained. J. Wiley, West Sussex, England ; Hoboken,

N.J.
[19] Gauthier Limpens, Stefano Moret, Hervé Jeanmart, and Francois Maréchal. 2019. EnergyScope TD: A novel open-source

model for regional energy systems. 113729. https://doi.org/10.1016/j.apenergy.2019.113729
[20] Make. Make - GNU Project - Free Software Foundation. https://www.gnu.org/software/make/
[21] Hannah Mareike Marczinkowski. 2018. Reference energy simulation models for the three pilot islands (Samsø, Orkney,

Madeira): Smart Island Energy Systems - H2020 Project SMILE Deliverable 8.1.
[22] Hannah Mareike Marczinkowski. 2018. Short and medium-term scenarios for the three pilot islands (Samsø, Orkney,

Madeira): Smart Island Energy Systems - H2020 Project SMILE Deliverable 8.2.
[23] Charalampos Marmaras, Erotokritos Xydas, and Liana Cipcigan. 2017. Simulation of electric vehicle driver behaviour in

road transport and electric power networks. 239–256. https://doi.org/10.1016/j.trc.2017.05.004
[24] W. W. Marr and J. He. 1995. MARVEL: A PC-based interactive software package for life-cycle evaluations of hybrid/electric

vehicles. Technical Report ANL/ES/CP-87322; CONF-9510282-1. Argonne National Lab., IL (United States). https:
//www.osti.gov/biblio/184295

https://www.eem.pt/media/733843/pt_eem_relatoriocontas_2019.pdf
https://www.eem.pt/media/733843/pt_eem_relatoriocontas_2019.pdf
https://doi.org/10.1016/j.erss.2020.101491
https://www.cloudamqp.com/blog/what-is-amqp-and-why-is-it-used-in-rabbitmq.html
https://www.cloudamqp.com/blog/what-is-amqp-and-why-is-it-used-in-rabbitmq.html
https://doi.org/10.1109/WSC.2018.8632463
https://www.nrel.gov/docs/fy18osti/70414.pdf
https://doi.org/10.1049/ip-a-1.1985.0059
https://doi.org/10.1109/25.806769
https://doi.org/10.1145/1653771.1653776
https://www.chartjs.org/
https://doi.org/10.2172/10167537
https://doi.org/10.5383/ijtee.10.01.003
https://www.docker.com/
https://palletsprojects.com/p/flask/
https://doi.org/10.3390/en10122107
https://doi.org/10.1126/sciadv.aau6792
https://doi.org/10.1109/TSG.2014.2385711
https://doi.org/10.1109/TSG.2014.2385711
https://github.com/bndr/pipreqs
https://doi.org/10.1016/j.apenergy.2019.113729
https://www.gnu.org/software/make/
https://doi.org/10.1016/j.trc.2017.05.004
https://www.osti.gov/biblio/184295
https://www.osti.gov/biblio/184295

76 • Joaquim Perez

[25] Mário Martins. 2015. Evaluation of energy and environmental impacts of electric vehicles in different countries. Ph.D. Dis-
sertation. Instituto Superior Técnico, Lisbon, Portugal. https://fenix.tecnico.ulisboa.pt/downloadFile/844820067125012/
Thesis%20Mario%20Martins_Corrections%20final.pdf

[26] A. S. Masoum, A. Abu-Siada, and S. Islam. 2011. 1–7. https://doi.org/10.1109/ISGT-Asia.2011.6167125
[27] S. M. Mousavi G. and M. Nikdel. 2014. Various battery models for various simulation studies and applications. 477–485.

https://econpapers.repec.org/article/eeerensus/v_3a32_3ay_3a2014_3ai_3ac_3ap_3a477-485.htm
[28] Nicolai Müller, Stephanie Schenk, Patrick Hertzke, and Ting Wu. 2018. The global electric-vehicle market is amped up

and on the rise.
[29] Nameko. What is Nameko? — nameko 2.12.0 documentation. https://nameko.readthedocs.io/en/stable/what_is_nameko.

html
[30] Maik Naumann, Cong Nam Truong, Michael Schimpe, Daniel Kucevic, Andreas Jossen, and Holger C. Hesse. 2017. 1–6.
[31] J. Neubauer. 2014. Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation. Technical Report NREL/TP-

5400-63246. National Renewable Energy Lab. (NREL), Golden, CO (United States). https://doi.org/10.2172/1167066
[32] Ofgem. Implications to the transition to Electric Vehicles. https://www.ofgem.gov.uk/ofgem-publications/136142
[33] S. Onoda and A. Emadi. 2004. PSIM-based modeling of automotive power systems: conventional, electric, and hybrid

electric vehicles. 390–400. https://doi.org/10.1109/TVT.2004.823500
[34] OpenUI5. OpenUI5. https://openui5.org/
[35] Pack. Pack · Cloud Native Buildpacks. https://buildpacks.io/docs/tools/pack/
[36] Richard Pump, Arne Koschel, and Volker Ahlers. 2019. https://www.thinkmind.org/download.php?articleid=service_

computation_2019_1_20_18002
[37] Ghanim Putrus, P. Suwanapingkarl, D. Johnston, E.C. Bentley, and Mahinsasa Narayana. 2009. https://doi.org/10.1109/

VPPC.2009.5289760
[38] Python. What is Python? Executive Summary. https://www.python.org/doc/essays/blurb/
[39] RabbitMQ. Messaging that just works — RabbitMQ. https://www.rabbitmq.com/
[40] Paul Rutter and James Keirstead. 2012. A brief history and the possible future of urban energy systems. 72–80.

https://doi.org/10.1016/j.enpol.2012.03.072
[41] SimSES. SimSES - EES. https://www.ei.tum.de/ees/fp-ees/simses/
[42] SMILE. SMILE H2020. https://www.h2020smile.eu/
[43] R. Spotnitz. 2003. Simulation of capacity fade in lithium-ion batteries. 72–80. https://doi.org/10.1016/S0378-7753(02)00490-

1
[44] SQLObject. SQLObject — SQLObject 3.9.1 documentation. http://www.sqlobject.org/
[45] TensorFlow. TensorFlow. https://www.tensorflow.org/?hl=pt-br
[46] websockets. websockets — websockets 9.1 documentation. https://websockets.readthedocs.io/en/stable/index.html
[47] Johannes Weniger, Tjarko Tjaden, Nico Orth, and Selina Maier. Performance Simulation Model for PV-Battery Systems

(PerMod). Technical Report. University of Applied Sciences Berlin (HTW Berlin). https://pvspeicher.htw-berlin.de/wp-
content/uploads/PerMod_Documentation.pdf

[48] K.B. Wipke, M.R. Cuddy, and S.D. Burch. 1999. ADVISOR 2.1: a user-friendly advanced powertrain simulation using a
combined backward/forward approach. 1751–1761. https://doi.org/10.1109/25.806767

[49] Zhile Yang, Kang Li, and Aoife Foley. 2015. Computational scheduling methods for integrating plug-in electric vehicles
with power systems: A review. 396–416. https://doi.org/10.1016/j.rser.2015.06.007

https://fenix.tecnico.ulisboa.pt/downloadFile/844820067125012/Thesis%20Mario%20Martins_Corrections%20final.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/844820067125012/Thesis%20Mario%20Martins_Corrections%20final.pdf
https://doi.org/10.1109/ISGT-Asia.2011.6167125
https://econpapers.repec.org/article/eeerensus/v_3a32_3ay_3a2014_3ai_3ac_3ap_3a477-485.htm
https://nameko.readthedocs.io/en/stable/what_is_nameko.html
https://nameko.readthedocs.io/en/stable/what_is_nameko.html
https://doi.org/10.2172/1167066
https://www.ofgem.gov.uk/ofgem-publications/136142
https://doi.org/10.1109/TVT.2004.823500
https://openui5.org/
https://buildpacks.io/docs/tools/pack/
https://www.thinkmind.org/download.php?articleid=service_computation_2019_1_20_18002
https://www.thinkmind.org/download.php?articleid=service_computation_2019_1_20_18002
https://doi.org/10.1109/VPPC.2009.5289760
https://doi.org/10.1109/VPPC.2009.5289760
https://www.python.org/doc/essays/blurb/
https://www.rabbitmq.com/
https://doi.org/10.1016/j.enpol.2012.03.072
https://www.ei.tum.de/ees/fp-ees/simses/
https://www.h2020smile.eu/
https://doi.org/10.1016/S0378-7753(02)00490-1
https://doi.org/10.1016/S0378-7753(02)00490-1
http://www.sqlobject.org/
https://www.tensorflow.org/?hl=pt-br
https://websockets.readthedocs.io/en/stable/index.html
https://pvspeicher.htw-berlin.de/wp-content/uploads/PerMod_Documentation.pdf
https://pvspeicher.htw-berlin.de/wp-content/uploads/PerMod_Documentation.pdf
https://doi.org/10.1109/25.806767
https://doi.org/10.1016/j.rser.2015.06.007

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 77

Fig. 65. Docker containers

A APPENDIX

Message type Example Description
state

{
'message_type': 'state',
'message_value':
{
'is_sim_running': 'XXX',
'config':
{
'XXX' : 'XXX'
}

}
}

Simulation state

78 • Joaquim Perez

data
{
'message_type': 'data',
'message_value':
{
'sim_datetime': 'XXX',
'cars':
[
{
'id': 'XXX',
'alias': 'XXX',
'simulation_id': 'XXX',
'status': 'XXX',
'travels':
[
{
'id': 'XXX',
'car_id': 'XXX',
'car_alias': 'XXX',
'start_datetime': 'XXX',
'end_datetime': 'XXX',
'distance': 'XXX'
'battery_consumption': 'XXX'
}
],

Simulation data
(date-time, cars,
plugs, travels,
charging periods,
logs, and statistics)

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 79

'charging_periods':
[
{
'id': 'XXX',
'car_id': 'XXX',
'car_alias': 'XXX',
'start_datetime': 'XXX',
'end_datetime': 'XXX',
'plug_id' : 'XXX',
'plug_alias': 'XXX'
}

],
'battery_level': 'XXX',
'plug_id': 'XXX',
'plug_alias': 'XXX',
'plug_consumption': 'XXX'

},
'travels':
[
{
'id': 'XXX',
'car_id': 'XXX',
'car_alias': 'XXX',
'start_datetime': 'XXX',
'end_datetime': 'XXX',
'distance': 'XXX'
'battery_consumption': 'XXX'
}

],
'charging_periods':
[
{
'id': 'XXX',
'car_id': 'XXX',
'car_alias': 'XXX',
'start_datetime': 'XXX',
'end_datetime': 'XXX',
'plug_id' : 'XXX',
'plug_alias': 'XXX'

}
],
'plugs':
[
{
'id': 'XXX',
'alias': 'XXX',
'simulation_id': 'XXX',
'status': 'XXX',
'plugged_car_id': 'XXX',
'plugged_car_alias': 'XXX',
'energy_consumption': 'XXX',

80 • Joaquim Perez

'charging_periods':
[
{
'id': 'XXX',
'car_id': 'XXX',
'car_alias': 'XXX',
'start_datetime': 'XXX',
'end_datetime': 'XXX',
'plug_id' : 'XXX',
'plug_alias': 'XXX'
}

]
}

],
'logs':
[
{
'id': 'XXX',
'simulation_id': 'XXX',
'message': 'XXX'

}
],
'car_stats':
{
'labels': ['XXX'],
'datasets':
[
{
'label': 'XXX',
'backgroundColor': 'XXX',
'borderColor': 'XXX',
'fill': 'XXX',
'data': ['XXX']

}
]

},
'plug_stats':
{
'labels': ['XXX'],
'datasets':
[
{
'label': 'XXX',
'backgroundColor': 'XXX',
'borderColor': 'XXX',
'fill': 'XXX',
'data': ['XXX']
}

]
},

Development and analysis of an open-source platform to simulate electric vehicle charging needs • 81

'travel_stats':
{
'labels': ['XXX'],
'datasets':
[
{
'label': 'XXX',
'backgroundColor': 'XXX',
'borderColor': 'XXX',
'fill': 'XXX',
'data': ['XXX']
}

]
}
}

}

sim_list
{
'message_type': 'sim_list',
'message_value':
[
{
'id': 'XXX',
'is_running': 'XXX',
'description': 'XXX'
}

]
}

List of simulations

Table 13. Types of WebSocket messages sent

82 • Joaquim Perez

Command type Example Description
START-SIMULATION

{
'command_name' : 'START-SIMULATION'
}

Start a new simula-
tion

STOP-SIMULATION
{
'command_name' : 'STOP-SIMULATION'
}

Stop the current
simulation

SET-PLUG-STATUS
{
'command_name' : 'SET-PLUG-STATUS',
'command_args' :
{
'plug_id' : 'XXX',
'new_status' : 'XXX'

}
}

Set a new status for
a given plug

SET-CONFIG
{
'command_name' : 'SET-CONFIG',
'command_args' :
{
'new_config' :
{
'XXX' : 'XXX'
}

}
}

Update the simula-
tor’s config

SET-CONFIG-BY-KEY
{
'command_name' : 'SET-CONFIG-BY-KEY',
'command_args' :
{
'config_key' : 'XXX',
'config_value' : 'XXX'

}
}

Update a particu-
lar configuration of
the simulator

Table 14. Types of WebSocket messages received

	Abstract
	Contents
	Glossary
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Proposed Solution
	1.3 SMILE Project
	1.4 Structure of the document

	2 Related Work
	2.1 Existing simulation tools
	2.1.1 PerMod
	2.1.2 SimSES
	2.1.3 BLAST
	2.1.4 SAM
	2.1.5 FreeGreenius
	2.1.6 PSIM
	2.1.7 JANUS
	2.1.8 V-Elph
	2.1.9 SIMPLEV
	2.1.10 ADVISOR
	2.1.11 MARVEL

	2.2 Data presentation
	2.3 Simulators' ideal architecture
	2.4 Conclusions and Solution

	3 Solution
	3.1 Elicited requirements
	3.2 Modelling the solution
	3.2.1 Travels and battery consumption
	3.2.2 Charging
	3.2.3 Affluence
	3.2.4 Summary and observations

	3.3 Development tools
	3.3.1 Core programming language
	3.3.2 Machine learning
	3.3.3 Microservices development
	3.3.4 API development / Static file serving
	3.3.5 Real-time communication
	3.3.6 Message brokers
	3.3.7 Containerization
	3.3.8 Front-end development
	3.3.9 Scripting
	3.3.10 Object-relational mapping

	3.4 Architecture
	3.4.1 Simulator
	3.4.2 Gateway
	3.4.3 Data models
	3.4.4 Web client

	3.5 Functional overview

	4 Implementation
	4.1 Git flow
	4.2 Docker images
	4.3 Simulator
	4.3.1 Docker volume
	4.3.2 Webhook
	4.3.3 ORM classes
	4.3.4 REST API
	4.3.5 WS messaging

	4.4 Gateway
	4.5 Data models
	4.6 Web client
	4.6.1 Application manifest
	4.6.2 UI views
	4.6.3 Configuration
	4.6.4 REST API
	4.6.5 WS messaging

	4.7 Implementation final considerations

	5 Evaluation and Analysis
	5.1 Migration of the solution
	5.2 Enhancement of a data model
	5.3 Sharing with SMILE partners
	5.4 Conclusions

	6 Discussion
	6.1 Development
	6.2 Architecture
	6.3 UI
	6.4 Deployment and integration
	6.5 Conclusions

	7 Conclusion
	7.1 Future work

	References
	A Appendix

