

Escola Superior de Tecnologia de Tomar

João Pedro Bernardino Canoso

Orchestration of Music Emotion Recognition

Services – Automating Deployment, Scaling

and Management

Master’s degree Project Report

Supervised by:

Professor Renato Panda, Instituto Politécnico de Tomar

Report presented to the Polytechnic Institute of Tomar

to fulfill the mandatory requirements

to obtain the Master's degree in

Informatics Engineering - Internet of Things

i

“Give a man a container and you keep him busy for a day

Teach a man Kubernetes and you keep him busy for a lifetime”

Kelsey Hightower

ii

iii

ABSTRACT

 Every day, thousands of new songs are created and distributed over the internet.

These ever-increasing databases introduced the need for automatic search and organization

methods, that allow users to better filter and browse such collections. However, fundamental

research in the MER field is very academic, with the typical work presenting results in the

form classification metrics – how good the approach worked in the tested datasets and

providing access to the data and methods.

In order to overcome this problem, we built and deployed a platform to orchestrate a

distributed, resilient, and scalable, music emotion recognition (MER) application using

Kubernetes that can be easily expanded in the future. The solution developed is based on a

proof of concept that explored the usage of containers and microservices in MER but had

some gaps. We reengineered and expanded it, proposing a properly orchestrated, container-

based solution, and adopting a DevOps development culture with continuous integration (CI)

and continuous delivery (CD) that in an automated way, makes it easy for the different teams

to focus on developing new blocks separately.

At the application level, instead of analyzing the audio signal recurring to only three

audio features, the system now combines a large number of audio and lyric (text) features,

explores different parts of audio (vocals, accompaniment) in segments (e.g., 30-second

segments instead of the full song) and uses properly trained machine learning (ML)

classifiers, a contribution by Tiago António. At the orchestration level, it uses Kubernetes

with Calico as the networking plugin, providing networking for the containers and pods and

Rook with Ceph for the persistent block and file storage. To allow external traffic into the

cluster, will use HAproxy as an external ingress controller on an external node, with BIRD

providing BGP peering with Calico, allowing the communication between the pods and the

external node. ArgoCD was selected as the continuous delivery tool, constantly syncing with

a git repository, and thus maintaining the state of the cluster manifests up to date, which

allows totally abstracting developers from the infrastructure. A monitoring stack combining

Prometheus, Alertmanager and Grafana allows the constant monitoring of running

iv

applications and cluster status, collecting metrics that can help to understand the state of

operations. The administration of the cluster can be carried out in a simplified way using

Portainer. The continuous implementation pipelines run on GitHub Actions, integrating

software and security tests and automatically build new versions of the containers based on

tag releases and publish them on DockerHub. This implementation is fully cloud native and

backed only by open source software.

Keywords: music emotion recognition, containers, orchestration, Kubernetes, DevOps,

GitOps, CI/CD, continuous integration, continuous deployment, cloud native.

vi

vii

RESUMO

Todos os dias, milhares de novas músicas são criadas e distribuídas através da

internet. Estas bases de dados musicais, em constante crescimento, introduziram a

necessidade de métodos automatizados de pesquisa e organização, que permitam aos

utilizadores melhor filtrar e pesquisar tais coleções. Contudo, a investigação na área do

reconhecimento de emoção em música (MER) ainda é essencialmente experimental, sendo

os resultados apresentados na sua maioria métricas de classificação em determinado

conjunto de dados, fornecendo um conjunto de métodos.

Com o objetivo de mitigar este problema e tornar o tópico demonstrável para a

população em geral, foi desenvolvida e implantada uma plataforma para orquestrar uma

aplicação de MER distribuída, resiliente e escalável, que possa ser facilmente ampliada no

futuro. A solução desenvolvida partiu de uma prova de conceito anterior que explorou a

utilização de containers e microsserviços em MER, mas possuía alguns problemas. Esta foi

redesenhada e ampliada, propondo uma solução de orquestração robusta, baseada em

containers e adotando uma cultura de desenvolvimento DevOps com técnicas de integração

contínua (CI), implantação contínua (CD) que, de forma automatizada, permite a diferentes

equipas concentrarem-se no desenvolvimento dos microsserviços separadamente.

A nível da aplicação, em vez de se analisar o sinal áudio recorrendo apenas a três

características, o sistema combina agora um grande número de características do áudio e

líricas (texto), explora diferentes partes do áudio (acappella, acompanhamento) em

segmentos (ex., segmentos de 30 segundos em vez da música completa) e utiliza diversos

classificadores de machine learning (ML), contribuição do meu colega Tiago António. A

nível de orquestração, é utilizado Kubernetes com Calico como plugin de networking,

permitindo a ligação entre pods e nós, e Rook com Ceph para o armazenamento persistente

de ficheiros. Para permitir a entrada de tráfego externo no cluster, é utilizado HAproxy como

ingress controller num nó externo, com BIRD a fornecer BGP Peering com o Calico,

permitindo assim a comunicação entre pods e o nó externo. Para ferramenta de implantação

contínua foi escolhido o ArgoCD, estando constantemente a sincronizar com um repositório

Git, mantendo assim o estado dos manifestos do cluster atualizados, o que permite abstrair

viii

totalmente os desenvolvedores, da infraestrutura. O conjunto de ferramentas de

monitorização engloba Prometheus, Alertmanager e Grafana que permitem a monitorização

constante de aplicações em execução e do estado do cluster, recolhendo constantemente

métricas que podem ajudar a compreender o estado das operações. A administração do

cluster pode ser realizada de uma forma simplificada utilizando o Portainer. As pipelines de

implementação contínua são executadas com recurso ao GitHub Actions, integrando testes

de software e de segurança, contruindo e atualizando de forma automática novas versões dos

containers no DockerHub, com base no lançamento de tags. Esta implementação é

totalmente cloud native e suportada apenas por projetos de software de código aberto.

Palavras-chave: reconhecimento de emoção em música, containers, orquestração,

Kubernetes, DevOps, GitOps, CI/CD, integração contínua, implantação contínua.

x

xi

AGRADECIMENTOS

Este projeto foi o culminar de incansáveis horas dedicadas a pesquisa, investigação,

testes, mas sobretudo muita perseverança, sendo sem dúvida, um dos trabalhos mais

desafiantes já desenvolvidos por mim. O mérito não é apenas meu, mas de todos os que me

acompanharam de perto nesta longa jornada.

Quero começar por agradecer aos meus pais, José e Rosa, irmãos, Duarte e Diogo e

avós Georgete, José e Leontina todo o conforto, amor e suporte dados de forma incansável

durante todos estes anos.

Um agradecimento muito especial ao Professor Renato Panda pelo acompanhamento,

motivação, conhecimentos transmitidos e por sempre se encontrar disponível para ajudar e

apoiar em todas as fases do projeto, sem ele, nada disto teria sido possível.

Agradeço ainda aos professores e colegas do Mestrado de Engenharia Informática do

Instituto Politécnico de Tomar, em especial, ao colega Tiago António, que trabalhou lado a

lado comigo nesta aventura, sempre disposto a aprender e ajudar sem qualquer hesitação.

Quero ainda agradecer a todos os meus colegas da equipa ISCP, por estarem sempre

disponíveis para ajudar e esclarecer quaisquer dúvidas.

Este trabalho é dedicado a todos os meus amigos, mas em especial ao Batata, Bó,

Diogo, Henrique, Miguel A., Miguel O., Pedro, Quim, Rui, Tatiana e Vanessa. Moldaram a

pessoa que sou hoje e sem vocês não teria conseguido chegar tão longe.

Por fim agradeço ao Centro de Informática e Sistemas da Universidade de Coimbra

(CISUC), pela disponibilização de infraestrutura computacional, e ao Centro de Investigação

em Cidades Inteligentes (Ci2) do Instituto Politécnico de Tomar, financiado pela Fundação

para a Ciência e a Tecnologia (UIDP/05567/2020).

A todos, o meu muito obrigado.

xii

xiii

CONTENTS

ABSTRACT ... iii

RESUMO .. vii

AGRADECIMENTOS ... xi

CONTENTS ... xiii

LIST OF FIGURES .. xix

LIST OF TABLES ... xxiii

GLOSSARY ... xxiv

Chapter 1 Introduction ... 1

1.1. Problem and Motivation ... 2

1.2. Objectives ... 3

1.3. Initial Proof of Concept .. 3

1.4. MERmaid – A Robust and Scalable MER System ... 5

1.5. Document Outline ... 7

Chapter 2 Background and Concepts .. 9

2.1. Introduction to Music Emotion Recognition .. 10

2.2. Introduction to DevOps .. 12

2.2.1. GitOps .. 13

2.2.2. Continuous Integration and Continuous Delivery ... 13

2.2.3. DevSecOps .. 14

xiv

2.3. Virtualization Concepts .. 15

2.4. Cloud Concepts ... 16

2.5. Microservices .. 17

Chapter 3 State of the Art .. 19

3.1. Music Streaming Platforms .. 20

3.1.1. Deezer .. 20

3.1.2. SoundCloud ... 21

3.1.3. Spotify ... 22

3.1.4. YouTube Music ... 23

3.1.5. Final Considerations About Streaming Platforms ... 23

3.2. Container Orchestrators .. 24

3.2.1. Apache Mesos ... 25

3.2.2. Docker Compose ... 26

3.2.3. Docker Swarm ... 27

3.2.4. Kubernetes ... 28

3.2.5. Final Considerations About Container Orchestrators 31

3.3. Container Orchestration Distributions .. 32

3.3.1. K0s ... 32

3.3.2. K3s ... 32

3.3.3. Kubernetes (vanilla) .. 33

xv

3.3.4. Microk8s .. 34

3.3.5. OKD .. 34

3.3.6. Orchestrion Solutions in the Cloud ... 35

3.3.7. Final Considerations About Containers Orchestration Distributions 35

3.4. Deployment Tools ... 36

3.4.1. Kubeadm .. 36

3.4.2. Kops ... 37

3.4.3. Kubespray .. 37

3.4.4. Final Considerations about Deployment Tools ... 37

Chapter 4 Technology Analysis .. 39

4.1. Container Runtime .. 40

4.1.1. Container Runtime Interface (CRI) ... 40

4.1.2. Containerd ... 41

4.1.3. CRI-O .. 41

4.1.4. Docker ... 41

4.1.5. Final Considerations About Container Runtimes .. 42

4.2. Networking ... 42

4.2.1. Networking Concepts .. 43

4.2.2. Container Networking Interface (CNI).. 44

4.2.3. Calico ... 45

xvi

4.2.4. Flannel ... 46

4.2.5. Weave .. 46

4.2.6. Final Considerations About the Networking Plugins 46

4.2.7. Ingress .. 47

4.2.8. Bare Metal Considerations .. 48

4.2.8.1. MetalLB ... 49

4.2.8.2. NodePort Service.. 50

4.2.8.3. NodePort with external LoadBalancer ... 50

4.2.8.4. Host Network ... 51

4.2.8.5. Bare Metal Conclusions ... 52

4.2.9. Ingress Controller .. 52

4.2.9.1. NGINX Ingress Controller ... 54

4.2.9.2. HAproxy Ingress Controller ... 54

4.2.9.3. Final Considerations about Ingress Controllers 56

4.2.10. Domain Name System (DNS) ... 56

4.2.11. SSL Termination ... 57

4.3. Container Storage ... 59

4.3.1. Container Storage Interface (CSI) ... 59

4.3.2. Longhorn ... 60

4.3.3. Rook + Ceph .. 60

xvii

4.3.4. Network File System (NFS) .. 61

4.3.5. Final Considerations About Storage .. 61

4.4. Kubernetes GitOps .. 62

4.4.1. ArgoCD ... 62

4.4.2. Flux v2 ... 62

4.4.3. Werf ... 63

4.4.4. Final Considerations About Kubernetes GitOps ... 63

4.5. GitOps Platforms .. 63

4.5.1. GitHub Actions .. 64

4.5.2. TravisCI ... 64

4.5.3. DevOps as a Service .. 65

4.5.4. Final Considerations About GitOps Platforms .. 65

Chapter 5 Implementation ... 66

5.1. Deployment Models .. 67

5.1.1. Clusters Tiers ... 69

5.2. Architecture .. 70

5.2.1. etcd .. 72

5.3. Rook + Ceph ... 73

5.4. Networking ... 74

5.4.1. External Ingress ... 76

xviii

5.4.2. Ingress .. 78

5.5. Portainer .. 80

5.6. Helm .. 81

5.7. ArgoCD ... 81

5.8. Observability ... 82

5.8.1. Grafana .. 84

5.8.2. Prometheus .. 84

5.8.3. Alertmanager ... 85

5.9. MER Application Development ... 85

5.9.1. GitHub Actions .. 88

5.9.2. Container Image Registry .. 90

Chapter 6 Conclusion and Future Work .. 91

6.1. Conclusion .. 91

6.2. Future Work .. 92

References ... 95

Appendix 1 Kubernetes Setup ... 101

xix

LIST OF FIGURES

Figure 1 - General architecture of the proof of concept, adapted from (R. M. António, 2019)

 ... 4

Figure 2 - General architecture of the final solution (T. M. António, 2021) 6

Figure 3 - Typical supervised machine learning strategy applied in MER studies (R. E. S.

Panda, 2019) .. 11

Figure 4 - DevOps cycle together with popular tools (Rodolfo Gobbi, 2019) 13

Figure 5 - Virtualization vs. containers ... 16

Figure 6 - Monolithic vs microservices architectures (Piotr Karwatka, 2020) 18

Figure 7 – Apache Mesos architecture (Platform9, 2017)... 25

Figure 8 – Simple example of a docker-compose.yml file orchestrating two containers (web

and redis) ... 26

Figure 9 – Docker Swarm architecture (Docker Swarm, 2021) .. 27

Figure 10 – Kubernetes architecture (Platform9, 2017) .. 29

Figure 11 – Kubernetes master (left) and node/worker (right) taxonomies (Vamsi

Chemitiganti, 2019) ... 30

Figure 12 - K3s architecture (Hussein Galal, 2021) .. 33

Figure 13 - Interaction between kubelet and containerd using the CRI plug-in (Rosso et al.,

2021) .. 41

Figure 14 - Interaction between kubelet and CRI-O using the CRI API (Rosso et al., 2021)

 ... 41

xx

Figure 15 - Interaction between kubelet and the Docker Engine using dockershim (Rosso et

al., 2021) .. 42

Figure 16 - Cluster nodes with pods CIDR ... 43

Figure 17 - Calico BGP peering (Rosso et al., 2021) .. 45

Figure 18 - The ingress resource ... 48

Figure 19 – Usage of a cloud LoadBalancer in a cloud environment 48

Figure 20 – MetalLB IP assignment using layer 2 (NGINX, 2021a) 49

Figure 21 – Using NodePort to access application (NGINX, 2021a) 50

Figure 22 - NodePort with external LoadBalancer (NGINX, 2021a) 51

Figure 23 – User access using host network (NGINX, 2021a) ... 52

Figure 24 - How the ingress controller exposes applications (NGINX, 2021b) 53

Figure 25 - Interaction between the Kubernetes cluster and the external ingress controller

 ... 55

Figure 26 - SSL termination .. 58

Figure 27 - SSL termination with SSL connection to the backend 58

Figure 28 - SSL passthrough ... 58

Figure 29 - The 4 hosts forming the cluster – 3 Kubernetes nodes and 1 edge node, all running

on Xen Orchestra ... 71

Figure 30 - Cluster architecture ... 71

Figure 31 - Kubernetes highly available topology (Kubernetes, 2021) 72

Figure 32 - Rook Ceph pods allocation ... 74

xxi

Figure 33 - Network diagram .. 75

Figure 34 - Calico configuration YAML to enable BGP and set pod CIDR....................... 76

Figure 35 - Calico configuration YAML to set the AS and enable BGP peering 76

Figure 36 - BIRD configuration file .. 77

Figure 37 - Example of a HTTP Ingress YAML ... 78

Figure 38 - Lets Encrypt production ClusterIssuer YAML ... 79

Figure 39 - Example of an HTTPS Ingress YAML .. 79

Figure 40 - Sequence diagram of the cert-manager (Rosso et al., 2021) 80

Figure 41 - ArgoCD workflow (Kostis Kapelonis, 2020) ... 82

Figure 42 - Architecture of Prometheus and some of its ecosystem components (Prometheus,

2021) .. 83

Figure 43 - Sequence diagram of the build action ... 89

Figure 44 - Sequence diagram of the publish action ... 89

Figure 45 - Software development lifecycle, adapted from (Ando, 2020) 90

xxiii

LIST OF TABLES

Table 1 – Comparison of music streaming services, adapted from (Wikipedia, 2021) 24

Table 2 - Summary of basic capabilities, adapted from (Zakhar Snezhkin, 2021) 36

Table 3 - Comparing deployment tools, adapted from (Densify, 2021).............................. 38

Table 4 - Summary of the benchmark results (Ducastel, 2020) .. 47

xxiv

GLOSSARY

AKS Azure Kubernetes Service

Annotation
A key-value pair that is used to attach arbitrary non-identifying

metadata to objects

API Application Programming Interface

AS Autonomous System

AWS Amazon Web Services

BGP Border Gateway Protocol

CA Certificate Authority

CaaS Containers as a Service

CD Continuous Delivery

CI Continuous Integration

CIDR

Classless Inter-Domain Routing – is a notation for describing blocks

of IP addresses and is used heavily in various networking

configurations.

CLI Command Line Interface

Cluster
A set of worker machines, called nodes, that run containerized

applications. Every cluster has at least one worker node.

ClusterIP Is an internal fixed IP that can be created in front of a pod or replica.

xxv

CNCF

Cloud Native Computing Foundation – builds sustainable ecosystems

and fosters a community around projects that orchestrate containers

as part of a microservices architecture

CNI
Container Network Interface – is a type of Network plugin that

adheres to the app/CNI specification

Container
A lightweight and portable executable image that contains software

and all of its dependencies

Controller

Controllers are control loops that watch the state of your cluster, then

make or request changes where needed. Each controller tries to move

the current cluster state closer to the desired state.

CORS Cross-Origin Resource Sharing

COS Container Orchestration Systems

CRD

Custom Resource Definition – Custom code that defines a resource to

add to your Kubernetes API server without building a complete

custom server

CRI
Container Runtime Interface – API for container runtimes to integrate

with kubelet on a node.

CRS Certificate Signing Request

CSI
Container Storage Interface – defines a standard interface to expose

storage systems to containers.

DaemonSet Ensures a copy of a Pod is running across a set of nodes in a cluster.

DNS Domain Name System

EKS Amazon Elastic Kubernetes Service

GCE Google Compute Engine

xxvi

GKE Google Kubernetes Engine

gRPC Google Remote Procedure Call

GUI Graphical User Interface

HA High Availability

HiFi High Fidelity

HTTP(S) Hypertext Transfer Protocol (Secure)

IKS IBM Cloud Kubernetes Service

Image
Stored instance of a Container that holds a set of software needed to

run an application

Ingress
An API object that manages external access to the services in a

cluster, typically HTTP

IoT Internet of Things

IPAM IP Address Management

IT Information Technology

KaaS Kubernetes as a Service

MER Music Emotion Recognition

MGR Ceph Manager

MIR Music Information Retrieval

ML Machine Learning

xxvii

MON Ceph Monitor

Namespace
Abstraction used by Kubernetes to support isolation of groups and

resources within a single cluster

NFS Network File System

NIC Network Interface Controller

Node A worker machine in Kubernetes

OS Operating System

OSD Object Storage Daemon

OSS Open Source Software

PaaS Platform as a Service

Pod Set of running containers in the cluster

PV

Persistent Volume – An API object that represents a piece of storage

in the cluster. Available as a general, pluggable resource that persists

beyond the lifecycle of any individual Pod

PVC
Persistent Volume Claim – Claims storage resources defined in a

PersistentVolume so that it can be mounted as a volume in a container

QA Quality Assurance

ReplicaSet Maintain a set of replica Pods running at any given time.

REST Representational State Transfer

SDN Software Defined Network

xxviii

Service Abstract way to expose an application running on a ser of pods

SLA Service Level Agreement

SLO Service Level Objective

SSL Secure Sockets Layer

StatefulSet
Manages the deployment and scaling of a set of Pods and provides

guarantees about the ordering and uniqueness of these Pods.

Storage Class
Provides a way for administrators to describe different available

storage types

TLS Transport Layer Security

TOR The Onion Router

UI User Interface

URL Uniform Resource Locator

VM Virtual Machine

Volume A directory containing data, accessible to the containers in a Pod

VPC Virtual Private Cloud

VPN Virtual Private Network

VXLAN Virtual Extensible LAN

YAML YAML Ain’t Markup Language

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

1

Chapter 1

Introduction

Music has been present in the daily life of our species since the beginning, used for the

most diverse purposes, from entertainment to religion or war. This happens because music

serves us as a universal language to communicate emotions, used across cultures and epochs

(Cooke, 1959) (Pannese et al., 2016).

Nowadays music is always following us, be it in advertisement campaigns, ambient

music in shopping malls, in our cars and TVs, diverse entertainment and so on. The way we

access music has always changed, with players such as Spotify providing millions of songs

anywhere using streaming services, e.g., Spotify catalog contained 70+ million songs in

2020, with 40 thousand new songs added daily (R. Panda et al., 2021).

With such massive music databases readily available to the user, the traditional search

methods to browser for new music have become limited. Typically, users can search by artist

or title, or discover new songs thanks to recommendations which are mostly based on other

users’ listen history and handcrafted playlists (R. Panda et al., 2021). For this reason, a new

research field called Music Emotion Recognition (MER) appeared, where researchers aim

to capture emotional information directly from the audio or lyrics signals. This is still an

open problem, with researchers exploring different approaches interconnecting machine

learning (ML), psychology, music theory and other fields.

In this chapter, we present the problem, motivation, and a condensed summary of this

work, as well an outline of the dissertation. This chapter is organized as described in the

following paragraphs.

Section 1.1. Problem and Motivation

This first section is used to introduce the main problem and motivation tackled in this

specific work, aiming to produce a scalable, robust demonstration of a research field which

is typically academic, hard to grasp by the general public.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

2

Section 1.2. Objectives

Following the motivation, we state the objectives of the work and briefly introduce the

adopted technologies.

Section 1.3. Initial Proof of Concept

Next, we describe the starting point of this work, an existing proof of concept produced

that studied the feasibility of microservices for MER.

Section 1.4. MERmaid – A Robust and Scalable MER System

The fourth section introduces MERmaid, the system proposed in the scope of this work.

Section 1.5. Document Outline

Finally, we conclude the chapter by briefly detailing the structure of the remaining

document.

1.1. Problem and Motivation

Every day, thousands of new songs are created and distributed over the internet. These

ever-increasing databases introduced the need for automatic search and organization

methods, that allow users to better filter and browse such collections. However, fundamental

research in the MER field is very academic, with the typical work presenting results in the

form classification metrics – how good the approach worked in the tested datasets and

providing access to ML models or methods. As a result, it is hard for people outside of the

field to experiment with the ideas and get a better understanding of the possibilities of such

approaches. There is a lack of more applied research in the field, having an intuitive and

robust MER prototype, that is able to illustrate the functionality to the general public, raising

awareness to the field, and helping improve the dissemination of novel advances.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

3

1.2. Objectives

Our main objective is to build and deploy a platform to orchestrate a distributed,

resilient, and scalable, MER application that can be easily expanded in the future. Starting

from a previous proof of concept that explored the usage of containers and microservices in

MER, we aim to reengineer and expand it, proposing a properly orchestrated, container-

based solution, with continuous integration (CI) and continuous delivery (CD) in an

automated way, that makes it easy for different teams to focus on developing new blocks

separately. To this end, we use state-of-the-art software engineering approaches, and adopt

a DevOps development culture, which allows totally abstracting developers from the

infrastructure.

1.3. Initial Proof of Concept

As previously mentioned, this project started from a proof of concept, developed by

the master's student Ricardo António and the bachelor students Tiago António and Tiago

Areias, and its main goal was to study the feasibility of a microservices approach to classify

emotion in music, having YouTube as audio source. The project was based on 3 main

microservices, to which the Frontend and the API would be added later (illustrated in Figure

1):

• Video Extractor – Microservice that takes a URL from YouTube, provided by the user,

and downloads the video, automatically converts it to a music type file (.wav), saving it

in a folder, so that later other microservices can access it.

• Feature Extraction – Uses digital signal processing to extract 3 audio features

(characteristics that describe the audio) from the music file.

• Music Classifier – Takes the extracted features of a song and performs the classification

(predicts the emotion) based on them, to this end using a previously trained ML model.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

4

Figure 1 - General architecture of the proof of concept, adapted from (R. M. António, 2019)

The workflow of the project was developed in a simplistic but fully functional way: the

user starts by entering a YouTube address and the system takes care of downloading the

video, extracting its audio, classifying the sound, and returning the classification to the user,

showing it on the web dashboard. The development of the proof of concept proved that it is

entirely possible to use microservices to perform emotion classification in music in the

idealized context, with a good degree of confidence. Still, in terms of implementation and

development several problems were found that should be fixed in a newer version.

Although the development of the project was based on robust and widely used

technologies such as Docker and docker-compose, its execution did not take the best path,

and there is room for improvement. Some examples are:

• The usage of static IP addresses1 in a microservices environment is not recommended

at all, and in this scenario, container names should be used instead. The use of names

1https://github.com/mer-

team/DockerMER/blob/9425eb3bed4775b217be39d69e81ee7dbced98ca/MusicClassification/musicClassific

ator.py#L6

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

5

allows docker to make the IP assignment dynamic, so that the destruction and later

removal of a container does not cause any downtime in the system.

• The project was using a mono-repo architecture instead of poly-repo2. When dealing

with a microservices architecture it is normal that systems become more and more

complex, which makes the adoption of poly-repo more natural. With the use of poly-

repo each microservice, application and library have its own repository, which makes

it possible to integrate CI/CD pipelines in an easier way.

• There are no tests performed on the developed software, so it is not possible to test

the microservices before building them, assuring their correct operation.

• No CI/CD automation methods has been used or implemented to build and deliver

containers. Its use would allow the automatic build, distribution, and versioning of

microservices, allowing the choice of versions and thus facilitating the transition

between versions.

• No continuous implementation tools were used, which means that every time

changes were made to the code or containers, they had to be done manually in the

code describing the infrastructure, leading to possible errors and waste time.

• The technologies used were suitable for development, but the project is not fully

ready for production. For example, docker-compose can only be used on a single

(one) host, which is not ideal in a real-life scenario. The current project goal is to be

able to run on multiple nodes (e.g., 3 or more).

1.4. MERmaid – A Robust and Scalable MER System

Based on the lessons learned from the initial proof of concept, we proposed a MER

system that is robust, scalable, resilient, much more capable, and easier to improve. The

system follows a similar microservices architecture but suffered a complete reorganization

and expansion of each module, as illustrated in Figure 2. Instead of analyzing the audio

signal recurring to only three audio features, the system now combines a large number of

2 Mono-repo stores all the code base in a single repository while poly-repo splits each microservice in its own

repository.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

6

audio and lyric (text) features, explores different parts of audio (vocals, accompaniment) in

segments (e.g., 30-second segments instead of the full song) and uses properly trained ML

classifiers, a contribution by Tiago António (T. M. António, 2021).

Figure 2 - General architecture of the final solution (T. M. António, 2021)

The focus of this work was the orchestration of this complex set of services, in order

for it to be resilient. With this in mind, the novel solution runs on Kubernetes (k8s), the de

facto orchestration platform nowadays. It is using Calico as network plugin, providing

networking for containers and pods, Rook with Ceph for block and file storage, HAproxy as

external Ingress, ArgoCD as the continuous delivery tool and a monitoring stack combining

Prometheus, Alertmanager and Grafana. The cluster is managed using Prometheus which

have a web dashboard and serves as a kubectl proxy. Several metrics related to the cluster

and applications status are collected, helping to understand the state of the operations.

Container images are built according to the addition of tags to commits on GitHub. These

tags (e.g., v1.0.1) are assigned to the code of a specific microservice when one major or

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

7

stable version of the software is reached, abstracting developers from the infrastructure. In

conclusion, it is now a developer-oriented system, aiming to help overcome the operations

problems, and making the workflow faster and more practical. This reengineered structure,

based on Kubernetes and microservices, makes the project highly scalable, easier to

collaborate in, and fault tolerant.

1.5. Document Outline

This document is organized as follows.

Chapter 1 Introduction

The first chapter introduces the problem, motivation, and the objectives of this work.

It also describes in a condensed format the starting point as well as the proposed solution.

Chapter 2 Background and Concepts

The second chapter helps the reader grasping foundational concepts regarding Music

Emotion Recognition, DevOps, virtualization, cloud and microservices architecture.

Chapter 3 State of the Art

The third chapter scrutinizes what currently being done in the industry (and how) with

respect to the music streaming area, container orchestrators and respective distributions, as

well as the deployment tools.

Chapter 4 Technology Analysis

Based on the conclusions drawn from chapter three, where the Kubernetes was

identified as the ideal solution to our problem, the fourth chapter presents an analysis of each

of the technologies required for its proper implementation, followed by our selection given

the constraints and requirements of the project. This includes the container runtimes,

networking objects, container storage, Kubernetes GitOps tools and respective GitOps

platforms.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

8

Chapter 5 Implementation

The fifth chapter documents the implementation of the entire solution in a more

technical way, covering the deployment models, architecture choices, storage, networking,

administration, continuous deployment, observability, and the application development.

Chapter 6 Conclusion and Future Work

The sixth and last chapter presents the conclusions drawn from this work, as well as a

list of aspects that can be improved and implemented in the future.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

9

Chapter 2

Background and

Concepts

This chapter allows the reader to have a better understanding of the essential concepts

needed to fully understand this project. Next, a brief description of each section is provided

to help the reader understand the chapter organization.

Section 2.1. Introduction to Music Emotion Recognition

Since the aim of the proposed system is to demonstrate MER concepts, we start this

chapter by giving a brief introduction to the research topic that supports it.

Section 2.2 Introduction to DevOps

 Next, we explain the concept of DevOps, its lifecycle and automation, that supported

the entire development of the project.

Section 2.3 Virtualization Concepts

After understanding the DevOps concept, we introduce virtualization, since it is the

base of today’s infrastructure, required to host any project.

Section 2.4. Cloud Concepts

Thereafter, we describe cloud computing, an essential part of modern distributed

solutions, including the one followed in this work.

Section 2.5. Microservices

Going up a step, from infrastructure to software development, we describe the

microservices architecture, as well as the merits of adopting one to our specific use case, as

opposed to monolithic approaches.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

10

2.1. Introduction to Music Emotion Recognition

In our newly reengineering MER system, the emotion recognition work was carried out

by my colleague Tiago António as part of his MSc degree at the same institution (Polytechnic

Institute of Tomar). Among others, he was responsible for the entire classification logic,

studying the use of scientific validated approaches (R. Panda et al., 2020b) with industry-

ready, instead of academic, audio features (R. Panda et al., 2020a). His work originated our

internal microservices, and such topics are fully covered in his work (T. M. António, 2021).

In this section we present a very brief explanation of the typical machine learning

approach in MER, which has three distinct parts, as illustrated in Figure 3:

• Collection of ground truth data;

• Feature extraction;

• Classification (training and testing).

The process starts with a dataset, created by collecting of a set of songs and respective

labels (annotations) that best describe the emotional content of each song. The collection of

labels is a complex process, usually done by a group of volunteers, being susceptible to

errors that can compromise the quality of the data. Next, the audio files are processed by

computer algorithms in order to extract some features that characterize them (e.g., beats per

minute, the duration, or even abstract energy metrics). The extracted characteristics must be

carefully selected, because using too many may result in an excess of information or

introduce noise (e.g., irrelevant information to the problem), which will increase the

complexity of the classifier. In the next phase, known has training, a subset of songs is used,

feeding their features and respective labels to ML algorithms that will try to recognize

patterns in the data (e.g., high values in feature x and y are associated with label z). At the

end, we obtain our trained model, and to evaluate it, we must test it. The subset of songs

from the dataset that was not previously used for training is now used for testing. To this

end, the trained model assigns an emotional classification to each of them (i.e., predict

labels), which are then compared to the real labels, previously identified in the dataset.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

11

Metrics such as accuracy are extracted from this comparison, making it possible to evaluate

the performance of different classifiers in order to select the best one.

In our new MER prototype, the training phase occurs offline, using both audio (R.

Panda et al., 2020b) and lyrics (Malheiro et al., 2018) datasets. The obtained models are then

included in the microservices and classification phase (i.e., emotion prediction) occurs in a

real environment, when a user requests the classification of a song. To this end, the audio

and lyrics are downloaded, their characteristics are extracted, filtered, and then provided to

the trained models in order to obtain an emotional classification (T. M. António, 2021).

Figure 3 - Typical supervised machine learning strategy applied in MER studies (R. E. S. Panda, 2019)

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

12

2.2. Introduction to DevOps

DevOps, a blend of the term’s “development” and “operations”, is a combination of

cultural philosophies, practices and even tools that aim to improve the speed at which a

company is able to deliver applications and services. It includes changes to how individuals

and teams think about their work, supports intentional processes that accelerate the rate by

which businesses realize value, and measures to assess the effect of social and technical

change. DevOps is about finding ways to adapt and innovate social structure, culture, and

technology together in order to work more effectively (Davis & Daniels, 2016).

DevOps sets new standards for how software is built. Previously, developers,

operations, and security teams typically worked in silos. Developers wrote code, Quality

Assurance (QA) teams tested it, and Information Technology (IT) operations teams deployed

it to production and managed the infrastructure. Security teams checked code for

vulnerabilities only after the deployment. If an issue was detected, the entire process started

over again, which made software development slow and frustrating for everyone involved.

The introduction of a DevOps culture improves productivity by reducing manual tasks and

as a result gaining consistency, reliability, and efficiency (GitHub, 2021b).

In practical terms, DevOps can be viewed as breaking the barriers between

development and operations teams, by having both collaborating on the application lifecycle

in whole. This can be seen as a continuous cycle, has illustrated in Figure 4, where several

tools and practices are followed, automating processes, such as integrating code, testing,

deploying, or infrastructure initialization.

The introduction of this set of practices in our project made our development more

agile, allowing for faster development and reducing collisions within the team. Several terms

and practices that under this umbrella (e.g., GitOps or continuous delivery) are explained in

the following paragraphs.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

13

Figure 4 - DevOps cycle together with popular tools (Rodolfo Gobbi, 2019)

2.2.1. GitOps

GitOps was a term coined by Alexis Richardson to describe the idea of making

operations automatic for the whole system, based on a model of the system which was living

outside the system – Git in this scenario, hence the name “Git” and “Ops”. It has 4 principles:

1) the entire system is described declaratively, 2) the canonical desired system state is

versioned in Git, 3) must have a system to approve changes that can be automatically applied

to the system and 4) must have agents to ensure correctness and alert on divergence

(Weaveworks, 2021b). Our whole project relies on GitOps, because our container images

are automatically tested and built from the Git repository and ArgoCD deploys and watches

for changes also from Git.

2.2.2. Continuous Integration and Continuous Delivery

Continuous integration and continuous delivery (CI/CD) are a natural evolution of the

DevOps transition, combining every step of the software release process into one integrated

workflow. CI/CD comprises of continuous integration and continuous delivery or

continuous deployment, forming a pipeline that is basically a series of automated workflows

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

14

that allows DevOps teams cut down on manual tasks. Continuous integration is responsible

for automatically build, test, and integrate code changes within a shared repository,

continuous delivery automatically delivers code changes to production environments for

approval while continuous deployment automatically deploys code changes to the

production environments. When we talk about CI/CD, the “CD” is usually continuous

delivery. The difference between them is that, in continuous delivery automation pauses

when developers push code changes to production, usually requiring one user to manually

sign off before the final release, adding more delays to the process. Continuous deployment

automates the entire release process, causing code changes to be deployed as soon as they

pass all the required tests. The main advantage of CI/CD is the speed, because ongoing

feedback allows developers to commit smaller changes more often, versus waiting for one

release. Other advantages include stability and reliability because the continuous testing

ensures that codebases remain stable and release-ready at any time, consequently fostering

the business growth. This happens since without manual tasks, organizations can focus

resources on other fronts such as innovation, customer satisfaction, or even paying down

technical debt (GitHub, 2021a). CI/CD techniques were integrated into the GitHub Actions

pipelines, allowing us to automatically perform tests, security audits, build container images

and update them on DockerHub3.

2.2.3. DevSecOps

DevSecOps integrates automated security testing into every part of the DevOps culture,

tooling, and processes. Instead of being restricted to the end of the software development

life cycle, DevSecOps security starts at the source code. Using automated security tools,

developers can find and address security vulnerabilities without having to wait for security

teams to address them after deployment. This allows development, operations and security

teams to find and remediate security issues faster (GitHub, 2021b). In our project, this type

of methodology was used in the integration of security analysis tools directly into the build

3 https://hub.docker.com/u/merteam

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

15

pipelines. This ensures that any released image is free from known vulnerabilities. In case

vulnerabilities are detected, the build pipeline fails, and information related to the error is

returned to the developer to fix it.

2.3. Virtualization Concepts

Containers are technologies that allow the packaging and isolation of applications with

their entire runtime environment. They are a set of one or more processes that are isolated

from the rest of the system. All the files necessary to run them are provided from a distinct

image, which allows to move contained application between environments (e.g.,

development, production, etc.) while retaining full functionality (RedHat, 2018b).

To implement containers, operating system (OS) support for control groups

(cgroups) and namespaces is required. Control groups allow the OS to impose limits on the

amount of resources a process can use (e.g., memory, CPU), while namespaces control what

is accessible to which process (e.g., processes, network interfaces, etc.). Docker used these

primitives, available under Linux since 2008, to make containers accessible to the masses,

creating an abstraction that enabled developers to build and run containers in a user-friendly

way. Instead of having to know the low level concepts needed to deploy container

technology, all they (developers) had to do was type docker run in their terminal (Rosso et

al., 2021).

 Using containers improved many stages of the software development lifecycle,

allowing developers to codify the applications environment without struggling with

application dependencies. They also impacted testing, by providing totally reproducible

environments for testing applications.

There is no virtualization when running containers. As can be seen in Figure 5, the

main difference between virtualization and containers is that virtualization allows running

multiple operating systems simultaneously on a single hardware system, while containers

share the same operating system kernel and isolate the application processes from the rest of

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

16

the system. Therefore, virtualization uses a hypervisor to emulate hardware and each VM

requires a full copy of the operating system, which is not as lightweight as using containers.

Figure 5 - Virtualization vs. containers

2.4. Cloud Concepts

Cloud computing is a type of shared internet-based computing where users can request

and rent shared computing resources, offered by various cloud providers, according to their

demands and needs. The main added value of using the cloud is that it spares organizations

from the overhead of having to purchase, install, and maintain their own hardware and

consequent infrastructure, leading to lower IT costs, improved agility and time-to-value, and

increased scalability (Davis & Daniels, 2016). There are several types of cloud that can be

categorized by location, ownership and more.

Public Clouds are cloud environments created from resources not owned by the end

user, and that can be redistributed by multiple tenants. Usually these are automatically

provisioned and allocated among multiple clients through an interface. Today’s public

clouds are a mix of environments that leads to higher security and performance, lower cost,

and a wider availability of infrastructure, services, and applications (RedHat, 2018a). Some

well-known public cloud providers are Amazon (AWS), Google (GCP) or Microsoft

(Azure).

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

17

Private Clouds are cloud environments solely dedicated to the end user, usually within

the user’s firewall. Traditionally they run on-premises but now organizations are building

private clouds on vendor-owned data centers located off-premises. This type of solution is

often used when the customer cannot move to the public cloud due to security policies,

budgets, compliance requirements, or regulations (RedHat, 2018a). Traditional private cloud

solutions are based owning datacenters and using software such as RedHat OpenStack, Xen

Orchestra, or VMware Cloud Director. Nowadays some public cloud providers also offer

such, as is the case of Amazon Virtual Private Cloud service.

Hybrid Clouds are IT architectures with some degree of workload portability,

orchestration, and management across two or more environments. They are based on two or

more private or public cloud environments. This type of cloud used to be the result of literally

connecting a private cloud environment to a public cloud, but today they are mostly built

focusing on the portability of the applications that run in the environments (RedHat, 2018a).

Multiclouds are an approach made up of more than one cloud service, from more than

one cloud vendor that can be public or private, referring to the presence of more than one

cloud deployment of the same type (public or private), sourced from different vendors. This

type of architecture brings greater flexibility, proximity to the clients and protection from

outages (RedHat, 2018a).

During this project development we used a semi-public cloud running on-premises

provided by the Centro de Informática e Sistemas da Universidade de Coimbra (CISUC)

2.5. Microservices

Microservices are defined as “independently releasable services that are modeled

around a business domain". Services encapsulates functionalities and make them accessible

to other services via the network, allowing the construction of more complex systems from

these smaller building blocks. Microservices are an architecture choice that is focused on

giving many options for solving problems that might arise. From the outside, a single

microservice is treated as a black box. It hosts business functionality on one or more

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

18

endpoints (e.g., a queue or a REST API), over whatever protocols are most appropriate.

Consumers access this functionality via these endpoints. Internal implementation details

(such as the technology) are entirely hidden from the outside world (Newman, 2021).

As can be seen on Figure 6, instead of a traditional, monolithic, approach to application

development, where everything is built into a single piece, microservices are all separated

and work together to accomplish the same tasks. Monolithic systems are used when all

functionality in a system must be deployed together, deploying all the code as a single

process. It is still possible to have multiple instances of this process for robustness or scaling

reasons, but fundamentally all the code is packed into a single process. Monolithic has some

downsides: with larger applications, it becomes harder to quickly address new problems and

add new features. It is also harder to scale specific components of a monolithic application.

A microservice-based helps solve these issues and boost development and response (RedHat,

2018c), however it also has its downsides, the main one being the possible increase in

complexity (e.g., communication, testing, debugging) that any distributed system has.

Figure 6 - Monolithic vs microservices architectures (Piotr Karwatka, 2020)

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

19

Chapter 3

State of the Art

The proposal of a proper solution, as in any other problem, requires a good

understanding of what has been done in the field so far, as well as a good understanding of

the available technologies that can be applied in our case. This chapter critically covers the

related state of the art, that served us to plan our solution.

Section 3.1. Music Streaming Platforms

Starting by the existing music streaming platforms, we study their infrastructure

implementation and usage of emotion recognition, when this kind of information is

available. The goal is to understand what is currently being done, and how is it being done

in the industry.

Section 3.2. Container Orchestrators

Since our goal is the creation of a distributed, resilient, modern application using

microservices, we studied which tools allow us to host and orchestrate the cluster. In this

section, we discuss the pros and cons of each and the reasons that led to the selection of

Kubernetes.

Section 3.3. Container Orchestration Distribution

Next, we review the major container orchestration distribution options, in order to

choose the appropriate one for our project.

Section 3.4. Deployment Tools

Finally, we compare the tools available to deploy a Kubernetes cluster, which led us to

select the kubeadm command line interface (CLI).

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

20

3.1. Music Streaming Platforms

The streaming music market in Europe is valued at over $6 billion in 2019, and is

projected to reach almost $10 billion by 2027, proving that there is still plenty of room for

growth (Statista Research Department, 2021). The pandemic has influenced these numbers

in a positive way, with a 7.4% increase in music sales, largely driven by streaming platforms

(Lusa, 2021). Proving to be a very profitable market, it still does not draw full income from

its raw material, and the area of Music Information Retrieval (MIR) can help in this direction

with, for example, the retrieval of information of the music listened by a user and consecutive

music suggestion based on its feeling. Next, we review the technological solutions adopted

by the major streaming services.

3.1.1. Deezer

Deezer4 is an audio streaming service launched in 2007 which has more than 73 million

songs and more than 16 million users. It can be accessed through its web version, or mobile

application available for iOS or android. The platform is available to the users through a free

plan but with advertising, as well as two premium paid plans: “Premium”, that provides ads-

free and offline streaming, and “HiFi”, that provides all the advantages of last one plus high-

fidelity sound. All the plans provide the usual basic functionality of creating an account,

search and listening to music through artists, playlists, albums, profiles, and music genres.

It also provides music suggestions based on a user’s tastes, built with the music they follow

and listen.

Deezer has contributed with work to the MER area, with artificial intelligence research

based on audio and lyrics using deep neutral networks, such as multimodal mood prediction

using audio signals and lyrics of tracks (Delbouys et al., 2018). Still, we could not find

evidence of the use of such research on the Deezer platform.

4 https://www.deezer.com/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

21

At the operations level, it is possible to understand that Deezer uses Kubernetes (Denis

Germain, 2021) and an adjacent set of technologies like Grafana, Elasticsearch, InfluxDB,

Prometheus and Kafka, (Lamia Caliati, 2018) but there is no documentation available to

understand to what extent.

3.1.2. SoundCloud

SoundCloud5 is an online music distribution platform based in Berlin, used mainly by

music professionals. This platform allows musicians to collaborate, share, promote and

distribute their music, bringing them much closer to their listeners. The initial goal of the

site was to allow industry professionals to exchange ideas about compositions they were

working on, allowing easy collaboration and communication before a release, being now

also used by listeners. The website allows users to upload music to the platform and then

make it available for worldwide streaming. It is available in web version and mobile app for

iOS and Android and counts with a free “Basic” plan, that allows upload of music up to 3

hours, and “Pro Unlimited”, that allows unlimited uploads time and allows to monetize the

uploaded material. There are also two new “Go” and “Go+” plans, to compete with platforms

as Spotify, that feature ad-free listening, saving tracks, offline listening, and high-quality

audio for the plus plan. As it allows users to upload music, all songs are analyzed for

copyrighted content using a content identification system6, but there is no reference to the

usage of any music emotion recognition system in the platform.

At the operations level, it may have started as a monolithic application developed in

Ruby on Rails, using Capistrano, and Chef to describe the infrastructure, but quickly ran into

several limitations such as slow scaling, instability of the deployment scheme and the time-

consuming deployment of new applications. Initially, the company created its own

containers managing system, “bazooka”, that was a Platform as a Service (PaaS) to solve the

problems of quickly rolling out and rolling back application releases. When comparing their

5 https://soundcloud.com/
6 https://blog.soundcloud.com/2011/01/05/q-and-a-content-identification-system/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

22

solution with Kubernetes, the team chose to use k8s because it had simple and

understandable basic objects (e.g., containers, pods, services, among others), powerful

network capabilities, a system of labels for grouping resources, and a large community

behind it (Flant Blog / Sudo Null IT News, 2017). SoundCloud’s use of Kubernetes dates

back to 20167, making them one of the early users in a truly large-scale production project.

3.1.3. Spotify

Spotify8 is the world's most popular and widely used streaming service. Like its main

competitors, Spotify offers features such as creating and sharing playlists, creating an

account, managing favorites, searching songs and playlists, but it stands out from the

competition by being more popular and thus ensuring a large user base. There are playlists

on this platform that are dynamically created and customized based on the user's tastes and

based on basic moods such as "Happy" or "Sad" that are entered using metadata manually.

At the development level in the area of sentiment identification, there is research work

being done with the goal of understanding user’s musical tastes based on their play history

(Spotify, 2016) and identifying the user’s mood based on their voice and background noise

(Spotify, 2018). It also provides some audio features, including arousal and valence values

using their free API (R. Panda et al., 2021).

At the operations level, nowadays Spotify’s implementation uses Kubernetes in the

Google cloud, a service known as Google Kubernetes Engine (GKE), confirmed by the

engineering team (Reddit, 2021). The company was an early adopter of microservices and

Docker, having containerized microservices running in multiple Virtual Machines (VMs)

and using a homegrown container orchestration system called Helios9. This homegrown

solution fell in favor of Kubernetes, because it was much more efficient to adopt a

technology that was already supported by a bigger community. Kubernetes was much more

7https://developers.soundcloud.com/blog/how-soundcloud-uses-haproxy-with-kubernetes-for-user-facing-

traffic
8 https://www.spotify.com/
9 https://github.com/spotify/helios

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

23

feature rich than Helios and allowed Spotify to benefit from the increased velocity, reduced

cost, while also aligning with the rest of the industry on best practices and tools. This

migration resulted in several improvements, among which, it reduced the time to create new

services from hours to minutes or even seconds, and decreased the CPU utilization, on

average, two to threefold, giving the development teams more time to deliver new features

for Spotify, instead of wasting time with manual capacity provisioning (Kubernetes &

Spotify, 2021).

3.1.4. YouTube Music

YouTube Music10 is one of the most recent music streaming services, having been

launched in November 2015 by YouTube, with a web version and an app for iOS and

Android. Built on the immense music video catalogues already available in the YouTube

platform, it has the traditional functions of creating an account, creating, and sharing

playlists, searching for songs, playlists, and albums, but there are also automatically

generated playlists based on moods and moments (e.g., Happy, Relaxing, Training). It was

not possible to find any information regarding the service orchestration. Still, being owned

by Google – a major cloud provider and creator of Kubernetes, there is a very high chance

of it running on such solutions.

Our MER system uses music from the YouTube platform as source of audio data,

searching and extracting songs from it. This decision was taken during the initial proof of

concept since it is possible to access the data without an account and there are libraries to

access to it.

3.1.5. Final Considerations About Streaming Platforms

All platforms are quite similar in the functionalities offered, differing only in details

such as providing lyrics, high quality audio or video. It is interesting to note that some

platforms started to explore sentiment in music in a very basic way, providing playlists based

10 https://music.youtube.com/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

24

on sentiment, but mostly based on metadata and social information, not yet using the full

potential of the data they have in hands. It is expected that in the future they will also apply

techniques such as automatic extraction of sentiment, to improve music recommendation,

user taste modeling, cataloguing newly added songs or generating playlists. A brief

comparison of these services is presented in Table 1.

Service Free

Access

of tracks

(millions)

Users

(millions)

Paying Users

(millions)

Release Date

Deezer Yes 73 16 7 2007

SoundCloud Yes +250 76 N.A. August 2007

Spotify Yes +70 356 158 October 2008

YouTube Music Yes 60 N.A. 30 November

2015

Table 1 – Comparison of music streaming services, adapted from (Wikipedia, 2021)

It is important to emphasize that we only considered streaming services where it was

possible to obtain information about their operations infrastructure and in the three cases

considered (excluding YouTube Music), all have transitioned to Kubernetes to take

advantage of its velocity, reduced cost and functionalities.

3.2. Container Orchestrators

Since this is a microservices based project, the choice of the container orchestration

tool has a very important weight in the development of the project. This tool will be

responsible for orchestrating all containers, their number of replicas and deployments,

orchestrating storage, networking with all its components (i.e., service discovery and load

balancing), exposing services to the internet and managing self-healing, which is the

functionality responsible for restarting failed containers and destroying unresponsive ones,

launching new instances of them, not announcing them to clients until they are ready.

In the following paragraphs the main options regarding container orchestrators are

analyzed in order to understand which stands out as the best choice to our problem.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

25

3.2.1. Apache Mesos

Apache Mesos11 is an open-source container orchestrator from Apache Foundation,

built using the same principles of the Linux kernel, just at different levels of abstraction.

This kernel runs on every node, providing APIs for resource management between

datacenters and cloud environments, abstracting hardware from hosts, and allowing

distributed and fault-tolerant systems to be easily created. Mesos is not recommended for

small architectures (smaller than 20 nodes), being used for Big Data and analytics, with tools

like Hadoop, Kafka, Spark, Elasticsearch, and others (Vexxhost, 2017). Mesos comes with

several frameworks that consist of a scheduler and an executor, taking advantage of its

resource sharing capabilities provided by its master / slave architecture. Figure 7 describes

the Mesos architecture, with the master managing resources in the cluster, the slaves running

agents, which report resources to the master, and the Docker executer executing tasks from

the Marathon scheduler (Platform9, 2017).

Figure 7 – Apache Mesos architecture (Platform9, 2017)

11 http://mesos.apache.org/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

26

3.2.2. Docker Compose

Docker Compose12 is a tool for defining and running multiple Docker container-based

applications, making it possible to run multiple services in isolated environments on a single

host. YAML files, as illustrated in Figure 8, are used to configure the services, defining

specifications such as service names, ports, containers, volumes, and networking. In the end,

a single docker compose up command makes the entire application available, while Docker

Compose takes care of its orchestration.

version: "3.9" # optional since v1.27.0

services:

 web:

 build: .

 ports:

 - "5000:5000"

 volumes:

 - .:/code

 - logvolume01:/var/log

 links:

 - redis

 redis:

 image: redis

volumes:

 logvolume01: {}

Figure 8 – Simple example of a docker-compose.yml file orchestrating two containers (web and redis)

 This tool is mostly used in development environments since it can only orchestrate

containers on a single host. Still, it is a valid production solution for those specific cases, and

there are applications that use it as a deployment method, such as AzuraCast13 which is a

web radio management suite.

12 https://docs.docker.com/compose/
13 https://azuracast.com

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

27

3.2.3. Docker Swarm

Docker Swarm14 consists of a mechanism to tie multiple hosts running Docker in

swarm mode. To run this mode a user just needs to install the Docker Engine, define a node

that will be the manager and join all other nodes (workers) to the swarm. In docker swarm,

the running containers are known as services and it is possible to perform deployments in an

imperative and declarative way using YAML, just like in Kubernetes, changing the syntax

of the files / commands. The main advantages are its simple installation and configuration,

and the gentle learning curve for inexperienced users in container orchestration, making it a

good choice for simple projects. On the other hand, there are major limitations in terms of

functionality, for example the integration of continuous delivery becomes much more

complex and resource provisioning is limited. The Docker Swarm architecture is divided in

master and worker nodes. The master nodes are the managers, maintaining the cluster state,

scheduling services, and serving the swarm HTTP API endpoints, while the worker nodes

are responsible for the execution of containers, as represented in Figure 9. The deployment

of applications with multiple containers is done with Docker Compose.

Figure 9 – Docker Swarm architecture (Docker Swarm, 2021)

14 https://docs.docker.com/engine/swarm/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

28

3.2.4. Kubernetes

Kubernetes15 is an open-source, production-grade, system for automating deployment,

scaling and management of containerized applications. Also called “k8s”, Kubernetes

(Greek for helmsman) was originally designed by Google and is now maintained by the

Cloud Native Computing Foundation (CNCF). Google has been working with containers for

over 10 years, being one of the market leaders and an example to follow. During their initial

research, 3 systems were created to manage containers according to the available

technologies. The first internal project was called Borg and had the objective of managing

long-running services and batch jobs that were previously performed by different systems.

A derivation of Borg called Omega was later released to improve its software engineering.

Kubernetes was released later, with the goal of making it easier to manage and deploy

complex distributed systems, taking advantage of the benefits that containers provide (Burns

et al., 2016). Kubernetes is a very flexible and extensible platform thanks to its extensible

API and the possibility of installing addons.

The most distinctive functionalities of the Kubernetes container orchestration are:

• Automated rollouts and rollbacks – allow progressively rolling out changes,

while monitoring application health;

• Storage orchestration – which automatically handles the storage requests;

• Self-healing – restarts containers when they fail, replaces, and reschedules

containers when nodes die, kills containers that do not respond, and does not

advertise them to clients until they are ready to serve;

• Horizontal scaling – allows the application to grow, either manually, using a

graphical user interface (UI), or automatically based on CPU usage.

Kubernetes is thus an advanced orchestration tool, allowing the integration of a fully

cloud-native, scalable, distributed and future-proof stack that aims to reduce the burden of

15 https://kubernetes.io/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

29

orchestrating underlying compute, network, and storage infrastructure. Moreover, it enables

application operators and developers to focus entirely on container-centric workflows for

self-service operation, building customized workflows and higher-level automation to

deploy and manage applications composed of multiple containers (Vamsi Chemitiganti,

2019).

As can be seen on Figure 10, Kubernetes follows a master / worker architecture,

where the master is also called control plane. All architectures are composed of at least one

master, a distributed storage system (etcd, which is explained in detail under section 5.2.1)

and one or more workers.

Figure 10 – Kubernetes architecture (Platform9, 2017)

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

30

Figure 11 – Kubernetes master (left) and node/worker (right) taxonomies (Vamsi Chemitiganti, 2019)

The control plane (Figure 11, left) is responsible for maintaining a record of all

objects, continuously managing states, responding to changes in the cluster, and making the

actual state of system objects match the desired state. These are the major components that

can run on a single master node, or replicated across multiples master nodes for high

availability:

• kube-apiserver – component of the control plane that exposes the Kubernetes

API

• etcd – backend store for all cluster data

• kube-scheduler – component of the control plane that watches for newly

created pods and selects a node for them to run on.

• kube-controller-manager – component of the control plane that runs controller

processes, watching the shared state of the cluster through the kube-apiserver,

and making changes, moving the current state towards the desired state.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

31

• Cloud-controller-manager – component of the control plane that embeds

cloud-specific control logic.

The cluster worker nodes are responsible for running the workloads using containers

and are managed by the master nodes. Each worker node runs a kubelet agent, kube-proxy

and container runtime as shown in Figure 11 (right):

• kubelet – agent that runs on each node of the cluster, assuring that containers

are running in a pod.

• kube-proxy – network proxy that runs on every node, implements part of the

service concept.

• Container runtime – software that is responsible for running containers. This

topic is addressed in Chapter 4.1.

In summary, Kubernetes is the standard for container orchestration in serious production

environments nowadays, available in any major cloud provider as well as on-premises. It

provides better scalability, resilience, and high availability mechanisms when compared with

the alternatives. Some of its drawbacks are the added complexity and required resources,

which might make it unsuitable for small projects or single node scenarios.

3.2.5. Final Considerations About Container Orchestrators

To choose our orchestrator, we had a few requirements in mind. Our application

required a container orchestrator that was resilient, easy to scale, reliable and tested. Since

the beginning, docker-compose was put aside because it is not production ready, and Apache

Mesos because our goal is not a cluster with a big number of nodes. There is a limitation in

terms of available computational resources so we opted for a solution that can be molded

and configured according to our goals – Kubernetes. K8s has all the features needed, and it

is a reference in the market, so its use makes perfect sense. Given our resources, Docker

Swarm could also be used. However, it provides less features that were central to us (e.g.,

scalability, continuous delivery) and would also make it harder to make general solution that

can be easily ported to other cloud providers if needed.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

32

3.3. Container Orchestration Distributions

As explained in the last section, we have chosen Kubernetes as our platform

orchestrator. However, there are many Kubernetes distributions to choose from, each one

with their own pros, cons, objectives and focused on certain implementation features.

Choosing the distribution is as important as choosing the orchestrator, so in this section we

compare all the major distributions in order to choose thoughtfully the best one to use in our

project.

3.3.1. K0s

K0s16 is an extremely minimalist CNCF certified Kubernetes distribution, designed to

be lightweight at its core. It is distributed as a single binary without requiring any

dependencies other than the operating system, working on any infrastructure: public &

private clouds, on-premises, edge, and hybrid. The motivation behind the project is to

provide a robust and versatile base for running Kubernetes where friction is reduced to zero,

allowing anyone with no special expertise in Kubernetes to easily get started. Is a very

comparable distribution to k3s but it is also much more recent and so it is not advisable to

use it in production.

3.3.2. K3s

K3s17 is a Kubernetes distribution announced18 by Rancher Labs in 2019, with the goal

of enabling the creation and execution of Kubernetes clusters in environments with very

limited resources. This distribution is used in the edge and IoT environments and its footprint

is very reduced because all original addons and some functionalities like tags “legacy”,

“alpha” and “non-default” have been removed. It is a CNCF certified distro, production

ready and is distributed as a single binary with 54 Megabytes (MB). As can be seen in Figure

16 https://k0sproject.io/
17 https://k3s.io/
18 https://hub.packtpub.com/rancher-labs-announces-k3s-a-lightweight-distribution-of-kubernetes-to-manage-

clusters-in-edge-computing-environments/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

33

12, k3s runs as an agent or as a server. The k3s server is responsible for the control plane

(Kubernetes API, controller, and scheduler), uses SQLite as default backend storage and

provides reverse tunnel proxy. The k3s agent is responsible for the workloads, running the

kubelet and kube-proxy, using Flannel for networking, containerd as container runtime and

internal load balancing (Hussein Galal, 2021). K3s can be deployed in various ways and in

a wide range of scenarios.

Figure 12 - K3s architecture (Hussein Galal, 2021)

3.3.3. Kubernetes (vanilla)

Kubernetes vanilla is the default k8s project that already has been covered in the

Section 3.2.4 Kubernetes. It is provided as-a-service by major cloud providers, and can be

installed on-premises, normally under Linux hosts, but also available to other operating

systems.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

34

3.3.4. Microk8s

Microk8s19 is a production-grade Kubernetes distribution developed and distributed by

Canonical that aims to simplify the usage of Kubernetes on public and private clouds. It is a

lightweight upstream Kubernetes, with no APIs added or removed and defaults to the most

used Kubernetes options (e.g., Calico for networking) with tracing, metrics, service mesh,

registry, and others, without requiring any additional configuration. With support for the

major operating systems, it supports both Intel and ARM architectures and so can be used

anywhere, from workstations to the edge and Internet-of-Things (IoT). When multiple nodes

are put together, microk8s will become automatically high available and it can provide a

zero-ops experience because it does not need a user to maintain the remote nodes, with

microk8s applying security updates automatically by default, and making it easy to upgrade

to new versions using a single command.

3.3.5. OKD

OKD20 is a community-maintained Kubernetes distribution optimized for continuous

application development and multi-tenant deployments. OKD natively features multiple

fully open-source tools that help development and operations teams rapidly develop, deploy,

and scale applications to increase application lifecycle (OKD, 2021).

The main reasons we did not choose OKD as an orchestration solution were the limited

supply of operating systems that allow its installation, the high minimum requirements for

the cluster architecture, and the fact that, since it is a ready-to-use solution, it comes with

built-in tools, many of them geared towards the operations teams, that we did not intend to

use and that would therefore unnecessarily consume resources, reducing our flexibility, such

as the container registry and Jenkins.

19 https://microk8s.io/
20 https://www.okd.io/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

35

3.3.6. Orchestrion Solutions in the Cloud

With the digital transition and the transfer of services to the cloud, Kubernetes services

have begun to emerge as CaaS (Container-as-a-Service), removing the complex tasks of

installing and maintaining clusters from the equation. These types of services are available

from major cloud providers such as Google under the name GKE (Google Kubernetes

Engine), Amazon under the name EKS (Amazon Elastic Kubernetes Service), Azure under

the name AKS (Azure Kubernetes Service) and IBM under the name IKS (IBM Cloud

Kubernetes Service). Since they are cloud services, they have payment plans depending on

usage and being self-managed solutions, there are always extra costs besides the hosting,

which is often not included. This type of solution can also become limiting in cases of

specific implementations.

3.3.7. Final Considerations About Containers Orchestration Distributions

There is a wide variety of container orchestration distributions these days. We are

looking for a distribution that is fully production-ready and therefore well tested, so that if

there are problems, they are relatively easy to find and fix. This first requirement eliminates

k0s, since it is production ready only after November 2020. As our project can rely on a

supply of infrastructure resources, the use of cloud solutions is out of the equation, but there

are limitations in terms of available resources21, so we had to opt for a more modest solution

that we can mold and configure according to our goals. In terms of performance comparison,

microk8s shows a higher resource usage, while Kubernetes (vanilla) and k3s are side by side,

with only small differences on applying deployments and draining workers, where k8s wins

(Böhm & Wirtz, 2021). Considering k3s and Kubernetes (vanilla), we choose the later

because it has all the features we need and is a reference in the market. Furthermore, k3s

does not count with the full Kubernetes API, which could limit the choices in terms of addons

21 Initially 8 vCPUs, 8 GB RAM and 150 GB storage, later increased to 18, 18 and 300 respectively.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

36

for our project in the future. Table 2 summarizes this comparison and further supports our

choice.

 Orchestration Distribution

Feature K0s MicroK8s k3s k8s (vanilla)

Managing nodes Creation / deletion No No Yes Yes

(kubeadm)

Node management system No No Docker Any

Container runtime containerd containerd CRI-O Any

Default CNI Calico Calico Flannel Any

Addons No Yes No No

Vanilla Kubernetes Yes Yes No Yes

Table 2 - Summary of basic capabilities, adapted from (Zakhar Snezhkin, 2021)

3.4. Deployment Tools

In order to facilitate the process of making a Kubernetes cluster available, there are

several tools that allow not only the deployment of a cluster on multiple machines, but also

the deployment of whole infrastructures, each one with its own objectives. The tools that we

are going to review allow the easy and fast bootstrapping of clusters.

3.4.1. Kubeadm

Kubeadm22 is a tool that can be used to build viable Kubernetes clusters providing best

practices. It allows users to setup a minimum viable, secure, cluster in a user-friendly way.

This is one of the simplest tools and was designed to simplify the bootstrapping and

installation of clusters. Since it has no infrastructure dependencies, Kubeadm is the best

choice for bare-metal installations. At the infrastructure level, the servers should already be

provisioned, then Kubeadm will run on each node, staying in the middle of the stack, creating

it and then talking to the Kubernetes API.

22 https://github.com/kubernetes/kubeadm

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

37

3.4.2. Kops

Kops23 stands for Kubernetes operations and allow the users to create, destroy, upgrade,

and maintain production-grade, highly available Kubernetes clusters while also provision

the necessary cloud infrastructure. Amazon Web Services (AWS) is officially supported,

with DigitalOcean, Google Compute Engine (GCE) and Openstack in beta support. Its main

features are the automation of provisioning of highly available clusters, as well as the ability

to generate Terraform and zero-config addons.

3.4.3. Kubespray

Kubespray24 is a community project designed to deploy Kubernetes clusters in the

cloud or on premises. Can be deployed on the major cloud providers like AWS, GCE, Azure,

or bare metal, with the option to create high available clusters. It was originally based on

Ansible playbooks but now has started using Kubeadm internally for cluster creation in order

to consume its life cycle management domain knowledge.

3.4.4. Final Considerations about Deployment Tools

The list of tools that allow a user to deploy a Kubernetes cluster is not very extensive,

but each tool is focused on its own goals which makes the tool choice easier. When

comparing the two tools that can implement infrastructure: Kubespray and Kops, the use of

Kubespray is more appealing due to its multi-cloud and bare metal support. When comparing

Kubespray with Kubeadm and considering our scenario, the usage of Kubeadm makes more

sense because it is simpler, thus reducing the tool complexity, and because our deployment

does not require the infrastructure creation present on Kubespray. The complete comparison

between the different deployment tools can be seen in Table 3.

23 https://kops.sigs.k8s.io/
24 https://kubespray.io/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

38

Tool Infrastructure

Creation

Production

Ready

Cluster

Lightweight Manage

Cluster

Lifecycle

Kubeadm No Yes Yes Yes

Kops Yes Yes No Yes

Kubespray Yes Yes No Yes

Table 3 - Comparing deployment tools, adapted from (Densify, 2021)

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

39

Chapter 4

Technology Analysis

In the previous chapter, we studied the solutions adopted by music streaming platforms,

as well as different container orchestration technologies from a more theoretical perspective.

Based on this, Kubernetes was selected as the orchestration solution for our system. The

adoption of Kubernetes continues to increase, with its use in production rising from 59% in

2020 to 65% in 2021 (VMware Inc., 2021). However, its installation, configuration and

maintenance are not simple, requiring specialized knowledge, causing many companies to

look for production-ready solutions without major configurations, such as CaaS. In this

chapter, we delve into the more practical questions the arise from our previous choice, i.e.,

Kubernetes (vanilla) on premises, analyzing the technologies that are part of a Kubernetes

solution, and justifying the ones we adopt to solve our specific needs.

Section 4.1. Container Runtime

With that in mind, in this first section we explore the available container runtimes,

responsible for managing the container’s execution, in order to select one (CRI-O).

Section 4.2. Networking

Next, we analyze the networking options, an essential part of Kubernetes, which will

control not only how the traffic flows across nodes, into containers and pods, but also the

access from and to the outside world.

Section 4.3. Container Storage

Containers are ephemeral in its nature, made to be short-lived, restarting in a different

node as needed. However, several parts of our system require persistent storage, which must

survive container destructions and be accessible across nodes. To address this, different

container storage solutions were tested, with the results described in this section.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

40

Section 4.4. Kubernetes GitOps

To automate the deployment of applications, there must exist a cluster-wide tool in

the target environments that pulls the changes from a remote repository and applies them in

the cluster. In this chapter we will study the existing tools and explain why we chose

ArgoCD.

Section 4.5. GitOps Platforms

 For that continuous delivery tool to work, we based our project on GitHub Actions,

that not only allowed us to keep a record of changes of the project, but also describe our

entire deployment in a declaratively form. With its unique features, we built workflows to

automatically execute software and security tests, build docker images of the application

microservices and update them with the new versions of the software.

4.1. Container Runtime

Kubernetes requires that a container runtime be installed on each node of the cluster

to be able to run pods. Container runtimes are software that creates and manages containers

on a node. On Linux systems, containers use kernel primitives like control groups (cgroups)

and namespaces to launch isolated processes from images. Kubernetes has a tool (kubelet)

that interacts with the container runtime to launch containers (Rosso et al., 2021). Since we

are using Kubernetes vanilla, there are essentially 3 different types of container runtimes to

choose from. These do not come installed by default and therefore one needs to be selected.

4.1.1. Container Runtime Interface (CRI)

CRI is the bridge between kubelet and the container runtime and was introduced in

version 1.5 to foster the growth of container runtimes. Prior to this, adding support for a new

container runtime required releasing a new version of Kubernetes and consequently required

a big knowledge of its code base. CRI allows developers of container runtimes to abstract

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

41

away from the implementation details in Kubernetes, namely kubelet, allowing easier

integrations, specifying the interface that the container runtime must implement to be

compatible with Kubernetes.

4.1.2. Containerd

Containerd is the most common runtime container, being used in several managed

Kubernetes offerings such as AKS, EKS, GKE, among others. This runtime container

implements the CRI through a native plugin that comes active by default, exposing the

Google Remote Procedure Call (gRPC) API on a Unix socket.

Figure 13 - Interaction between kubelet and containerd using the CRI plug-in (Rosso et al., 2021)

4.1.3. CRI-O

CRI-O is a container runtime specifically designed for Kubernetes, being an

implementation of CRI, and thus it has no use beyond Kubernetes. This runtime is used by

RedHat in OpenShift and like containerd, exposes the CRI on a Linux socket.

Figure 14 - Interaction between kubelet and CRI-O using the CRI API (Rosso et al., 2021)

4.1.4. Docker

Docker engine is available as a container runtime using CRI shim, called dockershim.

This component is present in kubelet and is essentially a gRPC server that implements CRI

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

42

services. This extra component is necessary because Docker Engine does not implement CRI

directly.

Figure 15 - Interaction between kubelet and the Docker Engine using dockershim (Rosso et al., 2021)

4.1.5. Final Considerations About Container Runtimes

Container runtimes are a fundamental component of any Kubernetes implementation

as it is impossible to run containers without installing them. In addition to these solutions,

there are Kata Containers that allow a much better level of isolation between containers but

using virtual machines to achieve it, so this solution was not considered. From the

abovementioned three, we chose to install CRIO-O because it is used in the OpenShift

project, is specially designed for Kubernetes use, being therefore a simpler solution, and

there are no downsides when compared to the other options.

4.2. Networking

Fundamentally speaking, networking is one of the core components of Kubernetes

since it is what allows nodes, services, pods, and the internet to communicate. Software

defined networks (SDNs) have been widely used to solve problems like propagation of

known routes, routing of packets, and uniquely addressing hosts on cloud ecosystems like

Amazon VPCs (Virtual Private Cloud). As a result, they are also being used on Kubernetes

to solve the same kind of issues but with pods instead of hosts. This section will explore the

concept of networking and the challenges faced in Kubernetes

To make it possible for the pods to communicate, they must be uniquely addressable,

and so, each one receives an IP address that may be internal to the cluster or externally

routable. Since pods are ephemeral, they can be destroyed, restarted, or rescheduled, to

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

43

match the desired state of the cluster or to recover in case of system failure. This requires

the IP address distribution and allocation to be quickly and efficient. The IP Address

Management (IPAM) is responsible for this management and is implemented based on the

chosen Container Network Interface (CNI) plugin. During our initial cluster provisioning,

the pod network’s Classless Inter-Domain Routing (CIDR) has been defined on the kubeadm

as a flag: sudo kubeadm init --pod-network-cidr=10.148.0.0/16. Kubernetes will allocate a

subnet to each node, using by default a /24 that can be automatically adapted in case of need.

Figure 16 - Cluster nodes with pods CIDR

4.2.1. Networking Concepts

To understand the paradox that we had to face in making services available outside of

the cluster, there are some basic concepts that the reader must be aware of. First it is

important to remember that each pod has its own IP address. However, the set of pods

running in one moment in time could be different from the set of pods running a moment

later and when a pod needs to communicate with another, it needs to know its IP address.

Services in Kubernetes allow the location of other pods by defining a logical set of pods and

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

44

a policy by which to access them25. They offer load balancing across multiple pods in the

layers 3 and 4 of the OSI model. There are different types of services that essentially change

the way traffic is routed:

• ClusterIP – Is an internal fixed IP that can be created in front of a pod or replica.

The ClusterIP provides a load-balanced IP address that then forwards the traffic

to the pods. The ClusterIP IP address is not routable outside of the cluster.

• NodePort – NodePorts are built on top of ClusterIP by exposing the ClusterIP

service outside of the cluster, but only on high ports (30000 - 32767). When a

specific port is not defined, Kubernetes automatically chooses a free port.

• LoadBalancer – Exposes the service externally using a cloud provider's load

balancer implementation. Traffic from the external load balancer is directed at

the backend Pods. The cloud provider decides how it is load balanced.

4.2.2. Container Networking Interface (CNI)

The Container Networking Interface (CNI) is a project of the CNCF providing a

specification and set of libraries for writing plugins that configure network interfaces on

Linux containers. The sole purpose of the CNI is to ensure connectivity of containers and to

remove allocated resources when they are deleted. To choose the right CNI plugin there are

a set of parameters that we must take into account, such as the number of pods in each node,

IPv6 usage, network policies usage, encapsulation usage, among others. CNI has a wide

range of options26, and we will only cover the most robust and relevant implementations.

25 https://kubernetes.io/docs/concepts/services-networking/service/
26https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-implement-the-kubernetes-

networking-model

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

45

4.2.3. Calico

Calico27 is an open-source networking and security solution for containers, virtual

machines, and workloads on native hosts. Calico supports a multitude of platforms including

Kubernetes, OpenShift, Docker EE, OpenStack, and bare metal services. There is also a paid

version with support called Tigera28. The main advantages of calico are its high performance,

flexibility and reliability, reasons that make it one of the most popular network interface

controllers (NICs).

In technical terms, calico operates at layer 3, using Border Gateway Protocol (BGP) to

propagate routes between nodes, offering integration with datacenter fabric. Using BGP

facilitates packet forwarding, since there is no additional encapsulation required, and it is

simpler and more optimized than VXLAN. On each node runs a calico-node agent that uses

BIRD for BGP peering, and Felix that puts known routes into the kernel routing tables, as

illustrated in Figure 17. Calico also allows the usage of network policies.

Figure 17 - Calico BGP peering (Rosso et al., 2021)

27 https://docs.projectcalico.org/about/about-calico
28 https://www.tigera.io/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

46

4.2.4. Flannel

Flannel29 was one of the first implementations to use CNI, being one of the oldest and

most mature. Flannel implements networking at layer 3 of the OSI model, creating an

internal network including all nodes, a topology known as fabric, connecting all nodes to

each other in the cluster. Virtual Extensible LAN (VXLAN) is used as default backend, but

it is possible to use UDP. The main disadvantage of the flannel is its lack of features like

network policies and firewall (Platform9, 2021).

4.2.5. Weave

Weave30 is a networking plugin developed by Weaveworks31, totally compatible with

CNI, which counts also with a paid version. To enable traffic exchange, weave creates a

mesh network between all nodes in the cluster, using a shortest path algorithm, i.e., fast

datapath (Weaveworks, 2021a), to route it. The network traffic is constantly being analyzed

for route optimization. This type of solution can generate implementation problems for

clusters with a very large topology.

4.2.6. Final Considerations About the Networking Plugins

As one of the methods of determining which CNI is best suited for our implementation,

in addition to studying existing projects, we investigated which solutions are used by cloud

providers. One of the great values of using cloud services is that when a Kubernetes cluster

is provisioned, many elements work without any extra configuration, among them

networking. This research was not very revealing because each cloud provider supports

29 https://github.com/flannel-io/flannel
30 https://github.com/weaveworks/weave
31 https://www.weave.works/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

47

networking by implementing its version of a CNI (e.g., Amazon CNI32). We then considered

the analysis by (Ducastel, 2020), summarized in Table 4, which shows that Calico, Canal

and Flannel are among the fastest CNI. We chose to use Calico because it is a mature plugin

that is quite old in the community and has better performance, without cutting down on

features such as network policies or encryption that may be useful in the future.

Table 4 - Summary of the benchmark results (Ducastel, 2020)

At a later stage, this choice proved to be the right one for our problem, since the addition

of the external ingress controller required the usage of BGP, which Calico supports by

default.

4.2.7. Ingress

Ingress is an API object that is responsible for managing external access to the services

in a cluster (Figure 18). Ingress is needed because, by default, pods are not accessible from

external networks, but only from other pods within the same cluster. It may provide load

balancing, SSL termination and name-based virtual hosting. The traffic routing is controlled

using rules defined in the ingress resource, allowing services to have externally reachable

URLs, exposing HTTP and HTTPS routes from outside the cluster to services within the

cluster. Ingress solves some service limitations, as the limited routing capabilities and the

cost, when it is required to implement multiple load balancers in a cloud environment.

32 https://docs.aws.amazon.com/eks/latest/userguide/pod-networking.html

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

48

Figure 18 - The ingress resource

4.2.8. Bare Metal Considerations

In traditional cloud environments the network LoadBalancers components are

available on request, but in our scenario this component does not exists, so when we try to

create a LoadBalancer service in Kubernetes, it remains in the “Pending” state. This kind of

problem is not common in the Kubernetes world, since its development is mostly aimed

towards cloud deployment. This became a major obstacle in the course of the project, since

practically all ingress controllers rely on LoadBalancer objects (from cloud providers, as in

Figure 19) to request an external interface and consequently an IP address to receive external

traffic.

Figure 19 – Usage of a cloud LoadBalancer in a cloud environment

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

49

Despite this limitation, there are some methods that allow external traffic to enter the

cluster.

4.2.8.1. MetalLB

MetalLB33 is an open-source load-balancer implementation for bare-metal Kubernetes

that uses standard routing protocols, providing support for LoadBalancer services. Basically,

when a LoadBalancer is requested MetalLB allocates an IP address for it based on a pool

provided by the user. It runs on the cluster and can operate in layer 2 mode or BGP mode.

In layer 2 mode, illustrated in Figure 20, one machine in the cluster is responsible for

the service and uses address discovery protocols, like ARP for IPv4 and NDP for IPv6, to

make those IPs available, assigning multiple IP addresses to a single machine.

In BGP mode, all machines establish BGP peering sessions with nearby routers,

providing routing instructions to the service IPs. BGP allows true load balancing across

multiple nodes and fine-grained traffic control.

Figure 20 – MetalLB IP assignment using layer 2 (NGINX, 2021a)

33 https://metallb.universe.tf/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

50

This is an excellent solution but unfortunately it was not possible to apply this method

on our implementation since we did not have an external elastic IP pool to setup the MetalLB

pool.

4.2.8.2. NodePort Service

Using a NodePort service, the user will expose the application using an unprivileged

port (range: 30000 - 32767) on every node of the cluster (Figure 21). This means that every

time a user wants to access our application, he had to manually define the service port on the

request, which would be a major drawback and reason enough to put this solution aside.

Figure 21 – Using NodePort to access application (NGINX, 2021a)

4.2.8.3. NodePort with external LoadBalancer

Together with the aforesaid NodePort solution, it is possible to implement an

LoadBalancer that is external to the cluster, facing the internet and pointing to each

Kubernetes node, as shown in Figure 22. This method is similar to the one provided by the

cloud providers, requiring an edge network component. This way, external clients do not

access the nodes directly, which is also suitable for environments where none of the cluster

nodes has public IP addresses. This solution solves the major issue haunting NodePort, that

is having to manually define the service port on the request, but it also brings its own

challenges, like the need for a manual configuration of the LoadBalancer that is external to

the cluster, increasing the project complexity.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

51

Figure 22 - NodePort with external LoadBalancer (NGINX, 2021a)

4.2.8.4. Host Network

It is possible to configure the ingress controller to use the host network. This means

that when the ingress controller uses the ports 80 and 443 (usually only these ports are used),

those ports are bind directly to the Kubernetes nodes interfaces, without extra network

translation imposed by NodePort (Figure 23). This solution is very limitative since it is only

possible to run a single ingress controller pod on each cluster node, because is not possible

to bind the same port multiple times. Another limitation is that if pods are not run as

DaemonSet34, they will only be available on the node they are running on.

34 A DaemonSet schedules one pod for each cluster node.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

52

Figure 23 – User access using host network (NGINX, 2021a)

4.2.8.5. Bare Metal Conclusions

Initially we implemented the MetalLB solution but quickly realize that it would not be

possible in our scenario because our external IP is not a floating one and it would require all

the nodes to be exposed to the outside. It would be possible to use MetalLB to assign local

IP addresses and have one node acting as LoadBalancer but this would add complexity to

the solution. Our temporary solution was using NodePort with an external load balancer, as

described earlier (see section 4.2.8.3). Over time this solution has proven to be difficult to

manage because it would be necessary to manually update the load balancer with the

published services routes. In the next section we look at two existing ingress controllers and

how we solved our problem in a much more elegant and professional way.

4.2.9. Ingress Controller

In order to be able to use ingress, an ingress controller must be deployed on the cluster,

and Kubernetes does not come with one by default. The difference between ingress and the

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

53

ingress controller is that the ingress is a simple API object that defines the routing rules, and

the ingress controller is the component responsible for its implementation.

The ingress controller is a specialized load balancer that runs in the cluster, managing

the layers 4 and 7 traffic entering Kubernetes clusters, and potentially the traffic exiting

them. Its method of operation is shown in Figure 24, where the Ingress controller is marked

as green “NGINX”. It connects to the Kubernetes API and watches for different resources

like Ingress, Services, Endpoints and others. When these resources change the controller

receives a watch notification and configures the data plane to act according. There are more

than 20 different ingress controllers35 to choose from and it is possible to deploy any number

of ingress controllers within a cluster.

Figure 24 - How the ingress controller exposes applications (NGINX, 2021b)

To select the right ingress controller, we must consider the needs of certain features,

like the support for Cross-Origin Resource Sharing (CORS), rate-limit, TCP/UDP endpoints,

35 https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

54

and others. Next, we explain the difficulties experienced during our tests, mostly motivated

by the bare metal implementation, and how we overcame them by choosing the right ingress

controller.

4.2.9.1. NGINX Ingress Controller

The NGINX Ingress Controller36, known as ingress-nginx, is an ingress controller for

Kubernetes that uses NGINX as reverse proxy and load balancer, developed by the

Kubernetes community. It is important to not confuse this project with the NGINX Ingress

Controller37 provided by the F5 Company, since they are different. This ingress controller is

built around the Kubernetes ingress resource and uses a ConfigMap to store its configuration.

It assembles a configuration file (nginx.conf) which implies (not always) the reload of the

NGINX to apply the changes, that means there is a potential loss of service involved. This

ingress controller checks the state of ingresses, services, endpoints, secrets, and ConfigMaps

to generate a point in time configuration file that reflects the state of the cluster. It then uses

the synchronization loop pattern to check if the desired state in the controller is updated or a

change is required38.

4.2.9.2. HAproxy Ingress Controller

The HAproxy Ingress Controller39 is an open-source ingress controller implementation

launched in 2019, based on HAproxy, with more than 10 million downloads and overseen

by engineers at HAProxy Technologies. HAproxy is a well-known and established fast and

reliable TCP and HTTP reverse proxy and load balancer. It is important not to confuse this

project with the community driven implementation HAproxy Ingress Controller40 since they

are different. It offers richer features41 like zero downtime reloads (by using hitless reloads,

36 https://kubernetes.github.io/ingress-nginx/
37 https://docs.nginx.com/nginx-ingress-controller/
38 https://kubernetes.github.io/ingress-nginx/how-it-works/
39 https://github.com/haproxytech/kubernetes-ingress
40 https://github.com/jcmoraisjr/haproxy-ingress
41 https://thenewstack.io/how-haproxy-streamlines-kubernetes-ingress-control/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

55

changes that do require a reload cause no downtime), observability, advanced authentication,

rate limiting, IP whitelisting, the ability to add request and response headers, connection

queuing, and more recently, the ability to run the controller external to a Kubernetes cluster.

This last functionality – run the controller external to the cluster, caught our attention

and ended up being used as our ingress solution. Traditionally, and like in every other ingress

controller, the HAproxy would run as a pod inside the cluster, having access to its network

and consequently allowing the routing and load balancing of traffic. Still, clients outside of

the cluster cannot reach it unless it is exposed as a service. As already discussed, since our

setup is on-premises, NodePort or Host Network are typically used, and then a load balancer

is configured in front of the cluster. Both solutions require a load balancer in front of the

ingress controller, which means that there are two layers of proxies through which traffic

must travel to reach the pods, as shown previously in Figure 22.

Since version 1.5 of HAproxy Kubernetes Ingress Controller it is now possible to run

the ingress controller outside of the cluster, which removes the need for an additional load

balancer in front of it. HAproxy gets direct access to the physical network and becomes

routable to external clients and pods using Calico as the Kubernetes network plugin and

BIRD as router to enable BGP Peering (Figure 25).

Figure 25 - Interaction between the Kubernetes cluster and the external ingress controller

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

56

4.2.9.3. Final Considerations about Ingress Controllers

Initially we plan to implement the MetalLB solution but quickly realize that it would

not be possible because the external IP provided was not a floating one, the need to expose

all the nodes and the added complexity solution. As an initial setup, we implemented a

NodePort with NGINX as an external LoadBalancer, but over time this has proven to be

more difficult to manage, because the external edge node would always need a manual

configuration. We then proceed to test the HAproxy external ingress controller, which

worked very well and brought benefits such as a reduction in the number of hops.

Saying that HAproxy saved our project is not an overstatement. Its special external

ingress controller feature allowed us to create an external node that will handle all the

external traffic and route it to the required pods and services inside the cluster. But it is not

all good, one possible drawback that we may face is the creation and use of service mesh

addons like Istio, since they are very dependent on the ingress controller and cluster-wide

speaking, we do not have one. Another limitation is that having a single edge node means a

single point of failure, something that could be mitigated with two edge nodes.

4.2.10. Domain Name System (DNS)

All our applications share the same Ingress between them and thus share a single-entry

point to the cluster. One of the ways to select the correct destination of a request is by the

target hostname (the Host header in the case of HTTP), making DNS indispensable in the

implementation. In our use case, we will be using a wildcard DNS record to assign a domain

name to the environment and using subdomains to access different applications,

implementing a “subdomain-based routing”. This kind of setup is based on a creation of a

wildcard DNS record (e.g., *.example.com) that resolves to the external IP address of our

ingress controller. This kind of implementation brings several benefits, like allowing the

usage of any path, including the root path (/) that can prevent problems with assets load (we

had this problem implementing Portainer) and makes the DNS implementation relatively

straightforward since there is no need for interaction between Kubernetes and the DNS

provider.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

57

On cloud scenarios it is possible to use tools like external-dns42 that is a controller to

automate the creation of domain names, but our DNS provider was not compatible with it.

4.2.11. SSL Termination

Ingress controllers uses certificates and private keys to serve applications over TLS and

one of the biggest problems of these Kubernetes implementations is certificate management.

By using cert-manager43 it was possible to add TLS certificates to the ingress routes,

simplifying the process of obtaining, renewing, and using those certificates. Cert-manager is

a controller that runs in the cluster and using a set of Custom Resource Definitions (CRDs),

automates the certificate management in cloud native environments, providing X.509

certificates from a variety of sources, whereby we will be using Let’s Encrypt44 as our

Certificate Authority (CA).

Let’s Encrypt is a nonprofit Certificate Authority that provides TLS certificates, fully

automatically and for free, to more than 260 million websites, allowing the use of HTTPS

on the websites.

One of the best features of cert-monitor is its integration with the ingress API, enabling

the automatic generation of certificates for Ingress resources. As described in section 4.2.9.3,

we used the Ingress controller HAproxy, which allows SSL termination and since it also

works as load balancer, by enabling SSL termination, we are adding secure communication

to all services at once. Typically, SSL termination allows the performing of all encryption

and decryption of the traffic at the edge of the network, stripping away the encryption and

passing the clear messages to the pods (SSL offloading). This is the method that we used, as

illustrated in Figure 26, because our nodes communicate securely in an isolated network and

therefore do not need to implement a new TLS connection to the backend pod. The main

benefits of this implementation are the easier management of certificates, better control over

42 https://github.com/kubernetes-sigs/external-dns
43 https://cert-manager.io/
44 https://letsencrypt.org/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

58

the exposed routes to the internet and reduced overhead from the task of processing

encrypted messages, freeing up CPU (Nick Ramirez, 2019).

Figure 26 - SSL termination

For environments where it is not possible to communicate securely, it is

recommended to implement in-cluster pod traffic encryption using the CNI (Calico in our

scenario) or follow the architecture shown in the Figure 27, that will implement a second

secure connection to the backend pods. This solution is not recommended as it adds overhead

and consequently CPU usage to the pods.

Figure 27 - SSL termination with SSL connection to the backend

It is also possible for the external ingress controller to implement SSL passthrough,

passing the data through the external ingress controller without decrypting it as illustrated in

Figure 28. This implementation would make sense in scenarios were the deployments

already have TLS certificates (e.g., ArgoCD), but we did not use it because it would make

the certificate management more complex.

Figure 28 - SSL passthrough

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

59

4.3. Container Storage

Kubernetes is a container-based orchestrator and in an ideal scenario all pods are

stateless, which means that no data nor state is stored on the pod, but usually these need to

be persistent or to save data persistently. This raises a problem when persistent storage is

needed between services. To solve this problem, Kubernetes storage is attached to pods via

Persistent Volumes (PV) and Persistent Volume Claims (PVCs) to provide increased

resilience and availability to face events like application crashing or a workload being

rescheduled on a different node. Storage allows the customization of some requirements like

access modes, volume expansion, volume provisioning and kind storage. The access modes

available are ReadWriteOnce, used when a single Pod can read and write to the volume,

ReadOnlyMany, used when multiple Pods can read the volume and ReadWriteMany, used

when multiple Pods can read and write to the volume. The volume expansion allows the

request of additional storage from the orchestrator when the volume is filling up, also

expanding its filesystem. To use these features, it is necessary to use tools that can

communicate with storage, providing a bridge to connect containers and physical.

4.3.1. Container Storage Interface (CSI)

The Container Storage Interface (CSI) has been developed as a standard to expose

block storage and file storage in Container Orchestration Systems (COS) such as Kubernetes.

CSI implements a controller plugin and a node plugin. The controller service is responsible

for managing the creation and deletion of volumes, while the node service is responsible for

preparing volumes to be consumed by pods on the node. With the adoption of this plugin,

the hosting layer becomes fully extensible, allowing the use of storage systems such as

Google Persistent Disk45, Amazon S346 and Ceph47.

45 https://cloud.google.com/persistent-disk
46 https://aws.amazon.com/pt/s3/
47 https://ceph.io/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

60

4.3.2. Longhorn

Longhorn48 is a free and open source distributed storage system based on block storage

that implements distributed storage using containers and microservices. It works by creating

a dedicated storage controller for each volume, synchronously replicating them across

multiple replicas stored on multiple nodes. Once installed, longhorn allows the use of

persistent volumes in the cluster. Initially developed by Rancher Labs, it is now an

incubating project of CNCF as of 12/11/2021, which means that it is still in early stage of

development with its userbase being made essentially of early adopters, known as

“Visionaries”. The main features of longhorn are incremental snapshots using block storage,

distributed storage with no single point of failure, and S3-compliant backups.

4.3.3. Rook + Ceph

According to the official documentation, Rook49 is an open source, cloud-native

storage orchestrator that provides the platform, framework, and support for broad range of

storage solutions for native integration into cloud-native environments. Rook is ready to

handle multiple high-end storage providers, including Ceph, Cassandra, and NFS, the latter

with Alpha support.

Cassandra is a high performance, fast and scalable NoSQL database. Network File

Storage (NFS) allows remote hosts to mount file systems over the network and perform

operations as if they were mounted locally. During Rook's development, several databases

have been losing support and in the latest versions solutions such as CockroachDB, EdgeFS

and YugabyteDB cannot be use (available in version 1.5).

Ceph is a highly scalable distributed storage solution for block storage, object storage,

and shared filesystems with several years of production.

48 https://longhorn.io/
49 https://rook.io/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

61

4.3.4. Network File System (NFS)

The solution of using off-cluster storage was also considered. In Kubernetes this is one

of the preferred solutions when you want to let the nodes just do the processing of the

workloads, thus physically splitting the storage (Data Plane) and processing solution. The

main advantages of NFS are the simultaneous write support by multiple nodes, its robustness

and very good support (Skender, 2020).

4.3.5. Final Considerations About Storage

The lack of features and implementation options put the choice of longhorn aside. Due

to hardware availability limitations, our cluster cannot have the 3 nodes needed to create the

distributed storage quorum, and longhorn does not allow the implementation with only one

node. Furthermore, the use of Rook with Ceph allows the creation of block storage and object

storage, if needed, without major modifications to the implementation, which is not possible

on longhorn.

The use of NFS or other external storage was considered, but quickly discarded due to

the extra resource usage in its implementation, as another VM would be required to

implement the software. The use of cloud storage would also be an option, but it requires

hiring external services and therefore also discarded.

To conclude this topic, we chose to use Rook + Ceph, currently without the

recommended redundancy of the 3 nodes, due to hardware limitations available for the

deployment, thus using 1 monitor and 1 manager, as an implementation without high

availability. This type of implementations is not recommended, for obvious reasons: if the

only node that has storage available fails, all services in the cluster are left without access to

it. Since this is an academic work, and the cluster itself does not have high availability, and

high availability itself has a cost in terms of resource consumption, it does not make sense

to provide high availability only on storage.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

62

4.4. Kubernetes GitOps

The GitOps tools used in Kubernetes are responsible for keeping the cluster

configuration up to date with a single source of truth in the Git repository. This tool will be

deployed on the cluster itself and has special permissions to be able to perform configuration

changes.

4.4.1. ArgoCD

ArgoCD50 is a continuous delivery tool for Kubernetes used by companies such as edX,

IBM, Electronic Arts, PayPal, Volvo, and others. This is a declarative tool and follows the

GitOps pattern, using the repositories to define the state of the cluster. This is important for

version control of applications, configurations, and development environments, allowing

application deployment and lifecycle management to be automated, verifiable, and easy to

understand. Its working method is quite simple: ArgoCD is implemented as a controller that

is constantly checking the running services and their current states against the states defined

in the Git repository. When the states are different it is considered that there is an

"OutOfSync”, and an update is performed. This makes it possible to automate the

deployment of certain applications to the specified environments. ArgoCD can also apply

updates to branches, tags, or select a certain version of the manifests in a commit and

automatically apply the changes.

4.4.2. Flux v2

Flux51 is a tool that keeps Kubernetes clusters synchronized with a configuration source

(e.g., a Git repository) and automatically performs updates whenever there are new code

versions. The version 2 (Flux v2) has been rebuilt from the ground up to use the Kubernetes

50 https://argoproj.github.io/argo-cd/
51 https://fluxcd.io/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

63

API extensions, allowing an easy integration with Kubernetes core components. Flux is

designed to be configured using a CLI client and does not have an administration dashboard.

4.4.3. Werf

Werf52 is an open-source command line tool, developed in Go, designed to increase the

speed of software development and delivery. It is not a complete CI/CD solution but allows

the creation of pipelines that can be embedded into already created CI/CD systems. Its use

has been disregarded because it is a recent tool without much use in the market, and it does

not have a driver for Kubernetes, being geared towards CLI usage.

4.4.4. Final Considerations About Kubernetes GitOps

The area of GitOps in Kubernetes is recent, and there are few tools that can update the

cluster state with the git source. We chose to use ArgoCD because it has a dashboard, which

makes it easy to integrate and configure, and there is no loss of functionality when compared

to Flux.

4.5. GitOps Platforms

GitOps platforms play two fundamental roles in the development of the project. On one

hand, they are responsible for keeping a record of changes to the project source code (i.e.,

the application microservices), on the other, with the use of GitOps, it is possible to describe

the entire deployment declaratively, and thus keep a record of the cluster deployment,

maintaining a single source of truth. Allied to this, with CI it is possible to test and build

software or Docker images automatically when a pull request is approved. By using these

practices, it is possible to increase productivity, make life easier for the development and

52 https://werf.io/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

64

operations teams, increase confidence in the developed software, ensuring greater stability,

reliability, and security.

4.5.1. GitHub Actions

GitHub Actions53 are part of GitHub and, according to GitHub, “allow you to automate,

customize and execute workflows directly in the repository, streamlining the software

development cycle”. The actions are event-driven, which means that commands are executed

as certain events occur. One of the simplest examples of why this kind of architecture makes

so much sense in this development environment is to trigger software testing every time a

developer creates a pull request in each repository.

Users can discover, create, and share GitHub actions to do any job, including CI and

CD, combining them to create a complete workflow.

Actions are available at the GitHub marketplace, where you can search by name,

category, and cost, and are open source and therefore verifiable.

4.5.2. TravisCI

TravisCI54 is a CI/CD tool that allows you to test and build software projects hosted on

GitHub, Bitbucket, GitLab, and Assembla. As a form of support for open-source projects,

this was the first tool to allow free testing and building of software on open source software

(OSS) projects, an offering that ended in late 2020 with the increase in abuse of

cryptocurrency mining and node creation for the The Onion Router (TOR) network (Travis,

2020).

53 https://github.com/features/actions
54 https://www.travis-ci.com/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

65

4.5.3. DevOps as a Service

Paid cloud services such as Azure DevOps55 have been developed by cloud providers

to keep customers within their ecosystems. The main advantage of this type of service is its

easy installation, configuration, and integration with version control of software in use. Its

use was not considered because of the vendor lock-in in the software development, and the

very limited number of free "credits".

4.5.4. Final Considerations About GitOps Platforms

There is a wide range of tools capable of performing CI/CD, and they all have almost

the same features, but each implementation is always done in different ways. Therefore, it is

important to consider the pros and cons of each tool, and GitHub Actions, due to its

marketplace, has a greater versatility, allowing complete customization of the pipelines.

We also considered using Jenkins, but because it does not have a free cloud component

it would require installation, configuration, maintenance, and consequent consumption of

our limited resources.

55 https://azure.microsoft.com/en-us/services/devops/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

66

Chapter 5

Implementation

This chapter documents the technical aspects of our proposed solution, deployed into

a real-life system. It follows the decisions made over the last two chapters, first with the

selection of Kubernetes as the orchestration mechanism, and secondly, with the adoption of

several technologies to support our cluster, namely the runtime engine, the networking

mechanisms to route traffic into the cluster and the persistent storage mechanisms. Here, we

document the actual system, its architecture, how each part was deployed, is configured, and

can be managed.

Section 5.1. Deployment Models

The proper implementation of a Kubernetes cluster deployment starts with the

configuration of an entire hardware support infrastructure that corresponds to our needs.

Such setup can be made available in several ways. In this chapter we explain the existent

deployment models in order to take a better architectural decision to our specific use case.

Section 5.2. Architecture

Having defined our cluster deployment model, the next step was to design the cluster

architecture considering the available resources, minimum platform requirements and

possible limitations at the networking level.

Section 5.3 Rook + Ceph

 With the architecture defined and consequently the disk space assigned, we perform

the deployment of Rook with Ceph, which is detailed in this section.

Section 5.4. Networking

As explained in section 4.2, our deployment had several constrains at the networking

level. In this section we detail our final implementation, which allowed us to overcome such

constrains and route external traffic to the cluster.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

67

Section 5.5 Portainer

 Portainer was used to solve a range of problems brought by our type of deployment.

In this section we explain what Portainer is and what problems it did solve.

Section 5.6. Helm

In order to install some technological stacks, we used Helm. This section explains

what Helm is and which are its main benefits, when compared to traditional installation

methods.

Section 5.7 ArgoCD

 ArgoCD will allow us to manage the continuous delivery within the cluster, enabling

the automatic deployment and update of applications. This section covers its installation,

operation method and configuration.

Section 5.8. Observability

Observability is the concept of being able to understand what is happening in the

cluster, at system and application level, at any given time. In this section we cover the

adopted solution, which features Prometheus, Alertmanager and Grafana.

Section 5.9 MER Application Development

 Finally, we conclude with the changes made to the MER application development

workflow, implementing a DevOps working method, that aims for a faster and more agile

software development process.

5.1. Deployment Models

The first step to successfully implement a Kubernetes cluster deployment is the

existence of an entire hardware support infrastructure that corresponds to our needs. With

the digital revolution, it is possible for this infrastructure to be made available in several

ways, shapes, and sizes such as Infrastructure as a Service (IaaS) (e.g., AWS), where the

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

68

user must do its own platform management, managed Kubernetes as a Service (KaaS) (e.g.,

EKS, AKS, etc.), or even as bare metal.

Cloud providers offer managed Kubernetes services, which allow the quick and easy

provisioning of the cluster without any technical knowledge, saving on engineering effort.

This type of implementation is very reliable, but it is important to remember that there is

always an additional monetary cost associated with it. Moreover, only certain versions of the

orchestrator can be used. Usually, alongside the application, many other platform services

are executed, like metrics collection and CI tools, that can be made available as external

services on the same cloud provider, with the disadvantage of vendor lock-in. The use of this

type of solutions makes sense when there is not enough technical knowledge, or on small

teams.

With a limited budget, it may make more sense to do your own Kubernetes

management, with the rolling of your own version. The use of this solution comes with

several benefits such as no vendor lock-in, the possibility of moving to any cloud, either

public or private, the possibility to fully customize the solution with any version of the

platform and plugins, and the price should always be more affordable than paying for a

managed solution (excluding human resources). However, this requires qualified personnel

who knows how to manage and implement the platform, with technical knowledge to fully

customize the implementation.

One of the pertinent questions that can arise is the use of virtual machines versus bare

metal to host the cluster. Looking at the problem in a simplistic way, it may seem strange to

run containers inside virtual machines, firstly because they are two solutions to the same

problem and secondly because of the overhead. The truth is that this is a common practice

in the market and Kubernetes can be used on both bare metal and virtual machines. The use

of virtual machines in our scenario makes more sense, due to the benefits brought by them,

such as the ability to make better use of existing hardware (allowing to “slice” each machine

into a fully isolated computer), easily create backups / snapshots and clone machines, change

resources without disrupting the server and allowing the configuration of advanced

networking setups.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

69

In our solution we rolled our own Kubernetes mainly due to budget constraints and

because we were offered a set of resources that could be used for this project. This made it

possible to study and understand in a deeper way how the whole orchestration system and

its deployment works, as well as customize the whole solution according to our

requirements, taking into account our problem.

5.1.1. Clusters Tiers

The organization of clusters into tiers or environments is a good practice used all over

the world. Usually, each environment is associated with specific service level objectives

(SLOs) and service level agreements (SLAs), as well as a specific purpose for the cluster

that in our case is explained ahead (Rosso et al., 2021). The correct usage of this

methodology will help to ensure that the deployed applications and all its ecosystems work

as expected when applied to critical production clusters.

Testing – Usually these are ephemeral clusters that have a defined time-to-live, such that

they are automatically destroyed after some time. Their purpose is to test particular

components or platform features under development but can also be used by developers

when a local cluster does not have sufficient requirements for testing. There is no SLO or

SLA for these clusters.

Development – Development clusters are generally permanent clusters not associated with

any time-to-live. These are usually equipped with all the features of a production

environment with the aim of running the first round of integration tests, compatibility testing

and application development. The availability of these clusters will often be near production-

level because outages would impact developer productivity.

Staging – Staging clusters are permanent clusters that share the same versions as production

clusters. They are used for final integration testing and approval before production.

Production – Production are the real clusters used to serve the applications to the clients.

Only approved, production ready, and stable releases of the software are allowed to run on

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

70

these clusters, together with fully tested and approved stable releases of the platform.

Normally detailed and well-defined SLOs and SLAs are used and tracked.

Due to lack of resources our environment can only count with one production cluster,

while our application development was performed on a local cluster using minikube56. Prior

to deployment on production, all Kubernetes configurations were tested on a cluster like the

production one.

5.2. Architecture

In order to deploy a Kubernetes cluster, there are a number of minimum requirements

that must be met. The operating system should be a Linux host, with at least 2 GB of RAM

per machine and 2 CPUs or more, with network connectivity between hosts within the same

cluster and disabled swap.

For this project the Centre for Informatics and Systems of the University of Coimbra

(CISUC) has provided us 18 CPUs, 18GiB of RAM and 300 GiB of storage under a Xen

Orchestra managed system. The availability of these resources under a virtualization

platform allowed us to manage them in a way that was most convenient to us.

As can be seen in Figure 29, we divided our resources into 4 separate nodes, one of

which is not part of the Kubernetes cluster and is used only as ingress.

56 https://minikube.sigs.k8s.io/docs/start/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

71

Figure 29 - The 4 hosts forming the cluster – 3 Kubernetes nodes and 1 edge node, all running on Xen Orchestra

In terms of cluster capacity, the total computing power can be calculated by adding

up the CPU and RAM. In our case 16 GiB RAM, 16 CPU and 250GiB disk, since the ingress

node cannot run any workloads, so it does not count to the sum. The architecture of our

cluster is composed of 1 master node with 4 CPU and 4 GiB RAM, and 2 worker nodes with

6 CPU and 6 GiB each (Figure 30), which were chosen taking into consideration several

factors. With the resources we had, it would also be possible to create a cluster with a larger

number of nodes (e.g., 4 worker nodes with 3 CPU and 3 GiB RAM). This decision is

entirely dependent on the applications to be deployed on the cluster. In our case, a larger

number of nodes would create a higher system overhead, a more complex cluster with

consequently difficulted management and more pressure on etcd. More importantly, the pods

could not consume as many resources, which in our implementation would be a problem,

because we have a microservice (Spleeter) that has high RAM requirements.

Figure 30 - Cluster architecture

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

72

As one can see from the previous picture, our cluster has two single points of failure:

1) if for any reason, the ingress node becomes unavailable, the cluster would be working

properly but not available to the external clients; and 2) if the master node becomes

unavailable, the cluster would not work properly. This could be avoided if we implemented

a high available cluster with at least 3 master nodes, a stacked etcd cluster and 2 or more

worker nodes, as shown in Figure 31. Since the Ingress does not implement quorum, two

ingress nodes would be enough, with the appropriate DNS changes. As already explained,

this topology was not applied due to lack of resources.

Figure 31 - Kubernetes highly available topology (Kubernetes, 2021)

5.2.1. etcd

Etcd is a consistent distributed database that supports the Kubernetes cluster. It

provides highly available key-value store for all cluster data. Keeping etcd clusters stable is

critical to the stability of Kubernetes clusters. Therefore, etcd clusters should run on

dedicated machines or isolated environments, which is impossible in our scenario. Since we

use kubeadm for the cluster provisioning, etcd defaults to run as a single member, in a static

pod managed by the kubelet on the control plane node (master). This is not recommended

because it is not a high availability (HA) setup, but since our cluster has only one master, it

becomes irrelevant having HA on the etcd.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

73

5.3. Rook + Ceph

As described on section 4.3, we use Rook with Ceph to allow the persistent file storage.

The setup is straight forward, as we based all our implementation on the official

documentation57. We started by adding a secondary 50 GiB empty drive to each worker node

on the Xen Orchestra that is used to create the filesystem and save the files. We then proceed

with the installation, including the crds.yaml and common.yaml files. These files create the

CRDs and common resources that are necessary to start the operator and the Rook cluster.

Next, we installed the operator.yaml file that deploys the Rook operator, and our modified

version of the file cluster-test.yaml that defines the settings for the rook-ceph cluster with 1

monitor (MON) and 1 manager (MGR), which are common settings for a small test cluster.

Limits and requests were added to the original version of the file, to prevent the overconsume

of resources given that there are minimum requirements that must be met: the manager

should have 2 GB RAM and 2 CPUs, bearing in mind that memory will grow the more MGR

modules are enabled. The monitor requests 4 CPUs and 2.5GB RAM minimum, bearing in

mind that these values can be higher for each added disk (Gardner, 2020).

It was possible to restrict Ceph to a portion of the nodes, but because our nodes are

similar in specs it was not necessary. After the deployment it was possible to observe that

each worker node had an Object Storage Daemon (OSD) pod and the second node (panda2)

had the manager and monitor pods allocated, as illustrated in Figure 32.

A properly fault tolerant Ceph cluster should have at least three monitor nodes,

preferably spread across fault-tolerant zones so that it is possible to achieve quorum and

have HA. However, this is a stack that consumes too many resources, and, besides that, our

cluster is not implementing fully HA, so it does not make sense to apply HA on the storage.

57 https://rook.github.io/docs/rook/v1.7/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

74

>kubectl get pods -n rook-ceph -o wide

NAME READY STATUS NODE

csi-cephfsplugin-2lhb9 3/3 Running panda2

csi-cephfsplugin-provisioner-689686b44-9jgqd 6/6 Running panda2

csi-cephfsplugin-provisioner-689686b44-kmd95 6/6 Running panda3

csi-cephfsplugin-tkxjp 3/3 Running panda3

csi-rbdplugin-bjs6k 3/3 Running panda2

csi-rbdplugin-ftqv2 3/3 Running panda3

csi-rbdplugin-provisioner-5775fb866b-cqnz8 6/6 Running panda2

csi-rbdplugin-provisioner-5775fb866b-vnpvd 6/6 Running panda3

rook-ceph-mgr-a-595845cc44-5fv4f 1/1 Running panda2

rook-ceph-mon-a-d5fc7669b-k5w2n 1/1 Running panda2

rook-ceph-operator-7bdb744878-wv5zp 1/1 Running panda2

rook-ceph-osd-0-5f9ff4f74b-2m9mw 1/1 Running panda3

rook-ceph-osd-1-844c9ff957-pd662 1/1 Running panda2

rook-ceph-osd-prepare-panda2--1-59sb5 0/1 Completed panda2

Figure 32 - Rook Ceph pods allocation

5.4. Networking

Two separate networks were used to connect the cluster nodes to each other and to the

internet, in order to ensure maximum safety. The network 192.168.1.0/24 was used as the

private network of the cluster, with the address 192.168.1.30 assigned to the ingress,

192.168.1.31 to the master, and 192.168.1.32 and 192.168.1.33 to the first and second

workers respectively. The second network was not under our management and is used for

administration. Others VMs (from other projects) have access to it, so it was not considered

safe for the cluster traffic. During cluster provisioning, the 192.168.1.0/24 network was

defined (on the kubeadm) to be used the node-to-node communication, ensuring that the

networks are used for different purposes. As for the ingress node, the CISUC team bind an

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

75

external IP address to it, providing access from outside the cluster. The following diagram

(Figure 33) represents the network topology with both networks, the 4 nodes and the internet.

Figure 33 - Network diagram

Calico, the CNI, was the first component to be installed on the cluster. The installation

is based on the official docs58 and the first step was to install the Tigera operator, that then

creates the calico pods on each node (Figure 34). The second step was to deploy the calico

configuration YAML that enables the BGP and assigns the IP address range for the pod

network, which is the same address space specified on the kubeadm provisioning. The last

step was to deploy a BGPConfiguration and a BGPPeer objects using the calicoctl CLI

client. These objects, shown in Figure 35, enable the full mesh network mode, and assign an

Autonomous System (AS) number (65000) to Calico. The second object sets the peerIp as

the BIRD router (the same as the external ingress controller) and sets its AS number.

58 https://projectcalico.docs.tigera.io/getting-started/kubernetes/quickstart

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

76

Figure 34 - Calico configuration YAML to enable BGP and set pod CIDR

Figure 35 - Calico configuration YAML to set the AS and enable BGP peering

This is how Calico shares its pod-level network routes with BIRD so that the ingress

controller can use them.

5.4.1. External Ingress

As described earlier, the external ingress uses HAproxy with BGP peering provided by

BIRD. This section details how this external node is configured, and how it is able to

automatically update the ingress routes without external configuration. This setup started as

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

77

a regular HAproxy installation, to which we added the HAproxy external ingress controller

binary59 and a respective service file, in order to enable the automatic start. Then, the BIRD

router was installed and configured according to Figure 36. In this file we defined the router

id as the ingress IP address and created a protocol bgp section for each master and worker

nodes, with the filter being set for the pods CIDR.

Figure 36 - BIRD configuration file

The last step was to copy the kubeconfig file from the master to the ingress node, on

the same directory. This will allow the external ingress controller binary to access the master

Kubernetes API and watch for changes on the ingress objects, updating immediately and

automatically the HAproxy routes without loss of service.

59 https://github.com/haproxytech/kubernetes-ingress/releases

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

78

5.4.2. Ingress

For the ingress implementation a set of objects were created, as exemplified in Figure

37. In these files, a number of hosts can be defined that must point to a service with a port

number. These objects are highly customizable, allowing the usage of annotations that can

enable features such as basic authentication, rate limits, CORS, headers manipulation and

others.

Figure 37 - Example of a HTTP Ingress YAML

As previously mentioned, the usage of the cert-manager made the deployment and

serving of TLS certificates much easier. To install it we followed the official docs60 and

installed the provided YAML. Next, we added a ClusterIssuer object, as shown in Figure

38, that represents a CA that signs the certificates. In this scenario we will be using the Let’s

Encrypt because it allows us to sign our certificates for free.

60 https://cert-manager.io/docs/installation/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

79

Figure 38 - Lets Encrypt production ClusterIssuer YAML

Due to the integration of the cert-manager with the Ingress API, it is very easy to

enable TLS on the hosts. To this end, it is only necessary to add an annotation specifying

which cluster-issuer to use to sign the certificate, define the tls host where the protected route

will be exposed, and define the secretName secret that will save the generated certificate, as

can be seen on Figure 39.

Figure 39 - Example of an HTTPS Ingress YAML

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

80

Under the hood, cert-manager generates the private keys, creates the certificates

signing request (CSR) and submits the CSR to the CA. When the issuer sends back the

certificate, it gets saved in a secret and the ingress controller can expose the route with it, as

can be seen in Figure 40.

Figure 40 - Sequence diagram of the cert-manager (Rosso et al., 2021)

5.5. Portainer

Portainer61 is a powerful enterprise grade container service delivery platform. It can be

seen as a Kubernetes graphical user interface (GUI), easing the management of the entire

61 https://www.portainer.io/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

81

cluster. Portainer was used mostly to compensate for the lack of a direct access to the cluster

admin functionality using kubectl. Our Kubernetes cluster is behind a private network,

protecting the direct access to the Kubernetes API, being only accessible with a virtual

private network (VPN), that not all the team had access to. Portainer contains a virtual

terminal served by a powerful dashboard that allows to manage all the Kubernetes

components, like namespaces, deployments, pods, services, installation of Helm charts and

others. After it was exposed via HTTPS, it was possible to download a kubeconfig file that

used Portainer as a proxy to the Kubernetes API, allowing to run kubectl commands without

exposing the cluster API directly. Portainer was installed using Helm charts, which are

explained in the next subchapter. After the installation it was only necessary to add the

ingress so that it was possible to access Portainer from outside of the cluster.

5.6. Helm

Helm62 is a tool for managing charts that can be seen as a packet manager for

Kubernetes. Charts are a set of default values with sensible settings that can be easily

modified, containing the description of the package and one or more templates, which

contains Kubernetes manifest files. This allows powerful customization via templating and

deploying without in-depth knowledge. The main advantages of using Helm are the easiness

to find and share software packaged as Helm charts to run on Kubernetes, and the ability to

create reproducible builds and easily manage Kubernetes manifests files and its releases,

thus allowing easier updates. Helm can be installed as a binary that can run anywhere,

connecting to the Kubernetes API to apply the charts that can be stored on disk, or fetched

from remote repositories.

5.7. ArgoCD

As explained on section 4.4.1, ArgoCD is responsible for the deployment of solutions

on the Kubernetes cluster, following a GitOps paradigm. The installation was carried out

62 https://helm.sh/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

82

using Helm charts, and because the ArgoCD ingress is exposed with a SSL certificate by

default, it was necessary to perform a config on the chart to allow the insecure exposing of

the route. The password can be obtained by accessing a secret with the kubectl command

and the project creation was performed in the web dashboard. In our use case, ArgoCD will

continuously monitor a Git repository with the project Kubernetes manifests, listening for

commit events. When a commit happens, a “synchronization” process is started, that is

responsible for bringing the cluster configuration to the same state as described in Git. When

this process ends, the application is updated with the last version, as illustrated in Figure 41.

Figure 41 - ArgoCD workflow (Kostis Kapelonis, 2020)

5.8. Observability

Observability allows the teams understand what is happening to the cluster at the

system and application level. Typically, this area encompasses logs, metrics, and tracing.

Logging is responsible for forwarding log data from workloads to a target backend system,

from which is possible to aggregate and analyze them in a consumable and easy way. Metrics

are numeric measurements that represents some state at a point in time, allowing its

aggregation or scraping for analysis. Tracing allows the understanding of the interactions

between the various services.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

83

To collect and aggregate data, generate alerts, and visualize the collected data in the

cluster, we use the kube-prometheus-stack63. This stack is a collection of Kubernetes

manifests that implements Grafana with dashboards, Prometheus with rules and

Alertmanager. It is widely used to provide end-to-end Kubernetes cluster monitoring, so it

is pre-configured to collect metrics from all Kubernetes components and ships with a default

set of dashboards and alerting rules. The stack is composed of the Prometheus operator,

Prometheus and Alertmanager with or without high availability, node-exporter, kube-state-

metrics and Grafana. The node-exporter is responsible for exporting metrics of the hardware

and operating system (OS), and the kube-state-metrics is a service that listens to the

Kubernetes API and generates metrics about the state of the objects. It was installed using

Helm to ease future updates, since it is composed of many components. In the original chart

we defined the external ingress with the respective TLS, defined passwords and added some

additional scrap configs for Ceph and HAproxy.

Figure 42 - Architecture of Prometheus and some of its ecosystem components (Prometheus, 2021)

63 https://artifacthub.io/packages/helm/prometheus-community/kube-prometheus-stack

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

84

As can been seen in Figure 42, Prometheus scrapes metrics from various sources, either

directly or via an intermediary push gateway. It then stores the scraped data locally and runs

rules over this data to either aggregate and record new time series from existing data or

generate alerts via email, Pagerduty64 and others. Grafana or other API consumers can be

used to visualize the collected data (Prometheus, 2021).

5.8.1. Grafana

In our context, Grafana65 is an operational dashboard that allows operators to

understand what is happening with the Kubernetes cluster and its applications, enabling the

creation of dashboards more easily. It builds charts and dashboards from the data stored in

Prometheus, being the default solution for viewing such metrics. The marketplace allows the

installation of extensions such as custom dashboards developed by the community, the

collection and export of data using plugins from many vendors, as Jira or Google Sheets,

and their visualization. Our implementation of Grafana has dashboards that show

information about the Ceph status, HAproxy, Prometheus Stats and information related to

the cluster that can be filtered by node, namespace and much more. After the correct

installation of Grafana, we had to manually add community dashboards to allow the

Haproxy, K8s cluster, node-exporter and Ceph metrics.

5.8.2. Prometheus

Prometheus66 is a system monitoring and alerting toolkit that has become the prevalent

solution for Kubernetes monitoring, helping manage the various components of its metrics

system in our cluster. Prometheus uses several custom resources such as Alertmanager

deployments, scrape configurations that inform Prometheus of the targets to scrape metrics

from, and rules for recording metrics and alerting on them.

64 https://www.pagerduty.com/
65 https://grafana.com/
66 https://prometheus.io/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

85

5.8.3. Alertmanager

Alertmanager67 is responsible for handling the alerts sent by the applications (e.g.,

Prometheus server). It will process the alerts, deduplicating, grouping, and routing them to

the correct receiver integration such as email, Slack, and others, generating events in the

specified cases. Prometheus has alerting rules that fire off alerts in response to measurable

conditions. Those alerts are then sent to Alertmanager, where they are grouped, deduplicated

and forwarded to the notification systems, such as email, Slack, or PagerDuty. We did not

implement any alert on Alertmanager, but it is something that may be necessary in the future.

5.9. MER Application Development

To be able to understand the changes we have made to the project (i.e., a scalable and

distributed music emotion recognition system), it is first necessary to understand what we

are trying to achieve. As already explained in the project’s objectives, we want to achieve a

full cloud native solution, that allow us to develop software in a faster and agile way. This

frees the development teams from worrying about services orchestration, abstracting them

from the infrastructure, making them more productive and efficient, which triggers an

increase in the quality of the solution.

Cloud Native is the concept of building and running applications, taking advantage of

the distributed computing offered by the cloud delivery models. Cloud native applications

are designed and built to exploit the scale, elasticity, resiliency, and flexibility provided by

the cloud.

The first step to achieve this, was to divide what was a mono-repo68, to a poly-repo

environment on Git. This allows for more agility in the future, making it possible for

different teams to work simultaneously on different microservices without any conflicts. It

also enables the development of different pipelines per repo, to build, test and publish each

67 https://prometheus.io/docs/alerting/latest/alertmanager/
68 The initial proof of concept was used a single git repository, containing the entire code for all the services.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

86

microservice, as explained in section 5.9.1. After separating the codebases, during the initial

development, we hit a problem caused by the microservices trying to connect to the

RabbitMQ server while not yet ready, and thus the connection failed. Docker best practices

advocate that container images should only execute a process at a time, so we developed a

simple script that checked if a connection to the RabbitMQ server was available, and if the

result was positive, would launch the main microservice process.

As noted above, GitHub Actions allow the usage of Actions from the community when

they are published in the marketplace. We needed an action to create a RabbitMQ server to

run the CI tests, but at the time, none allowed to enable and specify the management port

from the RabbitMQ. So, we developed and published an action69 to create an RabbitMQ

server, fully customizable, that allowed setting the username, password, port, management

port and image version. This was an added value contribution because it came to be used by

several people in the community.

In line with the development of the various microservices, individual software tests that

would be integrated into the CI/CD pipelines latter were also created. One of the advantages

of using these pipelines is that we are allowed to use different programming languages on

the main development of the microservice and on the tests, making the tests more uniform

among themselves.

Each repository contains the microservice source code, a Dockerfile that will generate

a Docker image and the test suite. Next, we will briefly explain each microservice.

• vidExtractor70 – NodeJS microservice responsible for checking and downloading the

YouTube audio file and save it as a file on a shared PV. It is also responsible for

creating a NoSQL document with the video metadata like title, artist, and others,

sending them in the end to LyricsExtractor and GenreFinder. The video ID gets sent

to SourceSeparation.

69 https://github.com/marketplace/actions/rabbitmq-action-with-mng
70 https://github.com/mer-team/vidExtractor

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

87

• musicClass71 – Python microservice responsible for the music emotion classification.

It saves the predicted emotion classification in the database and when the processing

of all the excerpts ends, sends them to the API, so they can be shown to the users.

• LyricsProcessor72 – Extracts the song lyrics, saving them to the database and sending

at the end to the classifier.

• API73 – NodeJS microservice responsible for the backend API. It will receive from

the user and send to vidExtractor the video URL.

• featExtractor74 – Python microservice responsible for extracting features from the

provided music files. At the end sends the features to the microservice musicClass

so they can be processed.

• wave2image75 – NodeJS microservice responsible for generating and saving

waveform images based on the downloaded audio files on a PV.

• SourceSeparation76 - Takes the original audio and separates its sources (e.g., vocals)

depending on the model in use. Then sends the video ID to Segmentation.

• frontend77 - Frontend microservice based on React. This repo has two Dockerfiles,

one for development and another for production that has nginx to serve the generated

assets. The DockerHub is updated with booth images.

• Segmentation78 - Segments an audio file into smaller files with 30 seconds length and

15 seconds of overlapping. These files are saved with one audio channel only and

22500 Hz of frequency. At the end it updates the database with the number of

excerpts and send the ID to featExtractor.

• LyricsExtractor79 - Tries to get the lyric of a song and save it in a text file. At the

end, the file name is sent to LyricsProcessor, to extract its features.

71 https://github.com/mer-team/musicClass
72 https://github.com/mer-team/LyricsProcessor
73 https://github.com/mer-team/API
74 https://github.com/mer-team/featExtractor
75 https://github.com/mer-team/wave2image
76 https://github.com/mer-team/SourceSeparation
77 https://github.com/mer-team/frontend
78 https://github.com/mer-team/Segmentation
79 https://github.com/mer-team/LyricsExtractor

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

88

• GenreFinder80 – Get the five most suitable music genres for a song and updates them

in the database.

• Manager81 – Microservice to manage the flow of MER execution, managing all the

others microservices by determining the sequence of instructions in the system.

Created because, previously, microservices called each other, generating an

unnecessary degree of dependency between them.

5.9.1. GitHub Actions

GitHub actions gives developers the ability to automate their workflows across issues,

pull requests, and more with native CI/CD functionalities. They bring automation directly

into the software development lifecycle via event-driven triggers that can be something like

a pull request or commit. These automations are handled via workflows which are yaml files

placed on the .github/workflows directory. In that folder we created 2 different actions:

• build.yaml - runs on every code push or pull request and builds the microservice

docker image, makes a container security scan, installs dependencies, and run the

software tests, as illustrated in Figure 43.

• publish.yml - runs on every tag creation, builds the docker image and pushes the

updated docker image to the corresponding DockerHub repository, as illustrated in

Figure 44.

80 https://github.com/mer-team/GenreFinder
81 https://github.com/mer-team/Manager

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

89

Figure 43 - Sequence diagram of the build action

Figure 44 - Sequence diagram of the publish action

At the end, the software development lifecycle should look like the Figure 45. The

developer makes changes on the microservices source code through commits and the CI tool,

in our scenario, the GitHub Actions, builds and updates the new images when the tests pass.

The operations team updates the Kubernetes manifests with the new image’s version and

ArgoCD will detect such changes and sync with the repository, applying the changes on the

cluster.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

90

Figure 45 - Software development lifecycle, adapted from (Ando, 2020)

5.9.2. Container Image Registry

Container image registry is a stateless, highly scalable application that stores and distributes

container images. It is responsible for storing and allowing the download of container

images, having some sort of authentication system implemented that controls the image

repository that each user is allowed to push, edit, or delete. During the project development

was used DockerHub as a container registry82 because it has an unlimited storage space,

unlike the GitHub Packages83 that has a limit of 2GB on the Pro plan. There are also solutions

that allow the implementation of container registers inside the Kubernetes cluster like

Harbor84 or Trow85. These self-hosted solutions were set aside because they would consume

resources in the cluster, whereas we could get the same advantages totally for free by using

DockerHub.

82 https://hub.docker.com/
83 https://github.com/features/packages
84 https://goharbor.io/
85 https://trow.io/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

91

Chapter 6

Conclusion and

Future Work

In this final chapter we present a general overview of the work developed, highlighting

the main achievements, but aware that our contributions are a step forward in a project that

still has many more to go. Thus, we conclude by addressing some points left open, leaving

tips on how to develop them.

6.1. Conclusion

The area of MER has been a topic of constant development, given its pertinence and

financial interest. This work adds value in this area, by focusing more on the applied research

part, laying the foundations which we hope can serve as a basis for other teams and works

in the future.

The main objective of this MSc work was to orchestrate a distributed, resilient, and

scalable infrastructure to host the MERmaid application. We started from a previous proof

of concept, which was almost exclusively the MER web application logic using three

microservices, in which we fixed the identified problems and split it in multiple repositories.

Accompanying the development of the new version of the application, pipelines were created

to integrate the software tests and apply a whole CI/CD logic. This enables developers to

work on microservices creating new features, and when the code base gets stable, a release

is created that automatically generates updated Docker images. The continuous

implementation platform will then take care of update the Kubernetes manifest on the

cluster. To support all this, a three-node Kubernetes cluster was planned and provisioned,

exposed by a fourth edge node running HAProxy + BIRD (BGP peering). The cluster

contains the requirements to host the current or future MER applications, supporting object

and file storage using Ceph with Rook, monitoring and alerting capabilities with

Prometheus, Grafana and Alertmanager, Portainer for managing the cluster and teams, and

ArgoCD to achieve continuous deployment.

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

92

With the thesis completion, we can say with certainty that it is possible to implement

an on-premises orchestration platform based on Kubernetes, that is distributed, resilient and

fully scalable, but more importantly, future-proof. Current, but tested, technologies were

used, that have proven themselves for use in both development and production

environments. As an additional indicator of the success of this project, we aim to publish a

scientific article with the results achieved as soon as the application itself is fully

demonstrable.

6.2. Future Work

The developed work prepared a whole base structure for the continuity of the project.

The essential aspects for its operation have been addressed, however, some features have not

been tackled nor implemented and may be developed in the future. One of these features is

the backup system. We chose Ceph with the future in mind, and because of its s3 support, it

should be easy to create an automated backup system with Velero86 to a s3 bucket. Another

feature that would be interesting to use is Kubeflow87, that is a ML toolkit for Kubernetes.

Kubeflow would allow us to deploy simple, portable, and scalable ML workflows, but due

to infrastructure limitations (i.e., lack of GPUs), its usage was out of the scope of this work.

It would be interesting to have several clusters in order to have multiple development

environments (e.g., a production cluster and a development cluster). At the observability

level we did not implement collection and analysis of the tracing metrics. This could be

achieved using Istio88 with Jaeger89, Zipkin90 or Kiali91, giving us the information needed to

keep the microservices healthy and predictable.

In terms of supporting new features of the MERmaid application, and forgetting the

orchestration part, it would be interesting to improve the Frontend and API. It would also be

86 https://velero.io/
87 https://www.kubeflow.org/
88 https://istio.io/
89 https://jaegertracing.io/
90 https://zipkin.io/
91 https://kiali.io/

 Orchestration of Music Emotion

Recognition Services – Automating Deployment, Scaling and Management

93

interesting to support various classification models (for example dimensional models with

arousal and valence using regression) and even allow users to provide extra models. This

would increase collaboration and considering that running already trained models is

lightweight, it could motivate the use and dissemination of the application.

MER: Estudo e restruturação de um sistema de reconhecimento emocional em música

áudio usando o YouTube

95

References

Ando. (2020, December 24). Introduction to GitOps. https://tech.drecom.co.jp/ac2020-

beginning-gitops/

António, R. M. (2019). Microsserviços para Reconhecimento de Emoção em Música.

http://hdl.handle.net/10400.26/31444

António, T. M. (2021). MER: Estudo e restruturação de um sistema de reconhecimento

emocional em música áudio usando o YouTube.

Böhm, S., & Wirtz, G. (2021). Profiling lightweight container platforms: MicroK8s and K3s

in comparison to kubernetes. CEUR Workshop Proceedings, 2839(February), 65–73.

Burns, B., Grant, B., Oppenheimer, D., Brewer, E., & Wilkes, J. (2016). Lessons learned

from three container-management systems over a decade.

https://queue.acm.org/detail.cfm?id=2898444

Cooke, D. (1959). The Language of Music. Oxford University Press.

https://philpapers.org/rec/COOTLO-5

Davis, J., & Daniels, K. (2016). Effective DevOps. In O’Reilly Media, Inc.

https://www.oreilly.com/library/view/effective-devops/9781491926291/

Delbouys, R., Hennequin, R., Piccoli, F., Royo-Letelier, J., & Moussallam, M. (2018). Music

Mood Detection Based On Audio And Lyrics With Deep Neural Net.

https://arxiv.org/pdf/1809.07276.pdf

Denis Germain. (2021, June 15). Back from KubeCon & CloudNativeCon. Deezer I/O.

https://deezer.io/back-from-kubecon-cloudnativecon-europe-2021-key-learnings-and-

takeaways-9553c1d7a0d0

Densify. (2021). Comparing deployment tools | Densify.

https://www.densify.com/kubernetes-tools/kubeadm

MER: Estudo e restruturação de um sistema de reconhecimento emocional em música

áudio usando o YouTube

96

Docker Swarm. (2021). How nodes work | Docker Documentation.

https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/

Ducastel, A. (2020). CNI benchmark. https://itnext.io/benchmark-results-of-kubernetes-

network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49

Flant Blog / Sudo Null IT News. (2017, October 11). Kubernetes success stories -

SoundCloud. https://sudonull.com/post/66192-Kubernetes-success-stories-in-

production-Part-4-SoundCloud-authors-Prometheus-Flant-Blog

Gardner, B. (2020). SUSE Best Practices Rook Best Practices for Running Ceph on

Kubernetes SUSE Enterprise Storage, Ceph, Rook, Kubernetes, Container-as-a-

Service Platform. https://rook.io/docs/

GitHub. (2021a). Continuous Integration and Continuous Delivery (CI/CD).

https://resources.github.com/ci-cd/

GitHub. (2021b). What is DevOps. https://resources.github.com/devops/

Hussein Galal. (2021). Introduction to K3s. SUSE & Rancher Community.

https://community.suse.com/posts/introduction-to-k3s

Kostis Kapelonis. (2020, December 17). Solving configuration drift using GitOps with Argo

CD. https://www.cncf.io/blog/2020/12/17/solving-configuration-drift-using-gitops-

with-argo-cd/

Kubernetes. (2021). Highly Available topology. https://kubernetes.io/docs/setup/production-

environment/tools/kubeadm/ha-topology/

Kubernetes & Spotify. (2021). Spotify Case Study | Kubernetes. https://kubernetes.io/case-

studies/spotify/

Lamia Caliati. (2018, April 5). FOSDEM 2018. Deezer I/O. https://deezer.io/fosdem-2018-

d2edf86cf06a

MER: Estudo e restruturação de um sistema de reconhecimento emocional em música

áudio usando o YouTube

97

Lusa. (2021). Receitas Musica.

https://www.lusa.pt/article/cOYAr1BlgpbevJ_4pPI1RzMSZM5iuSI1/receitas-de-

venda-de-música-tiveram-aumento-global-de-7-4-em-ano-de-pandemia

Malheiro, R., Panda, R., Gomes, P., & Paiva, R. P. (2018). Emotionally-relevant features for

classification and regression of music lyrics. IEEE Transactions on Affective

Computing, 9(2), 240–254. https://doi.org/10.1109/TAFFC.2016.2598569

Newman, S. (2021). Building Microservices, 2nd Edition. O’Reilly Media, Inc.

https://learning.oreilly.com/library/view/building-microservices-2nd/9781492034018/

NGINX. (2021a). Bare-metal considerations. https://kubernetes.github.io/ingress-

nginx/deploy/baremetal/

NGINX. (2021b). How Ingress Controller Works. https://docs.nginx.com/nginx-ingress-

controller/intro/how-nginx-ingress-controller-works/

Nick Ramirez. (2019, June 15). HAProxy SSL Termination.

https://www.haproxy.com/blog/haproxy-ssl-termination/

OKD. (2021). OKD. https://www.okd.io/

Panda, R. E. S. (2019). Emotion-based Analysis and Classification of Audio Music (Issue

January). https://estudogeral.sib.uc.pt/handle/10316/87618

Panda, R., Malheiro, R. M., & Paiva, R. P. (2020a). Audio Features for Music Emotion

Recognition: a Survey. IEEE Transactions on Affective Computing, 3045(c), 1–1.

https://doi.org/10.1109/taffc.2020.3032373

Panda, R., Malheiro, R., & Paiva, R. P. (2020b). Novel Audio Features for Music Emotion

Recognition. IEEE Transactions on Affective Computing, 11(4), 614–626.

https://doi.org/10.1109/TAFFC.2018.2820691

Panda, R., Redinho, H., Gonçalves, C., Malheiro, R., & Paiva, R. P. (2021). How Does the

Spotify API Compare to the Music Emotion Recognition State-of-the-Art?

MER: Estudo e restruturação de um sistema de reconhecimento emocional em música

áudio usando o YouTube

98

https://doi.org/10.5281/zenodo.5045099

Pannese, A., Rappaz, M. A., & Grandjean, D. (2016). Metaphor and music emotion: Ancient

views and future directions. Consciousness and Cognition, 44, 61–71.

https://doi.org/10.1016/J.CONCOG.2016.06.015

Piotr Karwatka. (2020, January 14). Monolithic architecture vs microservices.

https://www.divante.com/blog/monolithic-architecture-vs-microservices

Platform9. (2017, July 11). Kubernetes vs Mesos + Marathon | Platform9.

https://platform9.com/blog/kubernetes-vs-mesos-marathon/

Platform9. (2021). Using Calico. https://platform9.com/blog/the-ultimate-guide-to-using-

calico-flannel-weave-and-cilium/

Prometheus. (2021). Prometheus Overview .

https://prometheus.io/docs/introduction/overview/

Reddit. (2021). Rethinking Kubernetes.

https://www.reddit.com/r/kubernetes/comments/lwb31v/were_the_engineers_rethinki

ng_kubernetes_at/

RedHat. (2018a). Understanding cloud computing. https://www.redhat.com/en/topics/cloud

RedHat. (2018b, January 31). What’s a Linux container?

https://www.redhat.com/en/topics/containers/whats-a-linux-container

RedHat. (2018c, March 9). Understanding microservices.

https://www.redhat.com/en/topics/microservices

Rodolfo Gobbi. (2019, June 27). Qual o nível de maturidade DevOps da sua empresa.

https://blog.4linux.com.br/qual-o-nivel-de-maturidade-devops-da-sua-empresa/

Rosso, J., Lander, R., Brand, A., & Harris, J. (2021). Production Kubernetes.

https://tanzu.vmware.com/content/ebooks/production-kubernetes

MER: Estudo e restruturação de um sistema de reconhecimento emocional em música

áudio usando o YouTube

99

Skender, M. (2020). Kubernetes on bare-metal. https://faun.pub/kubernetes-on-bare-metal-

roll-your-own-9ef99312df09

Spotify. (2016). Spotify patent recognising and indexing context signals in order to generate

contextual playlists and control playback. https://patents.justia.com/patent/11003710

Spotify. (2018). Spotify patent - Identification of taste attributes from an audio signal.

https://patents.justia.com/patent/10891948

Statista Research Department. (2021). Music streaming market share . Statista.

https://www.statista.com/statistics/653926/music-streaming-service-subscriber-share/

Travis. (2020). Travis new princing model. https://blog.travis-ci.com/2020-11-02-travis-ci-

new-billing

Vamsi Chemitiganti. (2019, May 28). Kubernetes Concepts and Architecture. Platform 9.

https://platform9.com/blog/kubernetes-enterprise-chapter-2-kubernetes-architecture-

concepts/

Vexxhost. (2017). kubernetes mesos comparasion. https://vexxhost.com/blog/kubernetes-

mesos-comparison-containerization

VMware Inc. (2021). The State of Kubernetes. https://tanzu.s3.us-east-

2.amazonaws.com/campaigns/pdfs/VMware_StateOfK8s_2018.pdf

Weaveworks. (2021a). Fast datapath.

https://www.weave.works/docs/net/latest/concepts/fastdp-how-it-works/

Weaveworks. (2021b, July 13). The History of GitOps. https://www.weave.works/blog/the-

history-of-gitops

Wikipedia. (2021). Comparison of music streaming services.

https://en.wikipedia.org/wiki/Comparison_of_music_streaming_services

Zakhar Snezhkin. (2021). Small local Kubernetes Comparison. https://blog.flant.com/small-

MER: Estudo e restruturação de um sistema de reconhecimento emocional em música

áudio usando o YouTube

100

local-kubernetes-comparison/

MER: Estudo e restruturação de um sistema de reconhecimento emocional em música

áudio usando o YouTube

101

Appendix 1

Kubernetes Setup

Kubernetes Setup 1

Kubernetes Setup
EXECUTAR EM TODOS:

Update the system
sudo apt update && sudo apt dist-upgrade -y

EXECUTAR NO INGRESS:

Instalar HAProxy
sudo add-apt-repository -y ppa:vbernat/haproxy-2.4
#sudo apt update
sudo apt install -y haproxy
sudo systemctl stop haproxy
sudo systemctl disable haproxy

permitir bind das portas 80 e 443
sudo setcap cap_net_bind_service=+ep /usr/sbin/haproxy

Instalar o ingress controller
wget https://github.com/haproxytech/kubernetes-ingress/releases/download/v1.7.0/haproxy-ingress-controller_1.7.0_Linux_x86_64.tar.gz 1> /dev
mkdir ingress-controller
tar -xzvf haproxy-ingress-controller_1.7.0_Linux_x86_64.tar.gz -C ./ingress-controller
sudo cp ./ingress-controller/haproxy-ingress-controller /usr/local/bin/

criar ficheiro service
cat <<EOF | sudo tee /lib/systemd/system/haproxy-ingress.service
[Unit]
Description="HAProxy Kubernetes Ingress Controller"
Documentation=https://www.haproxy.com/
Requires=network-online.target
After=network-online.target

[Service]
Type=simple
User=root
Group=root
ExecStartPre=/bin/mkdir -p /tmp/haproxy-ingress/etc/
ExecStartPre=/usr/bin/wget https://raw.githubusercontent.com/haproxytech/kubernetes-ingress/master/fs/usr/local/etc/haproxy/haproxy.cfg -P /
ExecStart=/usr/local/bin/haproxy-ingress-controller --external --configmap=default/haproxy-kubernetes-ingress --program=/usr/sbin/haproxy -
ExecReload=/bin/kill --signal HUP $MAINPID
KillMode=process
KillSignal=SIGTERM
Restart=on-failure
LimitNOFILE=65536

[Install]
WantedBy=multi-user.target
EOF

sudo systemctl enable haproxy-ingress
sudo systemctl start haproxy-ingress

EXECUTAR NAS MAQUINAS K (kmaster, kworker01 e kworker02):

sudo swapoff -a
sudo nano /etc/fstab (comentar linha que tem o /swap.img)

######################### Networking requesites
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
Create the .conf file to load the modules at bootup
cat <<EOF | sudo tee /etc/modules-load.d/crio.conf
overlay
br_netfilter

Kubernetes Setup 2

EOF

sudo modprobe overlay
sudo modprobe br_netfilter
sudo modprobe rbd

Set up required sysctl params, these persist across reboots.
cat <<EOF | sudo tee /etc/sysctl.d/99-kubernetes-cri.conf
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-ip6tables = 1
EOF

sudo sysctl --system

######################### Setup CRIO-O
OS=xUbuntu_20.04
VERSION=1.21
cat <<EOF | sudo tee /etc/apt/sources.list.d/devel:kubic:libcontainers:stable.list
deb https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/stable/$OS/ /
EOF
cat <<EOF | sudo tee /etc/apt/sources.list.d/devel:kubic:libcontainers:stable:cri-o:$VERSION.list
deb http://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/stable:/cri-o:/$VERSION/$OS/ /
EOF

curl -L https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/stable/$OS/Release.key | sudo apt-key --keyring /etc/apt/tr
curl -L https://download.opensuse.org/repositories/devel:kubic:libcontainers:stable:cri-o:$VERSION/$OS/Release.key | sudo apt-key --keyring

Install kubernetes certs and depedencies
sudo apt-get install -y apt-transport-https ca-certificates curl -y
sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-keyring.gpg https://packages.cloud.google.com/apt/doc/apt-key.gpg
echo "deb [signed-by=/usr/share/keyrings/kubernetes-archive-keyring.gpg] https://apt.kubernetes.io/ kubernetes-xenial main" | sudo tee /etc/
sudo apt-get update

Install CRIO-O
sudo apt-get install cri-o cri-o-runc -y

sudo systemctl daemon-reload
sudo systemctl enable crio --now

Enable and start iscsid
sudo systemctl enable iscsid --now
sudo systemctl start iscsid

Install and hold kubernetes
sudo apt-get install -y kubelet kubeadm kubectl
sudo apt-mark hold kubelet kubeadm kubectl

EXECUTAR NO MASTER:

Cluster setup (pod-network-cidr é um bloco que não esteja em utilização)
Vai ser gerado um comando do género 'kubeadm join (...)' que é preciso guardar
para aplicar no worker
sudo kubeadm init --pod-network-cidr=10.11.0.0/16

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

Instalar operador do calico
kubectl create -f https://docs.projectcalico.org/manifests/tigera-operator.yaml

Substituir o cidr utilizado aqui (não modifiquei o blockSize)
cat <<EOF | sudo tee ./calico-installation.yaml
apiVersion: operator.tigera.io/v1
kind: Installation
metadata:
 name: default
spec:
 # Configures Calico networking.
 calicoNetwork:
 bgp: Enabled

 # Note: The ipPools section cannot be modified post-install.
 ipPools:

Kubernetes Setup 3

 - blockSize: 26
 cidr: 10.11.0.0/16
 encapsulation: IPIP
 natOutgoing: Enabled
 nodeSelector: all()
EOF

Aplicar o ficheiro criado no ultimo passo
kubectl apply -f calico-installation.yaml

Instalar o calicoctl
wget https://github.com/projectcalico/calicoctl/releases/download/v3.20.2/calicoctl 1> /dev/null 2> /dev/null
sudo chmod +x calicoctl
sudo mv calicoctl /usr/local/bin/
sudo mkdir /etc/calico

Configuração do calicoctl
cat <<EOF | sudo tee /etc/calico/calicoctl.cfg
apiVersion: projectcalico.org/v3
kind: CalicoAPIConfig
metadata:
spec:
 datastoreType: "kubernetes"
 kubeconfig: "$HOME/.kube/config"
EOF

Configurar o calico BGP
MUDAR O peerIP PARA O IP DO LoadBalancer
cat <<EOF | tee ./calico-bgp.yaml
apiVersion: projectcalico.org/v3
kind: BGPConfiguration
metadata:
 name: default
spec:
 logSeverityScreen: Info
 nodeToNodeMeshEnabled: true
 asNumber: 65000

apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:
 name: my-global-peer
spec:
 peerIP: 192.168.1.30
 asNumber: 65000
EOF

Configurar o BGP peering
calicoctl apply -f calico-bgp.yaml

Criar ConfigMap para o ingress controller
kubectl create configmap haproxy-kubernetes-ingress

EXECUTAR NOS WORKERS:

Join the cluster using the command provided by the kubeadm
sudo kubeadm join <ip>:6443 --token <token> --discovery-token-ca-cert-hash <hash>

EXECUTAR NO INGRESS:

sudo mkdir -p /root/.kube
FAZER NESTE PASSO:
Copiar ficheiro /etc/kubernetes/admin.conf do MASTER para /root/.kube/config do LoadBalancer
sudo chown -R root:root /root/.kube

Instalar o Bird
sudo add-apt-repository -y ppa:cz.nic-labs/bird
sudo apt update

Kubernetes Setup 4

sudo apt install bird

Ficheiro de config do bird - MUDAR ROUTER ID, IP's, CIDR
Deixei o gist aqui apenas por descargo de conscicencia, o comando deve criar o ficheiro
https://gist.github.com/jpcanoso/ad7948256f6fc026cf61b33e55e427e4

cat <<EOF | sudo tee /etc/bird/bird.conf
router id 192.168.1.30;

log syslog all;

controlplane
protocol bgp {
 local 192.168.1.30 as 65000;
 neighbor 192.168.1.31 as 65000;
 direct;
 import filter {
 if (net ~ [10.11.0.0/16{26,26}]) then accept;
 };
 export none;
}

worker1
protocol bgp {
 local 192.168.1.30 as 65000;
 neighbor 192.168.1.32 as 65000;
 direct;
 import filter {
 if (net ~ [10.11.0.0/16{26,26}]) then accept;
 };
 export none;
}

worker2
protocol bgp {
 local 192.168.1.30 as 65000;
 neighbor 192.168.1.33 as 65000;
 direct;
 import filter {
 if (net ~ [10.11.0.0/16{26,26}]) then accept;
 };
 export none;
}

The Kernel protocol is not a real routing protocol. Instead of communicating
with other routers in the network, it performs synchronization of BIRD's
routing tables with the OS kernel.
protocol kernel {
 scan time 60;
 export all; # Actually insert routes into the kernel routing table
}

The Device protocol is not a real routing protocol. It doesn't generate any
routes and it only serves as a module for getting information about network
interfaces from the kernel.
protocol device {
 scan time 60;
}
EOF

sudo systemctl enable bird
sudo systemctl restart bird

EXECUTAR NO MASTER:

Fix Cluster Error Status
kubectl get componentstatuses
If componenentes are Unhealthy:
sudo vi /etc/kubernetes/manifests/kube-scheduler.yaml
sudo vi /etc/kubernetes/manifests/kube-controller-manager.yaml
Remove the '--port=0' line on the spec->containers->command
sudo systemctl restart kubelet.service

Kubernetes Setup 5

Setup rook ceph on kubernetes
git clone --single-branch --branch v1.7.5 https://github.com/rook/rook.git
cd rook/cluster/examples/kubernetes/ceph
kubectl create -f crds.yaml -f common.yaml -f operator.yaml

Descarregar esta versão do cluster-test.yaml:
https://gist.github.com/jpcanoso/8a1ddfc2683cdd3fd8cb6d92062a8296
E depois aplicar:

kubectl create -f cluster-test.yaml

Get status (esperar por PHASE = READY) (vai demorar)
kubectl get cephcluster -A

Create pod ceph tools (not needed)
kubectl apply -f toolbox.yaml
kubectl -n rook-ceph exec -it deploy/rook-ceph-tools -- bash
$ ceph -s
$ ceph osd status
$ exit
kubectl delete -n rook-ceph deploy/rook-ceph-tools

Create StorageClass
kubectl create -f csi/rbd/storageclass-test.yaml

Ativar metrics
Descarregar yaml
https://gist.github.com/jpcanoso/1de1b54b0d081e1596f05ced2b6259ab
E aplicar

kubectl apply -f metrics.yaml

INSTALAR o cert-manager
(É seguro correr estes passos mesmo sem o dns configurado) :)
kubectl apply -f https://github.com/jetstack/cert-manager/releases/download/v1.5.4/cert-manager.yaml

Continuar para o proximo passo apenas quando os pods estiverem ready (kubectl get pods -n cert-manager)
Criar e aplicar o ClusterIssuer de staging
apiVersion: cert-manager.io/v1alpha2
kind: ClusterIssuer
metadata:
 name: letsencrypt-staging
spec:
 acme:
 email: myemail@company.com
 server: https://acme-staging-v02.api.letsencrypt.org/directory
 privateKeySecretRef:
 # Secret used to store the account's private key.
 name: example-issuer-account-key
 # Add a ACME HTTP01 challenge solver
 solvers:
 - http01:
 ingress: {}

Criar e aplicar o ClusterIssuer de production
apiVersion: cert-manager.io/v1alpha2
kind: ClusterIssuer
metadata:
 name: letsencrypt-production
spec:
 acme:
 email: myemail@company.com
 server: https://acme-v02.api.letsencrypt.org/directory
 privateKeySecretRef:
 # Secret used to store the account's private key.
 name: example-issuer-account-key
 # Add a ACME HTTP01 challenge solver
 solvers:
 - http01:
 ingress: {}

Kubernetes Setup 6

INSTALAR O Portainer
Install HELM -> Run on MASTER
curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3
sudo chmod +x get_helm.sh
./get_helm.sh

Patch storage class
kubectl patch storageclass rook-ceph-block -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

helm repo add portainer https://portainer.github.io/k8s/
helm repo update
helm install --create-namespace -n portainer portainer portainer/portainer --set service.type=ClusterIP

Create ingress
cat <<EOF | tee ./portainer-ingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: portainer-ingress
 namespace: portainer
spec:
 rules:
 - host: portainer.casa.canoso.pt
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: portainer
 port:
 number: 9000
EOF
kubectl apply -f portainer-ingress.yaml

MONITORING STACK
kubectl create ns monitoring

Adicionar repo no helm
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo update

adicionar secret username, pw
kubectl create secret generic -n monitoring haproxy-credentials --from-literal=admin=$(openssl passwd -1 mermaid)

Save the file as values.yaml
https://gist.github.com/jpcanoso/dcf99847bf4055864728a2b18350cf75

Edit the file:
lines 229 -> alertmanager domain
line 650 -> grafana dashboard password
lines 675 -> grafana domain
lines 1920 -> prometheus domain

helm install prometheus -n monitoring -f values.yaml prometheus-community/kube-prometheus-stack

Importar Dashboards no grafana:
Aceder ao grafana, efetuar login
Na barra lateral ir ao + (Create) -> Import
Importar os IDs:
12693
11328
1860
2842
e seleccionar o Prometheus como source

Kubernetes Setup 7

Ativar o Monitoring no CEPH
cd rook/cluster/examples/kubernetes/ceph/monitoring
kubectl create -f service-monitor.yaml
kubectl create -f prometheus.yaml
kubectl create -f prometheus-service.yaml

ARGOCD
kubectl create ns argocd
helm repo add argo https://argoproj.github.io/argo-helm
helm repo update

Download raw as argovalues.yaml
https://gist.github.com/jpcanoso/0711c7bd2dd3db428c39609efca2b473

helm install argocd -n argocd -f argovalues.yaml argo/argo-cd

Create ingress
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 cert-manager.io/cluster-issuer: letsencrypt-production
 name: argocd-ingress
 namespace: argocd
spec:
 rules:
 - host: argocd.mermaid.dei.uc.pt
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: argocd-server
 port:
 number: 443
 tls:
 - hosts:
 - argocd.mermaid.dei.uc.pt
 secretName: argocd-cert

Get dashboard password
kubectl -n argocd get secret argocd-initial-admin-secret -o jsonpath="{.data.password}" | base64 -d

FIM do Setup

Ingress

Prometheus Ingress
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 cert-manager.io/cluster-issuer: letsencrypt-production
 haproxy.org/auth-realm: Authentication Required
 haproxy.org/auth-secret: monitoring/haproxy-credentials
 haproxy.org/auth-type: basic-auth
 haproxy.org/ssl-redirect: "false"
 name: prometheus-kube-prometheus-prometheus
 namespace: monitoring
spec:
 ingressClassName: haproxy
 rules:
 - host: prometheus.mermaid.dei.uc.pt
 http:
 paths:
 - backend:
 service:
 name: prometheus-kube-prometheus-prometheus
 port:
 number: 9090
 path: /

Kubernetes Setup 8

 pathType: Prefix
 tls:
 - hosts:
 - prometheus.mermaid.dei.uc.pt
 secretName: prometheus-cert

Grafana Ingress
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 cert-manager.io/cluster-issuer: letsencrypt-production
 name: prometheus-grafana
 namespace: monitoring
spec:
 ingressClassName: haproxy
 rules:
 - host: grafana.mermaid.dei.uc.pt
 http:
 paths:
 - backend:
 service:
 name: prometheus-grafana
 port:
 number: 80
 path: /
 pathType: Prefix
 tls:
 - hosts:
 - grafana.mermaid.dei.uc.pt
 secretName: grafana-cert

Alertmanager Ingress
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 cert-manager.io/cluster-issuer: letsencrypt-production
 haproxy.org/auth-realm: Authentication Required
 haproxy.org/auth-secret: monitoring/haproxy-credentials
 haproxy.org/auth-type: basic-auth
 haproxy.org/ssl-redirect: "false"
 name: prometheus-kube-prometheus-alertmanager
 namespace: monitoring
spec:
 ingressClassName: haproxy
 rules:
 - host: alertmanager.mermaid.dei.uc.pt
 http:
 paths:
 - backend:
 service:
 name: prometheus-kube-prometheus-alertmanager
 port:
 number: 9093
 path: /
 pathType: ImplementationSpecific
 tls:
 - hosts:
 - alertmanager.mermaid.dei.uc.pt
 secretName: alertmanager-cert

Prometheus Ingress
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 cert-manager.io/cluster-issuer: letsencrypt-production
 name: portainer-ingress
 namespace: portainer
spec:
 rules:
 - host: panda.dei.uc.pt
 http:
 paths:
 - backend:
 service:
 name: portainer
 port:
 number: 9000
 path: /

Kubernetes Setup 9

 pathType: Prefix
 - host: portainer.mermaid.dei.uc.pt
 http:
 paths:
 - backend:
 service:
 name: portainer
 port:
 number: 9000
 path: /
 pathType: Prefix
 tls:
 - hosts:
 - portainer.mermaid.dei.uc.pt
 secretName: portainer-cert

Ceph Ingress
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: ceph-ingress
 namespace: rook-ceph
 annotations:
 cert-manager.io/cluster-issuer: letsencrypt-production
spec:
 rules:
 - host: ceph.mermaid.dei.uc.pt
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: rook-ceph-mgr-dashboard
 port:
 number: 7000
 tls:
 - hosts:
 - ceph.mermaid.dei.uc.pt
 secretName: ceph-cert

	ABSTRACT
	RESUMO
	AGRADECIMENTOS
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	GLOSSARY
	Chapter 1 Introduction
	1.1. Problem and Motivation
	1.2. Objectives
	1.3. Initial Proof of Concept
	1.4. MERmaid – A Robust and Scalable MER System
	1.5. Document Outline

	Chapter 2 Background and Concepts
	2.
	2.1. Introduction to Music Emotion Recognition
	2.2. Introduction to DevOps
	2.2.1. GitOps
	2.2.2. Continuous Integration and Continuous Delivery
	2.2.3. DevSecOps

	2.3. Virtualization Concepts
	2.4. Cloud Concepts
	2.5. Microservices

	Chapter 3 State of the Art
	3.
	3.1. Music Streaming Platforms
	3.1.1. Deezer
	3.1.2. SoundCloud
	3.1.3. Spotify
	3.1.4. YouTube Music
	3.1.5. Final Considerations About Streaming Platforms

	3.2. Container Orchestrators
	3.2.1. Apache Mesos
	3.2.2. Docker Compose
	3.2.3. Docker Swarm
	3.2.4. Kubernetes
	3.2.5. Final Considerations About Container Orchestrators

	3.3. Container Orchestration Distributions
	3.3.1. K0s
	3.3.2. K3s
	3.3.3. Kubernetes (vanilla)
	3.3.4. Microk8s
	3.3.5. OKD
	3.3.6. Orchestrion Solutions in the Cloud
	3.3.7. Final Considerations About Containers Orchestration Distributions

	3.4. Deployment Tools
	3.4.1. Kubeadm
	3.4.2. Kops
	3.4.3. Kubespray
	3.4.4. Final Considerations about Deployment Tools

	Chapter 4 Technology Analysis
	4.
	4.1. Container Runtime
	4.1.1. Container Runtime Interface (CRI)
	4.1.2. Containerd
	4.1.3. CRI-O
	4.1.4. Docker
	4.1.5. Final Considerations About Container Runtimes

	4.2. Networking
	4.2.1. Networking Concepts
	4.2.2. Container Networking Interface (CNI)
	4.2.3. Calico
	4.2.4. Flannel
	4.2.5. Weave
	4.2.6. Final Considerations About the Networking Plugins
	4.2.7. Ingress
	4.2.8. Bare Metal Considerations
	4.2.8.1. MetalLB
	4.2.8.2. NodePort Service
	4.2.8.3. NodePort with external LoadBalancer
	4.2.8.4. Host Network
	4.2.8.5. Bare Metal Conclusions

	4.2.9. Ingress Controller
	4.2.9.1. NGINX Ingress Controller
	4.2.9.2. HAproxy Ingress Controller
	4.2.9.3. Final Considerations about Ingress Controllers

	4.2.10. Domain Name System (DNS)
	4.2.11. SSL Termination

	4.3. Container Storage
	4.3.1. Container Storage Interface (CSI)
	4.3.2. Longhorn
	4.3.3. Rook + Ceph
	4.3.4. Network File System (NFS)
	4.3.5. Final Considerations About Storage

	4.4. Kubernetes GitOps
	4.4.1. ArgoCD
	4.4.2. Flux v2
	4.4.3. Werf
	4.4.4. Final Considerations About Kubernetes GitOps

	4.5. GitOps Platforms
	4.5.1. GitHub Actions
	4.5.2. TravisCI
	4.5.3. DevOps as a Service
	4.5.4. Final Considerations About GitOps Platforms

	Chapter 5 Implementation
	Chapter 5 Implementation
	5.
	5.1. Deployment Models
	5.1.1. Clusters Tiers

	5.2. Architecture
	5.2.1. etcd

	5.3. Rook + Ceph
	5.4. Networking
	5.4.1. External Ingress
	5.4.2. Ingress

	5.5. Portainer
	5.6. Helm
	5.7. ArgoCD
	5.8. Observability
	5.8.1. Grafana
	5.8.2. Prometheus
	5.8.3. Alertmanager

	5.9. MER Application Development
	5.9.1. GitHub Actions
	5.9.2. Container Image Registry

	Chapter 6 Conclusion and Future Work
	Chapter 6 Conclusion and Future Work
	6.
	6.1. Conclusion
	6.2. Future Work

	References
	Appendix 1 Kubernetes Setup

