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ABSTRACT 

Objective: The aim of this work was to explore the potential of infrared thermal imaging as an 
aiding tool for the diagnosis of skin cancer lesions, using artificial intelligence methods. 
Methods: Thermal parameters of skin tumours were retrieved from thermograms and used as 
input features for two machine learning based strategies: ensemble learning and deep learning. 
Results: The deep learning strategy outperformed the ensemble learning one, showing good 
predictive performance for the differentiation of melanoma and nevi (Precision=0.9665, 
Recall=0.9411, f1-score=0.9536, ROC(AUC)=0.9185) and melanoma and non-melanoma skin 
cancer (Precision=0.9259, Recall=0.8852, f1-score=0.9051, ROC(AUC)=0.901). 
Conclusion: IRT imaging combined with deep learning techniques is promising for simplifying 
and accelerating the diagnosis of skin cancer. 
Significance: Despite ongoing awareness campaigns for skin cancer’ risk factors, its incidence 
rate has continuously been growing worldwide, becoming a major public health issue. The 
standard first detection method – dermoscopy –, is largely experience-dependent and mostly 
used to assess melanocytic lesions. As infrared thermal imaging is an innocuous imaging 
technique that maps skin surface temperature, which may be associated to pathological states, 
e.g., tumorous lesions, it could be a potential aiding tool for all skin cancer conditions. The 
application of artificial intelligence methods to process the collected temperature data can save 
time and assist health care professionals with low experience levels in the diagnosis task. To the 
best of our knowledge, this is the first study where a data set of skin cancer thermograms is 
expanded and used for skin lesion differentiation with a deep learning approach. 

Keywords: Biomedical; deep learning; ensemble learning; infrared thermal imaging. 
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1 Introduction 

The human skin is the largest organ of the human body, influenced by internal and 
external factors and, consequently, highly subjected to lesions [1]. Some of them are of 
neoplastic origin, developing upon metabolic defects that lead cells to divide without control 
[2]. Malignant neoplasms, as melanoma, squamous cell carcinoma (SCC) and basal cell 
carcinoma (BCC), require special attention, due to their ability to rapidly grow and possibly result 
in major disfiguration or even death [3]. 

Even though continuous awareness campaigns for skin cancer risk factors, people 
demonstrate taste for tanning beds and poor sunscreen habits. The incidence rates have 
continued to grow worldwide, resulting in major public health threat [4,5]. The standard 
diagnosis is based on dermoscopy assessment, using qualitative guidelines (e.g., ABCDE criteria) 
that can result in a misdiagnosis, if carried out by an inexperienced physician, and the 
performance of unnecessary histopathological tests [6,7]. Several researchers are investigating 
the use of alternative techniques to allow an innocuous in-vivo diagnosis that ultimately lessens 
skin cancer mortality and its associated costs [8]. 

Infrared thermography (IRT) is an imaging method that measures the electromagnetic 
radiation emitted by an object surface in the IR range, converting this in temperature records. 
In the case of the human body, it can identify skin temperature shifts triggered by physiological 
alterations, that may be connect to possible pathological states [9,10]. Hence, a different 
thermal signature is expected from healthy and tumorous tissue, due to alterations on 
angiogenesis and metabolic rate [11]. Apart from potentially given a quantitative diagnosis of 
skin neoplasms based on functional parameters, IRT holds the advantage of being contactless 
and non-ionizing [12]. Its recent theoretical application for skin cancer assessment, presents 
mathematical models for the construction of melanoma lesions [13–16]. The results bear for the 
occurrence of a hyperthermic gradient across the skin tumour, with a maximum temperature 
difference between the tumour’ centre and the surrounding healthy tissue. This behaviour is 
emphasized if the tumour’ radii, depth and blood perfusion rate is increased. The practical 
implementation of IRT imaging in skin cancer diagnosis is the most explored topic. Still, studies 
are centred on the assessment of overall average lesion temperature and statistical attributes, 
or in a simple visual analysis of the thermal image, being the primary focus on the differentiation 
of melanoma and nevi and benign and malignant lesions [17–20].  

As in other imaging modalities, the process of the retrieved IRT data can be performed 
with artificial intelligence (AI) approaches to save time and assist health care professionals in 
the diagnosis task. The use of machine learning (ML) algorithms for skin cancer diagnosis is 
widely studied when using dermoscopy images with a range of detection strategies, from simple 
algorithms to deep learning-based approaches [21,22]. As this image technique is predominantly 
implemented to evaluate melanocytic lesions, research with dermoscopy images usually targets 
the differentiation of melanoma and nevi. Most recent studies includes datasets with 200 to 
23906 images, and all with good classification results [23,24]. Oliveira et al. tested several 
classifiers to perform this task, with a perfectly balance dataset of 1104 lesions [25]. A model 
based on optimum-path forest delivered top performance with accuracy (ACC), sensitivity (SN) 
and specificity (SP) values of 91.6%, 87% and 96.2%. Learners based on support vector machines 
(SVM) are commonly found, with Alamri and Alsaeed [26] showing a SVM learner capable of 
outperforming an ensemble model (151 lesions, ACC= 92.6%, SN=90%, SP= 96%). Another 
example, is Kalwa et al. [23] that combined SVM with Synthetic Minority Over-sampling 
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Technique (SMOTE) to improve performance metrics (200 lesions, ACC=88%, SN=80%, SP=90% 
and ROC(AUC)=0.85). Other implementations of single learners are also found in prior years, but 
with far less incidence than SVM and artificial neural network-based strategies (ANN) [27]. In 
fact, implementation of ANN has shifted from basic networks to deep learning (DL) models. 
Nowadays, several authors aim to construct complex approaches and reach higher diagnostic 
performance, without performing elaborate feature extraction and/or dealing with complex 
data during classification. Despite its inherent complexity, new optimization ideas and 
applications are constantly being studied. Hosny et al. [28] applied theory of transfer learning to 
a convolutional neural network and replaced the classification layer with a softmax layer (9350 
images, ACC=97.7%, SN=97.34%, SP=97.34%), while Zhang et al. [29] developed a meta-heuristic 
optimization algorithm to deal with biases and distribution of weights during training of a 
Convolutional Neural Network (CNN) for diagnosis of melanocytic lesions (>20000 images, 
ACC=91%, SN=95%, SP=92). It is worth mentioning that the vast majority of authors chooses to 
test its AI strategies with dermoscopy images available from public databases, e.g., PH2, ISBI, 
DermIS, Dermquest, to ease the comparison of achieved results with those of other authors. 

For IRT imaging, almost any author encompasses a ML stage for skin cancer 
classification. The ones that do prefer single learners, with a small sample of thermograms to 
classify, e.g., Stringasci et al. that used a SVM model to report a SN and SP of 82.9 and 85.7% for 
differentiation of SCC and actinic keratosis (AK) [30]. In a previous study, SVM, ANN and k-NN 
classifiers were tested to differentiate melanoma (16 samples) and melanocytic nevi (30 
samples) lesions based on thermal profiles. The SVM learner achieved an accuracy of 84.2% and 
a SN of 91.3%, but a poor SP (11.1%) [31]. Thus, further expansion is needed. Other approaches, 
non-based on AI can be found, as the one of Godoy et al. that compared the thermal recovery 
curves of lesion and surrounding healthy tissue, after the application of a thermal stress. The 
authors differentiated benign (59 samples) and malignant (43 samples) lesions based on the 
temperature difference between the two areas. The temperature threshold defined by the 
authors that achieved top differentiation (SN=95, SP=83%) was 0.238 ◦C [32]. The same authors 
retrieved 10 Karhunen-Loève coefficients from the thermal recovery curves, a few years later, 
and applied it in a statistical algorithm. Almost 80% of instances were used to train the classifier 
200 times and create a different classification threshold each time. Eleven samples were used 
as a validation set, being successfully identified by 36% of threshold classifiers [33]. 

The present work focusses on the collection of IRT parameters for different skin tumour 
types, followed by its machine classification using a learning ensemble method and a DL model. 
The aim was to assess the potential of this imaging modality along with AI techniques to function 
as a decision-support system for the diagnosis of skin cancer lesions. 

This document encompasses five sections, the first introduces the problem, related 
background and research aim, it is followed by the methodology, which describes how the 
images were processed, the retrieved dataset and the data classification. At the third section 
the results of the data extraction and processing are presented, this is followed by a discussion 
relating the current work with previous research and is remarked by the conclusions and further 
work suggestions. 
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2 Methodology 

 The proposed approach focusses on the correct identification of skin neoplasms using 
AI strategies with input vectors composed by thermal features. The defined classification tasks 
concern the differentiation of: (1) melanoma (malignant) and melanocytic nevi (benign); (2) 
Squamous cell carcinoma (SCC) (malignant) and Actinic keratosis (AK) (Pre-cancerous lesion); (3) 
Melanoma (malignant) vs Non-melanoma skin cancer (NMSC) (SCC and Basal cell carcinoma 
(BCC)) (malignant); (4) Benign (AK, melanocytic nevi, seborrheic keratosis, cyst, other benign 
conditions) and Malignant lesions (melanoma, SCC, BCC). These tasks were chosen considering 
the current trends for detection challenges [34]. 

2.1 Image Processing and feature collection 

Normally, the first step to assess lesion malignancy with dermoscopy images involves a 
pre-processing stage to eliminate possible artefacts or correct poor illumination and noise 
removal of the collected images. In the case of thermograms, the captured temperature values 
are most likely affected by heat dissipated from the body and environmental factors. Thus, if the 
international guidelines for correct thermal data collection are followed, this aspect should not 
be of concern [35,36]. As it was the case for the image data set used in this study, the pre-
processing stage was simply composed by a histogram equalization process to adjust image 
contrast and ease lesion visualization. 

The presence of an unclear boundary between the pathological area and its background 
is common in infrared images, producing poor segmentation results when automatic strategies 
are used. Thus, the selection of an area including the skin neoplasm under evaluation was 
initialized with the selection of lesion centre by a human operator. Following, a region of 40 by 
40 pixels, centred on the coordinates of the selected point, was automatically cropped including 
the entire lesion. To note that the 40x40 dimension was chosen, since it encompassed the leased 
area and surrounding healthy tissue of all skin neoplasms included in the image data set. 

To construct a feature vector for classification, a diagonal was collected across the 
tumour area composed by 40 temperature measurements (T(1,1), …, T(40,40)), Figure 1a. The 
temperature vector described the thermal gradient across the neoplasm and the surrounding 
healthy tissue, Figure 1b. Normally, this gradient decreases/increases as it approaches lesion 
centre, increasing/decreasing again when moving away from it. So, feature reduction was 
performed through the estimation of two temperature slopes (S1, S2) and central temperature 
amplitude (A), using the collected 40 temperature measurements (Figure 1b):  

𝑆! = (𝑇(#$,#$) − 𝑇(!,!)) (20 − 1)⁄ ,     (1) 

𝑆# = (𝑇('$,'$) − 𝑇(#$,#$)) (40 − 20)⁄ ,     (2) 

𝐴 = -𝑇(!,!) − 𝑇(#$,#$)-.      (3) 
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Figure 1 – Collection of the thermal gradient across the neoplasm and surrounding healthy tissue for the selected 
40x40 region (a) and correspondent computed thermal profile, thermal slopes and central temperature amplitude (b). 

Hence, two final input vectors for comparison during the classification stage were built: 
Tv – with forty temperature values, and Sv – with two slope values and amplitude value, Table 
1. 

Input vector Input features 
Tv T(1,1), T(2,2),…, T(39,39),T(40,40) 
Sv S1, S2, A 

Table 1 – Computed input vectors for the classification stage and respective features. 

2.2. Used image dataset 

The used image dataset includes: 16 melanomas, 30 melanocytic nevi, 51 SCC, 29 AK, 
118 BCC, 14 SK, 11 Cyst and 29 other benign conditions. The number of images included in most 
classes is considered low to perform classification with AI models. Thus, an attempt to expand 
the available dataset was made by the collection of temperature vectors in alternative directions 
(TA, TB, Tc and TD), Figure 2a: 

- TA : composed by the temperature values of the diagonal from the top left corner 
(1,1) to the bottom right corner (40,40) of the selected area; 
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- TB : composed by the temperature values of the diagonal from the top right corner 
(40,1) to the bottom left corner of the selected area (1,40); 

- TC : composed by the multiplication of TA and TB values, followed by its square root, 
starting on TA(1,1) x TB(1,40), TA(2,2) x TB(2,39), …  and ending on …, TA(39,39) x TB(39,2), TA(40,40) 
x TB(40,1); 

- TD : composed by the multiplication of TA and TB values, followed by its square root, 
starting on TA(1,1) x TB(40,1), TA(2,2) x TB(39,2), … and ending on …, TA(39,39) x TB(2,39), TA(40,40) x 
TB(1,40); 

An example of the calculation of the first value for vectors Tc and TD follows: 

𝑇( = .𝑇)(!,!) × 𝑇*(!,'$),     (4) 
 

𝑇+ = .𝑇)(!,!) × 𝑇*('$,!).     (5) 

In addition, four different images of the same skin neoplasm case were considered: (1) 
original, (2) original vertically flipped, (3) original rotated 45◦, (4) original rotated 45◦ and 
vertically flipped. For each image, the referred temperature vectors were computed, Figure 2b. 
Each temperature vector was defined as Tz k, being z the image number (1,2,3 or 4) and k the 
vector index (A, B, C or D). The input vectors T2c and T4c were equal to vectors T1c and T3c, 
respectively, and so were excluded from the expanded classification dataset. 

 

 

 

Figure 2 – Used data expansion strategy: temperature vectors collected for each image (TA, TB, Tc and TD) (a); 
thermal images considered for data collection, emphasizing in red thermal profiles excluded from expanded dataset 
(b).  
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All in all, 14 input vectors were able to be extracted from each input image, expanding 
the original experimental dataset fourteen times. Table 2 presents the number of instances 
considered for each classification task, before and after dataset expansion. 

 without DE with DE 

Cl
as

si
fic

at
io

n 
ta

sk
 Melanoma vs Nevi 16 vs 30 224 vs 420 

SCC vs AK 51 vs 29 714 vs 406 

Benign vs Malignant 102 vs 185 1428 vs 2590 

Melanoma vs NMSC 16 vs 169 224 vs 2366 

Table 2 – Number of instances considered for the classification stage, without and with the dataset expansion (DE). 

2.3 Skin neoplasm classification 

The skin neoplasm classification stage was performed with two different strategies: a 
learning ensemble method and a DL network. An Intel® Core™ i7-6700HQ Quad Core 2.6GHz 
with Turbo Boost up to 3.5GHz (8GB DDR4 RAM) personal computer with a NVIDIA GeForce® 
GTX 950M graphic card was used for the implementation of both strategies, with the Anaconda 
3 – Spyder 4.0 (Python 3.7 programming language) software. 

As previously mentioned, each instance was characterized by the input vectors 
described in section 2.1: Tv, composed by 40 temperature values (T(1,1), T(2,2),…, T(39,39),T(40,40)), 
and Sv (feature reduced input vector), composed only by 3 values: two temperature slopes and 
central amplitude (S1, S2, A). Both vectors were tested separately for each classification strategy 
to attest performance. 

2.3.1 Training and test sets 

After the image processing step, stratified samples were collected to be divided for the 
classification instances into training and test sets with a 70:30 ratio. Table 3 presents the number 
of instances included in each training and test set, with and without data expansion. 

 without DE with DE 
Training set Test set Training set Test set 

Melanoma vs Nevi 11 vs 21 5 vs 9 156 vs 294 68 vs 126 
SCC vs AK 35 vs 20 16 vs 9 499 vs 284 215 vs 122 

Benign vs Malignant 71 vs 129 31 vs 56 999 vs 1813 429 vs 777 
Melanoma vs NMSC 11 vs 118 5 vs 51 156 vs 1656 68 vs 710 

Table 3 – Number of instances considered for the training and test sets, without and with the dataset expansion (DE). 

The available image dataset presented a clear unbalance between classes. To correct 
this, the oversampling method Synthetic Minority Over-sampling Technique (SMOTE) was 
implemented in the training set to generate synthetic samples of the minority class [37]. 
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2.3.2 Learning ensemble method 

The first ML based strategy consisted of the construction of an ensemble model 
composed by two classifiers: random forest (RF) and support vector machine (SVM) (Figure 3). 
The preference for an ensemble as oppose to a single learner to solve the current prediction 
problems, is based on two motives. This type of models reduces the spread of outcome classes 
and consequently, attained performance metrics, increasing the robustness of the results [38]. 
Also, the combination of several learners tends to lead to an overall better predictive 
performance, if the base models are distinct and independent [38,39]. At the end, majority 
voting was used to combine the estimated class probabilities and reach a final prediction (Fig. 
3). The classification results were compared with and without the use of SMOTE and with and 
without the use of the expanded dataset. The model performance was assessed using the 
metrics of Precision, Recall, F1-score, Area Under the Receiver Operating Characteristic Curve 
(ROC AUC). 

Random Forest is considered itself to be an ensemble of decision trees (DT) [40]. The 
algorithm is composed by a set number of individual DTs that deliver a class prediction. After 
running the entire “forest”, the results are averaged and the class with the highest vote is 
considered the final output [41]. Its working is summarized in the following procedures [42]: 

1. Random selection of n samples from the training set (with replacement); 
2. Create a decision tree from the constructed set of n sample. For each tree node: 

a. Arbitrarily choose x features (without replacement); 
b. Choose optimal features among x and split the node; 

3. Repeat the first two steps for the desired number of nodes among the tree; 
4. Repeat the first tree steps y times to create a forest with y number of trees; 
5. Combine all tree results with majority voting to reach a final class prediction. 

The advantage associated with RF is its diversity, as it can be modelled for continuous or 
categorical values, it handles missing data values, deals with regression and classification 
problems and reduces the chances of overfitting the data if enough trees are considered [42]. 

On the other hand, SVM creates a decision boundary (hyperplane) in an N-dimensional 
space (being N the number of features) to separate data from different classes [43]. The main 
goal is to maximize the distance between this hyperplane and the data examples that are closest 
to it (support vectors) [44]. This decision boundary is created using a kernel function, e.g., linear, 
polynomial, gaussian. When dealing with non-linear problems, the kernel function is essential 
to transform the original data and map it into a new hyperdimensional space, making it 
separable [42]. One of the major advantages of using SVM is its ability to function well with large 
input vectors. 

The performance of the learning ensemble model was compared for the use of input 
vector Tv or input vector Sv, implementation of SMOTE and its absence during the training stage 
and the use of the expanded dataset versus the original one. 
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Figure 3 – Scheme of the used learning ensemble method. 

2.3.3 Deep learning network 

Deep learning pertains to a ML subfield that uses artificial neural networks with multiple 
layers to imitate the workings of the human brain [45]. DL models can also be referred to as 
deep neural networks or deep neural learning. A scheme of the DL network built for this study 
is presented in Figure 4. An input layer is defined with 40 input neurons, due to the number of 
input features (40 temperature values of lesion’ thermal profile). The input vector Tv was used 
to assess the classification performance of this model, instead of the feature reduced one, since 
DL strategies are usually capable of dealing with larger input vectors. Twenty-five hidden layers 
followed, being the first 5 layers composed by 30 hidden neurons and the remaining layers by 
10 nodes. The output layer presents a single neuron, giving the final result for the proposed 
binary classification problems. The rectified linear unit (ReLU) activation function was 
implemented on the hidden layers, while a sigmoid activation function was preferred for the 
output layer to guarantee a final prediction between 0 (zero) and 1 (one) that can be easily 
transformed to an integer value [45,46]. The optimization algorithm Adam was used with a 
cross-entropy loss function and a batch size of 30 [47,48]. 

Hence, the performance of the DL approach was evaluated with the input vector Tv and 
the expanded dataset, instead of the original one, since DL strategies are used to deal with large 
amounts of data and even needed it to be effectively trained. The influence of SMOTE during 
the training stage was also tested. The model performance was assessed using the metrics of 
Precision, Recall, f1-score and Area Under the Receiver Operating Characteristic Curve (ROC 
AUC). 
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Figure 4 – Scheme of the used deep learning network. 

2.3.4 Hyperparameter tuning 

To select a set of optimal parameters for the built classification models, hyperparameter 
tunning was performed during the training stages of classification tasks for both AI approaches, 
using grid search [49]. 

In the ensemble model, different C, gamma and kernel options were tested for SVM. 
The regularization parameter C varied in {0.1, 1, 10, 100}, gamma in {0.1, 1, 2, 3} and kernel in 
{Linear, Radial Basis Function (RBF), 3rd grade polynomial (Poly-3rd)}. For RF, the only parameter 
assessed with grid search strategy was the number of trees included in the model, varying from 
10 to 150 in increments of ten. Since the model deals quite well with noise, normally there is no 
increased need to search for other optimal parameters [42].  

For the DL model, the number of hidden layers varied in {5, 15, 10, 15, 20, 25, 30, 35, 
40, 45, 50, 55} and the number of epochs in {10, 50, 100, 150, 200, 250, 300} were tested. 
Overall, the best balance between increased model performance and reduced computational 
time was achieved with the use of 25 hidden layers and 100 epochs, as previously mentioned, 
for all classification tasks, so that structure was preferred for the building of the used network. 
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3 Results 

Four classification problems were addressed using the built learning ensemble model 
and DL network. The classification results obtained using the learning ensemble method with 
and without the entire feature set are presented in Table 4 and 5, respectively, and using the DL 
model in Table 6, based on the evaluation metrics of precision, recall, f1-score and ROC(AUC).  

Table 4 – Results of precision, recall, f1-score and ROC(AUC) for classification tasks with and without dataset 
expansion and with or without SMOTE with entire feature set, using the learning ensemble model. 

 

  

 without DE with DE 
without SMOTE with SMOTE without SMOTE with SMOTE 

SC
C 

vs
 A

K 

Precision 0.7667 0.6625 0.7535 0.76 
Recall 0.6333 0.7 0.7069 0.698 
F1-score 0.6936 0.6807 0.729 0.7277 
ROC(AUC) 0.6444 0.6812 0.7151 0.6547 

 

M
el

an
om

a 
vs

 
N

ev
i 

Precision 0.8 1 0.8718 1 
Recall 0.8 0.7778 0.8571 0.7403 
F1-score 0.8 0.875 0.8644 0.8508 
ROC(AUC) 0.8444 0.8889 0.9028 0.8701 

 

M
el

an
om

a 
vs

 
N

M
SC

 

Precision 0.7221 0.7324 0.8776 0.8718 
Recall 0.7455 0.8705 0.8431 0.7701 
F1-score 0.7336 0.7955 0.86 0.8178 
ROC(AUC) 0.7865 0.7764 0.8627 0.8888 

 

Be
ni

gn
 v

s 
M

al
ig

na
nt

 

Precision 0.5652 0.6724 0.7319 0.6275 
Recall 0.4727 0.6964 0.5349 0.73 
F1-score 0.5148 0.6842 0.6181 0.6749 
ROC(AUC) 0.5578 0.5418 0.3305 0.3667 
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 without DE with DE 
without SMOTE with SMOTE without SMOTE with SMOTE 

SC
C 

vs
 A

K  
Precision 0.6842 0.8182 0.7139 0.6725 
Recall 0.8667 0.5625 0.6735 0.7041 
F1-score 0.7647 0.6667 0.6931 0.6879 
ROC(AUC) 0.6 0.7146 0.6673 0.7066 

 

M
el

an
om

a 
vs

 
N

ev
i  

Precision 0.79 0.8 0.8429 0.8861 
Recall 0.8 0.8778 0.8194 0.8118 
F1-score 0.7950 0.8371 0.8310 0.8473 
ROC(AUC) 0.7778 0.7222 0.8333 0.8333 

 

M
el

an
om

a 
vs

 
N

M
SC

 

Precision 0.8524 0.86 0.8555 0.8461 

Recall 0.7195 0.8412 0.7561 0.8382 

F1-score 0.7803 0.8505 0.8027 0.8421 

ROC(AUC) 0.7585 0.851 0.7651 0.8107 

 

Be
ni

gn
 v

s 
M

al
ig

na
nt

 

Precision 0.5962 0.6463 0.6782 0.6981 
Recall 0.5636 0.7464 0.4628 0.7352 
F1-score 0.5794 0.6928 0.5502 0.7161 
ROC(AUC) 0.5943 0.3055 0.3784 0.3878 

Table 5 – Results of precision, recall, f1-score and ROC(AUC) for classification tasks with and without dataset 
expansion and with or without smote with feature reduced dataset, using the learning ensemble model. 

 

 
SCC vs AK Melanoma vs Nevi Melanoma vs NMSC Benign vs Malignant 

without 
SMOTE 

with 
SMOTE 

without 
SMOTE 

with 
SMOTE 

without 
SMOTE 

with 
SMOTE 

without 
SMOTE 

with 
SMOTE 

Precision 0.789 0.8217 0.9225 0.9665 0.9105 0.9259 0.7123 0.7286 
Recall 0.7926 0.7904 0.9506 0.9411 0.8752 0.8852 0.6105 0.6281 
F1-score 0.7908 0.8057 0.9363 0.9536 0.8925 0.9051 0.6575 0.6747 
ROC(AUC) 0.7098 0.7094 0.882 0.9185 0.9265 0.901 0.4986 0.4847 

Table 6 – Results of precision, recall, f1-score and ROC(AUC) for classification tasks with entire dataset, with and 
without SMOTE, using the deep learning based strategy. 

For the learning ensemble method, the best results were attained with the use of 
SMOTE during the training stages, as well as the use of the expanded dataset with feature 
reduced input vector SV, except for the SCC vs AK classification task. With the DL based 
approach, the use of SMOTE was also beneficial, with the overall classification results exceeding 
the ones attained with the ensemble model. Both models performed best for the classification 
tasks: Melanoma vs NMSC and Melanoma vs Nevi, followed by SCC vs AK. The distinction of 
benign and malignant neoplasms was tricky for both approaches. 

The confusion matrixes respective to each top classification result are shown in Figure 
5. 

 



 14 

 

  

 

Figure 5 – Confusion matrixes obtained for the defined classification tasks according to the best results found using 
the learning ensemble and deep learning models. 

 The accuracy, sensitivity and specificity values of the best classification results for 
learning ensemble and DL method were also calculated, as a means of comparing with the ones 
of other research works focused on the diagnosis of skin cancer with imaging modalities (Table 
7).  

 ACC SN SP 

En
se

m
bl

e 
m

et
ho

d SCC vs AK 0.6647 0.7069 0.5902 

Melanoma vs Nevi 0.8969 0.8088 0.9444 

Mel. Vs Non-mel. 0.9730 0.8382 0.9859 

Benign vs Malignant 0.6244 0.7349 0.4242 

 

De
ep

 le
ar

ni
ng

 SCC vs AK 0.7567 0.7907 0.6967 

Melanoma vs Nevi 0.9691 0.9412 0.9841 

Mel. Vs Non-mel. 0.9586 0.8824 0.9658 

Benign vs Malignant 0.6095 0.6281 0.5758 

Table 7 – Results of accuracy (ACC), sensitivity (SN) and specificity (SP) for top classification results of established 
tasks for the learning ensemble model and deep learning model. 

The average T1A profiles for each skin neoplasm group are presented in Figure 6, to ease 
the interpretation of the classification results. 

Some neoplasm groups showed distinct average profiles, as melanoma and nevi lesions, 
Figure 6b, or melanoma and NMSC, Figure 6c. For SCC and AK, both neoplasms types displayed 
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a decrease in temperature when approaching lesion centre, Figure 6a. The same hyporthermic 
tendency was verified for malignant and benign skin tumour groups, with similar average 
profiles Figure 6d. 

 
Figure 6 – Average T1A of skin neoplasm types included in the classification tasks; a) SCC vs AK, b) Melanoma vs Nevi, 
c) Melanoma vs NMSC, d) Benign vs Malignant, and e) average T1A for non-melanoma skin cancer types (BCC and SCC). 

 The computation times recorded for the best classification results are indicated in Table 
8. There was an increase in running time when a higher number of instances was included, with 
the DL model surpassing the ensemble model for all tasks.  

 Running time (s) 
 EM DL 

SCC vs AK 48.0432 72.4117 
Melanoma vs Nevi 39.2710 45.4879 
Melanoma vs NMSC 49.0215 152.4029 
Benign vs Malignant 68.9087 194.4475 

Table 8 – Computation time needed to solve the proposed classification problems with top performance. 

 To facilitate the comparison of the attained classification results with the ones of similar 
methods, Table 9 summarizes the performance metrics that have been reported for related 
methods and the ones obtained by the proposed method. 
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 Authors [Ref.] Imaging 
method Best overall classifier ACC (%) SN (%) SP (%) 

M
el

an
om

a 
vs

 
N

ev
i 

Oliveira et al . [25] Dermoscopy optimum-path forest 91.6 87 96.2 
Alamri and Alsaeed [26] Dermoscopy SVM 92.6 90 96 

Kalwa et al. [23] Dermoscopy SVM 88 80 90 
Hosny et al. [28] Dermoscopy DL 97.7 97.34 97.34 
Zhang et al. [29] Dermoscopy CNN 91 95 92 

Magalhaes et al. [31] IRT imaging SVM 84.2 91.3 11.1 
Proposed method IRT imaging DL 96.91 94.12 98.41 

       

SC
C 

vs
 

AK
 Stringasci et al. [30] IRT imaging SVM - 82.9 85.7 

Proposed method IRT imaging DL 75.67 79.07 69.67 

       

Be
ni

gn
 v

s 
M

al
ig

na
nt

 

Godoy et al. [32] IRT imaging Statistical classifier - 95 83 

Proposed method IRT imaging DL 60.95 62.81 57.58 

Table 9 – Comparison of results for published literature and proposed method, for different classification tasks. 
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4 Discussion 

 The ML ensemble model showed good performance when dealing with the distinction 
of melanoma and nevi lesions and the differentiation of melanoma and NMSC (Table 4). The SCC 
vs AK task followed, with the classifier performing poorer when it concerned the Benign vs 
Malignant task. The same tendency was found for the DL model results; yet, this strategy 
seemed to yield higher performance metrics with a more balanced distribution of precision, 
recall, f1-score and ROC(AUC) (Table 5). The superior predictive ability of the deep models over 
ensemble ones has been previously suggested, especially when a larger dataset is used, at the 
cost of extra computational time (Table 8) [51–53]. To emphasize that all top results were 
attained when the expanded dataset was used, improving the quality of the used classifiers, in 
comparison to the implementation of the original dataset. The use of SMOTE also boosted the 
learning stage, an event previously documented in the literature [23], being equally preferred 
for the achievement of best precision, recall, f1-score and ROC(AUC) results by both approaches. 
This finding was somewhat anticipated, since the original dataset presented a significant class 
imbalance and could be prone to result in erroneous and biased classifications [37]. Another 
interesting finding was the achievement of best lesion differentiation with the feature reduced 
input vector. The slopes and amplitude values retrieved from the thermal gradient values proved 
to have higher discriminative power, reducing the computational cost. 

Looking at the thermal curves included in Figure 6, it is easier to understand the 
classification results for the defined tasks. The similarities/dissimilarities between the average 
thermal curves of some skin tumours types result in resemblances/unlikeness of the attained 
slopes and amplitude values. Hence, the good differentiation of melanoma and nevi and 
melanoma and non-melanoma cases was justified by the clear differences between the thermal 
gradient of this types, Figure 6b and 6c. The melanoma lesions behaved like “hot spots” as 
opposed to the hypothermic tendency of nevi and non-melanoma tumours. This is the main 
reason why both classifiers performed poorly when it came to the distinction of benign and 
malignant cases. Because the non-melanoma tumours are included in the malignant group, its 
thermal curve acquires a concave shape very similar to the one of benign lesion, Figure 6d. A 
physiological explanation supports these claims, with benign lesions presenting far less 
vascularization and, therefore, decreased blood supply and heat losses, than malignant ones. 
Nonetheless, it is important to emphasize the practical validation of the thermal profiles 
documented in theoretical studies for melanoma tumours [13–15]. For SCC and BCC (NMSC), it 
is suspected that the increased blood flow is masked by anatomical elements, since these skin 
cancer types can often develop a crust on top of the main lesion, functioning as an insulating 
structure [3], Figure 6e. Thus, an improved image analysis approach is needed to retrieve 
features that better characterize and differentiate benign and malignant skin tumours. 
Anatomical trades can also justify the difficulty in distinguishing AK and SCC lesions. The first is 
considered to be a pre-cancerous lesion of SCC; thus, it displays some of the characteristics of 
SCC, as the “crusty” appearance [54]. Yet, in a mitigated way, making its hypothermic concavity 
similar, but not as accentuated, Figure 6a. 

When comparing the best classification results with previous research, the developed 
methodology performs close to that of studies involving dermoscopy images for melanoma and 
nevi diagnosis. For traditional ML, the suggested ensemble showed an ACC and SP of 89.69% 
and 94.44%., close to [25] and [26]. Still, sensitivity is a metric to improve, as it is the most 
important indicator of the capability of an AI system to detect those ill. For DL (ACC=96.91%, 
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SN=94.12%, SP=98.41%), Hosny et al. presented a more balanced distribution of metrics 
(ACC=97.7%, SN=97.34%, SP=97.34%) using a transfer learning approach, while the optimization 
strategy of Zhang et al. [29] yield them higher sensitivity (95%) with a lower accuracy and 
specificity (91% and 92%) (Table 9). It is important to refer most of these studies possessed an 
elevated number of samples when compared to the ones included here. Focusing on IRT studies, 
as in this work, Stringasci et al. [30] performed a manual selection of tumorous area, collecting 
then statistical attributes for classification with SVM. A SN and SP value of 82.9% and 85.7% for 
SCC and AK distinction were found, with a balanced data set composed by 35 images for each 
type. Both values surpass the numbers reached by our work (SN=79.07%, SP=69.67%) (Table 9)., 
hinting the need of a different approach to improve the encountered metrics. Godoy et al. [32] 
found positive results for the distinction of benign and malignant lesions (SN=95, SP=83%), as 
oppose to the ones reported here (Table 9). Still, the metrics reported were achieved through 
the selection of a temperature threshold based on temperature differences of lesion and 
surrounding skin, during thermal recovery after lesion cooling. In other words, a dynamic 
approach of IRT imaging was used, different from the one presented here, i.e., steady state (no 
stimulus before image acquisition). The lesions were also assessed as a hole, being no 
training/test set division. Nonetheless, the approach of the authors [32] is of extreme value and 
could indicate that dynamic IRT imaging is the way forward when distinction of benign and 
malignant lesions is intended.  

Despite the attainment of promising results, our study presents methodological 
limitations that could be hampering the metrics achieved for some classification tasks. The 
tumorous area selected during image processing was set to a 40 by 40 pixels in dimension. This 
size was chosen considering the present dataset, being sufficient to include the lesions in its 
entirety. However, this is not completely guaranteed for other skin neoplasms, as the use of a 
temperature curve with a fixed direction and length of 40 values influences the amount of lesion 
and surrounding healthy tissue that is assessed. The present data set is also considered limited, 
as there is a clear class imbalance between the different skin cancer types. It is also clear that 
the comparison of results attained with dermoscopy images and IRT images is not ideal,  

Hence, for future work, it is indicated the expansion of the data set with the assessment 
of different skin tumour types. Ultimately, the same number of lesions should be addressed for 
each category, allowing the performance of training and test stages without the need of artificial 
samples generated by the original cases. It is also suggested an image processing strategy that 
allows the selection of a preferred temperature curve by the user, as per example, a line with 
any direction that passes over the two points on the periphery of the lesion that are furthest 
away. Thus, guaranteeing a more extensive analysis. The implementation of IRT imaging 
involving a thermal stress before image collection might be an interesting option, in the hopes 
of enhancing tumour contour and metabolic and vascular capability. The detection of different 
skin tumour types could benefit from the inclusion of data regarding anatomical traits in the 
classification input vector, as asymmetry, since that type of information is not perceptible with 
IRT imaging and could aid in the differentiation of benign and malignant lesions. So, it is 
suggested the building of a database and an image analysis strategy with IRT and dermoscopy 
images to extract and combine physiological and anatomical data and ultimately improve the 
predictive performance of the proposed models. The constructed database would also facilitate 
scientific advances in the area of IRT imaging for skin cancer assess, as it would allow the 
comparison of results of different image analysis and classification methods applied to the same 
dataset, as it is usually the case with dermoscopy studies. 
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5 Conclusion 

The learning ensemble model and a deep learning network were implemented and 
assessed to differentiate skin tumour types, using thermal values as input features. Promising 
classification results were found for the detection of melanoma lesions among nevi and non-
melanoma skin cancer cases, showing the potential of IRT parameters for its implementation in 
a decision-support system for skin cancer diagnosis. Though, the differentiation of benign and 
malignant classes has fallen short.  

Therefore, as to future work, it is suggested the use of input parameters collected from 
of IRT and dermoscopy images, to provide complementary information for the classification 
model and facilitate and improve its accuracy. 
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