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ABSTRACT

The usage of expert systems to aid in medical decisions has been employed since 1980s in distinct ap-
plications. With the high demands of medical care and limited human resources, these technologies are 
required more than ever. Skin cancer has been one of the pathologies with higher growth, which suf-
fers from lack of dermatology experts in most of the affected geographical areas. A permanent record 
of examination that can be further analyzed are medical imaging modalities. Most of these modalities 
were also assessed along with machine learning classification methods. It is the aim of this research to 
provide background information about skin cancer types, medical imaging modalities, data mining and 
machine learning methods, and their application on skin cancer imaging, as well as the disclosure of a 
proposal of a multi-imaging modality decision support system for skin cancer diagnosis and treatment 
assessment based in the most recent available technology. This is expected to be a reference for further 
implementation of imaging-based clinical support systems.

INTRODUCTION

Skin cancer is a fast-growing health concern and threat for humans. Its diagnosis is still a challenge, 
and when made early, eases the consequences with appropriate treatment. Since 1980’s technology has 
incrementally been adopted in daily medical practices to help in the management of health professionals, 
promotion of better care and aid in diagnostic procedures. Since skin cancer is thriving and the number 
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INTRODUCTION  

Skin cancer is a fast-growing health concern and threat for humans. Its diagnosis is still a challenge, 

and when made early, eases the consequences with appropriate treatment. Since 1980’s technology has 

incrementally been adopted in daily medical practices to help in the management of health professionals, 

promotion of better care and aid in diagnostic procedures. Since skin cancer is thriving and the number of 

specialists is limited, the demand for an effective decision support system (DSS) to ease the burden of the 

existing experts is high.  

This chapter is organized by presenting the problem of skin cancer, its types, the traditional 

diagnosis and treatment options, the promising imaging technologies that can facilitate a differential 

diagnosis, the existing freely available datasets that can be used for research, a review on the application of 

decision support systems in the skin cancer diagnosis, the proposal for an implementation of a generic 

effective DSS for skin conditions and remarks with a critical discussion and conclusion. 

This research aims to present the current diagnosis and treatment options for skin cancer, the 

existing promising imaging technologies to improve it, disclose the existing free datasets for research, 

review the application of DSS in skin cancer and propose a generic technologically advanced effective DSS 

for skin conditions management.  

BACKGROUND  

Like any other cell in the human body, skin cells are subjected to different types of mechanisms 

that regulate their development and replacement, if considered needed. 

Typically, physiological pathways are triggered to induce apoptosis of malfunctioning cells and destroy it 

before causing harm. If these defense mechanisms fail, the defective cell can grow out of control and 

generate a skin neoplasm. (Hunter et al., 2002a) 

An abnormal cell grow is not inevitably indicative of the appearance of a cancerous tissue. Benign 

or malignant tumors can arise, and its differentiation should be clarified. Malignant masses are generally 

referred to as cancers and are histologically characterized by cells considerably dissimilar from the ones of 

its mother-tissue. There is a clear tendency to grow and multiply at an excessive rate, as well as to eventually 

infiltrate neighbor tissues and close-by vascular and lymphatic structures. This feature, i.e., metastization, 

allows it to spread to different organs and originate a new tumor focus, complicating its treatment and 

increasing the associated life-risk. Contrarily, benign neoplastic cells tend to be somewhat like its tissue of 

origin, presenting decent cell differentiation. Their growth rate is considered slower when compared to 

malignant ones, and the ability to metastasize is absent. In fact, these tumor types have a tendency towards 

local expansion, pushing adjacent structures. Thus, normally, it does not represent a threat for its host. 

(Crowley, 2013; L Kemp et al., 2015) 

Anatomical changes are guaranteed to happen with the emergence of a tumorous mass. Still, the 

occurrence of physiological shifts is far more relevant, especially if in the presence of a cancerous lesions. 

(Baba & Catoi, 2007a) Contrarily to what most could hypothesize, the neoplastic mechanisms are not 

uniquely controlled by genes that underwent mutations. Genes that retained its “normal” structure can have 

a detrimental influence, as the promotion of the expression of proteins, normally included in regular cellular 

processes, but at inappropriate occasions and with the inappropriate extent. Thus, enhancing carcinogenesis. 

(Moasser, 2014) 

At the beginning of neoplasm development, the tumor possesses low metabolic requirements than 

what could be expected. Still, to guarantee a continuous and interrupted growth, its constituent cells 

disseminate angiogenic growth factors (e.g., vascular endothelial growth factors (VEGF)) to avoid 

vasoconstriction and subsequent cancellation of blood supply. (Baba & Catoi, 2007b; Moasser, 2014) As 

cells multiply, eventually oxygen and nutrient deplete and neovascularization takes place, originating new 

blood vessels within the tumor. Blood perfusion is also triggered, by the neuronal messenger nitric oxide, 



as it provokes vasodilation of surrounding vessels. All in all, boosting incessantly neoplastic growth and 

proliferation (Moasser, 2014). 

The mutations responsible for the appearance of a skin cancer, can have exogenic and/or endogenic 

causes. Fitzpatrick skin phototype, hair, eye, and skin color, family history of skin cancer and excessive 

number of moles are all individual’ traits that can suggest a person’ predisposition for the development of 

the disease. For exogenic causes, contact with chemically aggressive elements, as arsenic, is an option. 

Though, excessive exposure to ultraviolet radiation is the most dangerous exterior cause, causing not only 

DNA defects on epidermal cells, but also the death of macrophages (Langerhans cells) responsible for the 

detection and elimination of malfunctioning ones. Based on the malignant mutations that take place, 

different types of skin cancers can arise and affect/infiltrate different skin layers, from epidermis to dermis 

and even subcutaneous fat (Hunter et al., 2002b; Gordon, 2013; Carr et al., 2020). 

 

Distinction of melanoma and non-melanoma skin cancer 
 

Despite sharing a common trigger-feature, i.e., the occurrence of a malignant mutation on skin 

cells, skin cancer takes several forms according to the mutated skin cell type. Normally, cancerous skin 

tumors are divided as melanoma and non-melanoma skin cancer. The latter encompasses squamous cell 

carcinoma (SCC), basal cell carcinoma (BCC) and Merkel cell carcinoma. 

 Before detailing each skin cancer type, it is worth to know that some “benign” skin neoplasms may 

be categorized as precursor lesions, if its existence is latter connected to the growth of malignant neoplasms. 

Keratocyte tumors, as thermal, tar or arsenical keratoses, depending on the mutagenic agent, are included 

in this group. Though, the most common of all is actinic keratosis (AK). (Fernandez Figueras, 2017) AKs 

are normally found in body areas frequently exposed to sunlight, hence, UV radiation is considered the 

critical etiological factor. It is represented by a papule with a gradient color from skin-tone to a brownish-

yellow tone (Fig. 1). Histologically, AK are inflammations of the dermis combined with a proliferation of 

dysplastic keratinocytes in the epidermis, giving it a scale-like appearance that is rough to the touch. Its 

progression can lead to the malignant type of skin neoplasms: SCC. Nevi, benign melanocytic lesions, that 

present a dysplastic showing of melanocytes are also an increased risk for the development of skin cancer, 

in this case, melanoma. (Kang et al., 2019; Marks & Miller, 2019a) 

 As mentioned, skin cancer can be classed as melanoma and non-melanoma. 

The first type is the deadliest form of all, particularly if detected at an advanced stage of development. As 

its benign “brother”, i.e., nevi, it arises from an abnormal proliferation of melanocytes. Yet, its major 

disparities, lie on visual attributes. Melanomas are known to present considerable changes in size in shorter 

time intervals, being this growth accompanied by an amorphous contour with a combination of a variety of 

different pigmentations from brown tones to black (Fig. 1). Its differentiation from nevi is particularly 

difficult when at early stages of development. Despite with lower incidence than non-melanoma skin 

cancer, it possesses a high death rate associated to it (Table 1), due to its capability to metastasize, spreading 

malignant melanocytes to other organs to create additional cancerous sites. (Kang et al., 2019; Marks and 

Miller, 2019b; Ricotti et al., 2009; Schwartz, 2008a). 

 
Table 1 –Incidence and mortality numbers of melanoma and non-melanoma skin cancer for world population during the year of 
2020. 

  World 

Incidence 
Melanoma 324 635 

Non-melanoma 1 198 103 

Mortality 
Melanoma 57 043 

Non-melanoma 63 731 

 
 



The non-melanoma type squamous cell carcinoma is one of the most common forms of skin cancer. 

Its development is often linked to pre-existing lesions, e.g. keratoses, having a greater malignant potential 

when from thermal, tar and arsenical dysplasia’s. An over-proliferation of keratinocytes fuels its expansion, 

having a clear tendency to infiltrate the dermis, while retaining the ability of keratin production. Normally, 

SCC invade its host tissue and only multiply into its surrounding healthy skin. Still, some tumors can grow 

in several directions and even metastasize. In terms of anatomical features, it is somewhat like AK tumors, 

but with greater size and thickness, with a protuberant growth that can originate a horn-like structure (Fig. 

1) (Hunter et al., 2002a; Ricotti et al., 2009; Schwartz, 2008b). 

Basal cell carcinomas are constituted by aggregates of basal cells that proliferate into the dermis. It is 

usually a local infiltrator as SCC, presenting several forms. The most common one is noduloulcerative, 

followed by superficial, morpheaform and pigmented. The first possesses a node-like structure with a dome 

that frequently ulcerates. Superficial BCC and morpheaform are usually quite similar, being the first a more 

pinkish, well demarked structure while the second one can seem like scar tissue (Fig. 1). As the name 

implies, pigmented BCC is characterized by a heavily pigmented papule and can sometimes be confused 

with a melanoma tumor (Kang et al., 2019; Ricotti et al., 2009; Schwartz, 2008c). 

The last type is not as frequently diagnosed as its associates. Still, Merkel cell carcinoma presents a life risk 

2 to 3 times higher than melanoma. The mutated Merkel cells originate a pink/purplish nodule that 

assimilates to an insect bite (Fig. 1). It is fast growing, and commonly late detected, so spreading to 

additional organs is plausible to happen (Schwartz, 2008d). 

 

 

Figure 1 - Examples of pre-cancerous and cancerous skin neoplastic lesions. From left to right: AK, melanoma, BCC, SCC, Merkel 
cell carcinoma. 

 

Current diagnosis 
 

Nowadays, it is fair to say that the gold-standard procedure for diagnosis of skin neoplasms is 

composed by two stages: visual assessment and histological identification.  

 The first has remained almost unaltered over the years, being based on a visual examination 

performed by a physician, as a dermatologist or plastic surgeon. Lesion anatomical traits are essential here, 

as well as patient description of lesion behavior over time (e.g. size alteration, bleeding, shape variation) . 

Usually, a Dermoscopy device is utilized by clinicians to have a better visualization of lesion characteristic 

features invisible to the unaided eye. Also known as skin surface microscopy, epiluminescence microscopy 

or incident light microscopy, this non-invasive technique uses, at least, 10-fold magnification to facilitate 

the observation of shape, vascular structures, and color patterns from the epidermis to the upper dermis. 

Lesion is normally covered with a liquid medium (e.g. water, alcohol) to prevent the appearance of 

reflection artefacts, unless the system includes a polarized light source. Different gadgets can be used, as 

handheld dermoscopes, that are cheaper but present low magnification capacity, or digital dermoscopies, 

more expensive but with greater amplification and the possibility of image storage for lesion comparison 

over-time. Though, it can also be of assist for evaluation of lesions with little to no pigment, this tool is 

normally used for the assessment of pigmented lesions. When in the presence of the latter, the observer first 

distinguishes melanocytic (melanoma, melanocytic nevi) from non-melanocytic ones (e.g., pigmented 

BCC, angioma, seborrheic keratosis). Then, a preliminary diagnosis is reached based on lesion’ 

characteristics. In the case of melanocytic neoplasms, different methods can be used for visual inspection, 



as the ABCDE rule, Menzies method and 7-check-point list. The first strategy is normally preferred. The 

physician assesses lesion Asymmetry at different axis, followed by the evaluation of neoplasms Borders to 

check for unexpected terminations of pigmentation throughout lesion’ contour. Then, the presence of 

different Colors is validated, as well as the existence of Differential structures (brown globules, dots, 

pigmented network, streaks). Finally, lesion Evolution is analyzed, either by previous registries with digital 

Dermoscopy or by patient report (Fig 2). A positive assessment for each one of these characteristics, 

strongly indicates the presence of a malignant melanocytic lesion, i.e., melanoma (Kato et al., 2019; 

Schwartz, 2008e, Yélamos et al., 2019). Despite, being the preferred technique for skin cancer assessment, 

Dermoscopy accuracy is highly dependent of physician experience and training. Thus, teaching and practice 

regarding its use is extremely necessary, to take profit from it, during patient diagnosis (De Bedout et al., 

2021; Fee et al., 2020). 

When there is uncertainty regarding the malignancy of a skin tumor, a biopsy procedure is usually 

scheduled to remove it entirely (excisional) or partially (incisional) and confirm diagnosis. In incisional 

procedures, i.e., needle or punch biopsy, only a small sample of the suspicious neoplasm is removed for 

histopathological analysis. It is only preferred when the lesion is considerably large and/or located in a 

sensible area, as face. Yet, it is not widely used due to the idea that the technique can disrupt malignant 

cells to adjacent tissue, promoting metastization. 

Surgical excision can be executed with several techniques. The most traditional one, simply 

involves lesion removal with an elliptical excisional margin that can vary from 1 to 6 plus mm, followed 

by a biopsy. When tumor is diagnosed as malignant, additional skin margins needs to be removed and 

analyzed, to guarantee a tumor-free margin. Thus, several surgeries might be needed. To avoid this, the use 

of Mohs’ micrographic surgical technique is preferred, as it allows a thorough histopathological analysis of 

the neoplasm’ edges during the procedure. As skin tissue is excised, the surgeon performs a microscopical 

analysis of the removed tissue and performs additional re-excisions of the remaining neoplasms until a 

tumor-free margin is attained. Thus, allowing, a maximal preservation of healthy tissue while removing the 

cancer completely. 

 

Figure 2– Scheme of melanocytic lesion assessed with ABCDE rule: asymmetrical lesion, irregular borders, presence 

of three different shades of color, presence of differential structures, e.g., brown globules, dots, pigmented network, 

and lesion evolution over time. 

 

Despite being a very precise strategy, the gold-standard procedure for skin cancer lesions possesses 

several downfalls. The experience dependency associated to the Dermoscopy stage is the first hurdle, being 

this half the battle to determine a correct diagnosis or highly imprecise analysis. The biopsy stage involves 

consequences and disadvantages, as patient’ suffering and discomfort, sometimes deemed unnecessary. The 



produced wound can cause cosmetic imperfections, like scarring and bruising, as well as infections, 

depending on its size and postoperative care. Additionally, the time gap between the surgical procedure and 

the release of biopsy results can encompass several weeks, increasing stress associated to diagnosis (Doolan 

et al., 2019; Hoorens et al., 2019; Weinstein et al., 2017; Yagerman and Stevenson, 2018). 

To avoid the performance of unnecessary biopsies, as well as the failure of not carrying histological 

examination when needed, complementary diagnosis techniques with a non-invasive approach are of 

clinical interest. Always with the goal of maximizing diagnosis accuracy, while being cost-effective and 

patient thoughtful. 

 

Treatment 
 

Different treatment modalities are offered for skin cancer lesions. After a primary evaluation, it is 

up to the physician to define the best course of actions based on lesion size, site, invasiveness and metastatic 

potential and anatomical and physiological features. The optimal treatment is always the one that eliminates 

malignant cells while favoring the best cosmetic outcome. 

 Excisional surgery is probably the most frequent treatment prescribed, as it serves two purposes: 

lesion removal and pathological analysis. Though, as previously mentioned, sufficient margins are needed 

for success, which can be difficult in certain body areas as eyelids, nose, and ears. If not possible, alternative 

treatments should be considered to avoid recurrences and subjection of patient to unnecessary pain and 

scaring. From the available options, performance of lesion excision is always preferred with Mohs 

technique to guarantee minimal disfiguring while maximizing margins (Schwartz, 2008; Shriner et al., 

1998). 

For other treatment alternatives, topical chemotherapy is particularly of interest when dealing with 

large regions affected by actinic lesions. Topical agents as retinoids, diclofenac and topical 5-fluorouracil 

are applied to the neoplasm for a prescribed period, eliminating completely or partially the tumors. It has 

the advantage of being a localized treatment, as oppose to traditional (systemic) chemotherapy, thought the 

leased skin tends to be extremely delicate and tender for a period after treatment (Sahu et al., 2019; Orthaber 

et al., 2017; Simoes et al., 2015). A similar approach is followed in photodynamic therapy, where a topical 

agent is applied to the tumorous area, accumulating in cancerous cells. Later, the region is irradiated with 

a light source to induce the production of reactive oxygen species toxic to the target tissue. In some cases, 

the topical agent might be substitutes by a drug administrated via blood stream or in the form of a tablet, 

depending, per example, on lesion size or location. It is usually faster and less aggressive than excision, 

being the main side effect a burning sensation, normally tolerable (Kapek et al., 2020; Papakonstantinou et 

al., 2018) Another light-based method is laser therapy, only used for pre-cancerous lesions and small 

malignant neoplasms. A high intensity narrow beam, e.g., CO2 laser, irradiates and destroys the tumor, in a 

very precise manner, thus delivering a good cosmetic outcome. (Soleymani et al., 2017; Mirza and Khatri, 

2017). Tumor destruction is also attained with cryosurgery. Cryogenic agents at extremely low 

temperatures, typically liquid nitrogen, are used to induce necrosis of a specific skin area through freezing 

of its constituent cells. It is not indicated for deeply penetrating tumors and usually not preferred for 

melanoma treatment. Caution also needs to be taken if implementing it in patients with Fitzpatrick 5 skin 

type, as hypopigmentation may occur following the treatment. (Pasquali, 2015; Buckley et al. 2020) When 

dealing with small skin cancers, curettage and electrodesiccation is usually chosen by most physicians. As 

the name indicates, the tumor is curetted, and an electrode is used immediately after on its edges to kill 

neoplastic cells that remained outside the curetted area. The process of electrodesiccation is completed 

when no tumor is visible, being very effective. Though, wound healing should be carefully controlled to 

avoid infections. Lastly, radiotherapy is usually applied as and adjuvant technique to other treatments for 

metastatic or highly invasive tumors, and never as a solo treatment option (Goldman, 2002; Lin et al. 2019). 

 

Emerging non-invasive diagnostic technologies for skin cancer  
 



Innovations on the field of skin cancer detection occur as a way of fighting deficiencies of current 

approaches. When lesions are detected early, better prognosis is projected, so new tools that assist in this 

task are attractive to improve patient’ survival rate. Particularly, innocuous methods have gain interest and 

attention, as more and more, non-invasive treatment options are preferred to traditional approaches, to 

reduce scarring and avoid highly disfiguring outcomes.  

Several adjunct tools, beyond visual assessment, have been investigated. Certain techniques have 

already been applied in a different clinical setting and are now exploited as a potential tool for skin cancer 

diagnosis (Table 2). 

Ultrasounds are widely used as a diagnosis tool for numerous pathologies since the 1950’s. The 

emitted sound waves allow the assessment of structures’ heterogeneity within the body based on different 

echogenic properties. The application of High Frequency Ultrasonography (HFUS) refers to the use of an 

ultrasound probe that emits waves with frequencies above 10MHz. The shorter wavelength waves are 

rapidly absorbed and do not reach deeper tissues, delivering images with improved resolution of upper skin 

layers. Thus, allowing its effective application in the dermatological field. For skin tumor diagnosis, the 

assessment of characteristic inner components is possible and can even assist surgery as it exposes tumor 

invasiveness. For melanomas, it has been reported a lower rate of echogenicity, contrarily to benign 

neoplasms, allowing a clear detection of tumor margins (Botar-Jid et al., 2016). Other skin malignancies, 

as BCC, follow the same line, showing hypoechoic patterns when compared to its surrounding tissue 

(Barcaui et al., 2014). Its non-invasiveness and appealing price make it attractive for skin neoplasms 

evaluation. Though, its sensitivity is limited when used to evaluate ultra-fine tumors (Wortsman and 

Wortsman, 2010) or extremely thick ones (Mandava et al., 2012). Additionally, it is an operator-dependent 

technique, as Dermoscopy, requiring extensive training for good diagnostic performance (Zmudzinska et 

al., 2008; Polańska et al., 2017; Zheng, 2005; Catalano et al., 2019). 

The characterization of skin tumors can also be performed through Confocal Scanning Laser 

Microscopy (CSLM). A low-power laser beam strikes a focal skin point, after passing through a lens. The 

reflected light is detected as an electrical signal and ultimately translated into grayscale images. The images 

can depict different histopathological features and associate it to distinct types of skin tumors, being 

something referred to as an “optical skin biopsy”. For the most aggressive form of tumor, i.e., melanoma, 

CSLM assists in its diagnosis through the visualization of atypical melanocytic cells in the epidermis, 

particularly in patients with many melanocytic lesions or with potentially cancerous tumors that do not 

follow the common ugly duckling traits. (Carrera et al., 2012; Rajabi-Estarabadi et al. 2019) Different traits 

characteristic of BCC have been specified in CSLM, with basal cells appearing as bright spots encircled by 

darker holes. These findings have been correlated with histopathological results (Que et al., 2015; Lupu et 

al., 2014). The assessment of both SCC and AK tumors has proven to be challenging, as images often 

appear mostly white, due to the great amount of reflection caused by tumor structures filled with keratin. 

Its distinction is more easily done when tumorous cell aggregates are found on the dermis (Que et al., 2015; 

Aghassi et al., 2000). The greater advantage of CSLM over Dermoscopy is the ability to detect melanoma 

lesions that do not present the typical features described by the ABCDE rule. Additionally, it aids in 

estimation of excision border and tumor recurrences, as well as treatment monitoring. Despite its 

advantages, it is very expensive, a bit time-consuming and demands expertise for its application, 

complicating its dissemination in a hospital setting (Parsons et al., 2011; Ilie et al., 2019:). 

Optical Coherence Tomography (OCT) appears as an imaging modality that offers cross-sectional 

images of subcutaneous tissue with the use of scattered and reflected infrared light. Conventional equipment 

possesses a penetration depth of 2 mm, while high-definition OCT can go down to 0.57 nm, allowing the 

visualization of single cell units. Its application for skin cancer evaluation is well-studied for BCC 

diagnosis, as well as the assessment of neoplasm border during Mohs, reducing the possible cosmetic defect 

(Hussain et al., 2015; Chan and Rohrer, 2012) For pigmented lesions, nests of atypical cells close to the 

dermis haven been documented in higher quantities for melanoma tumors when related to benign 

melanocytic lesions (Gambichler et al., 2015). In regards of SCC, a clear thickening of the epidermal layer 

is present, though its differentiation from AK remains challenging, as with CSLM. (Reggiani et al., 2015) 

The advantages of OCT, include real-time assessment of skin tumor morphology the need to remove any 



tissue sample, as neoplasm is scanned laterally with the light beam. Despite presenting a penetration depth 

inferior to that of US, it shows greater resolution and does not require physical contact with the specimen. 

It presents lower resolution than CSLM and its efficiency can also be affected by tumor thickness (Ferrante 

di Ruffano et al., 2018; Levine et al., 2017). 

Adhesive patch biopsy (APB) is the closest approach to a traditional biopsy procedure. Yet, without 

the pain and scaring involved.  It is the only innovative method, presented here, that is not image based. 

The outermost skin layer, i.e., stratum corneum, is removed with the aid of adhesive tape pressed onto the 

lesion site. RNA from the harvested cells is analyzed to detect specific gene profiles and differentiate, 

mostly, pigmented skin lesions. This technique rests on the idea that mRNA is scattered to this skin layer 

by melanocytes through the same channels as melanin is. When combined with visual assessment using 

ABCDE rule it can improve diagnostic sensitivity and specificity, allowing the early identification of 

melanomas, though several sample stripping might be needed. (Gerami et al., 2014; Hughes et al., 2021; 

Fried et al., 2020). 

The 3D imaging of epidermal and upper-dermal structures is feasible with Multiphoton Laser 

Scanning Microscopy (MPLSM). Endogenous fluorophores present in skin neoplasms, emit a fluorescence 

signal after two-photon excitation, normally with near infrared light. The autofluorescence images present 

high resolution, allowing the study of melanoma and non-melanoma lesion with high sensitivity and low 

light damage. Different morphological features were found for SCC and superficial BCC, as the presence 

of hyperkeratosis and palisading of cancerous cells, respectively. (Paoli et al., 2008) For melanoma lesions, 

it has recently shown its usefulness for the identification of sentinel lymph nodes (Kantere et al., 2020). 

When compared to CSLM it has a higher penetration power, though if the lesion is considerably thick, out-

of-focus fluorescence can interfere with the collected images (an issue non-existent in CSLM due to the 

use of a pinhole) (Paoli et al., 2009; Multiphoton Excitation and Microscopy, 2006). 

Different tissues present different properties, and electrical impedance is no exception. The 

technique of bio-electrical impedance (BEI) uses a spectrometer to quantify this property at different 

frequencies. The measured current is influenced by water content of the assessed tissue, varying when cells 

endure malignant mutations. This technique has already been applied for the diagnosis of melanoma and 

BCC with good diagnosis metrics. The acquired impedance spectra delivered sufficient information to 

distinguish benign nevi from melanoma (80% specificity and 92% sensitivity) and basal cell carcinoma 

(86% specificity and 96% sensitivity) (Aberg et al., 2005). This technique has also been successfully 

implemented for the monitoring of melanoma scars after surgery. The property of bio-electrical impedance 

can be measured on the excision site, to monitor and guide a proper tissue regeneration stage (Logothetis 

et al., 2019). Apart from complementing data collected from dermatological examination, one of its great 

advantages is that it can be carried out multiple times to perform lesion surveillance throughout time. Still, 

specificity is not great, keeping biopsy numbers elevated. 

Infrared thermal (IRT) imaging is the only emerging method that does not require direct contact 

with the patient or irradiation with light sources to assess skin tumors. This technique exploits the capability 

of the human skin to irradiate infrared heat naturally and continuously, capturing it with thermal cameras. 

Distinct temperature patterns are expected from unadulterated skin tissue when compared to neoplastic 

regions, with increased metabolic and vascular activity, and consequently, heat dissipation. Practical studies 

are found for the identification of thermal patterns characteristic of melanoma and nevi, with melanoma 

presenting higher temperature values than healthy skin tissue (Magalhaes et al., 2019). When stimulation 

is included, i.e., dynamic implementation instead of a static approach, by mechanical, chemical, or thermal 

means, this difference is accentuated, easing skin tumor identification (Pirtini Çetingül and Herman, 2011). 

Additional skin lesion types, as BCC, SCC and AK have also been analyzed with IRT imaging to adjuvant 

diagnosis (Baek et al., 2019; Godoy et al., 2017) The main set-back of this technique concerns the need of 

a controlled environment, to guarantee correct temperature measurements (Ammer, 2003; Ring and 

Ammer, 2015; Ring and Ammer, 2012). 

Another technique, not widely used on day-to-day practices, is photodynamic diagnosis (PDD). 

This methodology consists of the application of topical agents onto the lesion, followed by excitation with 

a light beam to stimulate the production of photosensitizers. These fluorescent compounds present a greater 



accumulation rate on skin neoplasms compared to healthy skin. PDD is recent for skin cancer applications, 

but surely promising. Its recent use is found for the diagnosis of metastatic melanoma. (Naidoo et al., 2019) 

Due to the induction of the production of fluorescent compounds, it is a very helpful tool to guide tumor’ 

excision, while being non-invasive and extremely target-precise. Thought, PDT is not without limitations 

as it cannot be applied to patients with specific blood diseases (Krammer and Verwanger, 2016; Lipiński 

et al., 2015). 

Ultraviolet (UV) imaging can be considered the most recent technique for skin cancer assessment. 

Its application presents two variants with reflected-UV imaging and fluorescence-UV imaging. The first 

involves the use of an UV excitation source that results in the acquisition of an image representative of the 

UV radiation reflected at the same wavelength by the irradiated object. In the case of the second, a UV light 

is used as an excitation resource to promote the reemission of longer wavelength rays, often in the visible 

area of the electromagnetic spectrum. Thus, it is passible of being imaged with a standard digital camera. 

Though, recent, UV fluorescent photography has been indicated as a valuable tool for the evaluation of 

tumor margins in BCC cases, while UV reflectance has shown good input in the appraisal of skin 

photoaging (Mojeski et al., 2020; Crowther, 2020; Pratt et al., 2017). 

 
Table 2 – Emerging non-invasive techniques and its associated advantages and drawbacks. 

Technique Advantages Drawbacks 

High frequency 

ultrasonography 

Evaluate tumor invasiveness 

Aid with excision planning 

Low sensitivity for very thin/thick 

melanomas 

User-dependent 

Confocal scanning laser 

microscopy 

Diagnose melanoma in absence of 

Dermoscopy features 

Assist in estimation of excision border 

Non-invasive treatment monitoring 

Detection of tumor recurrences 

Surveillance of lesions over time 

High sensitivity and specificity 

 

Very expensive 

Time consuming 

Demands expertise 

Optical coherence 

tomography 

Assist in estimation of surgical borders 

Contactless 

Higher resolution than HFUS 

High sensitivity and specificity 

Lower resolution than CSLM 

Performance affected by tumor 

thickness 

Adhesive patch biopsy Reduce number of biopsies 

No-scarring 

Early diagnosis of melanoma 

Multiple stripping might be needed 

Destined for melanocytic lesions 

 

Multiphoton laser 

scanning microscopy 

High resolution 

High sensitivity 

Low light damage 

High penetration power than CSLM 

Poorer resolution for thicker lesions 

Excitation wavelength needs to be 

refined to guarantee fluorescence 

while innocuous for the tissue 



 

 

 

Existing freely available skin cancer datasets 
 

To date there were only found 7 freely available skin cancer datasets through a search on the main 

repositories of data, Kaggle (https://www.kaggle.com) and UC Irvine Machine Learning Repository 

(https://archive.ics.uci.edu/ml), which are characterized on table 3.  

 
Table 3 – Freely available skin cancer datasets. 

Dataset name Data type Samples (N) 

ISIC 2019 challenge Images and 15 attributes 25331 

Dermnet Images and diagnostic  19500 

HAM10000 Images and 7 attributes 10015 

Melanoma Image Data (U.Porto) Images and 15 attributes 435 

SKINL2 Images and diagnostic  376 

Dermoscopy Skin Lesion 

Multispectral Image Database 
Images and diagnostic  30 

Dermatology Data Set 34 attributes 336 

 
The ISIC 2019 challenge dataset (ISIC, 2019) contains 25,331 (2017 and 2018 are also included) 

images available for the classification of dermoscopic images among nine different diagnostic categories: 

Melanoma, Melanocytic nevus, BCC, AK, Benign keratosis, Dermatofibroma, Vascular lesion, SCC and 

None of the previous. It has a total of 15 attributes consisting of the beforementioned categories, patient 

age, sex, lesion anatomical location, lesion id and image reference. 

 The Dermnet (Dermnet, 2020) dataset is composed of 19500 images of 23 types of skin diseases. 

All images are in JPEG format with 3 color channels, e.g. RGB, with variable resolution. The lesion 

categories include acne, melanoma, Eczema, Seborrheic Keratoses, Tinea Ringworm, Bullous disease, 

Poison Ivy, Psoriasis, Vascular Tumors. 

The HAM10000 ("Human Against Machine with 10000 training images") dataset (Tschandl et al., 

2018) consists of 10015 dermatoscopic images of pigment lesion released for academic research involving 

machine learning methods. Along with the images there are 7 attributes: image id, lesion id, diagnostic, 

diagnostic type, patient age, patient sex, and lesion anatomical location. More than 50% of the sample 

include histology results, lesion included in the database are: AK, BCC, benign keratosis-like lesions, 

dermatofibroma, melanoma, melanocytic nevi, and vascular lesions. 

Bio-electrical impedance Assist in estimation of surgical borders 

Surveillance of lesions over time 

Low specificity 

Poor performance in given body 

areas 

Infrared thermal imaging Contactless 

Real-time measurement 

Cost-effective (when compared to other 

imaging modalities) 

Surveillance of lesions over time 

 

Need of controlled examination room 

conditions 

Photodynamic diagnosis Extremely target-precise 

Assist in estimation of surgical borders 

 

Not suited for patients with specific 

blood diseases 

Ultraviolet imaging Evaluation of tumor margins 

Contactless 

Extremely expensive equipment 

Need for artificial light sources 



At the University of Porto there it was developed a project of a melanoma PH2 dataset (Mendonça 

et al., 2013), which is composed of a total of 200 dermoscopic images of melanocytic lesions, including 80 

common nevi, 80 atypical nevi, and 40 melanomas. All images have a magnification of 20x and are 8-bit 

RGB color images with a resolution of 768x560 pixels. It also includes attributes such as: clinical diagnosis, 

asymmetry, pigment network, presence of dots, streaks, regression areas, presence of blue whitish veil and 

mention of all colors present at the lesion. 

Another dataset also developed in Portugal, the light field dataset of skin lesions (SKINL2) (Faria 

et al., 2019) consists of 376 plenoptic camera with extended depth of field images, which were categorized 

as melanoma, melanocytic nevus, BCC, seborrheic keratosis, hemangioma, dermatofibroma, psoriasis and 

other.     

The Dermoscopy Skin Lesion Multispectral Image Database (Lézoray et al., 2014) has 30 

multispectral dermoscopic images with resolution 800x600 and are composed of 6 spectral bands (3 in 

visible spectrum light and 3 in infrared light). 

The Dermatology Data Set (Güvenir et al., 1998) has 336 samples of 34 attributes, being 12 clinical 

and the remaining histopathological. It also includes the patient demographic data and his family history. 

The skin conditions present at the database are psoriasis, seboreic dermatitis, lichen planus, pityriasis rosea, 

cronic dermatitis, and pityriasis rubra pilari.   

It can be observed that all freely available datasets are of a single nature of data, being a 

multispectral imaging dataset with clinical, histological, patient and family record multisource dataset 

missing. 

 

Existing Skin Cancer Decision Support Systems 
 

Since the general application of clinical DSS in the mid 1980’s, they spread from general to specific 

applications, in this section attention will be given to the Skin Cancer oriented DSS, which were retrieved 

from literature sources such as PubMed and Scopus after screening the abstracts.  

The aim of the clinical DSS is to be able to process more data and achieve a better sensitivity, and 

specificity than human experts, dermatologists, trainee, and general practitioners (table 4). 

 
Table 4 – Average sensitivity and specificity of human experts, dermatologists, trainee, and general practitioners (Przystalski et 
al., 2010). 

 Sensitivity Specificity 

Expert 90% 59% 

Dermatologist 81%  60% 

Traine 85%  36% 

General practicioner 62% 63% 

 

A melanoma DSS was implemented using 152 Dermoscopy images with features extracted from 

ABCDE rule and texture segmentation and a multi-classifier with a combination of LDA, Decision Tree 

and kNN with a voting system for the best result achieved 81% sensitivity and 74% specificity (Sboner et 

al., 2003).   

A performance of a spectrophotometric DSS system based in ANN involving 1794 samples was 

tested, achieving a sensitivity of 88% and a specificity of 80%, recognized 95% of the cutaneous melanoma 

cases. The ANN training procedure was based on the backpropagation and conjugate gradients algorithms. 

The images acquisition consisted of images at 15 different spectral bands (30 nm bandwidth) between 483 

and 950 nm. Having the images, a useful area of 18 × 14 mm2 (spatial resolution of 33 pixels mm−1) (Carrara 

et al., 2007). 

A melanoma DSS using 2851 dermoscopic images based in the ABCD rule and ANN showed a 

sensitivity of 75% and specificity of 84%, which was lower than achieved by experts that was 97% and 

93% respectively but analyzed much less samples (Dreiseitl et al., 2007).  



A skin cancer DSS system composed of 110 Dermoscopy images using a ABCDE rule, achieved 

an accuracy of 92.15% on the cooperation of a NB and MLP-7 classifiers (Ruiz et al., 2008). 

Using 152 images from the Dermnet dataset consisting of 55 features of the ABCDE rule and 

texture classified with NB model achieved 86% accuracy. This model also used age, skin type, 

lesion location and sex as features (Alcón et al., 2009). 

An automated Content-Based Image Retrieval (CBIR) system for the diagnostic of dermoscopic 

images of pigmented skin lesions consisting of 24804 dermoscopic images corresponding to 20491 

pigmented lesions with known pathology, using the ABCD rule, a hierarchical multi-scale computation of 

the Bhattacharyya distance and SVM classifier achieved a maximum precision of 94.1% in the benign nevi 

identification (Baldi et al., 2009). 

The best result was obtained for linear SVM – 97.44% for 70/30 train to test ratio on 5189 color 

dermatoscopic segmented images (Przystalski et al., 2010). 

A Melanoma DSS consisting of 187 samples of Multiple-Scattered Light Spectroscopy (MSLS) 

images achieved 89% sensitivity, 89% specificity, and 89% accuracy with NB (Li et al., 2014). 

A computer-aided diagnosing (CAD) system was developed for skin cancer diagnosis consisting 

in pre-processing, segmentation, features extraction and classification using Self-advisable SVM on 168 

dermoscopic images based in the ABCD rule achieved an 90% accuracy with 91% sensitivity and 89% 

specificity (Masood et al., 2014).  

A CAD for melanoma diagnosis based in color analysis and probabilistic model Correspondence-

LDA of 482 Dermoscopy images and classified with an AdaBoost algorithm achieved an average precision 

of 84.9% (Barata et al., 2015). 

One DSS based in 200 dermoscopic samples used a classifier based in self-advised SVM with a 

radial basis function and presented an accuracy of 89% (Masood et al., 2015). 

A dataset composed of 160 ultrasound images with parameters selected according to Mahalanobis 

distance and linear SVM classification, was able to differentiate malignant from benign melanoma 

presenting 82.4% accuracy (Andrėkutė et al., 2016). 

Using feature selection with a Genetic Algorithm for classification with kNN on a database 

composed of 167 fluorescence images achieved an accuracy of 94% (Odeh & Baareh, 2016). 

A DSS using a classifier composed of Deep Learning based ANN and Hybrid Adaboost-SVM 

algorithms in a database of 992 Dermoscopy images presented an accuracy of 93% (Premaladha & 

Ravichandran, 2016). 

Using a ABCDE rule were applied to Genetic Algorithms for feature selection and classification 

with SVM on 1300 Dermoscopy images achieved an accuracy of 88% (Tan et al., 2016). 

A multicenter DSS for discriminating Melanocytic Nevi from Malignant Melanomas using a 

training database of 1300 samples achieved an accuracy of 94.1% using a ABCD rule input to an ANN 

(Kostopoulos, 2017). 

To a dataset containing 200 Dermoscopy 8-bit RGB channel images at 768x560 resolution, a 

classification was applied using ANN, SVM, kNN and DT based in the parameters of ABCD rule 

assessment presented an accuracy of 92.50%, 89.50%, 82.00% and 90.00% respectively (Ozkan & Koklu, 

2017).  

A classification of the skin cancers using ECOC SVM with deep convolutional neural network on 

a total of 3753 images achieved a maximum average accuracy of 95.1% for SCC (Dorj et al., 2018). 

Histogram analysis and segmentation parameters of 294 images were processed and selected as 

input to ML methods, which were compared, and the best achieved result was of RF with 77.26% accuracy 

(Gautam et al., 2018). 

A DSS for detection and localization of Cutaneous Vasculature in Dermoscopy images using a 

database of 200 images having shape, size, color and architecture vascular features classified with data-

driven feature learning framework based on stacked sparse auto-encoders (SSAE) presented 91.1% 

accuracy (Kharazmi et al., 2018). 

Using the ISIC 2017 skin lesions images database composed of 2000 samples, a DSS with ABCDE 

rule and texture features classified using SVM achieved a 93.95% accuracy (Saleem, 2019). 



A hyperspectral imaging DSS employing 125 spectral bands captured between 450 and 950 nm 

used a database of 76 images with features labeled using Spectral Angle Mapper algorithm and classified 

with a SVM Linear classifier presented 89% accuracy (Leon et al., 2020). 

At table 5, the existing skin cancer DSS sensitivity and specificity values can be observed that only 

six outperform the expert sensitivity, but all overachieved the general practitioner sensitivity. In terms of 

specificity all published DSS present better performance when compared with human experts, 

dermatologists, trainees, and general practitioners. 

 
 

Table 5 – Sensitivity and specificity reported for existing skin cancer decision support systems. 

 Sensitivity Specificity 

Sboner et al. 2003 81 % 74 % 

Carrara et al. 2007 88 % 80 % 

Dreiseitl et al. 2007 75 % 84 % 

Ruiz et al. 2008 79.13 % 93.72 % 

Alcón et al. 2009 94 % 68 % 

Li et al. 2014 89 % 89 % 

Masood et al. 2014 91 % 89 % 

Barata et al. 2015 78.9 % 76.7 % 

Masood et al. 2015 90 % 88.3 % 

Andrėkutė et al. 2016 85.8 % 79.6 % 

Odeh & Baareh 2016 96.7 % 91.3 % 

Tan et al., 2016 83 % 89 % 

Kostopoulos 2017 82.9 % 96.5 % 

Ozkan & Koklu 2017 87.08 % 94.86 % 

Dorj 2018 96.9 % 94.17 % 

Gautam et al. 2018 70.38 % 83.54 % 

Kharazmi et al. 2018 85.3 % 94 % 

Saleem et al. 2019 93.27 % 98.47 % 

Leon et al. 2020 87.5 % 100 % 

 

PROPOSED IMPLEMENTATION  

A Decision Support System (DSS) has three main components: Dataset, Inference Engine and User 

Interface and should have as main goal to support its users in aiding their decision making in a bias free 

and transparent manner (Sauter, 2014). 

For an effective skin cancer DSS the data should be of multiple sources, as more and detailed data 

will provide better insights for the decision-making process and better characterization of the problem. 

Relying only on ABCDE dermoscopic rule has been exhaustively tested and has limited accuracy, as seen 

in the previous section. With new emerging imaging modalities presenting promising results, a 

multispectral based DSS is expected to perform better, although it also brings new challenges and 

complexity. This added with histology, patient clinical history (probably obtained for an existing Electronic 

Health Record), patient socio-demographic data and patient family history of skin conditions will provide 

full data to build information and knowledge to aid for better decisions. Based on this the proposed 

infrastructure showed in fig. 3 will have all the mentioned sources. Though, it is important to refer that not 

all the imaging modalities are available in the Digital Imaging and Communications in Medicine (DICOM) 

standard and stored in the Picture Archiving and Communication System (PACS), so proprietary data 

storage implementations must be considered. Each imaging modality (Dermoscopy, HFUS, CSLM, OCT, 

APB, MLSM, BEI, IRT, PDD and UV) will be a data source along the histology, patient health record, 

patient socio-demographic and patient family skin condition history datasets. The data will be processed by 



an Extract, Transform and Load (ETL) system to correct data ambiguity, discrepancies, and outliers. 

Additionally, it will be stored into an offline Datawarehouse (DW), being divided in different tables, i.e. 

Datamarts (DM) and correspond to the original multiple source data that are linked through a fact table (fig. 

4), which facilitates the data selection for the Data Mining tools and Visualization at the Dashboard. 

            

 

 
 

Figure 3 – The proposed skin cancer Decision Support System general infrastructure. 
 

The data can be presented in several forms. It can be a raw image, a processed image (e.g. 

segmented, histogram analysis, region of interest analysis, cross-section analysis), text, numeric, binary, 

date type or categorical. 

In the Data Mining tools several operations may be applied to the data, which can be supervised or 

unsupervised learning algorithms. For some datamining operations binarization or normalization of an 

attribute might be required. 

With the unsupervised learning methods. Clustering and Data Association can be practiced. The 

clustering can be performed through KMeans or Hierarchical clustering, this helps to establish groups 

among selected data. The association is normally based in rules of different attributes association to identify 

patterns and normally employs the Apriori algorithm (Witten et al., 2016). 

The supervised learning approach is based in prediction/regression methods and classification. The 

prediction/regression methods use the input data to through a linear (all numeric data) or logistic (numeric 

and categorical data) formula, estimate a new output. This can be achieved using linear regression methods, 

which can be simple or multivalued or a logistic regression. For classification, there are several methods 

available to be employed, all based in diving the dataset in two groups: the training set and the testing set. 

Commonly, a division of 70/30% is selected, although other configurations can also be applied. The training 

will be used to train the model built with the selected algorithm, and respective parameters adjusted. The 

accuracy value obtained will represent the probability of a given new record of the dataset to be correctly 

classified. Among the most common classification methods there are: MLP, also known as ANN, SVM, 

NB networks, DT, Random Trees, RF, kNN, GA, Fuzzy Logic, Logistic Regression and the AdaBoost 

(Witten et al., 2016). Based in the previous section the already used in a single modality classification, that 

proved its utility, are ANN, SVM and NB. 

Once the data is stored in a clean and correct form in the DW and DM, through the OLAP cube, it 

will be possible to perform different views and queries on the related data. The fact table (fig. 4) is 

indispensable in this task, as it maintains the correspondence between the related data. With the OLAP cube 

it is possible to perform the operations Roll-up (reducing dimension through aggregation), Drill-down 



(fragment data into small parts, increasing a dimension), Slice (selecting one dimension of data), Dice 

(selecting only two or more dimension, but smaller than the original cube) and Pivot (rotates the data axes 

to provide a substitute presentation of data) (Sauter, 2014). 

   

 
 
Figure 4 – The representation of the Datawarehouse fact table and its relationship in star with the DataMart tables in 

the support to the OLAP cube. 
 

 It is important to mention that, despite the main goal of a skin cancer DSS being focused the 

production of a prognosis for a patient examination, it should also support that indication with more data 

representation and visualization tools, such as charts. This is important because, at the end, the 

responsibility of the diagnosis is entirely of the physician and not of the system, as it only gives him a hint.  

The produced dashboard should be operational, reflecting the actual state of the patient lesion and 

its relationship with history. It must enforce simplicity, readability, and focus. The dashboard should use 

different shades of the same color, avoid using any logo, avoid using data navigation, use 2D graphics 

instead of 3D graphics, use lines and borders sparingly, use rounded metrics and simplified details, use the 

same font, color palette and style, use some space between the elements, avoid multiple views, scale 

sections according to the same space and group data logically.  

In terms of charts at the dashboard, they depend in the objective of showing them. For comparison 

between items: if there are two variables per item, it should be used the variable with column chart; if there 

is only one variable per item, but many categories, it should be used the table with embedded charts; with 

few categories, but many items, it should be a bar chart; for few items, a column chart. For overtime 

comparison: if there are many periods and cyclic data should be a circular area chart, or non-cyclic data a 

line chart; if there are few periods and single of few categories, a column chart is recommended or with 

many categories, a line chart. For data distribution: if there is a single variable and few data points it is 

recommended a column histogram, or many data point a line histogram; if is two variables, a scatter plot 

should be used, and for three variables a 3D area chart. For data composition: if static and a simple share 

of total, it should be used a pie chart; if accumulation or subtraction of total, a waterfall chart; with changes 

over time if there are few periods, a stocked column chart is recommended, if there are many periods, a 

stocked area chart. Finally, for relationship between data: if there are only two variables, it should be used 

a scatter plot, if three or more a bubble plot is recommended. 

 This proposal for DSS is generic, as it always depends on the question that the system must give a 

response. Still, the proposed infrastructure, if well parameterized, can respond to more than a single 



question. For a more intelligent dashboard, some interactivity can be implemented, presupposing, per 

example, a pressing of a chart or text to show more related detail to it.   

DISCUSSION AND CONCLUSION  

There is no doubt of the valued contribution of DSS to aid health professionals with the growing 

rise of skin cancer and shortage of specialists. Most of the developed solutions, which are mainly research 

oriented and institution self-solutions are based in a single modality of diagnosis. Only one implementation 

was multicenter (Kostopoulos, 2017), but based in the simple dermoscopic image ABCDE rule. The 

majority of the skin cancer DSS implemented to date focus on this rule, which is also the common practice 

in daily clinical setting. Although for better discrimination, on a confounding lesion, relying in this rule is 

not enough and selecting a histology lab test is costly and dilatory. This leds to the emergence of promising 

imaging techniques, which are now becoming to be adopted. Still, some require validation against the 

histology gold standard, which, with the absence of a multi-source dataset freely available, is limited in 

terms of time and funds. 

It is important to mention that a DSS to become useful, must surpass the performance of a specialist 

(Przystalski et al., 2010). The best reported results for the ABCDE rule DSS are using SVM (Baldi et al., 

2009; Masood et al., 2014; Premaladha & Ravichandran, 2016; Dorj, 2018; Saleem, 2019), even when 

combined with another ML algorithm such as Adaboost (Przystalski et al., 2010). Other supervised ML 

algorithm that performed with an accuracy over 90% was the MLP or ANN (Dreiseitl et al., 2007; 

Kostopoulos, 2017; Ozkan & Koklu, 2017), a proposal result was achieved when combined with NB (Ruiz 

et al., 2008). On other imaging modalities, the best achieved accuracy was obtained for a 

spectrophotometric DSS using ANN (Carrara et al., 2007), followed by the fluorescence images using kNN 

(Odeh & Baareh, 2016), MSLS using NB (Li et al., 2014), hyperspectral imaging with SVM (Leon et al., 

2020) and ultrasound images with SVM (Andrėkutė et al., 2016). 

The proposed DSS implementation is generic and conceptual, being out of scope of this publication 

to constrain it to a specific technology or development environment, as it can be implemented on most of 

the current available development and storage tools. From this research, it is clear that with the existing 

freely available datasets on skin cancer, an effective DSS for skin conditions using a multi-imaging 

approach it cannot be implemented. The majority of the existing DSS only addressed a specific and simple 

question, but future practice may demand more information, in specific for the differential diagnosis. The 

proposed open architecture is dynamic in allowing multiple questions, which through OLAP and data 

mining is possible to add and adjust questions. In a multi-modality data source approach, different data 

mining and visualization tools can be used for different modalities, making the proposed system flexible. 

To the authors knowledge, there is no implementation of this kind for dealing with skin cancer, being the 

proposed more comprehensive and could cope with other dermatological conditions. This is the first step 

towards a technological need. It is important to enforce the idea to health professionals that it is easier to 

engage with new advanced computational tools than being afraid of losing a job to a smart system, showing 

resistance to their adoption, becoming these technologies a facilitator in their practice. 

At this publication, the current diagnosis and treatment options for skin cancer, the existing 

promising imaging technologies to improve it and the existing free datasets for research were presented, 

the application of DSS in skin cancer were reviewed and a generic technologically advanced effective DSS 

for skin conditions management was described. 
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KEY TERMS AND DEFINITIONS  

Accuracy: parameter that represents the number of individuals correctly diagnosed among a given 

group, by a clinician or decision support system. 

Basal cells: epidermis skin cells responsible for producing new skin cells. 

Business Intelligence: software tools that can analyze large data quantities and retrieve 

information to reach knowledgeable conclusions. 

Datamart: Subset of a data warehouse focused on a specific topic of information, per example, 

patient information. 

Data Mining: Process involved on the harvesting of information from unprocessed data. 

Datawarehouse: electronic system for the collection and manipulation of large amounts of data. 

Decision support system: computational system employed to assist, sustain decisions, and select 

the best course of action. In a clinical setting, these systems are commonly referred to as Computer 

Aided Diagnosis: system that supports medical diagnosis and helps in treatment selection. 

Deep learning: subfield of machine learning that mimics the workings of the human brain in 

process of data analysis, interpretation and decision making. 



Dysplasia: abnormal cell development, normally associated to the appearance of pre-cancerous or 

cancerous lesions. 

Echogenicity: the capability of a given tissue to bounce an echo. This ability is low for hypoechoic 

structures (denser) and high for hyperechoic structures. 

Expert Systems: computational system build to mimic the capability of a human specialist to 

perform a decision. 

Fluorophores: fluorescence compound that can radiate light upon excitation with a light source. 

Inference Engine: section of a machine learning system destined to logically interpret a given 

data set and retrieve information from it.  

Keratinocytes: epidermis skin cells that originate from the differentiation of basal cells, 

composing approximately 85% of epidermis. It is the skin constituent responsible for the synthesis 

of vitamin D and keratin production. 

Langerhans cells: epidermis skin cells with immunological functions. 

Machine learning: scientific area of Artificial Intelligence focused on the development of 

algorithms and/or systems with the ability to learn, modify in an automatic manner and reach 

decisions, based on data patterns. 

Melanocytes: epidermis skin cells that produce and store melanin, a pigment that absorbs 

ultraviolet rays, blocking its nefarious actions. 

Merkel cells: epidermis skin cells that play a role in human sensing and work as 

mechanoreceptors. 

Metastization: the ability of malignant cells to infiltrate neighbor tissues and close-by vascular 

and lymphatic structures to spread to distant organs. 

Neoplasm: atypical growth and agglomeration of cells. 

OLAP cube: array with large amounts of data used for multidimensional analysis. 

Sensitivity – measure of the ability of a clinician or decision support system to correctly identify 

those who have the disease. 

Specificity: measure of the ability of a clinician or decision support system to correctly identify 

those who do not have the disease. 

Supervised learning: a machine learning algorithm that learns from labeled data included in a 

training set. 

Unsupervised learning: a machine learning algorithm that learns from unlabeled data, learning 

and detecting characteristic data patterns on its own. 

User Interface: platform created for the interaction of a human operator with a computer. 

 

 

ACRONYMS 
 

AK – Actinic Keratosis 

ANN - Artificial Neural Network 

APB – Adhesive Patch Biopsy 

BCC – Basal Cell Carcinoma 

BEI – Bio-Electrical Impedance 

CBIR – Content-Based Image Retrieval 

CSLM – Confocal Scanning Laser Microscopy 

DICOM – Digital Imaging and Communications in Medicine 

DT – Decision Trees 



ECOC – Error-Correcting Output Coding 

EHR – Electronical Health Record 

ETL – Extract, Transform and Load 

GA – Genetic Algorithms 

HFUS – High Frequency Ultrasonography 

IRT – Infrared Thermal 

kNN – k-Nearest Neighbor 

LDA – Linear Discriminant Analysis 

MLP - Multilayer Perceptron 

MPLSM – Multiphoton Laser Scanning Microscopy 

NB – Naive Bayes 

OCT – Optical Coherence Tomography 

OLAP – Online Analytical Processing 

PACS – Picture Archiving and Communication System 

PDD – Photodynamic Diagnosis 

RBG – Red Blue and Green 

RF - Random Forest 

RT – Random Trees 

SCC – Squamous Cell Carcinoma 

SSAE – Stacked Sparse Auto-Encoders 

SVM - Support Vector Machines 

UV - Ultraviolet 

 

 


