
Submitted 14 July 2021
Accepted 2 November 2021
Published 3 January 2022

Corresponding author
Wesllei Heckler,
weslleiheckler@edu.unisinos.br

Academic editor
Luca Ardito

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.794

Copyright
2022 Lima et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Towards ubiquitous requirements
engineering through recommendations
based on context histories
Robson Lima1, Alexsandro S. Filippetto1, Wesllei Heckler1, Jorge L.V. Barbosa1

and Valderi R.Q. Leithardt2,3

1Applied Computing Graduate Program (PPGCA), University of Vale do Rio dos Sinos (UNISINOS),
São Leopoldo, RS, Brazil

2VALORIZA–Research Centre for Endogenous Resource Valorization, Polytechnic Institute of Portalegre,
Portalegre, Portugal

3COPELABS, University Lusófona–ULHT, Lisboa, Portugal

ABSTRACT
The growing technological advance is causing constant business changes. The continual
uncertainties in projectmanagementmake requirements engineering essential to ensure
the success of projects. The usual exponential increase of stakeholders throughout the
project suggests the application of intelligent tools to assist requirements engineers.
Therefore, this article proposes Nhatos, a computational model for ubiquitous require-
ments management that analyses context histories of projects to recommend reusable
requirements. The scientific contribution of this study is the use of the similarity
analysis of projects through their context histories to generate the requirement
recommendations. The implementation of a prototype allowed to evaluate the proposal
through a case study based on real scenarios from the industry. One hundred fifty-three
software projects from a large bank institution generated context histories used in the
recommendations. The experiment demonstrated that the model achieved more than
70% stakeholder acceptance of the recommendations.

Subjects Agents and Multi-Agent Systems, Mobile and Ubiquitous Computing, Software
Engineering
Keywords Context-aware computing, Context histories, Requirements engineering, Ubiquitous
computing

INTRODUCTION
In recent years, the continuous and growing use of new technologies results in a Digital
Transformation, bringing disruptive changes across domains (Nadkarni & Prügl, 2021).
The techniques considered crucial to eliciting requirements do not hold up, given the
paradigm shifts that have occurred.Villela, Groen & Doerr (2019) argued that Requirements
Engineering (RE) involves various dimensions and thus ubiquitous RE allows an adequate
approach for handling the complexity involved.

The software has become present in the vast majority of businesses, with companies
that lack some level of automation being rare. Enterprises need to deal with increasingly
diverse, complex, and interconnected systems, while the demand for rapid innovations
requires ever-shorter feedback loops. The spread of software in business-to-consumer

How to cite this article Lima R, Filippetto AS, Heckler W, Barbosa JLV, Leithardt VRQ. 2022. Towards ubiquitous requirements engi-
neering through recommendations based on context histories. PeerJ Comput. Sci. 8:e794 http://doi.org/10.7717/peerj-cs.794

https://peerj.com/computer-science
mailto:weslleiheckler@edu.unisinos.br
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.794
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.794

and business-to-business environments makes it difficult to engage the growing number
of stakeholders. Traditional requirements elicitation techniques, such as interviews or
focus groups, present problems of scalability and limitation when they need to occur
continuously involving the growing number of stakeholders (Villela et al., 2018).

RE stands out as one of the most critical areas for software project results. Factors such
as goal setting, project planning, involvement, and identification of user needs are key
to project success (Hastie & Wojewoda, 2015). In the meantime, incorrect application of
RE is a primary reason for project failures, increasing development time, and cost (Dick,
Hull & Jackson, 2017; Project Management Institute, 2017b; Bozyiǧit, Aktaş & Kılınç, 2021).
When proper requirements management is applied, the chances of project success increase.
Studies indicate that 30% of project success factors are related to RE processes (Hastie &
Wojewoda, 2015). Apart from that, reusing requirements can help in the execution of
projects, reducing the time for analysis of requirements and identifying reusable code and
artifacts, such in case of software development (Irshad, Petersen & Poulding, 2018).

One option for addressing the issues faced by requirements engineers is requirements
reuse. Software Engineering Recommendation Systems (SERSs) help teams select
information and make decisions when they are inexperienced or unable to consider
all available data. However, setting context is a challenge for recommendation
systems (Robillard et al., 2014).

The use of ubiquitous computing (Lopes et al., 2014) is an alternative for assisting
requirements engineers in their activities. The classical works of Weiser (1999), Satya-
narayanan (2001), and Dey, Abowd & Salber (2001) defined the ubiquitous computing
and context-aware computing. Since then, these concepts have been applied in different
knowledge areas such in health (Vianna & Barbosa, 2014; Vianna & Barbosa, 2019; Dias
et al., 2020; Petry et al., 2020; Bavaresco et al., 2020), well-being (Vianna, Barbosa & Pittoli,
2017a), competencemanagement (Rosa et al., 2015), learning (Barbosa et al., 2011;Wagner,
Barbosa & Barbosa, 2014; Barbosa et al., 2014; Larentis et al., 2020), commerce (Barbosa et
al., 2016), accessibility (Tavares et al., 2016; Barbosa et al., 2018), Smart Cities (Rolim
et al., 2016; Orrego & Barbosa, 2019; Matos et al., 2021), and agriculture (De Souza et
al., 2019; Bhanu, Reddy & Hanumanthappa, 2019; Helfer et al., 2020). The application
of ubiquitous computing in project management coined the term Ubiquitous Project
Management (Filippetto et al., 2020).

The ubiquitous computing is aware of contexts and allows to use this information
to introduce context awareness in the computational systems. Based on contexts,
the systems adapt the execution according to the strategic information obtained in
the runtime (Abech et al., 2016). Recently, the use of context-aware computing to
support the development and maintenance of software emerged as a strategic research
theme (D’Avila, Barbosa & De Oliveira, 2020; D’Avila, De Oliveira & Barbosa, 2020). In
addition, in disruptive applications the ubiquitous computing has been considered an
alternative to develop hygge software (Vianna, Barbosa & Pittoli, 2017a). As a recent
evolution, ubiquitous computing has been empowered with the use of temporal series
of contexts to organize and analyze the data. This new knowledge research area received
the name of Context Histories (Rosa et al., 2015; Martini et al., 2021; Aranda et al., 2021;

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 2/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794

Machado et al., 2021) or Trails (Silva et al., 2010; Barbosa et al., 2016; Barbosa et al., 2018).
This kind of organization allows the exploration of advance strategies to data analysis, such
as, profile management (Wagner, Barbosa & Barbosa, 2014; Barbosa et al., 2017; Leithardt
et al., 2018; Dalmina, Barbosa & Vianna, 2019; Ferreira et al., 2020; Leithardt et al., 2020),
pattern analysis (Dupont, Barbosa & Alves, 2020), context prediction (Da Rosa, Barbosa &
Ribeiro, 2016), and similarity analysis (Wiedmann et al., 2016; Filippetto, Lima & Barbosa,
2021).

This article presents amodel for recommending requirements in software projects, called
Nhatos. The proposed model differs from previous literature in exploring the similarity
of project context histories to assist RE processes by predicting future contexts. Thus,
new requirements are recommended both in the early stages and throughout the project
life cycle. The study seeks to answer the following research questions: (1) Is it possible
to use project context histories to infer requirements in the requirements identification
phase, considering the characteristics and similarity of the projects? (2) Does stakeholder
collaboration, providing project characteristics and feedback from recommendations
contribute throughout the requirements management processes?

This article has five sections. The next section discusses related works focusing on
the scientific contributions. The third section proposes the model, mainly describing its
architecture, the similarity analysis strategy, and the proposed Ontology of Requirements
Recommendation. The fourth section describes implementation aspects focusing on
prototype characteristics, such as technologies, features, screens, and database model. The
section focused on evaluation aspects mainly addresses the application of the prototype in
two case studies based on 153 real software projects. Finally, the last section presents the
conclusion, answers the research questions, and suggests future works.

RELATED WORKS
The selection of related works demanded the identification of studies that involve the
development of models for Requirements Management. The criteria adopted for the
choice of works prioritized articles that addressed: (i) models or systems for recommending
requirements; (ii) similarity analysis of projects or their requirements; (iii) feedback system
on recommendations for new requirements.

Kim, Dey & Lee (2019) presented an ontology knowledge base and the design process
for recommending security requirements based on the cases of attack and the system
domain knowledge. The base has three parts: Ontology APT, Ontology of security general
knowledge, and Ontology of domain-specific knowledge. Each ontology can help in
understanding the security concerns in their knowledge. Integrating three ontologies with
the problem domain ontology allows the derivation of suitable security requirements with
the recommendation process of security requirements. The proposed knowledge base and
the process can help to derive the security requirements, considering attacks in real systems.

Liu et al. (2018) conducted a study that approaches the development or maintaining of
Android applications. The authors analyzed the multiple challenges that developers face
in creating explanations about permissions use. They proposed a new structure, which

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 3/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794

explores possible security requirements recommendations through the description of
similar applications. The study uses techniques of information retrieval and text abstract
to find frequent uses of permission.

Xie et al. (2017) proposed a methodology that uses Conditional Random Fields (CRF) to
provide a quantitative exploration of the interactions between users and systems in order to
discover potential requirements. By analyzing user behavior patterns at runtime, domain
experts made predictions about how users’ intentions change. The authors proposed
improvements to help address the similar needs identified.

Bakar et al. (2016) presented a semi-automated approach, known as Feature Extraction
for Reuse of Natural Language Requirements (FENL), for extracting phrases that may
represent software resources. The authors aim to extract resources from product reviews
online, thus allowing the reuse of software requirements.

Portugal et al. (2017) proposed the use of a software versioning repository (GitHub) as
a source of information. To deal with large masses of data and provide access to suitable
sources, the authors created project profiles with useful attributes for RE. Afterward, they
applied clustering and Natural Language Processing (NLP) to recommend projects by
identifying similar keywords in their description.

Williams & Mahmoud (2017) used the social network Twitter as a requirements source
to allow a data-driven, interactive and adaptable RE process. The authors performed an
analysis with 4,000 tweets from 10 software systems sampled from various application
domains. The results revealed that about 50% of the tweets collected contained useful
technical information. In addition, the results showed that text classifiers like Support
Vector Machines and Naïve Bayes can be useful in capturing and categorizing tweets
technically informative.

Garcia & Paiva (2016) presented a recommendation system that collects the history of
using a Web service, relates this information to requirements, and generates reports with
recommendations that can increase the quality of this service. The proposed approach aims
to provide analytical reports in a language close to the business. The system indicates new
workflows, navigation paths, identifies potential resources to remove, and correlates the
requirements and the proposed changes, helping to keep the specification of the software
requirements up to date.

Hujainah et al. (2021) proposed a technique for prioritizing requirements and
thus selecting the requirements to be developed. While not directly recommending,
prioritization helps the selection of requirements and supports the process. The authors
addressed this task focusing on specific challenges in this area, such as scalability, lack
of automation, and excessive time consumption. The study presented a semiautomated
scalable prioritization technique using a multi-criteria decision-making method, clustering
algorithms, and a binary search tree. The technique aims to mitigate the need for expert
involvement in this process and increase efficiency.

Swathine & Sumathi (2021) worked with requirements traceability and based on this
information the proposal indicates which requirements must be considered to support
the interested parties in the process. This study used a meta-heuristic approach to create
a novel traceability system for analyzing systems’ functional requirements. The authors

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 4/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794

Table 1 Comparison of related works.

Author Processes Recommendation Strategy Collaboration Environment Type

Kim, Dey & Lee (2019) V1 R5 Ontologies X Academic Experiment
Liu et al. (2018) V R Description × Academic Experiment
Xie et al. (2017) V W6 Historic X Academic Experiment
Bakar et al. (2016) E2 R Description × Academic Experiment
Portugal et al. (2017) E P7 Commits × Industry Use case
Williams & Mahmoud (2017) E R Reviews × Academic Use case
Garcia & Paiva (2016) E R Logs X Academic Experiment
Hujainah et al. (2021) V R Historic × Academic Experiment
Swathine & Sumathi (2021) V W Historic X Academic Experiment
Mougouei & Powers (2021) E R Expert system × Academic Experiment
Nhatos model V, E, S3, M4 R Context Histories X Industry Use case

Notes.
1, Validation; 2, Elicitation; 3, Specification; 4, Management; 5, Requirements; 6, Redefinitions; 7, Projects.

aimed to identify traceable links for supporting decision-making, solving the inconsistency
problem, and generating quality requirements.

Mougouei & Powers (2021) allowed the selection of requirements considering
dependencies and value to be delivered by the requirements. The authors proposed
the Dependency-Aware Requirements Selection, an intelligent system that analyzes the
value dependencies among requirements, aiming to reduce the risk of value loss. This
model considered the user preferences for the requirements, showing promising results in
reducing value loss, including when applied in large requirement sets.

Table 1 shows the characteristics adopted in the comparison between Nhatos and related
works. The first item (processes) informs which of the RE processes the articles address:
validation (V), elicitation (E), specification (S), or management (M). The second item
(recommendation) shows the type of item recommended in the study: requirements (R),
wrong definitions (W), or projects (P). The third shows the strategic path used by the
authors for the recommendations. The fourth item refers to the collaboration of interested
parties during the recommendation process. Finally, the last two columns present the
environment of the model observation and the type of evaluation.

The analysis of related works indicates four scientific contributions of Nhatos. First,
the proposal collaboratively approaches all RE processes, allowing everyone involved to
contribute throughout the projects. Nhatos collects different points of view on requirements
at any time during the life cycle of the projects, contemplating all RE processes. Second, the
model addresses requirements recommendations at the beginning of a new project, using
histories of projects already executed, through common characteristics between projects
and requirements. Third, the similarity analysis of context histories and NLP allow the
recommendation of similar requirements in the initial phase of projects. Finally, Nhatos
recommends future contexts based on the similarity analysis of context histories.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 5/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794

PROPOSED MODEL
According to Robillard et al. (2014), an SERS needs to have specific requirements to be
considered a recommendation system, which are: (a) a mechanism for collecting data and
artifacts from the development process in a data model; (b) a recommendation mechanism
to analyze the data model and generate recommendations; and (c) a user interface to trigger
the recommendation cycle and present its results.

Nhatos meets the three requirements mentioned, because: (a) it collects data
through a multi-agent system throughout the entire project life cycle; (b) it generates
a recommendation considering the current context of the project, and (c) it has an
interface on mobile devices to present the results to users and collect their feedback.

In order to measure the applicability of an intelligent tool to support requirements
engineers, we conducted a survey involving software design professionals. This research
aimed to answer whether the project teams need a proactive tool to support their activities
involving the RE processes.

Principles of Nhatos: survey with 56 professionals
A survey involved 56 professionals working in the software development industry,
including project managers, analysts, project teams, and teachers. Participants answered
an electronic questionnaire with multiple choice and transcribed questions. About 71%
of the interviewees had more than five years of experience in projects. More than 70% of
respondents worked in companies with more than 100 employees. The main objective of
the research was to capture the perception of professionals regarding the support tools
in project management currently used in their work environment. This research allowed
to identify gaps and possible improvements in the RE area guiding the specification of
Nhatos. The following are the research questions and results:

• Which areas do you consider most critical to the success of the project? 50% of respondents
selected the scope as the most critical area. Participants also mentioned the areas of
Time, Communications, and Integration, with 44.6%, 42.9%, and 39.3% of responses,
respectively;

• In the projects where problems occurred, what were the areas in which the problems were
identified? A total of 39.29% of the participants answered that problems in project
management are due to incorrect Scope Management (SM). Other project areas, such
as Time Management and Communications, obtained 25 (44.6%) and 21 (37.5%)
responses, respectively;

• What types of suggestions would you like to receive from a proactive project management
tool? According to the interviewees’ perception, 32.1% answered that a tool should
suggest new requirements for projects;

• Do you believe that information from other projects already completed could assist in
project management? 85.7% of the members confirmed that history contributes to
the management of the new projects.

The perception of the teams collected in the survey allowed to conclude that there
is interest from the professionals regarding the use of an intelligent tool to support the

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 6/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794

Figure 1 Nhatos architecture.
Full-size DOI: 10.7717/peerjcs.794/fig-1

project teams during the RE processes. This opportunity stimulated the development of
the Nhatos, which aims to assist teams during the RE process life cycle.

Model architecture
Figure 1 shows Nhatos architecture using the Technical Architecture Module (TAM)
modeling specification (FMC, 2021). The following components are part of the model and
they are seen in the figure with their respective numbering:
1. Mobile App: Application in a hybrid structure based on Javascript language, which

operates both in mobile applications (Android/IOS), as well as in browsers web.
Stakeholders use this application during interactions in RE processes. The stakeholders
can: (a) add and manage projects and their information; (b) add requirements and
modify them; (c) view the recommendations generated by the model; (d) provide
feedback about the recommendations received, accepting or rejecting them;

2. Integration Interface : It enables the bulk import of data from ongoing projects. When
using this system web interface, users may import projects and requirements exported
from third-party project management tools, such asMS Project, for example;

3. Configuration: Project team preferences are entered through an assistant agent,
accessed viamobile devices. Each project variable receives a weight (area of knowledge,
size, methodology, and level of completeness of the schedule). Each recommendation
made by the model considers the weight configured by a specialist.

4. Views and API : These applications operate in an integrated manner in a server
environment.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 7/30

https://peerj.com
https://doi.org/10.7717/peerjcs.794/fig-1
http://dx.doi.org/10.7717/peerj-cs.794

(a) Views: They are characterized by controllers responsible for the business rules
of the model, obtaining information already stored in the database to provide
information to those involved;

(b) API : A data access interface which uses the RESTFul protocol to interconnect the
applicationMobile App and Database.

5. Agents: Multi-Agent System (MAS) that captures the events related to project’s
evolution or modification. The capture is triggered when some of these events occur:
(a) addition of a new requirement; (b) termination of an activity; or (c) evolution in the
percentage of completion of the project. Figure 2 shows the proposedMAS using the the
Prometheus methodology (Larioui, 2020). TheMAS has six agents. The Translate agent
converts to English the texts from native languages used in the projects. The NLP uses
English as the language, so this translation is necessary to Nhatos. Projects Similarity
analyzes the similarity of the projects using project size, methodology applied and
area of expertise. NLP techniques allow to group projects according to their expertise.
Context Storage stores each event occurrence in the project‘s history. Recommendation
Engine permanently monitors the project’s events to orchestrate the execution of the
other agents when one event occurs. Requirements Similarity uses semantic analysis
to determine the requirements similarity based on texts written in natural language.
This analysis is detailed in the Similarity Analysis subsection. The agent also compares
requirements to determine if requirements have the same number of actors. Context
Similarity performs the similarity analysis in the context histories of the projects.

6. Projects Database : It saves application settings, such as (a) Project data; (b)
Recommendations made by the model; (c) Feedback from stakeholders regarding
the recommendations; and (d) Context histories that occurred throughout the life
cycle of the projects.

Similarity analysis
The similarity analysis occurs in two moments: (1) similarity analysis based on project
characteristics, and (2) similarity analysis based on context histories of projects. The
first analysis occurs at each insertion of a new project, while the second analysis occurs
during a new evolution of the projects’ life cycle. Figure 2 shows the representation of the
multi-agent system with the three agents that conduct the similarity analysis (Context,
Projects and Requirements).

The model captures the characteristics of the new project during its creation. At
this time, the project teams have not yet implemented it. The project is in the creation
or planning phase. The Project Management Institute (2017a) has characteristics that are
considered properties of a project. Stakeholders determine these characteristics in the early
stages of the life cycle, which are: (a) Area of knowledge; (b) Development methodology
(agile, traditional, or hybrid); (c) Level of completeness of the schedule; and (d) Size.
Figure 3 shows how the recommendation flow occurs in this step.

After capturing the fundamental characteristics of the project, an expert defines the
weights for each one. The specialist defines the importance of each characteristic, based on

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 8/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794

Figure 2 Multi-agent system.
Full-size DOI: 10.7717/peerjcs.794/fig-2

Figure 3 Similarity analysis by project characteristics.
Full-size DOI: 10.7717/peerjcs.794/fig-3

its degree of relevance to the project and organization. This definition allows to measure
the similarity between the projects before the start of their execution.

After the insertion of a new project, the multi-agent system identifies this event and
initiates the recommendation process. The multi-agent system goes through the stored
histories and compares the variables with characteristic of each project in the history
with the same variables as the original project. The model considers the configurations
previously informed by the specialist - these configurations make up a weight system,
which will be applied during the calculation.

After the model groups similar projects, the context histories of those projects are
analyzed to identify reusable requirements among them. Therefore, for projects in the
same group, Nhatos calculates similarity considering the semantic distance between their
requirements.

Nhatos defines the semantic distance by analyzing the distance between text documents
proposed by Kusner et al. (2015). This approach takes advantage of the results of

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 9/30

https://peerj.com
https://doi.org/10.7717/peerjcs.794/fig-2
https://doi.org/10.7717/peerjcs.794/fig-3
http://dx.doi.org/10.7717/peerj-cs.794

Figure 4 Similarity analysis by project context histories.
Full-size DOI: 10.7717/peerjcs.794/fig-4

Mikolov et al. (2013), whose model word2vec generates combinations of words, on a large-
scale ontology, for extensive data sets (for example, we use the training of approximately
100 billion words in this model). In this way, Nhatos compares the texts that describe the
objectives of the requirements. Afterward, the results are stored in history, enabling the
recommendation of requirements related to the same theme (similar purposes) and similar
projects (same area of knowledge).

The recommendation of requirements in the initial phases of the projects aims to
bring historical information to the project teams, mainly to the requirements engineers
and stakeholders. Then, these users will be able to accept or reject the requirements
recommended by the model. Nhatos thus ensures that no requirements of the historical
basis are disregarded by those involved during management.

During the life cycle of projects, Nhatos saves the events in context histories. The model
identifies information that is susceptible to changes in state over the life cycle of the projects,
which are: (a) purpose of the requirements; (b) actors involved in the requirements.

Whenever a user inserts a new requirement into the project or at least one of this
context information is modified, the similarity analysis of projects by context histories
begins. Nhatos uses the stored histories to complement the similarity analysis based on the
characteristics, updating recommendations based on the new information.

Figure 4 shows how the recommendation flow occurs in this step. This flow seeks
similar contexts by analyzing the context histories of the project and comparing this
information with other stored contexts. Each step presented in the projects’ timeline
represents information about event occurrences saved in context histories. In this way, this
information can later be used by the model to generate a new recommendation. Whenever
one of the defined events occurs, Nhatos creates a record in the context history of the
project.

Nhatos compares each project context with contexts from similar projects by using
the semantic distance between the requirements from the previously-stored histories.
The recommendation of the next occurrence of the context history occurs for the project

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 10/30

https://peerj.com
https://doi.org/10.7717/peerjcs.794/fig-4
http://dx.doi.org/10.7717/peerj-cs.794

Figure 5 Similarity analysis by context histories.
Full-size DOI: 10.7717/peerjcs.794/fig-5

in execution when the distance between the requirements is acceptable (according to the
specialist’s settings), and the number of actors is equal between the requirements compared.

Figure 5 shows an example of analyzing the context histories of an ongoing project
with histories from similar projects. In this example, the entire recommendation flow is
elucidated step by step.

We considered two projects to exemplify the similarity analysis of context histories.
Both projects (Pa and Pb) have five requirements. The multi-agent system compares
requirements between projects in chronological order. In this scenario, the specialist
configured the minimum semantic distance of 0.3, training sample 70%, and three similar
steps to generate the recommendations. Thus, the comparison of the first requirement of
Project A with the first requirement of Project B generated a semantic distance of 0.41
(distance not acceptable according to the configured parameters). Another excluding factor
is that these requirements have a different number of actors. Thus, step 1 is not similar. On
the other hand, steps 2, 3, and 4 obey both the minimum acceptable semantic distance and
the same number of actors involved in the compared requirements. Since the expert has
configured recommendations that require at least three similar consecutive steps, Nhatos
recommends the fifth requirement of project B for project A.

Assuming that the configured training sample was 70%, Nhatos uses the remaining
percentage of the project (30%) to verify that at least one requirement with the same
semantic distance and the same number of actors as the recommended requirement
occurred throughout the life cycle. Once it occurs, the recommendationmade is considered
assertive.

The analysis of more than one chronological context, which occurred during the project,
aims to identify projects that have a similar execution sequence. This analysis contributes to
a higher degree of precision in the recommendations made. The most significant number
of similar consecutive contexts indicates the proximity between project implementation.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 11/30

https://peerj.com
https://doi.org/10.7717/peerjcs.794/fig-5
http://dx.doi.org/10.7717/peerj-cs.794

Figure 6 Ontology of requirements recommendation.
Full-size DOI: 10.7717/peerjcs.794/fig-6

However, when Nhatos considers more contexts, the fewer projects must be identified
as similar and, therefore, the fewer recommendations made, since each project is unique
(Project Management Institute, 2017a).

Ontology of requirements recommendation
Figure 6 shows the Ontology of Requirements Recommendation proposed by Nhatos. The
domain ontology contains Projects, Requirements, and Specification. This representation
is an extension of the work of Silver (2014), with the addition of the Projects Ontology.
Three ontologies covered the domain considered by Nhatos: (a) Requirements Specification
Ontology which makes up the requirements specification; (b) Projects Ontology which
is characterized by the domain of the project and its contextual information; and (c)
Requirements Ontology that represents the requirements.

The project ontology has the Project class composed of the Area, Completion Level,
Methodology and Size. These subclasses define the contextual information of the projects.
The ontology that comprises the requirements specification has the classes Scenario, Goal,
and Actor. These classes represent the elicitation process, identifying new requirements
and relating them to projects. The ontology that determines the requirements has the class
Requirement and its subclasses Functional Requirement and Non Functional Requirement,
which define the types of requirements.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 12/30

https://peerj.com
https://doi.org/10.7717/peerjcs.794/fig-6
http://dx.doi.org/10.7717/peerj-cs.794

Figure 7 Prototype overview.
Full-size DOI: 10.7717/peerjcs.794/fig-7

We added a specification document (Requirement Specification Document) to exemplify
how the requirement is instantiated when using ontologies. Each document has a scenario,
where the actors through the defined objectives identify requirements for a given project.

IMPLEMENTATION ASPECTS
We developed a software prototype to meet the model definitions. Figure 7 shows
that the prototype integrates three applications: (1) Console Application (https:
//github.com/robsonklima/nathos-py-v2); (2) RESTFul API Application or WebService
(https://github.com/robsonklima/nhatos_api); and (3) Hybrid Application (https://github.
com/robsonklima/nhatos_front_end), composed by the Web Application and the Mobile
App. The first two are back-end applications, which run on a server. The third application
operates on mobile devices, acting as front-end software. The users involved in the
requirements engineering processes used this application.

Hybrid application
The Hybrid Application runs both on mobile devices and on conventional computers
operating in a browser web. In this way, the application has two interfaces for
communication with system users: (1)Web Application; and (2) Mobile App.

This application allows the interaction of project teams with Nhatos, allowing the
management of projects, requirements, activities, resources, registration of interested
parties, and evaluation of recommendations. The prototype allows to monitor projects,
capturing context information to compose the context histories. The software can be used
throughout the life cycle of projects. Further, this application presents the recommendations
to the user, thus allowing the collection of feedback from interested parties.

Figure 8A shows the interface for the project presentationwith characteristic information
about the project such as size,methodology, percentage of evolution, and area of knowledge.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 13/30

https://peerj.com
https://doi.org/10.7717/peerjcs.794/fig-7
https://github.com/robsonklima/nathos-py-v2
https://github.com/robsonklima/nathos-py-v2
https://github.com/robsonklima/nhatos_api
https://github.com/robsonklima/nhatos_front_end
https://github.com/robsonklima/nhatos_front_end
http://dx.doi.org/10.7717/peerj-cs.794

Figure 8 Screenshots with project details and requirements.
Full-size DOI: 10.7717/peerjcs.794/fig-8

Figure 8B presents the list of project requirements, as well as their respective percentage of
evolution.

Figure 9A shows the settings of the weight variables, which are defined by an expert.
These variables define the importance of each aspect of the project and its requirements
during the recommendation process. The user can define weights related to project area,
size, methodology, and level of completion, as well as the acceptable semantic proximity
between the requirements that will be considered for a possible recommendation.

Figure 9B presents examples of recommendations. The interface contains the
recommended requirement, as well as the requirement that raised this recommendation and
the semantic distance between these requirements. The interaction area also enables users
to provide their feedback, selected from the options to accept or reject the recommendation.
This user decision is registered in order to evaluate the acceptability of the recommendations
by stakeholders in the future.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 14/30

https://peerj.com
https://doi.org/10.7717/peerjcs.794/fig-8
http://dx.doi.org/10.7717/peerj-cs.794

Figure 9 Screenshots with specialist settings.
Full-size DOI: 10.7717/peerjcs.794/fig-9

Console application
This application developed in Python is an encapsulated software that acts in the form of
service. The software uses the concept of multi-agent systems, proposed by Padgham &
Winikoff (2004) to implement the Agents layer. The application does not depend on direct
interaction with the users, being triggered by modifications detected in the environment.
The Agents layer implements the following 6 agents: (1) Recommendation Engine; (2)
Translate;(3) Projects Similarity ; (4) Requirements Similarity ;(5) Context Similarity ; and
(6) Context Storage.

The Recommendation Engine runs systematically through the detection of changes
occurred in the environment. The agent always activates when a user inserts a new project
or requirement. Once performed, this agent is responsible for starting the execution of all
other agents.

The Translate agent translates all the contents entered by the user into the English
language, enabling the execution of subsequent agents. Since, as a premise, all contents

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 15/30

https://peerj.com
https://doi.org/10.7717/peerjcs.794/fig-9
http://dx.doi.org/10.7717/peerj-cs.794

must be registered in English. Nhatos uses NLP and the corpus of texts obtained for the
application of the study is written in this language. The software loads the projects and their
requirements from the database, translating them using the API Google Cloud Translate
(Google, 2021b). We considered the usage of this API does not generate discrepancies in
translations since this API has an estimated accuracy of 85% (Aiken, 2019) and the texts
translated are technical, having a technical writing pattern.

The Projects Similarity agent activates after the translation of the content of the projects
and their requirements. This agent analyzes the similarity between all projects in the
database and groups the characteristics of the projects separately. The software considers
the information in the ontology (Fig. 6), considering all projects in the database according
to size, area of knowledge,managementmethodology, and level of completeness (schedule).
After consulting all projects, the agent classifies and labels each project, so that the next
step of the algorithm starts.

The Requirements Similarity employs the use of NLP to find requirements that contain
equivalent objectives, as well as the same number of actors involved. This agent also
considers the similarity analysis between the projects, performed previously. In this way,
the algorithm analyzes the similarity between the requirements of projects considered
similar.

First, the agent appropriates the new settings for distance, steps, and sampling, thus
starting new processing. Then, it removes the previous recommendations (if any), to
start a new recommendation process. This method removes all recommendations that
originated from the same distance, number of steps, and sampling setting. Because, it is
considered that throughout the life cycle, the requirements may have changed regarding
their objectives or actors involved (Project Management Institute, 2017a).

Then, the agent retrieves all projects from the database. The requirements of each
project are obtained. Each requirement is compared with the requirements of similar
projects. In this step, the agent checks whether the objective of both requirements meets
the established distance parameters, as well as the number of actors. Finally, once the
number of requirements found sequentially is equal to the number of configured steps,
this requirement is considered recommendable to the project.

The Context Similarity agent analyzes whether the recommendations carried out within
the sample selected by the specialist occurred in the project. The software loads all
recommendations made and it selects the project requirements after the recommendation’s
record date. If among the requirements, a requirement is found with the same semantic
distance to the compared requirement and, containing the same number of actors, this
recommendation is considered assertive. Otherwise, the recommendation becomes non-
assertive. Finally, this decision is stored in the database.

The Context Storage agent keeps the information in a database with four main entities:
(1) projects; (2) requirements; (3) requirements distance; and (4) recommendations.

Figure 10 shows the relational entity diagram of the model database. The projects entity
saves information related to projects. This entity registers basic project information and

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 16/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794

Figure 10 Relational entity of the Nhatos model.
Full-size DOI: 10.7717/peerjcs.794/fig-10

its characteristic information, such as: opening statement (description), knowledge area
(domain), size (size), and methodology applied during its development (methodology).

The requirements entity keeps model requirements. The same project can contain
several requirements, according to the relationship in the diagram (1..n). The actors of
each requirement are stored in the entity actors and an actor can be linked to several
requirements and vice versa, as shown in the entity requirements_actors (n..n).

The requirements_distance entity saves the distance information between the processed
requirements. The entity stores the original requirement (req_a_id) and the compared
requirement (req_b_id), as well as the respective semantic distance (distance) between
them.

Finally, the recommendations entity keeps the recommendations inferred by Nhatos.
Each recommendation is directed to a project (project_id) and the requirement that
generated such a recommendation (requirement_id). The assessment of the assertiveness
of each recommendation is stored in the is_assertive property.

RESTFull API application or web service
The RESTFull API Application provides a communication channel between the Hybrid
Application and the Context Storage application. Using the RESTFull protocol, the
application allows data traffic in the JSON format between applications. It enables the
exchange of data between the hybrid application, used by users, and the information
already processed by Console Application, which stores its information in the Nhatos model
database.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 17/30

https://peerj.com
https://doi.org/10.7717/peerjcs.794/fig-10
http://dx.doi.org/10.7717/peerj-cs.794

Table 2 Profile of participating teams.

Team Role Experience (Years) Mode

Team A Scrum master 15+ Local
Product owner 10+ Distributed
Designer 5+ Local
Developer 10+ Local
Developer 5+ Local
Developer 5+ Local
Test analyst 5+ Local

Team B Project manager 25+ Distributed
Developer 10+ Distributed
Developer 5+ Local
Developer 5+ Local
Test analyst 5+ Local

EVALUATION ASPECTS
The application of a case study in a software development company allows answering the
research questions. This company develops application solutions for a banking institution.
This study aimed to confirm the hypothesis of using the analysis of context histories of
projects to recommend requirements for new or ongoing projects.

The study employed a database with the context histories of 153 software development
projects. The database has projects with different resources and development methods,
such as distributed or local teams. The use of different characteristics of the 153 projects
allowed the analysis of a diversity of contexts to the recommendation of requirements.

The evaluation considered two cases: (1) two teams evaluated the use of the prototype
during the implementation of 5 real projects, and (2) 17 completed projects were used
to evaluate the recommendations made by Nhatos, comparing the recommendations
done with the requirements in the 17 original projects. Next subsections describe these
evaluations.

Team evaluation during project execution
The first case involved two teams with a total of 12 professionals. These professionals were
asked to validate the recommendations made by the model. Table 2 shows the profile of
the teams that participated in this experiment.

Initially, project teams inserted information related to the projects in the database (scope
and descriptive information, terms of reference, resources, schedule, and tasks/activities).
The professionals used the integration interface to insert information into the database.
After, the project teams identified and registered the requirements using the prototype
running on mobile devices.

The similarity analysis of the projects used NLP since approximately 79% of the
requirements and project documents are written in natural language (Luisa, Mariangela &
Pierluigi, 2004). The algorithm classified each project through the use of NLP according to
its respective area of knowledge. The identification of these areas involved the use of the

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 18/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794

Table 3 Recommendations made by project.

Project Area Recommendations Accepted % Accepted

Renegotiated operations - Restructured Finance 16 11 68.7
Alteração renov autom cheque especial PF Finance 14 8 57.1
CDB movements in M-BANKING Business & Industrial 9 7 77.7
Parameterization of indexers Finance 10 9 90.0
Automatic lock renewal Finance 13 8 61.6

Approval percent 71.0

opening statement. In addition, the project charter contains a high-level description of the
project. The classification used the Google Natural Language API (GNL), which provides
resources for the analysis of unstructured texts, such as content classification and entity
identification. The content rating analyzes a document and results in a list of categories
that apply to the found text. The classification can still contain several levels, specifying the
greater depth of details about the area of knowledge in question (Google, 2021a).

Currently, GNL processes English sentences only. The projects had information in
Portuguese, so it was necessary to previously translate the descriptive content of the
projects before carrying out the classification process. The prototype performed the
translation automatically using the Google Cloud Translation API (GCT) (Google, 2021b).
The GCT receives a phrase as input, identifies its language and translates it into the language
selected by the user. During the study, the agent translated all sentences into English. After
translation, Nhatos categorized the projects using GNL based on the 153 projects. This
step classified 23 projects as Finance (15.03%), 20 as Business and Industry (13.07%), 10 as
Computers and Electronics (6.53%), 6 as Credit and Lending (3.92%), and 4 as Accounting
and Auditing (2.61%), having these categories the highest number of classified projects.

In addition, the variables registered in the Configurationmodule allowed to defining the
knowledge area of each project. The similarity analysis used this definition. These variables
received weights, which reflect the uniqueness of each project. The weight setting allows the
algorithm to generate different recommendations according to the characteristics recorded
by the specialist. Table 3 presents the recommended requirement values for each project
and the requirement values added to new projects through the recommendations.

During the case study, users included in the projects twenty requirements, which were
used to evaluate the recommendations made in the execution of the project. Whenever
a user added a new requirement, the Requirements Similarity Agent identifies the event
and performs the semantic proximity analysis. The Agent compares the new requirement
description with the requirements stored in the context history of the project.

The GNL algorithm analyzes texts in English, performing a semantic analysis. Thus, the
model translates the description of the project or requirements which are in another
language. Table 4 shows an example of a requirement added to a project and the
recommended requirements based on this insertion. Nhatos considers the objective of
each requirement and also the number of related actors.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 19/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794

Table 4 Semantic analysis for requirements recommendation.

Included requirement Recommended requirements Distance

The software must allow the manager
to request airline tickets (1 actor).

The software must allow the manager
to order supplies (1 actor).

0.21

The software must allow the manager
to request resource transfers between
projects (1 actor).

0.32

At this stage, Nhatos applies the analysis to the entire database, regardless of whether
projects were compared in the first stage of the recommendation. The semantics of the
included text and the objectives of the requirements may change throughout the project
(Dick, Hull & Jackson, 2017). This step also allows project requirements that were not
originally recommended to be analyzed and considered. The analysis is carried out at
this point on the requirements, considering the grouping of projects based on their
characteristics. The semantic distance represents the comparison of the requirement
objectives, having a floating-point value between 0.0 and 1.0. The distance closer to 0
indicates that the recommended requirement is semantically closer to the original.

Consequently, the closer the semantic distance to 1, the less similar the recommended
requirement is considered when compared to the original. The actors of each requirement
are also considered during this stage of the analysis. This context information considers
the number of actors to which a requirement is related.

During the case study, for each of the five projects, the model analyzed the similarity,
recommending the requirements between similar projects. Soon after, the team analyzed
the recommended requirements for the five registered projects. Table 3 shows that the
approval rate of the requirements had an average of 71.0%. The average appropriation of
the recommendations presented for new projects shows the acceptance of the requirement
recommendation model evaluated by the teams, in order to provide more information to
the managers since the beginning of the project.

Evaluation of recommendations through analysis of context
histories
The second case compared the requirements registered in 147 completed projects with the
requirements recommendations made by Nhatos. This study allowed to infer whether the
recommendations made, considering a sample of 70% of the progress of the projects, were
in fact inserted into the remaining percentage of the project.

This scenario evaluated the recommendations made in many situations considering
projects with different characteristics. Most of the projects (81) used the agile methodology
based on the framework SCRUM (Sutherland & Coplien, 2019). The others (66) employed
traditional methodology based on the good practices proposed by Project Management
Institute (2017a). We classified the projects into one of three size categories, considering
the execution time of each one: small (up to 500 h), medium (up to 3,000 h), and large
(over 3,000 h).

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 20/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794

Table 5 Evaluation of recommendations made by the Nhatos.

Distance Steps Sample Non-assertive
recommendations

Non-assertive
recommendations (%)

Assertive
recommendations

Assertive
recommendations (%)

Total

1 0,25 3 0,7 248 51,56 233 48,44 481
2 0,25 4 0,7 19 70,37 8 29,63 27
3 0,25 5 0,7 1 50 1 50 2
4 0,3 3 0,7 555 29,65 1317 70,35 1872
5 0,3 4 0,7 194 30,03 452 69,97 646
6 0,3 5 0,7 56 28,43 141 71,57 197
7 0,35 3 0,7 904 16,96 4427 83,04 5331
8 0,35 4 0,7 443 17,51 2087 82,49 2530
9 0,35 5 0,7 237 17,52 1116 82,48 1353

The learning phase used a sample of 70% referring to the execution of each project. The
Nhatos Learning consists of collecting the project’s evolutionary events. Figure 4 shows this
process in the Recommendation Engine, Context Storage, and Context History Similarity
steps. With this learning, Nhatos generated requirement recommendations for the same
projects. The remaining 30% of data from the executed process was the base for assessing
the recommendations made by the model.

The similarity analysis between the projects taking into account the context histories
considers that a consecutive sequence of contexts must be similar. The model then
recommends the next requirements for the project being implemented based on the
sequence of events that generated context histories.

In all, nine test scenarios were configured using different parameterizations to find the
best scenario of recommendations, where each test considered the entire historical database.
Table 5 shows the results of the different settings applied. A test scenario addresses different
combinations of the variables Distance, Steps and Sample.

All test scenarios considered a 0.7 sample value. Therefore, the training sample to
generate the recommendations contained 70% of the evolution of the projects’ schedule
(life cycle). Tests 1, 2 and 3 considered configurations with a minimum semantic distance
between the requirements of 0.25 (75%). All 3 step configurations for these tests resulted
in an assertiveness rate equal to or less than 50%. Scenario 2 and 3 generated a few
recommendations, 27 and 2, respectively. Test 1 generated a total of 481 recommendations.
However, as mentioned, the assertiveness did not reach 50%.

On the other hand, tests 7, 8, and 9 generated a significant amount of recommendations.
The assertiveness rate was high, above 80% in the three cases. However, the semantic
distance proved to be relatively comprehensive, considering requirements only 65%
similar. Therefore, the tests allowed the inference of a large number of requirements
recommendations (a total of 9,214). In these scenarios, Nhatos provided a high number of
recommendations, being more than the teams could assess. Therefore, the model did not
attend to a requirement of ubiquitous applications in these cases since these applications
must be minimally intrusive (Satyanarayanan, 2001).

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 21/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794

Scenarios 4, 5, and 6 were more promising than the first ones. All three achieved a
percentage rate of assertiveness close to or higher than 70%. However, only scenarios 4 and
5 had an adequate number of recommendations for analysis in the use case.

The configuration of the Scenario 4 considered a minimum distance of 0.3 (70%)
and three steps, obtaining a hit rate of 70.35% for assertive recommendations. Of the
1,872 inferred recommendations, 1,317 were correct, while 555 were incorrect. Scenario
5 considered a configuration of a minimum distance of 0.3 (70%) and four steps. This
scenario obtained a hit rate of 69.97% of assertive recommendations. A total of 452 of the
646 recommendations were correct, while 194 were unsuccessful. The different scenarios
allowed a new round of tests to be carried out, obtaining the most certain configuration
for the database.

CONCLUSION
This article proposed Nhatos, a computational model which provides recommendations
considering the characteristics of each new project. In this way, the teams start the life
cycle of each project with a broader set of information, making the project planning more
assertive, which increases the chances of success.

In addition, Nhatos infers new recommendations during the execution of the projects
through the analysis of the included requirements. The recommendations benefited from
a semantic analysis of the text that understood the requirements’ objectives, as well as the
number of actors involved. In this sense, new scenarios for the projects are considered
during their implementation. The model considers context histories of projects when
recommending new requirements, when considering the schedule of similar contexts and
when compared to the original projects.

The research questions allow to validate the use of the Nhatos in two dimensions:
(i) requirement recommendation considering the context histories of the projects; (ii)
elicitation and specification of requirements, allowing their use collaboratively. In this
sense, the results demonstrated the adherence of the Nhatos to proactive requirements
management in projects. A summary of the main conclusions is as follows:
1. Nhatos achieved an accuracy of 65.33% regarding the average value of the 9 test

scenarios performed and scenario 7 reached an accuracy of 83.04%.
2. The first research question focused on the suitability of the recommendations made

by the model for the new project, considering the team that developed the projects
and the projects already executed. The evaluation confirmed the relevance of projects‘
context histories for recommending requirements for the projects. Case 1 presented
an average recommendation approval rate of 71.0%, proving that Nhatos can make
suitable recommendations based on experts’ configurations and characteristics of other
projects. Case 2 proved as true the hypothesis of using the context histories for the
requirements recommendation, achieving a value higher than 80% of assertiveness in
different scenarios through the similarity analysis of the project context histories.

3. The second research question assessed the ability of the model in recommending
requirements throughout the projects’ life cycle in a collaborative manner. During the

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 22/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794

project’s follow-up period in the case study, the registration of 20 new requirements
occurred, in addition to the requirements recommended by Nhatos. All team
members participated in a collaborative analysis of each requirement and contributed
knowledge during the elicitation, specification, and validation processes, providing
more information for the project. The collaboration of the requirements management
team allowed the evaluation of possible impacts that may occur in the projects. Also,
teams could collaborate during all requirements management processes through the
use of the prototype.

4. The answers to the research questions confirm the main scientific contributions of this
study, which is the recommendation of requirements considering the characteristics of
the projects and analyzing the context histories, in addition tomonitoring the entire life
cycle of the requirements throughout the project. Thus, the model helps in planning
projects by providing a broader set of information adhering to the project in progress
for requirements engineers when starting a new project.

5. The collaboration of all interested parties enhanced the model, mainly in the
identification and specification of requirements. This is not present in the related works.
This differential enabled the collection ofmore information during the implementation
of the project and brought technical and practical knowledge about the importance of
the requirements by all stakeholders.

6. The case studies and the prototype allowed the evaluation of the Nhatos, contributing
to the observations of gaps in themanagement of project requirements. The case studies
focused on answer the two research questions presented in the introduction.
Based on the results obtained in the case studies, we suggest the following opportunities

that future studies can explore:
1. The exploration of the model usage, considering projects from different companies.
2. The monitoring of the prototype use over time since the prototype can provide a more

robust design history and more assertive requirement recommendations, considering
the model benefits from a growing database.

3. The exploration of the pattern analysis of context histories, which can allow detecting
emergent patterns related to requirements and projects.

4. Future investigations can enhance the interface among applications, performing a
deeper analysis concerning the API built.

5. Future studies may perform a wider comparative analysis with related works to
investigate the results obtained in this study, exploring the data used and the saved
time through the use of Nhatos.

ACKNOWLEDGEMENTS
We would like to thank University of Vale do Rio dos Sinos (UNISINOS), VALORIZA,
and COPELABS for embracing this research.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 23/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by national funds through the Fundação para a Ciência
e a Tecnologia, I.P. (Portuguese Foundation for Science and Technology) by the
project UIDB/05064/2020 (VALORIZA—Research Centre for Endogenous Resource
Valorization), and Project UIDB/04111/2020, ILIND–Instituto Lusófono de Investigação
e Desenvolvimento, under project COFAC/ILIND/COPELABS/3/2020. There was no
additional external funding received for this study. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National funds through the Fundação para a Ciência e a Tecnologia, I.P. (Portuguese
Foundation for Science and Technology): UIDB/05064/2020.
VALORIZA—Research Centre for Endogenous Resource Valorization: UIDB/04111/2020.
ILIND–Instituto Lusófono de Investigação e Desenvolvimento: COFAC/ILIND/-
COPELABS/3/2020.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Robson Lima and Alexsandro S. Filippetto conceived and designed the experiments,
performed the experiments, analyzed the data, performed the computation work,
prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.

• Wesllei Heckler analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.

• Jorge L.V. Barbosa conceived anddesigned the experiments, analyzed the data, performed
the computation work, authored or reviewed drafts of the paper, and approved the final
draft.

• Valderi R.Q. Leithardt analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data is available in the Supplemental File.
The Console Application is available at GitHub: https://github.com/robsonklima/nathos-

py-v2
The RESTFul API Application or WebService is available at GitHub: https://github.com/

robsonklima/nhatos_api
The Hybrid Application is available at GitHub: https://github.com/robsonklima/nhatos_

front_end

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 24/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794#supplemental-information
https://github.com/robsonklima/nathos-py-v2
https://github.com/robsonklima/nathos-py-v2
https://github.com/robsonklima/nhatos_api
https://github.com/robsonklima/nhatos_api
https://github.com/robsonklima/nhatos_front_end
https://github.com/robsonklima/nhatos_front_end
http://dx.doi.org/10.7717/peerj-cs.794

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.794#supplemental-information.

REFERENCES
AbechM, Da Costa CA, Barbosa JLV, Rigo SJ, Da Rosa Righi R. 2016. A model for

learning objects adaptation in light of mobile and context-aware computing. Personal
and Ubiquitous Computing 20(2):167–184 DOI 10.1007/s00779-016-0902-3.

AikenM. 2019. An updated evaluation of google translate accuracy. Studies in Linguistics
and Literature 3(3):253 DOI 10.22158/sll.v3n3p253.

Aranda JAS, Bavaresco RS, De Carvalho JV, Yamin AC, Tavares MC, Barbosa JLV.
2021. A computational model for adaptive recording of vital signs through context
histories. Journal of Ambient Intelligence and Humanized Computing 1–15 Epub
ahead of print Mar 18 2021 DOI 10.1007/s12652-021-03126-8.

Bakar NH, Kasirun ZM, Salleh N, Jalab HA. 2016. Extracting features from online
software reviews to aid requirements reuse. Applied Soft Computing 49:1297–1315
DOI 10.1016/j.asoc.2016.07.048.

Barbosa JLV, Barbosa DNF, De Oliveira JM, Jr SAR. 2014. A decentralized infrastruc-
ture for ubiquitous learning environments. Journal of Universal Computer Science
20(12):1649–1669 DOI 10.3217/jucs-020-12-1649.

Barbosa JLV, Hahn RM, Barbosa DNF, Saccol AIdCZ. 2011. A ubiquitous learning
model focused on learner interaction. International Journal of Learning Technology
6(1):62–83 DOI 10.1504/IJLT.2011.040150.

Barbosa JLV, Martins C, Franco LK, Barbosa DNF. 2016. TrailTrade: a model for trail-
aware commerce support. Computers in Industry 80:43–53
DOI 10.1016/j.compind.2016.04.006.

Barbosa JLV, Sempe BK, Mota B, Dini LI. 2017. An anesthesia alert system based
on dynamic profiles inferred through the medical history of patients. Journal of
Universal Computer Science 23(8):705–724 DOI 10.3217/jucs-023-08-0705.

Barbosa J, Tavares J, Cardoso I, Alves B, Martini B. 2018. TrailCare: an indoor and
outdoor Context-aware system to assist wheelchair users. International Journal of
Human-Computer Studies 116:1–14 DOI 10.1016/j.ijhcs.2018.04.001.

Bavaresco R, Barbosa J, Vianna H, Büttenbender P, Dias L. 2020. Design and evaluation
of a context-aware model based on psychophysiology. Computer Methods and
Programs in Biomedicine 189:1–14 DOI 10.1016/j.cmpb.2019.105299.

Bhanu K, Reddy TB, HanumanthappaM. 2019.Multi-agent based context aware
information gathering for agriculture using Wireless Multimedia Sensor Networks.
Egyptian Informatics Journal 20(1):33–44 DOI 10.1016/j.eij.2018.07.001.

Bozyiǧit F, Aktaş Ö, Kılınç D. 2021. Linking software requirements and conceptual
models: a systematic literature review. Engineering Science and Technology, an
International Journal 24(1):71–82 DOI 10.1016/j.jestch.2020.11.006.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 25/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.794#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.794#supplemental-information
http://dx.doi.org/10.1007/s00779-016-0902-3
http://dx.doi.org/10.22158/sll.v3n3p253
http://dx.doi.org/10.1007/s12652-021-03126-8
http://dx.doi.org/10.1016/j.asoc.2016.07.048
http://dx.doi.org/10.3217/jucs-020-12-1649
http://dx.doi.org/10.1504/IJLT.2011.040150
http://dx.doi.org/10.1016/j.compind.2016.04.006
http://dx.doi.org/10.3217/jucs-023-08-0705
http://dx.doi.org/10.1016/j.ijhcs.2018.04.001
http://dx.doi.org/10.1016/j.cmpb.2019.105299
http://dx.doi.org/10.1016/j.eij.2018.07.001
http://dx.doi.org/10.1016/j.jestch.2020.11.006
http://dx.doi.org/10.7717/peerj-cs.794

D’Avila LF, Barbosa JLV, De Oliveira KF. 2020. SW-Context: a model to improve
developers situational awareness. IET Software 14(5):535–543
DOI 10.1049/iet-sen.2018.5156.

D’Avila LF, De Oliveira KF, Barbosa JLV. 2020. Effects of contextual information
on maintenance effort: a controlled experiment. Journal of Systems and Software
159:1–19 DOI 10.1016/j.jss.2019.110443.

Dalmina L, Barbosa JLV, Vianna HD. 2019. A systematic mapping study of gamification
models oriented to motivational characteristics. Behaviour and Information Technol-
ogy 38(11):1167–1184 DOI 10.1080/0144929X.2019.1576768.

Da Rosa JH, Barbosa JL, Ribeiro GD. 2016. ORACON: an adaptive model for context
prediction. Expert Systems with Applications 45:56–70
DOI 10.1016/j.eswa.2015.09.016.

Dey AK, Abowd GD, Salber D. 2001. A conceptual framework and a toolkit for sup-
porting the rapid prototyping of context-aware applications. Human-Computer
Interaction 16(2):97–166 DOI 10.1207/S15327051HCI16234_02.

De Souza RS, Barbar Lopes JL, Resin Geyer CF, Da Rosa Silveira Joo L, Afonso Cardozo
A, Corra Yamin A, Gadotti GI, Victoria Barbosa JL. 2019. Continuous monitoring
seed testing equipaments using internet of things. Computers and Electronics in
Agriculture 158:122–132 DOI 10.1016/j.compag.2019.01.024.

Dias LPS, Barbosa JLV, Feijò LP, Vianna HD. 2020. Development and testing of
iAware model for ubiquitous care of patients with symptoms of stress, anxiety
and depression. Computer Methods and Programs in Biomedicine 187:105113
DOI 10.1016/j.cmpb.2019.105113.

Dick J, Hull E, Jackson K. 2017. Requirements engineering. 4. Newtown Square, PA:
Springer DOI 10.1007/978-3-319-61073-3.

Dupont D, Barbosa JLV, Alves BM. 2020. CHSPAM: a multi-domain model for
sequential pattern discovery and monitoring in contexts histories. Pattern Analysis
and Applications 23(2):725–734 DOI 10.1007/s10044-019-00829-9.

Ferreira LG, Barbosa JLV, Gluz JC, Matter VK, Barbosa DNF. 2020. Using learner group
profiles for content recommendation in ubiquitous environments. International
Journal of Information and Communication Technology Education 16(4):1–19
DOI 10.4018/IJICTE.2020100101.

Filippetto AS, Barcelos G, Barbosa JLV, Francisco R, Saccol AICZ. 2020. A ubiquitous
project management model based on context. International Journal of Business
Information Systems (Print) 1:1–25 DOI 10.1504/IJBIS.2020.10023985.

Filippetto AS, Lima R, Barbosa JLV. 2021. A risk prediction model for software project
management based on similarity analysis of context histories. Information and
Software Technology 131:1–37 DOI 10.1016/j.infsof.2020.106497.

FMC. 2021. TAM - The SAP way combining FMC and UML. Available at http://www.
fmc-modeling.org/fmc-and-tam.

Garcia JE, Paiva ACR. 2016. REQAnalytics: a recommender system for requirements
maintenance. International Journal of Software Engineering and Its Applications
10(1):129–140 DOI 10.14257/ijseia.2016.10.1.13.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 26/30

https://peerj.com
http://dx.doi.org/10.1049/iet-sen.2018.5156
http://dx.doi.org/10.1016/j.jss.2019.110443
http://dx.doi.org/10.1080/0144929X.2019.1576768
http://dx.doi.org/10.1016/j.eswa.2015.09.016
http://dx.doi.org/10.1207/S15327051HCI16234_02
http://dx.doi.org/10.1016/j.compag.2019.01.024
http://dx.doi.org/10.1016/j.cmpb.2019.105113
http://dx.doi.org/10.1007/978-3-319-61073-3
http://dx.doi.org/10.1007/s10044-019-00829-9
http://dx.doi.org/10.4018/IJICTE.2020100101
http://dx.doi.org/10.1504/IJBIS.2020.10023985
http://dx.doi.org/10.1016/j.infsof.2020.106497
http://www.fmc-modeling.org/fmc-and-tam
http://www.fmc-modeling.org/fmc-and-tam
http://dx.doi.org/10.14257/ijseia.2016.10.1.13
http://dx.doi.org/10.7717/peerj-cs.794

Google. 2021a. Cloud natural language derive insights from unstructured text using
Google machine learning. Available at https://cloud.google.com/natural-language
(accessed on 18 June 2018).

Google. 2021b. Cloud translation dynamically translate between languages. Available at
https://cloud.google.com/translate (accessed on 18 June 2018).

Hastie S, Wojewoda S. 2015. Standish Group Chaos Report - QA with Jennifer Lynch.
Available at https://www.infoq.com/articles/standish-chaos-2015 (accessed on 18 June
2018).

Helfer GA, Barbosa JLV, Dos Santos R, Da Costa AB. 2020. A computational model
for soil fertility prediction in ubiquitous agriculture. Computers and Electronics in
Agriculture 175:105602 DOI 10.1016/j.compag.2020.105602.

Hujainah F, Binti Abu Bakar R, Nasser AB, Al-haimi B, Zamli KZ. 2021. SRPTackle:
a semi-automated requirements prioritisation technique for scalable requirements
of software system projects. Information and Software Technology 131:106501
DOI 10.1016/j.infsof.2020.106501.

IrshadM, Petersen K, Poulding S. 2018. A systematic literature review of software
requirements reuse approaches. Information and Software Technology 93:223–245
DOI 10.1016/j.infsof.2017.09.009.

KimM, Dey S, Lee S-W. 2019. Ontology-driven security requirements recommendation
for APT attack. In: 2019 IEEE 27th international requirements engineering conference
workshops (REW). Piscataway: IEEE, 150–156 DOI 10.1109/REW.2019.00032.

Kusner MJ, Sun Y, Kolkin NI, Weinberger KQ. 2015. From word embeddings to docu-
ment distances. In: Proceedings of the 32nd international conference on international
conference on machine learning, ICML’15, volume 37. 957–966.

Larentis AV, Barbosa DNF, da Silva CR, Barbosa JLV. 2020. Applied computing to
education on noncommunicable chronic diseases: a systematic mapping study.
Telemedicine Journal and E-Health 26(2):147–163 DOI 10.1089/tmj.2018.0282.

Larioui J. 2020.Multi-agent system architecture oriented prometheus methodology
design for multi-modal transportation. International Journal of Emerging Trends in
Engineering Research 8:2118–2125 DOI 10.30534/ijeter/2020/105852020.

Leithardt V, Correia L, Borges G, Rossetto A, Rolim C, Geyer C, S Silva J. 2018.
Mechanism for privacy management based on data history (UbiPri-His). Journal of
Ubiquitous Systems and Pervasive Networks 10:11–19 DOI 10.5383/JUSPN.10.01.002.

Leithardt V, Santos D, Silva L, Viel F, Zeferino C, Silva J. 2020. A solution for dynamic
management of user profiles in IoT environments. IEEE Latin America Transactions
18(07):1193–1199 DOI 10.1109/TLA.2020.9099759.

Liu X, Leng Y, YangW, Zhai C, Xie T. 2018.Mining android app descriptions
for permission requirements recommendation. In: 2018 IEEE 26th interna-
tional requirements engineering conference (RE). Piscataway: IEEE, 147–158
DOI 10.1109/RE.2018.00024.

Lopes J, Souza R, Geyer C, Costa C, Barbosa JLV, Pernas A, Yamin A. 2014. A mid-
dleware architecture for dynamic adaptation in ubiquitous computing. Journal of
Universal Computer Science 20(9):1327–1351 DOI 10.3217/jucs-020-09-1327.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 27/30

https://peerj.com
https://cloud.google.com/natural-language
https://cloud.google.com/translate
https://www.infoq.com/articles/standish-chaos-2015
http://dx.doi.org/10.1016/j.compag.2020.105602
http://dx.doi.org/10.1016/j.infsof.2020.106501
http://dx.doi.org/10.1016/j.infsof.2017.09.009
http://dx.doi.org/10.1109/REW.2019.00032
http://dx.doi.org/10.1089/tmj.2018.0282
http://dx.doi.org/10.30534/ijeter/2020/105852020
http://dx.doi.org/10.5383/JUSPN.10.01.002
http://dx.doi.org/10.1109/TLA.2020.9099759
http://dx.doi.org/10.1109/RE.2018.00024
http://dx.doi.org/10.3217/jucs-020-09-1327
http://dx.doi.org/10.7717/peerj-cs.794

Luisa M, Mariangela F, Pierluigi N. 2004.Market research for requirements analysis
using linguistic tools. Requirements Engineering 9(1):4056
DOI 10.1007/s00766-003-0179-8.

Machado SD, Tavares JEdR, Martins MG, Barbosa JLV, Gonzlez GV, Leithardt VRQ.
2021. Ambient intelligence based on IoT for assisting people with alzheimers disease
through context histories. Electronics 10(11):1260 DOI 10.3390/electronics10111260.

Martini BG, Helfer GA, Barbosa JLV, Espinosa Modolo RC, Da Silva MR, De Figueiredo
RM,Mendes AS, Silva LA, Leithardt VRQ. 2021. IndoorPlant: a model for intelli-
gent services in indoor agriculture based on context histories. Sensors 21(5):1631
DOI 10.3390/s21051631.

Matos CM,Matter VK, Martins MG, da Rosa Tavares JE, Wolf AS, Buttenbender PC,
Barbosa JLV. 2021. Towards a collaborative model to assist people with disabilities
and the elderly people in smart assistive cities. Journal of Universal Computer Science
27(1):65–86 DOI 10.3897/jucs.64591.

Mikolov T, Chen K, Corrado G, Dean J. 2013. Efficient estimation of word representa-
tions in vector space. ArXiv preprint. arXiv:1301.3781.

Mougouei D, Powers DM. 2021. Dependency-aware software requirements selection
using fuzzy graphs and integer programming. Expert Systems with Applications
167:113748 DOI 10.1016/j.eswa.2020.113748.

Nadkarni S, Prügl R. 2021. Digital transformation: a review, synthesis and oppor-
tunities for future research.Management Review Quarterly 71(2):233–341
DOI 10.1007/s11301-020-00185-7.

Orrego RBS, Barbosa JLV. 2019. A model for resource management in smart cities
based on crowdsourcing and gamification. Journal of Universal Computer Science
25(8):1018–1038 DOI 10.3217/jucs-025-08-1018.

Padgham L,Winikoff M. 2004. Developing intelligent agent systems: a practical guide.
Hoboken: John Wiley and Sons DOI 10.1002/0470861223.

Petry MM, Barbosa JLV, Rigo SJ, Dias LPS, Bttenbender PC. 2020. Toward a ubiquitous
model to assist the treatment of people with depression. Universal Access in the
Information Society 19(4):841–854 DOI 10.1007/s10209-019-00697-4.

Portugal RLQ, CasanovaMA, Li T, do Prado Leite JCS. 2017. GH4RE: repository
recommendation on GitHub for requirements elicitation reuse. In: Proceedings of the
forum and doctoral consortium papers presented at the 29th international conference on
advanced information systems engineering, CAiSE 2017, Essen, Germany, June 12-16,
2017. 113–120.

Project Management Institute. 2017a. A guide to the project management body of
knowledge (PMBOK Guide). Sixth edition. In: Project Management Journal. vol. 45.
Newtown Square, PA: Addison-Wesley.

Project Management Institute. 2017b. Requirements management: a practice guide. vol. 1.
Newtown Square, PA: Project Management Institute.

RobillardM,Maalej W,Walker R, Zimmermann T. 2014. Recommendation systems in
software engineering. vol. 1. Berlin, Heidelberg: Springer DOI 10.1007/978-3-642-45135-5.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 28/30

https://peerj.com
http://dx.doi.org/10.1007/s00766-003-0179-8
http://dx.doi.org/10.3390/electronics10111260
http://dx.doi.org/10.3390/s21051631
http://dx.doi.org/10.3897/jucs.64591
http://arXiv.org/abs/1301.3781
http://dx.doi.org/10.1016/j.eswa.2020.113748
http://dx.doi.org/10.1007/s11301-020-00185-7
http://dx.doi.org/10.3217/jucs-025-08-1018
http://dx.doi.org/10.1002/0470861223
http://dx.doi.org/10.1007/s10209-019-00697-4
http://dx.doi.org/10.1007/978-3-642-45135-5
http://dx.doi.org/10.7717/peerj-cs.794

Rolim CO, Rossetto AG, Leithardt VR, Borges GA, Geyer CF, dos Santos TF, Souza AM.
2016. Situation awareness and computational intelligence in opportunistic networks
to support the data transmission of urban sensing applications. Computer Networks
111:55–70 DOI 10.1016/j.comnet.2016.07.014.

Rosa JH, Barbosa JL, KichM, Brito L. 2015. A multi-temporal context-aware system for
competences management. International Journal of Artificial Intelligence in Education
25(4):455–492 DOI 10.1007/s40593-015-0047-y.

SatyanarayananM. 2001. Pervasive computing: vision and challenges. IEEE Personal
Communications 8(4):10–17 DOI 10.1109/98.943998.

Silva JM, Rosa JH, Barbosa JLV, Barbosa DNF, Palazzo LAM. 2010. Content dis-
tribution in trail-aware environments. Journal of the Brazilian Computer Society
16(3):163–176 DOI 10.1007/s13173-010-0015-1.

Silver GA. 2014. The use of ontologies in discrete-event simulation. Global Journal of
Researches in Engineering 8:2014.

Sutherland J, Coplien JO. 2019. A scrum book - the spirit of the game. vol. 2. Raleigh,
North Carolina: Pragmatic Bookshelf.

Swathine K, Sumathi N. 2021. An adaptive optimization based meta-heuristic approach
for tracing software requirements.Materials Today: Proceedings Epub ahead of print
Mar 4 2021 DOI 10.1016/j.matpr.2021.01.462.

Tavares J, Barbosa J, Cardoso I, Costa C, Yamin A, Real R. 2016.Hefestos: an intelligent
system applied to ubiquitous accessibility. Universal Access in the Information Society
15(4):589–607 DOI 10.1007/s10209-015-0423-2.

Vianna HD, Barbosa J. 2014. A model for ubiquitous care of noncommunicable
diseases. IEEE Journal of Biomedical and Health Informatics 18(5):1597–1606
DOI 10.1109/JBHI.2013.2292860.

Vianna HD, Barbosa JLV. 2019. A scalable model for building context-aware appli-
cations for noncommunicable diseases prevention. Information Processing Letters
148:1–6 DOI 10.1016/j.ipl.2019.03.010.

Vianna HD, Barbosa JLV, Pittoli F. 2017a. In the Pursuit of Hygge Software. IEEE
Software 34(6):48–52 DOI 10.1109/MS.2017.4121208.

Villela K, Groen EC, Doerr J. 2019. Ubiquitous requirements engineering: a paradigm
shift that affects everyone. IEEE Software 36(2):8–12 DOI 10.1109/MS.2018.2883876.

Villela K, Hess A, KochM, Falcao R, Groen EC, Drr J, Valero CN, Ebert A. 2018.
Towards Ubiquitous RE: a perspective on requirements engineering in the era of
digital transformation. In: 2018 IEEE 26th international requirements engineering
conference (RE). Piscataway: IEEE, 205–216 DOI 10.1109/RE.2018.00029.

Wagner A, Barbosa JLV, Barbosa DNF. 2014. A model for profile management
applied to ubiquitous learning environments. Expert Systems with Applications
41(4):2023–2034 DOI 10.1016/j.eswa.2013.08.098.

Weiser M. 1999. The computer for the 21 st century. ACM SIGMOBILE Mobile Comput-
ing and Communications Review 3(3):3–11 DOI 10.1145/329124.329126.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 29/30

https://peerj.com
http://dx.doi.org/10.1016/j.comnet.2016.07.014
http://dx.doi.org/10.1007/s40593-015-0047-y
http://dx.doi.org/10.1109/98.943998
http://dx.doi.org/10.1007/s13173-010-0015-1
http://dx.doi.org/10.1016/j.matpr.2021.01.462
http://dx.doi.org/10.1007/s10209-015-0423-2
http://dx.doi.org/10.1109/JBHI.2013.2292860
http://dx.doi.org/10.1016/j.ipl.2019.03.010
http://dx.doi.org/10.1109/MS.2017.4121208
http://dx.doi.org/10.1109/MS.2018.2883876
http://dx.doi.org/10.1109/RE.2018.00029
http://dx.doi.org/10.1016/j.eswa.2013.08.098
http://dx.doi.org/10.1145/329124.329126
http://dx.doi.org/10.7717/peerj-cs.794

Wiedmann T, Barbosa JLV, Rigo SJ, Barbosa DNF. 2016. RecSim: a model for learning
objects recommendation using similarity of sessions. Journal of Universal Computer
Science 22(8):1175–1200 DOI 10.3217/jucs-022-08-1175.

Williams G, Mahmoud A. 2017.Mining twitter feeds for software user requirements. In:
2017 IEEE 25th International Requirements Engineering Conference (RE). Piscataway:
IEEE, 1–10 DOI 10.1109/RE.2017.14.

Xie H, Yang J, Chang CK, Liu L. 2017. A statistical analysis approach to predict user’s
changing requirements for software service evolution. Journal of Systems and
Software 132:147–164 DOI 10.1016/j.jss.2017.06.071.

Lima et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.794 30/30

https://peerj.com
http://dx.doi.org/10.3217/jucs-022-08-1175
http://dx.doi.org/10.1109/RE.2017.14
http://dx.doi.org/10.1016/j.jss.2017.06.071
http://dx.doi.org/10.7717/peerj-cs.794

