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Abstract. The long short-term memory (LSTM) is a high-efficiency model for forecasting time series, for being able to deal
with a large volume of data from a time series with nonlinearities. As a case study, the stacked LSTM will be used to forecast
the growth of the pandemic of COVID-19, based on the increase in the number of contaminated and deaths in the State of
Santa Catarina, Brazil. COVID-19 has been spreading very quickly, causing great concern in relation to the ability to care
for critically ill patients. Control measures are being imposed by governments with the aim of reducing the contamination
and the spreading of viruses. The forecast of the number of contaminated and deaths caused by COVID-19 can help decision
making regarding the adopted restrictions, making them more or less rigid depending on the pandemic’s control capacity. The
use of LSTM stacking shows an R2 of 0.9625 for confirmed cases and 0.9656 for confirmed deaths caused by COVID-19,
being superior to the combinations among other evaluated models.
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1. Introduction 30

Recently the new coronavirus (SARS-CoV-2) 31

proved to be a highly contagious virus, considering 32

that it soon spread throughout the world and caused 33

serious consequences to the health of the population 34

[1]. Due to easy contagion, certain restrictive mea- 35
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sures were imposed in Brazil to prevent the virus36

from spreading widely and generate catastrophic con-37

sequences on public health. One of the main concerns38

is that the health system is unable to receive and treat39

all patients properly [2].40

SARS-CoV-2 causes the disease COVID-19,41

which presents a clinical picture that can range from42

asymptomatic infections to severe respiratory condi-43

tions, which in the absence of treatment can cause44

death [3]. According to the World Health Organiza-45

tion (WHO), most patients with COVID-19 can be46

asymptomatic, which makes it difficult to identify47

where the virus is spreading [4].48

Some patients with COVID-19 may require hospi-49

tal care with support for the treatment of respiratory50

failure, which makes it necessary to have an adequate51

forecast for the increase of cases [5]. From a forecast52

it is possible to have control of restrictive measures,53

in relation to the capacity of advanced treatments [6].54

Based on this need, this article aims to assess the55

ability to predict deaths and infections in the state of56

Santa Catarina in southern Brazil, in order to indicate57

whether restrictive measures are generating efficient58

results.59

Some authors have carried out works related to the60

evaluation of the spread of viruses and the ability61

to predict this disease. In the work of Pinto, Nepo-62

muceno and Campanharo a study is presented on63

the spread of infectious diseases [7]. The evalua-64

tion shows that complex networks result in curves65

of infected individuals with different behaviors and,66

therefore, the growth of a given disease is highly sen-67

sitive to the model used. In [8] published reports on68

forecast models for the diagnosis of COVID-19 in69

patients with suspected infection are analyzed. In this70

study, the ability to detect people in the general pop-71

ulation at risk of being admitted to the hospital for72

pneumonia is assessed.73

Al-qaness et al. [9] present in their study a new74

model that aims to predict 10 days in advance the75

number of confirmed cases of COVID-19 using as a76

basis the cases previously registered in China. For77

that, they used an adaptive neuro-fuzzy inference78

system model (ANFIS). In comparison with other79

existing models, ANFIS showed better performance80

in calculating error and computational effort.81

Sajadi et al. [10] conducted a study in which82

climate data from cities with significant commu-83

nity dissemination of COVID-19 were examined84

using retrospective analysis. So far, there has been85

significant community dissemination in cities and86

regions with similar weather patterns with average87

temperatures in the range of 5-11◦C and humid- 88

ity between 4-7g/m3 The outbreak distribution in 89

regions with these climatographic characteristics is 90

consistent with a seasonal respiratory virus. 91

Fanelli e Piazza [11] present an analysis of the 92

spread of COVID-19 in China, Italy and France. In 93

this work they mention that in an initial analysis of 94

day-lag graphs, the results show that it is possible 95

to identify a simple model to understand the spread 96

of the epidemic, height and time to reach the peak 97

of the curve of confirmed infected individuals. The 98

analysis also shows that the recovery rate follows the 99

same kinetics regardless of the country under anal- 100

ysis, while the rates of infection and death vary. A 101

simulation of the effects of drastic measures to con- 102

tain the outbreak in Italy shows that a reduction in the 103

rate of infection actually causes an attenuation of the 104

peak of the epidemic, and it is also observed that the 105

rate of infection needs to be reduced dramatically and 106

quickly to see a noticeable decrease in the epidemic 107

peak and mortality rate. 108

Roosa et al. [12] used in their research phenomeno- 109

logical models already validated for a short-term 110

forecast of the cases reported in Guangdong and 111

Zhejiang, China. It was possible to make a 5 and 112

10 day forecast using accumulated data collected 113

from the National Health Commission of China until 114

February 13, 2020. For this, the researchers used a 115

generalized logistic growth model, Richards’ growth 116

models and a sub-epidemic wave model that had pre- 117

viously been used to predict outbreaks of infectious 118

diseases at other times. By using 3 models it was 119

possible to obtain a forecast, using the 10-day con- 120

dition, of 65 to 81 additional cases in Guangdong 121

and 44 to 354 cases in Zhejiang. It can be seen with 122

this that the transmission in both cities is showing a 123

decrease. 124

In the article by He, Tang and Rong [13], a 125

short-time stochastic epidemic model with binomial 126

distribution was presented for the study of coro- 127

navirus transmission. The model parameters were 128

adjusted based on data collected in China between 11 129

and 13 February 2020. The estimates of the contact 130

rate and the effective number of reproduction indicate 131

the efficiency of the control measures when applied 132

quickly. The simulations show that the total number 133

of confirmed cases peaked at the end of February 134

2020, considering that the applied control measures 135

were maintained. Although the number of new cases 136

of infection is decreasing, there is still the possibility 137

of future outbreaks if adequate protective measures 138

are not taken. 139
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There are several algorithms that can be used to140

forecast time series. Choosing the best model [14]141

and configuration [15] can improve the predictability142

of the algorithm. In the article [16] the forecast is143

made through a neuro-fuzzy network with success144

for a short-term time series. In [17], several ways of145

using the Ensemble algorithm are applied to the short-146

term forecasting problem. The use of optimization147

methods and hybrid algorithms is also a promising148

alternative to assess the problem [18].149

Time series forecasting is applied to several areas150

of knowledge, some works stand out for this purpose151

using advanced forecasting techniques. In [19] the152

least squares support vector machine classifier com-153

bined to chaotic cloud particle swarm optimization is154

applied to forecasting ship motion, in [20] and [21]155

a hybrid model is used for forecasting energy con-156

sumption, Zhang and Hong [22] used a combined157

model for the same purpose. In [23] a combination158

of models is performed to improve the predictabil-159

ity of the algorithm. Papers [24] and [25] perform160

the prediction based on a support vector regression161

model.162

Among the algorithms for the prediction of time163

series [26–28], neural networks with deep learning164

have gained space for the time series forecasting165

of COVID-19 spread [29–32], considering that they166

have the capacity to analyze a large volume of167

data with non-linearities. Long short-term memory168

(LSTM) is a recurrent neural network (RNN) that169

can process entire sequences of data, making this170

algorithm suitable for the problem in question [33].171

The insensitivity regarding the gap length gives the172

LSTM an advantage over traditional RNNs and clas-173

sic approaches, such as nonlinear auto-regressive174

algorithms.175

The use of stacked LSTM is promising for time176

series forecasting [34]. Stacking the layers can177

improve the model’s ability to capture temporal178

dependency patterns. According to Liang et al. [35]179

stacked LSTM is suitable to perform wind speed pre-180

diction for wind power producers and grid operators.181

The results show that this type of model has the abil-182

ity to capture and learn uncertainties at the same time183

that it presents an output performance.184

The stacked LSTM model has applications in185

several areas, and it can even be used to forecast186

stock prices in the financial market. According to Xu187

et al. [36], the use of wavelet transformation reduces188

noise and improves the predictive capacity of the189

model. Bao et al. [37] presents a work with the same190

objective-based on stacked autoencoders, the results191

show that this approach is superior to other predictive 192

models. 193

In this paper, the stacked LSTM model was used 194

because it has the ability to handle non-linear data. 195

The measurement of cases may vary due to the under- 196

reporting of cases on weekends and variation in the 197

weekly work schedules of the health teams. This vari- 198

ation can cause peaks of cases, not representing the 199

actual situation of the pandemic. For this reason, the 200

forecasting model needs to be able to interpret non- 201

linear data. 202

The contributions of this paper to predict the num- 203

ber of cases and deaths caused by COVID-19 are 204

summarized in the following: 205

− The first contribution is the forecast of an 206

increase in cases and deaths caused by COVID- 207

19 in Santa Catarina, Brazil. Based on a reliable 208

forecasting model, it is possible to define strate- 209

gies to minimize the impact of the pandemic 210

caused by COVID19; 211

− The second contribution focuses on use of a 212

deep learning model with layers stacked. This 213

network structure is robust to deal with non- 214

linear data, improving the quality of time series 215

prediction; 216

− The third contribution is related to the evalu- 217

ation of all network parameters to improve the 218

model. Through optimized parameters, a model 219

with greater capacity to deal with the problem 220

is obtained. 221

In this article the stacked LSTM will be used to 222

assess the ability to predict contagion and the evolu- 223

tion of the number of deaths caused by COVID-19, 224

using the State of Santa Catarina (Brazil) as a case 225

study. In Section 3 the proposed method will be 226

explained. In Section 2 the problem related to the 227

virus will be presented. In Section 4 the results of 228

the analysis will be discussed. Finally, Section 5 will 229

present the conclusions of this article. 230

2. Case study 231

The World Health Organization officially called 232

the disease caused by the coronavirus COVID-19 233

[38]. The number 19 refers to the year 2019 when the 234

first cases in Wuhan (China) were publicly disclosed. 235

The name Corona refers to the shape of the virus that 236

resembles the shape of a crown, Figure 1 presents an 237

illustrative image of the Coronavirus (SARS-CoV-2 238

virus) [39]. 239



4 F. Fernandes et al. / Long short-term memory stacking model to predict the number of cases and deaths caused by COVID-19

Fig. 1. Ilustration of the SARS-CoV-2 virus [4].

COVID-19 is an infectious disease caused by the240

recently discovered coronavirus. The virus is highly241

contagious, being transmitted through droplets gen-242

erated when an infected person coughs, exhales, or243

sneezes [40]. The droplets are weighed and are thus244

quickly deposited on surfaces that remain infected245

for a long time. A person can become infected with246

COVID-19 by inhaling the virus if they are close to247

someone infected or by touching a contaminated sur-248

face and rubbing their hands over their nose, eyes, or249

mouth [41].250

2.1. Contamination in the Santa Catarina state251

To reduce the contagion of COVID-19, the Gov-252

ernment of the State of Santa Catarina, through253

Provisional Measure No. 227 of 2020, established254

measures to deal with public calamity and the public255

health emergency resulting from COVID-19. Among256

the measures adopted, remote work was adopted257

when possible, there was anticipation of vacations258

and leave for public servants [42].259

In addition to Provisional Measure No. 227 of260

2020, there have been several decrees aimed at261

reducing contagion by the coronavirus. Among the262

measures adopted based on these decrees, some263

commercial activities were closed at the beginning264

of the pandemic, events with crowds of people265

were banned and it was mandatory to use masks266

indoors [43].267

Despite the great public health effort and the268

restrictive measures imposed by the Government of269

the State of Santa Catarina (SC), the cases of COVID-270

19 continue to increase. In Figure 2 can be viewed the271

Fig. 2. Confirmed cases of COVID-19 in SC [44].

Fig. 3. Deaths confirmed by COVID-19 in SC [44].

locations in the state where there is confirmation of 272

cases. 273

Mass testing of COVID-19 cases has not yet been 274

possible, so only professionals directly involved in 275

combating COVID-19 are tested or patients who have 276

very clear symptoms of the disease. The number of 277

deaths in relation to the number of contaminated is 278

considerably large compared to places where mass 279

population testing was carried out, as can be seen in 280

Figure 3. The cities with the largest number of inhabi- 281

tants had a higher number of contaminated ones, with 282

many confirmed cases in the cities of Florianópolis, 283

Chapecó, Blumenau, Joinville and Criciúma. The 284

highest number of deaths in the state was registered 285

in the cities of Florianópolis, Joinville and Criciúma 286

[44]. 287

The evolution of the number of confirmed infected 288

cases and death records is used in this article to train 289

the neural network and to forecast the continuity in 290

the spread of the virus. The data used to analyze 291

the proposed algorithm, are based on official records 292
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informed by the Government of the State of Santa293

Catarina.294

3. Methodology295

LSTM is a recurrent neural network algorithm.
Unlike common neural networks that have the feed-
forward form, LSTM has feedback allowing the
algorithm to remember distant values [45]. With
LSTM, P steps forward, starting from D samples,
sampled in an interval �,

x(t − (D − 1)�), . . . , x(t − �), x(t) (1)

to predict future value

x(t + P). (2)

For this, the classic LSTM algorithm is composed296

of cells that repeat themselves, as can be seen in297

Figure 4. Each cell is divided into three gates, the298

entrance (it), exit (ot) and the forgetting (ft) gates.299

These gates regulate how much of the respective vari-300

able will be sent to the next step [46].301

The first gate, of forgetting (forget), determines
how much of the information passed will be forgot-
ten and how much will be remembered [47]. Useful
information for states is added via the input gate
(input), the input values are activated by an activa-
tion function. Finally, at the output gate (output) it
is determined how much of the current state should
be assigned to the output [48]. For this, the current
state is activated and regulated by the input. In terms
of the equation, the LSTM can be expressed by the
equations:

it = σg(Wixt + Riht−1 + bi),

ft = σg(Wf xt + Rf ht−1 + bf ),

ot = σg(Woxt + Roht−1 + bo).

(3)

Where W and R are earnings matrices and b the
polarization matrix, whose values will be assigned by
the network training. For these equations σg denotes
the activation function of gate. LSTM has the input
activation function G and the output activation func-
tion H of the cell, (see Figure 4) which are used to
update the cell and the hidden state, according to the
equations:

c̃t = G(Wcxt + Rcht−1 + bc),

ct = ft ◦ ct−1 + it ◦ c̃,

ht = ot ◦ H(ct).

(4)

Fig. 4. LSTM cell.

The operations are performed element by element, 302

and ◦ circ represents the product of the elements. To 303

perform the forecast values of the stages of future 304

time, the responses of the training sequences are dis- 305

placed by a time step. In this way, at each time step 306

of the input sequence, the network learns to predict 307

the value of the next time step [49]. 308

In this article the LSTM layers are included in the 309

algorithm in a stacked way [50], as seen in Figure 5, 310

based on each cell presented in Figure 4. Stacked 311

LSTM is an extension of this model that has several 312

hidden layers of LSTM, where each layer contains 313

multiple memory cells [48]. For complete evaluation 314

of the algorithm, the regression can be specified with 315

variations in the number of layers, activation function, 316

number of hidden units and optimization method. 317

In this article, the activation functions linear, 318

sigmoid, hyperbolic tangent, rectified linear unit, 319

exponential linear unit and SoftPlus were evaluated. 320

The linear function can be ideal for simple tasks, since 321

its derivative is constant, that is, it does not depend 322

on the input value. 323

The sigmoid activation function (Sigm) is a widely 324

used function, as it is smooth and continuously differ- 325

entiable. The hyperbolic tangent activation function 326

(TanH) is similar to the sigmoid function, being a 327

scaled version of this function [15]. The rectified 328

linear unit (ReLU) function is being widely used 329

nowadays to deep learning approaches. A similar acti- 330

vation function to ReLU is the exponential linear unit 331

(ELU) function [51]. 332

To improve the performance of the algorithm, the 333

optimizer must also be evaluated. The stochastic gra- 334

dient descent (SGD) algorithm, updates the neural 335

network parameters to minimize the loss function, 336
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Fig. 5. LSTM stacking scheme using 3 layers.

taking small steps in each iteration towards the neg-337

ative loss gradient. RMSProp uses learning rates that338

differ by parameter and can automatically adapt to the339

loss function being optimized [49]. Thus, the algo-340

rithm maintains a moving average of the squares of341

the elements of the parameter gradients. This algo-342

rithm uses this moving average to normalize the343

updates for each parameter individually.344

The Adaptive Moment Estimation (ADAM) opti-345

mization method calculates adaptive learning rates346

for each parameter [52, 53]. ADAM uses moving347

averages to update network parameters. AdaMAX348

algorithm is a variant of ADAM optimizer based on349

the infinity norm. The AdaMAX can be promissor350

specially in embedded models. The Nesterov acceler-351

ated adaptive moment estimate (NADAM) is a com-352

bination of the Adam method and the Nesterov accel-353

erated gradient (NAG). The NADAM optimizer is354

used to minimize the cross entropy loss function [54].355

AdaGRAD, is based on the gradient that adapts the356

learning rate to the parameters [55]. AdaGRAD per-357

forms minor updates to parameters associated with358

frequently occurring resources; and performs major359

updates to parameters associated with infrequent360

resources. AdaDELTA is an extension of AdaGRAD361

that seeks to reduce its decreasing learning rate.362

Instead of accumulating all the previous square gra-363

dients, AdaDELTA restricts the gradient window to364

a fixed size. The current average depends only on the365

previous average and the current gradient [49].366

3.1. Algorithm evaluation367

For evaluation of the algorithm using a quantitative
methodology [56], a metric of the global error evalua-

tion based on the Root Mean Square Error (RMSE) is
used for network training and testing procedures. The
error signal is calculated by the difference between
the goal of the yi network and the result of the ŷi

network for the training and testing procedures [57].

RMSE =
√
√
√
√

1

n

n∑

i = 1

(yi − ŷi)2. (5)

Other measures to calculate the error are also pre-
sented to evaluate the proposed method, such as the
Mean Absolute Error (MAE), and the Mean Abso-
lute Percentage Error (MAPE) [58]. These measures
are calculated according to the equations:

MAE = 1

n

n∑

i = 1

|yi − ŷi|, (6)

MAPE = 1

n

n∑

i = 1

∣
∣
∣
∣

yi − ŷi

yi

∣
∣
∣
∣
. (7)

MAPE calculates the average error rate for the
correct values and MAE is the mean of the absolute
difference between the observed and predicted values
[59]. Based on recent studies on the application of
time series forecasting, the R2 determination coeffi-
cient is a promising way to assess model performance
[60, 61].

R2 = 1 −

n∑

i=1

(yi − ŷi)
2

n∑

i=1

(yi − ȳi)
2

. (8)
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In this case, ȳi is the average of the goals (objec-
tives) and the observed values represent the values
that were used for training the network [62]. To
complete the analysis of the proposed method, a sta-
tistical analysis was performed based on the best
model found, considering 50 simulations. For the
statistical analysis, average value, standard deviation
(Std Dev), variance (Vi), and covariance (Ci,j) were
considered, respectively as:

Std Dev = 1

n − 1

n∑

p=1

(yi,p − ȳi)
2, (9)

Vi = 1

n − 1

n∑

p=1

(yi,p − ȳi)
2, (10)

Ci,j = 1

n − 1

n∑

p=1

(

yi,p − ȳi

) (

yj,p − ȳj

)

. (11)

In equations (9 and 10), yi,p is the value of the368

predicted output i in object p and ȳi is the average of369

the variable i. For the equation (11) yj,p is the value370

of the variable j in object p, ȳj is the average of the371

value of the variable j [63].372

For a final comparison of the algorithm a bench-373

marking was performed. In this evaluation the layers374

were combined for a complete comparison. Recurrent375

neural network (RNN), gated recurrent unit network376

(GRU), simple recurrent neural network (SRNN), and377

dense structures were used for comparison [64].378

This article will evaluate network performance379

using an AMD Ryzen 5 (model 3400G) computer380

Quad-Core 3.7 GHz, with 8.00 GB of random-access381

memory (RAM), double data rate (DDR) 4. The382

algorithm was developed using the Python language383

from the Keras package based on TensorFlow. The384

complete flowchart of the steps performed in the anal-385

ysis of the model used in this paper is presented in386

Figure 6.387

4. Results analysis388

In this section, the analysis of the proposed method389

will be presented. Initially, the prediction capacity in390

relation to the size of dataset needed to perform the391

training of the neural network will be evaluated, con-392

sidering the RMSE and the R2 of the algorithm. To393

assess R2, the determination coefficient will be used.394

Results with lower RMSE and higher determination395

Fig. 6. Flowchart of the procedure performed in this paper.

coefficient will be highlighted in bold. Then the num- 396

ber of neurons and layers for the analyzed model will 397

be evaluated. The results of applying various activa- 398

tion functions and methods of network optimization 399

will also be presented. Finally, a statistical analysis 400

will be performed based on the best configuration for 401

the analyzed model. 402

The evaluation of the model is performed for the 403

number of confirmed deaths, and based on the best 404

configuration of the model, statistical analysis will be 405

performed for the number of cases. For comparative 406

purposes, the tests started with the SoftPlus activa- 407

tion function, 40 neurons and 1 step predicted ahead, 408

from 30 samples. In this initial analysis, the ADAM 409

optimizer was used from 90 % of the data for net- 410

work training. This initial configuration was based 411

on [14], in which variations are evaluated for the best 412

configuration of the model. In this article the layers 413

are organized by stacking cells, as explained in Sec- 414

tion 3. Table 1 presents the results in relation to the 415

variation in the size of data used for training. In this 416

model, cross-validation is performed, in which the 417

data used for training are not used for the network 418

test. 419

Using 90 % of the data for training the network, 420

it is possible to achieve an R2 of 0.9943 to forecast 421

the number of confirmed cases with COVID-19. This 422

value is calculated based on the cross-validation of 423

the data that are used for the training (data reported 424

by the State Government), in relation to the forecast 425

result. 426

It is possible to observe in Table 2 that the best 427

stacking of this model occurs with 5 layers. From 428
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Table 1
Results for Size (%) of Data Used for Training

% Train. (s) RMSE MAE MAPE R2

90 6.3 4.6×102 3.9×102 0.02 0.99
80 9.7 3.4×103 3.1×103 0.18 0.16
70 10.3 3.0×103 2.4×103 0.14 0.61
60 5.9 1.0×104 9.1×103 0.58 0.98
50 7.0 2.4×104 1.6×104 0.97 0.80
40 5.2 7.5×104 4.7×104 3.08 0.77

Table 2
Results for Variation in the Number of Layers

Lay. Train. (s) RMSE MAE MAPE R2

1 10.0 3.3×103 2.9×103 0.16 0.54
2 10.5 6.5×103 5.3×103 0.29 0.94
3 12.8 2.8×103 2.4×103 0.13 0.97
4 16.4 1.3×103 1.1×103 0.06 0.84
5 17.3 1.6×103 1.3×103 0.07 0.97
6 31.0 6.8×103 5.5×103 0.30 0.95

Table 3
Results for Variation in the Number of Neurons

Neur. Train. (s) RMSE MAE MAPE R2

1 35.4 1.4×104 1.4×104 0.79 nan
5 19.4 1.5×104 1.4×104 0.80 0.02
10 51.1 1.5×103 1.2×103 0.07 0.80
20 26.9 1.4×103 1.2×103 0.06 0.81
30 19.6 3.0×103 2.5×103 0.13 0.99
40 17.9 4.8×103 3.9×103 0.21 0.97
50 45.6 3.9×103 3.2×103 0.17 0.95

this result, the simulations were repeated to assess the429

influence of different numbers of neurons, according430

to Table 3.431

The best performance of the model was obtained432

using 30 neurons, resulting in lower errors and less433

time needed for training. The evaluation of the param-434

eters in relation to the R2 of the model is presented435

in Figure 7 with greater precision, with all combina-436

tions between the number of neurons and the number437

of layers.438

In the Table 4 the results are presented in relation439

to the use of different activation functions and the440

Table 5 presents the results in relation to the variation441

in the use of the optimization method.442

The best results in terms of RMSE reduction443

and higher determination coefficient were obtained444

using the ReLU activation function. Changing the445

optimizer applied to the problem resulted in large446

variations in the R2 of the forecast. In this evaluation,447

RMSprop and SGD had results below the average of448

the other methods. The optimizer that resulted in the449

best R2 was ADAM, which also had the smallest error450

in all the metrics evaluated.451

Fig. 7. Analysis of parameters variation.

Based on the analyzes presented here, the configu- 452

ration that generated the best result in terms of greater 453

precision and less error was with 90 % of the data for 454

network training, 5 layers and 30 neurons. The best 455

activation function was the ReLU and the best opti- 456

mizer for the analysis of this paper was ADAM. From 457

this configuration, a statistical evaluation based on 458

50 simulations is presented in 4.1 to assess the fore- 459

cast of the number of confirmed cases and number of 460

deaths. 461
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Table 4
Results for Varying the Activation Function

Activ. Train. (s) RMSE MAE MAPE R2

Funct.

Linear 21.39 7.7×103 5.0×103 0.27 0.49
Sigm 27.55 1.8×104 1.8×104 1.00 0.01
SoftPlus 15.12 1.1×104 8.5×103 0.46 0.93
TanH 15.43 1.8×104 1.8×104 1.00 0.01
ReLU 29.86 1.2×102 8.3×102 0.01 0.99
ELU 13.50 8.6×103 7.0×103 0.38 0.95

Table 5
Results for the Optimizer Variation

Optim. Train. (s) RMSE MAE MAPE R2

SGD 8.5 1.8×104 1.8×104 1.00 0.00
ADAM 31.1 4.8×102 4.1×102 0.02 0.99
NADAM 69.4 4.0×103 3.3×103 0.18 0.96
RMSprop 15.6 8.5×102 6.2×102 0.03 0.33
AdaDELTA 166.3 1.6×104 1.6×104 0.84 0.54
AdaGRAD 25.0 2.3×103 2.1×103 0.11 0.98
AdaMAX 11.7 3.2×103 2.9×103 0.16 0.97

Fig. 8. Analysis of the Evolution of the Number of Cases.

From this configuration, Figure 8 shows the rela-462

tionship between the increase in the real number of463

cases [43], obtained based on official information,464

training data and forecasting the evolution of cases.465

The assessment is presented after the first day on466

which a case of COVID-19 was confirmed in the state.467

In this visual analysis, the values presented are real468

for confirmed cases (Real), those used for network469

training (Training) and the time series forecast (Pre-470

dicted). Based on this analysis, it is possible to assess471

the trend in the increase in the number of cases in the472

future.473

This evaluation shows that the increase in the num-474

ber of cases in the coming days tend to grow slowly475

possibly stabilizing at a value. That’s given the vac-476

Fig. 9. Analysis of the Evolution of the Number of Deaths.

cination advances and the restrictive measures. The 477

same analysis is presented for the number of deaths 478

confirmed by COVID-19 in Figure 9. There is a 479

slightly higher growth but still a concave curve, this 480

analysis shows the effects that vaccination had and 481

will have in controlling the spread of the virus. 482

4.1. Statistical analysis 483

For the final assessment the statistical analysis of 484

the algorithm is performed, Table 6 presents a com- 485

plete statistical analysis of 50 simulations with the 486

same configuration described on previous section for 487

confirmed cases and Table 7 for the number of deaths 488

caused by COVID19. The statistical analysis shows 489
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Table 6
Statistical Results of the Proposed Method for Confirmed Cases

Indicator Training RMSE MAE MAPE R2

Time (s)

Mean 28.23 1.72×105 1.46×105 0.12804 0.9077
Std. Dev. 10.58 2.19×105 2.05×105 1.82×10−1 1.96×10−1

Variance 111.86 4.78×1010 4.22×1010 3.32×10−2 3.83×10−2

Table 7
Statistical Results of the Proposed Method for Confirmed Deaths Caused by COVID-19

Indicator Training RMSE MAE MAPE R2

Time (s)

Mean 23.22 2.69×103 2.19×103 0.1887 0.8861
Std. Dev. 7.58 2.28×103 1.86×103 1.01×10−1 2.00×10−1

Variance 57.4 5.20×106 3.46×106 1.02×10−2 3.99×10−2

Table 8
Benchmarking Results for Confirmed Cases

Algorithm Train RMSE MAE MAPE R2

Time (s)

GRU GRU 12.31 7.7×105 5.5×105 0.4835 0.7252
GRU SRNN 27.61 3.0×104 2.3×104 0.0204 0.4482
GRU Dense 6.85 1.3×104 1.1×104 0.0095 0.9818
SRNN GRU 27.61 3.0×104 2.3×104 0.0204 0.4482
SRNN SRNN 7.91 1.1×105 9.2×104 0.0809 0.9795
SRNN Dense 5.28 2.7×105 2.2×105 0.1974 0.9731
Dense GRU 6.85 1.3×104 1.1×104 0.0095 0.9818
Dense SRNN 5.28 2.7×105 2.2×105 0.1974 0.9731
Dense Dense 2.47 9.4×104 7.8×104 0.0684 0.9869
Proposed 8.90 8.8×103 6.4×103 0.0056 0.9987
structure

that the variation of the values is low for the calcula-490

tion of RMSE, MAE, MAPE, and R2.491

As can be seen, there is a great variation in the492

results as a function of the magnitudes of the metric493

considered. This result does not represent a problem494

for the analysis, since the error remains under 1 % of495

the maximum order of magnitude of the metric used.496

The R2 average found in this analysis remained at497

0.9077 for number of confirmed cases, which shows498

that even with several analyzes the precision remains499

at a high average and the error calculated by RMSE,500

MAE and MAPE were low. The values of standard501

deviation and variance of RMSE and MAE were502

high, these results were obtained because the signal503

features which results in a greater error. Even with504

a longer time to start in the increase of confirmed505

deaths, the forecast remains accurate. In this way, it506

is possible to estimate the number of deaths caused507

by COVID-19, if the same measures to combat the508

virus are being taken.509

The R2 achieved for predicting the number of510

deaths reaches 0.8861 from the average of 50 sim-511

ulations, according to the determination coefficient 512

R2. Based on the R2 found in this paper, it is possible 513

to perform a strategic planning to combat COVID- 514

19. This planning can be based on the results values 515

found of the forecast of increases in confirmed cases 516

and deaths. 517

In the subsection 4.2, to perform a fairer assess- 518

ment using the same data set and with the same 519

configurations, the results of the application of the 520

GRU, Dense and SRNN models are compared to the 521

LSTM stacking model. 522

4.2. Benchmarking 523

In Table 8 variations of the model structure for 524

the prediction of the increase of the confirmed 525

cases of COVID-19 are presented. It is possible to 526

observe that some layers structures do not gener- 527

ate acceptable R2 with results lower than 80 %. 528

All the structures have higher error and low accu- 529

racy than the proposed method. The results of the 530

evaluation for the number of deaths confirmed by 531
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Table 9
Benchmarking Results for Confirmed Deaths Caused by COVID19

Algorithm Train RMSE MAE MAPE R2

Time (s)

GRU GRU 11.32 2.8×102 2.1×102 0.0111 0.9143
GRU SRNN 8.24 6.3×103 5.1×103 0.2759 0.9400
GRU Dense 6.43 5.7×103 4.4×103 0.2364 0.8955
SRNN GRU 8.24 6.3×103 5.1×103 0.2759 0.9400
SRNN SRNN 6.70 1.7×104 1.4×104 0.7594 0.9282
SRNN Dense 3.10 1.2×103 9.7×102 0.0525 0.9819
Dense GRU 6.43 5.7×103 4.4×103 0.2364 0.8955
Dense SRNN 3.10 1.2×103 9.7×102 0.0525 0.9819
Dense Dense 1.19 3.7×102 3.0×102 0.0165 0.9330
Proposed 1.37×101 1.2×102 1.1×102 0.0050 0.9984
structure

Fig. 10. Results for Each Layer Configuration for the Model.

COVID-19 was follows this tendency, as shown in532

Table 9.533

Although the use of the stacked LSTM takes more534

time for convergence because of require more com-535

putational effort, this structure has the best results for536

the time series forecasting of the increase of cases537

and deaths caused by the COVID-19.538

The stacked LSTM method has lower RMSE,539

MAE, and MAPE; and higher R2 than others struc-540

tures combinations. The model with Dense Dense541

layer was faster in both analysis, these result was542

expected as the structure is simpler.543

The LSTM proves to be a promising algorithm for544

the evaluation in question in view that it has the capac-545

ity to evaluate a large volume of data as can be seen for546

the evaluation of the cases confirmed by COVID-19.547

As can be seen in Figure 10 there is a big dif-548

ference between forecasting results by changing the549

layer structure of the models. In this presentation, the550

best results were obtained using GRU and SRNN,551

as these values were closer to the real variation. The552

results presented in this image correspond to the com- 553

parison with the data set that was used for the model 554

test. 555

5. Conclusion 556

The proposed algorithm proved to be a promising 557

technique for evaluating the increase in the number 558

of cases and deaths confirmed by COVID-19. Con- 559

sidering that there was a mean R2 in the analysis of 560

0.9077 for the number of confirmed cases and 0.8861 561

for the number of deaths. Based on the forecast, it is 562

possible to assess the capacity of the health system 563

and to increase or relax the restriction measures. 564

According to the results presented in this article, it 565

is possible to notice that the number of deaths follows 566

the trend of the contamination curve, so reducing the 567

slope of this curve is extremely necessary to con- 568

sequently reduce the number of deaths. The trend 569

presented in the results of this article shows that the 570

vaccination programs applied so far are reducing the 571

numbers of contamination. And government agen- 572

cies, should consider these forecasts to determine if 573

the restrictive measures are maintained or relaxed. 574

Comparing to other models the LSTM stacking 575

shows a similar performance in terms of R2 an reduc- 576

tion of the error. The average and statistical analysis 577

shows that the algorithm is stable and can be applied 578

for forecast analysis in the COVID-19 spread. 579

The evaluation of the number of cases curve proves 580

to be an excellent measure to reduce the number of 581

emergency visits with high complexity, without the 582

capacity of the health system. The combination of 583

hybrid methods can be used to reduce variations in 584

the algorithm that are not representative, such as those 585

caused during weekends. 586
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