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Featured Application: Application of an inexpensive, easy, eco-friendly, and rapid analytical
approach in the routine monitoring of phthalates in food packaging to guarantee food safety.

Abstract: Phthalates are multifunctional synthetic chemicals found in a wide array of consumer
and industrial products, mainly used to improve the mechanical properties of plastics, giving them
flexibility and softness. In the European Union, phthalates are prohibited at levels greater than 0.1%
by weight in most food packaging. In the current study, headspace solid-phase microextraction (HS-
SPME) combined with gas chromatography-mass spectrometry (GC-MS) was optimized, through
the multivariate optimization process, and validated to evaluate the occurrence of four common
phthalates, di-iso-butyl phthalate (DIBP), butyl-benzyl phthalate (BBP), di-n-octyl phthalate (DOP),
and 2,2,4,4-tetrabromodiphenyl (BDE), in different food packaging. The best extraction efficiency was
achieved using the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber at 80 ◦C for 30 min.
The validated method showed good linearity, precision (RSD < 13%), and recoveries (90.2 to 111%).
The limit of detection (LOD) and of quantification (LOQ) ranged from 0.03 to 0.08 µg/L and from
0.10 to 0.24 µg/L, respectively. On average, the phthalates concentration varied largely among the
assayed food packaging. DIBP was the most predominant phthalate in terms of occurrence (71.4%
of analyzed simples) and concentration (from 3.61 to 10.7 µg/L). BBP was quantified in only one
sample and BDE was detected in trace amounts (<LOQ) in only two samples.

Keywords: phthalates; food packaging; HS-SPME/GC-qMS optimization; validation

1. Introduction

Phthalates are a chemical group of industrial compounds with a common chemical
structure, dialkyl or alkyl/aryl esters of 1,2-benzenedicarboxylic acid, commonly used for
a variety of purposes, including industrial plastics, personal care products, and pharmaceu-
ticals. Humans are exposed to phthalates through different ways such as dermal contact,
inhalation, and ingestion. However, due to the abundance of plastic in our society, the ex-
posure to phthalates is ubiquitous, constituting a major problem both at the environmental
and health levels. In Europe, eight million tons of plastics was used for food and drink
packaging, being one area in which plastics make a major contribution.

Although its inherent and useful features including flexibility, impermeability, strength,
stability, lightness, and ease of sterilization make plastic packaging an ideal material for all
types of industry in both flexible and rigid formats, they also promote food safety and shelf
life and facilitate the transport and use of products. This will significantly reduce food
waste, energy consumption, and the resources used. They are constituted by a complex
mixture of thousands of chemical compounds made essentially of polyvinyl chloride (PVC),
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polyvinyl acetate (PVA), polyvinylidene chloride (PVDC), and different mixes to improve
their plasticizer properties such as the incorporation of bisphenol A, used as a structural
constituent, and phthalic acid-derived esters (phthalates) [1–3].

The occurrence of phthalates has been documented in different parts of the environ-
ment including surface water, sediments, soils, and the atmosphere, in addition to plastic
materials used in food packaging [4,5], which are the most important human exposure
pathway for phthalates, followed by inhalation of indoor air and ingestion of dust [6]. The
European Union regulates the maximum content of these compounds in plastics that are
in contact with all types of food (Commission Regulation (EU) No 10/2011 of 14 January
2011) and the management of packaging and packaging waste (Directive (EU) 2018/852 is
the last amendment of Directive 94/62/EC).

The presence of phthalates in both the environment and food packages is an issue of
special concern, not only from a health point of view, regarding their role as endocrine
disrupting chemicals (EDCs) and their action on reducing testosterone production and
changing thyroid function [7], but also due their ecological effects. Cardiovascular diseases,
dysplasia, and reproductive system malformations are some of the other adverse effects
associated with phthalates according to reports in several toxicity studies [8,9]. Moreover,
prenatal exposure to some phthalates is linked to a male genital condition, which may
increase the risk of testicular and prostate cancer, and lower fertility [10]. According to
Hyland et al.’s studies [11], phthalates affect brain development and are associated with
learning and behavior problems in children.

The determination of these compounds in different samples is challenging and de-
manded urgently for environmental and health risk assessment. The extraction procedure
is the main key point of previous phthalates analyses. Extraction of phthalates in sam-
ples often employs microwave [12], Soxhlet [13], and ultrasonic techniques [14] prior to
GC-MS analysis. The improvement of these procedures is followed by a pre-concentrating
step, increasing phthalates detection. Usually, solid-phase extraction (SPE), solid-phase
microextraction (SPME), and cloud point extraction (CPE) are the most applied to solve
the matrix background [15,16], in combination with liquid chromatography (LC) and gas
chromatography (GC) techniques hyphenated to conventional and mass spectrometry (MS)
detectors [17], although other alternative procedures such as electronic sensors have also
been used with this aim [18].

In this study, three phthalates (DIBP, BBP, DOP) and biphenyl ether (BDE) were
simultaneously determined in different types of plastics used in the packaging of pasta,
crackers, and frozen vegetables, by solid-phase microextraction in headspace mode (HS-
SPME) followed by gas chromatography-mass spectrometry methodology. To achieve
the maximum extraction efficiency, several SPME extraction parameters, namely, the fiber
coating, extraction time, and temperature, were optimized using a multivariate design.
Furthermore, the proposed method was validated according to IUPAC guidelines and
applied to determine the levels of phthalates in several plastics used in food packaging.

2. Materials and Methods
2.1. Chemicals

All reagents were of analytical grade and used without any further purification. Di-
iso-butyl phthalate (DIBP), butyl-benzyl phthalate (BBP), di-n-octyl phthalate (DOP), and
2,2,4,4-tetrabromodiphenyl ether (BDE) were purchased from Sigma-Aldrich Química S.A.
(Spain). The digital stirring plate (Cimarec™) was supplied by Thermo Scientific (Waltham,
MA, USA), while the SPME holder for manual sampling together with 50/30 µm divinyl-
benzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS), 100 µm polydimethylsilox-
ane (PDMS), and 65 µm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibers, with
1 cm length, was purchased from Supelco (Bellefonte, PA, USA). Each fiber was daily
conditioned according to the manufacturer’s recommendations in order to avoid carryover
between sets of analyses. In addition, sodium chloride (NaCl) was supplied by Panreac
(Barcelona, Spain) and He (GC carrier gas) of purity 5.0 was supplied from Air Liquide,
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Portugal. Ultrapure water (H2O) was obtained from a Milli-Q Plus system (18 MΩ/cm,
Millipore Bedford, MA, USA).

The sources of contamination can be present in any step of the analytical procedure,
such as sampling, sample preparation, and chromatographic analysis, among others [19].
Prior to use, all glassware material was washed with ethanol followed by H2O and heated
at 300 ◦C for 2 h. Then, these materials were stored in desiccators containing aluminum
oxide to avoid recontamination.

2.2. Sample Preparation

Different kinds of plastic packages were used (e.g., crackers, juice, milk, meat, legumes)
in a total of 14 samples. Each plastic sample was cut into small pieces and ground with an
T 25 digital ULTRA-TURRAX (IKA). An aliquot of 1.5 g of sample was added into beakers
containing 6.0 mL of H2O. Then, the samples were left under agitation (400 rpm, 60 min
and 25 ± 1 ◦C) to extract the phthalates. The supernatant was collected, coded, and stored
at −20 ◦C, in the dark, until HS-SPME extraction.

2.3. Standard Solutions

Ethanolic phthalates standard solutions (500 µg/L) were prepared, labeled, and stored
at −20 ◦C. For validation purposes, six standard solutions containing the target analytes at
different concentrations were prepared daily by dilution of the working solutions (10 mg/L)
in H2O.

2.4. HS-SPME Multivariate Optimization Process

Several factors influence the SPME efficiency, the most important being the fiber
coating, extraction time, and temperature. A multivariate optimization process using
a mixed standard solution containing phthalates at 60 µg/L was used to achieve the
optimal extraction efficiency of HS-SPME. The study of the variables that were considered
significant for the experiment was conducted using a 33 factorial design, namely, fiber
coating (DVB/CAR/PDMS, PDMS, PDMS/DVB), extraction (15, 30, and 45 min), and
extraction temperature (60, 70, and 80 ◦C). The optimal HS-SPME extraction conditions
were used to analyze the samples. After sample preparation, an aliquot of 2 mL of sample
and 0.2 g of NaCl was placed in an 8 mL vial. The vial was capped with a Teflon (PTFE)
septum, and the fiber was introduced and exposed into the headspace for 30 min at 80 ◦C
under constant agitation (400 rpm). Then, the fiber was removed from the vial and inserted
into the GC injection port, where the extracted analytes were desorbed for 6 min at 250 ◦C.
Each sample was analyzed in triplicate and blank chromatographic injections of the SPME
device were performed before each set of analysis.

2.5. Gas Chromatography Quadrupole Mass Spectrometry (GC-qMS) Conditions

The SPME fiber with the target analytes was inserted into the injection port of an
Agilent Technologies 6890N Network gas chromatograph system (Palo Alto, CA, USA)
where the analytes were thermally desorbed. The gas chromatographer was equipped with
a 60 m × 0.25 mm I.D. × 0.25 µm film thickness HP-5 (SGE, Dortmund, Germany) fused
silica capillary column and interfaced with an Agilent 5975 quadrupole inert mass selective
detector. The oven temperature program was set as follows: 120 ◦C (hold 3 min), increased
until 190 ◦C at a rate of 10 ◦C/min (hold 4 min after reach 190 ◦C), further increased to
240 ◦C at a rate of 3 ◦C/min, maintained for 20 min. The total GC run time was 50.67 min.
The column flow was constant at 1.0 mL/min using He of purity 5.0. The injection port was
operated in the splitless mode and held at 250 ◦C. For the 5975 MS system, the operating
temperatures of the transfer line, quadrupole, and ionization source were 270, 150, and
230 ◦C, respectively. Data acquisition was performed in the scan mode (30–300 m/z) with
electron ionization at an energy of 70 eV and the ionization current of 10 µA. Phthalates
identification was accomplished through manual interpretation through comparison of
spectra and matching against the Agilent MS ChemStation Software, equipped with an
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NIST05 mass spectral library with a similarity threshold higher than 90%, and by the
standards. The analysis was performed in triplicate, and the results were expressed as
mean ± standard deviation. In addition, to evaluate the occurrence of phthalates in the GC
system, blank runs of the chromatograph and direct injections of ethanol were carried out.
None of phthalate targets were detected.

2.6. Method Validation

The analytical performance was evaluated in terms of selectivity, linearity, sensitivity,
precision (inter-/intra-day), and recovery (as a measure of trueness). The method selec-
tivity was evaluated by the absence of interfering peaks at the retention time (RT) of the
phthalates, through the direct injection of an aliquot of the blank extract, and the solvent
was injected directly. Six-point calibration curves of investigated phthalates were built in
the concentration range reported in Table 1, in triplicate, to evaluate the method linearity.
The evaluation was performed based on the average GC peak areas, percentage of relative
standard deviation (% RSD), regression coefficients (R2), and linear ranges established
for each target analyte analyzed. Sensitivity of the method was assessed through limit
of detection (LOD, the lowest analyte concentration that produces a response detectable
above the noise level of the system) and limit of quantification (LOQ, the lowest analyte
concentration that can be accurately and precisely measured). The LOD and LOQ were
determined using the residual standard deviation (Sy/x) of corresponding curves, LOD
and LOQ being calculated by 3.3 Sy/x/b (b = slope) and 10 Sy/x /b, respectively, obtained
in the calibration curve. Three different concentrations of target phthalates, added to the
mixture of grounded packaging materials with water (1.5 g/6 mL of water), were used to
evaluate the recovery of the proposed analytical method, within the linear range of the
calibration curve. Seven replicates (n = 7) were carried out on the same day to determine
intra-day precision (repeatability), whereas for the inter-day precision (reproducibility),
five replicates (n = 5) were analyzed over six consecutive days (a total of n = 30). The
recovery (accuracy) was determined as precision through the spiking of food packaging at
three concentration levels. Both parameters were expressed as % RSD.

3. Results and Discussion

The phthalates chosen for the current study are the most relevant contaminants
detected in environmental and food-related products [20].

3.1. Optimization of HS-SPME Procedure

To obtain the feasibility of the proposed analytical method, using the HS-SPME/GC-
MS technique, a factorial design based on fiber coating, extraction time, and extraction
temperature was optimized. The optimal conditions were chosen based on extraction
efficiency measured by the GC-MS response (GC peak area) and reproducibility (the lowest
% RSD). Figure 1 shows that the best extraction efficiency for DIBP, BBP, and DOP was
achieved using the PDMS/DVB fiber at 80 ◦C, whereas for BDE, this was obtained using
PDMS at 80 ◦C. Moreover, for DIBP, no significant difference was observed in terms of
extraction efficiency between PDMS and the PDMS/DVB fiber at 80 ◦C. Therefore, the
PDMS/DVB fiber was chosen for the HS-SPME extraction procedure since it provided a
better extraction efficiency, with the exception of the BDE target, and better reproducibility
than PDMS. Moreover, the PDMS/DVB fiber was reported to be the most suitable fiber for
phthalates analysis in several environmental waters and food-related products [12,20].
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Figure 1. Multivariate analysis for HS-SPME optimization of phthalates target. Conditions: sample volume: 2 mL;
concentration of phthalates: 60 µg/L; NaCl amount: 0.2 g; extraction time: 15, 30, and 45 min; extraction temperature: 60,
70, and 80 ◦C; desorption time and temperature: 6 min and 250 ◦C.

It is well known that SPME is an equilibrium-based extraction procedure and therefore
a time-dependent process. Nonetheless, the extraction time can be shortened with the
increase in the extraction temperature, since high temperatures improve the diffusion
kinetics of the target analytes [21]. In the current study, temperatures higher than 80 ◦C were
not considered to avoid the reduction in fiber sensitivity for phthalates due to overloading
the fiber with H2O molecules as well as to avoid possible degradations [20]. In addition,
as microextraction is an endothermic process, high temperatures hamper the process.
The extraction efficiency of HS-SPME increased for all phthalates with the increasing
temperature. DOP is the only phthalate that does not show this remarkable increase,
since a slight increase was observed between 70 and 80 ◦C; thus, 80 ◦C was selected as
the extraction temperature. It has been reported that 80 ◦C is an optimal temperature to
extract phthalates from environmental waters [22]. Regarding the extraction time, BBP,
DOP, and BDE reached their equilibrium after 30 min, independently of the extraction
temperature. For DIBP, the equilibrium was reached at 45 min. Thus, the optimal extraction
conditions selected to determine phthalates in food packages were 30 min at 80 ◦C using a
PDMS/DVB fiber coating.

3.2. Method Validation

The performance of the analytical method was assessed based on linearity, sensitivity,
selectivity, precision (intra- and inter-days), and recovery (accuracy). The chromatogram
profile of the optimized analytical method is depicted Figure 2, and phthalates (60 µg/L)
were totally separated in less than 28 min.
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Figure 2. HS-SPME/GC-MS chromatograms of phthalates at 60 µg/L using PDMS/DVB fiber at 80 ◦C for 30 min.

Table 1 summarizes the phthalates involved in the current study, RT, linear range, R2,
LOD, and LOQ, whereas Table 2 reports the recovery and precision data.

Table 1. Figures of merit of the phthalates HS-SPME/GC-qMS methodology.

RT (min) PAEs Linear Range (µg/L) Equation R2 LOD (µg/L) LOQ (µg/L)

13.18 DIBP 0.5–60 y = 817,649x + 106 0.996 0.06 0.21
22.55 BBP 0.5–60 y = 66,577x + 116,115 0.999 0.03 0.10
26.49 BDE 1–60 y = 124,317x + 755,468 0.995 0.08 0.24
27.77 DOP 1–60 y = 44,993x – 100,807 0.999 0.07 0.23

To build the calibration curves for the phthalates, mixed working solutions were
prepared in the concentration range 0.5 to 60 µg/L and plotted using their GC peak area.
For all targets under study, a good linearity (R2 ≥ 0.995) with residuals not exceeding
±10% was achieved over the whole range of concentrations tested. The LODs ranged
from 0.03 (BBP) to 0.08 (BDE) µg/L, while LOQs ranged from 0.10 (BBP) to 0.24 (BDE)
µg/L. Regarding DIBP, the LOD and LOQ obtained were lower than the default maximum
residue limit (MRL, 300 µg/L) established by many government agencies worldwide,
including the European Environment Agency, the USEPA, and the Chinese Ministry of
Health [23].

The precision of the method was assessed by intra- (repeatability) and inter-day
(reproducibility) precisions. The intra-day precision varied from 0.65 to 7.93%, whereas the
inter-day precision ranged from 1.65 to 12.68%. The recovery was performed by spiking
the phthalates in the food package solution at three levels of concentration (low, medium,
and high), which ranged from 90.2 to 111% (Table 2). The literature has reported that a
quantitative method should be demonstrated as being able to provide mean recoveries
within the range of 70–120% and precision with % RSD values lower than 20%. Similar
precisions and recoveries for phthalates were obtained in different matrices using HS-
SPME/GC-MS [20,24,25].

In addition, the LODs and LOQs obtained in this work (Table 1) are slightly betterthan
those obtained by other authors employing HS-SPME/GC-MS to determine phthalates in
plastic containers [24], milk [25], and beers [20].
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Table 2. Recovery and precision of phthalates in food packaging, using sample 3, at three spiked levels *.

RT (min) Compounds Spiked Level (µg/L) % REC ± SD Intra-Day (%) Inter-Day (%)

13.17 DIBP
0.5 90.20 ± 1.3 3.5 7.5
30 91.60 ± 0.9 1.9 5.8
60 104.9 ± 1.8 0.9 3.3

22.55 BBP
0.5 107.9 ± 2.0 5.9 8.5
30 111.3 ± 1.9 1.3 6.7
60 105.7 ± 3.2 0.9 1.7

26.49 BDE
1 98.30 ± 0.8 7.9 12.7

30 91.30 ± 1.4 3.7 10.6
60 94.00 ± 1.7 0.6 3.5

27.77 DOP
1 109.2 ± 4.3 1.5 8.2

30 99.20 ± 1.6 1.4 3.1
60 95.50 ± 0.8 0.7 2.2

RT—retention time; % REC—recovery percentage; SD—standard deviation; * validation obtained for sample 3.

However, a higher LOD (from 0.12 to 0.50 µg/L) was achieved previously to quantify
six phthalates in environmental waters using liquid–liquid extraction (LLE) followed
by GC-MS [26]. A summary of the different analytical methods, used for phthalates
determination in plastic packaging, is presented in Table 3 [20,21,24,27–36].

Table 3. Comparison of the analytical performance of the developed method in this study with other studies reported in the
literature.

Target Analytes Samples Extraction
Procedure

Analytical
Method LOD (µg/L) LOQ (µg/L) Rec (%) Ref.

6 PAEs Milk products LLE LC-MS/MS - 20–30 µg/kg 84–96 [30]
5 PAEs Meats LLE LC-MS/MS - 40 µg/kg 96–103 [31]
8 PAEs Tea, juices DES-VA-

EDLLME HPLC-DAD 5.1–17.8 17.2–59.4 84–120 [32]
6 PAEs, BPA Waters SB-DLLME GC-MS 0.001–0.008 0.005–0.014 95–99 [33]
17 PAEs Capsanthin QuEChERS GC-MS 0.2–0.5 µg/kg 0.6–1.5 µg/kg 83–118 [34]
20 PAEs Breast milk QuEChERS GC-MS/MS 0.004–1.3 µg/kg 0.02–4.2 µg/kg 83–123 [35]
3 PAEs Waters MSPE HPLC-VWD 0.025–0.16 0.082–0.54 93–102 [36]
15 PAEs Beverages MSPE GC-MS/MS 0.005–2.748 0.018–9.151 79–122 [27]
6 PAEs, BPA Honey UVA-DLLME GC-MS 3–13 µg/kg 7–22 µg/kg 71–100 [20]
6 PAEs, 1 Adipate Beers HS-SPME GC-MS 0.006–0.590 0.020–1.959 74–101 [28]
11 PAEs Vegetables HS-SPME GC-MS/MS 0.001–0.430 - - [21]
10 PAEs Milk and rice SPME GC-MS 0.054–2.51 ng/L 0.18–8.37 ng/L 89–114 [24]
4 PAEs Yogurts, waters HFLMP-SPME GC-FID 0.008–0.030 0.028–0.120 96–100 [29]
4 PAEs Food packaging HS-SPME GC-MS 0.03–0.08 0.10–0.24 90–111 This study

BPA—bisphenol A; DES-VA-EDLLME—deep eutectic solvent-based dispersive liquid–liquid microextraction; GC-FID—gas
chromatography-flame ionization detection; GC-MS—gas chromatography-mass spectrometry; GC-MS/MS—gas chromatography tandem
mass spectrometry; HFLMP-SPME—hollow fiber liquid membrane-protected solid-phase microextraction; HPLC-DAD—high-performance
liquid chromatography-diode-array detection; HPLC-VWD—high-performance liquid chromatography-variable wavelength detector;
HS-SPME—headspace solid-phase microextraction; LC-MS/MS—liquid chromatography tandem mass spectrometry; LLE—liquid–liquid
extraction; MSPE—magnetic solid-phase extraction; PAEs—phthalates; QuEChERS—quick, easy, cheap, effective, rugged, and safe;
SB-DLLME—solvent-based dispersive liquid–liquid microextraction; SPME—solid-phase microextraction; UVA-DLLME—ultrasound
vortex assisted dispersive liquid–liquid microextraction.

3.3. Quantification of Phthalates in Plastic-Based Food Packaging

The HS-SPME/GC-qMS method was applied to investigate the occurrence of phtha-
lates in 14 types of plastic-based food packaging acquired in a local market. The RT and
mass spectra comparison confirmed the occurrence of individual phthalates. Table 4 shows
the phthalates concentration found in 14 plastic packages used in the food industry and
determined by HS-SPME/GC-MS after method validation. DIBP was the most prominent
phthalate found in all samples, with a frequency of occurrence (FO) of 100%, and its con-
centration ranged from 3.61 to 10.6 µg/L. DOP was the second most dominant phthalate
detected in food packages (FO = 64%) at concentrations ranging from 1.03 to 2.83 µg/L.
BDE was detected in two samples, but its concentration was lower than the LOQ. BBP was
detected only in one sample, and its concentration did not exceed 1.42 µg/L. Therefore, the
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results indicate that the proposed green extraction technique was effective and feasible for
the determination of phthalates in plastic-based food packaging.

Table 4. Occurrence of phthalates in plastic-based food packages.

Samples
Phthalates Concentration (µg/L) ± SD

DIBP BBP BDE DOP

Plastic 1 <LOD - - -
Plastic 2 <LOD - - -
Plastic 3 <LOD - - -
Plastic 4 <LOD 1.4 ± 0.01 <LOD 2.8 ± 0.04
Plastic 5 4.8 ± 0.3 - - 1.0 ± 0.01
Plastic 6 10.6 ± 0.2 - - 2.2 ± 0.06
Plastic 7 9.0 ± 0.4 - - 1.8 ± 0.07
Plastic 8 6.1 ± 0.3 - - 1.1 ± 0.08
Plastic 9 8.2 ± 0.4 - - -

Plastic 10 4.7 ± 0.05 - - 2.2 ± 0.02
Plastic 11 3.6 ± 0.7 - - 1.9 ± 0.2
Plastic 12 10.7 ± 0.6 - - -
Plastic 13 6.8 ± 0.8 - - 1.9 ± 0.4
Plastic 14 4.3 ± 0.2 - <LOD 2.5 ± 0.2

SD: standard deviation; <LOD: lower than limit of detection; -: not detected.

Several studies (Table 5) revealed that phthalates and the ester derivative are passively
ingested from the general environment, foods, drinks, breathing air, and dairy life products,
causing various dysfunctions [3,20,30,31,34,37–46]. Exposures to DEHP, BBP, DBP, and DEP
are associated with dermatitis, conjunctivitis, and allergic symptoms [47]. Other studies
have found a relationship of asthma and worsening of pulmonary functions with these
phthalates [48].

Table 5. Levels of different phthalates found in different types of samples reported in the literature.

Samples Phthalates Concentration Range Ref.

Meats
DEHP (Pork and Chicken) 0.62, 0.8 mg/kg [31]
DEHP (Fruit jam, Salted meat); DnBP 170 µg/kg, 2380 µg/kg; 1580 µg/kg [42]

Spices DEHP; DiBP, DBP; BBzP 2598 µg/kg; >300 µg/kg [3,49]
Tea DMP, DEP, DIBP; DBP; DEHP 1.135–3.734 mg/kg [43]
Wine DMP, DEP/DBP/BBP 0.024–0.029 µg/mL [44]

Waters
DEHP, DBP, DEP, BOP
DEHP, BBP, DBP, DEP, DMP
(Bottled water)

0.76/0.96/1.06/0.77 µg/L
3.42/2.89/13.99/5.35/1.15/2.07

µg/L
[46]

Capsanthin DBP, DEHP 0.872/0.992 µg/g [34]

Beers DMP, DEP, DBP, BBP, DEHP, DOP,
DEHA

0.588, 0.175, 0.118, 0.079, 0.009,
0.006, 0.009 µg/L [20]

Juice DOP, DBP, DIBP, DEHP, BBP (Juice) 0.01–08 mg/dm3 [37]
Beverages DEHP, DEP 0.580 /0.070 µg/L [38]
Honey/Royal Jelly DIBP, BBP, BDE, DOP, 0.3/1.5; 0.8/3; 0.3/1.5; 1.2; 6 ng/g [39]
Vegetables DEHP, DnBP, DiBP, DEP, BBP 1881–4664/985/338/9/2 µg/kg [40]
Powdered and Human/Raw
Milk

Mono-BP, mono-BzP,
DnBP, BzBP, DEHP

0.1–500 ng/mL
18/1.2/21 µg/kg [3,41]

Yoghurt DEHP, DBP, BBP 170/112/63 µg/kg [30]
Plastic Containers DIBP, BBP, BDE, DOP 4.39/1.42/<LOD/1.03 µg/L This study

4. Conclusions

The detection of phthalates in plastics used in food packaging is of utmost importance
in order to ensure the high quality and safety of packed food and food-derived products.
In this context, a sensitive method based on the HS-SPME approach combined with GC-MS
was developed using multivariate optimization. The optimal HS-SPME conditions were
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achieved using the PDMS/DVB fiber at 80 ◦C for 30 min. The performance of the HS-
SPME/GC-MS methodology was evaluated in terms of linearity, LODs, LOQs, precision,
and recovery. A good linearity (R2 ≥ 0.995), intra-day/inter-day precision (RSD < 13%),
and recovery (90.2 to 111%) were obtained for the quantification of phthalates. The LODs
ranged from 0.03 to 0.08 µg/L, while the LOQs ranged from 0.10 to 0.24 µg/L. The method
was applied to 14 foodstuff plastic packages, and DIBP was the most prominent phthalate
found in all samples (FO of 100%), with a concentration ranging from 3.61 to 10.6 µg/L.
The results obtained show the applicability and feasibility of HS-SPME/GC-MS for the
quantification of phthalates in foodstuff plastic packages. In addition, this inexpensive,
easy, eco-friendly, and rapid analytical approach can be used in routine monitoring studies,
as well as for food safety analysis.
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