

Cloud provider independence using

DevOps methodologies with Infrastructure-as-Code

Rui Manuel Ribeiro Pereira

Dissertação para obtenção do Grau de Mestre em

INFORMÁTICA

Júri

Presidente: Professora Dra. Andreia Cristina Teles Vieira

Arguente: Professor Dr. Arnaldo Emanuel de Almeida da Silveira Costeira

Orientador: Professor Dr. Pedro Ramos dos Santos Brandão

Aluno nº 99991905

Julho, 2021

2

3

Acknowledgments

I am extremely grateful to my wife Célia for her dedicated support and encouragement throughout

the very intense academic years and also my son Rafael and daughter Daniela for their patience

during the entire process. Thank you for all the unconditional support. It wouldn't have been

possible without it.

I would also like to thank my supervisor Prof. Dr. Pedro Brandão for all the provided guidance

and support as well as valuable insight during the development of this dissertation.

4

Resumo

Ao optar-se por infraestruturas de computação em nuvem para soluções de TI existe um

risco associado de se ficar dependente de um fornecedor de serviço específico, do qual se torna

difícil mudar caso se decida posteriormente movimentar toda essa infraestrutura para um outro

fornecedor. Encontra-se disponível extensa documentação sobre como migrar infraestrutura já

existente para modelos de computação em nuvem, de qualquer modo as soluções e os

fornecedores de serviço não dispõem de formas ou metodologias claras que suportem os seus

clientes em migrações para fora da nuvem, seja para outro fornecedor ou infraestrutura com

semelhantes tipos de serviço, caso assim o desejem. Nestas circunstâncias torna-se difícil mudar

de fornecedor de serviço não apenas pela complexidade técnica associada à criação de toda a

infraestrutura de raiz e movimentação de todos os dados associados a esta mas também devido

aos custos que envolve uma operação deste tipo. Uma possível solução é avaliar a utilização de

linguagens para definição de infraestrutura como código (“Infrastructure-as-Code”) em

conjunção com metodologias e tecnologias “DevOps” de forma a criar um mecanismo que

permita flexibilizar um processo de migração entre diferentes infraestruturas de computação em

nuvem, especialmente se for contemplado desde o início de um projecto. Uma metodologia

“DevOps” devidamente estruturada quando combinada com definição de infraestrutura como

código pode permitir um controlo mais integrado de recursos na nuvem uma vez que estes podem

ser definidos e controlados através de linguagens específicas e submetidos a processos de

automação. Tais definições terão de ter em consideração o que existe disponível para suportar as

necessárias operações através das “API’s” das infraestruturas de computação em nuvem,

procurando sempre garantir ao utilizador um elevado grau de controlo sobre a sua infraestrutura

e um maior nível de preparação dos passos necessários para recriação ou migração da

infraestrutura caso essa necessidade surja, integrando de certa forma os recursos de computação

em nuvem como parte do modelo de desenvolvimento. Esta dissertação tem como objetivo a

criação de um modelo de referência conceptual que identifique formas de migração de

infraestruturas de computação procurando ao mesmo tempo uma maior independência do

fornecedor de serviço com recurso a tais mecanismos, assim como identificar possíveis

constrangimentos ou impedimentos nesta aproximação. Tal modelo poderá ser referenciado desde

o início de um projecto de desenvolvimento caso seja necessário contemplar uma possível

necessidade futura de alterações ao nível da infraestrutura ou de fornecedor, com base no que as

“API’s” disponibilizam, de modo a facilitar essa operação.

Palavras-Chave: Nuvem, Migração, Dependência, Desenvolvimento, Código, Referência.

5

Abstract

On choosing cloud computing infrastructure for IT needs there is a risk of becoming

dependent and locked-in on a specific cloud provider from which it becomes difficult to switch

should an entity decide to move all of the infrastructure resources into a different provider.

There’s widespread information available on how to migrate existing infrastructure to the cloud

notwithstanding common cloud solutions and providers don't have any clear path or framework

for supporting their tenants to migrate off the cloud into another provider or cloud infrastructure

with similar service levels should they decide to do so. Under these circumstances it becomes

difficult to switch from cloud provider not just because of the technical complexity of recreating

the entire infrastructure from scratch and moving related data but also because of the cost it may

involve. One possible solution is to evaluate the use of Infrastructure-as-Code languages for

defining infrastructure (“Infrastructure-as-Code”) combined with DevOps methodologies and

technologies to create a mechanism that helps streamline the migration process between different

cloud infrastructure especially if taken into account from the beginning of a project. A well-

structured DevOps methodology combined with Infrastructure-as-Code may allow a more

integrated control on cloud resources as those can be defined and controlled with specific

languages and be submitted to automation processes. Such definitions must take into account

what is currently available to support those operations under the chosen cloud infrastructure APIs,

always seeking to guarantee the tenant an higher degree of control over its infrastructure and

higher level of preparation of the necessary steps for the recreation or migration of such

infrastructure should the need arise, somehow integrating cloud resources as part of a

development model. The objective of this dissertation is to create a conceptual reference

framework that can identify different forms for migration of IT infrastructure while always

contemplating a higher provider independence by resorting to such mechanisms, as well as

identify possible constraints or obstacles under this approach. Such a framework can be

referenced from the beginning of a development project if foreseeable changes in infrastructure

or provider are a possibility in the future, taking into account what the API’s provide in order to

make such transitions easier.

Keywords: Cloud, Migration, Lock-In, DevOps, Infrastructure-as-Code, Framework.

6

Index

Resumo .. 4

Abstract ... 5

Index .. 6

List of Figures ... 8

List of Tables ... 9

Glossary ... 10

Literature Review ... 11

Computing as Utility .. 11

Virtualization ... 11

Cloud Computing ... 12

Characteristics ... 12

Deployment Models .. 13

Service Models .. 14

Alternative architectures .. 14

Container-as-a-Service .. 14

Function-as-a-Service .. 15

Cloud Native Architectures .. 16

Microservices .. 16

Infrastructure-as-Code ... 18

DevOps .. 19

Cloud Migration ... 20

Vendor Lock-In .. 22

Multicloud .. 23

Conclusion ... 24

Identified strategies .. 25

Assessment ... 29

General Assessment Guidelines ... 29

Planning ... 30

Common Strategies .. 30

Retain (As-Is) .. 30

Retire/Replace (SaaS) ... 31

Relocate/Rehost (IaaS) .. 31

Replatform/Refactor (PaaS) .. 31

7

Rebuild/Reuse (CaaS / FaaS / XaaS)... 31

Rearchitect (CaaS + FaaS + XaaS) .. 31

IaC Templates ... 32

Code Repositories ... 36

Combined Practices .. 38

IaaS Migration .. 39

General Guidelines for IaaS Migration .. 40

PaaS Migration ... 44

Generic Guidelines for PaaS Migration ... 46

IaaS and PaaS Limitations .. 48

CaaS Migration ... 49

Evaluation Guidelines for CaaS Migration .. 52

Microservices under CaaS ... 55

FaaS / Serverless Migration ... 56

Guidelines for Implementing FaaS .. 58

Rearchitecting to Cloud-Native ... 61

XaaS Migration ... 64

DevOps in Cloud Migration .. 65

Implementing DevOps ... 65

DevOps Pipelines ... 67

DevOps Toolchains .. 68

DevOps Flow ... 69

Multicloud Deployment ... 71

Migration Framework .. 74

Migration Framework Reference ... 75

Conclusion ... 76

Additional Investigation ... 79

Methodology .. 81

Bibliography .. 83

Appendices .. 89

8

List of Figures

Diagram 1 Generic Terraform Workflow ... 35

Diagram 2 Using Terraform with Git repository... 37

Diagram 3 Simplified On-Premises Infrastructure .. 42

Diagram 4 IaaS deployed using IaC .. 42

Diagram 5 PaaS deployed using IaC ... 48

Diagram 6 CaaS using Docker .. 54

Diagram 7 FaaS using Fn-Project ... 59

Diagram 8 Decoupling to Cloud-Native ... 63

Diagram 9 DevOps Pipelines and Automation ... 68

Diagram 10 DevOps and Tools ... 69

Diagram 11 Multicloud Deployment with CaaS/FaaS using DevOps .. 72

9

List of Tables

Table 1 General Assessment Guidelines ... 30

Table 2 General Guidelines for IaaS Migration .. 41

Table 3 Generic Guidelines for PaaS Migration ... 47

Table 4 Evaluation Guidelines for CaaS Migration .. 53

Table 5 Additional Guidelines for Implementing FaaS .. 59

Table 6 Migration Framework Reference ... 75

10

Glossary

API Application Programming Interface

CaaS Container-as-a-Service

CD Continuous Delivery / Continuous Deployment

CI Continuous Integration

FaaS Function-as-a-Service

IaaS Infrastructure-as-a-Service

IaC Infrastructure-as-Code

IT Information Technology

JSON JavaScript Object Notation

PaaS Platform-as-a-Service

SaaS Software-as-a-Service

SCM Source Code Management

SDLC Software Development Life Cycle

SOA Service Oriented Architecture

TBD To Be Defined

XaaS Anything-as-a-Service

YAML YAML Ain't Markup Language

11

Literature Review

Computing as Utility

The concept of computing as a utility was first coined by John McCarthy in 1961 around

the idea that computational power could be charged by unit of consumption and it was expected

that it would become the fifth utility after water, electricity, gas and communications [1]. Under

that assumption, the possibility of having control over IT costs with cloud computing architectures

instead of massive upfront investments for on-premises infrastructure along with its associated

setup and maintenance has gained momentum in the last decade and cloud computing - named

after the cloud image used in diagrams where anything over the internet is depicted - has evolved

to become the preferred solution for most entities when it comes to their IT needs, making the

shift to cloud-based infrastructure become the norm in recent years [2].

Cloud computing in its current form would not be achieved without several technological

advancements especially in the field of virtualization technology combined with the evolution of

processing capability and increased hardware density [3]. Virtualization technology has decades

of existence and was first introduced in the 1960's by IBM on their mainframe systems, although

only in recent decades has virtualization seen increased development and adoption under

commodity hardware. In essence, virtualization allows for the sharing of available computational

resources among systems or applications in a more efficient and flexible way [4].

Virtualization

Virtualization is implemented through the use of a virtual machine monitor, also known

as hypervisor, positioned at a specific level depending on the type of virtualization, making the

segmentation and partial allocation of resources possible. Virtualization techniques such as bare-

metal virtualization consists of physical hardware segmentation with the hypervisor (known as

type 1 hypervisor) being adjacent to the hardware level allowing the definition of sets of resources

to be isolated and subsequently assigned to specific virtual environments, and hosted

virtualization where the hypervisor (known as type 2 hypervisor) is located above or adjacent to

the operating system layer, permitting the segmentation or sharing of resources from those

available within the operating system where it resides [5]. Both types of virtualization can be

hardware assisted by the use of specific hardware extensions and features developed for the

purpose of improving its performance and efficiency [6]. Two other distinct forms of

12

virtualization are paravirtualization, a form of software virtualization based on specific operating

system kernel functionalities and drivers to interact with its virtual environments in a more

streamlined manner lowering its computational overhead, and operating system virtualization or

containers based on the concept of duplicating the operating system environment or a subset of it

but keeping the kernel layer common to all environments [7]. The several types of virtualization

technologies are not necessarily self-contained and some can even be intertwined creating more

complex and nested virtualization architectures [8]. Despite the underlying mechanism used for

virtualization and type of hypervisor or virtual machine monitor implemented, virtualization

techniques have extended to other layers of infrastructure besides virtual machines. The

virtualization of other resources such as network devices enabling the creation of routers, firewalls

or other networking equipment in their virtual equivalents as well as storage components through

the creation of virtual disks and the encapsulation of their respective communication protocols is

of critical importance for cloud infrastructure and combined with virtual machines comprises the

core components for cloud-based infrastructure [9].

Cloud Computing

A cloud computing architecture, while depending on virtualization as its core engine, may

encompass several different approaches and present different service models, with those models

depending on what forms of virtualization are effectively available underneath. From a conceptual

perspective, there are a variety of technical options and models for cloud deployments and

solution requirements will define what kind of model best fits and in what form should cloud

computing be adopted [10].

Characteristics

Regardless of the type of architecture or implementation, there are essential

characteristics to what cloud computing provides that makes this type of technology more

appealing for deploying current information technology solutions. The possibility to provision

resources as needed or on-demand self-service, being able to dynamically create resources with a

certain degree of abstraction on where those resources are physically located or where the pool of

computing resources is available (commonly defined as resource pooling) providing scalable and

flexible allocation and deallocation of resources enabling rapid elasticity as if the resource pool

was unlimited, and a broad network access to those resources from anywhere through the internet,

13

are the characteristics that when ultimately combined with being charged only for resources

consumed turning it into a fully measured service defined cloud computing, making it a standard

approach for current IT architecture needs [11].

Deployment Models

The advantages of cloud computing are not exclusive through the use of cloud provider

solutions since cloud infrastructure can be deployed locally and still provide most, if not all, of

the previously mentioned features and benefits. Although cloud computing is usually seen from

a provider perspective, there are different deployment models to choose from. Of those, three

cloud infrastructure deployment models are commonly described. Private Cloud, where cloud

infrastructure is provisioned for private use of an entity by deploying on-premises equipment or

through colocation facilities with the operation and management being of sole responsibility of

the entity itself, Public Cloud which is the most commonly adopted method of cloud computing

through a cloud provider based on the renting of computational resources having therefore no

responsibility on managing equipment or the infrastructure layer and benefiting from a certain

service level, and Hybrid Cloud where a mixture of Private Cloud and Public Cloud resources are

interconnected allowing for the expansion and scalability of IT infrastructure as needed but

optionally keeping critical processes or data under more control [11]. A fourth type of cloud

deployment model described in literature as Community Cloud is from a technical perspective a

combination of the previously mentioned types of deployment, but shared among multiple entities

which makes it more of a social aspect on cloud adoption rather than a technological type of

implementation [12]. There are additional benefits brought by cloud computing independently of

the deployment model. Of those, resource compartmentalization, detailed reporting on cloud

resources consumption by compartment level (reporting not only on the resources consumed but

also forecasting possible future trends), dedicated monitoring, high availability for increased

resiliency, improved security through the use of encryption technologies for many of the

processes and resources involved in the architecture as well as the communication or storing of

information between them and strong access control measures are among the most common [13].

In a public cloud environment an increased security awareness can also be considered as an

additional benefit by having dedicated security teams and processes providing reports on possible

security issues or vulnerabilities concerning deployed assets, upon which action should be taken

[14].

14

Service Models

A chosen architecture for cloud adoption will fit into a certain type of service model or

possibly a combination of those depending on the solution requirements. The most common and

traditionally known service models are Infrastructure-as-a-Service, Platform-as-a-Service and

Software-as-a-Service, respectively known as “IaaS”, “PaaS” or “SaaS” models [11].

Infrastructure-as-a-Service resembles common virtualized IT infrastructure hugely based on and

similar to a traditional virtualization approach, providing resources through a virtual abstraction

layer and allowing the provisioning of compute, storage and network resources akin to physical

equipment. Platform-as-a-Service pushes the abstraction layer one level up, providing resources

that can be readily used for development and deployment of applications through a combination

of database instances, application servers or any other type of middleware or software components

for that purpose thereby abstracting the entire infrastructure layer and allowing the focus on

development and management only of the application layer related assets. The upper layer of the

cloud computing stack is commonly defined as Software-as-a-Service and relates to a software

product ready for consumption over the internet where the essential characteristics still apply such

as being charged only for consumed resources and having broad network access but still a layer

of service completely dependent on cloud provider offerings and by definition a final product

[12].

Alternative architectures

Other types of service models beyond the standard ones mentioned have surfaced over

time in order to provide optional solutions to different problems and it is common to see a

generalization of this trend defined as “XaaS” where “X” stands for something that is the object

of becoming a service, such as “CaaS” for Container-as-a-Service or “FaaS” for Function-as-a-

Service, this last one also commonly known as Serverless computing [15]. These types of service

models allowed different approaches to cloud architectures bringing new concepts and alternative

ways for cloud adoption and have been evolving rapidly with “CaaS” and “FaaS” already being

supported on most cloud providers or available in software for cloud infrastructure due to such

service models becoming mainstream for more advanced methods of cloud adoption [16].

Container-as-a-Service

15

The Container-as-a-Service or “CaaS” model is implemented on top of container-based

virtualization and highly benefits from its advantages since this type of virtualization does not

instantiate a new virtual machine or image of the operating system, instead creating an isolated

runtime environment for the application which shares the same kernel with the hosting operating

system and only partially duplicating some necessary system components for the application to

run [17]. A container image incorporates the application or part of it with all the necessary

dependencies for it to run within a given type of container-based virtual environment, being this

runtime environment provided by the container-engine. The isolated runtime environment is only

generated when the application is launched, allocating the necessary resources from those already

available within the operating system and returning all those resources as it finishes execution,

which can be short-lived or long-lived. This type of virtualization also benefits from better

resource utilization since no new resources are allocated for the creation of the runtime

environment besides those are already available on the operating system instance, becoming more

lightweight, and achieving faster start-up times since the launching procedure does not have to

boot an operating system image with all its associated hardware initialization and complex start-

up processes, which is optimal for fast scalability [18]. It is desired that a container image can be

deployed or run in different infrastructure and in order to provide a greater degree of

independency, container engines assure certain degrees of compatibility. This type of service in

a cloud infrastructure is usually provided with container engines being themselves deployed on

top of virtual machines or other types of computational resources for that purpose. Resource

allocation for those virtual machines must take in consideration the resource requirements of the

applications to be run in such model [19].

Function-as-a-Service

The Function-as-a-Service or “FaaS” model, also known as Serverless computing, is in

its essence an alternative method for taking advantage of the container-based virtualization

features both from a technical and service level perspective [20]. It is applicable in a context

where there is no need to instantiate an application component along with its dependencies which

are commonly long-lived and conceptually deployed to stay running for longer periods of time

[21]. In contrast, by invoking some code base that serves a very specific purpose, the function

residing in a container image is immediately deployed and performs its specific function as

requested for a given amount of time or specific number of invocations, preferably short-lived.

From a service level perspective, charging can be done by the number of invocations or execution

16

time. This type of service has become an important feature in cloud architectures as it allows for

the use of computing resources more efficiently without having to set up infrastructure in the

traditional sense, relying instead on parts of code to be dynamically deployed when invoked on

top of an already existing infrastructure awaiting such deployments, having at its core container

engines similar to the Container-as-a-Service infrastructure, allocating the resources they need in

response to certain events or triggers and releasing those resources when execution finishes [22].

Cloud Native Architectures

These newer and more recent service models brought different approaches to cloud

computing, changing the nature of provisioning and deployment of services in a cloud

infrastructure, which can also benefit from tools and methodologies already used in other areas

of development. Commonly defined as Cloud Native architectures, these have gained widespread

acceptance in recent years beyond the common service models and contributed to a different

perspective not only on cloud adoption but also on how to envision cloud related development

and deployment [23], [24]. In order to better take advantage of cloud computing capabilities like

scalability and flexibility, a cloud native architecture consists of embracing cloud computing by

developing and deploying applications more independently of traditional service models such as

“IaaS” or “PaaS”, instead choosing to adopt from the beginning of the development phase cloud

models that rely on container-based virtualization highly leveraging its core features, using

service models such as “CaaS” or “FaaS” and ultimately shifting from the traditional multi-tiered

or monolithic architecture paradigm of development to a Microservices based one [25]. As a

consequence, development under a cloud native methodology also requires adapting or switching

to newer architectures and paradigms of software development in order to integrate and better

take advantage of such cloud capabilities with container-based virtualization at its core, raising

however the difficulty of migrating existing traditional IT solutions into this model.

Microservices

A Microservices architecture, one of the available options for application development

under a cloud native approach, is built upon the premise that developing small software

components with one specific functionality and making those software components with well-

defined tasks interact among them preferably in a loosely-coupled manner in order to provide the

desired outcomes as an alternative to a monolithic type of development, more appropriately fits

17

newer cloud computing models. This would result in faster development (given a lower

complexity as a result of breaking down the code base for each component) and deployment, as

well as higher resiliency and improved maintenance resulting from lower impact due to code

changes, since only specific components are changed or updated instead of the entire application,

without predictable impact on other working components assuming those are designed in a way

that failure of one would not compromise the entire application [26]. Design and development of

applications under this model requires understanding the different architectural styles and as well

as its implications because they must not developed according to most of the traditional paradigms

of software development and a certain degree of adaptation is required [27]. This type of

architecture is also more cloud agnostic and can more easily be distributed even among different

cloud providers, increasing its resiliency and tolerance to failure resulting in better service

availability. A Microservices based architecture design builds on container-based virtualization

solutions providing higher flexibility along with the possibility of very fast dynamic orchestration

of those resources for extreme scalability. Microservices architectures are based on an event-

driven model that relies on event-based communication mechanisms across the several

components usually through event streaming solutions using publisher/subscriber models or

alternatively Remote-Procedure Calls (RPC) or REST APIs as well as protocols for automating

service discovery [28], optionally coupling with other modern cloud features such as functions or

even with traditional “PaaS” offerings such as “DBaaS” (Database-as-a-Service) for persistence.

By leveraging container-based virtualization which benefits from lower resource requirements,

lower overhead and faster start-up time [7], as well as taking advantage of existing development

tools and deployment models with high levels of automation both for testing and deployment, a

Microservices based architecture can provide rapid scalability, higher resilience and higher

tolerance to failure without the need for complex setup and management of servers or

infrastructure, providing a more simplified path to take advantage of the benefits of the cloud

computing model and achieve better levels of availability and dynamic scalability for large scale

solutions [29]. Cloud native architectures also reduce (but do not completely eliminate) the need

for large operational teams and take advantage of one of the most important cloud features which

is being charged only by resources consumed in a more efficient way, since only when containers

are launched or functions are invoked there is actual charge for resource consumption and when

those are no longer needed are automatically deallocated making the charging process stop

without any additional billing for those resources. Both containers and functions excel at

efficiency for cloud resource allocation and reduced charging since it depends on the level of

activity or requests made into the application [22]. All those combined features pushed cloud

native architectures into an attractive model for cloud adoption and development.

18

Infrastructure-as-Code

The creation of computing resources under cloud computing service models is usually

first done through intuitive user interfaces well suited for creating relatively simple architectures

or to quickly deploy small infrastructure, but underneath those interfaces there are powerful

application programming interfaces or “API’s” that receive requests for the creation or change of

those resources triggering the necessary actions and providing feedback on the result of such

operations [30]. Understanding the power of those APIs is necessary for taking advantage of the

real scalability and flexibility provided by the cloud computing model and whenever a certain

degree of automation in resource management and control is desired. Infrastructure-as-Code has

become a standard mechanism for defining and controlling resource creation and configuration

in cloud environments, also providing a mechanism for performing such provisioning in an

automated and orchestrated manner [31]. By using Infrastructure-as-Code it is possible to define

or declare resources and artefacts to be created or changed in a cloud infrastructure, along with

their respective characteristics as well as any necessary dependencies. Additionally, some degree

of automation can be contemplated in such operations through the use of a specific languages for

the purpose. As a result, several benefits such as improved configuration consistency and faster

deployment times can be obtained [32]. Contrary to functional programming where one gives

exact instructions on how computer operations should be performed, Infrastructure-as-Code

typically uses, although not exclusively, declarative programming languages that state what final

outcome is to be expected concerning the creation or change in cloud resources or artefacts [33].

The desired configuration is described, parsed and fed into the cloud infrastructure API for

processing which subsequently operate on such resources accordingly. Different cloud providers

are supported and most contribute to the development of such languages, with template definitions

for resources according to their respective offerings or features. Most cloud providers also support

existing third-party tools and provide well documented APIs for such operations. Although

Infrastructure-as-Code is usually seen for provisioning of infrastructure, it may also encompass

tools or frameworks for configuration management, most using their own domain-specific

languages for the layout of such configurations [34]. As a result it is possible to completely define

and automatically deploy an entire cloud solution with all its necessary dependencies, regardless

of the desired type of resources, completely changing the landscape of provisioning and

management of IT infrastructure. Due to the nature of Infrastructure-as-Code having

configuration files akin to source code in software engineering, it is recommended to keep those

in a repository using version control software with some of the principles and tools that are used

19

for software development being applicable to Infrastructure-as-Code. Resource definitions can be

kept and managed using a centralized source code repository, taking advantage of several features

brought by such tools, such as the ability for different personnel to work concurrently on those

resource definitions in a distributed manner and use version control which is of utmost importance

to understand changes in time that subsequently reflect changes in cloud resources or

infrastructure. Having principles of software engineering applicable to Infrastructure-as-Code

provides not only the aforementioned additional benefits but also brings a new paradigm for the

provisioning and creation of IT infrastructure, at the cost of having to adapt and learn new

languages and methodologies for the purpose [35].

DevOps

The use of declarative or procedural languages for defining cloud resources and

configurations, providing more sophisticated means for cloud adoption and management, can

benefit from already existing practices and methodologies in software engineering. The steps

associated with software development (an iterative process by nature) and its life cycle have

evolved and matured over the years, improving the quality of development and delivery of the

final product. Tools and methodologies in the context of software development minimized manual

intervention for repeatable processes and brought an increased level of consistency and

automation not only into the mechanics for building the software according to requirements but

also to perform all the necessary testing and assure it meets quality demands before it is released

[36]. Regardless of this evolution, software development is usually seen as a distinct process from

IT operations and each of these areas usually have their own teams with separate responsibilities.

In recent years, there has been an increased interest in DevOps as a software development and IT

management methodology, or set of practices, applicable to the realm of cloud computing taking

full advantage of its service model. The term "DevOps" is a combination of the words

Development and Operations and as a methodology it is based on the premise of improving the

interaction between those usually differentiated teams, with the prime objective of combining

their skills and responsibilities for increasing agility and flexibility in both aspects of the

development processes and the operations associated with code deployment and release. DevOps

leverages the use of specific languages within the context of provisioning cloud computing

infrastructure and enables a more efficient software development lifecycle, combining

provisioning and application development with highly automated deploy and test/release

mechanisms. Besides the technical aspects of software development such as build, test automation

and release/deployment, a DevOps methodology highly emphasizes the social aspect of

20

collaboration and communication between members of the development and operation teams

[37]. The increasing adoption of Infrastructure-as-Code and other similar languages for

configuration, automation and orchestration in the context of cloud computing, envisioning an

increased role of developers in infrastructure, benefits from such improved interaction between

those two commonly independent areas of IT which are becoming ever more dependent, with that

interaction becoming of utmost importance in order to quickly adapt and respond to any incoming

challenge or adversity [38]. From a technical standpoint, DevOps methodologies focus on the

concepts of Continuous Integration and Continuous Delivery or CI/CD pipelines through which

an automation and orchestration of the entire development and deployment cycle is implemented,

providing the ability to quickly integrate fixes or changes to existing code (continuous integration)

and immediately trigger a release and deployment of the newly finished and tested version

combining those changes (continuous delivery). Having automated test cases that guarantee the

necessary results before the release gives an enormous improvement to the development and

deployment process thereby raising the quality of the final product or service while at the same

time allowing the fixing of bugs or addition of new features and releasing those improved versions

much faster without any predictable service disruption [39]. The concept of CI/CD pipelines are

useful not only for the areas based on Infrastructure-as-Code but also for development

methodologies applicable to loosely-coupled architectures such as cloud native, improving the

software development and deployment in approaches such as Microservices [40]. The use of a

source code repository that has a complete history of all changes is at the core of every

development methodology and DevOps is no different in that respect with automated actions

being triggered after updates or changes are made to the code in the repository. Cloud

architectures when combined with DevOps methodologies and Infrastructure-as-Code can fully

automate actions to be performed in order to streamline cloud infrastructure deployment,

operations and management [41]. All those features combined make DevOps an interesting model

for turning IT development and operations into more agile and streamlined processes with higher

levels of consistency and adaptability to change, especially whenever cloud computing solutions

are considered [42].

Cloud Migration

Due to the advantages of cloud computing, there is an ever increasing interest in migrating

already existing IT solutions into the cloud. However, despite the evolution of cloud computing

technologies, not only from the standpoint of modern methodologies for development and

deployment but also in terms of management and operations, there are considerable obstacles

21

when choosing cloud computing as a solution for moving an existing IT infrastructure, as opposed

to new deployments, raising several questions concerning the migration process and becoming a

complex challenge with varying degrees of difficulty for success depending on the overall

objective. Cloud migration consists of moving existing IT infrastructure or part of it from on-

premises into the cloud, or even between clouds [43]. Migration processes are not as mature as

some other technologies regarding cloud computing and no clear standards exist for such

operations, which is understandable to some degree since the underlying technologies such as

type of virtualization or solution architecture may become a limiting factor and some type of

transformation may be necessary [44]. It is also important to identify other possible constraints or

limiting factors as well as implications of such migration beyond the technical aspects, such as

costs, staff expertise, security issues or levels of compliance [45]. Generic documentation is

available to aid in such transition concerning cloud migration especially from on-premises to

cloud with different methodologies and frameworks proposed to address both requirement

analysis and steps involved in such process, at least to some compatible degree for the most

common service models [46]. Entities willing to migrate their on-premises infrastructure or IT

solutions to a public cloud also have a considerable amount of information available from cloud

providers to help them achieve that objective in migrating to their cloud service offerings, mostly

without any deep changes in architecture, in order to minimize the risk of such migrations. The

effort and technical complexity for migrating into the cloud will also depend on the type of

migration desired, which will be constrained by what is currently deployed at origin and what

type of architecture is to be achieved at destination. If a cloud-native or Serverless architecture

is to be achieved when having the original environments based on the traditional IT approach of

client-server model running monolithic or multi-tiered applications, complexity becomes even

more challenging as a complete rewrite may be necessary [47]. Beyond the common service

models, several types of migration scenarios cannot really be described into a standard process as

it involves specific technical knowledge about the existing infrastructure and the migration

process may require contextualized development and rewriting or refactoring of applications into

the new paradigm or architecture, at best having general recommendations on good practices for

such transformation [48].

Under general recommendations or usual practices, there are some commonly accepted

high-level strategies for cloud migration that describe how the movement of existing IT

infrastructure or solution into the cloud should consist of, as well as the type of IT transformation

that could result from such process. Six defined strategies, known as the 6 R's of migration, are

designated as [44]:

22

1. Retain

2. Retire / Replace

3. Relocate / Rehost

4. Replatform / Refactor

5. Rebuild / Reuse

6. Rearchitect

Those six high-level strategies only present general guidelines without any in-depth detail

on how the migration should be made, which is understandable since every environment will have

its own technical complexities that will define what can or cannot be done. The resulting degree

of transformation desired during the migration process will also influence the difficulty or effort

involved in the process [49].

Vendor Lock-In

Despite the information and documentation available to assist in a cloud migration

process, and their similarities at a conceptual level among all the different methodologies within

the common service models, when moving existing IT infrastructure into the cloud, especially

when public cloud is considered, there is a considerable risk of Vendor Lock-In [50]. This has

become one of the greatest obstacles to cloud adoption since once IT assets are migrated into the

cloud, moving those assets off the cloud back into a private cloud or into another cloud provider

is not so well documented and poses a significant technical challenge to do so should the need

arise [51]. Several obstacles have been identified as a likely cause for difficulties in migrating to

another cloud infrastructure or cloud provider once migrated to the cloud, some of which are of

special concern such as the recreation of the entire infrastructure and portability or interoperability

issues across a different cloud stack. Such obstacles pose a significant hindrance whenever the

need to migrate to another cloud provider or infrastructure is eventually necessary, and the lack

of standardization for such processes make it technically difficult to switch, elevating some of the

risks for cloud adoption [52]. Although all of the current top public cloud services have

documented and made available well defined methodologies on how one should migrate to their

cloud within the standard service models and have support services to help in such transition to a

considerable degree, having the same level of support to export those configurations in order to

23

recreate a complete infrastructure in another provider or infrastructure is practically non-existent,

and no standards exist. Different approaches have been proposed as possible solutions to this

problem in order to lower the dependency on a single cloud provider. Switching to different forms

of cloud adoption such as the previously described Cloud-Native architectures and combining

those by deploying in multiple cloud providers is one option. Although such solutions lower the

level of cloud provider dependency, they do not completely eliminate the problem [53] and

represent a radical shift with a considerable effort necessary to make the adjustments or changes

to the existing IT solution not only at an infrastructure level, but also on the software or application

level as already described [54].

Multicloud

Cloud adoption based on using multiple cloud providers has gained acceptance as a

possible solution or remediation to the problem of Lock-In. Commonly described as the

Multicloud paradigm, in its essence consists of using more than one cloud provider to deploy a

given service or architecture, distributing the components of the solution among those providers

regardless of the service model involved. The Multicloud paradigm tries to guarantee that no

disruption would occur should one provider become unavailable, this possibly resulting in the

need to evaluate several migration patterns, or a combination among the ones available to choose

from [55]. This approach lowers the risk of being locked into a specific provider, or at best

minimizes such dependency. While it does address the problem of being dependent on a single

cloud provider, it still does not completely solve the problem of cloud provider dependency since

moving the components from one chosen provider onto another continues to be largely

unsupported and several technical constraints should be taken into before choosing this paradigm,

if the assumption that such movement of artefacts would be possible [56]. While Multicloud

adoption may be similar to an hybrid cloud deployment model, from a conceptual perspective an

hybrid model relates to the interconnection among different type of cloud implementations

(private and public) while the Multicloud paradigm is based on interconnecting architectures or

IT solutions between different clouds beyond the hybrid model, commonly within the same

deployment model (private-private or public-public) [57].

24

Conclusion

The diversity of cloud computing infrastructure deployment models and architectural

options regarding IT solutions deployed on such infrastructure can be associated with an increased

level of complexity whenever a migration process involving such infrastructure is desired,

regardless of that migration being from on-premises or traditional IT infrastructure into the cloud,

or between clouds. Possible constraints such as portability and interoperability issues or specific

contextualized technical difficulties for performing such migrations can also be identified from

within an already deployed IT solution due to its architectural model, independently of its

dimension. It is crucial to have a clear understanding of cloud deployment and architectural

models as well as their technical details, in order to identify their main strengths and weaknesses

concerning their viability as targets for migration. It is also imperative to ascertain some degree

of compatibility whilst identifying any necessary changes to the original IT solution during the

process, in order to improve the outcomes for a successful migration. New developments and

deployments must also take into account that any choices made regarding infrastructure or

architecture will impact its migration prospects in the future, eventually raising technical debt.

Whether deploying a new IT solution or migrating an existing one, in order to minimize risks and

assuming migration is also to be considered at later time, it is important to have a deep technical

understanding of what is to be migrated and review alternative methodologies and tools to aid in

such migrations beyond the already existing solutions, while at the same time evaluate the impact

of architectural choices during the course of such migration and their implications on cloud

provider independency.

25

Identified strategies

Despite the many advancements achieved in the field of cloud computing, the original

concept and vision for cloud computing as a utility still lacks one major feature which is the ability

to move or migrate between cloud providers or cloud infrastructure seamlessly whenever desired,

akin to the simplicity of switching between internet service providers. Even with all the

pervasiveness of cloud computing and the advancements made to comply with its main

characteristics, the full concept of computing as a utility is yet to be achieved until such seamless

movement between clouds is possible, at least up to some baseline service or other types of non-

vendor-specific or standard service offerings.

Difficulties in cloud migration have been promptly identified since the inception of cloud

computing. From the perspective of migrating from on-premises or Traditional IT into the cloud,

extensive documentation and methodologies have been made available but those have never

addressed the need for moving related resources between clouds after such initial migration,

should it become necessary. Support and documentation for moving cloud resources between

providers is scarce or very limited, partly due to the previously mentioned lack of standardization

but also because it is not in the provider’s interest to lose any customers. These factors have

contributed to locking a customer on a specific provider with the option of moving between

providers sometimes becoming more expensive than the current costs with existing infrastructure,

resulting in a serious drawback that limits choice and freedom of movement for an IT solution

running on cloud.

Some solutions have been proposed for this problem. However, even when considering

existing solutions, such movement of IT architecture between cloud infrastructure is far from

being achieved with ease, mainly because of portability constraints which lead to considerable

technical modifications being needed when migrating to a different cloud, with portability and

interoperability problems stemming as a result. A standardized baseline compatible service

between different providers that can be migrated under such an ideal condition is difficult to find

across the entire stack of cloud offerings, with most services or artefacts requiring a substantial

technical adaptation effort if they are to be migrated. This also leads to any migration process

being dependent on a detailed evaluation and approached on a case-by-case basis, having

immense specificities to deal with, which could otherwise be made simpler through the existence

of such standards for generic artefacts and their related movement between different clouds.

Although the lack of standardization for such migration processes between different

26

providers can be identified as one of the main causes of such difficulties, it is understandable that

an all-encompassing type of standardization may not be possible due to the fact that some cloud

service offerings are provider or vendor-specific and therefore some apparent portability

constraints should not (at least conceptually) be treated as such, instead considering such offerings

as a final product, similar to SaaS. Despite the fact that some of the components underlying cloud

computing architecture already comply to well defined standards, such as virtual machine image

formats, which is an important aspect to consider for an eventual standardization of migration

processes, the standardization of migration techniques that could build upon those standardized

artefacts is still lagging. A full standardization for every cloud service or artefact also having an

associated standard migration method seems unlikely, but some baseline services or artefacts

should definitely be supported and standardized for such seamless transition between clouds, a

feature that would undoubtedly complement the original cloud computing vision.

From a theoretical perspective, several solutions or strategies have been proposed over

time to partially address the problem of cloud migration and to more easily deal with the technical

challenges associated with it. A diversity of cloud migration related topics and strategies are

addressed among the evaluated papers and technical articles for this dissertation. Most of the

strategies or topics on those documents concerning cloud migration are not concerned with

achieving full independence from cloud providers from a practical standpoint, or to provide clear

and detailed migration methods for achieving such independence, which would prove difficult if

not almost impossible considering current service offerings, focusing instead in general

constraints and difficulties foreseeable in such migrations while at the same time identifying other

important and adjacent issues for reaching higher levels of portability or interoperability. Among

the reviewed papers, several methodologies concerning migration were identified such as:

- ARTIST - Advanced seRvice provisioning and migraTIon of legacy Software

- CIM3 - Cloud Migration Maturity Model

- Cloud-RMM - Cloud Migration Reference Model

- Cloudstep - Cloud Migration Decision Process

- REMICS - REuse and Migration of Legacy Applications to Interoperable Cloud Services

- MDA - Model Driven Architecture

- mOSAIC - Open-source API and Platform for Multiple Clouds

- TOSCA - Topology and Orchestration Specification for Cloud Applications

- V-PAM - Variability-based, Pattern-driven Architecture Migration

27

Most of the reviewed papers and the aforementioned migration methodologies addressed

adjacent issues to cloud migration such as: organizational aspects; risks, level of readiness and

preparedness, compliance; strategic aspects; benefits, opportunities and threats; economic

viability and technical feasibility for migration; migration evaluation; migration layers; required

assessments; effort estimations; specific frameworks to aid in decision making as well as key

factors for such decisions; migration planning; detailed procedures or tasks for migrating;

identification of possible constraints; data portability; performance expectations; relevant

reference architectures; development changes, among others. Other theoretical approaches on the

reviewed literature are based on taxonomical and ontological definitions to cloud artefacts that

could simplify the manageability of such artefacts by making them more easily transposable or

interpreted between different providers at a more technical level, an important contribution to any

standardization effort. The migration of legacy components into the cloud is also commonly

addressed under the reviewed literature, mostly associated with an IaaS service model as this is

the model that better adapts to the migration of legacy components or traditional IT without

considerable effort, being easier to analyze and estimate from a migration perspective.

It can be seen reflected in literature that while cloud computing was becoming established

over the years, the search for such seamless methods of migration between clouds was not easy

to achieve or standardize due to the many different implementations, each providing their own

features or specificities that would be difficult to adapt and conform to such migration process.

As time progressed, some of the proposed ideas seen in literature became obsolete or no longer

relevant from a practical standpoint due to other advancements in cloud technology that, in search

for answers to other issues, somehow brought as a side effect alternative and more flexible

solutions to the problem, at least partially.

In the search for more efficient use of cloud resources, recent migration techniques to

cloud computing and cloud migration inadvertently addressed the issue of vendor Lock-In by

leveraging technical features of already existing solutions to other problems and ingeniously adapt

those, creating new paradigms for cloud computing in terms of migration, along with the

development of new tools and methodologies that could help ease such dependency on a specific

cloud provider or infrastructure. These recent tools and methodologies may help ease such

constraints for cloud migration and offer a path (although still not a standardized one) for a higher

independence.

Among all the methods reviewed in literature for addressing the problem on the subject

28

of migration, it is noticeable that the more recent approaches to cloud computing are the ones that

more heavily contributed to the possibility of deploying IT solutions in cloud infrastructure in a

way that could be more independent of the provider or the underlying infrastructure, not relying

on the existence of formal standards but instead adapting and reusing existing technology for such

advantage. Regardless of how such independence (even if partial) can be achieved, the important

aspect to retain is that even though with some inherent complexity and still not as seamlessly as

desired, it is now possible to achieve such movement between clouds though the use of

technologies such as Infrastructure-as-Code, container-based virtualization technologies and

DevOps methodologies for development and deployment of IT infrastructure and associated

architecture, as discussed further on.

More recent approaches such as the non-standardized 6 R’s of migration have been

widely accepted as a general guideline and are used in practice, especially considering migration

from on-premises to cloud. This method also provides an important contribution from a macro

perspective on the subject of migrating into the cloud, hinting that some change of architecture in

the process could give some benefits in terms of independence for future migrations.

The term “cloud provider” or “cloud infrastructure” may be used interchangeably in this

dissertation as it may refer to a cloud service provided by an external vendor (public cloud) or a

cloud infrastructure deployed under on-premises equipment (private cloud), or even an

interconnection of both (hybrid cloud). Regardless of the type of deployment, it assumes running

cloud infrastructure software complying with the common cloud reference model and definitions.

29

Assessment

Migrating to a cloud computing infrastructure or cloud provider encompasses a careful

review and analysis of the characteristics of what is to be migrated into the cloud as well as its

technical requirements, available options for migration, and identification of any potential

drawbacks. The result of such analysis should be clearly detailed and understood before any

technical decision is made, in order to minimize the possibility of constraints and other difficulties

in future migrations, should they become necessary. Despite the several advantages of the cloud

computing model, other critical aspects must be taken into consideration before migration, such

as the level of transformation desired for the IT architecture during the course of migration, with

this transformation having a direct impact on the level of independency that can be achieved from

the provider. It is also crucial to identify if the existing environment has legacy applicational

components that may be prone to other type of portability or interoperability issues. Adjacent

topics such as costs, security, compliance and data integrity are also critical aspects to be

considered whenever a cloud migration is to be planned but those are beyond the scope of this

dissertation.

Before a migration process is initiated, an initial assessment should abide by some general

guidelines mostly related to technical issues in order to not only document important aspects of

the existing infrastructure or architecture but also, through careful and detailed planning, to be

able to anticipate possible undesired consequences. The following general guidelines for a

migration plan describe a structured and common approach for such assessment applicable to

every layer of the IT architecture. The steps outlined are ordered and numbered for further

reference:

General Assessment Guidelines

1 Evaluation of the infrastructure to be migrated and its architecture including all its

components, their technical requirements and specifications

2 Identification of all dependencies and interconnections across the several components of

the existing solution as well as their level of portability and interoperability

3 Choice of migration strategy and desired transformation, depending on constraints

4 Planning of necessary changes in component configurations or other specific changes

during the course of migration, both for remaining and moved components

5 Measurement of the volume of data to be migrated, how to migrate and how to import it,

30

as well as an estimation of the time needed

6 Development of a testing plan that should incorporate the necessary interoperability and

functional testing for both migrated and with remaining components

7 Detailed description of necessary steps for partial activation of components as they are

migrated, as well as expected downtime and measures to mitigate it

8 Development of a rollback strategy, if applicable

Table 1 General Assessment Guidelines

Each of these general steps will unfold different types of actions depending on the level

of desired transformation in the IT architecture during the process of migrating to cloud

infrastructure. Such transformation, even if partial, can also result not only as a requirement but

also as consequence of the migration process, which in that case can set forth other general

guidelines, eventually conditioning or partially defining the final architecture on cloud

infrastructure after the migration process is completed.

Planning

The assessment must also take into account the desired migration strategy, which reflects

what is expected as the final outcome in terms of IT architecture of the entire migration process

and may imply some form of transformation. Depending on the type of strategy chosen for

migration, the generic steps described previously under the general guidelines will have specific

intermediate steps in order to reach the desired outcome, with the entire migration process having

to adapt to (and therefore being impacted by) the chosen strategy. The following description of

the most common strategies for migration usually seen not only in literature but also as current

practice by public cloud providers are considered among the most valid methodologies. The first

two are not relevant for this dissertation, they are however described for completeness. Higher

complexity in migration is expected as more transformation is needed, with such complexity also

depending on other specific technical properties of what is already deployed.

Common Strategies

Retain (As-Is)

Effort for migrating a given IT component or application will have a higher cost than retaining it

31

in its current model, either because it is scheduled to be decommissioned or because it is

incompatible with current cloud solutions given the nature of the application or any other

technical aspect of it.

Retire/Replace (SaaS)

Evaluate and terminate IT components that can be decommissioned. Some may have some cloud

equivalent under a SaaS subscription model. Instead of planning for the migration of those, a

proper evaluation of the SaaS solution should be done instead and if viable, be chosen as an

alternative.

Relocate/Rehost (IaaS)

The current existing IT environment is viable to be migrated into an IaaS based cloud solution,

similar to colocation or rehosting under the traditional IT but instead adapted to virtual

infrastructure. Also commonly defined as Lift-and-Shift.

Replatform/Refactor (PaaS)

Existing IT components above the infrastructure layer may be good candidates for migrating into

a PaaS cloud model benefiting from specific provider features and lower administration overhead,

but some degree of reconfiguration of other components on the existing IT architecture may be

necessary.

Rebuild/Reuse (CaaS / FaaS / XaaS)

Rebuilding specific IT components that are viable to be transformed in the context of a migration

process to more cloud-specific features such as CaaS or FaaS models, lowering costs with

infrastructure without the need for permanent servers or virtual machines and benefiting from

higher scalability. Some development effort may be needed in order to transform legacy

components as well as setting up the required testing.

Rearchitect (CaaS + FaaS + XaaS)

Completely transform existing infrastructure to a mixture of CaaS and FaaS/Serverless based

cloud architecture, or any other XaaS model, even combining with PaaS or IaaS components

whenever applicable or justifiable. This complete shift requires a substantial development and

32

testing effort because the entire infrastructure has to be evaluated to such transition as well as the

associated impact of such changes.

IaC Templates

Defining cloud computing resources or artefacts using Infrastructure-as-Code (IaC)

languages, classified as domain-specific languages developed for the purpose of defining

infrastructure artefacts in the form of a parseable and verifiable template that must conform to

specific rules instead of using any other non-programmatic way, made the provisioning of IT

infrastructure into a descriptive format, transforming the management of infrastructure into an

agile, consistent and repeatable process that can be automated with a high degree of reliability.

The additional combination of IaC with tools and methodologies available for software

development changed the management of such resources, which are usually under the domain of

IT administrators or infrastructure architects, turning it into a process similar to software

development. Those aspects pose a significant advantage for any migration planning since it is

possible to define the required resources or artefacts upfront before the migration process begins,

regardless of the chosen migration methodology as long as the types of cloud artefacts are

supported. The use of IaC relates only to the creation of artefacts and has no influence on the

volume of data or on how the data is transferred between the involved infrastructure.

The definition and creation or modification of such resources through these languages,

when also combined with source code repositories, allows for a higher degree of control and

visibility of every resource or configuration created or changed throughout their lifetime. Keeping

all resource definitions and modifications within a repository is important for later reference

should any change or migration of the infrastructure be necessary. Through the use of a repository

it is possible to have a history of the evolution of the IT solution and its respective resources, as

well as changes in its associated architecture, in a self-documenting manner. Abiding to those

practices gives the possibility to repeat any previous action with consistency and provides a

manageable path for further migrations. Besides all cloud infrastructure related configurations,

any other complementary environment necessary to the IT solution such as storage and

networking components must also be done programmatically and kept within the repository

whenever possible. It is therefore crucial to combine a configuration repository with IaC

definitions or templates in order to achieve such degree of overview and control over the cloud

infrastructure, and it is of utmost importance that every resource definition or change is registered

within it.

33

Cloud providers and cloud infrastructure frameworks support the use of IaC languages

and have well-structured and documented API’s for their use, in order to allow an extensive level

of operations to be done on cloud resources besides their creation, change or destruction. Cloud

providers also contribute with language updates and changes upstream, according to their own

infrastructure features and offerings. Terraform is one of the available and most supported

languages for declaring Infrastructure-as-Code, especially for IaaS cloud architectures, and will

be used and referenced throughout examples in this dissertation. The concepts applied through

Terraform are however extensible to any other IaC language for the same purpose, always

depending on which features the IaC language provides according to their underlying cloud

infrastructure. Although Terraform is fairly common among IaaS deployments, other types of

cloud architectures may have more appropriate IaC languages.

As a declarative language, Terraform configuration files define a state to be achieved in

terms of cloud resources, contrary to procedural languages which instruct exactly what should be

done. Terraform allows for the management of cloud artefacts of almost any nature regardless of

the service model being IaaS, PaaS, XaaS or Cloud-Native environments, as long as the necessary

artefacts are supported by the provider. Terraform is idempotent when invoked, ensuring that

changes and actions are not applied more than once. Although Terraform is cloud-agnostic,

differences exist in the definition of cloud artefacts between different cloud implementations,

despite sharing common aspects at a conceptual level. Defining artefacts to one particular cloud

infrastructure has to adhere to what is permitted by its respective model and will not work for

other cloud implementations without adjustments. Terraform uses the concept of providers for

addressing such differences, having specific providers describing the available resources

according to the underlying cloud framework being considered. Terraform works by defining

such resources in configuration files, formally describing artefacts using its own HCL syntax

(Hashicorp Configuration Language) more suitable for humans, or optionally JSON syntax, more

appropriate for machine processing, relatively to what is possible under the cloud infrastructure

and always depending on the resources made available through the provider. Terraform

automatically manages any necessary dependencies when creating or destroying artefacts,

contemplating their dependencies in proper sequence. Since those provider modules are usually

supported, there is a certain guarantee in their functionality and consulting the documentation on

how to use them is necessary, not only because of some considerable complexity but also due to

the evolution of language features or newer cloud offerings over time. Terraform also allows

importing infrastructure artefacts previously created by other means such as web interfaces into

34

an IaC template, as long as it is supported by the provider as an exportable artefact, translating

such objects into IaC declarations and giving the possibility to begin managing those resources

with IaC as well. Another additional benefit of Terraform, due to the fact that everything is

registered in a source file that can be parsed and interpreted in various forms, is the possibility to

use that information in the context of a self-documenting infrastructure. Developing infrastructure

with Terraform can also take advantage from many of the functionalities seen in common

programming languages such as variables (which can have values defined from the working

environment for higher flexibility), parameters, functions, loops, conditionals and expressions,

allowing for the creation of more complex forms of declaring and changing infrastructure in terms

of provisioning, configuration and also management.

From a technical perspective, assuming that a Terraform workspace environment is

initialized with all necessary authentication configurations against the selected cloud

infrastructure, the desired resources can begin to be defined in their respective configuration files

within that workspace, having therefore the minimal setup to start defining infrastructure or cloud

artefacts in place. When invoked, Terraform performs a validation process on resource definition

files by parsing them for structure and syntax validation as permitted by the selected provider,

identifying any possible errors or constraints. Assuming a successful validation, a complete report

on what resources will be created, changed or destroyed is displayed for analysis before

effectively applying the desired configuration against the selected cloud infrastructure. By

accepting reported changes, Terraform will trigger associated actions through the provider that

communicates with the cloud infrastructure API, displaying a final report on what was successful

and what has failed. Failed resource changes will not only be reported but also kept in a state file

for post-processing. Due to the asynchronous nature of Terraform, applying changes may not have

immediate reflection on the cloud infrastructure, but some form of confirmation, even if not

synchronous, is expected. Most changes made outside the control of Terraform not reflected on

the resource definition files will also be detected and reported for analysis. Diagram 1 describes

an example of the common workflow for configuring infrastructure using Terraform followed by

its description:

35

Diagram 1 Generic Terraform Workflow

After properly initializing a Terraform Workspace with init, the example file istec.tf

would contain the resource definitions which would consequently define actions respective to the

creation, modification or destruction of the declared artefacts. If necessary, resources already

created by other means on the cloud infrastructure could also be imported and reflected into some

.tf resource definition file. Only one file is given as example but multiple .tf files can exist,

optionally named in some relatable way with the infrastructure they describe and, if desired,

placed in different directories for applying logical segregation of resource definitions. Specific

environment configuration variables are defined within the file terraform.tfvars and are evaluated

whenever a Terraform action is invoked. Values for some of those variables can optionally be

inherited from the working environment for greater flexibility. Amid the common Terraform

actions, plan parses the .tf files for checking their consistency and identifying the provider needed,

also reporting on exactly what actions are to be taken for both informational purposes and aid in

decision making. Should the reported changes be accepted, apply effectively makes Terraform

invoke the associated provider and establish communication with the cloud infrastructure in order

to perform the respective cloud resource changes. Terraform is also capable of releasing any

resources defined on the istec.tf file using destroy as well as import into a .tf file any resource

already created on the cloud infrastructure but not yet referenced within the configuration file

using import. A terraform.tfstate file is created and managed by Terraform for keeping a

registration of pending or failed actions. Terraform can also detect any configuration drift or

changes done outside Terraform by referencing the terraform.tfstate file. More complex

operations can be done with other available options in Terraform, and will be referenced within

their appropriate contexts whenever needed.

There are several other IaC languages depending on the chosen technological

implementation, but regardless of the chosen technology, IaC is indissociably from cloud

computing for describing infrastructure under the cloud computing model.

36

Code Repositories

Using a source code repository is necessary for having a centralized management and

overview of all IaC related resource configurations, adopting a similar mechanism to software

development practices in terms of code management. The concepts of source code management

are traversal to most implementations, aiming to provide the same features and functionalities,

although differing in the inner workings of their associated tools. Any source code management

tool can be used with IaC as long as it provides a set of basic but essential features. Other advanced

features of source code management tools and frameworks are also relevant not only to the realm

of IaC but also for more complex forms of combined development and deployment or for Cloud-

Native architectures. Crucial when application development and delivery becomes integrated with

the deployment of its underlying infrastructure, or whenever incorporating toolchains for

additional features such as monitoring, automation or orchestration is necessary.

Among the several features provided by source code repositories and management tools,

versioning ranks as one of the most important for the realm of IaC, for keeping several versions

of configuration files and to be able to track their changes across time, providing a detailed

perspective on any resource or configuration change in a reliable manner and ensuring a complete

and detailed record of every change applied. Changes are registered through the use of a unique

identifier for each change or transaction committed into the repository. Source code repositories

also provide the ability to have multiple developers working on the same set of source code files,

enhancing collaboration without compromising the work of others even when inconsistencies in

code arise, having full accountability on every change applied. Collaboration under this premise

has to adhere to the chosen language constraints in terms of centralized repository usage and its

level of compatibility. Other relevant features are branching and merging, for creating

independent development branches of code, with the possibility of later integrating development

done on those different branches back into the main branch, cloning or forking for performing a

point-in-time local or remote repository copy of an already existing repository, as well as the

indispensable security related features such as access control. Source code management tools

maintain and guarantee the integrity and consistency of the repository during any operation. Git

has become the most prevalent source code management software in the last decade, initially used

as a repository in the development of the Linux Kernel and in other areas more related with

software development, but lately being widely adopted across different areas of IT related with

infrastructure and configuration management, nowadays widely used in the context of cloud

37

computing as a repository for IaC resource definitions or configuration files and other more

advanced forms of cloud architectures.

 Storing Terraform or IaC configuration files with a configuration repository is common

practice in more massive or declarative forms of cloud deployments and a Terraform workspace

environment can be coupled and synchronized with a Git repository, adding to the aforementioned

features the possibility of having automated computational processes or any other authorized

parties to access resource definitions. Git uses the concept of local copy for anyone that has pulled

or cloned a repository contents into its local machine or working area, allowing for the

modification of contents locally and just committing such changes to the repository when

appropriate. The ability to work on local copies of the repository without needing any network

access, that becoming necessary only when synchronization with the main repository is to take

place, gives enormous flexibility to developers or anyone working on such code or resource

definitions. Assuming an available Git repository for centralizing IaC resource definitions is

available and authorizations are in place, an appropriate workflow for the Terraform

configurations previously outlined can be augmented with Git as described in Diagram 2:

Diagram 2 Using Terraform with Git repository

After initializing a Git working directory on the same location as the Terraform

workspace and editing the istec.tf resources file with the desired resource definitions according to

selected provider, independently of triggering terraform actions, the istec.tf and terraform.tfvars

files (or any other files under the working directory for that purpose) can be kept on the repository

by invoking git add specifying which files should be put on the local staging area, with those

becoming from that moment under local Git supervision, marking them to be tracked for changes.

38

Concerning Terraform, the terraform.tfstate file must be excluded for technical reasons as it

preserves state related with local Terraform invocations and should not be shared among different

Terraform instances or developers, serving as a concrete example that not everything that is local

data is to be put on the repository or under revision control, but possibly under an ignore category.

After all desired changes have been done on the istec.tf file, a git commit operation effectively

saves the file under the local repository, awaiting eventual synchronization with the remote

repository. Having files in the local repository is akin to a local cache or index of the remote

repository, and any discrepancies between the local repository and the remote repository can be

verified and operated on. Files under the local repository can be synchronized with the remote

repository with a git push operation and should any conflicts arise, manual intervention for

merging contents may be necessary after careful inspection of changes and differences. A git pull

operation would retrieve any files existing on the repository but not on the local cache, possibly

created by other developers or processes, making them available locally. Git controls files through

their checksum instead of their contents, which is calculated whenever a file within the staging

area is added to the repository and put under Git control. Git detects any changes done to files

within its staging area by recalculating their checksums and by comparing those checksums with

previous commits. Should any differences in the checksum arise, several operations are possible

such as displaying differences between files or merging their contents. Git will also warn if any

changes to files being tracked have been made without updating those into the repository. Since

any changes to the istec.tf resource configurations will have their previous versions of the file

kept as new changes are synchronized with the repository, this pattern of operation provides a

complete history of any infrastructure modifications across time. The possibility to rollback

committed operations, a feature not natively provided by Terraform due to its idempotent

philosophy, also becomes possible with the use of source code management tools.

Combined Practices

The previously mentioned technologies for defining cloud resources in a programmatic

manner (IaC) and for keeping such definitions and configurations under a centralized repository

(SCM) are crucial for achieving a higher independence from the cloud regardless of the chosen

provider and independently of the desired architecture. Although a seamless transition of artefacts

between cloud providers as it would be desired is still far from being achievable until there are

defined standards for such transition, using these technologies gives possibility to repeat the

creation of artefacts in a consistent manner even if some degree of changes are necessary. The

combination of Infrastructure-as-Code, a more recent technological practice, with Source Code

39

Management, a practice that has decades of existence, is a clear example on how it is possible to

combine tools and methodologies for a common purpose and provide new and innovative ways

to deal with existing hurdles. Both these technologies are indispensable for aiding in cloud

provider independence, as it will be described. The following case scenarios assume a traditional

IT infrastructure based on virtual environments with common IT solutions, since it would be

uncommon, although not impossible, to migrate from a container-based Cloud-Native or

Microservices architecture into an IaaS or PaaS type of cloud infrastructure.

IaaS Migration

The IaaS model for cloud infrastructure allows for the creation of virtual machine

environments with their associated network contexts and storage elements, analogous to

traditional IT architectures but entirely in virtualized form. By migrating already existing virtual

machine images into such infrastructure, those resources can start benefiting from the cloud

computing model characteristics. The IaaS model is appropriate for a relocate or rehost type of

migration into the cloud, as described under the common strategies for migration. Regardless of

creating new environments or migrating existing ones, adjacent network and storage virtual

elements have to be created or defined within the context of the cloud infrastructure as well.

Migration to an IaaS cloud has been made easier due to the number of already existing

virtual machines that resulted from a transformation with physical to virtual (p2v) methodologies

in the previous era of computing, when virtualization was becoming mainstream, or that have

already been created on top of virtualization solutions that became ubiquitous in the last decades

such as VMware, Hyper-V, Xen or KVM. This has made the transition to cloud infrastructure

somewhat similar to the movement of virtual machines between hypervisors, a process commonly

known as virtual to virtual (v2v).

Assuming that the existing baseline infrastructure is in a virtualized state, the migration

of such virtual elements into an IaaS based cloud model depends on the type of virtualization

technology underlying the existing environments and the one supported by the cloud provider,

since different types of hypervisors have their own incompatibilities. Some virtualization

solutions may be supported for direct relocation of virtual machines, similar to what is known as

collocation in traditional IT. Usually, a compatibility matrix from the cloud provider describes

the virtualization technology used as well as the type of virtual machine images supported for

migrationm and if some level of transformation or conversion of the original image is necessary

40

in the process. Virtual machine images are usually based on common supported formats such as:

Open Virtualization Archive (OVA); Open Virtualization Format (OVF); Virtual Machine Disk

(VMDK); Virtual Hard Disk (VHD/VHDX); XenServer Virtual Appliance File (XVA); Virtual

Disk Image (VDI); RAW. It is possible, with appropriate tools, to convert between those image

formats in order to comply with hypervisor specifications in terms of supported images. Before

booting such images other technical details such as the type of boot, depending on the use of EFI

or legacy BIOS, as well as the use of paravirtualized drivers must be taken in consideration.

Additional specific compatibility requirements such as type of operating system and its version

are also commonly identified, including networking and storage specifications necessary for

compatibility and interoperability. If importing already existing virtual machine images is not

possible, a new installation of the operating system and subsequent reconfiguration may be

necessary. Under this scenario, having a configuration management solution such as Ansible is

useful for reapplying operating system or applicational configurations, possibly with some

adaptation. Other specific constraints may exist such as portability of the software running on

existing virtual machines, but those are beyond the scope of this dissertation.

Despite those identified constraints, assuming an assessment has been made according to

the premises described in the general assessment guidelines for a migration plan and the

compatibility matrix is satisfied, the necessary steps to perform the migration from an

infrastructure perspective are usually straightforward and well documented by providers, sharing

common characteristics even across different implementations. This type of migration can present

different options during its execution in-between the described general guidelines for IaaS

migration. The procedure tries to be as cloud-vendor neutral as possible and resorting to IaC

whenever possible or appropriate, having steps numbered for further reference:

General Guidelines for IaaS Migration

1 Creation of necessary network contexts and storage elements within the provider

infrastructure according to requirements or specifications using IaC

2 Definition of virtual machine characteristics and associated resources in their respective

network contexts using IaC

3 Evaluation of additional necessary configurations for interconnecting artefacts between

migrated and non-migrated environments

4 Migration of virtual machine images by exporting and transferring their images for

41

subsequent import, possibly subject to minimal adjustments or to some transformation

process to conform to the compatibility matrix of the cloud implementation

4.1 Alternatively, creation of new virtual machines with approximate characteristics and

separately migrate or recreate existing OS image related data and configurations

5 Attachment or configuration of any additional necessary storage or network elements

6 Transfer of any related applicational data into storage within the cloud infrastructure to

the newly created/migrated environments

Table 2 General Guidelines for IaaS Migration

All actions regarding the preparation and configuration of infrastructure for migration

into an IaaS cloud model, besides having to adhere to the general guidelines outlined for IaaS

migration, must be done by resorting to IaC languages such as Terraform and such resource

definitions must be kept in a source code repository like Git. Both these technologies were

previously described.

Regardless of migrating already existing virtual machine images or creating new ones,

the adjacent environment in terms of networking and storage components also have to be defined

on the cloud provider infrastructure and should be done in a programmatically manner, as well as

kept within the repository since such definitions will not be made available or exported by the

provider in any other format later that would allow importing into another cloud infrastructure.

Those resource definitions will be handy for a future migration, even if subject to any adaptation.

The creation of such artefacts, the migration or creation of virtual machines and the

interconnection of all those resources will comprise the resulting implementation in terms of

compute, network and storage components, also known as an IaaS cloud architecture. The

migration or deployment and configuration of applicational components followed by subsequent

testing on such infrastructure would come next, but such actions are outside the scope of this

dissertation.

The migration of a standard on-premises infrastructure as exemplified in Diagram 3 into

an IaaS cloud model can have its equivalent or similar resource definitions declared in Terraform

as exemplified in Annex 1. Diagram 3 describes such infrastructure in a simplified manner.

42

Diagram 3 Simplified On-Premises Infrastructure

Annex 1 exemplifies Terraform resource configuration files with resource descriptions

reflecting the IT components of Diagram 3 in a non-rigorous manner, having the filename

reflecting some relatable context of these resources. After creation of the Terraform resource files

exemplified in Annex 1 with the respective resource definitions, those files are to be kept in the

source code repository using Git, before invoking Terraform for the creation of such resources in

the cloud. When Terraform is invoked with plan it will report on what resources or artefacts are

to be created or changed with its output in Annex 2 of this document. If apply is chosen, such

resources are subsequently created on the selected cloud provider as described. Resources will be

put in their respective contexts with virtual machines in their associated network subnets and also

with their individual storage components attached, as described in Diagram 4. Minimum security

rules are also implemented with those depending on the default security policy according to the

provider. This would comply with steps 1 and 2 of the general guidelines for IaaS migration.

Diagram 4 IaaS deployed using IaC

After defining the new cloud infrastructure reflecting the existing on-premises

infrastructure as closely as possible by using IaC, further changes should continue to be performed

43

inside the realm of IaC and synchronized with the repository. Code within the repository can not

only be referenced and adapted later for applying similar configuration objects on another cloud

provider, but also to expand IT infrastructure if necessary, leveraging a higher degree of

independence. The configurations outlined on step 4.1 of general guidelines for IaaS migration

are always specific within the context of migration due to applicational constraints or

requirements and subjective to an analysis on a case-by-case basis, which could even lead to a

migration from an applicational perspective.

The use of a configuration management solution is beyond the scope of this dissertation

but as previously mentioned, it is an important asset on any IT infrastructure in any migration

scenario for restoring or performing a rollback on any configuration change, or for reapplying

previously existing configurations on cleanly installed environments in a reliable manner. Having

a process for keeping configuration changes in a centralized repository is therefore crucial if it

becomes necessary to reapply configurations in such newly deployed environments, assuming

equal or compatible versions of operating system or applicational software. Steps 5 and 6

generally describing additional configurations and the movement of related data are also specific

to the context of migration and will depend on external factors such as network connectivity and

bandwidth. The main aspects of migration and its related infrastructure is however highly

simplified with IaC, in a somewhat portable manner.

The migration to an IaaS cloud infrastructure is one of the most straightforward and well

documented forms of migration. By planning a migration to an IaaS type of cloud infrastructure

resorting to IaC it is possible to improve planning through detailing of necessary artefacts and

their relationships as well as benefit from the features of IaC such as a higher level of consistency

and faster deployment. Using IaC also provides more alternatives for migration or expansion in

the future, by referencing and reprocessing configuration information about the existing

infrastructure in the repository, enabling a higher chance of independence from any cloud

provider. Since deployment of an IaaS type of cloud infrastructure can also be a pre-requisite for

other types of cloud deployments that can depend on the provisioning of virtual machines through

automated methods, such as those for use with container-based virtualization, IaC also provides

a mechanism for orchestrated deployments according to demand.

While migrating to an IaaS based cloud infrastructure is a relatively simple process, once

migrated the infrastructure is not portable between different providers, a major drawback in terms

of future migrations if they become necessary. Even with the limited options available to migrate

44

into another provider or to rollback to on-premises infrastructure, some cloud providers have

already developed and made available options to export virtual machine images existing within

their infrastructure according to some of the standard formats mentioned previously, making it

possible to somehow do the process in reverse. Still, all other artefacts associated with the IT

solution such as storage or network elements would have to be recreated from scratch, a task that

can be made easier when all resource definitions were previously done by resorting to IaC and

kept in a source code repository for reference, even if some degree of adaptation is necessary.

Despite not being a perfect solution, by resorting to IaC in the context of migration to create an

IaaS based cloud infrastructure it becomes possible to, although not as seamlessly as desired,

migrate into another cloud infrastructure or provider by referencing the entire configuration and

readapting/recreating the necessary artefacts into the new infrastructure somewhat consistently,

making IaC indispensable for such tasks, beyond its initial purpose.

PaaS Migration

The PaaS model is based on deploying ready-to-use instances for database, middleware

or other similar components resembling a traditional multi-tiered model of IT architecture

(although not exclusively in that context) abstracting the entire underlying infrastructure layer.

The PaaS model is appropriate for a replatform or refactor type of migration into the cloud as

described under the common strategies for migration. Migrating to a PaaS model may not be as

straightforward as migrating to IaaS since configuration changes to applications or databases may

be needed, possibly including some code refactoring, although at a manageable level.

This cloud model allows control over application design, but not control over the

underlying physical infrastructure, shifting the development of IT solutions by concentrating on

database, middleware or other IT components available under PaaS offerings as well as their

associated development tools, instead of infrastructure components, providing a layer of hosting

for cloud applications. Multiple constraints or drawbacks in deploying database instances or

middleware components under the traditional on-premises IT infrastructure make this service

model attractive. Usual hindrances such as time for deployment and configuration, administration

and management with complicated patching matrixes, the need for additional infrastructure to

provide backups and disaster recovery, along with limited scalability, are among the most

common issues. Those contribute to rising costs even when the infrastructure is in an already

virtualized form. A PaaS type of deployment is preferable for some architectures or solutions that

may require such dedicated instances, possibly even as a complement for some architectures

45

already running on cloud.

 Several products based on a PaaS service model may exist beyond database or

middleware instances, depending on the cloud provider. The PaaS model can provide more

flexible management and scalability of instances, with providers usually offering advanced

features such as dynamic increase of available computational resources depending on the database

or application load (or upon request) for providing rapid scalability, typically without any service

disruption, and features in terms of management, like automated patching and backups,

commonly associated with their own proprietary components or offerings. Depending on the

provider or cloud infrastructure, and limiting the example to database or application server

components, a compatibility matrix usually identifies what type of source database or middleware

components are supported for migration, with the process usually well documented by cloud

providers especially if the existing implementation is from the same vendor.

The PaaS model of cloud computing is more prone to a vendor Lock-In due to the fact

that most cloud offerings for this type of service are usually vendor-specific and tend to perpetuate

the dependency on a specific product even when running on cloud infrastructure. Despite the

advantages presented by this model, there are substantial differences between cloud provider

offerings and Vendor Lock-In may already exist before the migration, since each database or

middleware component has its own specificities depending on the vendor providing it, if not based

on an open source product. Careful analysis should be done before choosing a solution in terms

of database instances (commonly defined as DBaaS) or application servers that rely on proprietary

schemas or programming languages, thereby transposing the existing Lock-In into the cloud since

once data is imported into a vendor-based or proprietary solution a substantial transformation or

refactoring process has to be done to export such data or applications into another type or model.

Some PaaS offerings may be provider specific and should therefore be treated as a final product

similarly to SaaS.

If a PaaS service model is to be chosen, in order to achieve a higher degree of

independency from the cloud provider, preferably an open-source based database engine or

middleware platform should be selected. If technically feasible, a conversion process for open-

source based database solutions should always be considered whenever the cloud provider

instances are not compatible with the originally exported schema (meaning that some refactoring

already has to be done) or if the schema of the original data is based on a proprietary solution,

lowering technical debt if such refactoring is done earlier. By converting to open-source based

46

solutions, future migrations may become easier if they ever become necessary.

A migration to a PaaS service model is usually done to partial components of an existing

IT infrastructure. Assuming an assessment has been made for those components according to the

premises described in the general assessment guidelines, especially concerning steps 2 and 3, and

the compatibility matrix is satisfied, the migration process consists of exporting data or

middleware artefacts (commonly database exports or application archives) from instances to be

migrated, transfer such data or artefacts into the cloud infrastructure, and subsequently import it

within their respective contexts on the newly created PaaS instances. These operations may be

easier if the vendor currently providing those components for on-premises solutions is the same

provider for cloud infrastructure, since there is a decreased risk in compatibility problems. If

technically supported, data can also be migrated by resorting to a synchronization process

between the existing database instances and the instances in the cloud in order to minimize

downtime. These types of solutions are typically proprietary and would have to be analyzed on a

case-by-case basis. Similarly to an IaaS migration, a reconfiguration of other existing IT solution

elements may be necessary in order to connect those to the newly created instances, depending

on network configurations and application requirements. The following general guidelines for a

PaaS type of migration are numbered for further reference:

Generic Guidelines for PaaS Migration

1 Definition of database or other middleware components on cloud infrastructure according

to specifications or requirements using IaC, if available

1.1 Optionally, definition of instances using appropriate cloud scripting tools, if IaC is not

supported

2 Placement of aforementioned instances in appropriate network context using IaC or

scripting if IaC is not supported

3 Configuration for interconnecting existing IT components to new instances

4 Migration of data or applicational components by exporting and transferring their

contents for subsequent importation, possibly subject to some transformation or

refactoring process to conform to the compatibility matrix of the cloud implementation

4.1 Optionally, if applicable, migrate data by configuring replication process between

existing database instances and instances running on cloud

5 Planning and reconfiguration of existing IT infrastructure for connecting to new

47

instances

Table 3 Generic Guidelines for PaaS Migration

The migration of IT components into a PaaS model has similar aspects in terms of

procedures with the previously described migration into an IaaS model, but at its core consists of

exporting and importing data, abstracting the underlying infrastructure in terms of compute,

storage and network elements. A PaaS model rarely comprises the entire IT solution, usually

being only a part of it, coupled with other types of cloud artefacts under other cloud models or

even with on-premises infrastructure in a hybrid-cloud model.

On some cloud providers, PaaS database and middleware components can be defined by

resorting to IaC templates similarly to the IaaS migration model, and should preferably be done

in such programmatically manner with the objective of making any future migrations or recreation

of artefacts simpler under the same reasons already mentioned for IaaS migration. Support for the

creation of PaaS components through the use of IaC may not be available, optionally creating

those with the provider’s command line tools or shell equivalents, which still makes it possible to

create such resources programmatically but at the expense of portability since such code is

specific to the cloud provider and therefore not directly applicable for recreating resources on

another provider whenever needed, without readjustments. Still, despite the fact that the use of

specific provider command line or shell features to communicate with its API is not optimal in

respect to portability, by storing those configuration scripts and have a history of their changes

through the use of a repository, a history on the creation or modification of such resources is

available. Such information can be useful for future recreation of those resources if necessary,

even though such definitions may have to be translated into another provider language. Other

features usually present in IaC are also not available when scripting is used without additional

development, such as having information like the one provided by Terraform about resources,

reporting on what changes are to be done on them. Steps 3, 4 and 5 concerning the configuration

and migration of data are always dependent on the context, just like in IaaS contexts, and must be

analyzed on a case-by-case basis.

The migration of database and applicational components (data and application archives

respectively) residing on the virtual machines of the standard on-premises infrastructure

exemplified in Diagram 3 into a PaaS cloud model can have those PaaS components previously

created through IaC resource definitions declared in Terraform as exemplified in Annex 3, or

optionally through any other IaC language supported by the cloud provider for that effect,

48

reflecting what is generically described in Diagram 5. Alternatively, if IaC is not supported, some

equivalent scripting language supported by the provider can be used. Regardless of the method,

these configurations must also be kept within the repository for later reference.

Diagram 5 PaaS deployed using IaC

Under the PaaS model for cloud computing, it is difficult to achieve a true provider

independence since most service offerings are specific to the provider and therefore it may

become a dead-end for further migrations without substantial efforts with refactoring.

Additionally, most offerings may incur in extra costs beyond the PaaS instance, such as costs for

backups usually into cloud storage, assuming information on the database is not for ephemeral

purposes, or even for transferring those backups to local storage if necessary. Regardless of those

constraints, as was the case with IaaS, a higher degree of independency can be attained by doing

every configuration and keeping them in a code repository for later reference, using IaC whenever

possible, and only if IaC is not available through the provider’s own scripting languages for

manipulating artefacts through their API. Although recreation of infrastructure artefacts may

become easier by referencing such information, the PaaS model is usually the most limiting for

migration when code or data related with PaaS instances is from a proprietary nature and therefore

not possible to directly export and import into a newly created instance in another provider.

IaaS and PaaS Limitations

The previous migration methods that leverage cloud computing under the IaaS and PaaS

service models are among the most common and straightforward methods of cloud migration,

however they possess some limitations in terms of flexibility for future migrations and don’t fully

exploit other features and capabilities that became available in the cloud computing model.

49

Regardless of improving the outcomes of future migrations by using IaC and keeping

every configuration done on the code repositories, any future migrations under these two service

models will always have issues to contend with, such as incompatible virtual machine images in

the case of IaaS that make the transition of those images between different cloud providers

difficult or cumbersome, possibly always subject to a conversion process, and the adjacent storage

and network configurations are also not directly transposable between providers in an IaaS model

with some level of adaptation needed. The migration is also subject to additional requirements

such as having to comply with specific operating system versions to satisfy the compatibility

matrix of the provider, which may consequently cause portability constraints on the applications

running on them. Although not directly related with migration aspects, the need to have fully

dedicated resources on the running virtual machines is not optimal since charging is done for the

entire set of resources even in periods of low activity, unnecessarily raising the costs with

infrastructure.

The PaaS model overcomes some of those disadvantages but goes contrary to the idea of

computing as utility due to the fact that migrating from a PaaS cloud implementation later may

reveal to be even more difficult than from an IaaS one, especially if refactoring of data or

applicational components is needed, which is likely to happen under proprietary offerings,

seriously hampering any future migration. Although it provides better resource utilization and

improvements in terms of administration and manageability, the drawback is becoming

indefinitely tied to a given provider since most PaaS solutions are usually provider specific,

somewhat like a final product.

CaaS Migration

Container virtualization is based on the principle of having an abstraction layer not only

over the entire underlying infrastructure or any of its components, as that would be similar to any

standard virtualization, but also completely abstracting the operating system layer. Herein lies

one of the biggest differences, as the operating system and its associated compatibility issues

affecting portability and interoperability can be overcome using container technology. Code or

applications are developed and packaged specifically to run on top of such abstraction layer. The

layer of container virtualization becomes similar to a PaaS model, but contrary to the PaaS model

which runs specific instances of specific applications, mostly proprietary, containers can run

anything, providing an open model for development and deployment. Based on container

virtualization and under such premises, a CaaS service model has more advantages for any

50

migration between cloud providers, eliminating or minimizing portability and interoperability

constraints between different implementations of CaaS infrastructure, as long as minimal

compatibility requirements are met. Since a container-image can run without change in different

cloud providers, assuming a compatible implementation of container technology, this enables a

considerable degree of cloud provider independence, more easily attainable than in previous

forms of cloud deployment. Consequently, as a result of this architectural change, a CaaS model

also brought a different approach for developing, deploying and running applications on cloud

infrastructure that could take better advantage of the cloud computing model, providing faster

deployment and higher flexibility in terms of resource allocation, resulting in better scalability

and lower expenses with infrastructure. Development under these new paradigms is not

mandatory and components of an existing N-tier or multi-tiered application may also be suitable

for transposing into this type of service model, which classifies as a rebuild/reuse under the

common strategies for migration.

Applications running on container virtualization have their code assembled and packaged

with all its dependencies together, in what is defined as a container-image. A container-image

may be a complete application, or just part of one large application distributed across several

container images. The latter commonly defines a Microservices architecture, or possibly some

related form of a distributed architecture. The CaaS model resorts to deploying those ready-to-

run container images on a container-based virtualization platform, which can even be built on

container-native IaaS. Such platform runs container engines, responsible for code execution as

well as resolving any dependencies related with the infrastructure layer, on top of an operating

system and fully abstracting it. The container-based virtualization platform that supports the

container engines is itself usually comprised of virtual machines running on the underlying

infrastructure, having to comply with a specific version of an operating system that has the sole

purpose of running and supporting a specific implementation of a container-runtime engine. This

container-runtime engine is deployed with the single purpose of supporting the launch and

execution of those ready-to-run self-contained images. This type of architecture, from a

virtualization perspective, may classify as a form of nested virtualization.

Assuring portability and interoperability is the responsibility of the container-runtime

engine, with applications bundled on container images not being dependent on the operating

system running on the virtual machine, instead relying on the container-virtualization technology

being used. If a container-runtime engine is supported between different operating system

versions, then container images running on top of such runtime engine should run seamlessly

51

without any constraints when moved from one infrastructure into another. This is a crucial aspect

to consider from the perspective of migration and cloud provider independence.

Containers take up less space than virtual machines and are launched or booted much

faster. Multiple containers can run on the same container-engine implementation, sharing the OS

kernel and resources with other containers. When a container-image is instantiated or launched,

each container runs as an isolated processes in user space. This characteristic can also influence

migration options, and may set forth some specific requirements in terms of orchestration or

scheduling of those containers under more massive deployments, due to the fact that resources

are shared. Under this model, instead of having to provision and launch additional VM’s, which

is suboptimal in terms of speed and resource allocation when compared with containers since

VM’s take longer to boot and continue to consume resources even in periods of lower activity,

additional containers can be launched and terminated much faster. It is also possible to

preemptively launch more virtual machines for supporting and running an additional number

containers only when needed, keeping resource allocation to a minimum. The necessary

provisioning of underlying virtual machines to support a container infrastructure and providing

such scalability can be achieved by resorting to IaC templates and automation, similarly to what

was described previously for IaaS. Some cloud implementations and providers have already

extended service offerings, providing container-based infrastructure for direct deployment and

running of containers, scaling out automatically as containers are deployed without any

provisioning of infrastructure necessary by the client.

In order to migrate to this type of architecture, considerable changes in the overall

architecture of an existing IT solution under a client-server model, N-tier or monolithic

architecture may be necessary. Under a migration scenario, and assuming the baseline architecture

is not already in a containerized form, the switch to this paradigm of computing for migration has

a higher complexity and possibly higher cost initially due to the refactoring and transformation

of existing applicational components in order to comply with this model. Choosing this type of

migration may lower technical debt, as any future movements between different cloud providers

can more easily be achieved, and even take advantage of new cloud computing paradigms such

as Multicloud deployments. If existing IT components on the baseline architecture are already in

containerized form, it could result in an easier migration, somewhat similar to a scale-out

operation to another cloud. As a rough comparison, v2v was to the movement of virtual machines

between different hypervisors as moving a container is between different container-runtime

engines.

52

For a CaaS type of migration, steps 1 to 3 under the general assessment guidelines are not

as straightforward as for previous migration methods, and unfold into a deeper analysis that

involves changes not just from an infrastructure perspective but from an architectural and

development one. Candidate applications or IT solutions to migrate to this type of cloud

computing model may reveal to be relatively easy or somewhat complex to migrate, depending

on several technical factors and knowledge about existing IT infrastructure, ultimately affecting

how existing components adapt to this model. The applicational components running on the

candidate infrastructure to be migrated must be decomposed in a way that would fit one or more

container images and adapt to a container model. This is oversimplifying, since migration

scenarios may require that different paradigms of development and architecture must be observed

and taken into account under such analysis, in order to understand the tradeoffs and ultimately

conclude if such transformation is viable or even desired. This process may grow in complexity

as it may go beyond the simple transposition of the applicational component into a container-

image. Under more complex migration scenarios, components are most likely to need some

deeper refactoring process. Refactoring implies code changes to adapt to some different form of

computing, without changing the final outcome or behavior of the component and presumably

without discarding the existing code base, minimizing risk. This refactoring process may consume

many available resources and its associated effort must be carefully evaluated. It is possible to

use container virtualization with monolithic or N-tier architectures based on the client-server

model of computing, but that is suboptimal.

The following guidelines for CaaS migration augment, from a generic perspective, the

general assessment guidelines and identify aspects that may have to be addressed before planning

the migration, regardless of the desired architectural pattern being based on a traditional approach

and continuing to be based on a client-server model or monolith even when running in containers,

or based on a Microservices approach or some other form of distributed architecture.

Evaluation Guidelines for CaaS Migration

1 Evaluate technical viability of candidate applications for transposing to container-based

virtualization and migrating into CaaS

1.1 If applicable, also evaluate necessary changes in existing IT architecture to support

conversion of applicational components to CaaS

2 Identify and measure development and refactoring efforts needed for transposing such

53

components to comply with CaaS architecture

3 Deploy or subscribe to necessary container-virtualization infrastructure and configure

container-image repositories

3.1 Optionally, assure readiness of required container-virtualization platform according to

provider including storage and network requirements

4 Refactor and deploy code to container-image repositories

5 Deploy container images

Table 4 Evaluation Guidelines for CaaS Migration

Despite the selected container technology, the use of IaC and code repositories are

implicit in a CaaS based approach. Each technology may have its own implementation of IaC for

declaring artefacts, with some even supporting the use of generic solutions such as Terraform.

Regardless of the language or implementation used, the same development principles presented

in other forms of migration continue to apply. In addition to repositories for keeping code related

with IaC declarations, as exemplified in previous migration methods, a repository to store

container images is also necessary. The type of repository for IaC declarations or code is not the

same as the one for keeping container images, with the latter depending on the technology used

for container-based virtualization.

Under CaaS, the mechanism for deployment becomes interrelated with applicational

development. The cycle of development encompasses the entire process from code development

to its packaging and deployment on container registries for subsequent deployment on ready-to-

run infrastructure. As mentioned, this type of deployment is expected to be independent of the

provisioning of the underlying infrastructure, contrary to the traditional paradigm of IT on IaaS

or PaaS cloud models, or at the very least providing total abstraction on how it is provisioned, as

long as the cloud provider or cloud infrastructure solution supports the chosen contained-based

virtualization technology. From a development perspective, after code is staged and appropriate

testing is done, assuming the results are successful, components are packed into a container-image

and committed into the image repository after the packaging process has finished. This step of

deploying code into a container registry becomes associated with part of the development process,

being the last action of it, commonly identified as the integration phase. Subsequent deployment

from the container registry into the container-based virtualization infrastructure for the code to

run is part of the deployment phase, when an applicational container-image is pulled into a

container-engine which sets up its associated environment, followed by the instantiation of the

image processes.

54

Diagram 6 depicts a generic development and deployment workflow for CaaS using

Docker, a popular container virtualization solution and one of the most used for container

virtualization which will be used in the examples on this dissertation. It is important to understand

such workflow in order to best understand a migration process into this model. The workflow

describes container-image creation and deployment with subsequent instantiation of the

container-image into memory, running as a container instance, considering an application that fits

the requirements for being transposed into a container model and that can effectively be converted

into it.

Diagram 6 CaaS using Docker

Within an implementation of container virtualization using Docker, the contents of the

container-image will be described using its own IaC syntax within a file known as Dockerfile.

This file will describe what will comprise the final container-image in terms of not only what it

contains in terms of applicational components but also additional content-related metadata. Other

necessary actions associated with the buildup of the container-image during the image creation

process and its build context, or during container instantiation when launched from the container-

engine are also described in the Dockerfile. All Dockerfile configurations, similarly to what was

previously done in other migration scenarios, are to be kept within a repository such as Git for

versioning and later reference, should it become necessary. This will also become important for

more complex types of development and deployment requiring automation across all stages of

development, testing and deployment. Both networking and storage layers are abstracted from the

example and beyond the topic under investigation and involves understanding adjacent concepts

related with container-based virtualization such as bridging, overlay networks, data volumes,

among others.

55

Just as the previous migration methods, any applied configurations are expected to be

kept in a configuration repository for later reference, which in the previous example is done

through the Dockerfile. This is especially relevant from a migration perspective under this model

for the recreationg (if necessary) and redeployment of containers on a different cloud

infrastructure in the future, assuming the same type of container-engine implementation.

Similarly to previous migration scenarios on other type of cloud models, cloud migration can be

made simpler by reusing such IaC configurations kept on the Git repository. Under a CaaS

migration it becomes even more straightforward by simply reprocessing and redeploying into new

container registries associated with the new provider. It is also possible to redeploy or pull images

onto a new cloud infrastructure assuming a connection between the new cloud infrastructure and

the existing one can be implemented, similarly to a hybrid-cloud model, instead of redeploying

new container images on a new repository, at the expense of having to keep older repositories

under the existing infrastructure.

This type of migration it is more appropriate for improving provider independency, and

it is recommended to keep the container-image repository under local control under a hybrid cloud

implementation, permitting access from the container engines of any new provider to the

container-image repository under local infrastructure is optimal for all migration or scale-out

scenarios involving CaaS cloud model. This type of solution for the container repositories is

compelling not only from an independence perspective, by keeping information related with the

infrastructure for any future recreation under local control, but also to take advantage of other

features in the types of migration or implementations such as Multicloud, described later.

It can be seen that the CaaS cloud model is one of the cloud deployment models that can

effectively provide a high degree cloud provider independence by taking advantage of the

container virtualization model, abstracting the entire underlying infrastructure, but at the cost of

having to transform the existing IT solution or IT components to comply with such model. This

type of cloud model implies the use of IaC and methodologies for both development and

operational management of adjacent infrastructure, in which DevOps becomes a relevant,

although loosely defined, and well-established methodology.

Microservices under CaaS

Some of the identified constraints under the IaaS or PaaS cloud models can be overcome

by switching to CaaS. However, when it comes to migration, not all IT solutions or components

56

are suitable candidates for this type of cloud model, due to the associated transformation or

refactoring needed on the original solution, and the nature of the original application to put under

this model may not be adaptable for such changes. A detailed procedure for evaluating and

decomposing the existing IT infrastructure or application in order to fit a container-based

approach is beyond the scope of this dissertation and only relevant aspects in terms of migration

from a macro perspective will be mentioned. Hence, a deeper evaluation must be made before

choosing this type of architectural model when compared to the previous migration methods, as

mentioned in the general guidelines for CaaS migration. A Microservices based architecture is

one possible approach and is the one briefly described. A migration into this model complies with

a rebuild/reuse or even rewrite type of migration described under the common strategies.

On planning to migrate existing IT solutions to a CaaS model, a proven architectural

model should be taken in consideration, especially when refactoring is involved. A Microservices

pattern or architectural style is among the most common for breaking a monolith application or

IT solution into multiple independent components. A Microservices architecture is based on small

and independent modules or services, each having a smaller code base with a specific

functionality on the overall architecture, utilizing some form of messaging model to establish

communication and synchronization among those independent components or optionally using

specific APIs for such communication. Components should be developed or refactored in a

loosely-coupled way so that failure of one would not compromise the entire solution and be

deployable independently so that they can run in a distributed architecture that could optionally

scale-out to more than one cloud infrastructure, contributing to a higher degree of provider

independence. Each component can be developed and deployed independently, with its own test

suites and data. A Microservices architecture also introduces some different patterns in terms of

networking and storage configuration and management, with persistence in storage not being so

prevalent. By implying a different form of development and management of cloud artefacts, this

computing paradigm also imposes overcoming a considerable learning curve in order to adapt to

it.

FaaS / Serverless Migration

The FaaS type of cloud deployment, commonly defined as Serverless computing, is in

itself a special form of CaaS since most implementations of FaaS rely on the same container

virtualization principles but apply it differently for a very specific domain within a cloud

infrastructure. The FaaS model does not use or depend on IaC templates or other mechanisms to

57

describe infrastructure since there is conceptually none, instead assuming there is one already

deployed ready to execute code. The underlying infrastructure is similar to the one used on a CaaS

model since it also depends on container-engines running on top of virtual machines.

One of the main objectives of the Serverless approach was to eliminate the need for

provisioning of infrastructure or having any other concerns associated with it, even at the

container level, completely shifting focus to development efforts and having code or applicational

artefacts running directly on top of a cloud infrastructure, completely abstracted of any

infrastructure components underneath. This is conceptually similar to the CaaS model, but under

FaaS there is no perception of instancing a container in the traditional sense, with that happening

under a different set of conditions in an abstract and completely transparent manner to the end

user. Code developed and deployed to work under this model can be triggered to run under a

specific event or invoked directly using an API, without any necessary action concerning

infrastructure layers. This type of approach is appropriate for executing specific chunks of code

that perform specific tasks for a given set of events or invocations, or for a given amount of time,

with the execution time possibly being limited by the implementation. This execution model also

contrasts with CaaS on the perspective that under CaaS containers are deployed and supposed to

be running for longer periods of time whereas under FaaS the container that encapsulates the code

to be run is terminated as soon as execution finishes. Migrating IT components into this model

also classifies as a rebuild/reuse type of migration under the common strategies, but rewriting

code may become necessary. This type of service model also contributed to a further

transformation on the development, deployment and execution of IT components running on

cloud, resulting in a deeper form of abstraction and more efficient charging for resource

consumption.

Even though it is based on the same technology used for CaaS, or container-based

virtualization, under the FaaS model infrastructure components on top of virtual machines are

comprised of container engines that run container images for a specific type of FaaS

implementation. From an infrastructure perspective, a container-image is deployed for running a

specially crafted container-instance, which in turn supports interpreting and running code

elements of some programming language depending on the ones which are supported for the

specific FaaS implementation in use. Code deployed to run under FaaS is launched not with the

objective of running a general purpose long-running application container, which is common

under the CaaS model, instead being typically short-lived and expected to last only for a specific

timeframe, or for executing some well-defined task a given amount of times, with the instance

58

terminating as soon as execution finishes. Charging is calculated by some metric associated with

running time or number of invocations, reducing resource consumption and costs even further

when compared with the CaaS model. This represents a different use on the layer of container

virtualization, since under most FaaS implementations the cloud infrastructure is itself running

container engines just for the specific purpose of supporting a given FaaS implementation and

programming language, this becoming the final layer of service.

Most cloud providers already made available FaaS or Serverless solutions for a given

number of supported languages, with each provider having setup a complete infrastructure based

on some FaaS implementation ready for consumption and to run code. Additionally, some

providers have also made available their own specific functions or chunks of code to perform

generic tasks through their appropriate API using a FaaS approach, as a complementary service

to their cloud offerings. Using such provider functions however may be prone to Lock-In unless

the source code is made available and completely based on an open-source implementation,

therefore avoiding proprietary languages is recommended. This is an important aspect to consider

in terms of migration that can affect cloud independence. Just as it was the case with CaaS, a FaaS

model will not be appropriate for any existing application or IT component, being even more

restrictive in what should be transposed or migrated into this type of computing model.

Beyond proprietary solutions, most providers also support open-source languages in their

FaaS implementations for developing and executing code, especially the most popular ones such

as Python, Perl, Go, JavaScript and others, as long as the code complies with the specific

implementation of FaaS and its guidelines for development under this model. Choosing an open

language is not sufficient to have complete independence as the FaaS implementations can have

their own idiosyncrasies even for the same programming language, akin to what happens with

CaaS in terms of container-engine implementations and their differences. This can impact

migration, and from an independence perspective code should be developed by resorting to open

languages under an open implementation of FaaS such as OpenFaaS or Fn-Project, guaranteeing

that code can run on any other cloud that supports the same open implementation. The general

guidelines associated with a CaaS migration partly resemble the ones for FaaS, however under

FaaS deeper refactoring or rewriting efforts are needed and their impact on migration should be

evaluated in a thorough manner.

Guidelines for Implementing FaaS

59

1 Evaluate technical viability of candidate components for refactoring or rewriting to

container-based virtualization based on FaaS

1.1 If applicable, also evaluate necessary changes in IT architecture to support and integrate

with refactored or rewritten components under FaaS

2 Identify and measure development efforts needed for refactoring or rewriting of such

components to comply with FaaS architecture

3 Deploy or subscribe to necessary container-virtualization infrastructure and configure

container-image repositories

3.1 Optionally, assure readiness of required container-virtualization platform suitable to the

chosen FaaS implementation according to provider

4 Refactor and deploy code to container-image repositories

5 Deploy container images for subsequent invocation

Table 5 Additional Guidelines for Implementing FaaS

Diagram 5 exemplifies a generic implementation of FaaS or Serverless using the Fn-

Project FaaS implementation, not only describing the necessary infrastructure but also the

common flow of development and deployment under such model.

Diagram 7 FaaS using Fn-Project

From an infrastructure perspective, even though it is totally abstracted from the

developer, the Fn-Project container-engines can be deployed using a CaaS implementation such

as Docker, with a specific container-image residing on the “infrastructure” Docker registry that

has the runtime components for supporting and providing a runtime environment for a given

language when instantiated. After instantiation, the container-engines become ready for having

code deployed onto them for processing. In the Fn-Project implementation of FaaS, code is

defined in its respective source code file, named in this example myFunction.py for a source code

60

file having Python code, with additional metadata about the program in the file myFunction.yaml

having to obey to a specific YAML structure with specific tags for describing additional

information necessary for deployment. Code developed to work under this model may also have

specific requirements and constraints in terms of core development, such as specific input/output

processing. As development is finished, code is packed and deployed as a container image into

an appropriate repository, described as the “development” Docker registry in the diagram. Having

separate repositories is not mandatory and development could use the same repository as the one

used for infrastructure container-images of the FaaS implementation, but separation of

development and infrastructure components is considered a good practice. Code can be invoked

in various forms. The container-image on the “development” repository is pulled whenever some

specific trigger or event takes place, optionally through an API, executing the code within it on

top of the FaaS container-engines and exiting as soon as execution finishes or some timer expires.

Charging may be done on execution time, number of invocations or some other metric about code

execution and result.

A deeper understanding of the details about the chosen FaaS implementation and what it

supports is crucial before any refactoring or rewriting process, as well as having a deep

understanding of how the chosen components to be put under this model work, with this being

beyond the scope of this dissertation. Extensive documentation is available and converting or

adapting any existing IT component into this model will have to fit such programming paradigm

as well as follow the structure and rules for the implementation in use. A migration process under

FaaS should also be done under the same principles of development in terms of repository usage,

and just like the previous migrations scenarios all code should be kept in a centralized repository

such as Git.

Although similar to the CaaS implementation, a FaaS approach may not be as good as

CaaS in terms of cloud independence, especially if some proprietary or opaque form of FaaS

based on a specific provider offering is used. Some providers also have extensive libraries of

functions for different tasks ready to use, with such functions becoming attractive from a

developer’s perspective since not having to develop some specific functionality that may already

be available lowers development efforts, limiting however the movement or migration of such

functions or artefacts into another provider. Still, by applying the same principles used for

previous migration scenarios, keeping all code changes in a locally controlled source code

repository, with additional refactoring or rewriting of such functions these can possibly be

transposed to another provider, but never without substantial effort.

61

Rearchitecting to Cloud-Native

Choosing cloud computing for the deployment of new IT architectures or to migrate

existing IT solutions can have different approaches as it was described in the previously described

migration scenarios, with some resembling traditional IT infrastructure such as in IaaS or even

PaaS, with the latter simply delegating the management of infrastructure to some third-party.

Other approaches such as CaaS, FaaS or similar types of cloud architectures based on container

virtualization are more abstract on what constitutes the underlying infrastructure and more closely

related with the cloud vision in terms of what it should represent as a commodity, due to the

possibility of a higher level of independency from a given provider. All forms for deployment of

cloud infrastructure and their related IT architectures have their own pros and cons, and when it

comes to migration, depending on the context and the result of a thorough evaluation of each,

some may reveal to be more appropriate than others.

A Cloud-Native architecture, although not being directly related with cloud migration

practices, since new developments under a Cloud-Native approach are not necessarily concerned

with the migration of existing IT solutions or artefacts, cannot be dissociated from any migration

process due to the fact that whenever refactoring or rebuilding components is necessary, it is

currently one of the most well-accepted and viable methodologies to take into account, being the

preferred choice for new cloud-based IT solutions.

Migrating an existing IT solution, regardless of its origin, into some form of cloud

computing model approaching a Cloud-Native architecture classifies as rearchitect under the

common strategies, because the solution relies on transposing existing components possibly into

more than one service model, essentially based on container virtualization such as CaaS or FaaS.

This usually requires a substantial development effort, possibly even a partial or complete rewrite

of applicational components. Some Cloud-Native proponents regard IaaS and PaaS or similar

service models not as part of a Cloud-Native approach due to some disadvantages under those

service models regarding their potential for Lock-In and how they allocate resources, due to their

long time for provisioning and instancing when compared with CaaS or FaaS, therefore not

providing the same flexibility and elasticity as the container-based models and also having a more

rigid configuration mechanism. Some FaaS implementations are also prone to Lock-In depending

on the underlying technology used to implement it, so it is debatable whether those should be

considered part of a Cloud-Native approach. Others are more open to the use any of the available

62

service models under very specific cases or circumstances, depending on solution requirements.

Understanding the principles of development and deployment of IT solutions under a

Cloud-Native architecture is crucial to understand its implications on migrating or transposing an

existing architecture into this model. Adopting Cloud-Native approach for a given IT solution or

architecture implies embracing a different paradigm of computing concerning its components,

somewhat similar to a SOA architecture. From a development perspective, a Cloud-Native

approach imposes breaking down the various parts of an application and its components and

implementing such functionality based on a Microservices architectural pattern, with the objective

of fully exploiting the characteristics of the cloud computing model from its inception on top of

a container-based virtualization infrastructure, mostly CaaS. The service model can be combined

with other types of service models, such as FaaS/Serverless, if more appropriate for any

component of the solution.

As a development pattern or architectural style, contrary to a traditional IT approach of

monolithic applications based on a N-iter architecture or client-server model, a Cloud-Native

solution based on a Microservices architecture consists on decoupling functionality into such

multiple small components with each having a well-defined task, distributed across the

infrastructure that provides an established layer for allowing communication between them,

which can be based on push/pull mechanisms. The components are written in a manner that failure

is expected without compromising the entire solution, providing higher resiliency, and be able to

be updated or deployed independently. Synchronization of the various components can also be

done by resorting to event messaging mechanisms, typically asynchronous by nature, or through

some component specific API endpoint using RESTful mechanisms. This pattern of development

poses some difficulties concerning the overall state of the solution, sometimes using some

intermediate solution to persistently store component state or any other relevant data that might

have to be shared between several components, which are preferably stateless by design. By

having small independent components with well-defined tasks, this also results in a smaller code

base for each. Components can be managed by different independent development teams, having

their own build and deploy methodologies and with each component also having their own test

suites. This enables a more agile response from development, faster verification and resulting

deployment. A higher scalability also results from this approach, benefiting from the apparent

unlimited resources of the cloud computing model.

From an operational perspective, this paradigm also provides a better observability and

63

monitoring per component and a higher perception of its performance through individual

measurement. From an infrastructure standpoint, coordination with development is crucial for

choosing among the several service models based on container virtualization the one that best fits

for a given IT architecture in terms of its deployment given the nature of the application,

subsequently adopting deployment and operational practices best suited to such service model.

Cloud-Native architectures are not without their own drawbacks. One of the major

drawbacks is a higher complexity due to the nature of the solution having multiple components

that have to be kept well-orchestrated, resulting in a distributed architecture. Distributed

architectures by themselves have their own peculiarities already known in other realms beyond

cloud computing, presenting difficulties in choosing the right model for sharing data or state

between its components, as data tends to be decentralized, possible network performance

constraints such as high latency and complex dependency resolution between components when

it is not possible to have them completely independent, are just some of the difficulties presented

by this model. From an infrastructure and operational perspective, additional learning efforts to

understand concepts such as overlay networks and layered storage, among many others, are also

required.

Possessing a deep understanding of how the application to be decoupled works is crucial

for any migration plan under a Cloud-Native approach. It is necessary to involve development

teams as this type of migration cannot be undertaken just from an infrastructure perspective,

contrary to other service models or IT architectures. Diagram 8 depicts the breaking down of a

traditional application into a Microservices based pattern built on CaaS and FaaS.

Diagram 8 Decoupling to Cloud-Native

64

Rearchitecting an existing application to fit into this model represents the most difficult

type of migration as it involves refactoring and rewriting components, eventually turning a large

share of the migration process akin to new developments. A complete successful migration of

several IT components or artefacts in an existing IT infrastructure into CaaS or FaaS can

eventually conform to a Cloud-Native architecture, assuming a successful migration of the entire

set of candidate components into such models, according to the architectural definitions.

XaaS Migration

A migration that encompasses any type of service models such as IaaS or PaaS for some

components or CaaS and FaaS for others, or whatever service models a cloud provider may have

available for that matter, can qualify as XaaS or anything-as-a-Service. XaaS is a relatively recent

description for any IT architecture running on cloud not being tied to one service model or to a

category of those, being instead very unrestrained in terms of service models chosen for the

architecture as long as those are more appropriate to a given type of problem and may fit the

requirements for a solution without considerable constraints. Under the primary objective of

moving everything to cloud first and optimize later, a XaaS architecture may help in a more rapid

cloud adoption as components can possibly be migrated into cloud, always trying to find the right

balance between relocating and rewriting, at the cost of not having the highest benefits of the

cloud computing model in terms of flexibility, scalability and efficient resource allocation, but

still reflecting on lower overall costs with the IT solution.

Rapid cloud adoption is usually one of the main reasons for approaching XaaS, and

therefore viable for any migration. However, this type of approach may not take into account the

possible Lock-In resulting of some of the choices made, according to those already presented

under their respective models such as IaaS or PaaS, typically leaving such concerns for later

analysis. A Cloud-First first and foremost approach to any new IT solution or development is

usually combined with XaaS if the priority is to use cloud computing. Such approach can also

combine a Cloud-Native architecture with Microservices development paradigms, if achievable.

From an independence standpoint resorting to other service models such as IaaS or PaaS should

only be done when absolutely required or justifiable.

Regardless of the chosen service models when adoption a XaaS approach, they should

individually abide to the guidelines presented for each.

65

DevOps in Cloud Migration

Development under the cloud computing model requires learning new development

methodologies as well as readapting old ones. At the same time, the management of the overall

IT architecture and its underlying infrastructure under this paradigm of computing brought

forward additional challenges not easily solvable under the traditional approaches for IT

administration. The entire software development lifecycle and the infrastructure components to

support it required more efficient mechanisms to streamline its management, from development

to deployment, as the traditional style of software development and adjacent IT administration

was ill-suited for this new paradigm of computing. Although not directly related with cloud

migration, DevOps is indispensable for cloud adoption, especially under the most recent models

such as CaaS and FaaS, with DevOps methodologies having an important contribution to cloud

migration scenarios especially under these service models.

The definition of what DevOps means or what it represents is subject to different

interpretations despite commonly agreed aspects on what it aims to achieve. Within the several

interpretations around DevOps there are two main aspects to consider, the cultural aspect aiming

for a more efficient interaction among development and operational teams, focusing on the

importance of communication between them for increased agility and faster response to incidents,

and how its technical implementation is done through the use of multiple tools depending on

context. The technical implementation of DevOps may have different approaches and use

different tools, depending on the expected outcomes and on the context of the IT solution.

Implementing DevOps

From a generic perspective, the typical model of software engineering encompasses the

traditional phases of development, followed by system integration testing, user acceptance tests

and subsequent deployment into production. It can be seen that these steps may be inadequate

under the current development and deployment models for cloud computing when considering a

Cloud-Native or Microservices paradigm, as the application or IT solution is architecturally

different and broken down into multiple components, each being deployed independently, with

dependencies among those components becoming more complex to work out.

Transposing the relevant phases of traditional software engineering into a functional

model under the cloud computing paradigm is still necessary, since the phases of software

development lifecycle continue to apply. Some of these phases, such as testing, require readapting

66

as the conventional testing strategy for any changed components may not work not without some

rethinking on the overall testing mechanisms, possibly having to adapt to a Microservices based

pattern, with individual components having dependencies from other components that may be

short or long lived and located elsewhere when restarted, both in terms of infrastructure and

network.

As the number of components that comprise a given solution increases, each having its

own independent development cycles, it is imperative to adapt processes related with software

development, testing and subsequent deployment with some kind of automation having carefully

defined checks and constraints embedded into the automation process, so that all those steps from

development to deployment have consistency and guarantee of success.

In terms of management of the adjacent infrastructure, contrary to the traditional

management model of IT administration where components like virtual machines or services are

commonly identified by some name or established nomenclature and managed individually,

components or artefacts under these cloud architectures are no longer named or managed directly.

The advent of programmable infrastructure using IaC under the cloud model brought rapid

creation and destruction of cloud artefacts mostly by automated means without the need to

manage those individually, with many of them even being ephemeral, especially when associated

with IT solutions based on the Cloud-Native or Microservices architectures. All those

characteristics when ultimately combined with the scalability provided by cloud computing, made

standard deployment and management approaches somewhat obsolete.

The search for newer solutions and mechanisms to overcome such challenges made

DevOps one of the preferred approaches for management under the cloud era for the complete

software development lifecycle and its associated deployment on cloud infrastructure. Although

not originally rooted in cloud computing, DevOps is currently one of the most accepted

methodologies for management especially when under a Cloud-Native approach, fully integrating

the development cycle of IT components with its adjacent infrastructure details from development

to deployment. DevOps is rooted in agile methodologies and in a way, it can be said that in the

cloud era, Cloud-Native architectures are to development as DevOps is to augment its

management.

Although not directly related with cloud migration, DevOps methodologies must be

referenced in that context since regardless of migrating to cloud or natively adopting it for a new

67

IT solution, DevOps is becoming ever more interconnected with deployment and management of

any cloud architecture and it is an indispensable methodological approach whenever cloud

computing is considered. Despite the fact that the main purpose of DevOps methodologies under

a normal context are related with the entire SDLC in a cloud architecture, from development to

deployment, it can also be applicable for more advanced migration scenarios, providing some

mechanisms that can also be useful for streamlining cloud provider independency.

DevOps Pipelines

Two key aspects of DevOps are toolchains and automation. A technical implementation

of DevOps can be used to automate from the simplest scenarios of plain deployment of an artefact

into a repository after its build is done (build, deploy and run), or for complete integration and

testing among the several components of an entire IT solution during its build process and

subsequent deployment and replacement of running instance with a new one. Automation under

DevOps permits the use of additional tools and mechanisms coupled to the stages of the SDLC,

with multiple tools available for coupling at any stage and their implementation depending on the

desired automation level. DevOps used the concept of pipeline, akin to a factory, where the

several stages associated with development all the way to deployment and instancing of cloud

artefacts take place and can have adjacent processes associated with each stage. Some

implementations may desire that only part of the process is automated, others may implement full

automation. The most common stages of the pipeline are generically defined as:

- CI – Continuous Integration

Encompasses the development and build stages of the SDLC, including unit testing, and

subsequently deploy the created artefact into a repository.

- CD – Continuous Delivery

Previously created artefact which was deployed onto the repository after development is

subject to the integration testing phase, according to some designated plan.

- CD – Continuous Deployment

Depending on the result of the previous testing phase, artefact is subject to acceptance tests

and depending on the result of those may be pulled into production for substituting the one

currently running with a new instance.

68

Diagram 9 depicts the three typical generic pipelines under a DevOps methodology,

describing the several levels of automation possible within the entire cycle from development to

deployment. The three pipelines describe different incremental levels of automation starting with

Continuous Integration (CI), Continuous Delivery (CD) and Continuous Deployment (CD),

independently of what intermediate steps will take place and what tools are used in those steps

for augmenting functionality.

Diagram 9 DevOps Pipelines and Automation

As depicted, the desired automation level to be implemented on a DevOps pipeline can

be complete or partial, with the latter whenever some manual confirmation or procedure is desired

during the process.

DevOps Toolchains

Through the use of hooks throughout the pipeline, the coupling of actions with other

external tools becomes possible, providing more advanced forms of configuration, deployment

and control of cloud resources or IT components and enabling the creation of more complex

workflows with additional degrees of automation and orchestration. Leveraging these

mechanisms for invoking actions whenever any resource configuration is made on the various

sections of the pipeline, triggering the subsequent launching of adjacent processes, permits the

creation of advanced testing, integration, provisioning and delivery, laying the foundations for

69

more complex technical implementations of DevOps.

 Diagram 10 describes a generic implementation with common example tools, namely

Git, Python/Pytest, Jenkins and Selenium for additional processing along the several stages of the

pipeline, with container technology being based on Docker:

Diagram 10 DevOps and Tools

Details concerning the development and testing phases, namely Continuous Integration

and Continuous Delivery, are not of much relevance to the topic of this dissertation as migration

under an infrastructure perspective is more concerned with the Continuous Deployment phase.

However, a brief description of the steps involved in the DevOps flow is in order since, although

not likely, some of those steps can influence a migration process. The coupling of applications to

perform specific actions in the several stages of the pipeline is given in the example diagram

according to their context (development, testing or deployment). Given the flexibility of this

methodology, coupling other types of applications for additional features such as automatic

documentation or reporting is also common.

DevOps Flow

Whenever a commit is applied with new code into the development repository, a complete

automated flow of events take place. A Git hook triggers the automatic unit testing using Pytest

for such code, submitting it for integration testing depending on the result, finishing the

Continuous Integration (CI) phase. Assuming no errors, Jenkins is invoked to perform all the

necessary integration testing of the new code with the surrounding environment, and if there are

70

no identified issues automatically deploys a new artefact onto the repository, finishing the

Continuous Delivery (CI) phase. Lastly, when a new deployment is done onto the repository a

trigger generates the required usability testing using Selenium and should all tests end

successfully a deployment of the new container-image is done onto the deployment repository.

By entering a new image onto the repository an automated process of deployment takes place,

replacing the running component with a new version of it. This exemplifies a completely

automated DevOps pipeline. Of all the stages, the deployment phase, or Continuous Deployment

(CD) is the most relevant phase in terms of cloud migration, since under a Cloud-Native or

Microservices pattern of cloud computing, deployment can be done on different providers or on

an on-premises private cloud infrastructure. As mentioned, first stages of the pipeline related with

the development and testing phases under a migration scenario, at least from an infrastructure

perspective, are not so relevant, unless specific development or testing actions may influence the

chosen provider at the deployment stage. Under those circumstances these steps must also be

taken in consideration.

Conceptually, the refactoring efforts necessary to adapt IaC code from a given cloud

provider onto another can be implemented in an automated form by also using a DevOps pipeline

or hooking into some part of it, similarly to the development process previously described. Such

pipeline would need some form of standardized and provider-supported reference data describing

the possible artefacts for a given cloud provider taxonomically classified. An automated process

coupled to such pipeline could compare and refactor such code under some given parameters that

could define origin and target provider. This could be useful for coupling some form of migration

for artefacts especially under IaaS or PaaS service models, making it possible to automate the

refactoring process of their associated IaC definitions and reapplying on the new cloud

infrastructure after such refactoring.

As demonstrated, container-based virtualization technologies allow for a higher

independence from a given cloud provider, with this being highly beneficial in Cloud-Native or

Microservices architectures. Under this paradigm, it becomes possible to have a truly distributed

architecture spawning more than one cloud infrastructure with a high degree of scalability and

resiliency. The coupling of container-based virtualization features and DevOps methodologies

brought the possibility of having automated deployment onto a different cloud provider or

infrastructure from the deployment phase of a DevOps pipeline. This is especially relevant under

a Multicloud deployment, having important implications not only in terms of provider choice, but

consequently for any migration perspective, as described further under Multicloud Deployment.

71

Multicloud Deployment

Cloud service models based on container virtualization technologies solved the problem

of interoperability and portability among different cloud providers, assuming a compatible

implementation of container-based virtualization. This solved the problem for provider

independency (although not completely) and contributed to the possibility of having an IT

solution running on a different cloud provider or infrastructure without any refactoring being

necessary, offering additional options for deploying IT solutions.

A Multicloud deployment is based on the paradigm of distributed architectures and

implies having an IT solution under such assumptions, technically devised in a way that is

supported within the realm of container-based virtualization. Given those technical

characteristics, a Multicloud architecture is based on deploying an IT solution not just in one

cloud provider, instead deploying and distributing its components in more than one or multiple

cloud providers, improving the resiliency, flexibility and redundancy. Conceptually, a Multicloud

deployment is not restrained to the CaaS or FaaS models as it can use a XaaS approach as long as

the chosen service models fit the requirements and the identified constraints are taken into

account, despite some service models having constraints upfront regarding their lower flexibility

to move between clouds. As a result, a Multicloud approach can leverage any service model, but

some of these models may hinder cloud provider independence and be prone to Lock-In, although

they can still be valid even under a Multicloud architecture.

Additional challenges arise when choosing to deploy a given IT solution or architecture

based on a Multicloud approach, such as interoperability issues when components deployed in

different clouds need to establish communication among them, becoming necessary to adapt

network configurations or any means of communication necessary between components, to such

model of deployment. Those issues can be addressed with specific networking equipment or API

gateways already tailored for this type of implementation, having configurations for rerouting

traffic appropriately. Other solutions may also combine the use service discovery mechanisms

through service registries where the components that are part of the solution register themselves

whenever available, with status over their availability, combined with some publisher/subscriber

models or through an API. Given the ephemeral nature of some components and the volatility of

their network properties, these issues have to be carefully evaluated from a development and

infrastructure perspective before choosing this type of cloud deployment or migration pattern.

72

Several other issues focusing on development aspects under a Multicloud architecture are

however beyond the scope of this dissertation.

Assuming the necessary network configurations are in place and a totally independent

Microservices-based application that can be fully deployed onto another provider without any

dependencies, migration of a Cloud-Native architecture can be done by simply redeploying

components into the new provider. Diagram 11 augments the previously described diagram

exemplifying a completely automated pipeline with commonly used tools for some of the stages,

and where components of the IT solution would be distributed between several cloud providers.

The deployment phase can be adjusted whenever necessary to proceed with deployment for

another chosen infrastructure, as exemplified on Diagram 11

Diagram 11 Multicloud Deployment with CaaS/FaaS using DevOps

During the deployment phase, a mechanism for cloud provider selection can be

implemented in order to deploy the solution or artefacts into the chosen provider infrastructure.

Network configurations or any other aspects subject to necessary intervention due to the fact of

deploying onto another provider could also be hooked in the same deployment stage of the

pipeline, using an automated approach, or through some other alternative means. This in itself

can be a methodological approach for cloud migration benefiting from provider independence,

coupling the entire SDLC with choice of cloud provider. Although this could conceptually be

done using other cloud service models such as IaaS or PaaS, as described in the DevOps flowm,

it would not work without refactoring such components before the deployment phase in order to

adapt the description of the artefacts and make them compliant with the chosen cloud provider.

73

This would provide additional difficulties and cumbersome to maintain.

An implementation of such DevOps pipeline under a hybrid-cloud model allows for a

better control of IT resources, with core infrastructure for development purposes deployed On-

Premises in order to keep critical development data under more control. This can also be a

requisite from a compliance perspective in terms of critical or sensitive data. DevOps pipelines

automate and orchestrate deployments to public or private cloud allocating the resources needed,

as well as their respective teardown when no longer necessary, taking full advantage of the cloud

computing model in terms of its scalability and flexibility, with migration from one provider into

another also becoming easier by just adapting and redeploying. The combination of these

technologies shifts the focus of requirements from infrastructure into development, as the

infrastructure layer can be completely abstracted and no longer a concern for the developers or

“Cloud Programmers” within the whole solution. Additionally, within this context, a migration

scenario can be highly simplified and completely controlled through programmatic means

74

Migration Framework

The following migration framework aggregates and correlates the cases described under

this dissertation, with the objective of providing a summarized overall perspective of the various

migration scenarios possible along with their required level of effort, always with the objective

of achieving a higher level of cloud provider independence using specific practices. Migrating to

cloud computing should be subject not only to a technical evaluation, but also backed by a strong

business case supporting such decision, this is however beyond the scope of this framework. Some

other aspects that must be taken in consideration regarding cloud migration which are not

reflected into this framework are the specifics of necessary development efforts in refactoring or

rewriting components, which should be done according to adequate methodologies and current

best practices, difficult to quantify as it depends on the context of each IT architecture or solution.

Additionally, no inference is made on which specific public cloud providers should be chosen

despite their features.

This framework does not contemplate migrating from more modern technologies back to

older types such as from CaaS to IaaS, although possible, those migrations are marked as “Not

Applicable”, with an exception made from PaaS to IaaS or from FaaS to CaaS migrations, which

can still make sense in very specific circumstances.

 Some additional general migration guidelines should be taken in consideration, along

with the initial general assessment guidelines reflected in Table 1, all in line with the proposed

migration framework. Some of these guidelines are crucial for achieving a higher provider

independency, regardless of the chosen service model:

- Use a phased approach for migration

- Keep all artefact definitions on a source code repository (eg: Git)

- State configuration for all artefacts using IaC if appropriate for service model (eg: Terraform)

- Use a centralized configuration management solution (eg: Ansible)

- Prefer cloud service models based on container virtualization for better portability

- Adapt IT components suitable to a Cloud-Native architecture by refactoring according to

design patterns for SOA and cloud computing

- Avoid unnecessary containerization (eg: complex monolithic applications)

- Evaluate supported operations under provider API’s

- Prefer widely deployed open-source based components

- Avoid proprietary cloud solutions

75

The following table summarizes the relationship between source and target architectures

and attempt to provide an overall perspective on the several aspects concerning cloud migration

under this dissertation. Two distinct contexts of cloud migration are considered, from On-

Premises to Cloud (typically a first phase) and a Cloud-to-Cloud (when changing provider).

Migration Framework Reference

 IaaS PaaS CaaS CaaS / FaaS

On-Premises

Traditional IT

General evaluation - Table 1

Relocate/Rehost

Table 2

Replatform/Refactor

Table 3

Rebuild/Reuse

Table 4

Rebuild/Rearchitect

Table 5

 IaaS PaaS CaaS CaaS / FaaS

 General evaluation - Table 1

IaaS
Convert v2v

Refactor IaC

Export / Import data

Refactor / Redeploy

code

Rebuild / Deploy

to CaaS

Rebuild +

Rearchitect

to CaaS / FaaS

PaaS
Install VM with

application

Export / Import

Export / Import data

Refactor / Redeploy

code

Rebuild / Deploy

to CaaS

Rebuild +

Rearchitect

to CaaS / FaaS

CaaS N/A N/A

Redeploy

Redirect DevOps

pipeline

Redeploy + Refactor

Redirect DevOps

pipeline for CaaS

FaaS N/A N/A
Refactor + Rebuild

Redeploy Image
Refactor + Redeploy

Table 6 Migration Framework Reference

The steps involved in a cloud to cloud migration can be made easier if any previous

migration from On-Premises has been done having all configurations kept for reference. Any of

the described migration process do not imply that everything has to fit a certain service model,

as components or applications can be distributed over several service models as described on the

XaaS approach for cloud computing. However, the relevant steps for each individual service

model continue to apply.

76

Conclusion

The lack of standards for cloud migration that could ease migration operations between

providers for common service models is an important but missing part for the cloud computing

vision in terms of how it was originally envisioned with its ubiquitous nature - as a utility. Such

inexistence of standards results in the need for a careful analysis and anticipated planning

whenever cloud computing is to be adopted under the common service models, with the aim of

making migrations easier in the future should they become necessary. It is evident that choices

made concerning cloud infrastructure and service models for new IT implementations can have

an enormous impact on the ability to move them to another cloud provider or infrastructure later.

Regardless of the decisions made for new projects, the lack of standards for those operations also

impacts any currently existing cloud infrastructure independently of how it has been

implemented, and under these circumstances the planning for any migration should be well

thought out before any decision is made in line with reducing any future cloud provider

dependency during the process.

Due to the different types of technologies and architectures involved as well as the

constraints and challenges each pose in terms of their migration, it becomes difficult to have a

standardized approach for those operations and highly complex to create one that could be

applicable to all situations. Extensive literature has been created on this subject in order to better

understand in which ways cloud migration could be made easier, attempting to provide solutions

to the problem, clearly recognizing the existence of such difficulties and identifying several

important aspects related with it and raising awareness to the Lock-In problem. Proposed

solutions to the problem have been made in different contexts, although it is noticeable that much

of the literature approaches the topic from a development perspective. Additionally, some of the

reviewed literature appears to be somewhat outdated concerning the latest trends in cloud

migration from an infrastructure perspective, not reflecting the latest solutions that have been

developed to deal with the problem, some of them with high degrees of success and solving some

of the most prominent issues such as portability, especially under the adoption of some specific

service models.

While there is no existing framework that can be applicable to every scenario related with

cloud migration and even in specific types of migration there is no standard or formally defined

way for such transition, a more general framework such as the one presented under this

dissertation can augment other existing literature which already provides important contributions

to the topic from a development perspective. Due to the impossibility of migrating cloud artefacts

77

from a given cloud provider to another by just moving or exporting and importing them, with

portability issues arising under some common models, the current framework resorts to the

recreation of such artefacts on those, as migration could not be done otherwise, with some

refactoring needed especially for IaaS or PaaS service models. It is debatable if this can be

considered a migration in a strict sense, but understandably this seems a viable option when using

appropriate tools and the suggested methodology, given the required level of consistency. Within

this scenario, as noted, the importance of having a configuration repository with all the

information on artefacts that have been created became evident as being of utmost importance for

recreating everything on another cloud infrastructure, or for any other situation where analyzing

the currently existing infrastructure through its associated code is relevant.

 It can be seen that although all service models are valid for new cloud deployments, some

are more prone to the Lock-In problem and portability issues arise especially with IaaS and PaaS

making transition from cloud providers difficult. The advent of service models based on

container-virtualization changed this, and the CaaS and FaaS service models have greatly solved

the problem of Lock-In if planned and implemented according to some guidelines that take such

issue into account, such as choice of container-based virtualization technology and keeping all

configurations on a repository. It became evident as the investigation progressed that those newer

service models, despite not being standardized, are commonly approached not only because of

being more efficient in terms of resource allocation and flexibility, but also due to the easier

movement of artefacts between cloud infrastructures, bringing the aforementioned benefits in

terms of cloud migration. Although those service models are mainly approached because of their

technical characteristics, their ability to provide a true cloud provider independency stood out as

one major benefit. Consequently, these more recent approaches turned old ones almost obsolete

in regards to provider independence and current trends on cloud adoption with architectures such

as Cloud-Native, based on Microservices patterns of development, made concerns related with

migration less relevant, due to their inherited cloud provider independence.

 Nevertheless, considering the current state of technology for implementing an IT solution

based on traditional service models, it can be concluded that a hybrid cloud model having on-

premises configuration repositories, combined with CaaS/FaaS service models for IT solutions

developed under a Cloud-Native approach using Multicloud deployment, provides a combination

of methodologies and procedures for keeping investments on IT infrastructure in the cloud

computing model under local control with a high degree of independence. This type of approach

when associated with the management of such infrastructure using DevOps methodologies

78

provides a complete control and overview for deploying and managing IT infrastructure on cloud,

with the possibility of customizing any cycle of the DevOps pipeline in order to make

customizations for cloud transitions easier, using tools that can be adapted or created for such

purposes in order to provide the needed functionality for these types of operations. The same type

of approach for using infrastructure under a hybrid-cloud model combined with local

configuration repositories continues to be a valid methodology when implementing cloud-based

IT solutions that require having some (or even all) components under the traditional IaaS or PaaS

service models, despite the identified constraints and required refactoring of those when migrating

or moving them into another cloud eventually becomes necessary.

79

Additional Investigation

Due to the diversity of current cloud offerings, not necessarily related with the original

service models of cloud computing, cloud providers are becoming a final product by themselves

since most of their offerings are specific to the provider, similar to SaaS. Consequently, cloud

providers are becoming differentiated at various service levels, sometimes being chosen by other

services not directly related with the original cloud computing service models. The logic of “cloud

migration” doesn’t apply to most of those offerings, at least when taken from an infrastructure

perspective or from the perspective of its related artefacts, if any. At most, migration from such

service offerings has to be done from a development perspective.

Despite the growing service offerings by cloud providers, a standardization effort for the

common implementations continues to make sense, at least to the traditional service models such

as IaaS, which can form the basis of many other type of cloud service models or deployments.

Having defined standards for seamlessly moving artefacts between cloud providers with baseline

architectures such as IaaS would require a standardization effort for describing their respective

compute, storage and network elements including any specifics concerning those, such as type of

underlying virtualization technology, operating system flavor, type of virtual machine image and

storage specifications concerning supported image types, data transfer protocols as well as

network artefacts and their topologies along with any other details reflecting the interconnection

among all those, in a parseable and interpretable manner according to standard definitions, for

seamlessly reapplying such configurations on another provider. The advent of IaC languages can

make this standardization easier but a considerable effort has to be done by standard-defining

bodies in order to reach such objective. Since cloud infrastructure can be completely defined

through code, cloud providers should make available complete metadata concerning the layout of

infrastructure and any relevant characteristics in an exportable way to any defined cloud

resources, at minimum for service levels such as IaaS. Without any standardization, such data has

to be subject to transformation for reapplying on another provider just as it was demonstrated

earlier, which may prove worthy for large deployments but probably not worth the effort for

smaller implementations.

One possible approach for standardization would be to create a metamodel/metalanguage

on top of any currently existing IaC language such as Terraform, that could provide a standardized

taxonomical definition for non-proprietary cloud resources under a specific service model such

as IaaS. Artefacts would become transposable to any service provider that would support and

contribute to such standards. Conceptually, by choosing an existing IaC template having cloud

80

resources defined according to such standard, the parsing of such template using that

metalanguage using options to specify the origin and destination provider could perform the

required transformations in order to comply. Tools used to perform such transformation would

reference some form of data supported and updated by cloud providers that assume to be in

comply with the defined standard. Transposing related artefacts could be accomplished through

the use of specific API’s complying with such standards, also defining the transfer mechanisms

and necessary operations between cloud providers for any recreation of artefacts or movement of

related data.

 A similar standardization effort similar to the one exemplified for IaaS could be

developed for any other cloud artefacts under any service model whenever appropriate, but it is

questionable if it justifies the effort, since some services models such as CaaS are already very

cloud-agnostic due to their technical implementation. Alternatively (or complementarily)

development of specific tools for hooking or coupling into specific stages of a DevOps pipeline

with the objective of parsing IaC templates and converting them onto another provider under the

same premises previously described could be subject to further investigation.

Besides a standardization effort for IaaS, standardization for other types of service models

may be justifiable, however the evolution of cloud computing into several other areas of

computing is turning many cloud service offerings proprietary in nature when considering public

cloud providers and therefore moving away or migrating from such implementations requires

rethinking or reimplementing those at a logical or development level, not in the same context as

infrastructure or common service levels like IaaS or PaaS.

Any effort regarding the standardization or streamlining of cloud migration operations

whether from on-premises to cloud or from cloud to cloud, independently of the service model or

type of implementation, can also be empowered by any business model that can justify the

investment, eventually contributing to the advancement of the technology or methodologies

involved in such operations.

81

Methodology

The prime objective under this dissertation was to understand in which ways an higher

level of independence from a cloud provider could be achieved, considering currently available

options and methodologies related to cloud migration when complemented with other alternative

methods and more recently available technologies, always within the scope and context of the

research questions, resulting in a reference framework describing all findings.

In the attempt to understand and minimize the risks of becoming locked-in into a specific

provider, some questions were raised. The following questions were considered of utmost

importance for this research:

 Which frameworks are available to support the migration of an entire cloud infrastructure

or solution into another cloud provider?

 Which tools or methodologies are available or recommended to address this need?

 In which steps should associated operations take place?

The need to acquire a deeper understanding of underlying technology in cloud computing

and current migration practices through existing documentation on the subject was crucial to

create the aforementioned framework. Comparing and contrasting existing or proposed solutions

as well as identifying possible obstacles for their implementation from a practical perspective,

whenever possible, was crucial to have a broader vision on the subject that could help address the

research questions.

Research methodology is the systematic description of the procedures used in a

theoretical analysis of the subject being studied, with the aim of presenting results of such study

from a scientific perspective [58]. When the object under study allows for the formulation and

subsequent testing of hypotheses, giving quantifiable statistical generalizations or other

measurable results, it is defined as quantitative research [59]. If the object under study is not

quantifiable but instead prone to different subjective interpretations due to the nature of the

problem or the type of research question, it is defined as qualitative research [60].

Given the nature of the topic under investigation, a quantitative approach was not suitable

since the research topic is not of a quantifiable nature and there is a considerable degree of

subjectivity in the interpretation or applicability of some of the theoretical approaches. A

quantitative approach was deemed more appropriate, therefore case study research was selected

82

for reviewing available articles, research papers and other related literature on the subject of cloud

migration.

Due to the existence of several different implementations of cloud solutions and

consequently different possibilities for migration, it was necessary to review the literature that

addresses areas concerning migration, especially to a different cloud infrastructure or architecture,

within the scope of the research question under this dissertation. The review of available articles,

research papers and other related literature on the subject of cloud migration methodologies as

well as the analysis of other existing solutions and procedures to address the issue, allowed for

the comparison and contrasting of common patterns not only from a practical implementation

perspective but also from a theoretical one.

After compiling and reviewing the relevant literature, a clear classification and

categorization of different techniques and their possible shortcomings became possible, resulting

in the identification of areas where alternative methods or tools could be suggested or eventually

be augmented to existing practice and resulting in the creation of a reference table describing and

classifying methods along with its key concepts and methodologies.

The identification of relevant steps involved in the migration processes which may

include some form of transformation regarding the architecture were also identified for reference.

Each of these steps was then independently analyzed and by contrasting such steps among the

different sources in literature, made the identification of common approaches to cloud migration

for specific types of architectures possible, and laid ground for other suggestions that combine or

adapt their key aspects with more recent and compatible technical methodologies.

The suggested framework was based on transposing and combining steps for migration

using an Infrastructure-as-Code based definition, taking advantage of cloud provider APIs, along

with the use of DevOps methodologies when applicable, which allowed for the creation of a

reference framework that not only represents an overall picture and understanding of current

common practice including its related steps, but also an additional perspective on how such

operations can be done or transposed in a way that diminishes the probability of being locked-in,

should a migration or redeploy onto another cloud provider become necessary, even when there

is a transformation of the cloud architecture in the process.

83

Bibliography

[1] I. Chana and T. Kaur, “Delivering IT as A Utility- A Systematic Review,” Int. J. Found.

Comput. Sci. Technol., vol. 3, no. 3, pp. 11–30, 2013, doi: 10.5121/ijfcst.2013.3302.

[2] G. Petri et al., “Predicts 2021 : Building on Cloud Computing as the New Normal,” no.

December 2020, pp. 1–15, 2020, [Online]. Available:

https://www.gartner.com/document/3994453?ref=solrAll&refval=275213258.

[3] C. E. Leiserson et al., “There’s plenty of room at the top: What will drive computer

performance after Moore’s law?,” Science (80-.)., vol. 368, no. 6495, 2020, doi:

10.1126/science.aam9744.

[4] W. Vogels, “Beyond Server,” Queue - Virtualization, vol. 6, no. 1, February, pp. 20–26,

2008.

[5] J. Daniels, “Server virtualization architecture and implementation,” XRDS Crossroads,

ACM Mag. Students, vol. 16, no. 1, pp. 8–12, 2009, doi: 10.1145/1618588.1618592.

[6] M. Martonosi et al., Synthesis Lectures on Computer Architecture Editor Hardware and

Software Support for Virtualization Datacenter Design and Management: A Computer

Architect’s Perspective A Primer on Compression in the Memory Hierarchy Analyzing

Analytics Customizable Compu. 2015.

[7] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight virtualization: A

performance comparison,” Proc. - 2015 IEEE Int. Conf. Cloud Eng. IC2E 2015, pp. 386–

393, 2015, doi: 10.1109/IC2E.2015.74.

[8] M. Ben-Yehuda et al., “The turtles project: Design and implementation of nested

virtualization,” Proc. 9th USENIX Symp. Oper. Syst. Des. Implementation, OSDI 2010,

pp. 423–436, 2019.

[9] P. Case and K. Khajehei, “Role of virtualization in cloud computing,” vol. 7782, no. Vm,

pp. 15–23, 2014.

[10] Y. Rao Bhandayker, “A Study on the Research Challenges and Trends of Cloud

Computing,” no. April, 2016, doi: 10.5281/zenodo.2579238.

[11] P. Mell and T. Grance, “The NIST-National Institute of Standars and Technology-

84

Definition of Cloud Computing,” NIST Spec. Publ. 800-145, p. 7, 2011.

[12] S. Goyal, “Public vs Private vs Hybrid vs Community - Cloud Computing: A Critical

Review,” Int. J. Comput. Netw. Inf. Secur., vol. 6, no. 3, pp. 20–29, 2014, doi:

10.5815/ijcnis.2014.03.03.

[13] A. Rashid and A. Chaturvedi, “Cloud Computing Characteristics and Services A Brief

Review,” Int. J. Comput. Sci. Eng., vol. 7, no. 2, pp. 421–426, 2019, doi:

10.26438/ijcse/v7i2.421426.

[14] U. M. Ismail, S. Islam, M. Ouedraogo, and E. Weippl, “A framework for security

transparency in Cloud Computing,” Futur. Internet, vol. 8, no. 1, 2016, doi:

10.3390/fi8010005.

[15] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu, “Everything as a Service

(XaaS) on the Cloud: Origins, Current and Future Trends,” Proc. - 2015 IEEE 8th Int.

Conf. Cloud Comput. CLOUD 2015, pp. 621–628, 2015, doi: 10.1109/CLOUD.2015.88.

[16] P. Debnath, V. S. Sharma, and V. Kaulgud, “A XaaS Savvy Automated Approach to

Composite Applications,” Proc. - 2015 IEEE 8th Int. Conf. Cloud Comput. CLOUD

2015, pp. 734–741, 2015, doi: 10.1109/CLOUD.2015.102.

[17] T. Siddiqui, S. A. Siddiqui, and N. A. Khan, “Comprehensive Analysis of Container

Technology,” 2019 4th Int. Conf. Inf. Syst. Comput. Networks, ISCON 2019, pp. 218–

223, 2019, doi: 10.1109/ISCON47742.2019.9036238.

[18] M. J. Scheepers, “Virtualization and Containerization of Application Infrastructure : A

Comparison,” 21st Twente Student Conf. IT, pp. 1–7, 2014.

[19] M. K. Hussein, M. H. Mousa, and M. A. Alqarni, “A placement architecture for a

container as a service (CaaS) in a cloud environment,” J. Cloud Comput., vol. 8, no. 1,

pp. 1–15, 2019, doi: 10.1186/s13677-019-0131-1.

[20] M. Sewak, “Winning in the Era of Serverless Computing and Function as a Service -

IEEE Conference Publication,” 2018 3rd Int. Conf. Converg. Technol., pp. 1–5, 2018,

[Online]. Available: https://ieeexplore.ieee.org/abstract/document/8529465.

[21] R. A. P. Rajan, “Serverless Architecture - A Revolution in Cloud Computing,” 2018 10th

Int. Conf. Adv. Comput. ICoAC 2018, pp. 88–93, 2018, doi:

85

10.1109/ICoAC44903.2018.8939081.

[22] A. Khan, “Key Characteristics of a Container Orchestration Platform to Enable a Modern

Application,” IEEE Cloud Comput., vol. 4, no. 5, pp. 42–48, 2017, doi:

10.1109/MCC.2017.4250933.

[23] C. H. Kao, S. T. Liu, and C. C. Lin, “Toward a cloud based framework for facilitating

software development and testing tasks,” Proc. - 2014 IEEE/ACM 7th Int. Conf. Util.

Cloud Comput. UCC 2014, pp. 491–492, 2014, doi: 10.1109/UCC.2014.66.

[24] K. Tang, J. M. Zhang, and C. H. Feng, “Application centric lifecycle framework in

cloud,” Proc. - 2011 8th IEEE Int. Conf. E-bus. Eng. ICEBE 2011, pp. 329–334, 2011,

doi: 10.1109/ICEBE.2011.32.

[25] D. Gannon, R. Barga, and N. Sundaresan, “Cloud-Native Applications,” IEEE Cloud

Comput., vol. 4, no. 5, pp. 16–21, 2017, doi: 10.1109/MCC.2017.4250939.

[26] R. V. O’Connor, P. Elger, and P. M. Clarke, “Continuous software engineering—A

microservices architecture perspective,” J. Softw. Evol. Process, vol. 29, no. 11, pp. 1–12,

2017, doi: 10.1002/smr.1866.

[27] R. V. O’Connor, P. Elger, and P. M. Clarke, “Exploring the impact of situational context

- A case study of a software development process for a microservices architecture,” Proc.

- Int. Conf. Softw. Syst. Process. ICSSP 2016, pp. 6–10, 2016, doi:

10.1145/2904354.2904368.

[28] P. Kookarinrat and Y. Temtanapat, “Design and implementation of a decentralized

message bus for microservices,” 2016 13th Int. Jt. Conf. Comput. Sci. Softw. Eng. JCSSE

2016, 2016, doi: 10.1109/JCSSE.2016.7748869.

[29] G. Toffetti, S. Brunner, M. Blöchlinger, J. Spillner, and T. M. Bohnert, “Self-managing

cloud-native applications: Design, implementation, and experience,” Futur. Gener.

Comput. Syst., vol. 72, pp. 165–179, 2017, doi: 10.1016/j.future.2016.09.002.

[30] J. Kirschnick, J. M. Alcaraz Calero, L. Wilcock, and N. Edwards, “Toward an

architecture for the automated provisioning of cloud services,” IEEE Commun. Mag., vol.

48, no. 12, pp. 124–131, 2010, doi: 10.1109/MCOM.2010.5673082.

[31] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba, “Adoption, Support, and

86

Challenges of Infrastructure-as-Code: Insights from Industry,” Proc. - 2019 IEEE Int.

Conf. Softw. Maint. Evol. ICSME 2019, pp. 580–589, 2019, doi:

10.1109/ICSME.2019.00092.

[32] K. Advisory, “A reflection on the perceived benefits of Infrastructure as Code A concrete

case study to reflect on the value,” pp. 41–47.

[33] P. Anderson, “Programming the virtual infrastructure,” ;login Mag. USENIX SAGE, vol.

34, no. 1, pp. 20–25, 2009.

[34] V. Shvetcova, O. Borisenko, and M. Polischuk, “Domain-Specific Language for

Infrastructure as Code,” Proc. - 2019 Ivannikov Meml. Work. IVMEM 2019, pp. 39–45,

2019, doi: 10.1109/IVMEM.2019.00012.

[35] K. Morris, Infrastructure as Code: Managing Servers in the Cloud, 1st ed. Newton, MA,

USA: O´Reilly Media, 2016.

[36] G. Kumar and P. K. Bhatia, “Comparative analysis of software engineering models from

traditional to modern methodologies,” Int. Conf. Adv. Comput. Commun. Technol. ACCT,

pp. 189–196, 2014, doi: 10.1109/ACCT.2014.73.

[37] W. de Kort, “What Is DevOps?,” DevOps on the Microsoft Stack, pp. 3–8, 2016, doi:

10.1007/978-1-4842-1446-6_1.

[38] M. Senapathi, J. Buchan, and H. Osman, “DevOps capabilities, practices, and challenges:

Insights from a case study,” ACM Int. Conf. Proceeding Ser., vol. Part F1377, 2018, doi:

10.1145/3210459.3210465.

[39] S. Garg and S. Garg, “Automated Cloud Infrastructure, Continuous Integration and

Continuous Delivery using Docker with Robust Container Security,” Proc. - 2nd Int.

Conf. Multimed. Inf. Process. Retrieval, MIPR 2019, pp. 467–470, 2019, doi:

10.1109/MIPR.2019.00094.

[40] H. Kang, M. Le, and S. Tao, “Container and microservice driven design for cloud

infrastructure DevOps,” Proc. - 2016 IEEE Int. Conf. Cloud Eng. IC2E 2016 Co-located

with 1st IEEE Int. Conf. Internet-of-Things Des. Implementation, IoTDI 2016, pp. 202–

211, 2016, doi: 10.1109/IC2E.2016.26.

[41] N. Paez, “Versioning Strategy for DevOps Implementations,” Congr. Argentino Ciencias

87

la Inform. y Desarro. Investig. CACIDI 2018, 2018, doi: 10.1109/CACIDI.2018.8584362.

[42] C. Lassenius, T. Dings??yr, and M. Paasivaara, “DevOps: A Definition and Perceived

Adoption Impediments,” Lect. Notes Bus. Inf. Process., vol. 212, pp. 166–177, 2015, doi:

10.1007/978-3-319-18612-2.

[43] M. Bhopale, “Cloud Migration Benefits and Its Challenges Issue,” Iosrjournals.Org, pp.

40–45, 2008, [Online]. Available: http://www.iosrjournals.org/iosr-jce/papers/sicete-

volume1/8.pdf.

[44] N. Ahmad, Q. N. Naveed, and N. Hoda, “Strategy and procedures for Migration to the

Cloud Computing,” 2018 IEEE 5th Int. Conf. Eng. Technol. Appl. Sci. ICETAS 2018, pp.

1–5, 2019, doi: 10.1109/ICETAS.2018.8629101.

[45] N. Khan and A. Al-Yasiri, “Framework for Cloud Computing Adoption: A Roadmap for

Smes to Cloud Migration,” Int. J. Cloud Comput. Serv. Archit., vol. 5, no. 5/6, pp. 01–15,

2015, doi: 10.5121/ijccsa.2015.5601.

[46] H. reza Bazi, A. Hassanzadeh, and A. Moeini, “A comprehensive framework for cloud

computing migration using Meta-synthesis approach,” J. Syst. Softw., vol. 128, pp. 87–

105, 2017, doi: 10.1016/j.jss.2017.02.049.

[47] M. Mishra, S. Kunde, and M. Nambiar, “Cracking the monolith: Challenges in data

transitioning to cloud native architectures,” ACM Int. Conf. Proceeding Ser., pp. 0–3,

2018, doi: 10.1145/3241403.3241440.

[48] J. F. Zhao and J. T. Zhou, “Strategies and methods for cloud migration,” Int. J. Autom.

Comput., vol. 11, no. 2, pp. 143–152, 2014, doi: 10.1007/s11633-014-0776-7.

[49] M. Ahmed and N. Singh, “A framework for strategic cloud migration,” ACM Int. Conf.

Proceeding Ser., pp. 160–163, 2019, doi: 10.1145/3330482.3330528.

[50] G. C. Silva, L. M. Rose, and R. Calinescu, “A systematic review of cloud lock-in

solutions,” Proc. Int. Conf. Cloud Comput. Technol. Sci. CloudCom, vol. 2, pp. 363–368,

2013, doi: 10.1109/CloudCom.2013.130.

[51] J. Opara-Martins, R. Sahandi, and F. Tian, “Critical review of vendor lock-in and its

impact on adoption of cloud computing,” Int. Conf. Inf. Soc. i-Society 2014, pp. 92–97,

2015, doi: 10.1109/i-Society.2014.7009018.

88

[52] G. A. Lewis, “Role of standards in cloud-computing interoperability,” Proc. Annu.

Hawaii Int. Conf. Syst. Sci., pp. 1652–1661, 2013, doi: 10.1109/HICSS.2013.470.

[53] D. Petcu, “Portability and interoperability between clouds: Challenges and case study

(invited paper),” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 6994 LNCS, no. Section 3, pp. 62–74, 2011, doi:

10.1007/978-3-642-24755-2_6.

[54] J. Miranda, J. M. Murillo, J. Guillén, and C. Canal, “Identifying adaptation needs to avoid

the vendor lock-in effect in the deployment of cloud SBAs,” ACM Int. Conf. Proceeding

Ser., pp. 12–19, 2012, doi: 10.1145/2377836.2377841.

[55] S. C. and X. L. P. Jamshidi, C. Pahl, “Cloud Migration Patterns: A Multi-cloud Service

Architecture Perspective,” Springer Serv. Comput. - ICSOC 2014 Work., vol. LNCS

8954, pp. 6–19, 2014, doi: 10.1007/978-3-319-22885-3.

[56] J. Guillén, J. Miranda, J. M. Murillo, and C. Canal, “Developing migratable multicloud

applications based on MDE and adaptation techniques,” ACM Int. Conf. Proceeding Ser.,

pp. 30–37, 2013, doi: 10.1145/2513534.2513541.

[57] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected Cloud Computing

Environments,” ACM Comput. Surv., vol. 47, no. 1, pp. 1–47, 2014, doi:

10.1145/2593512.

[58] Kothari, C.R. (2004) Research Methodology: Methods and Techniques. 2nd Edition, New

Age International Publishers, New Delhi.

[59] Jackson, S. L. (2008). Research methods and statistics: A critical thinking approach.

Australia: Heinle Cengage Learning.

[60] Yin, R.K. (2008) Case Study Research: Design and Methods. 4th Edition, Sage

Publications, Thousand Oaks.

89

Appendices

Terraform for IaaS

provider.tf

terraform {

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "~>2.0"

 }

 }

}

provider "azurerm" {

 features {}

}

resource "azurerm_resource_group" "dissertacao-RG" {

 name = "dissertacao-Resources"

 location = "West Europe"

}

networks.tf

resource "azurerm_virtual_network" "WebServerNet" {

 name = "dissertacao-WebNetwork"

 resource_group_name = "dissertacao-RG"

 address_space = ["10.0.0.0/24"]

}

resource "azurerm_virtual_network" "AppServerNet" {

 name = "dissertacao-AppNetwork"

 resource_group_name = "dissertacao-RG"

 address_space = ["172.16.0.0/24"]

}

resource "azurerm_virtual_network" "DBServerNet" {

 name = "dissertacao-DBNetwork"

 resource_group_name = "dissertacao-RG"

 address_space = ["192.168.0.0/24"]

}

virtualmachines.tf

resource "azurerm_virtual_machine" "VMweb" {

 name = "WebServer-vm"

90

 resource_group_name = "dissertacao-RG"

 vm_size = "Standard_xxx"

}

storage_os_disk {

 name = "VMweb-OS-Disk"

 caching = "ReadWrite"

 managed_disk_type = "Standard_xxx"

 create_option = "FromImage"

}

resource "azurerm_virtual_machine" "VMapp" {

 name = "AppServer-vm"

 resource_group_name = "dissertacao-RG"

 vm_size = "Standard_xxx"

}

storage_os_disk {

 name = "VMapp-OS-Disk"

 caching = "ReadWrite"

 managed_disk_type = "Standard_xxx"

 create_option = "FromImage"

}

resource "azurerm_virtual_machine" "VMdb" {

 name = "DBServer-vm"

 resource_group_name = "dissertacao-RG"

 vm_size = "Standard_xxx"

}

storage_os_disk {

 name = "VMdb-OS-Disk"

 caching = "ReadWrite"

 managed_disk_type = "Standard_LRS"

 create_option = "FromImage"

}

storage.tf

storage_data_disk {

 name = "VMdb-Data-Disk"

 disk_size_gb = "100"

 managed_disk_type = "Standard_xxx"

 create_option = "Empty"

 lun = 0

}

terraform init

Initializing the backend...

91

Initializing provider plugins...

- Finding hashicorp/azurerm versions matching "~> 2.0"...

- Installing hashicorp/azurerm v2.75.0...

- Installed hashicorp/azurerm v2.75.0 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the provider

selections it made above. Include this file in your version control repository

so that Terraform can guarantee to make the same selections by default when

you run "terraform init" in the future.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see

any changes that are required for your infrastructure. All Terraform commands

should now work.

If you ever set or change modules or backend configuration for Terraform,

rerun this command to reinitialize your working directory. If you forget, other

commands will detect it and remind you to do so if necessary.

Terraform for PaaS

provider.tf

provider "oraclepaas" {

 user = "..."

 password = "..."

 identity_domain = "..."

}

database.tf

resource "oraclepaas_database_service_instance" "default" {

 name = "database-service-instance"

 description = "This is a description for an service instance"

 edition = "EE"

 shape = "oc1m"

 subscription_type = "HOURLY"

 version = "12.2.0.1"

 vm_public_key = "An ssh public key"

 database_configuration {

 admin_password = "somepass"

 sid = "BOTH"

 backup_destination = "NONE"

 usable_storage = 15

92

 }

 backups {

 cloud_storage_container = "Storage-${var.domain}/database-service-instance-backup"

 auto_generate = true

 }

}

appserver.tf

resource "oraclepaas_application_container" "example-app" {

 name = "ExampleWebApp"

 runtime = "java"

 archive_url = "my-accs-apps/example-web-app.zip"

 subscription_type = "HOURLY"

 deployment {

 memory = "1G"

 instances = 2

 }

}

terraform init

Initializing the backend...

Initializing provider plugins...

- Finding latest version of hashicorp/oraclepaas...

- Installing hashicorp/oraclepaas v1.5.3...

- Installed hashicorp/oraclepaas v1.5.3 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the provider

selections it made above. Include this file in your version control repository

so that Terraform can guarantee to make the same selections by default when

you run "terraform init" in the future.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see

any changes that are required for your infrastructure. All Terraform commands

should now work.

If you ever set or change modules or backend configuration for Terraform,

rerun this command to reinitialize your working directory. If you forget, other

commands will detect it and remind you to do so if necessary.

93

CaaS Deployment

cat Dockerfile

FROM ubuntu

RUN apt-get update

CMD [“echo”,”Image created”]

docker build -t ubuntu:istec -f Dockerfile .

Sending build context to Docker daemon 2.048kB

Step 1/3 : FROM ubuntu

latest: Pulling from library/ubuntu

7b1a6ab2e44d: Pull complete

Digest: sha256:626ffe58f6e7566e00254b638eb7e0f3b11d4da9675088f4781a50ae288f3322

Status: Downloaded newer image for ubuntu:latest

 ---> ba6acccedd29

Step 2/3 : RUN apt-get update

 ---> Running in fbf7c6a4d16a

Get:1 http://security.ubuntu.com/ubuntu focal-security InRelease [114 kB]

Get:2 http://archive.ubuntu.com/ubuntu focal InRelease [265 kB]

Get:3 http://archive.ubuntu.com/ubuntu focal-updates InRelease [114 kB]

Get:4 http://archive.ubuntu.com/ubuntu focal-backports InRelease [108 kB]

Get:5 http://security.ubuntu.com/ubuntu focal-security/restricted amd64 Packages [726 kB]

Get:6 http://security.ubuntu.com/ubuntu focal-security/multiverse amd64 Packages [30.1 kB]

Get:7 http://security.ubuntu.com/ubuntu focal-security/main amd64 Packages [1329 kB]

Get:8 http://security.ubuntu.com/ubuntu focal-security/universe amd64 Packages [825 kB]

Get:9 http://archive.ubuntu.com/ubuntu focal/main amd64 Packages [1275 kB]

Get:10 http://archive.ubuntu.com/ubuntu focal/universe amd64 Packages [11.3 MB]

Get:11 http://archive.ubuntu.com/ubuntu focal/restricted amd64 Packages [33.4 kB]

Get:12 http://archive.ubuntu.com/ubuntu focal/multiverse amd64 Packages [177 kB]

Get:13 http://archive.ubuntu.com/ubuntu focal-updates/multiverse amd64 Packages [33.6 kB]

Get:14 http://archive.ubuntu.com/ubuntu focal-updates/universe amd64 Packages [1104 kB]

Get:15 http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages [1749 kB]

Get:16 http://archive.ubuntu.com/ubuntu focal-updates/restricted amd64 Packages [788 kB]

Get:17 http://archive.ubuntu.com/ubuntu focal-backports/universe amd64 Packages [21.7 kB]

Get:18 http://archive.ubuntu.com/ubuntu focal-backports/main amd64 Packages [50.0 kB]

Fetched 20.1 MB in 4s (5614 kB/s)

Reading package lists...

Removing intermediate container fbf7c6a4d16a

 ---> a0d722f9baa1

Step 3/3 : CMD [“echo”,”Image created”]

 ---> Running in 3127bb224c6f

Removing intermediate container 3127bb224c6f

 ---> a5005d92b741

Successfully built a5005d92b741

Successfully tagged ubuntu:istec

docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu istec a5005d92b741 3 minutes ago 105MB

docker container run -d -p 5000:5000 --name registry -v

~/docker/registry:/var/lib/registry registry

94

783f7122ac8e83fc034a4cb6e31b729beab753705253c25ab8c3317f34ed1cef

docker tag ubuntu localhost:5000/ubuntu:istec

docker push localhost:5000/ubuntu:istec

The push refers to repository [localhost:5000/ubuntu]

9f54eef41275: Pushed

istec: digest:

sha256:7cc0576c7c0ec2384de5cbf245f41567e922aab1b075f3e8ad565f508032df17 size: 529

docker pull repository:5000/ubuntu:istec

istec: Pulling from ubuntu

7b1a6ab2e44d: Pull complete

Digest: sha256:7cc0576c7c0ec2384de5cbf245f41567e922aab1b075f3e8ad565f508032df17

Status: Downloaded newer image for repository:5000/ubuntu:istec

repository:5000/ubuntu:istec

FaaS Deployment

fn --verbose deploy --app pythonapp --local

Deploying pythonfn to app: pythonapp

Bumped to version 0.0.2

Building image fndemouser/pythonfn:0.0.2

FN_REGISTRY: fndemouser

Current Context: default

Sending build context to Docker daemon 6.144kB

Step 1/13 : FROM fnproject/python:3.8-dev as build-stage

3.8-dev: Pulling from fnproject/python

7d63c13d9b9b: Pull complete

7c9d54bd144b: Pull complete

6c659176d5c8: Pull complete

31bfadeaf52b: Pull complete

2bb8ff279f62: Pull complete

e9789ac33c4c: Pull complete

Digest: sha256:e346404c37fbca72d400beb2ce8e6a9e4d91f8c5201823cea538308207062917

Status: Downloaded newer image for fnproject/python:3.8-dev

 ---> edb6774a8ff2

Step 2/13 : WORKDIR /function

 ---> Running in 0db718b87641

Removing intermediate container 0db718b87641

 ---> d5ab5b929f06

Step 3/13 : ADD requirements.txt /function/

 ---> 5d00d1874166

Step 4/13 : RUN pip3 install --target /python/ --no-cache --no-cache-dir -r requirements.txt &&

rm -fr ~/.cache/pip /tmp* requirements.txt func.yaml Dockerfile .venv &&

chmod -R o+r /python

 ---> Running in 861817a204b2

Collecting fdk>=0.1.39

95

 Downloading fdk-0.1.39-py3-none-any.whl (78 kB)

Collecting httptools>=0.1.1

 Downloading httptools-0.3.0-cp38-cp38-

manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_6

4.whl (441 kB)

Collecting iso8601==0.1.12

 Downloading iso8601-0.1.12-py3-none-any.whl (12 kB)

Collecting pytest-asyncio==0.12.0

 Downloading pytest-asyncio-0.12.0.tar.gz (13 kB)

Collecting pbr==5.4.5

 Downloading pbr-5.4.5-py2.py3-none-any.whl (110 kB)

Collecting pytest==5.4.3

 Downloading pytest-5.4.3-py3-none-any.whl (248 kB)

Collecting py>=1.5.0

 Downloading py-1.10.0-py2.py3-none-any.whl (97 kB)

Collecting more-itertools>=4.0.0

 Downloading more_itertools-8.10.0-py3-none-any.whl (51 kB)

Collecting pluggy<1.0,>=0.12

 Downloading pluggy-0.13.1-py2.py3-none-any.whl (18 kB)

Collecting packaging

 Downloading packaging-21.2-py3-none-any.whl (40 kB)

Collecting attrs>=17.4.0

 Downloading attrs-21.2.0-py2.py3-none-any.whl (53 kB)

Collecting wcwidth

 Downloading wcwidth-0.2.5-py2.py3-none-any.whl (30 kB)

Collecting pyparsing<3,>=2.0.2

 Downloading pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)

Building wheels for collected packages: pytest-asyncio

 Building wheel for pytest-asyncio (setup.py): started

 Building wheel for pytest-asyncio (setup.py): finished with status 'done'

 Created wheel for pytest-asyncio: filename=pytest_asyncio-0.12.0-py3-none-any.whl

size=11664

sha256=0dc26fa3bdc0f07e290c368e5ad90ae723b8a55e7ba78ef1406ebf82b1296dd1

 Stored in directory: /tmp/pip-ephem-wheel-cache-

tn0bslyi/wheels/23/f6/f3/2afd8a859f174197bec92a0ce1403d1cab9385474a4750ede5

Successfully built pytest-asyncio

Installing collected packages: pyparsing, wcwidth, py, pluggy, packaging, more-itertools, attrs,

pytest, pytest-asyncio, pbr, iso8601, httptools, fdk

Successfully installed attrs-21.2.0 fdk-0.1.39 httptools-0.3.0 iso8601-0.1.12 more-itertools-

8.10.0 packaging-21.2 pbr-5.4.5 pluggy-0.13.1 py-1.10.0 pyparsing-2.4.7 pytest-5.4.3 pytest-

asyncio-0.12.0 wcwidth-0.2.5

Removing intermediate container 861817a204b2

 ---> 23f6e79e4c25

Step 5/13 : ADD . /function/

 ---> efa95a6209b5

Step 6/13 : RUN rm -fr /function/.pip_cache

 ---> Running in ed7433895077

Removing intermediate container ed7433895077

 ---> e1f7c7dc4f8a

Step 7/13 : FROM fnproject/python:3.8

3.8: Pulling from fnproject/python

7d63c13d9b9b: Already exists

7c9d54bd144b: Already exists

96

6c659176d5c8: Already exists

31bfadeaf52b: Already exists

2bb8ff279f62: Already exists

7c8eebdd2fab: Pull complete

d86952facb46: Pull complete

Digest: sha256:78e1ca1b09597a68d5269b1f6b2386c47badfcfe93d2c0e97074a228ab3f16e5

Status: Downloaded newer image for fnproject/python:3.8

 ---> f1c1f2dc8447

Step 8/13 : WORKDIR /function

 ---> Running in 1f61880d68bc

Removing intermediate container 1f61880d68bc

 ---> 49fe973e9683

Step 9/13 : COPY --from=build-stage /python /python

 ---> 58d08693b182

Step 10/13 : COPY --from=build-stage /function /function

 ---> ebcecaa1fa5d

Step 11/13 : RUN chmod -R o+r /function

 ---> Running in 6072e763612f

Removing intermediate container 6072e763612f

 ---> dc3e4e8ed95f

Step 12/13 : ENV PYTHONPATH=/function:/python

 ---> Running in 012c742b0ee5

Removing intermediate container 012c742b0ee5

 ---> 7cc367c3a708

Step 13/13 : ENTRYPOINT ["/python/bin/fdk", "/function/func.py", "handler"]

 ---> Running in 75941863b7d1

Removing intermediate container 75941863b7d1

 ---> 135117754e51

Successfully built 135117754e51

Successfully tagged fndemouser/pythonfn:0.0.2

Updating function pythonfn using image fndemouser/pythonfn:0.0.2...

Successfully created function: pythonfn with fndemouser/pythonfn:0.0.2

