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Landscape functional connectivity and animal movement: application of remote 

sensing for increasing efficiency of road mitigation measures 
 

 

Abstract 

Roads are a major threat to wildlife due to induced mortality and restrictions to animal 

movement. A central issue in conservation biology is the accurate site identification for the 

implementation of multispecies mitigation measures, on roads. Those measures entail high 

costs and methodological challenges and their efficiency highly depend on the right 

location. The aim of this PhD is to inform, through remote sensing and connectivity 

modelling, how to increase the efficiency of planning mitigation measures to reduce roadkill 

and promote connectivity; and demonstrate the usefulness of remote sensing in defining 

suitable areas for the conservation of an endangered species that often occurs in the vicinity 

of roads. To do so, we first assessed whether occurrence-based strategies were able to infer 

functional connectivity, compared to those more complex and financially demanding based 

on telemetry, with respect to daily and dispersal movements. Secondly, we assessed whether 

remote sensing data were sufficiently informative to identify key habitats for a threatened 

species around road verges. Thirdly, we assessed the predictive and prioritisation ability of 

road mitigation units intercepting multispecies corridors to prevent vulnerability to roadkill. 

Findings revealed that simple models are suitable as complex ones for both daily and 

dispersal movements, allowing for costly-effective connectivity assessments. Results 

demonstrated the ability of free remote sensing data to identify microhabitat conditions in 

verges and surrounding landscape, for a threatened rodent, allowing for the delimitation of 

refugee areas and definition of monitoring strategies for the species. Undemanding data 

(occurrence and remote sensing) were able to describe species-specific ecological 

requirements for birds, bats and non-flying mammals as well as roadkill patterns, possibly 

due to similar overlapping corridors and habitats, despite some mismatches that occurred 

for highly mobile species. This framework ensured high efficiency in prioritisation of 

multispecies roadkill mitigation planning, resilient to long-term landscape dynamics. 

Keywords 

Landscape connectivity; Landscape ecology; Multispecies; montado agro-forest-

ecosystem; Remote sensing; Road ecology; Road verges; Road mitigation; Wildlife 

roadkill. 
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Conectividade funcional da paisagem e movimento animal: aplicação da detecção 

remota para aumentar a eficiência de medidas de mitigação em estradas. 

 

Resumo 

As estradas constituem uma enorme ameaça para a vida selvagem devido à mortalidade. Uma 

questão central é a identificação dos locais para implementar medidas de mitigação multi-

espécies, em estradas. Essas medidas envolvem custos elevados e desafios metodológicos e sua 

eficiência depende muito da localização correcta. O objetivo deste doutoramento é informar, 

através de detecção remota e conectividade, como aumentar a eficiência do planeamento de 

medidas de mitigação para reduzir atropelamentos e promover a conectividade; e demonstrar a 

utilidade da detecção remota na definição de áreas adequadas para a conservação de espécies 

ameaçadas que podem ocorrer nas proximidades de estradas. Portanto, primeiro avaliamos se os 

dados resultantes de amostragens simples eram capazes de inferir conectividade funcional, em 

comparação com estratégias complexas, respeito aos movimentos diários e de dispersão. 

Segundo, avaliamos se os dados de detecção remota eram suficientemente informativos para 

identificar habitats-chave para uma espécie ameaçada em torno das margens das estradas. 

Terceiro, avaliamos a capacidade preditiva e de prioritização das unidades de mitigação de 

estradas que cruzam corredores multi-espécies para reduzir o risco de atropelamentos. Os 

resultados revelaram que os modelos simples são adequados quanto os complexos para os 

movimentos diários e de dispersão. Os resultados demonstraram a capacidade dos dados de 

detecção remota gratuitos em identificar condições de microhabitats nos habitats de berma e na 

paisagem circundante, para um roedor ameaçado, permitindo a delimitação de áreas de refúgio. 

Dados pouco exigentes (ocorrência e detecção remota) foram capazes de descrever os requisitos 

ecológicos específicos de aves, morcegos e mamíferos não voadores, bem como padrões de 

atropelamentos, possivelmente devido a corredores e habitats semelhantes, apesar de haver 

algumas incompatibilidades para espécies de maior mobilidade. Essa estrutura foi capaz de 

garantir uma elevada eficiência na prioritização de planeamento de mitigação de atropelamentos 

para multi-espécies, resiliente à dinâmica da paisagem de longo prazo. 

 

Palavras-chave 

Ecologia das estradas; Mortalidade por atropelamentode animais selvagens; Margens das 

estradas; Ecologia da paisagem; Detecção remota; Conectividade da paisagem; mitigação; 

multi-espécies; Sistema agro-florestal montado. 
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Chapter 1 

General Introduction 

Ecosystems and wild species contribute to the economic and social well-being of billions of 

people through the multiple benefits they provide: from food to cultural services, along with biotic 

regulation of climate and biogeochemical processes (Díaz et al., 2018; Malhi et al., 2020). 

Currently, the footprint of human activities and landscape changes are acting as key drivers of 

ecosystems and species decline, with extinction rates accelerating 1,000 to 10,000 times faster 

than normal rates in Earth' past life history (Dirzo et al. 2014; Primm & Joppa, 2015). Such 

dramatic loss supports the evidence that Earth is entering the sixth mass extinction, presenting a 

critical challenge to the Convention on Biological Diversity (CBD), where nations are currently 

negotiating the Post-2020 Global Biodiversity Framework to halt biodiversity loss (Bongaarts 

2019). Biodiversity, referred as the variety of organisms, is being wiped out as anthropogenic 

pressures increase, likewise reflecting the ongoing development of human societies (Dirzo et al. 

2014; Young et al. 2005). Infrastructure expansion is closely linked to economic growth 

worldwide, and is considered a major deterioration factor for ecosystems, habitats and 

biodiversity (Coffin 2007; Forman & Alexander, 1998). Thus, in light of the multifaceted 

negative ecological impacts from expanding linear infrastructures (van der Ree et al., 2015a), 

cost-effective solutions are increasingly needed to optimise wildlife conservation measures, 

particularly along roads (Clevenger & Huijser, 2011; Polak et al., 2019; van der Grift et al., 

2017). 

Background 

1.1 Road effects on wildlife populations 

Earth terrestrial biodiversity is declining in tandem with human growth and the subsequent 

expansion of roads, increasing global conservation concerns (IPBES, 2019). Earth surface is 

approximately covered by 36 million kilometres of major roads, considered responsible for 

disrupting native patches into smaller fragments, nowadays estimated to be around 600000 units 

mostly with an area lesser than 1km2 (Ibisch et al., 2016). Roads are widespread worldwide 

(Figure 1.1.1), and are expected to expand considerably in the next decades, which will likely 

place additional negative impacts on biodiversity (Laurance et al., 2014). 
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Mounting evidence suggests that roads are affecting natural areas far more adversely than other 

types of human development; and as a result, attention is turning towards environmental impact 

assessments (EIAs) as a legal protocol to diminish their negative impacts (Geneletti, 2003; 

Thompson et al., 1997). Since 1990, the ecological impacts of roads have received interest at an 

international level (Andrews, 1990; Pagany, 2020), culminating into the conceptualisation of 

"road ecology", an emerging discipline aiming the study of "the ecological effects (both positive 

and negative) of roads on environments and wildlife populations" (Coffin, 2007; Forman et al., 

2003; Forman & Alexander, 1998). Over the past decades, research in this area has progressively 

uncovered the direct and indirect negative impacts derived from roads, that had long been 

jeopardising both habitats and ecosystems functionality (Bennett, 2017). The first and most 

obvious impact from roads begin with its construction, resulting into the physical disruption of 

landscapes and habitat patches, the latter being completely destroyed in the worst cases, or 

drastically altered in their compositional and configurational properties (Geneletti, 2003; Young 

et al., 2005). Habitats, at the interface with roads, underwent subdivision into smaller patches 

with a more pronounced edge, giving way to further habitat fragmentation and reduced landscape 

connectivity (Bennett, 2017; Wilson et al., 2016). Habitat degradation and loss are among the 

biggest threats to biodiversity (Dirzo et al. 2014), and in this regard, roads are considered the 

most prevalent landscape alteration trigger since the early 20th century (Geneletti, 2003; 

Trombulak & Frissell, 2001), with an expansion up to 60% (25 million of kilometres) foreseen 

until 2050 (Laurance et al., 2014). Such a considerable expansion is a matter of concern also due 

to the roads associated "Pandora' box" of many additional ecological problems: facilitated access 

to natural resources, accelerated deforestation, wildlife mortality, as well as encouraged 

speculative activities (Benítez-López et al, 2010; Gross, 2016; Laurance et al., 2014). The road 

expansion and construction phase represent a direct serious threat to wildlife (e.g., for species 

with low mobility; Trombulak & Frissell, 2001), even though mortality may also persist over 

Figure 1.1.1. Road extension (in black) in actual world. Adapted from Laurance et al. (2014) 
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longer term in the form of wildlife collisions with vehicles (Coffin, 2007; Forman et al., 2003; 

Forman & Alexander, 1998). 

Mortality from vehicle collisions, henceforth referred to as roadkill, constitutes the second most 

important source of anthropogenic mortality (Forman & Alexander, 1998; Schwartz et al., 2020), 

and because of that, it is receiving a central attention in conservation biology worldwide. This 

interest is not a sole consequence of the infrastructure expansion and mortality effects over 

pristine natural areas (Laurance et al., 2014), but also of the high mortality rates on roads, where 

traffic volume is intensifying. On this issue, for most roads, a substantial growth in vehicle 

volume traffic is expected for the next decade, corresponding to a doubling of motor vehicles on 

roads, roughly from one billion in 2010 to two billion by 2030 (Gross, 2016). This will reasonably 

lead to higher vulnerability for some wildlife populations, challenging transport agencies and 

conservation scientists to reduce mortality risks, as well as to restore landscape connectivity. 

Connectivity of wildlife populations can be indeed compromised by a prolonged exposure to 

mortality, along with a behavioural avoidance of individuals from roads (Jacobson et al., 2016). 

Nevertheless, progresses with the aim of mitigating road-related mortality seem insufficient, and 

while growing awareness is triggering efforts from citizen initiatives (Bíl et al., 2020), jointly 

with conservation scientists and governments through policy directives (Pagany, 2020), 

alarming rates are yet routinely reported and rising. In the United States, the frequency of roadkill 

has doubled since the 1990s, reaching approximately one million vertebrate deaths along roads 

per day (Forman & Alexander, 1998; Schwartz et al., 2020), then in Brazil with more than 8 

million birds and 2 million mammals per year in last decades (González‐Suárez et al., 2018), 

whilst 194 million birds and 29 million mammals correspond to the annual estimated mortality 

on European roads (Grilo et al., 2020). Such losses have the potential to undermine wildlife 

population demography and viability, leading to local extinctions and deteriorating ecosystem 

functioning (Oddone Aquino, 2021; van der Grift et al., 2017). Roadkill mitigation is relevant 

from both functionality of ecosystems and ethical standpoints, though is also intertwined with 

motorist safety and economic damages, since wildlife on roads represents a serious wildlife-

human conflict and a global socio-economic danger (Oddone Aquino, 2021; van der Grift et al., 

2017; van der Ree et al., 2011). In particular, ungulate-vehicle collisions are problematic for 

transport agencies, since may reach up to two million of roadkilled animals in Europe, hundreds 

of human deaths per year in the US, whilst costing tens of millions of Euros in human fatalities 

(Europe), and over a billion in property damage (US) (Bissonette et al., 2008; Putman et al., 

2011). Importantly, human fatalities can be attributed to species with large body size such as 

ungulates, but also to smaller fauna, as drivers can fatally crash on other vehicles or objects after 

hitting or avoiding individuals on roads (Williams & Wells, 2005). 
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Apart from above listed negative effects, linear infrastructures can have also positive effects 

when promoting the presence and maintenance of semi-natural habitats, such as verges (Coffin, 

2007). The presence of verges and hedges along roads is recognised to exert beneficial effects 

on biodiversity (Coffin, 2007), and studies show that such elements have the potential to provide 

suitable habitat for various taxa, including plants (Tikka et al., 2001), insects (Phillips et al., 

2019), birds (Hinsley & Bellamy, 2000) and mammals (Bellamy, 2000). This also includes 

habitat specialist fauna of conservation concern (e.g., rare or threatened), where verges are often 

considered a refuge, typically when the surrounding landscape is subject to severe alterations 

(Ascensão et al., 2012; Pita et al., 2007; Santos et al., 2007; Smart et al., 2006). Still, the multiple 

beneficial effects of roadside verges as habitat and corridors can be context dependent, while 

varying according to geographical location (Smart et al., 2006), and can have side-effects (e.g. 

for attracting predators; Silva et al., 2019). Further, concerns have also been raised whenever 

road verges may lead to a serious compromise in road safety, as they may provide shelter for 

certain species approaching the roads (e.g. ungulates) whilst restricting visibility for drivers 

(Keken et al., 2019). Thus, roads can exert both negative and positive effects (Figure 1.1.2), 

which require different goals and targets to increase their sustainability and soften wildlife-

human conflicts. 

Figure 1.1.2. Major effects associated with roads on wildlife. The most obvious negative effect for wildlife 

is a directly induced mortality through vehicle collision (A). This mortality effect may be triggered from 

attraction of wildlife on road verges (B), or may be associated to landscape corridors, at the interface with 

roads (C), whether roads act as semi-permeable barrier. However, roads may be also not permeable, a 

condition that may act as a deterrent for wildlife crossing (D), or in worst cases, as avoidance (E). 

Conversely, the most obvious positive effect for wildlife is related with the presence of road verges (F), 

as those may constitute potential habitat and corridors for some wildlife species, even though with 

collateral effects in mortality risk (B). Adapted from van der Ree et al. (2015a). 
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1.2 Mitigation measures and their implementation 

Biodiversity protection is considered in mitigation planning and decision-making owing to the 

negative influences from human activities worldwide, where legislation procedures are 

becoming explicitly dedicated to biological conservation and increasingly mandatory in 

numerous countries. Nations around the world are committed to reducing rates of biodiversity 

loss following the adoption of the Strategic Plan for Biodiversity, set out in the Convention on 

Biological Diversity (CBD), and representing an ambitious goal on different fronts (Chandra & 

Idrisova, 2011). In particular, the stipulated paragraph 1 of Article 14 of the CBD identifies EIAs 

as a legal protocol and decisive tool for conservation and mitigation (Secretariat of the 

Convention on Biological Diversity, 2006). An EIA is carried out whenever is expected a 

detrimental effect on special environments or protected area from the development of a new 

infrastructure, such as roads (Jaeger, 2015). On the other side, linear infrastructures actually 

exist in particular areas of biodiversity interest and/or ecological significance, meaning that were 

conceived and developed at the dawn of the road ecology discipline, or when attention to EIAs 

protocols was minimal (Forman & Alexander, 1998). This contributed to inadequacy in 

conservation planning, which coupled with lack of conservation actions, has led to insufficient 

efforts with respect to species protection, as revealed in the Post-2020 Global Biodiversity 

Framework report on the lack of compliance of the CBD 2010 targets (Xu et al., 2021), namely 

to mitigate many causes affecting biodiversity, including those from roads. Furthermore, the 

presence of roads, as previously mentioned, may impair the ecosystems' functionality (Coffin, 

2007; van der Ree et al., 2011), which is considered at the foundation of human well-being (Díaz 

et al., 2018; Dirzo et al., 2014; Malhi et al., 2020). Identically, transport infrastructure is also 

relevant for the human well-being, which can trigger conflicts of interest between economic 

growth and biodiversity preservation, such as highlighted by Ibisch et al., (2016), that have 

pointed such conflict with respect to the United Nations' agenda (e.g. Sustainable Development 

Goals). In light of all this, if on one hand conservation scientists are now challenged to develop 

global conservation policies capable of addressing the negative issues associated with roads 

(Ibisch et al., 2016; Pagany, 2020), on the other, focus is likewise required on roads already built, 

with EIAs-based practical and local solutions limiting their negative impacts (Jaeger, 2015; 

Karlson et al., 2014; Rytwinski et al., 2015; van der Grift et al., 2015). In Europe, the EIA 

procedure has become mandatory according to the EU Directive 85/337/EEC, 2011/92/UE and 

2014/52/UE with regard to projects, while the EU Directive 2001/42/EC with regard to public 

plans and programmes (e.g., land use, agriculture, transport, etc.). In this direction, the EU also 

outlined a Biodiversity Strategic Plan for 2030 (European Commission, 2020) to restore 

biodiversity in Europe, which includes a series of guidelines, including EIAs (see Karlson et al. 
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2014), for the compensation of depleted ecosystem services, the fragmentation mitigation and 

functional connectivity restoration. 

Mitigation efforts, along roads, are mostly conducted aiming human safety, animal welfare and 

wildlife conservation issues (van der Grift et al., 2015). Particularly for the latter, several 

mitigation measures are considered to restore connectivity and readdress population viability, 

considered as the most important objectives (Sijtsma et al., 2020; Smith et al., 2015). This 

includes the construction of road crossings structures which aim to reduce roadkill rates and 

promote animal movement (Huijser et al., 2009; Lesbarreres & Fahrig, 2012). These structures 

can have several designs and dimensions such as overpasses, underpasses and/or culverts (Smith 

et al., 2015; Figure 1.2.1a-b) and must be complemented with fences (van der Ree et al., 2015b; 

Figure 1.2.1c) to facilitate and redirect safer movements (Clevenger & Huijser, 2011; Crooks & 

Sanjayan, 2006; Sijtsma et al., 2020). 

The proper implementation of such structures has the potential to increase population 

connectivity, allowing easier access to resources, reproductive success, and transfer of genetic 

material, all of which can increase long-term population viability (Clevenger & Huijser, 2011; 

Rytwinski & Fahrig, 2015a; van der Grift et al., 2015). Still, it is worth noting that those supposed 

benefits are currently a topic of discussion, as if it is recognised that wildlife crossings may 

improve connectivity (Clevenger & Huijser, 2011; Crooks & Sanjayan, 2006; Mimet et al., 

2016), on the contrary, their increased use by wildlife and the facilitated movements might not 

necessarily lead to improved population viability. This is mainly because an explicit measure on 

Figure 1.2.1. Examples from main typologies of mitigation structures. In the upper part are depicted 

typical wildlife crossing structures, respectively a) overpasses and b) underpasses. In the lower part are 

depicted c) fences, with examples of management strategies combining fencing for multiple species. The 

figure combined and adapted illustrations from: Smith et al., (2015) and van der Ree et al., (2015b) and 

LIFE-LINES project (LIFE14 NAT/PT/001081; https://lifelines.uevora.pt/). 
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viability is difficult to yield, primarily due to the lack of field data for long periods and poor 

research designs (Rytwinski et al., 2016). This means that roadkill frequencies, movement rates 

between populations and genetic variability, are often the only parameters for assessing the 

effectiveness of mitigation structures, even if they are not directly related to population viability 

(Rytwinski et al., 2016; van der Grift et al., 2015). For the effectiveness of mitigation structures, 

attention is given with regards to size, material and design (Brunen et al., 2020; Craveiro et al., 

2019; Smith et al., 2015), but prior the construction phase, a careful consideration of the planning 

phase is critical for the effectiveness of mitigation measures (Glista et al., 2009; van der Grift et 

al., 2013; van der Grift et al., 2015; Rytwinski et al., 2015b). A better understanding of risks 

undermining biodiversity gradually emerged along recent decades, with improvements from 

road-based EIAs assessments, though uncertainties and inefficiencies still remain, especially 

during decision-making and planning processes. In a comprehensive review, Karlson et al. (2014) 

pointed out that most EIAs are based on a mere description of biodiversity, carried out through 

expert-based decision-making consisting of subjective arguments regarding putative sites for 

applying measures, or descriptive rather than quantitative evaluations, with the issue of 

connectivity often omitted. Such decisions can have the consequence of biasing planning in a 

counter-productive manner, with significant expenditure of resources. In spite of this, research is 

progressively moving for measuring impacts quantitatively, and EIA-based modelling tools are 

increasingly being more valued (Gontier et al., 2006), especially when integrating different 

complementary disciplines (e.g., ecology, connectivity, remote sensing; Zetterberg et al., 2010; 

De Leeuw et al., 2010). Such an integration may lower limitations and gaps when estimating road 

ecological impacts on biodiversity in human-animal conflictual areas, resulting as more adequate 

for distributing mitigation measures able to restore population viability and connectivity (Gontier 

et al., 2006; Karlson et al. 2014; Smith et al., 2015). 

1.3 Assessing functional connectivity as a surrogate of wildlife movements 

Historically, connectivity is defined as "the degree to which the landscape facilitates or impedes 

movement" (Taylor et al., 1993), where permeability and resistance indicate the ability of natural 

and semi-natural landscape elements to, respectively, facilitate or impede wildlife movement 

(Ament et al., 2014; Crooks & Sanjayan, 2006). Promoting connectivity plays a determinant role 

to halt biodiversity decline, conserve and adapt wildlife populations and ecosystem services, 

which is of special interest in view of landscape and climate changes (Malhi et al., 2020). A 

variety of goods and services for human well-being are provided by wildlife during their 

movements/activities (e.g., food, pollination, pest control, etc.), which also depend on a preserved 

landscape connectivity (Ament et al., 2014; Crooks & Sanjayan, 2006; Malhi et al., 2020). In 
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this direction, the EU has outlined, throughout the Biodiversity Strategy 2030, many targets 

within and outside protected areas to halt the degradation of biodiversity and ecosystems, where 

target 2 in particular aims to improve connectivity by creating green infrastructure and restoring 

at least 15% of degraded ecosystems. These initiatives highlight the importance of mitigating 

road-related mortality and undertaking defragmentation programs towards degraded ecosystems 

by road impacts (e.g., Towards green infrastructure for Europe, 2007). To improve connectivity, 

defragmentation measures can focus on creating conservation areas with ecological components 

of natural and semi-natural areas to act as corridors and stepping stones (Ament et al., 2014; Hilty 

et al., 2020). Alternatively, abovementioned site-specific measures such as crossing structures 

and fences along roads can directly address some corridor-blocking effects, such as fragmentation 

and roadkill (Andrews, 1990; Crooks & Sanjayan, 2006; Hilty et al., 2020). The geographical 

identification of locations to implement mitigation measures along roads can be based, besides 

expert-opinion, throughout a plethora of modeling approaches, divided into two main categories: 

those that spatially prioritise sites along roads on the basis of the relation between roadkill and 

environmental drivers (e.g., D'Amico et al., 2015; Pagany, 2020), and those that spatially 

prioritise sites by assessing connectivity on the basis of the relation between observed movements 

and environmental drivers (e.g., Zeller et al., 2020a). These two approaches can be further 

combined by relating roadkill patterns and movement patterns from connectivity assessments 

(e.g., Koen et al., 2014).  

Connectivity can include both structural and functional components, with structural connectivity 

referring to a physical component that describes the geographical arrangement of patches in a 

landscape, such as habitats, whereas functional connectivity refers to a behavioural component 

that describes a species' response to the landscape (Crooks & Sanjayan, 2006; Zeller et al., 2012). 

Structural connectivity models were the first to be formulated, and are defined as 'patch-matrix' 

(Brudvig et al., 2017). In fact, these models are binary and rooted in the theory of island 

biogeography (MacArthur and Wilson, 1967), in which habitat patch areas are conceived as 

islands surrounded by an inhospitable matrix of non-habitat areas (Forman, 1995). Structural 

connectivity is often analysed as a graph network, geographically represented in the form of 

nodes (habitats) and edges (links) (Ament et al., 2014; Urban & Keitt, 2001). In contrast, 

functional connectivity models are post-hoc formulations and are defined as 'continuous' models 

(Brudvig et al., 2017), reflecting the willingness of wildlife movements across the landscape, 

represented for instance through resistance surfaces models (Ament et al., 2014; Zeller et al., 

2012). The integration of functional within structural connectivity may have practical outcomes 

as it may help identifying unique paths (corridors), for instance with the least-cost path theory 

(Etherington, 2016), or multiple alternative paths, for instance with the circuit theory (McRae et 
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al., 2008) (Figure 1.3.1). 

 

Figure1.3.1. A typical exemplification of a landscape connectivity framework, where the resistance 

surface reflects the willingness of an organism to move across habitat types (a), and combined with a graph 

network of nodes connected by weighted edges, may help identify source/sink paths (corridors) with least-

cost models (b), or by substituting edges with resistors, to identify multiple alternative source/sink paths 

(corridors) with circuit theory (c). Adapted from Diniz et al. (2020) 

Yet, the way how these models complement each other (structural connectivity within functional, 

or viceversa) may depend on the ultimate goal, as one study may find more appropriate to 

emphasise structural connectivity (e.g., identifying the best connected patches), or functional 

connectivity (e.g., identifying most important wildlife corridors), notwithstanding both 

approaches have the potential for solving planning prioritisation questions [e.g., see Mimet et al., 

(2016) for emphasising structural connectivity, whilst Koen et al., (2014) for functional]. 

Priorities are set during the mitigation planning phase to identify suitable sites (or units) along 

roads, meaning that: (1) wildlife crossing sites can be predicted (Ament et al., 2014; Zeller et al., 

2020a), likewise (2) roadkill have non-random distributions but occur in a spatially aggregated 

way along roads (Santos et al., 2015), frequently at locations positively related with traffic, habitat 

availability and functional connectivity (Gunson et al. 2011; Pagany et al., 2020; Santos et al., 

2013). 
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Quantifying functional connectivity can aid in identifying priority areas that facilitate movement, 

dispersal, and gene flow between populations or sub-populations (Taylor, 2006; Taylor et al., 

1993), though it remains an utmost critical step (Diniz et al., 2020; Fletcher et al., 2016). For this 

purpose, two traditional spatially explicit methodologies can be adopted, namely a 'coarse filter' 

and a 'fine filter' (Ament et al., 2014). A 'coarse-filter' approach is also called a 'species-agnostic' 

or 'species-neutral', which is relatively quick to characterise and with a low level of complexity, 

representing a typology of connected natural and semi-natural habitat areas as a possible corridor 

(Ament et al., 2014), thereby representing functional connectivity as a generalisable surrogate 

across species (e.g., Koen et al., 2014). Yet, functional connectivity is species-specific (Zeller et 

al., 2012), implying that when determining the willingness of species to move across a landscape, 

a 'coarse filter' approach should be less informative and reliable than a 'fine filter', by definition 

dedicated to a target species (Ament et al., 2014). On the other side, a 'fine filter' approach 

requires movement data (e.g., path movements) typically based on telemetry devices (Diniz et 

al., 2020; Elliot et al., 2014), to assess the so-called actual connectivity (Fletcher et al., 2016). 

Actual connectivity is so termed because is assessed by relating realistic movement with 

landscape or anthropogenic constraints, and it is finalised through specific analysis such as path 

selection functions (PathSFs; e.g., Carvalho et al., 2016). However, the acquisition of movement 

data requires a large amount of time and money, representing a persistent and long-standing 

problem. This is because it involves the acquisition of telemetry devices sufficiently advanced to 

record wildlife movements, in large quantities to cope with malfunctioning technology and to 

simultaneously track several individuals (Carvalho et al., 2016; Diniz et al., 2020). Secondly, is 

often required an appreciable manpower, namely skilled technicians, to ensure the success of 

some sensible steps (e.g., individuals capturing and radiocollaring), as well to adequately capture 

individual responses to landscape features, especially roads. The latter is achieved with long 

sampling campaigns spent in the field (Carvalho et al., 2016), though more advanced 

technologies increasingly affordable have facilitated this issue (e.g., satellite telemetry; Hofman 

et al., 2019). Third, the sparsity of movement data represents the greatest drawback in 

multispecies research initiatives, owing to limited funding that routinely hinders conservation 

(Dalerum, 2014), also considering the difficult realisation of radiotracking some small species 

(e.g., passerines; Salgueiro et al., 2021). So, a possible compromise in this regard for maintaining 

a 'fine filter' approach without relying on movement data, may consist in inferring movements 

(e.g., occurrences; Zeller et al., 2012) through potential connectivity (Fletcher et al., 2016). 

Potential connectivity assessments are particularly worthy of attention, because empirical 

models that are based on theoretical assumptions may face substantial uncertainties, and 

consequently, independent data for evaluations is demanded (Fletcher et al., 2016). Because 
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potential connectivity is seldom validated, studies involving road areas may validate their 

robustness through independent roadkill data to increase effectiveness of mitigation planning 

decisions (Laliberté et al., 2020).  

Beyond theoretical assumptions, a further complication for EIAs is that functional connectivity, 

and consequently movement decisions, are a reflection of animal behaviour, which may vary 

across life history stages, namely between movements within home range (e.g., foraging), and 

dispersal (Cosgrove et al., 2018; Elliot et al., 2014; Pe'er et al., 2011). In detail, environmental 

constraints (e.g., resistance surfaces) on a species pertaining daily movements within home 

ranges, may be more relaxed during dispersal movements (Ims, 1995). This has progressively 

changed the previously "inhospitable matrix", taken as an absolute concept in the past, in favour 

of alternative matrix types (Brudvig et al., 2017). In fact, is known that roadkill events may be 

associated to different life history stages, namely to movements within habitats (home-range; 

e.g., D'Amico et al., 2015; Gunson et al. 2011; Pagany et al., 2020), but also to dispersal (Grilo 

et al., 2011). Consequently, to better relate dispersal events (e.g., roadkill) with functional 

connectivity, the formulation of different movement costs should be required (Pe'er et al., 2011). 

On this issue, implications for correct assessments also rely on the distance potentially travelled 

by a species during dispersal, as it can influence the accessibility of habitat areas, which 

combined with patch size, in turn can influence the likelihood of colonisation/extinction 

mechanisms (Heinrichs et al., 2016). All of these factors are largely ignored when determining 

wildlife movements, which might significantly compromise the effectiveness of management 

decisions (Elliot et al., 2014). Concisely, the representation of multiple corridor routes 

intersecting roads, hence connectivity, should ideally be based on three principal aspects, 

synthesised according to Vasudev et al., (2015), that are capable of influencing mortality risk and 

likely to differ from species to species: a) spatial constraints (structural connectivity), depending 

on the arrangement of habitat features, b) environmental constraints (behavioural-based 

movement costs; functional connectivity), and c) intrinsic constraints (species limits), depending 

on travelled distance by a species. By accounting this, the research goal moreover requires to be 

contextualised according to the organism hierarchical level of interest, namely individual (home 

range), population (distribution) and community (biodiversity) (Fletcher et al., 2016). Indeed, 

while it is important to consider the road effects on individual species within their home-range 

(e.g., Carvalho et al., 2016), on the other side, is also pivotal to examine the negative effects from 

roads at the community level, intended for multiple species (Fletcher et al., 2016), as the locations 

selected for the placement of the mitigation structures should cover as many species as possible 

(Clevenger & Huijser, 2011; Polak et al., 2019; van der Grift et al., 2017). 
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Finally, for conservation efforts and management decisions, apart from understanding the 

relationships between functional connectivity and roadkill, it must be considered the "scale of 

effect", as ecological processes operate at multiple spatial scales (Diniz et al., 2020; Wiens, 

1989). A multiscale study design is always recommended when there is no prior knowledge of 

the best scale of a particular ecological mechanism/impact (Fletcher et al., 2016), and more 

specifically, it is necessary to understand at what scale environmental/anthropogenic features are 

appropriately correlated with road-related mortality events (Gunson et al., 2011;). Depending on 

the connectivity context and addressed issue, it is essential to define spatial extent (e.g., patch, 

landscape, region, etc.), and temporal scale (daily life, lifetime, multiple generations) on which 

the effects that are negatively affecting connectivity occur, as this can lead to different mitigation 

outcomes (e.g. focused on resource accessibility, demographic exchange, gene flow) (see more 

details in Cosgrove et al., (2018) (Figure 1.3.2).  

On this issue, while the vast majority of EIAs have focused from fine to large spatial scales when 

analysing roadkill, they lacked to incorporate large temporal scales, relying on static "snapshots" 

of landscape representations (e.g., categorical land use classes; Gunson et al. 2011; Pagany et 

al., 2020). Conservation planners in road ecology need to monitor environments at larger 

temporal scale and put forward advanced EIA-based modeling tools able to track the dynamism 

of landscapes in space and time, being this considered a pivotal step for the effectiveness of 

long-term mitigation strategies (Clevenger & Huijser, 2011). 

Figure 1.3.2. A conceptualisation depicting the mechanisms by which negative impacts can take place, 

when wildlife movements are hampered across spatial and temporal scales. Adapted from Cosgrove et 

al. (2018). 

 



 

25 
 

1.4 The advances of Earth Observation Satellites for conservation biology 

Conservation biology is a discipline that aims to monitor and protect the Earth' habitats and 

ecosystems, along with the biological organisms inhabiting them. Being historically grounded in 

ecology, field data have often constituted the only accessible information on the state of 

habitats/ecosystems and their spatiotemporal variations, as well as the negative impacts affecting 

them, though sampling strategies predominantly suffer from a lack in large spatiotemporal 

coverage. This has progressively led to the obsolescence of conventional environmental 

monitoring programs, especially considering that, over large spatial and temporal scales, 

anthropogenic pressure is increasingly alarming (Dirzo et al. 2014), while prolonged planned-

survey programs are extremely difficult to fund (Malhi et al., 2020). Conservation biologists are 

searching for alternative monitoring techniques and data sources that can provide sound and 

effective responses in relation to global environmental changes and anthropogenic threats. In this 

direction, scientists and practitioners are turning their attention to remote sensing science as a 

possible solution, given its exceptional growth in recent decades and the possibility to detect 

multiple aspects of Earth biotic and abiotic elements (Kerr et al., 2003; Pettorelli et al., 2014a; 

Pettorelli et al., 2014b). Remote sensing is "the science and art of obtaining information about an 

object, area, or phenomenon through the analysis of data acquired by a device that is not in contact 

with the object, area, or phenomenon under investigation" (Lillesand et al., 2015). Through 

remote sensing, data can be cyclically collected for ecosystems monitoring and ecological studies, 

which can be accomplished by one or more automatic sensor devices, minimising human errors. 

In addition to ground-based (in situ) sensor systems (e.g., cameras), which may have limited 

extension capabilities, information is formally available from airborne sensors via unmanned 

aerial vehicles (UAVs; e.g., drones), aircrafts with human pilots (on board) and Earth Observation 

Satellites (EOS) (Emilien et al., 2021; Lillesand et al., 2015).  

The first difference in remote sensors information acquisition lies in the dichotomy between 

passive and active sensors. The passive ones are optical sensors, also called spectrometers (Zhu 

et al., 2018) to passively receive natural information, namely energy signals emitted by the Earth 

in the form of radiation, within a particular portion of the electromagnetic spectrum (Ose et al., 

2016; Lillesand et al., 2015). The electromagnetic spectrum (Figure 1.4.1) is composed of 

different frequency oscillations and wavelengths, and those detectable by optical sensors 

commonly range in the solar wavelength region of the human visible spectrum VIS (0.40-0.65 

µm), part of the infrared IR, namely the near-infrared NIR (0.65-1.0 µm) and the short-wave 

infrared SWIR (1.0-3.0 µm) (Lillesand et al., 2015; Xiong et al., 2018). Information from optical 

sensors may reveal the Earth biotic components such as biophysical and biochemical 
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characteristics, useful for ecological applications and insights (Kerr et al., 2003; Ose et al., 2016; 

Zhu et al., 2018). 

 

Figure 1.4.1. The electromagnetic wave spectrum, composed of frequencies of electromagnetic radiation. 

Source: https://commons.wikimedia.org/wiki/File:EM_spectrum.svg 

Distinctly, active sensors are radar (Radio Detection And Ranging) such as the notorious satellite-

based SAR (Synthetic Aperture Radars), also called radiometers (Zhu et al., 2018) for actively 

emitting (and subsequently receiving) energy pulses in the form of microwave radiations (a form 

of electromagnetic radiations; Figure 1.4.1), hence representing a different region of the 

electromagnetic spectrum than optical sensors (wavelengths approximately 0.9–0.001 m) (Leslie, 

2018), and primarily used to unveil' abiotic components such as temperature, humidity and 

physical characteristics (Emery & Camps, 2017; Leslie, 2018; Zhu et al., 2018). Another 

important active remote sensing method is the lidar (Light Detection and Ranging). It is based on 

optical and light technology, with a wavelength region encompassing the IR infrared (10 µm) and 

the UV ultraviolet (250 nm) (Figure 1.4.1), and has great potentiality for structural vegetation 

measurements, biomass estimations and topographic mapping (Pettorelli et al., 2014a; Zhu et al., 

2018). For both active and passive EOS sensors, the acquired wavelength information is 

organised into bands (or channels), and the way this is realised defines the sensor technology and 

its quality (Lillesand et al., 2015; Zhu et al., 2018). EOS optical sensors can store wavelength 

information within: (1) a single band, which is a typical feature of panchromatic PAN imaging 

systems (e.g., Ikonos [PAN]; SPOT; GeoEye-1; Zhu et al., 2018), (2) multiple bands, each 

containing a specific range of wavelengths from a portion the electromagnetic spectrum -

multispectral MS imaging systems (e.g., Landsat; Sentinel; Ikonos [MS]; Zhu et al., 2018), (3) 

dozens of bands, each containing a narrower wavelength range, while covering a wider portion 

the electromagnetic spectrum belonging to superspectral imaging systems (e.g., MODIS; MERIS; 

Zhu et al., 2018), then (4) hundreds of bands from hyperspectral imaging systems (e.g., Hyperion; 
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PRISMA; Kpalma et al., 2014), each containing an even narrower wavelength range, while 

representing a complete, or nearly-complete, portion of the VIS/NIR/SWIR electromagnetic 

waves spectrum. Wavelength information pertaining each band (or channel) is digitally prepared 

through a conversion into a georeferenced and rasterised layer, where multiple bands compose a 

multilayer image (Lillesand et al., 2015). It is important to underline that the radiometric 

resolution of an image identifies the range storing capacity of the electromagnetic spectrum, while 

the spectral resolution reflects the number of bands upon which the information of the represented 

electromagnetic spectrum is sub-divided. Both features have substantial implications for a higher 

accuracy of the targets or objects to be identified, such as landscape habitat features (Kpalma et 

al., 2014; Ose et al., 2016; Zhu et al., 2018). Obviously, an accurate landscape classification also 

depends on the spatial and temporal resolution of an image, and likewise spectral and radiometric 

resolution, those features likely differ between EOS sensors, even when belonging to the same 

imaging system (Kpalma et al., 2014; Lillesand et al., 2015; Zhu et al., 2018). Spatial resolution 

refers to the grain (or pixel size) size at which wavelength information is acquired by a sensor, 

and can be classified from coarse (greater than 250m; e.g., NOAA), moderate (around 250m; e.g., 

MODIS), high (around 30m; e.g., Landsat and Sentinel), to very high resolution (around 0.5cm; 

e.g., GeoEye-1) (Alleaume et al., 2018; Emilien et al., 2021; Ose et al., 2016). Temporal 

resolution instead refers to the time required, by a sensor, to revisit and image the same 

geographic area, and it that can range from high temporal resolution (1-5 days; e.g., NOAA, 

MODIS; Sentinel), moderate (about 15 days; e.g., Landsat), to coarse temporal resolution (1-5 

years; e.g., NAPP) (Lillesand et al., 2015; Ose et al., 2016; Zhu et al., 2018). An appropriate 

revisit time is crucial for determining the status and trends of terrestrial ecosystems, hence their 

dynamics (e.g., phenology of vegetation from seasonality, or landscape changes; Alleaume et al., 

2018; Pettorelli et al., 2014a). Importantly, the description of sensor features also regards spatial 

and temporal range coverage, where spatial range coverage indicates the so-called "swath", 

namely the spatial extent capability of a sensor when imaging an area, whereas temporal range 

coverage indicates the duration over which the sensor has been operational in collecting 

information (Zhu et al., 2018; Xiong et al., 2018). 

Therefore, in addition to the basic theory knowledge beyond remote sensing, it is required a solid 

background with the types of sensor technologies and missions, and the specific purposes they 

are designed for. This means that trade-offs are necessary towards the strategic selection of 

candidate sensors and associated quality and quantity data, which may vary on the basis of 

considered conservation goal (Alleaume et al., 2018). For instance, sensors that are mounted on 

devices such as UAVs and airborne may have great potential in spectral, radiometric and spatio-

temporal resolution (e.g., hyperspectral cameras), but may lack spatio-temporal coverage 
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compared to EOS, resulting more indicated for local studies (Emilien et al., 2021). UAV and 

airborne-based technology are also difficult to manage owing to devices with low battery capacity 

and depending on large storage capacity, along with the necessity of skills in piloting devices and 

legal permissions for flies. EOS, on the other hand, are autonomous in the long run, do not require 

pilots, transmit information to online repositories, but do not have the spatio-temporal resolution 

of UAVs (Kerr et al., 2003; Lillesand et al., 2015). Also, as previously anticipated, even within 

EOS sensors there are substantial differences, as some may have high temporal resolution but 

very poor spatial resolution, such as MODIS and NOAA, compared to others such as Hyperion, 

which in contrast has low temporal resolution (Kpalma et al., 2014; Xiong et al., 2018). Other 

EOS sensors may have impressive spatial and temporal resolution, such as the panchromatic 

GeoEye-1 sensor, but are commercial, meaning they are often financially prohibitive for long-

term studies (Lillesand et al., 2015; Zhu et al., 2018). A vast constellation of EOSs exist and many 

are actually operative, with those public conventionally developed by the NASA and ESA, or 

under their partnership (Figure 1.4.2).  

Figure 1.4.2. The constellations of EOS developed under the Nasa and ESA programs. Image have been 

merged from two different sources: NASA (https://science.nasa.gov/) and ESA (https://www.esa.int/). 



 

29 
 

A common issue in characterising terrestrial ecosystems and habitat dynamics in time and space 

is that abiotic and biotic measurements should be sensitive to spatial and temporal changes, as 

well as covering large extents (Pettorelli et al., 2014). In this respect, potential biotic information 

may come from a family of EOS with optical sensors designed for environmental monitoring, 

namely from Landsat and Sentinel missions, given the compromise between spectral and 

radiometric resolution, but high spatiotemporal resolution and range coverage, hence particularly 

suitable for fine-scale and wide range ecological applications (Emilien et al., 2021; Xiong et al., 

2018; Zhu et al., 2018). More specifically, Landsat is a joint NASA/U.S. Geological Survey 

(USGS) programme, and since 1967, its sensors (Thematic Mapper, TM [Landsats 1-5]; 

Enhanced Thematic Mapper Plus, +ETM [Landsats 7]; Operational Land Imager OLI and 

Thermal Infrared Sensor TIRS, OLI/TIRS [Landsats 8-9]) have been monitoring the Earth' 

surface, representing today one of the most comprehensive EOS data (Xiong et al., 2018). 

Instead, Sentinel satellites and in specific Sentinel-2 have been developed by the European Space 

Agency (ESA) as part of the Copernicus initiative, consisting into an Earth observation mission 

of two satellites operative since 2015, namely Sentinel-2A and Sentinel-2B, consequently with a 

shorter time coverage than Landsat. For both missions, data is provided at zero cost and rapidly 

disposable from the sensor acquisition. By combining several bands through specific formula, 

indicators (or metrics) are calculated to monitor the environmental conditions of habitats and 

ecosystems (Pettorelli et al., 2005; Pettorelli et al., 2014a), which are preferred at a detailed 

resolution to better guide conservation planning (Alleaume et al., 2018). The number and 

typology of indicators describing biophysical features is quite vast, with distinct potentialities 

depending on the biome studied. Some examples (e.g., bands, habitat metrics, texture variables) 

can be found in Godinho et al. (2017) regarding Sentinel-based metrics, and in Oeser et al. (2020) 

for Landsat. Nevertheless, little concordance exists on the typologies of metrics from wildlife 

ecology studies, and more importantly, few studies integrated physical measurements. A 

convenient choice for this purpose concerns SAR sensors, in particular L-band PALSAR 

developed by JAXA' ALOS-PALSAR and ALOS-PALSAR2 missions (Emery & Camps, 2017; 

Zhu et al., 2018). Across all SAR-based bands, L-band is particularly suitable for describing the 

structural properties of landscape features, notably of vegetation, given its ability to penetrate 

canopy cover and transmit information pertaining the understory (for more details on radar bands, 

see Zhu et al., 2018). 

Remotely sensed information from passive and active sensors can help mapping and monitoring 

habitat and ecosystems (Alleaume et al., 2018; Pettorelli et al., 2014a; Pettorelli et al., 2014b), 

and for their characterisation, relevant remotely sensed descriptors are integrated together 

following a procedure called "data fusion" (e.g., Alleaume et al., 2018). According to Schulte to 
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Bühne & Pettorelli (2018), a particular variant data integration relies on species distribution 

models (SDMs) (also known as habitat suitability or niche models) (Elith & Leathwick, 2009; 

Franklin, 2010). SDMs represent an empirical approach to identify species distribution patterns 

by relating their occurrence to environmental characteristics (Elith & Leathwick, 2009; Franklin, 

2010), and their reliability is proven by thousands of studies that throughout SDMs have 

addressed numerous ecological issues (Basile et al., 2016; Franklin, 2010; Zimmermann et al., 

2010), biodiversity conservation and planning (Elith & Leathwick, 2009), as well as interesting 

applications targeting endangered and rare species (Mestre et al., 2017). SDMs are divided into 

mapping species distribution directly or indirectly, involving the inclusion of traditional abiotic 

and biotic descriptors (e.g., bioclimatic variables, land cover products, etc.), though new 

opportunities are coming from remote sensing science (He et al., 2015). The information of 

environmental descriptors from remote sensing data may give higher advantages in shaping 

species distribution, as may allow the description of new biophysical properties like habitat 

spectral signature, production, senescence, biomass, and structural properties (Alleaume et al., 

2018; Jones & Vaughan, 2010) at a fine spatiotemporal scale. However, remote sensing has been 

poorly applied with SDMs regarding wildlife communities and through continuous descriptors, 

consisting into a topic deserving further attention (Coops & Wulder, 2019). Continuous remote 

sensing data may be useful for the identification of landscape elements difficult to find, as 

previously explained, in particular for sparsely distributed and localised habitats, and for small 

species (Kerr & Ostrovsky 2003). EOS data have become one of the most widely used sources 

for Earth monitoring, comprising decades of recorded information that can be used to learn about 

the state of ecosystems/habitats (Jones & Vaughan, 2010; Zhu et al., 2018), and may have a great 

contribute for monitoring wildlife populations status (both relative and absolute; He et al., 2015). 

Finally, remote sensing has been taken into account to support environmental policies (e.g., EIA; 

De Leeuw et al., 2010) and by EU Member States to comply with the Habitats Directive 

(Alleaume et al., 2018), which includes an improved protocol for monitoring landscape changes, 

for the surveillance of corridors and areas of conservation interest, as well the delineation of new 

areas and corridors at high precision (Schmidt et al., 2021). 

1.5 Thesis focus and main goals  

The large amounts of resources to invest on ground in species protection and to restore 

connectivity means that planning strategies have to reduce uncertainties. Managers from 

transportation agencies need further to consider that road impacts often cover large extents 

(Clevenger & Huijser, 2011; van der Ree et al., 2011), meaning that prioritisation procedures are 

indispensable. A foremost gap in systematic conservation planning remains on how to optimise 
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the implementation of costly structures such as fences and crossing structures for multiple species 

(Jaeger, 2015; Polak et al., 2019; Rytwinski et al., 2016). Conservation practitioners are 

increasingly shifting from expert-based decisions, to the integration of connectivity in mitigation 

planning relying on a better understanding of animal movements, and on the identification of 

where and when roads intersect and block/compromise wildlife corridors (e.g., Carvalho et al., 

2016; Zeller et al., 2020a). Still, due to limited feasibility, very few studies have quantified 

functional connectivity for each species separately (Brennan et al., 2020). Multispecies 

assessments may be facilitated by the possibility to infer wildlife movements, through functional 

connectivity relying on occurrence data, which however remains an unclear subject (Zeller et al., 

2012), with sparse research currently existing on the topic (Jennings et al., 2020). Therefore, it 

makes sense that the robustness and performance of occurrence data models need to be compared 

with those based on movements, with regards to roadkill predictability and thus mitigation sites 

identification (Laliberté et al., 2020). Nor have attempts been made to relate roadkill with 

different resistance costs (resistance surfaces), which reflect the strength of environmental 

constraints on a species during movements, with a lower influence during dispersal (Elliot et al., 

2014; Ims, 1995). A further step is the multispecies integration into spatial mitigation planning 

along roads, as no studies targeted species with different characteristics from multiple taxonomic 

groups (Polak et al., 2019). To address the shortcomings and enhance the effectiveness of 

mitigation measures, EIAs should unravel the species-specific effect of remotely sensed habitat, 

functional connectivity and road-related characteristics in driving mortality for each species, and 

verify the risk agreement across taxa on road planning sites. Finally, taking into account all of the 

above, it is important also to consider landscape dynamics in conservation planning (Jennings et 

al., 2020), which is critically overlooked in road ecology (Oddone Aquino, 2021).  

On the more specific issue of landscape dynamism, the inter-annual variability in composition 

and configuration of habitat patches and matrix quality derived from natural or human-derived 

factors may affect the location of movement corridors. This aspect is not only relevant to the 

effectiveness of placing mitigation structures (Clevenger & Huijser, 2011), but also to effective 

planning of conservation areas (Margules & Pressey, 2000). The inter-annual landscape 

variability, it is easier to take into account nowadays, given the greater accessibility of remote 

sensing by compiling data over long periods, such as Landsat satellites (Schulte to Bühne & 

Pettorelli 2018; Zeller et al., 2020b). This data may offer benefits in strategical mitigation 

planning, by designating structures able to offer resilience to landscape dynamism over long-

term. Besides, the higher spatiotemporal resolution of the recently launched Sentinel satellites 

allows the identification of unique habitat elements, while examining landscape dynamics within 

a year (Coops & Wulder, 2019; Kerr & Ostrovsky 2003). More specifically, considering highly 
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detailed spatiotemporal information may be particularly useful for the identification of suitable 

habitat conditions for species along linear landscape elements of difficult detection, notably road 

verges, which, for plants and small animals often represent a last refuge in human-dominated 

landscapes (Bellamy et al., 2000; Pita et ta al., 2006; Santos et al., 2006; Tikka et al., 2001). Those 

arguments are especially valid when conservation and management measures are needed within 

landscapes characterised by a pronounced intra- and inter-annual variability, such as the 

Mediterranean region (Mazzoleni et al., 2004), including the area selected to conduct the research 

questions (Figure 1.5.1).  

 

Figure 1.5.1. Study area, where the thesis research has been conducted. The area is located in the Iberian 

Peninsula, and comprised within the Mediterranean biome.  

The area is located in the Alentejo region, southern Portugal, comprised within the ecoregion of 

Southwest Iberian Mediterranean sclerophyllous and mixed forests (Joffre et al., 1999; 

Mazzoleni et al., 2004). As such, the area is dominated by a Mediterranean climate with a 

pronounced intra-annual variability, namely by rainy winters (5-12 °C) and dry summers (16-30 

°C), with average annual precipitations exceeding 600 mm, falling mostly from October to March 
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(IPMA, 2021). In addition, the area is characterised by a mild and gentle relief (<500 a.s.l.), 

ranging from flat to hilly terrain, with low slopes. The landscape is dominated by Quercus suber 

and Quercus rotundifolia, stands, the semi-natural montado agroforestry system, which is 

considered a "High Nature Value farming system", and is intrinsically associated with high socio-

economic values, together with high biodiversity (Pinto-Correia & Godinho, 2013). The montado 

also typically comprises a complex understory of scrub, annual crops and grassland with variable 

distribution of perennial and annual grasses (Joffre et al., 1999). The montado in the study area 

is intermixed with open agricultural areas (pastures, vegetable crops). Other less represented land 

uses are vineyards, olive trees, pine and eucalyptus forests. With regard to inter-annual variability, 

in recent decades the Alentejo region and the study area have been subject to a process of land 

use intensification (e.g. overgrazing and overexploitation of trees), which have contributing for 

the degradation trend of the montado agro-forestry system (Pinto-Correia & Godinho, 2013; 

Machado et al., 2020). This negative trend, concomitantly with land abandonment, is increasingly 

becoming a matter of concern as it is worsening across the entire Alentejo region (Pinto-Correia 

& Godinho, 2013), as well in other Mediterranean regions, such as Spain and Italy (Cillis et al., 

2021). Focusing on roads, the study area includes the most an important terrestrial transport 

corridor linking Lisbon to Madrid (Figure 1.5.2), which along with some other national and 

regional roads, cause high roadkill rates, habitat fragmentation and degradation of functional 

connectivity (Carvalho & Mira, 2011).  

As such, it is crucial to develop effective mitigation taking advantage from EOS, namely by 

integrating montado spatiotemporal conditions, and concomitantly considering the surrounding 

landscape and its alterations, to better allocate strategical resources on roads over long-term, as 

well as to improve the delineation of conservation areas along verges. Thus, for our research 

goals, multiple species were selected, which inhabit the montado system, being one of the most 

representative and widely diffused land uses in the region. By monitoring the entire landscapes 

at large extent, EOS information ensures the possibility of extrapolation inferences in a more 

cost-effective way, and the use of advanced remote sensing techniques, jointly with functional 

connectivity, represent prime components of this thesis, given the benefits in their application for 

optimising mitigation and conservation approaches.  

The first part of the study consists in demonstrating the reliability of developing useful functional 

connectivity models relying on data easily available. In the second part, we demonstrate that EOS 

with high spatiotemporal detail can be used to identify suitable areas for endangered species often 

occurring on road verges, and that this information can be used for better planning conservation 

measures. Finally, we integrate useful EOS into functional connectivity modelling and show the 

potential of this approach to increase, in the long term, the effectiveness of planning mitigation 
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measures targeting multiple taxa.  

Considering the abovementioned, the thesis will address three main research goals: 

I. Comparing the performance of two data types to build functional 

connectivity models for road mitigation plans. 

II. Exploring the capability of EOS for identifying suitable microhabitats for 

small species of conservation concern in a Mediterranean ecosystem. 

III. Developing an innovative methodological framework by combining remote 

sensing data, SDMs, and functional connectivity through circuit theory to 

optimise multitaxa roadkill mitigation planning. 

 

To achieve these main goals, six specific objectives were defined, namely:  

• Research Goal I:  

1) compare the performance of resistance surfaces derived from telemetry data 

with surfaces defined with occurrence data in identifying road-crossing 

locations of a forest carnivore; 

2) assess the influence of movement type (daily vs. dispersal) on the 

performance of models identifying those road-crossing locations. 

• Research Goal II:  

3) test the usefulness of Sentinel-2 EOS derived predictors for identifying 

suitable microhabitats for small and elusive species of conservation concern. 

• Research Goal III:  

4) evaluate the utility of remotely sensed habitat metrics (Landsat EOS) in 

describing the occurrence of forest-dwelling species of taxa with different 

life-histories (body size, home-range and dispersal). 

5) quantify the relative contribution of species-specific habitat, functional 

connectivity and road metrics in explaining spatial patterns of road mortality 

for multiple species across different taxa. 

6) identify road locations with the highest agreement in long-term mortality 

predictions, for the greatest number of species in each group and across 

groups. 

1.6 Outline of the thesis 

In this thesis some challenges and opportunities regarding road ecology were investigated, 

along with shortcomings that still remain unsolved in systematic conservation planning, 

with the overall aim to enhance the effectiveness of wildlife conservation measures. The 
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thesis was structured into five main chapter: the introduction, three scientific manuscripts 

already published (chapters 2 and 3), or submitted for publication (chapter 4) in peer 

reviewed international journals, and a final chapter with overall conclusions and new insights 

(chapter 5). The chapters are structured in the following way: 

▪ Chapter 1 frames the general introduction with focus on the road ecology discipline,

as well as gaps and limitations during EIAs and the planning phase, rising possible

solutions across the interdisciplinary areas of landscape connectivity and remote

sensing to enhance application of conservation measures along roads. On the

foundation of this chapter are formulated and structured the objectives of the thesis.

▪ Chapter 2, introduces the possibility of developing functional connectivity models

for predicting road-crossing sites from real movements, underlining that their

collection often requires the disposal of high budgets. Therefore, by using as case

of study a forest dwelling species inhabiting the montado the common genet

(Genetta genetta), it is examined whether roadkill predictions from more affordable

connectivity-based data type models, namely species distribution models (SDMs), are

comparable to those much more costly and data demanding, such as path selection

functions (PathSFs) derived from telemetry data. This chapter addresses objectives 1 and

2.

▪ Chapter 3 focuses on the usefulness of high resolution spatiotemporal remotely

sensed information (Sentinel-2) in estimating the distribution of an endangered

species, the Cabrera vole (Microtus cabrerae), often occupying habitats along road

verges, as well as areas nearby. Here it was explored the intra-annual variation, in

montado systems with focus on more open habitats (understorey) to foster a more

accurate identification of microhabitat, hence heightening the detail and

effectiveness of conservation measures along road verges. The objective 3 is here

realised, which paved the way for using EOS habitat metrics and accounting for

inter-annual landscapes dynamics in chapter 4.

▪ Chapter 4 focuses on the effectiveness of EOS data in supporting multitaxa long-term

mitigation plans while covering long temporal scales and integrating species-based

functional connectivity modelling. The chapter is divided in three-stage statistical

analysis to unveil road sites for mitigation in dynamic landscapes: 1) several habitat

metrics are calculated and habitat suitability, based on species distribution models

are developed, for each species of the three animal groups considered (non-flying

mammals, birds, and bats); 2) the relative effects of habitat, functional connectivity

and road metrics, on roadkill are disentangled for each species to assess the roadkill
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vulnerability; 3) the variation in roadkill predictability is estimated to check 

prediction consistency, in order to allow flexibility for mitigation plans for 

biodiversity conservation, resilient in the long-term to inter-annual landscape 

dynamics. The objectives 4, 5, and 6 are addressed in this chapter. 

▪ Chapter 5 summarises the core findings of chapters 2, 3 and 4, embedding them in 

the state-of-the-art of road ecology. It also points out to new insights linking the 

objectives, and towards future prospective and challenges from the interplay of 

remote sensing and connectivity disciplines, bridging road ecology and systematic 

conservation planning.  
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Abstract  

Functional connectivity modeling is increasingly used to predict the best spatial location for 

over- or underpasses, to mitigate road barrier effects and wildlife roadkills. This tool requires 

estimation of resistance surfaces, ideally modeled with movement data, which are costly to 

obtain. An alternative is to use occurrence data within species distribution models to infer 

movement resistance, although this remains a controversial issue. This study aimed both to 

compare the performance of resistance surfaces derived from path versus occurrence data in 

identifying road-crossing locations of a forest carnivore and assess the influence of movement 

type (daily vs. dispersal) on this performance. Resistance surfaces were built for genet (Genetta 

genetta) in southern Portugal using path selection functions with telemetry data, and species 

distribution models with occurrence data. An independent roadkill dataset was used to evaluate 

the performance of each connectivity model in predicting roadkill locations. The results show 

that resistance surfaces derived from occurrence data are as suitable in predicting roadkills as 

path data for daily movements. When dispersal was simulated, the performance of both 

resistance surfaces was equally good at predicting roadkills. Moreover, contrary to our 

expectations, we found no significant differences in locations of roadkill predictions between 

models based on daily movements and models based on dispersal. Our results suggest that 

species distribution models are a cost-effective tool to build functional connectivity models for 

road mitigation plans when movement data are not available. 

 

Keywords 

movement data, occurrence data, telemetry; species distribution models, mitigation; dispersal 

period 

2.1 Introduction 

Linear infrastructures such as highways, roads, railroads, and electric power lines are globally 

recognized as a major cause of habitat and biodiversity loss (van Der Ree et al. 2011), whose 

impact is expected to rise considerably in future decades (van der Ree et al. 2015). Roads are 

responsible for landscape fragmentation, changing animal routes, for direct mortality due to 

vehicle impact (Coffin 2007; Benítez-López et al. 2010), and for jeopardizing the gene-flow 

exchange in some species (Riley et al. 2006; Bischof et al. 2017). To address such issues, 

mitigation measures such as over- or underpasses are usually built at specific locations along 

roads (van Der Ree et al. 2011; Santos et al. 2018). The decision about where to locate such 

measures is often critical, given the uncertainties related to the ecological process to preserve, 
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the scale of analysis, the intrinsic biases (e.g., expert experience, model uncertainties) and the 

existing budgetary limitations (Tulloch et al. 2016). Thus, besides the commonly used roadkill 

hotspots (Bissonette and Cramer 2008; Santos et al. 2011), which may not always be accurate 

(Santos et al. 2015) or available, road ecologists have further considered the benefits of 

understanding wildlife movements to prioritize resource allocation for mitigation (Allen and 

Singh 2016). Although the coincidence between crossing sites and roadkill sites is not always 

verified (Neumann et al. 2012), functional connectivity modeling is increasingly used as a tool 

to predict the best spatial location for animal road-crossing structures by relating functional 

connectivity with roadkills (Roger et al. 2012) as well as road crossing (Cushman et al. 2014). 

Functional connectivity is a “species-specific trait that measures the degree by which landscape 

impedes or facilitates wildlife movements, and depends on characteristics of the landscape and 

on species ecology and behavior” (Taylor et al. 1993). Functional connectivity modeling is 

usually addressed through landscape resistance surface analysis (Zeller et al. 2012; Carvalho et 

al. 2016; Correa Ayram et al. 2016). This quantifies “the reluctance of an animal when moving 

through the landscape and ultimately depicts its physiological cost or mortality risk” (Zeller et al. 

2012). Resistance surfaces are thus a crucial step in functional connectivity analysis and can be 

modeled through numerous approaches (Zeller et al. 2012). The simplest is the “expert-based” 

approach, which consists in one or more experts classifying the resistance of different land use 

categories (or other landscape elements) based on their experience or on a literature review (Grilo 

et al. 2011; Wade et al. 2015). However, the above approach has been widely criticized (Wade et 

al. 2015; Correa Ayram et al. 2016; McClure et al. 2016), and resistance surfaces are now 

frequently obtained from model estimations (Pullinger and Johnson 2010; Carvalho et al. 2016; 

Ziółkowska et al. 2016). 

There are multiple criteria to parametrize models for estimating resistance surfaces. Some authors 

use sequential points in time, i.e., steps (two consecutive points) or paths (e.g., consecutive steps 

followed during one foraging event) obtained from telemetry data. This allows the development 

of functions that can be used to predict the probability of animal movement across the study area 

(Zeller et al. 2012), such as path selection functions (PathSFs; e.g., Elliot et al. 2014; Carvalho et 

al. 2016). Another possible approach is to develop species distribution models (SDMs) that use 

species occurrence locations (Guisan and Zimmermann 2000; Correa Ayram et al. 2016) which 

can result from direct sightings of animals or other detection methods (tracks, scats, vocalizations, 

and nests). This approach implies that “the same environmental predictors influence both animal 

movements and habitat selection” and thus it is assumed that “high habitat suitability values 

correspond to low landscape resistance values” (Ziółkowska et al. 2016). 
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Given the types of empirical data required for each modeling approach, occurrence data are 

usually easier to obtain. However, occurrence data are limited to a specific time and space, 

meaning that “movement cannot be really measured, but only inferred” (Zeller et al. 2012). 

Sequential points obtained through telemetry are usually preferred over independent occurrence 

data for deriving resistance surfaces because when they are collected at short time intervals, they 

reflect the exact pathway taken by an animal (Zeller et al. 2012; Ziółkowska et al. 2016). 

However, path data gathered through telemetry requires a large quantity of information that is 

more difficult and expensive to obtain, and thus requires more time to convert into a resistance 

surface (Zeller et al. 2012). 

Another potential difficulty of path data is that they may include distinct types of movement that 

can be made during an animal’s lifespan (Coffin 2007; van der Grift and van der Ree 2015; 

Blazquez-Cabrera et al. 2016). There are two main behavioral states: daily movements, made 

within the home range to fulfill the animals’ primary needs (e.g., foraging, shelter, mating), and 

dispersal movements to colonize new territories (Pe’er et al. 2011). Some young dispersing 

animals are known to venture into suboptimal habitats (e.g., extensive open farmland areas), 

putting their lives at risk, unlike established (resident) animals that use more suitable habitats 

within their home ranges, such as the Iberian lynx (Blazquez-Cabrera et al. 2016) and lions (Elliot 

et al. 2014). Conflating these movement types may produce inaccurate resistance surfaces, and it 

is thus generally recommended to separate the movement-related behaviors before using them in 

the paths for connectivity analyses (Zeller et al. 2012; Blazquez-Cabrera et al. 2016). In this 

context, the use of SDMs may not be sensible, given the uncertainty around which independent 

occurrence points represent movement within the home range and which represent dispersal 

movement. 

The hypothesis that “animals move in the same way as they select habitat” still remains a matter 

for discussion (Zeller et al. 2012), focusing on which contexts SDMs can reflect movement 

models. SDMs can be used at diverse spatial scales, ranging from fine (daily movements or within 

home range) to broad scales (dispersal) (e.g., Vergara et al. 2015). Yet this methodology has been 

partly contested when applied to assessing functional connectivity. For example, Ziółkowska et 

al. (2016) proved that SDMs and step selection function models were equally good at predicting 

brown bear movements only for small scales, while for road mitigation measures, Blazquez-

Cabrera et al. (2016) advocate that SDMs can provide suitable estimates of movement resistance. 

Road-crossing mitigation structures aim to restore habitat connectivity and to reduce the number 

of roadkills (Bissonette and Cramer 2008; van der Ree et al. 2015). Occurrence of roadkills is 

commonly driven by species-specific habitat preferences (Gunson et al. 2011). If we assume a 

direct relationship between roadkills and habitat features (Gunson et al. 2011), this should imply 
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efficient performances in predicting roadkills from habitat suitability models (Roger et al. 2012). 

It is also commonly assumed in SDMs that opportunistically collected fine-scale occurrences 

(used to fit the models) represent mostly daily movement, as dispersal is an infrequent event in 

the lifetime of one animal (Cosgrove et al. 2018). Although dispersal is rare, occurring usually 

once a year, high kill rates have been detected during this biological period (Červinka et al. 2015; 

Carvalho et al. 2018). Crossing roads is inherently risky and roads may impair daily movement 

routes through avoidance or barrier effects (Coffin 2007; Bissonette and Cramer 2008; Cosgrove 

et al. 2018). However, species may be “forced” to cross roads during natal dispersal to reach new 

territories (Fey et al. 2016; Carvalho et al. 2018). Consequently, SDM predictions could be 

significantly biased when validated through high rates of roadkills containing dispersal 

movements. Daily movements, in fact, should be better related to landscape resistance surfaces 

than dispersal movements (Hanski 1995; McClure et al. 2016). Thus a transformation function 

was recently developed for application on habitat suitability outcomes (Trainor et al. 2013; 

Keeley et al. 2016) so that dispersal resistance surfaces could be better simulated. 

To our best knowledge, little is known about the comparative performance of landscape resistance 

estimates in predicting animal movements, and there still persists a lack of consensus on which 

biological data type to use (paths vs. occurrences) (Zeller et al. 2012; Ziółkowska et al. 2016). 

Quantifying the degree of uncertainty in ecological risk assessment is necessary to provide 

guidance to decision makers about the efficiency of spatial ecological models (Jaeger 2015; Wade 

et al. 2015; Tulloch et al. 2016). The understanding of how resistance surfaces can influence the 

accuracy of road-crossing predictions is a critical issue, given the strong conservation 

implications and road agency investments in mitigation measures potentially derived from such 

analyses. Identification of locations for appropriate application of mitigation structures that 

enhance local animal routes is thus of crucial importance for maintaining abundance (Benítez-

López et al. 2010) and dispersal movements, thereby ensuring gene flow (Riley et al. 2006; 

Cosgrove et al. 2018). 

Our primary objective was to compare the performance of resistance surfaces derived from (a) 

path (PathSFs) and (b) occurrence (SDMs) data in predicting road-crossing locations of a forest 

carnivore. Secondly, we assessed the influence of movement type (daily vs. dispersal) on the 

above performance, using measures of roadkill prediction accuracy. We hypothesized that (H1) 

daily resistance surfaces derived from occurrence data (SDMs) are as suitable in predicting 

movement (roadkills) as are path data (PathSFs), since suitable habitat characteristics are a key 

driver of roadkill patterns (Grilo et al. 2011; Gunson et al. 2011). Consequently, (H2) resistance 

surfaces derived from simulated dispersal scenarios, using either PathSFs or SDMs, are expected 

to have lower roadkill predictive performance than daily resistance surfaces. However, (H3) 
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predictive performance of resistance surfaces derived from dispersal scenarios can be improved 

when roadkill data are restricted to the species’ dispersal period. 

Medium-sized forest carnivores are highly vulnerable to losses in landscape connectivity and to 

fragmentation by roads (Grilo et al. 2015). Within this group, we selected the genet (Genetta 

genetta) as a target species because it is a relatively abundant carnivore, specialized in forest 

habitats and negatively affected by roads (Galantinho and Mira 2009; Carvalho et al. 2014). 

We built PathSFs and SDMs that combined environmental predictors with either path or 

occurrence data through a multimodel ensemble of generalized linear mixed models (Duchesne 

et al. 2010) and generalized linear models (GLMs; Guisan and Zimmermann 2000), respectively. 

The performance of data type (path vs. occurrence) and movement type (daily vs. dispersal) in 

predicting roadkills was evaluated through the fit of GLMs using discrimination ability and 

explained variance (Guisan and Zimmermann 2000). 

2.2 Materials and Methods 

Study Area 

The study area is located in southern Portugal (Fig. 1a; 38°21′48′′–39°00′35′′N, and 8°23′45′′–

7°35′08′′W) and covers about 4408 km2. The climate is Mediterranean, dominated by mild 

winters (5.8–12.8 °C) and hot dry summers (16.3–30.2 °C), with a mean annual rainfall of 

609.4 mm, falling chiefly from October to March (IPMA 2016). The area is covered mostly by 

Mediterranean cork/holm oak woodland, with varying tree cover and (open) agricultural areas in 

approximately equal proportions, lying in a smooth undulating (<420 m a.s.l.) landscape. The 

area is crossed by several roads, including one highway, and some national and regional roads. 

For the present study, 102 km of national roads (EN114, EN18, and EN4) were monitored for 

roadkills of vertebrates (Fig. 1). A further description of the study area is provided in Carvalho et 

al. (2016). 
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Fig. 1. a Location of the study area in Portugal. b Spatial distribution of genet roadkills and monitored 

roads in the study area, overlaid on a layer with the main land uses. 

Modeling Procedure 

We summarize all modeling steps in a flow chart, from predictor extraction and model settings 

to movement types used for roadkill predictions (Fig. 2), and we detail below the analytical 

procedures. 
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Fig. 2. Flow chart representing model building and comparisons of roadkill predictions between path 

selection functions (PathSFs) and species distribution models (SDMs), accounting for both movement 

types (daily and dispersal). See the main text for details. 

Step (a) Data Acquisition 

Genet data 

The movement data regarding the study area were obtained within a previous study conducted 

between 2010 and 2012 (Carvalho et al. 2016). The study included telemetry records of 22 

resident animals within their home ranges, corresponding to a total of 2850 consecutive location 

records taken at about half-hour intervals, which produced 198 time-independent paths (separated 

by more than 60 min). For each observed path, nine random paths were generated (Carvalho et 

al. 2016). We also gathered data on species distribution from the UBC database (Conservation 

Biology Unit, University of Évora), which included both occurrences of the genet in the study 
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area, and roadkill locations from 2005 to 2016 (Fig. 2a). These data included 1203 occurrence 

records with potential to be used in the SDMs. To avoid spatially clustered occurrence patterns 

and minimize spatial auto-correlation, we applied a rarefaction procedure (Kramer-Schadt et al. 

2013). In this process, only occurrences that are at least 1000 m away from each other (ca 300 ha 

buffer, an approximation to the mean home range size of this species, Santos-Reis et al. 2005; 

Carvalho et al. 2014) were kept for further analyses (Fig. 2a). Thus, 175 records of genet 

occurrence were finally included in SDMs. We then defined an equal proportion of pseudo-

absences (n = 175; Fig. 2a) assigned randomly from the extent of the study area (Barbet-Massin 

et al. 2012), excluding the nonrarefied occurrence cells. 

Genet roadkills consisted of 77 locations of genet carcasses identified on monitored paved roads 

(Fig. 1a). Surveys were done previously by one experienced observer driving at 20–40 km/h. All 

genet carcasses, once detected, were registered with a GPS and removed from the road to avoid 

double counting (e.g., Santos et al. 2013). 

Environmental predictors 

SDMs predictors and the analysis protocol were as similar as possible to those used in previous 

PathSFs models (Carvalho et al. 2016) to allow comparability of the resistance surface 

performance (Table 1). We prepared a set of landscape predictors at 100-m resolution using 

CORINE Land Cover data (Guiomar et al. 2009) to characterize paths (observed and random) 

and occurrence points (Fig. 2a). These include landscape composition (percent cover of oak 

forests, open agricultural land, and urban areas), landscape configuration (mean forest patch size, 

forest edge density, and tree canopy openness), and distance to important landscape resources 

(forests, riparian habitats, and water bodies; Table 1; Carvalho et al. 2016). The predictors 

concerning landscape composition and configuration were measured for two spatial scales 

(McGarigal et al. 2016): within a 100 m buffer (immediate surroundings perceived by the animal 

when following a path) and within a 500 m buffer (the larger area available to the animal when 

making movement decisions). The distance predictors were scale independent (see Carvalho et 

al. 2016 for details). We used round moving windows (McGarigal et al. 2012) for the landscape 

class-level metrics, and focal foci to assess optimal neighborhood scale (Holland and Yang 2016) 

for the canopy openness predictor. 
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Table 1. Summary univariate statistics of predictors used for SDMs models, with indication of scale used, 

abbreviation, mean, and SD values for sites with genet occurrence and pseudo-absence. Predictors are 

grouped into three categories (landscape composition, configuration, and distance to habitats). The same 

three landscape class-level metrics used on PathSFs analysis were also calculated for SDMs and regarded 

the same land cover types. Land cover types considered were as follows: FOR forest areas, AGR 

agriculture areas, and URB urban areas 

Step (b) Model Building 

Prior to model building, predictors were evaluated for normality and the effect of extreme values 

was softened through angular or logarithmic transformations, and standardized to zero mean and 

unit variance to allow comparability of their effects (see Carvalho et al. 2016). The degree of 

collinearity among candidate predictors was evaluated through a pairwise Pearson correlation 

test. For pairs with |r| > 0.7, only the variable with the highest biological meaning, based on 

previous studies of the species, was retained (see Carvalho et al. 2016). 

Because path and occurrence data have different spatial properties, the modeling approaches were 

also slightly different (Fig. 2b). PathSFs were built with mixed effects conditional logistic 

regression, to account for stratification of random paths and inter-individual heterogeneity in path 

selection (Duchesne et al. 2010; Carvalho et al. 2016). For SDMs, GLMs with binomial error 

distribution and a logistic link function were applied (Guisan and Zimmermann 2000). Both 

approaches compared landscape characteristics of observed paths (or occurrences) with random 

paths (or pseudo-absences). 

Predictor screening in both approaches was conducted with univariate analysis based on mixed 

models or GLMs, respectively. We compared each single-predictor model with a null model using 
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the Akaike information criterion (AIC; Burnham and Anderson 2002). Only predictors producing 

models with strong support (ΔAIC > 10) were selected for the subsequent multivariate analyses 

(Table 1). 

We built PathSFs and SDMs multivariate models with all possible combinations of the selected 

predictors (including the null and the full models), and used a multimodel inference procedure 

(Burnham and Anderson 2002) to rank the models based on their Akaike weights (wi). The 

average parameters and unconditional standard errors (SEs) were estimated for the set of models 

that differed by less than four in their AIC from the most supported model (Burnham and 

Anderson 2002). The model coefficient of a predictor was considered statistically significant if 

estimates of its 95% confidence interval did not include zero. The contribution of each predictor 

was based on the sum of Akaike weights for the models in which that predictor was contained 

(w+) and on the magnitude of the average model coefficient. We evaluated model performance 

through the amount of explained deviance (D-squared; Guisan and Zimmermann 2000) and 

discrimination ability was assessed by the area under the receiver operating characteristic (ROC) 

curve (AUC) (Fielding and Bell 1997; Swets 1988). The averaged PathSFs and SDMs model 

predictions were applied to estimate movement probability on a grid of 100-m scale (Carvalho et 

al. 2016). 

Step (c) Roadkill Predictions: Habitat and Dispersal Resistance Surface 

Performances 

We derived additional movement probability maps (for PathSFs and SDMs) in order to evaluate 

the optimal neighborhood scale (Cushman et al. 2014; Holland and Yang 2016). For each pixel, 

we extracted movement probability values from five neighbor distances (0, 50, 100, 200, and 

300 m; Fig. 2c). We applied a normalization procedure to guarantee that pixel values of each 

movement probability map remained within the range of 0–1. Each of these movement probability 

maps was transformed into a resistance map by linearly inverting the probability values (Wade et 

al. 2015). 

To test H1 (PathSFs and SDMs produce equally good habitat-based resistance surfaces for 

predicting roadkills), we compared the performance of each type of resistance surface in 

explaining the occurrence pattern of roadkills by using binomial GLMs. In order to apply these 

models, roadkill pseudo-absences were randomly generated (with a 50% prevalence, i.e., the 

same number of observed presences and pseudo-absences) along the monitored roads. 

Accordingly, we defined three datasets (presence/absence of roadkills) that vary in the minimum 

distance (MD) between an absence and a roadkill location: 100, 500, and 1000 m. This procedure 

intends to minimize false-negative bias (Barbet-Massin et al. 2012; Fielding and Bell 1997). Each 

MD roadkill dataset (MD100, MD500, and MD1000) was used as the response variable in 
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univariate GLMs, and each of the five defined resistance surfaces were used as predictors 

(resulting in combinations of 15 GLMs per data type model; Fig. 2c). Model fit was verified 

through the AUC (Fielding and Bell 1997), the amount of explained deviance (Guisan and 

Zimmermann 2000), AIC and a ΔAIC comparison between the best-performing model of PathSFs 

or SDMs vs the of PathSFs or SDMs (for each MD). We used a ΔAIC threshold of four to evaluate 

the magnitude of support between models (Burnham and Anderson 2002; Carvalho et al. 2016; 

Salgueiro et al. 2018). Results were averaged across ten replicates run on the training (75%) and 

randomly chosen test (25%) datasets. The performance differences of PathSFs and SDMs in 

predicting roadkills (H1) was assessed through a DeLong test that compares ROC curves between 

different models (1000 permutations). Statistical divergence between curves was set to p < 0.05. 

In order to test the working hypotheses concerning dispersal movements (H2 and H3), we 

obtained simulated dispersal resistance maps by applying a negative exponential transformation 

function (Keeley et al. 2016) on the previously evaluated PathSFs and SDMs best resistance 

surfaces models in H1 (Fig. 2c). When landscape resistance is estimated from SDMs, it is usually 

assumed to be a negative linear function of suitability; in other words, the resistance decreases at 

a constant rate as suitability increases (Keeley et al. 2016). Using an exponential transformation 

means that larger portions of the landscape will be coded as low resistance to movement (Keeley 

et al. 2016), thus approaching more generalist habitat choices during dispersal events. We used 

as an exponential transformation function the following equation: 

R = 100 − 99 × ((1 − exp(−c × h))/(1 − exp(−c))), in which R is resistance, h is probability of 

movement taken from PathSFs or SDMs models, and c is the degree of the function corresponding 

to 0.25, 0.5, 1, 2, 4, or 8 (Fig. 2c). For each of the seven transformations, resistance is minimum 

when probability of movement is maximum. At c = 0.25, the relationship is almost linear, being 

equivalent to the previous daily resistance surface. As c increases, resistance values change from 

a linear towards an exponential decay function, with resistance to movement decreasing more 

rapidly (and reaching the asymptote sooner) with increasing habitat suitability (Keeley et al. 

2016). Thus, we calculated six dispersal resistance surfaces for each data type model (PathSFs 

and SDMs). Simulated dispersal resistance maps were validated against roadkills using GLMs, 

as in previous analyses. However, for hypotheses H2 and H3, we used only one MD dataset (that 

with the best performance in previous analysis; Fig. 2c). To determine whether roadkill 

identification performance significantly decreased (H2) or improved (H3), we used the ΔAIC by 

comparing the performance of each model vs the best model (for PathSFs and SDMs separately). 

Similar analyses were used to test H2 and H3. However, for H2, all-year-round roadkill records 

were included, while for H3 roadkill data were restricted to the dispersal period of the genets 

(September–March; Larivière and Calzada 2001). Because such movements are more common 
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among juveniles or subadults (Fey et al. 2016; Carvalho et al. 2018), we further excluded all 

identified road-killed adults (animals with a lower probability of being in dispersal) from H3 

testing. 

Analyses were conducted with R v.3.3.1 (R Development Core Team. 2016), QGIS v2.6 

(Quantum GIS Development Team 2015), and Fragstats v4.2 (McGarigal et al. 2012). The 

following R packages were applied: “spThin” (Aiello-Lammens et al. 2015), “raster” (Hijmans 

2016), “MuMIn” (Barton 2016), “ModEvA” (Barbosa et al. 2016), and “pROC” (Robin et al. 

2011). 

2.3 Results 

General Results on SDMs 

The SDMs results were in accordance with those of previously built PathSFs models. The average 

SDMs model included five predictors. Genet presence is more likely in areas close to riparian 

and forest habitats, as these predictors have high support in the average model (w+ > 0.90; Table 

2). In addition, areas with large forest patches, reduced urban presence, and reduced forest edge 

density also contribute to the increase in probability of species presence (Table 2). This model 

showed a D-squared value of 0.124 and resulted in a good discrimination ability (AUC = 0.7), 

which is close to PathSFs results (R-squaredPathSFs = 0.33, AUCPathSFs = 0.8; Carvalho et al. 2016). 

Table 2. Summarized results for the averaged SDMs model: standardized regression coefficients (B), 

unconditional standard errors (SEs), 95% confidence intervals of coefficient estimates (CI), and selection 

probability (w+) for each predictor in SDMs. Coefficient estimates whose 95%CI exclude zero are in 

bold. The PathSFs average model results showed similar predictors having high support (forest predictors 

and distance to riparian habitats) and are presented in Carvalho et al. (2016). Original names and 

associated calculated metrics of the abbreviation parameters are referred in Table 1. 

Resistance Surfaces for Prediction of Daily Movements (H1) 

For both types of models (PathSFs and SDMs) we found that model performance in explaining 

roadkill sites (AUC, D-squared, and AIC) increased with increasing MD datasets, with the best 

models corresponding to MD1000 dataset (Fig. 3a–c). These models had the highest AUC values 

and explained deviance (AUC > 0.80; D-squared > 0.15) and presented the lowest AIC scores 

(Fig. 3a–c). 
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Fig. 3. Performance comparison results of path data (PathSFs) and occurrence data (SDMs) in predicting 

genet roadkills using all calculated neighbor distances (0, 50, 100, 200, and 300 m) and roadkill dataset 

(MD100–MD1000): a Area under the ROC curve (AUC); b amount of explained deviance (D-squared); 

c Akaike’s information criterion (AIC); and d comparison of ROC curves (DeLong test) and p-value 

similarity threshold (horizontal black line). 

When comparing the performance of each type of resistance surface in explaining roadkill 

patterns, we found that SDMs performed similarly (AUC and D-squared) in explaining roadkill 

data when compared with PathSFs, a result consistent through all roadkill datasets (MD100–

MD1000; Fig. 3a, b). Moreover, the differences in AIC and in ROC curves were not statistically 

significant for neither datasets (ΔAIC < 4; p values of DeLong tests > 0.05; Fig. 3c, d; Table 3). 

The similarities between SDMs and PathSFs resistance maps are shown in Figs 4a–b and 5. We 

thus conclude that the resistance surfaces derived from occurrence data (SDMs) are as suitable in 

predicting roadkills as are path data (PathSFs), thereby supporting hypothesis H1. 

Table 3. Data type models (PathSFs and SDMs) specific results regarding all the focal foci associated to 
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the most performant MD (MD1000). Accuracy scores were based on AUC, D-squared, AIC, ∆AIC, and 

p-values of the DeLong test. For further details regarding all the MD results see Table S1. 

Resistance Surfaces for Prediction of Dispersal Movements (H2 and H3) 

We also compared the performance of models including dispersal resistance surfaces in 

explaining a complete dataset (all-year-round roadkills; H2) and a dispersal-only dataset (H3). 

The dispersal resistance maps (e.g., c = 4 and c = 8) are presented in Fig. 5 for both models and 

their similarities are apparent. When using the complete roadkill dataset (H2), we found that 

ΔAIC scores showed decreasing performance from daily (c = 0.25) to dispersal movements 

(0.5 < c < 8; Fig. 4a). However, this AIC variation is <4, meaning that models do not statistically 

differ and thus rejecting H2. The scenario is similar for the dataset including only roadkills within 

the dispersal period (ΔAIC < 4), and H3 is also not supported (Fig. 4b). For further details on H2 

and H3 results see Table S2. 

Fig. 4. Comparison of performance results (ΔAIC) between path data (PathSFs) and occurrence data 

(SDMs) in predicting genet roadkills for daily movement (c = 0.25) and for simulated dispersal 
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movement (0.5 ≤ c ≤ 8); a considering all roadkills and b considering only roadkills within the dispersal 

period. Horizontal black lines indicate the significance threshold (ΔAIC = 4), meaning that differences 

under the line are interpreted as nonsignificant. 

 

 
Fig. 5. Comparison of resistance maps between PathSFs and SDMs for the movement of genets (higher 

resistance values in black, lower resistance values in white) overlaid with roadkills sites; a PathSFs daily 

movement scenario (c = 0.25); b PathSFs intermediate dispersal movement scenario (c = 4); c PathSFs 

high-level dispersal movement scenario (c = 8); d SDMs daily movement scenario (c = 0.25); e SDMs 

intermediate movement scenario (c = 4); f SDMs high-level dispersal movement scenario (c = 8). 

2.4 Discussion  

Connectivity models often suffer from lack of validation with independent data and are therefore 

subject to uncertainty (Zeller et al. 2012; Wade et al. 2015; Correa Ayram et al. 2016). We used 

genet roadkill locations to validate landscape connectivity models built with “real movement” 

and “occurrence” data. Moreover, we compared the performance of models using daily 

movements with models using inferred dispersal, as they correspond to different life-events 

associated with individual survival and long-term population persistence. Juvenile as well as 

subadult are the most road-killed age classes for the genet and causalities are higher during the 

dispersal period (Carvalho et al. 2018). Both these facts suggest that dispersal is a critical event 

explaining temporal patterns of genet roadkills. 

Our spatial analysis confirmed that landscape characteristics can be a valuable proxy of functional 

connectivity, and wherever roads approach or bisect suitable habitats, they are more prone to be 

crossed by animals, as maintained by others (Grilo et al. 2011; D’Amico et al. 2015; Kari and 
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Zimmermann 2015). We found a relationship of roadkills with connectivity maps derived from 

SDMs, which is consistent with previous studies (Roger et al. 2012) and also with maps derived 

from PathSFs, for which we have no knowledge in the literature. In particular, for both model 

types, the substantially improved performance with increasing MD distances seems to be related 

to a decrease in false absence error rates, resulting in a smaller negative effect of false absences 

(Fielding and Bell 1997). There is a growing body of scientific literature that suggests caution be 

taken when accounting for false absence bias (Barbet-Massin et al. 2012) and we highlighted its 

importance. Indeed, this is an underestimated issue in road ecology that can compromise the 

reliability of prediction models (Santos et al. 2018). 

Comparison of Model Performance 

The similarity in performance of roadkill predictions between SDMs and PathSFs suggests that 

connectivity models of both types are determined by similar predicted patterns and supports the 

hypothesis that movement is most facilitated in suitable habitats. For the genet, a higher 

probability of movement (and roadkills) is expected within or in the proximity of forest habitats, 

which often contain more stable and abundant resources (Carvalho et al. 2016) and thereby can 

be translated into lower variability of inter movement decisions (Duchesne et al. 2010). Thus, 

simple models based on occurrence data may be as able to determine how environmental 

parameters affect movements as more complex models based on path data. Moreover, 

considering the link between scales and the ecological process under investigation (Holland and 

Yang 2016; McGarigal et al. 2016), PathSFs and SDMs results may have been converged given 

the scale-dependent relationship of roadkills with movement type and land-use patterns. 

Specifically, scales within species’ home range are adequate to capture landscape characteristics 

that should be taken into account when applying mitigation measures (Gunson et al. 2011; 

Červinka et al. 2015), thereby representing a feasible “scale of management” (Allen and Singh 

2016; Cosgrove et al. 2018). 

Besides, when we compared roadkill prediction performance regarding the impact of behavior, 

whether daily movements or dispersal, the latter responded similarly, meaning that models based 

on daily movements can be as good as those based on dispersal, when choosing the locations for 

roadkill mitigation measures. One possible explanation for the lack of support for H2 might stem 

from a potential behavioral contamination, due to inclusion of the nondispersal period in the 

initial analysis. However, in a further analysis, dispersal-based prediction of roadkills did not 

improve when using only data for the dispersal period, contrary to expectations, thus also leading 

to the rejection of H3. Interpretation of such results may not be straightforward and needs 

prudence because terrestrial carnivore dispersing strategies may be influenced by individual 
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variability in movement decisions (Oriol-Cotterill et al. 2015), which may be triggered as a 

mechanism of antipredator response toward a human-caused mortality risk (Jacobson et al. 2016). 

Such dispersing plasticity may include juveniles that adopt movements associated normally to 

adults (e.g., throughout favorable habitats). For example, this often happens when juvenile 

offspring, with no prior knowledge of the landscape, are accompanied by their more sensitive-to-

risk mothers in their early exploratory movements (Beier 1995; Oriol-Cotterill et al. 2015). 

Moreover, riparian habitats, which had the most pronounced effects for both data type models 

(Carvalho et al. 2016), are often used as corridors during dispersal movements and 

simultaneously provide optimal residence habitat for multiple mesocarnivores species including 

genet (Carvalho et al. 2016; Grilo et al. 2016). On the other hand, adult genets may undertake 

extraterritorial habitat movements across supposedly avoided roads (Carvalho et al. 2018) which 

might contribute to reducing potential bias effect due to the small number of identified dispersing 

juveniles in the datasets. Although road avoidance is likely to exclude carnivore road-crossing 

events, increases in mortality rates have been documented following decreases in traffic volume 

(Alexander et al. 2005) or after rainy nights when road culverts become flooded (Craveiro et al. 

2019). Thus, roads may occasionally act as a filter rather than being an absolute barrier (Jacobson 

et al. 2016; Ceia-Hasse et al. 2018). 

Wide-ranging animals, such as carnivores, may encounter roads during different types of 

movements and behaviors (Ceia-Hasse et al. 2018), as outlined above. Once again, this issue is 

unlikely to be tackled in most road ecology studies, and when we accounted for it, the 

interpretation of our results is that the biasing behavior toward our employed roadkill datasets 

(global and dispersal) was not capable of significantly undermining the habitat suitability-roadkill 

relationship. Globally, our results reinforce the importance of roadkill mitigation measures that 

allow for the promotion of movements associated with different ecological processes, as 

explained below. 

Management Implications 

Functional connectivity models are generally more efficient when they include movement data. 

However, despite the advantages of pathway data, this information is costly to obtain in terms of 

time, manpower and money, and conservation actions are constantly faced with limited funding, 

which plays a paramount role when choosing the final solution (e.g., Santos et al. 2015). 

Placement of mitigation structures can be optimized by using models that draw on more easily 

available data, such as SDMs, because such models may adequately reflect the interactions 

between species and environment across spatial scales (Guisan et al. 2013). The SDMs cost-

benefit tradeoff is enhanced when we take into account the growing demand for multiple species 
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assessments (Khosravi et al. 2018), as the collection of a comprehensive multispecies pathway 

dataset is hampered by limited budgets. We therefore support such an application, in the context 

addressed herein, for other species and with different behaviors or life stages, as long as the SDMs 

modeling framework is explicit and justified within the context of conservation purposes (Guisan 

et al. 2013; Tulloch et al. 2016). 

Conservation can operate at different scales, and previous studies required the selection of a 

proper planning scale that would integrate a pattern-process linkage associated with roadkills 

(Ims 1995; Kari and Zimmermann 2015; Tulloch et al. 2016; Cosgrove et al. 2018). Indeed, the 

type of mitigation should depend on both the target species and movement to promote (Smith et 

al. 2015; van der Grift and van der Ree 2015; Allen and Singh 2016). The analysis showed that 

daily and dispersal movements are simultaneously accounted for by SDMs. This fact, together 

with their simplicity (compared with PathSFs), makes them useful tools to guide the installation 

of road mitigation measures targeting both dispersers and residents. SDMs may be useful to 

support conservation managers as they can identify suitable locations (e.g., wherever roads 

intersect high connectivity areas) for roadkill mitigation measures (e.g., fauna passages, culvert 

adaptations, etc.), ensuring the accomplishment of daily routines associated with feeding, 

protection from predators and reproduction, and simultaneously promoting the gene flow, 

associated with dispersal, which is critical for long-term population persistence (van Der Ree et 

al. 2011). 

Nevertheless, distinguishing between resident experienced adults and subadult dispersers may be 

important as long corridors linking distant suitable habitat patches might be mostly used by few 

dispersing individuals. Consequently, it should be noted that although locally placed crossing 

structures might be successful in ensuring the gene flow between subpopulations (Sawaya et al. 

2014; Carvalho et al. 2018), higher scales of planning like regional/international coordinated 

strategies are still needed for the promotion of large ecological networks and inter-population 

gene flow (van Der Ree et al. 2011; Jaeger 2015). Ecological corridors applied across wide study 

areas (e.g., regional scales or higher) normally better rely on dispersal resistance surfaces, since 

when constructed through habitat suitability or movements within the home range, such corridors 

may greatly overestimate resistance to movement (Blazquez-Cabrera et al. 2016; Ziółkowska et 

al. 2016). In such contexts, the use of a negative exponential transformation function (Trainor et 

al. 2013; Keeley et al. 2016) may be more relevant as the generally lower resistance to movements 

renders distant patches more reachable by a few dispersers, thereby increasing the confidence of 

corridor placement (e.g., Khosravi et al. 2018). Lastly, we argue that these corridors might be 

likely to benefit other dispersing forest mammal species, given the similar dimension of home 

range to the species we examined, which in turn can be translated into a capability of similar 
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dispersal distances or suchlike (Bowman et al. 2002). 

2.5 Conclusions 

In this paper, our spatial analysis showed a consensus of two comprehensive frameworks 

to identify road-crossing sites by a forest carnivore. We specifically demonstrated that, 

regardless of the model complexity (occurrence or paths), landscape elements 

characterizing species habitat may be a helpful proxy of functional connectivity in 

explaining roadkills and therefore in allocating management resources. Our results 

presented herein afforded valuable insights to solve uncertainties in predicting roadkills 

regarding some of the most widely used data type models, providing support for the use 

of SDMs. Moreover, we demonstrated that our models simultaneously consider daily 

movements and dispersal associated to roadkills, emphasizing the reliability of both SDMs 

and PathSFs in targeting both dispersers and residents at the local scale. We suggest that 

SDMs are a viable option to build resistance surfaces for functional connectivity models 

either in single species or multispecies projects, and with similar results for different life 

stages and behaviors. This is especially important for large scale connectivity assessments, 

such as multispecies defragmentation plans of high road-density landscapes (Santini et al. 

2016). 
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2.8 Supplementary material 

 

Table S1 - Data type models (PathSFs and SDMs) specific results regarding all the 

neighbor distances associated to the selected MD (MD100, MD500, MD1000). Accuracy 

scores were based on AUC, D-squared, AIC, ∆AIC and p-values of the DeLong test. 

PathSFs SDMs Performance 

comparison 

MD Neighbor 

distances 

AUC AIC D-

squared 

MD Neighbor 

distances 

AUC AIC D-

squared 

∆AIC DeLong 

test (p-

value) 

100 0 0.613 157.79

9 

0.042 100 0 0.615 160.50

9 

0.025 2.71 0.427 

100 50 0.663 156.71

5 

0.049 100 50 0.628 159.77

1 

0.029 3.056 0.535 

100 100 0.664 156.54

2 

0.05 100 100 0.634 159.46

5 

0.031 2.923 0.568 

100 200 0.66 156.79

9 

0.048 100 200 0.618 159.36

4 

0.032 2.565 0.614 

100 300 0.648 157.19

5 

0.046 100 300 0.63 159.26

3 

0.033 2.464 0.547 

500 0 0.772 145.65

6 

0.108 500 0 0.76 149.52

8 

0.093 3.872 0.437 
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Table S2- Comparison of performance results (ΔAIC) of path data (PathSFs) and 

occurrence data (SDMs) in predicting genet roadkills for daily movement (c=0.25) and for 

simulated dispersal movement (0.5 ≤ c ≤ 8); considering all roadkills and considering only 

roadkills within the dispersal period. Best model are highlighted in bold. 

500 50 0.788 144.26

0 

0.126 500 50 0.769 147.61

7 

0.105 3.357 0.399 

500 100 0.798 143.40

6 

0.131 500 100 0.773 146.95

8 

0.109 3.552 0.421 

500 200 0.799 143.89

5 

0.128 500 200 0.716 146.86

1 

0.11 2.966 0.445 

500 300 0.8 144.85

3 

0.122 500 300 0.778 147.36

3 

0.107 2.51 0.45 

1000 0 0.823 131.23

1 

0.208 1000 0 0.838 131.87

5 

0.203 0.644 0.642 

1000 50 0.832 128.96

1 

0.222 1000 50 0.837 130.97

9 

0.209 2.018 0.711 

1000 100 0.828 128.72

7 

0.223 1000 100 0.833 130.79

0 

0.21 2.063 0.583 

1000 200 0.828 128.93

8 

0.221 1000 200 0.737 132.08

4 

0.208 3.146 0.398 

1000 300 0.826 130.08

2 

0.215 1000 300 0.826 131.79

5 

0.204 1.713 0.693 

 



 

76 
 

  All  roadkills Roadkills (dispersal period) 

Data type model Degree value AIC ∆AIC AIC ∆AIC 

PathSFs 0.25 115.3251 0.007 68.50356 0 

PathSFs 0.5 115.2892 0.04 68.92253 0.01 

PathSFs 1 115.2478 0 69.27417 0.22 

PathSFs 2 115.2859 0.03 69.46472 0.37 

PathSFs 4 115.8156 0.56 69.55991 0.45 

PathSFs 8 118.1737 2.92 69.60698 0.49 

SDMs 0.25 111.9867 2.61 70.96025 0.21 

SDMs 0.5 110.1393 0.77 70.94298 0.18 

SDMs 1 109.5806 0.21 70.9087 0.18 

SDMs 2 109.4261 0.056 70.84137 0.13 

SDMs 4 109.3828 0.013 70.71298 0.07 

SDMs 8 109.3698 0 70.48763 0 
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Abstract  

Accurate mapping is a main challenge for endangered small-sized terrestrial species. Freely 

available spatio-temporal data at high resolution from multispectral satellite offer excellent 

opportunities for improving predictive distribution models of such species based on fine-scale 
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habitat features, thus making it easier to achieve comprehensive biodiversity conservation goals. 

However, there are still few examples showing the utility of remote-sensing-based products in 

mapping microhabitat suitability for small species of conservation concern. Here, we address this 

issue using Sentinel-2 sensor-derived habitat variables, used in combination with more 

commonly used explanatory variables (e.g., topography), to predict the distribution of the 

endangered Cabrera vole (Microtus cabrerae) in agrosilvopastorial systems. Based on vole 

surveys conducted in two different seasons over a ~176,000 ha landscape in Southern Portugal, 

we assessed the significance of each predictor in explaining Cabrera vole occurrence using the 

Boruta algorithm, a novel Random forest variant for dealing with high dimensionality of 

explanatory variables. Overall, results showed a strong contribution of Sentinel-2-derived 

variables for predicting microhabitat suitability of Cabrera voles. In particular, we found that 

photosynthetic activity (NDI45), specific spectral signal (SWIR1), and landscape heterogeneity 

(Rao’s Q) were good proxies of Cabrera voles’ microhabitat, mostly during temporally greener 

and wetter conditions. In addition to remote-sensing-based variables, the presence of road verges 

was also an important driver of voles’ distribution, highlighting their potential role as refuges 

and/or corridors. Overall, our study supports the use of remote-sensing data to predict 

microhabitat suitability for endangered small-sized species in marginal areas that potentially hold 

most of the biodiversity found in human-dominated landscapes. We believe our approach can be 

widely applied to other species, for which detailed habitat mapping over large spatial extents is 

difficult to obtain using traditional descriptors. This would certainly contribute to improving 

conservation planning, thereby contributing to global conservation efforts in landscapes that are 

managed for multiple purposes. 

Keywords 

remote sensing; species distribution models; habitat metrics; wildlife conservation; rare species; 

Cabrera vole 

3.1 Introduction 

Anthropogenic activities, concurrently with human population growth, are responsible for wiping 

out wildlife species at rates never experienced before [1]. In particular, agricultural intensification 

and infrastructure proliferation (roads, railways, etc.), which are considered among the main 

causes of habitat loss/fragmentation and populations declines, have been rapidly rising to an 

alarmingly level worldwide [2,3]. Traditionally, wildlife conservation priorities have been 

focused on megafauna, since species with a large body size have been associated with high 

extinction risks [4]. However, small body size can also be an important extinction driver [5], 

https://www.mdpi.com/2072-4292/12/3/562/htm#B1-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B2-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B3-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B4-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B5-remotesensing-12-00562
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possibly exacerbated by species limiting ecological traits (e.g., short dispersal distances), 

restricted, and/or fragmented distribution and habitat specialization [6]. 

The Cabrera vole (Microtus cabrerae) is an Iberian-endemic small mammal, classified as 

“Vulnerable” in Portugal and Spain [7,8], and as “Near-threatened” by IUCN [9]. Within its 

restricted distribution range, the species presents a fragmented distribution [10], typically 

associated with marginal areas of agricultural systems, with local populations largely restricted 

[10,11,12] to sparse patches of tall and dense wet grasslands [11,13]. The major threats for this 

species include agriculture and grazing intensification [14], which destroy its preferred habitats, 

forcing individuals to disperse and occupy small habitat patches (often <500 m2 [14]) like field 

margins or road verges [12,15,16]. The Cabrera vole often presents a metapopulation-like spatial 

structure, which together with the regular destruction and turnover of suitable habitat patches, 

makes the designation of special areas of conservation for this species a particularly challenging 

task. The designation of these conservation areas is however demanded by the European Union, 

as the species is listed in both Bern Convention (Appendix II; 82/72/CEE) and Habitats Directive 

(Annexes II and IV; Council Directive 92/43/EEC). The selection of those key areas should be 

supported by detailed and up-to-date species’ distribution at multiple scales, and the use of 

efficient tools and frameworks able to appropriately identify them [17]. In this context, 

correlative species distribution models (SDMs), or habitat suitability/niche models [18], which 

provide probabilistic estimation of occurrence patterns over broad areas by relating species 

occurrences with environmental characteristics [18], have become a popular tool to develop 

potential species range maps. 

Numerous studies have extensively reported the utility of SDMs for addressing a variety of 

ecological questions [19,20,21], related to biodiversity monitoring and conservation planning 

[17,22,23], including for the Cabrera vole [10,24]. Yet, SDMs applications on Cabrera voles, or 

other small and elusive species, at a local or regional scale are still challenging, likely due to their 

low detectability and/or narrow distribution, which may complicate data collection [25,26]. 

Moreover, the integration of fine grain habitat requirements for which suitability may change 

within short time periods makes SDM’ building another challenging task, due to the lack of 

spatially explicit predictor variables able to capture habitat characteristics at small scales [27], as 

well as to account for species occupancy turnover and landscape dynamism [28], the latter being 

markedly pronounced in Mediterranean-type ecosystems [12,29,30]. Specifically, most available 

digital habitat proxy information (e.g., land cover/use maps) have low detail precision and have 

a static time nature (they are not expected to vary within the year) [28,31], and thus may fail to 

provide relevant ecological information for small species inhabiting dynamic habitat patch 

networks. 

We used Cabrera vole as a model to create up-to-date spatially and temporally detailed habitat 

https://www.mdpi.com/2072-4292/12/3/562/htm#B6-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B7-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B8-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B9-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B10-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B10-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B11-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B12-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B11-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B13-remotesensing-12-00562
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suitability maps for species with fine-scale habitat requirements occurring in dynamic 

landscapes. Opportunities to do this come from Earth Observation Satellites (EOS) due to their 

multispectral and systematic characteristics, which allows the identification of the vegetation 

composition and structure, as well as its physiological condition [32,33,34]. The usefulness of 

remote-sensing data for species habitat suitability mapping has been reported in numerous 

studies, as outlined in the review by He et al. [27]. In this review, the spatial-continuous nature 

and the reasonable time frequency of satellite-based data are highlighted as an added value to 

overcome SDMs limitations. By integrating this high-quality data into SDMs, their accuracy can 

be effectively increased as availability of resources may be better described [28,35,36,37]. 

Moreover, remote-sensing data can be used for modelling changes in species distribution across 

time and understand how vegetation changes might affect patch quality and influence 

demographic parameters, including reproduction and dispersal movements [28]. 

While it may be straightforward to map habitat suitability areas, for example, for large mammal 

species [35,38], having broad-scale home range sizes (e.g., >1000 m2), modelling species 

responding to fine-scale landscape requirements (e.g., small mammals or insects) is challenging 

from the remote-sensing perspective due to limitations associated to conventional imageries 

when identifying local resource patches [38,39]. Indeed, until recently, the available information 

from remote sensing (e.g., land-cover) was too coarse or too expensive to be properly applied on 

fine-scale modelling [28]. The Copernicus Program from the European Commission (EC) in 

partnership with the European Space Agency (ESA) has been developing several satellite 

missions under the scope of the Sentinel program [40]. Within this program, a constellation of 

two multi-spectral satellites called Sentinel-2A (launched on 23 June 2015) and Sentinel-2B 

(launched on 7 March 2017) are together collecting information at high spatial (up to 10 m), 

spectral (13 bands), radiometric (12 bits), and temporal (each five days) resolution [41]. Due to 

its technical features and the open data policy, Sentinel-2 brings new opportunities and 

capabilities for evaluating wildlife spatio-temporal response to habitat features [27] and dynamic 

processes [36], which may be of particular importance for SDMs developed for small species 

inhabiting dynamic systems (e.g., grasslands [42]) such as the Cabrera vole. To the best of our 

knowledge, modelling fine-scale habitat suitability for wildlife conservation, specifically with 

open-access remote-sensing data and with Sentinel-2 imagery, is still scarce in the literature. 

Besides, as Sentinel-2 derived-products mostly reflect biotic environmental attributes, the 

integration of these variables with abiotic descriptors (e.g., topography) into SDMs likely provide 

more realistic results than using each type of variables alone [28,36,43]. 

Therefore, by taking advantage from spectral, temporal, and spatial characteristics of Sentinel-2 

sensors, the main goal of this study is to assess the usefulness of Sentinel-2 derived predictors 

for identifying suitable microhabitats for small and elusive species of conservation concern, using 
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the Cabrera vole in a Mediterranean ecosystem as a model. In particular, we aimed to: 

i. Quantify the importance of Sentinel-2 derived predictors relative to more conventional 

predictors (e.g., topographical and distance to landscape elements) in predicting vole 

microhabitat suitability; 

ii. Identify which Sentinel-2 derived predictors best explain vole distribution at fine spatial 

scales. 

 

Overall, we predict that Sentinel-2-based variables should provide an important contribution for 

improving fine-scale habitat mapping of endangered small species, such as the Cabrera vole, thus 

supporting the view that remote-sensing products should greatly contribute for conserving 

biodiversity associated to small marginal areas in human-dominated landscapes. For this purpose, 

a methodological approach was devised for predicting suitable habitat areas for the Cabrera vole 

by using Boruta Random Forest algorithm [44] and different Sentinel-2-derived data 

(multispectral data, spectral indices, and textural and diversity indices), topographic variables, 

and distance to landscape key elements (roads, built-up areas, and water ponds). 

3.2 Materials and Methods 

Study Area 

The study was conducted in a ~176,000 ha area located in the Alentejo region, Southern Portugal 

(centroid: 586545 - 4281192; EPSG: 32629-WGS 84/UTM 29N; Figure 1a). The area is 

characterized by an altitude ranging from 80 to 500 m a.s.l. with a gently undulating relief [and 

included within a bioclimatic zone commonly associated to the Cabrera vole, namely the meso-

Mediterranean,29]. Climate is typically Mediterranean, with hot and dry summers (August: 31 

°C Tmax), mild and wet winters (January: 6 °C Tmin), and medium annual rainfall (>600 mm) 

(Évora 1981–2010 [45]). The landscape is largely dominated by an agrosilvopastoral system 

called montado (or dehesa), an open woodland of cork (Quercus suber) and/or holm oak 

(Quercus rotundifolia) trees [46]. The system is characterized by high spatial variability in tree 

density and an understorey mosaic of annual crops, grasslands (intermixed perennial and annual 

herb communities), and shrublands [47]. While the montado is considered as one of the highest 

biodiversity-rich ecosystems of the western Mediterranean Basin [48,49] having been classified 

as a High Nature Value farming system (HNV) [50], it is also referred as one the most threatened 

in terms of conservation, mainly due to land use intensification [51]. 
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Figure 1. Location of the study area: (a) Iberian Peninsula and actual Cabrera vole distribution range are 

represented jointly with the study area, located within the Alentejo region (Southern Portugal); and (b) 

Cabrera vole sampling points layered with the T29SNC, T29SND, T29SPC, and T29SPD Sentinel-2A 

RGB composite imageries delimited by the study area. 

Cabrera Vole Field Surveys 

Cabrera vole surveys were conducted through stratified random selection by initially identifying 

in the field suitable and unsuitable grass patches. A total of 146 patches with dense and tall 

perennial grasses and/or sedge/rush communities growing in high soil moisture conditions 

[13,14] were defined as locations of potential occurrence and 79 patches were considered not 

suitable for the species, due to very dry soil conditions and/or lower cover and height. Each of 

the selected patches was carefully surveyed by two observers for presence signs typical of this 

species (surface runways, grass clippings, and typical small, dark green faeces associated with 

latrines) to assess its presence [14]. These signs are easily recognizable, and together provide a 

reliable sampling method, at least when other species producing similar signs (e.g., M. agrestis) 

are absent in the area [11,13], as it is the case of our study region. Each surveyed habitat patch 

was classified according to the presence/absence of the species, and georeferenced with an 

accurate GPS device (Garmin eTrex 30x; Projected coordinate system: EPSG: 32629-WGS 84 / 

UTM 29N; precision up to 3 m). The absences were further classified as absences with and 

without suitable habitat conditions (as the first ones may correspond to patches potentially used 

by voles, but that were not occupied at the time of the survey); [12]. Although each patch was 
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surveyed once, samplings were conducted in two sessions to account for habitat variation, namely 

soil humidity, vegetation dryness, and structure. The first session ran in Spring (February–April 

2017), which is when Cabrera vole populations are typically close to their peaks and breeding 

activity is presumably higher, due to increased soil humidity and vegetation growth (e.g., green 

grasses) [14]. The second session was conducted in autumn (October–early December 2018); 

when soil humidity was significantly lower due to the typical hot and dry summer conditions in 

the region, which were exceptionally hard and extended in 2018 (IPMA Évora 2018 [45]). This 

second session was also coincident with the period when more fallow areas can be found, being 

those of special interest for species’ conservation [52]. A total of 97 and 128 herbaceous patches 

were surveyed in the first and second sessions, respectively. In order to lower model biases, all 

absences recorded in habitats identified as suitable were discarded from the dataset, as these may 

have resulted from possible low detectability [18,26]. We further applied a 500 m grid spatial 

filtering procedure, resulting in a roughly balanced dataset of 62 presences and 79 absences 

(Figure 1b). 

Predictor Variables 

Three categories of predictors were defined: (1) Sentinel-2-derived predictors, (2) topographical, 

and (3) distance to key landscape elements. 

Sentinel-2 Derived Predictor Variables 

To better assess the capability of Sentinel-2 imagery in predicting Cabrera vole habitat suitability 

areas, three different types of Sentinel-2-derived variables were used: (1) Spectral bands, (2) 

spectral indices, and (3) textural and diversity indices. 

Sentinel-2 multispectral images (Sentinel-2A MSI Level-1C) used in this study were downloaded 

from the Copernicus Science Data Hub portal (https://scihub.copernicus.eu/dhus/). For each of 

the study periods, the image with the lowest percentage of clouds was selected to represent 

environmental conditions at the time of vole surveys (5th April 2017 and 7th October 2018 in the 

case of the first and second period, respectively). The study area was entirely covered by the 

union of 4 multispectral images (0%–1% of clouds) for each selected period, which followed an 

atmospheric correction procedure using the Sen2Cor code implemented in the SNAP software 

[53]. 

Only the Sentinel-2 bands with 10 and 20 m spatial resolution were considered in this study, 

namely the B2 (blue), B3 (green), B4 (red), B5 (Red edge 1), B6 (Red edge 2), B7 (Red edge 3), 

B8 (NIR1), B8a (NIR2), B11 (SWIR1), and B12 (SWIR2) bands (Table 1). 
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Table 1. Sentinel-2-derived predictors. The SR abbreviation indicates for which band was applied in the 

rescaling approach, namely for the Red edge 1, Red edge 2, Red edge 3, the NIR2, SWIR1, and SWIR2 

(20m). L = 0.5 was applied in SATVI index. 

In order to increase the spatial resolution of the 20 m spectral bands, a super-resolution 

enhancement method was applied, whereby high-resolution bands (10 m) were able to 

reconstruct coarser (20 m) at the given resolution while maintaining the associated spectral 

reflectance, as demonstrated by Brodu [54]. Super-resolved (SR) bands were computed using the 

Sen2res SNAP plugin (http://step.esa.int/main/third-party-plugins-2/sen2res/). 
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In order to capture different habitat features that are ecologically relevant to predict suitable areas 

for the Cabrera vole, three groups of spectral indices were computed: (1) Vegetation biomass 

indices (NDVI, NDRE1, NDRE2, NDRE3, NDI45, and SATVI), (2) senescent vegetation and 

soil surface indices (PSRI, SWIR32, and BI2), and (3) vegetation and landscape water content 

indices (NDII and NDWI) (Table 1). These indices have been successfully used in retrieving 

different key biophysical vegetation information in semi-arid tree-grass ecosystems such as the 

one here addressed (montado) [55,56,57,58,59]. 

To describe the montado vegetation and landscape structural and diversity properties, the grey-

level co-occurrence matrix (GLCM) [69] and the Rao’s Q index [36,70] were calculated, 

respectively. Prior to the textural calculation, the previously selected spectral bands underwent a 

Principal Component Analysis (PCA) fusion technique with the aim of obtaining a single 

Sentinel-2 image incorporating all bands’ information [71]. The principal component image 

accounting for over the 90% of bands spectral variability was subsequently used to compute eight 

GLCM variables, namely, mean, correlation, contrast, Dissimilarity, entropy, homogeneity, 

second moment, and variance (Table 1). The selected textural variables were calculated using 

the glcm package (v.1.6.1) [72] implemented in the R (v. 3.5.2) [73], and following the same 

parametrization settings described in Godinho et al. [57]. The Rao’s Q diversity index, which 

accounts for both the abundance and the pairwise spectral distance among pixels [70], and thus 

is useful to assess spatial diversity, was calculated by using NDVI as input data and a moving 

window size of 3 × 3 pixels 

Topographical Predictor Variables 

Four topographical variables (altitude, slope, roughness, and topographic wetness index; Table 

2) were derived from a digital elevation model [74] using RSAGA R package (v.1.0.0) [75]. 

 
Table 2. Dataset not involving Sentinel-2A images and representing candidate static predictors. 

Distance to Landscape Elements 

In order to quantify the potential influence of key landscape elements on Cabrera vole spatial 
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distribution (e.g., [14,52]), distances to paved roads, built-up areas, and water bodies were 

calculated (Table 2). A shapefile containing the information about paved roads was produced 

using OpenStreetMap data source [76]. Built-up areas and water bodies shapefiles were obtained 

from the imperviousness and the water and wetness high-resolution layers of the Copernicus 

Land Monitoring Service [77]. 

Habitat Suitability Model 

The habitat suitability model was built using all previously described predictors using Cabrera 

vole presence/absence as response variable. The relationship between the predictors and the 

spatial distribution of Cabrera vole was evaluated in a three-step statistical approach. The first 

step consisted in selecting the relevant variables from a set of 67 candidate predictors using the 

Boruta algorithm [44,78,79]. Basically, Boruta algorithm relies on an extension of the random 

forest (RF) [80,81] method by introducing an iterative procedure to compare the relative 

importance of the original variables with the importance of their randomized copies [44]. After 

running iteratively a large number of random forest models, the Boruta algorithm computes the 

mean Z-score value to classify all the variables as confirmed, rejected, or tentative at a predefined 

threshold of statistical significance (p) and a maximum number of times the algorithm is run 

(maxRuns) [79]. In this study, the Boruta R package (v.6.0.0) [44] was used to execute the 

algorithm with maxRuns = 2000, ntree = 2000, and p value = 0.01. The second step consisted of 

running a Pearson’s correlation analysis to determine pairwise correlations within the variables 

classified as confirmed in the previous step to remove highly correlated (r > |0.7|) ones. Finally, 

in the third step, and employing only the uncorrelated most important variables, an RF analysis 

was used to predict the spatial distribution of Cabrera vole in the study area. For the RF model, 

the number of trees (ntree) was fixed to 2000 and number of variables randomly tested on each 

split (mtry) to the square root of the number of variables. A 10-fold cross-validation resampling 

method was used to build the RF model. These analyses were done with the ggRandomForest R 

package (v.2.0.1) [82]. Each variable relative importance for the model was assessed and partial 

dependence plots [81] were used to explore interaction effects between variables on Cabrera vole 

presence probability. Model performance was verified using the area under the curve (AUC) of 

the Receiver Operator Characteristic (ROC), as well as the proportion of correctly predicted 

presences and absences [83]. 

3.3 Results 

Model Performance 

The Boruta screening procedure resulted in a considerable reduction of possible explanatory 

variables, as only 26 predictors were confirmed (38.8% of all the candidate features set, Figure 
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S1). From these, only 11 showed no strong correlation among them (r < |0.7|) and were retained 

for the multivariate analysis (Figure S2; for more details regarding all pairwise correlation 

results, see Table S1). The results derived by the 10-fold cross-validation indicated that the RF 

model developed was robust given the low estimated error rate percentage, (19.15%), 

determining a high explanatory power of included predictors on the occurrence of the endangered 

Cabrera vole in our study area (about 80% of variance explained). Results also showed a ‘high’ 

AUC score (area under the curve) of 0.904, a sensitivity (true positive rate) of 0.73, and a 

specificity (true negative rate) of 0.778, therefore a higher performance for correctly predicted 

absences than presences was noticed. 

Variable Importance 

Following the multivariate analysis, the “Sentinel-2” variables group showed the highest 

contribution (65.7%) in explaining Cabrera vole habitat suitability, comprising 10 variables 

(Figure 2). The variables from the group “Distance to landscape elements” contributed to 

explain 34.22% of the variance, comprising only the distance to paved roads (Figure 2). None 

of the “Topographic” variables were retained in the final model. Half of “Sentinel-2” variables 

concerned the Spring period and another half to the Autumn period (Figure 2). The highest 

significant contributors from the “Sentinel-2” group were “NDI45 (Spring)” (14.9%), “SWIR1 

(Autumn)” (10.4%), and “Rao’s Q (Spring)” (9.9%) (Figure 2), meaning these variables 

incorporated most of the relevant habitat information from remote-sensing data. The habitat 

suitability for Cabrera vole increased when the spectral vegetation index NDI45 had low-

medium values in Spring, and the spectral band SWIR1 and the metric Rao’s Q showed 

intermediate values in Autumn and Spring, respectively (Figure 3c,d). Response curves for 

“Distance to paved roads” showed that suitability of Cabrera vole steeply decreased with the 

increase in distance from roads (Figure 3a). The habitat suitability map shows that the 

occurrence locations fell in high-probability areas in the final habitat suitability model (Figure 

4). 
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Figure 2. The relative contribution of retained variables (%) in the final habitat suitability model, layered 

with respective groups (grey dot: Distance to landscape element; green dots: Spectral indices; cyan dots: 

Spectral bands; orange dots: Textural and diversity indices) and overlapped with a dashed line 

representing mean importance value. 

Figure 3. Interactive effects (partial dependence curves) of most important variables: (a) “Distance to 

paved roads”, (b) “NDI45 (Spring)”, (c) “SWIR1 (Autumn)”, and (d) “RAO’s Q (Spring)”, on probability 

of Cabrera vole occurrence. The average 10-fold cross-validation results are depicted by the blue lines. 

The grey area limits ± standard error. 
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Figure 4. High-resolution Cabrera vole habitat suitability map in Southern part of Portugal, layered with 

paved roads and presences (blue dots). Zoomed areas are depicted as examples of identified sites of 

conservation interest namely (a) road verges, (b) pond banks, and (c) field margins. Purple areas: Low 

suitability; Green areas: high suitability). 

3.4 Discussion 

Results yielded evidence that fine-scale remote-sensing data may be useful to predict favorable 

habitats for the occurrence of small-sized species, with small home-ranges and specialized niches 

in spatially and temporally heterogeneous environments (e.g., [84]). Using ground-data from vole 

surveys across different periods, we are able to demonstrate that spectral, spatial, and temporal 

information from Sentinel-2 (Sentinel-2A MSI Level-1C) multispectral images analysis is 

significantly important to predict the Cabrera vole occurrence. 

Results show that NDI45 vegetation index describing areas characterized with low-medium 

chlorophylls is the most important Sentinel-2-derived proxy for Cabrera vole habitat. High values 

of this index photosynthetically indicate higher biomass activity, i.e., dense canopies and crops 

linked to intensified agriculture practices, which are not suitable for the species. On the other 

hand, very low values of NDI45 indicate increasingly lower soil vegetation cover, which is also 

not suitable for the species occurrence. Reasons for a higher importance of this index during the 

‘Spring’ should be related to increased wetness and mild temperature conditions during this 

period, which promotes annual grasses growth, ensuring higher vegetation cover, hence more 

available resources and improved habitat quality for Cabrera vole [13,14,52]. Multispectral 

satellite remote-sensing indices (e.g., NDVI) have been proven to successfully explain small 

mammal species distribution through the use of Landsat 7 [37] and Sentinel-2 data [42]. 

https://www.mdpi.com/2072-4292/12/3/562/htm#B84-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B13-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B14-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B52-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B37-remotesensing-12-00562
https://www.mdpi.com/2072-4292/12/3/562/htm#B42-remotesensing-12-00562


 

90 
 

However, the present study showed that NDI45 is a better predictor than NDVI because it uses 

spectral information from the red-edge region, which has been recognized to provide more 

sensitive measurements of vegetation biophysical properties [60,85]. 

The SWIR1 spectral band obtained from the autumn season was ranked as the third most 

important variable in predicting Cabrera vole spatial distribution, and, during this season (in 

particular in 2018; see Section 2.2), the grasslands over the study area were extremely dry due 

to the exceptional high temperatures and lack of rain. This is noteworthy because in the shortwave 

infrared region, the reflectance reduces as the amount of water content increases in vegetation 

[32] such that SWIR1 can be sensitive to the existing senescent vegetation in the study area 

because it reaches a peak in terms of spectral reflectance [65]. Hence, it is reasonable to interpret 

grassy areas with some moisture conditions as associated with medium values of SWIR1. More 

specifically, a possible ecological explanation for the better support of SWIR1 during dryer 

periods is that the Cabrera vole might temporally respond to the leaf senescence spectral signals 

of perennial grasslands, which may help individuals’ survival during most adverse environmental 

conditions (e.g., [30,52]). 

Rao’s Q metric is a measure of landscape beta diversity and can be a surrogate for landscape 

heterogeneity [70]. In the context of study area, the species occurs mainly in small marginal 

patches embedded in or surrounded by larger forest or agricultural areas, or on road verges [14]. 

The Rao’s Q metric seems to be capturing this landscape diversity signal by showing that the 

species occurrence is favored in moderately heterogeneous landscapes. This pattern was 

particularly marked in Spring, when grasses become abundant, vegetation heterogeneity is 

higher, and vole populations increase given the higher availability of resources [12,16]. By 

contrast, a low suitability for homogeneous areas emerged from our analysis, suggesting 

vulnerability to habitat simplification, derived for instance from agricultural intensification or 

grazing pressure [86], which are known to have major impacts on small mammal habitat 

specialists [87] and for the Cabrera vole in particular [11]. Reasons for the slight decline in 

species probability of occurrence at the most heterogeneous areas (higher Rao’s Q) are unclear, 

but may be related to the existence of shrubby areas where predation risk might be greater [11]. 

Apart from Sentinel-2, Cabrera vole occurrence probability peaks on close proximity to roads. 

This agrees with previous studies showing that the species often occurs on vegetated road verges, 

particularly in intensive agricultural or grazed areas [11,13,52]. This result does not necessarily 

suggest that the species is resilient to the negative effects that roads may exert on wildlife [88]. 

Instead, it emphasizes the compelling role of road verges in providing refuge habitats and 

corridors for small mammals, particularly where the surrounding matrix is mostly inhospitable 
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[11,15,89,90]. Nevertheless, a major drawback of road verge habitats is that they may induce 

road-related mortality [91], which should be duly considered when the goal is to promote the use 

of verges as habitat and/or corridors for biodiversity. 

Interestingly, along with the identification of suitable road verges, other semi-natural 

infrequently managed areas such as banks and field margins were identified in the habitat 

suitability model (Figure 4). The conservation value of such areas is remarkable, as they usually 

support high levels of biodiversity, being key elements of High Nature Value farmland [92]. In 

addition, suitable areas for the Cabrera vole are often associated with Mediterranean temporary 

ponds [13], which are priority habitats under the EU Habitats Directive. Protecting such areas 

may be strategic for the conservation of the Cabrera vole, as well other species in human-

dominated landscapes with limited availability of suitable habitats. Also, given the spatially 

limited and scattered distribution of those habitats, proper identification of priority conservation 

areas to ensure vole’ populations viability, can potentially rely on landscape connectivity 

assessments (e.g., [93]). Once those areas are identified, conservation actions should consider the 

implementation of agri-environmental schemes, namely in the context of the European Union’s 

Common Agricultural Policy, through which farmers are paid for restoring habitats, for instance 

by reducing the grazing pressure [11,15,94]. 

Earlier SDMs developed for Cabrera vole were carried out at broad scales and relied mostly on 

bioclimatic variables [10,24]. Despite the conservation value of macro ecological approaches for 

mapping environmental suitability at large scales [95], such models do not allow identifying, 

predicting, and mapping small key habitats [96], and thus are insufficient for defining concrete 

conservation actions. The use of fine-scale remote-sensing variables may thus provide a cost-

effective tool to better support conservation planning with reduced survey costs [36], which may 

be crucial for rare and vulnerable species [97,98]. Higher mapping accuracy, especially when 

identifying grassland and linear land cover features, could be increased with images possessing 

very-high spectral and spatial resolutions, namely from data having a resolution spanning around 

5m of detail, as suggested by Thornton et al. [99] and Rapinel et al. [100], possibly fulfilled 

through fusion of Sentinel 2 data [101]. Nevertheless, the use of very-high resolution data may 

be prohibitive for SDMs applications over larger areas due to its acquisitions costs. In this 

context, the use of Sentinel-2 data for habitat suitability mapping should be viewed as an effective 

compromise between spatial (10 m) and temporal resolution (5–6 days), as well as its open-data 

policy. Regarding the statistical methods inherent to SDMs, further studies are recommended in 

this research field in order to understand the best robustness of approaches able to handle high 

dimensional data [102], as well addressed to examine the predictive performances of multiple 

algorithms, especially when concomitantly integrated into an ensemble modeling framework 
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[18,43]. This would be particularly interesting when evaluating how sub-sampled group of 

variables (remote-sensing products, topography, landscape variables) may singularly impact on 

the performance of species distribution models. 

Our findings support the potential of remote sensing for mapping microhabitat suitability of rare 

small species, which until recently, was largely impracticable due to resource limitations [103]. 

Sentinel-2 is an open-access resource that provides spatial data at a resolution useful and 

necessary for this task, and, despite its relatively recent release, effective long-term ecosystem 

monitoring at local, regional, and national levels is planned to be continuously ensured by this 

satellite. As such, considering the increasing Sentinel-2 temporal span, future studies on 

conservation planning incorporating information for longer periods, as it is actually done with 

other satellites [104], may be valuable because they more likely minimize the common pitfall of 

assuming stable environmental suitability, and therefore populations persistence, over time 

[105,106]. 

3.5 Conclusions 

Wildlife habitat selection is increasingly understood through the lens of earth observation remote-

sensing instruments, either commercial or open-access. We demonstrated that the use of Sentinel-

2–derived habitat variables, incorporating biophysical, spectral, and structural landscape 

information at fine-scales in different seasons, when integrated into RF machine learning 

methods, may support the identification of potential favorable areas for small and elusive species 

in dynamic landscapes. Overall, our study highlights that super-resolved remote-sensing data 

may provide an important tool for identifying linear habitat features (e.g., [99]). Sentinel-2 may 

provide high-quality and open-access data for fine-scale conservation planning and population 

monitoring, which may be particularly adequate when considering patchily distributed, small, 

rare, and elusive species. Finally, our study supports the view that the integration of detailed 

remote-sensing data into species distribution models is the next stage for linking species 

occurrences to environmental conditions at functionally relevant spatio-temporal scales, which 

is a central issue in ecology and conservation. 
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3.8 Supplementary material 

Figure S1. Variable explanation power as calculated by the Boruta feature 

selection algorithm. Rejected and confirmed features are evidenced by red 

and green boxplots, respectively. No tentative features were achieved. 
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Figure S2. List of retained confirmed variables after the Boruta screening 
procedure, with pairwise correlation coefficients <|0.7|. 
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Table S1. Pairwise correlation scores between all Confirmed features. 

Correlations scores greater than 0.7 are signaled in bold. 
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Abstract  

1. The dramatic impacts of roads on biodiversity are expected to grow globally, demanding the 

search for optimal roadkill mitigation strategies. Despite a growing body of research assuming 

habitat suitability and functional connectivity as proxies for mortality, scant attempts have 

been made to integrate such information in road mitigation plans for multiple species. In this 

study, we pinpoint high-risk road locations for 19 woodland vertebrate species from three 

taxonomic groups (non-flying mammals, birds and bats), with the ultimate intent of 

prioritising and optimising road mortality mitigation plans. 

2. To unveil road planning units, in the Alentejo region (Southern Portugal), we make use of a 

long-term monitoring study (15-year dataset) composed of species occurrence data, roadkill 

records, and high-resolution satellite imageries. We differ from traditional risk assessments 

by identifying remotely sensed habitat metrics for each group, then weighting their 

independent effects together with state-of-the-art functional connectivity models and road 

metrics, to estimate the roadkill vulnerability of each species. By these means, the roadkill 

likelihood variation is further estimated within and between each group to check prediction 

consistency, which ensures flexibility in mitigation planning. 

3. Remote sensing predictors thoroughly describe wildlife habitat suitability, identifying similar 

metrics within each group, with some differences detected in environmental tolerance across 

species. Functional connectivity and habitat suitability significantly explain roadkill patterns 

across species, highlighting connected woodlands and neighbouring matrices. We could 

prioritise road planning units with high accuracy in predicting mortality for multiple species, 

and acceptable probability variation within each group. Some discrepancies in prediction 

consistency yet emerge after group comparisons regarding bats. 

4. Synthesis and applications. Overall, this study demonstrates that spatial convergence in 

mortality patterns for multiple species is attainable by habitat suitability modeling and 

identification of dispersal pathways. Both tools, developed utilising remote sensing 

information, enabled us to highlight persistent corridors intersecting roads that are transversal 

to species with different ecological traits and movement capacity. The applicability of this 

study will facilitate the definition of roadway planning units most pruned to multispecies 

collision with vehicles, endowing road agencies and practitioners to strategically define long-

term, flexible and cost-efficient multitaxa mitigation plans. 
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4.1 Introduction 

The pervasiveness of roads and their continued expansion are seriously affecting the resilience 

of ecosystems and ecological communities around the world, contributing significantly to the 

impoverishment of terrestrial biodiversity (Laurance et al., 2014). This global proliferation of the 

infrastructure network can lead to increased fragmentation and traffic volumes, thereby 

exacerbating wildlife movement constraints and direct mortality through collisions, commonly 

known as roadkill (Forman & Alexander, 1998). Over the past few decades, alarming mortality 

rates have been reported, prompting unprecedented research efforts to understand and mitigate 

road-related wildlife casualties (Pagany, 2020). Still, on European roads alone, hundreds of 

millions of birds and mammals are killed each year, a significant loss possibly threatening the 

survival of some wildlife species (Oddone Aquino, 2021; van der Grift, 2017). To reduce road 

barrier effects and mortality, but also to restore connectivity ("the degree to which the landscape 

facilitates or impedes movements"; Taylor et al., 1993), mitigation structures (e.g., over and 

underpasses; fences) are being designed and planned (Clevenger & Huijser, 2011; van der Grift, 

2017), though they are routinely criticised to have limited effectiveness for multiple species 

(Rytwinski et al., 2016).  

Empirical quantitative approaches, such as roadkill risk models (RRMs), are utilised as 

management guidance to apply mitigation measures at mortality hotspots and/or movement 

corridors of target species (Gunson et al., 2011; Fabrizio et al., 2019). Decisions about site 

selection significantly determine the effectiveness of mitigation structures to implement but 

leading to a challenge when targeting multiple species with distinct habitat requirements and 

movement abilities (Polak et al., 2019). A key habitat, as well as functional connectivity, may be 

approximated for a wildlife group without depending on ecological information, through a so-

called species-agnostic framework (sensu Marrec et al., 2020). In road ecology, this analytical 

approach may offer advantages over species-based connectivity models whenever a wide range 

of species is examined for planning initiatives (Koen et al., 2014). On the other hand, it has long 

been argued that functional connectivity may diverge across species (Zeller et al., 2012), with 

research efforts rarely addressing multiple habitats and corridors hitherto (Brennan et al., 2020). 

Undoubtedly, wildlife is unevenly distributed due to their variety of ecological requirements and 

movement capabilities, outlining multifunctional corridors as a demanding task, yet deserving 

greater consideration in spatial conservation prioritisation (Brennan et al., 2020; Salgueiro et al., 

2021), especially for multiple taxa (Marrec et al., 2020). Furthermore, a neglected issue in RRMs 
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is that studies have merely focused on habitat elements as main mortality drivers (Gunson et al. 

2011; Pagany, 2020), even if road-related mortality can also occur from dispersal movements in 

non-habitat matrix (Vasudev et al., 2015). For this reason, when relating roadkill to 

multifunctional corridors, various movement costs should be accommodated, since species' 

willingness to movements within the matrix could differ during dispersal (Zeller et al., 2012). To 

bridge this gap and improve the efficiency of mitigation measures, it is crucial to approach 

functional connectivity with a focus on dispersal capabilities (Diniz et al, 2020; Vasudev et al., 

2015), as well as to disentangle the effects of habitat and functional connectivity on RRMs (e.g., 

Fabrizio et al, 2019). 

In addition to effectiveness in covering multiple species, a relevant aspect for mitigation 

structures concerns their ability to keep pace with landscape changes over long periods 

(Clevenger & Huijser, 2011). From an ecological standpoint, dealing with landscape dynamics 

has been gradually recognised as an important step in conservation planning and management, 

although scarcely integrated into road ecology (Oddone Aquino, 2021), considering for instance, 

that most RRMs-based studies have focused on a spatiotemporally limited representation of a 

landscape, namely through categorical land cover classes (Gunson et al. 2011; Pagany, 2020). 

On this issue, some authors have also questioned the reliability of categorical landscape products 

as being unable to represent the complexity of biological communities (Cushman et al., 2010), 

while others have pointed to an underestimation of unique habitat elements, which may be crucial 

in particular for smaller species (Kerr & Ostrovsky 2003). To overcome this drawback and 

incorporate landscape dynamics over time, a turning point is attributed to continuous and more 

informative landscape descriptors from satellite remote sensing data (Coops & Wulder, 2019), 

and to pixel-based methods preserving unique spectral/radar information (Schulte to Bühne & 

Pettorelli, 2017). However, despite these advantages and increasingly available information 

(Gorelick et al., 2017), there remains a limitation in how to combine satellite against field data 

to determine key habitat elements, resulting into an interdisciplinary area with little consensus 

(Pettorelli et al., 2014). 

There is still little empirical evidence on whether similar ecological responses to satellite-derived 

habitat metrics can be expressed across a group of wildlife species with similar characteristics, 

which could be beneficial in RRM approaches. This is because a road impact may similarly occur 

across species, resulting in shared ecological responses (Polak et al., 2019; Santos et al., 2016a). 

Implications for connectivity, which are typically considered species-specific (Zeller et al., 

2012), may also arise, potentially converging for a group of species with similar environmental 

preferences and characteristics, as well as dispersal capabilities. The major advantage here lies 

in prioritising conservation measures on planning units (e.g., pixels; see Margules & Pressey, 
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2000) along roads (road planning units; RPUs), by capitalising on the capacity for 'mortality 

prevention' within a wildlife group, though this condition may not hold for different groups are 

considered concomitantly. More specifically, to ensure the effectiveness of mitigation measures, 

in addition to understanding the relative importance of habitat, functional connectivity and 

anthropogenic pressures (e.g., road traffic) influencing road mortality, it is also imperative to 

ascertain whether quantitative models can accurately represent this exposure risk for various 

species from different groups, as their comprehensive integration into management plans have 

been mostly neglected (Polak et al., 2019).  

In this study, we make use of long-term (15 years) monitoring datasets on species occurrences 

and road mortality to optimise RRMs that offer support and guidance in identifying high-priority 

road locations to implement concrete and effective mitigation of multiple species mortality. We 

selected 19 vertebrate species belonging to three taxonomic groups: non-flying mammals, birds, 

and bats. Specifically, we aimed to: (1) evaluate the utility of remotely sensed habitat metrics in 

describing species occurrence; (2) quantify the relative contribution of species-specific habitat, 

functional connectivity and road metrics in explaining spatial patterns of road mortality; and (3) 

identify road locations with the highest agreement in long-term mortality predictions, for the 

greatest number of species in each group and across groups. 

4.2 Materials and Methods 

Study Area 

The study area is located in the Évora district (≅110 km E from Lisbon, southern Portugal; Figure 

1) and it is bisected by a major transportation corridor linking Lisbon to Madrid. The area, 

characterised by a Mediterranean climate, encompasses more than 621,000 ha of gentle terrain, 

with a landscape dominated by the so-called montado agroforestry system, here composed of a 

mosaic of open areas (pastures) and evergreen forests (mostly Quercus suber and Quercus 

rotundifolia) (Pinto-Correia & Godinho, 2013; Godinho et al., 2018). The montado is classified 

as "High Nature Value farming system" meaning that it holds a high biodiversity, while also 

being of remarkable socioeconomic value (Pinto-Correia & Godinho, 2013). Other land uses 

present in the study area include olive groves, vineyards, while pine and eucalyptus wood forestry 

occur sparsely. 
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Figure 1. Study area location (a) in SW Europe, Alentejo region (southern Portugal); and (b) a true-colour 

satellite image composition (Landsat path 203 rows 33 and 34, and path 204 row 33 footprints) combining 

RGB bands from Landsat (7/8) images (May 2015), layered with cities, major roads and monitored roads. 

The number of sampled species (species richness) is illustrated in the marginal histograms, summarising 

the sampling effort in terms of frequency and distribution along the longitudinal and latitudinal axes. The 

three left panels (c), differentiated per taxonomic group, depict roadkill survey effort for selected species 

on monitored road stretches. 

Major threats to the montado system are attributed to the intensification of agricultural practices, 

but also inappropriate forest harvesting, all of which is leading to increased disturbance dynamics 

fragmenting the landscape and compromising functional connectivity, jointly with roads 

(Carvalho & Mira, 2011; Pinto-Correia & Godinho, 2013; Machado et al., 2020; Valerio et al. 

2020). 

Methodological framework 

A framework conceived the prime methodology (Figure 2). 
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Figure 2. The schematic methodological framework, with arrows guiding the development of the three 

main sub-tasks (a, b, c). The upper scheme (a) illustrates the task inherently collection and correction of 

imagery data collected from different earth observation satellites, then how the calculated habitat metrics 

were organised, here depicted by different color on the basis of biophysical parameters they describe. All 

this information was then structured into intra-annual time series and archived in a data cube, which 

allowed the occurrence multi-year data extraction for SDMs, and predictive analysis. The central scheme 

(b) concisely illustrates the task pertaining the preparation of input data for functional connectivity 

models, namely the nodes and resistance surfaces generation through SDMs, as well is exemplified how 

the list of likely connections between pairwise nodes varied following changes in probability of 

connectivity (PC), derived by transformed resistance surfaces. So, functional connectivity models were 

computed for each species through GFlow (circuit theory). The lower scheme illustrates the final task, 

namely the preparation of roadkill data and RRMs analysis including species-specific habitat, functional 

connectivity and road predictors; then, the processing of roadkill probability variation (CV) within and 

between taxonomic groups. The objectives of the study are represented (1, 2, 3), whereas the description 

of each abbreviation is detailed in the following paragraphs. 

Data acquisition and primary processing 

Environmental information for the study relied on high resolution satellite remote sensing 

imagery (Figure 2a). Wildlife occurrence data were gathered for the entire study area 

encompassing the roads on which roads were monitored, and the surrounding landscape (Figure 

1b). Collection of each data source (remotely sensed data, species occurrences and roadkill) was 

carried out over a long-time span, from 2005 to 2020. We targeted different wildlife taxonomic 

groups (non-flying mammals, birds, and bats), corresponding to 19 focal forest-dwelling species 

(Appendix S1.1; Table S1.1), with varying degrees of habitat specialisation and dispersal 

capabilities. 



 

114 
 

Cloud-free Landsat satellite imagery was collected and pre-processed in Google Earth Engine 

(GEE) (https://earthengine.google.com; Gorelick et al., 2017). The Landsat collection 1 Tier 1 

was selected, including surface reflectance datasets from Landsat-5 (TM), Landsat-7 (ETM) and 

Landsat-8 (OLI/TIRS) (USGS; https://www.usgs.gov), at 30m resolution. Selected spectral 

bands, corresponding to blue, green, red, near infrared (NIR), short-wave infrared 1 (SWIR1) 

and short-wave infrared 2 (SWIR2) were retained for each of the 645 imageries collected (μ≅41 

per year; Table S1.2), which were prior subject to careful verifications, mainly quality corrections 

and calibrations (Appendix S1.2; Figure 2a). Radar imagery data at 30m resolution, namely the 

digital elevation model NASADEM and the Phased Array type L-Band Synthetic Aperture Radar 

(PALSAR), specifically PALSAR‐1 and PALSAR‐2, was also retrieved from the Advanced 

Land Observing Satellite ALOS and ALOS-2 missions (ESA; https://earth.esa.int), followed by 

data conversion (Appendix S1.2; Figure 2a). 

Species occurrence data were compiled from several projects conducted in the study area by the 

University of Évora team, all following best practices for systematic surveys (Appendix S1.3). 

Non-flying mammals occurrence data was obtained from linear transects targeting species' 

presence signs (e.g., footprints; Appendix S1.3; Herrera et al., 2016). Bird occurrences were 

obtained from 10-minute point counts conducted during the breeding season at early dawn and 

with suitable weather conditions (Salgueiro et al., 2018). Bat activity data came from sample 

surveys that combined linear transects, point counts conducted after dusk, and roost surveys (see 

details in Medinas et al., 2013; Medinas et al., 2021; Appendix S1.3). Bat detectors were used in 

these campaigns, followed by a review of echolocation calls for species identification. For all 

species, spatially or qualitatively inaccurate data was discarded, as well as redundant data from 

overlapping surveys, by using a data thinning procedure, where a distance filter was set by an 

average of home-range sizes to downweight co-dependent observations (Valerio et al., 2019). In 

this procedure the initial dataset was reduced from 67237 into 5725 records (μ=125.9 presences, 

μ=174.4 absences per species; Appendix S1.4 and S1.5; Tables S1.3 and S1.4). 

The roadkill dataset was obtained from a long-term standardised road survey protocol for all 

species, that included road sections (N114, N4 and N18 national roads), totalling up to 102 km. 

Surveys were conducted by a single observer at reduced car speed (μ≅30 km/h) to maximise 

species detectability, at sunrise to minimise carcass removal by scavengers (Santos et al., 2011). 

Some road sections were not surveyed for the entire sampling period (Figure 1b; roads B and C). 

However, roadkill numbers were relatively similar along all road stretches, softening the bias 

from differences in sampling effort between road stretches (Figure 1b). Roadkill monitoring was 

performed daily for most of the years, although there were periods with weekly surveys (2006-

2008, 2014). However, as we were working with the sum of roadkill (and no year-to-year 

https://www.usgs.gov/
https://earth.esa.int/
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comparisons are made), that should not affect our conclusions. A total of 5794 roadkill records 

were considered for the analysis. 

Remote sensing-based habitat metrics 

Intra-annual time series for habitat metrics were developed to secure consistent spatiotemporal 

information on landscape patterns (Figure 2a). Metrics were pooled into six predictor groups: 

"Spectral bands" previously mentioned, given the efficiency in optical spectral properties for 

identifying landscape elements at high spatial resolution (Valerio et al., 2020); "Spectral indices", 

describing phenological patterns of vegetation such as biomass (BNDVI, NDVI, EVI, MSAVI2), 

water content (NDII, NDWI, MSI) and senescence (PSRI, SWIR32); and "Thermal infrared", 

utilised to infer landscape surface temperature (LST) (Table S1.5). Also, horizontal vegetation 

complexity was characterised in the form of second‐order “Textural indices” (GLCM_H, 

GLCM_E, GLCM_M; Table S1.5; Haralick, 1979), and parameterised according to Godinho et 

al., (2018). Finally, radar-derived predictors were identified as "Topographic", describing 

wetness index (TWI), as well "L-band SAR polarisations" through the PALSAR predictors (HH, 

HV), that allow to penetrate the vegetation overstorey to infer vertical vegetation complexity 

(Table S1.5; Le Toan et al., 1992). This portfolio dataset covered prime biogeophysical aspects 

of the montado agroforest ecosystem (Godinho et al 2018; Valerio et al., 2020), including 

ecological inferences on tackled wildlife species, in geographically close areas (Medinas et al., 

2021; Regos et al., 2020; Santos et al., 2016b). Time series were repeatedly collated within each 

year using the median across metrics, resulting in 316 fine-grained predictors (21 metrics per 

year), developed in GEE and stored as data cube (Gorelick et al., 2017; Figure 2a). Metric details 

are provided in Supporting information (Appendix S1.6). 

Determining significant habitat metrics for species and taxonomic groups 

Quantifying meaningful metrics describing habitat suitability involved building species 

distribution models (SDMs; Figure 2a; Elith & Leathwick, 2009) with Random Forests classifiers 

(Breiman, 2001). These were performed in R statistical environment (v.3.6.3; R Core Team, 

2016) using "Boruta" (v.7.0.0) and "randomForest" (v.4.6-14) packages. The response variable 

(species occurrence data, namely presence/absence set with 0.5 of prevalence; Appendix S1.7) 

was organised to temporally match annual habitat metrics (remote sensing data) (Figure 2a). 

Then, Boruta calculation was applied to 'confirm' or 'reject' predictors (Kursa & Rudnicki, 2010), 

through 2000 runs with as many trees, and by a mean Z-score (0.01 p-value threshold; Valerio et 

al., 2020). Predictors' significance was assessed by comparison with their randomised copies 

(Kursa & Rudnicki, 2010). Multicollinearity problems were reduced by discarding predictors 

until values of Variance Inflation Factor (VIF) were negligible (VIF≤5), and Pearson correlation 

coefficient indicated no strong correlation among predictors (|r|<0.9) (Millard & Richardson, 
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2015). Following a parameter tuning for SDMs (detailed in Supplementary material; Figure 2a), 

sensitivity, specificity, error rate (%) and area under the receiver operating characteristic curve 

(AUC; Fielding & Bell, 1997) were estimated through 10-fold cross-validation runs, to assess 

the performance of the multivariate Random Forests models. We employed AUC threshold 

scores of 0.6≥AUC≥0.7, 0.7≥AUC>≥0.8, and AUC≥0.9, to define model discrimination capacity 

as 'acceptable', 'excellent' and 'outstanding', respectively. The relative contribution was obtained 

from each SDM to determine the top-performing predictors influencing species occurrence. In 

addition, we selected the average of relative contribution between predictors to identify those 

potentially useful for further analysis (RRMs). Partial dependence plots were also computed, to 

assess the species' ecological responses to predictors. 

Functional connectivity analysis 

To incorporate the environmental variability into our predictive analysis, we performed inter-

annual collations of habitat metric time series, allowing to each of SDMs, a spatiotemporal 

interpolation over the entire 15-yr period. Remote sensing was incorporated into connectivity via 

SDMs, from whose resistance surfaces and nodes were constructed (Figure 2b). Linear and non-

linear transformation functions (Eq. S1.1; Trainor et al., 2013) were applied on the SDMs at 3-

degree scores (c=0.25, c=0.5, c=8; Valerio et al., 2019) to simulate movement cost scenarios by 

progressively reducing costs on resistance surfaces. The connectivity analysis for each species 

was performed in a two-step process. First, a graph-based approach analysed the landscape spatial 

configuration, identifying the strength of connections between each pair of nodes (Diniz et al., 

2020). Nodes were selected as habitat patches by converting each SDM into a categorical, 

species-specific binary (habitat/non-habitat) classification (Appendix S1.8) (Moilanen, 2011; 

Salgueiro et al., 2018). The probability of connectivity (PC) (Equations S1.2; Saura & Pascual-

Hortal, 2007) between each pair of nodes was calculated in Conefor-Sensinode (v.2.2; Saura & 

Torné, 2009), by weighing the habitat amount within a node and species dispersal distances 

(Table S1.6; Appendix S1.9), and the functional distance between nodes, in turn dependent on 

the selected resistance surface (Figure 2b; e.g., Salgueiro et al., 2021). Using this procedure, only 

resulting linkages with PC > 50% were retained for further analyses, and compiled as a list of 

pairwise linked nodes. Second, following the omniscape method, with circuit-theoretic analysis 

(McRae et al., 2008) we evaluated multiple alternative routes as current flow between the list of 

linking nodes (e.g., Salgueiro et al., 2021). Current was set to flow between each set of linked 

nodes subjected to the resistance surface (Figure 2b) using GFlow (v.0.1.7; Leonard et al., 2016). 

In total we produced 57 fine-grain potential connectivity models (19 species * 3 movement cost 

scenarios). 

Quantifying intra and inter-group roadkill risk optimisation efficacy 
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RRMs multiscale models were performed to spatially prioritise RPUs, and examine the 

agreement in mortality predictions within and between taxonomic groups. First, roadkill 

occurrences were used as a response variable (presences and pseudo-absences; Appendix S1.10) 

to quantify the relative contribution of species-specific "Habitat predictors", "Connectivity 

predictors" and "Road predictors" in explaining spatial mortality patterns. "Road predictors" 

(Figure 2c) included road and culvert features (traffic density percentage, culverts density 

percentage, distance from culverts, and road width) (Carvalho & Mira, 2011; Medinas et al., 

2013; Appendix S1.11). Multiple scales were systematically applied through moving windows 

over "Habitat predictors" and "Connectivity predictors" (Figure 2c), with windows of 3X3 

(≈100m) and 16X16 (≈500m) grid cells (following Carvalho et al. 2011; Medinas et al., 2013). 

The modeling procedure was performed using Boruta, previously mentioned. Multivariate 

Random forests classifications to perform RRMs were conducted with "randomForest" (v.4.6-

14) package. (Figure 2c). We determined the top-performing predictors, and correspondent 

predictor group, by calculating their relative contribution to the models. Predictors were then 

screened for multicollinearity and model evaluation was performed as for SDMs (Figure 2c). 

Within each taxonomic group (Figure 2c), RRM binary maps (see Appendix S1.10 for the 

thresholding procedure) underwent an overlay to obtain a cumulative distribution frequency of 

RPUs to spatially inform about the maximum number of species subjected to high mortality 

exposure, here intended as mortality richness and utilised as priority ranking method. Secondly, 

by using the previous threshold, high risk probability values from RRMs were aggregated to 

analyse RPUs agreement in covering mortality for multiple species and taxa (e.g., intra- and inter-

groups). For this purpose, we only considered RPUs where at least one species of each taxonomic 

group was identified at high risk of mortality. To ensure more flexibility in spatial planning, the 

variation in risk probability (RRMs), within each group, was assessed by using the coefficient of 

variation percentage (%CV; Figure 2c). The lower the variability of RRMs probabilities, the 

higher is the agreement among species and the higher is the intra-group flexibility of mitigating 

impacts beyond prioritised RPUs. That said, for this study we considered a CV of 30% as an 

'acceptable' flexibility threshold. Statistical differences in %CV of RRMs probabilities within 

RPUs were further investigated for inter-group flexibility in spatial mitigation planning, 

determined utilising the D'AD test (Feltz & Miller, 1996) in the R package “cvequality” (v.0.2.0, 

Marwick & Krishnamoorthy, 2018), wherein a P≤0.05 was set to reject the hypothesis of no 

difference in variance between groups. 

4.3 Results 

Habitat suitability drivers among wildlife taxonomic groups 
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Habitat metrics based on remotely sensed data, and analysed with SDMs, resulted in good 

performances for most of the selected species. Non-flying mammals achieved 'excellent' 

accuracy scores (AUC μ=0.75; error rate μ=31.42%), together with birds (AUC μ=0.7; error rate 

μ=35%), whereas bats obtained the lowest, though 'acceptable' scores (AUC μ=0.67; error rate 

μ=38.16%) (Appendix S2.1). "Spectral indices" predictors (MSAVI2, EVI, NDVI, BNDVI, 

NDWI, NDII) were all identified as top-performing for describing occurrence patterns in non-

flying mammals, followed by "L-band SAR polarisations" predictors (HV) (66.6% of species). 

The latter group was also the most representative for birds (62.5% of species), followed by 

"Spectral indices" (PSRI and SWIR32) (62.5% of species)."Thermal infrared" (LST) was the top-

performing predictor for bats (Figure 3) (80% of species), followed by "Spectral indices" (PSRI 

and SWIR32) (80% of species). 

Figure 3. The relative contribution (%) of predictors in explaining species occurrence: non-flying 

mammal, bird and bat species. Bar colours indicate the predictor group, while the vertical dashed lines 

(averaged importance values) were used to discriminate predictors to use for further RRMs analysis (the 

ones at the right side of the line). 

We found similar ecological responses among species in each group (Figure 4).  



 

119 
 

Figure 4. Partial dependence plots, scaled on occurrence probability (SDMs), showing interactions 

between the two most important habitat metrics for non-flying mammal, bird and bat species. High 

probabilities of species occurrence are coded in yellow, while low probabilities are coded in dark blue. 

Further details on the response curves for relevant predictors pertaining SDMs are supplied in Appendix 

S2.1. 

Non-flying mammals held positive relationships with higher vegetation biomass (MSAVI2, EVI, 

NDVI, and BNDVI) and structure (HV), while higher habitat suitability was observed with areas 

of low vegetation water stress (lower values of NDWI and NDII). The occurrence of birds 

responded positively to vegetation structure (HV), as well to low vegetation stress and senescence 

(lower values of NDWI, PSRI and SWIR32). Bats responded negatively to high temperatures 

(LST), while again showing a similar response to non-flying mammals and birds for stressed 

areas (PSRI and SWIR32). Also, for analogous metrics detected in each group, differences in 

environmental tolerance (amplitude) are observable, showing varying habitat specialisations. 

Disentangling habitat, connectivity and anthropogenic influence on roadkills 

After retaining the best scales from uncorrelated predictors (see Appendix S2.2 in the RRMs 

section), evaluation metrics for the RRMs models indicated 'excellent' performances in predicting 

roadkills, with slight differences detected among species (AUC μ=0.84 and error rate μ=22.3; 

further details in Appendix S2.2). "Habitat predictors", which were selected as influencing 

species occurrence (SDMs), resulted significant also for predicting roadkill patterns (RRMs) (in 
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Appendix S2.2). Similar ecological responses were also detected in RRMs to those observed in 

SDMs, along with positive responses for most important "Connectivity predictors” and "Road 

predictors" (Appendix S2.2). As depicted in Figure 5, "Connectivity predictors" were top-

performing in explaining roadkills for non-flying mammals (66.6% of species), while for bird 

and bat species "Connectivity predictors” and "Habitat predictors" shared the same importance.  

Figure 5. The relative contribution (%) of Habitat, Connectivity and Road predictors for explaining 

roadkill patterns (RRMs) of non-flying mammal, bird and bat species. Bar colours indicate the typology 

of the predictors. The "sc" suffix is relative to the retained scale (0, 100, 500), with "Ct" indicating the 

species-specific connectivity scenario used, and the score of the "log" suffix corresponding to the applied 

degree of the transformation function (0.25, 2, 8). 

Functional connectivity performed better when high function scores (c=8; lower movement cost) 

were applied for non-flying mammals (75% of species), while for birds and bats the function 

scores that perform better were low (c=0.25; higher movement cost) (60% of species) and 

medium-high (c=2 and c=8) (50% of species), respectively. Regarding the importance of "Road 
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predictors", traffic density percentage, was the most important in explaining mortality only for 

two species, red fox and Kuhls' pipistrelle. 

RPUs prioritisation and roadkill risk uncertainties assessment between wildlife 

taxonomic groups 

RPUs with the highest richness scores, to identify risky mortality locations across taxonomic 

groups, were predominantly found in the southern part of the study area (road N114), as well as 

in the south-western and partly northern areas (road N4), with scarce risk found in the eastern 

area (road N18) (Figure 6a).  

Figure 6. RPUs with number of species (richness) subject to high mortality risk (Figure 6a), and 

histograms showing the RPUs frequency according to richness scores, for each group (Figure 6b). RPUs 

covering all the taxonomic groups indicating multispecies mortality risk for mitigation planning, layered 

with RGB bands from Landsat (7/8) images. Darker areas, notably vegetated areas (e.g., forests, riparian 

habitats), corresponds to higher roadkill risk locations for multiple species (dark violet) (Figure 6c). For 

each group, %CV boxplots are depicted with the interquartile range, minimum, maximum, median and 

outliers, together with D'AD scores, wherein the * symbol indicates P≤0.05, hence no agreement in 

variation between groups (Figure 6d). 

All groups showed a decreasing trend in RPUs frequency as richness increases, where RPUs with 

maximum species richness represented a remarkable small proportion compared to others (9.1% 

for non-flying mammals, 8.9% for birds, whilst 11.6% for bats) (Figure 6b), corresponding to 

prioritised RPUs with ameliorated focus for allocating resources for mitigation. Within RPUs 

representing the three groups with at least one species, priority locations for multitaxa mitigation 

planning were identified by considering the overall species richness across all groups (Figure 6c). 

Also, the median %CV showed a relatively low variability for non-flying mammals and birds 
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(%CV≅14), whilst higher for bats (%CV≅27) (Figure 6d), generally indicating an 'acceptable' 

score, hence intra-group flexibility beyond prioritised RPUs for resource allocation. Between 

taxonomic groups, there were significant differences in variability (%CV) of RRMs probabilities 

between non-flying mammals and bats, and between birds and bats. Variability differences were 

not significant between non-flying mammals and birds, here supporting an inter-group flexibility 

for allocating resources beyond prioritised RPUs (Figure 6d). 

 

4.4 Discussion/Conclusions 

Usefulness of remotely sensed habitat metrics in describing species occurrence 

By combining remote sensing information with wildlife occurrences, this study showed that 

SDMs can greatly benefit from the use of complementary habitat metrics derived from optical 

multispectral and radar data. The potentialities in using optical and radar data fusion approaches 

for mapping species distributions have recently been highlighted in the literature, yet their use is 

still in its infancy (Schulte to Bühne & Pettorelli, 2017). Here, for non-flying mammals, the use 

of spectral indices related to ecosystem productivity (MSAVI2, EVI, NDVI, and BNDVI) has 

been shown to play a primary role in explaining species occurrence. In general, higher values of 

MSAVI2, EVI, NDVI and BNDVI are related to environments with high levels of productivity, 

which may reflect greater vegetation cover and resources availability (e.g., shelter and food; Kerr 

& Ostrovsky 2003; Pettorelli et al., 2011). Nevertheless, the relative importance of each 

vegetation index varied across species. For the common genet, a forest specialist, the low 

occurrence probabilities predicted over a low range of MSAVI2 values, represents the reluctance 

of this species to occur in areas with scarce vegetation cover (Valerio et al. 2019), which was 

better captured by the MSAVI2 index than by EVI, NDVI or BNDVI, likely due to its better 

ability to minimise the influence of soil on the spectral signal from the sparse vegetation cover 

component (Qi et al., 1994). The observed better EVI index association with stone marten and 

European badger occurrences, is consistent with previous work (Santos et al., 2016b), and can be 

explained by their similarities in complementing forests with high canopy cover conditions, 

jointly with open habitat mosaics of lower cover conditions (Santos & Santos-Reis, 2010). On 

this issue, species with more opportunistic habits, namely Egyptian mongoose, red fox, and wild 

boar, showed an even higher tolerance to sparse vegetation conditions as evidenced by the 

importance of NDVI and BNDVI indices to explain these species occurrences, where both 

indices are characterised by a weaker sensitivity to canopy density when compared to EVI 

(Pettorelli et al., 2011). Forests vertical structural attributes, as described by the L-band SAR HV 

polarisation, showed a relevant predictive capacity for non-flying mammals. The positive 
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relationship observed between HV backscatter values and the presence of these species may 

reflect a general favourability of mature forests, in the sense that the higher the HV values, the 

higher the trees, canopy cover, as well as aboveground biomass levels (Flores-Anderson et al., 

2019, Pettorelli et al., 2014; Yu and Saatchi, 2016). Birds occurrence is also greatly influenced 

by the L-band SAR HV index, showing a stronger forest dependence. This is particularly 

observed in forest specialists (e.g., nuthatch, crested tits) when compared to more generalist 

species (e.g., great tit, European serin), having a higher tolerance towards lower HV values. 

These findings suggest that forest vertical structure relates to habitat requirements, demonstrating 

that the inclusion of radar information, in particular L-band HV polarisation, is useful in 

predicting the occurrence of bird species (Bergen et al., 2007). Even though this study was 

focused on using PALSAR's L-band backscatter data for SDMs, the obtained results highlight 

the relevance of the upcoming NASA Indian Space Research Organisation (ISRO) Synthetic 

Aperture Radar (NISAR) mission (to be launched in 2022), which will provide L-band data at a 

higher spatial and temporal resolution (NISAR, 2020). Unlike Regos et al. (2020), we could not 

report a significant influence, by LST, for describing bird species occurrences. Importantly, the 

current findings additionally highlighted a general avoidance of stress areas (NDWI, PSRI, 

SWIR32), possibly attributable to drought stress in Mediterranean ecosystems (Santos et al., 

2016b). Besides water-deficient areas, bats also avoided those prohibitively warm (LST), for 

which the most generalist species (e.g., soprano, common pipistrelle) exhibited the greatest 

thermal tolerance. This raises the hypotheses that the warmest areas identified by LST might hold 

scarcer resources (Friedl, 2002), and in Mediterranean regions, a higher favourability towards 

cooler areas may relate with greater water availability and woodland cover, but also with foraging 

opportunities and proximity to riparian habitats (Dietz, 2016; Medinas et al., 2021). Remotely 

sensed metrics from SDMs explained most of the species occurrences, providing useful insight, 

and observational evidence of similar ecological responses for species within the same taxonomic 

group. 

Contributing factors to roadkill 

We could demonstrate that roadkill patterns are not randomly distributed and can be predicted 

by the different types of metrics. Top-performing predictors of roadkill, were more associated to 

functional connectivity than habitat for non-flying mammals, whereas both connectivity and 

habitat were equally important among bird and bat species. Moreover, many of the predictors 

retained from SDMs are also important for explaining roadkill risk. For non-flying mammals, the 

higher performances of low movement cost scenarios, from RRMs, can be associated with 

periods characterised by greater mobility, such as during dispersal (Grilo et al., 2009), with higher 

landscape permeability, and roadkills additionally occurring in non-habitat matrix (Diniz et al., 
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2020; Vasudev et al., 2015). In Mediterranean systems, this is explained for ungulates and 

mesocarnivores by a high roadkill risk not only circumscribed to forest areas, but jointly to the 

surrounding matrix of more open areas (Malo et al., 2004). Birds showed better performances 

associated with higher movement costs scenarios, which may derive from a more pronounced 

matrix avoidance during road-crossing events, while for some species (e.g., crested tit, great tit, 

chaffinch), the higher performance of habitat metrics may be explained by a foraging behaviour 

strategy surrounding roads, namely foliage/bark gleaning, which was previously described as 

among the strongest roadkill drivers (Santos et al., 2016a). Regarding bats, for opportunistic 

species (e.g., common pipistrelle) we found roadkill related to movements in non-habitat matrix 

(given the low movement cost scenarios), including open areas, also used for hunting (Dietz, 

2016). Conversely, for less generalist species (e.g., Soprano pipistrelle), mortality was more 

pronounced in areas of high connectivity closer to woodlands, as well as riparian corridors, being 

both elements leveraged as landmarks during flight orientation, and representing areas where bat 

activity is more pronounced (Dietz, 2016; Medinas et al., 2021). For cases of higher mortality 

risk associated with habitats, this might be due to habitat elements influencing movements along 

roads, which may be the case of edge-adapted species (e.g., serotine bat) (Tink et al., 2014), 

and/or deriving by the difficult representation, at the landscape level, of suitable roosting 

conditions (e.g., lesser horseshoe bat; Dietz, 2016). Road predictors (road traffic) were important 

in explaining roadkills for some species (e.g., for red fox, Kuhls' pipistrelle), and despite this is 

an aspect deserving further investigation, it is possible that some characteristics, such as being 

habitat generalists and common species with a wide distribution, may have diluted the influence 

of landscape patterns in driving roadkill (e.g.; Santos et al., 2013). Here we clarify the various 

effects shaping wildlife road mortality according to the taxonomic group, landscape 

characteristics and ecologically relevant scales analysed, offering new findings, as well as in 

agreement with previous research (Carvalho et al. 2011; Gunson et al. 2011; Medinas et al., 

2013). 

Mitigation optimisation of RPUs over long-term  

To our knowledge, this is the first attempt to predict road mortality across multiple taxa, while 

considering a high resolution (30X30m pixels) and a long study period. Results for each 

taxonomic group showed that for RPUs integrating both high mortality risk and richness scores, 

represent 9 to 12% (depending on the group) of all RPUs, and hence conveniently unveiling risky 

areas for multiple species with different degrees of habitat specialisation, home-ranges and 

dispersal abilities that should be a priority for mitigation. Additionally, to optimise resource 

allocation in mitigation structures and maximise financial return, an overlap across all taxonomic 

groups identified RPUs potentially offering a comprehensive mortality protection, including 
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species from all the three studied taxonomic groups. This represents a further step in 

environmental impact assessment, which is most relevant when considering that the need for 

broad biodiversity representation in conservation planning and action is paramount (Margules & 

Pressey, 2000), to effectively apply the scarcely available resources (Polak et al., 2019). Besides, 

when investigating the mortality risk prediction ability of RPUs, results revealed relatively low 

variation scores within each group. Moreover, no significant differences in variation were found 

between non-flying mammal and bird groups. Our findings suggest an intra and inter-group 

agreement in mortality prediction, that may be explained by an overlap between habitats, which 

is common in Mediterranean forest ecosystems (Santos & Santos-Reis, 2010), jointly with a 

woodland connectivity that similarly accommodates species, at least with 'medium' dispersal 

abilities (see Machado et al., 2020). For the sake of practicality, the current results give decision-

makers more flexibility in implementing mitigation measures beyond best RPU sites, ensuring 

facilitated decision agreements between conservationists and road managers during the strategic 

planning phase (Rytwinski et al., 2015; van der Ree et al., 2015). This may be relevant when 

allocating conservation resources, as unexpected factors can often influence the application of 

designed structures on desirable sites (van der Grift, 2017), for example due to overlooked 

topographic conditions, or when it is more costly-efficient to adapt existing structures, such as 

culverts (Rytwinski et al., 2015; van der Ree et al., 2015). Interestingly, although the adaptation 

of culverts to multi-use is thought to benefit mostly generalist species in human-dominated 

landscapes (Clevenger & Huijser, 2011), an optimisation still seems feasible given the present 

findings for RPUs encompassing both specialist and generalist species. Culverts are often 

supplemented with fencing for non-flying mammal species (e.g., mesocarnivores; Clevenger & 

Huijser, 2011), and results suggest that strategically applied fences can simultaneously help to 

reduce mortality for birds as well, resulting into so-called opportunity costs for applied measures 

(Armsworth, 2014). Nevertheless, other frameworks at the structure and design level are needed 

to provide further support for post-hoc mitigation effectiveness regarding multiple taxa (e.g., 

BACI; Rytwinski et al., 2016). Bats show greater, even though acceptable, intra-group variation 

in mortality risk, but significant divergence emerged when compared to other groups. The latter 

may derive from the larger home-range sizes and travelled distances (Dietz, 2016), which may 

have led to divergent mortality patterns. Our method can be used to spatially define the most 

efficient measures that benefit the greater and more diverse number of species, with results also 

pointing at some possible flexibility in the location of the roadkill mitigation measures for single 

or multi taxonomic groups without hindering the main goals of the conservation plan. 

Nevertheless, it should be stressed out that in specific cases when mismatches occur across 

species or taxonomic groups, prioritisation of RPUs with highest predicted richness is preferable, 

even at the expense of flexibility towards those sub-optimal. We further advise caution towards 
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species-agnostic connectivity frameworks (e.g., Koen et al., 2014), as it may not always be 

generalisable as a mitigation guidance for multiple taxa. 

The roadkill sampling campaigns on which our study was based covered a longer time period 

than the norm, and while a consequent limitation may lie in delayed implementation of 

conservation actions, on the other hand, it allowed for supporting a higher efficacy of mitigation 

measures over extended study periods (Rytwinski et al., 2016). Such a larger temporal scale also 

allowed to minimise data gaps, which may be determinant in the strategic planning phase 

(Armsworth, 2014). To secure the reliability of conservation planning efforts over long-term, 

remote sensing information can help to address the problem of stochasticity in landscape 

dynamism, while its integration into fine-grain connectivity can enable the characterisation of 

habitats sufficiently large and persistent to ensure immigration/emigration rates between 

populations, thus viability. Across the landscape, by inferring structural, functional and 

demographic connectivity components (e.g., habitat amount), we contextualise RPUs into a 

larger corridor network composed of multiple meaningful and resilient pathways, which are key 

elements for optimal mitigation planning along roads (Clevenger & Huijser, 2011), while to 

promote the prevention of populations genetic drift for multiple generations (Cosgrove et al., 

2018). Biodiversity alone can constitute a solid guideline for determining the conservation value 

of a planning unit during prioritisation (Margules & Pressey, 2000), and while we do not 

explicitly include theoretical costs associated with RPUs, the proposed pixel-based framework is 

designed to represent an original baseline for forward-looking cost-effectiveness formulations 

(e.g., B/C; Kujala et al., 2018), heightening its applicability in real-world contexts. We 

recommend conservation planners consider top-performing habitat metrics here selected for each 

studied taxon, along with connectivity and road predictors for comprehensive RRMs evaluation. 

We also advocate for scrutiny of spatial predictions and evidence-based optimisation for long-

term planning strategies targeting multiple taxa, along with the consideration of trans-disciplinary 

research for solving conservation problems (Pressey et al., 2017; Rose et al., 2019). 
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3.7 Supplementary material S1 

1.1 Selected species. 

Prior analysis, migratory behaviour was selected as a species exclusion criterion. Such a step 

was considered necessary to avoid confounding intra-year ecological responses, while for non-

migratory species and in specific bats, minimising variations in phenological traits was 

checked, by including only species including only species that also frequent hibernation areas 

as for breeding (Smeraldo et al., 2017). 
 

Supplementary table S1.1. Selected species and representative taxonomic group. 

 

 

1.2 Remote sensing data correction and calibration. 

Landsat scenes (Landsat-5, Landsat-7, Landsat-8), considering the case study, constituted the 

non-commercial solution for satellite imageries holding the highest spectral, radiometric and 

spatiotemporal detail (16-day repetition and 30m spatial resolution; Wulder et al., 2019). In 

order to avoid biases, each image, belonging to the Landsat-5 and Landsat-7 satellites, was 

subjected to the Landsat Ecosystem Disturbance Adaptive Processing System protocol 

(LEDAPS; Masek et al., 2006), as well the Land Surface Reflectance Code (LaSRC; Vermote 

et al., 2016) regarding Landsat-8, which was required for both calibration and atmospheric 

correction to surface reflectance. Regression coefficients were utilised to harmonise spectral 

and radiometric data from different sensors (Roy et al. 2016). Then, once images were 

calibrated, artifact pixels suffering from cloud contamination, shadows and other anomalies 

(e.g., oversaturation) were masked out from each scene throughout quality assessment bands 

(QA), these created utilising the CFmask (C version of "Function of mask" algorithm; Foga et 

al., 2017; Zhu & Woodcock, 2012; Zhu et al., 2015). The missing data was filled with the 

"Phase-2 gap-filling" algorithm (USGS, 2004), applied to correct the notorious failure of the 

scan-line corrector pertaining the Landsat-7 sensor. In addition, as striping data from Landsat-

7 scenes was markedly pronounced, such information was incorporated only under conditions 

of complete absence of data from other satellites, namely during the year 2012 (Table S1.2). 

Common name Binominal name Group 

Common genet Genetta genetta (L. 1758) 

Non-flying 

mammals 

Stone marten  Martes foina (Erxleben 1777) 

European badger  Meles meles (L. 1758) 

Egyptian mongoose  Herpestes ichneumon (L.1758) 

Red fox  Vulpes vulpes (L. 1758) 

Wild boar Sus scrofa (L. 1758) 

Nuthatch  Sitta europaea (L. 1758) 

Birds 

Crested tit  Lophophanes cristatus (L. 1758) 

Woodlark  Lullula arborea (L. 1758) 

Great tit Parus major (L. 1758) 

European serin  Serinus serinus (L. 1766) 

Eurasian blue tit Cyanistes caeruleus (L. 1758) 

Cirl bunting Emberiza cirlus (L. 1766) 

Chaffinch Fringilla coelebs (L. 1758) 

Lesser horseshoe bat  Rhinolophus hipposideros (Bechstein 1800) 

Bats 

Serotine bat  Eptesicus serotinus (Schreber 1774) 

Common pipistrelle Pipistrellus pipistrellus (Schreber 1774) 

Kuhls' pipistrelle Pipistrellus kuhlii (Kuhl 1817) 

Soprano pipistrelle  Pipistrellus pygmaeus (Leach 1825) 
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Likewise, the same approach was applied for the whole collection regarding problematic 

meteorological periods in the study area, namely during the predominant cloud cover in 

January and February, whose temporally coincident scenes were filtered out. 

The missing data also involved PALSAR/PALSAR2 information (Shimada et al., 2014), being 

notably available only for the following years: 2007, 2008, 2009, 2010 for PALSAR, while 

2015, 2016, 2017 for PALSAR2. Therefore, to obtain an approximation for each missing year 

between 2005 and 2020, we simply utilised the most temporally closed image data before and 

after the missing year, and calculated the median. Subsequently, the values were converted 

from unsigned 16-bit digital numbers (DN) values into gamma-naught (γ0) backscatter values 

(unit: decibel) because less likely dependent on the incidence angle of the radar beam. This 

solution was adopted to basically improve the incorporation of terrain variations (Small; 

2011). The conversion was applied following the formula proposed by Rosenqvist et al. 

(Rosenqvist et al., 2007), for which DN is the digital number and CF is a calibration factor 

equal to "- 83" for PALSAR/PALSAR2 data:  

𝛾0(𝑑𝐵) =  10 log10(DN)2 + CF 

The NASADEM digital elevation model was also collected, and derives from an interpolation 

of ASTER GDEM, ICESat, and PRISM data (Crippen et al., 2016).  
 

Supplementary table S1.2. Imageries acquired according to satellite sensors (Landsat-5, 

Landsat-7, Landsat-8), years, the type of path/rows pertaining spatial coverage, and the total 

of those adequate collected each year (in bold). Overall, 625 imageries (μ≅41 per year) were 

collected. 

 

 

 

 

 

 

 

 

 

1.3 Species field survey details: presences and absences. 

Data records were compiled by the same surveyors, when applicable, and conducted between 

2005 and 2020. For all sampling strategies, sites were rarely surveyed more than once 

(excluding the 3-times point visit regarding bat surveys from Medinas et al., 2021, as well the 

5-times roosts visits for bats from Medinas et al., unpublished), as generally more effort was 

given to homogenously cover the whole study area (e.g., Loos et al. 2015). 

 
 

path/row 

Landsat-5 TM Landsat-7 
ETM+ 

2005-
2006 

2006-
2007 

2007-
2008 

2008-
2009 

2009-
2010 

2010-
2011 

2011-
2012 

2012-
2013 

203/33 11 9 13 10 12 11 10 10 

203/34 11 10 14 9 16 11 10 10 

204/33 8 10 12 11 12 6 10 10 

Total 30 29 39 30 40 28 30 30 

 
path/row 

Landsat-8 OLI  
  2013-

2014 
2014-
2015 

2015-
2016 

2016-
2017 

2017-
2018 

2018-
2019 

2019-
2020 

203/33 14 19 19 19 20 17 19 

203/34 12 17 17 19 20 18 19 

204/33 16 15 18 18 20 15 18 

Total 42 51 54 56 60 50 56 
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For non-flying mammals (medium-sized carnivores plus wild boar), all surveys included 

monitored tracks coupled with camera traps. Track surveys were carried out in two 750m long 

transects, with a minimum distance of 500m each other. Here, signs of species presences were 

inspected and recorded, with predominant attention paid to footprints, and less to faeces and 

latrines, these recorded only in exceptional cases of suitable conditions (e.g., recent droppings 

with unmistakable shape or scent (Pita et al., 2009)). All track surveys were complemented 

with fixed camera traps (Reconyx HC600 Hyperfire™), which were placed at the beginning, 

as well end of transects, while at roughly 1.5m above the ground. The two methodologies were 

combined maximise the detection of meso-mammals, and previous studies in the area 

supported such approach in covering most of detectable species (Herrera et al. 2017). 

For bird species, all representing passerines, censuses consisted on point counts, each distant 

100m from others, where species were surveyed for 10min by direct sight or indirectly by 

vocalization (Bibby et al. 2000). The breeding season was selected as the best period, 

specifically between April and May, and in favourable weather conditions, given the higher 

detectability (6:00–11:00 a.m.; Bibby et al. 2000). This monitoring technique was also selected 

because it is commonly applied for birds, as well in various studies conducted in the area 

(Herrera et al., 2017; Salgueiro et al., 2018a; Salgueiro et al., 2018b)  

For bat species, censuses involved point counts, transects, and roost surveys where presences 

were registered, and bat echolocation calls identified. All sessions took place between April 

and October, generally coinciding with activity peak bat activity in Mediterranean areas 

(Raino, 2007), with best detectability ensured by selecting only calm, dry weather conditions 

(Dixon, 2012). Bat detectors (Petterson D500x and D240x, Petterson Elektronik AB, Sweden, 

BATLOGGER, Elekon AG, Lucerne, Switzerland) were primarily set with a microphone 

sensitivity spanning 10 to 200 kHz, while located at 1.5m above ground, together with digital 

recorders (Archos AV 500 mobile digital video recorder). Bat call sequences were processed 

using Kaleidoscope and Audacity software (Wildlife Acoustics, Inc., v.3.1.1; Audacity 

v.1.3.10 Beta software) with default settings (Medinas et al. 2019; Medinas et al., 2021; 

Herrera et al., 2017). The dataset with regards to point counts was derived from Medinas et al. 

(2021), with points falling 1000m apart, and sessions during 15min. Point count data was 

derived additionally from Medinas et al. (2019), here associated with transects, with an 

approximation distance of 500m each other, hence resembling the approach of Herrera et al., 

(2017) for bats and carnivores surveys. Finally, roosts inspections were conducted mostly for 

the lesser horseshoe bat, each consisting of 5 visits, in which suitable conditions for colonies 

(in buildings, mines, cave etc.) were searched, followed by presence (and absence) verification 

(Medinas et al., unpublished). 

Notably, absences were generally considered, but when unavailable, their derivation as 

pseudo-absences depended on non-detections of the species, according to the type of survey 

of the corresponding community. Such a method was considered appropriate for common 

species, while for rarer (e.g., the lesser horseshoe bat), absences were systematically collected, 

thus kept wherever possible to avoid omission errors (Tyre et al., 2003). 

 

1.4 Deriving species home-range sizes for each species. 

Home-range sizes were derived through the literature giving priority to studies located in 

Portugal, then in the Iberian Peninsula, and if still missing, in Southern Europe. In case of two 

or more references, we estimated the home-range value using the median of the different 

sources. For scarce or no information, exceptional decisions were taken by the surveyors 

responsible for each community (NP and SS for non-flying mammals, PS for birds, while DM 

for bats), each time depending on the specific case of study. 

 

Supplementary table S1.3. Home-range dimension (ha) for each species according to literature, 

followed by correspondent conversion into diameter (m), and references used. The * symbol 

indicated for which species exceptional considerations were taken into account for calculation. 
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We take into consideration the following observations: 

• Crested tit: Home range size pooled (median) from other tits: Parus major, Cyanistes 

caeruleus. 

• Lesser horseshoe bat: We considered feeding areas estimated up to 1200 ha. In 

Bavaria, the individual home range is estimated between 6.8 to 62.8 ha (μ=25.2 ha). 

The distance to maternities roosts from the feeding areas ranges between few hundred 

meters up to 8 km, usually around 2.5 km. 

• Serotine bat: Distance to foraging sites can be up 5-7 km; often this also involved 

spending most of the foraging time at distance smaller than 2 km. 

• Common pipistrelle: The distance between maternities roosts and feeding areas is 

estimated about 850 meters, while from 1,5 to 5 km in Germany, and Scotland 1.5 

km. 

Species Home 
range 
size 
(ha) 

Hectares 
to 

diameter 
(m) 

References 

Genet 308 ≅ 2000 Carvalho et al 2018; Santos-Reis et al 2005 

Stone 
marten 

260 ≅ 1800 Santos-Reis et al 2005 

Badger 501 ≅ 2500 Revilla and Palomares 2002; Rosalino et al 2004 

Mongoose 300 ≅ 2000 Palomares and Delibes 1991 

Fox 167 ≅ 1500 Servin et al. 1991; Travaini et al. 1993 

Wild boar 551 ≅ 2600 Barasona et al 2014 

Nuthatch 1.87 ≅ 150 Nilsson, 1976; Enoksson and Nilsson, 1983; Cramp and 
Perrins, 1993; Paradis et al., 1998 

Crested 
tit* 

0.96  ≅ 100 
 

Woodlark 4.7 ≅ 250 Cramp, 1988; Patzold, 1986 in Bowden, 1990; Langston et 
al., 2007; Sirami et al., 2011; Bosco, 2014 

Great tit 1.2 ≅ 100 Krebs, 1971; Cramp and Perrins, 1993; Paradis et al., 1998; 
Storch, 1998 

Serinus 1 ≅ 100 Cramp and Perrins, 1994; Paradis et al., 1998 

Blue tit 0.82  ≅ 100 Cramp and Perrins, 1993; Paradis et al., 1998; Storch, 1998 

Cirl 
bunting 

0.94 ≅ 100 Cramp and Perrins, 1994; Paradis et al., 1998; Dale et al., 
2005 

Chaffinch 0.48  ≅ 70 Marler, 1956; Paradis et al., 1998; Storch, 1998 

Lesser 
horseshoe 
bat* 

590 ≅ 2750 Dietz 2016; Charles-Dominique 2001 

Serotine 
bat* 

1980 ≅ 5000 Dietz 2016; Charles-Dominique 2001 

Common 
pipistrelle* 

185 ≅ 1500 Dietz 2016; Charles-Dominique 2001 

Kuhls 
pipistrelle 

290 ≅ 2000 Andriollo (2015); Greenfeld, A. (2012) 

Soprano 
pipistrelle* 

239 ≅ 1700 Dietz 2016; Charles-Dominique 2001; Nicholls, B. and 
Racey, P. 2006 
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• Soprano pipistrelle: In Scotland, the Soprano pipistrelle may travel an average of 700 

meters to feeding areas, whereas in another study this corresponded to around 1.5 km, 

and generally more than common pipistrelle.  

 

1.5 Thinning presences and absences. 

The presence and absence datasets were filtered separately using a spatial-thinning algorithm 

(Aiello‐Lammens et al., 2015) within the spThin package (v.0.2.0), implemented in the R 

statistical environment (v.3.6.3; R Core Team, 2016). The algorithm calculates, based on a 

user-defined thinning distance, all possible distances between points, progressively removing 

random subsamples to reach the maximum number of points respecting the distance set 

between them (Aiello‐Lammens et al., 2015). Such distances were established utilising home-

range dimensions (ha), which were translated into distinct diameters (m) (Table S1.3).  

 

Supplementary table S1.4. Number of records for each species after the filtering procedure, 

for presences and absences. 

Species Presences Absences 

Genet 148 254 

Stone marten 160 238 

Badger 181 196 

Mongoose 104 224 

Fox 189 231 

Wild boar 124 167 

Nuthatch 104 176 

Crested tit 34 248 

Woodlark 148 129 

Great tit 134 143 

Serinus 114 162 

Blue tit 201 75 

Cirl bunting 32 251 

Chaffinch 255 53 

Lesser horseshoe 
bat 

43 269 

Serotine bat 60 172 

Common 
pipistrelle 

100 139 

Kuhls pipistrelle 139 92 

Soprano 
pipistrelle 

122 114 

 

1.6 Habitat metrics calculation. 

Prior to calculating predictors, all satellite data was standardised to reflect the same spatial 

scale, so the nominal 30m grain resolution was maintained for LANDSAT and NASADEM 

data, while upscaled for the 25m PALSAR/PALSAR2 data. The 30m grain resolution was 

considered adequate to reflect the minimum habitat area requirements across all species (Table 

S1.3). Regarding the textural indices, as first step a Principal Component Analysis (PCA) was 

calculated upon spectral bands (Schulte to Bühne & Pettorelli; 2018). The PC1, accounting for 

90% of variance was underwent a calculation to develop GLCM predictors (Table S1.5) 

through the glcm package (v.1.6.5; Zvoleff, 2020), using a 3 × 3 pixels spatial moving window 

in all directions (0°, 45°, 90°, and 135°; Godinho et al., 2018). The TWI was calculated from 

the NASADEM digital elevation model, using the RSAGA package in R (v.1.3.0; Brenning et 

al., 2018). 
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Supplementary table S1.5. Remote sensing-derived habitat predictors and respective sensors. 

Habitat predictors were pooled into types, and then groups, on the basis of their common 

characteristics in describing landscape environmental aspects. The G = 2.5, C1 = 6, C2 = 7.5 

and L = 1 values were applied within the equation to calculate the EVI index, in which: the 

"L" value helped the background correction, "C1" and "C2" are coefficient utilised to suppress 

the aerosol influence, while the "G" value corresponded to a gain factor. The "a" and "β" 

elements for the TWI index corresponds to "Catchment Area" and "Slope" calculations, 

respectively (see Quinn et al., 1995). 
1 Spectral bands from Landsat-5 and Landsat-7 were renamed to preserve the coherence of 

bandwidths (wavelength intervals) with those of Landsat-8. 

Sensor Group Type Code Description Spectral Band or Equation Reference 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LANDSAT 

5/7/8 

 

 

 

Spectral 

bands1 

 
Blue 

 
B2  

 

 

 

Wulder et 

al., 2019 

Green B3 

Red B4 

NIR B5 

SWI

R1 

B6 

SWI

R2 

B7 

 

 

 

 

 

 

 

 

 

Spectral 

indices 

 

 

 

Vegetation 

Biomass 

Indices 

 

NDV

I 

Normalized 

difference 

vegetation index 

(B5 − B4)

(B5 + B4)
 

 

Huete et 

al., 2002 

 

BND

VI 

Blue 

Normalized 

difference 

vegetation index 

(B5 − B2)

(B5 + B2)
 

 

Yang et 

al., 2004 

 

EVI 

Enhanced 

vegetation index 
2.5 ∗

(B5 − B4)

(B5 + C1 ∗ B4 −  C2 ∗ B2 + L)
 

 

Huete et 

al., 2002 

 

MSA

VI2 

Modified soil-

adjusted 

vegetation index 

(II) 

 

(2 ∗ B5 + 1 − √(2 ∗ B5 + 1)2 − 8 ∗ (B5 − B4)

2
 

 

Richardso

n & 

Wiegand, 

1977 

 

Vegetation 

and 

landscape 

Water 

content 

 

NDII 

Normalized 

Difference 

Infrared Index 

(B5 − B7)

(B5 + B7)
 

 

Hardisky 

et al., 1983 

 

NDW

I 

Normalized 

difference water 

index 

(B5 − B6)

(B5 + B6)
 

 

Gao 1996 

 

MSI 

Moisture Stress 

Index 

B6

B5
 

 

Hunt & 

Rock, 

1989 

 

Senescent 

vegetation 

and soil 

surfaces 

indices 

 

PSRI 

Plant 

Senescence 

Reflectance 

Index 

(B4 − B2)

B5
 

Merzlyak 

& 

Gitelson, 

1999 

 

SWI

R32 

Shortwave 

infrared 

Reflectance 3/2 

ratio 

 
B7

B6
 

 

Guerschm

an et al., 

2009 

 

Thermal 

infrared 

Surface 

Temperatur

e 

 

LST 

Land Surface 

Temperature 

 

GEE Source code 

 

Ermida et 

al., 2020 

 

Textural 

indices 

 

Co-

occurrence 

matrix 

 

GLC

M_M 

Mean Calculated using a moving window (3 × 3 

pixels) in all directions (0°, 45°, 90°, and 

135°) applied to the first principal component 

(PC1) from all selected spectral bands 

 

Haralick, 

1979 

GLC

M_E 

Entropy 

GLC

M_H 

Homogeneity 
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PALSAR/ 

PALSAR-2 

 

L-band 

SAR 

polarisati

ons 

 

Vegetation 

structure 

 

HH 

Horizontal 

transmitting, 

horizontal 

receiving signal 

 
 

 

 

Shimada et 

al., 2014  

HV 

Horizontal 

transmitting, 

vertical 

receiving signal 

 

NASADEM 

 

DEM 

Digital 

elevation 

model 

 

TWI 

Topographic 

wetness index 

 

ln(𝑎/tan𝛽)  
 

Quinn et 

al., 1995 

 

1.7 Parametrisation processes for achieving tuned SDMs and theoretical assumptions. 

Each species was subjected to precautions to avoid biases. By selecting RF models, a 

prevalence value of 0.5 was considered) to balance datasets (Barbet‐Massin, 2012). In 

situations of higher absences frequencies than presences (Table S1.4), the numerical gap was 

solved by random absence removal, and for opposite situations, through their addition, as 

pseudo-absences. This latter step followed the random selection (RS) methodology in Iturbide 

et al. (2015). Basically, this methodology means that lacking (pseudo)absences, to reach a 0.5 

prevalence, were allocated in the background area, but outside an exclusion buffer from known 

species-specific presences/absences data, utilising the previously mentioned home-range sizes 

as distance thresholds (Table S1.3). Once the dataset was balanced, for the predictor selection 

within the Boruta feature selection, to reduce biases, we fixed 'tentative' predictors by using 

the "TentativeRoughFix" function within the Boruta package (Kursa & Rudnicki, 2010). 

Furthermore, for multivariate analysis, a RF model tuning procedure identified the best 

parametrisation that allowed to best performances results (AUC; Fielding & Bell, 1997), 

relatively the number of trees (ntree), here spanning from 1000 to 3000, together with the 

number of available predictors that can be splitted at each tree node (mtry), here ranging from 

1 to 6. 

Finally, for the analysis, two assumptions were made: (1) that each sample size was sufficient 

to environmentally cover the ecological niche of a given species, an assumption supported by 

the capability of machine learning method to identify significant habitat predictors even for 

low sample size datasets (e.g., 30; Table S1.4) (Smith & Santos, 2020); and (2) 

species/environment relationships were stationary (species at the equilibrium) along the study 

period, a problematic that was intended to soften by spatiotemporally matching the field-based 

data, with remote sensing-based data. 

 

1.8 Functional connectivity assessment details. 

The nodes and resistance surface where both extracted from SDMs, reflecting areas of high 

persistence in terms of habitat conditions, and corridor routes (or barriers) in the matrix. 

Regarding the construction of the nodes, SDMs were converted into binary maps. Expert-

based thresholds (cutoffs) or hypothetical scores found in the literature were avoided in order 

to ensure the replicability of the study in other regions. Hence, as optimal cutoff, was selected 

the optimisation of sensitivity (true positive rate) and specificity (true negative rate), also 

called the "SeSpeql" approach (sensu Nenzén & Araújo, 2011), which aim to soften the 

absolute difference between the sensitivity and specificity (Fielding & Bell, 1997; Nenzén & 

Araújo, 2011). This identifies a balanced 'cross-over' between classification rates, namely 

between probability of correctly predicted presences and probability of correctly predicted 

absences (Fielding & Bell, 1997). Secondly, to enhance discrimination between high-quality 

areas, and the matrix, the MSPA (Morphological Spatial Pattern Analysis) framework was 

applied by default over the binary map layer to extract habitat core areas (Salgueiro et al., 

2021; Vogt & Riitters, 2017). Third, to extract nodes from core areas, pixels were converted 

into centroids while retaining the area amount (ha) of the respective original patch. These 

centroids within core areas constituted the species 'foraging ground' (Finch et al., 2020), and 

underwent the thinning procedure abovementioned described, with the intention that each node 

independently represented a species-specific home-range. Finally, for each species, nodes that 
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did not meet the minimum amount of available habitat (ha; Table S1.3), were discarded, as 

well nodes in the near proximity of major roads (250m for birds and bats, while 500m for 

mesomammals) to deal with negative effects from roads on wildlife, which may be particularly 

pronounced within woodlands habitats (Carvalho et al., 2018; Medinas et al., 2019; Reijnen et 

al., 1995). 

Besides, regarding the parametrisation of resistance surfaces, a negative exponential 

transformation function was employed, following Trainor et al. (2013): 

(Equation S1.1) R =  100 − 99 ∗ 
1−𝑒−𝑐∗𝐻

𝑒−𝑐  

where "R" is the resistance to dispersal, "H" corresponds to occurrence probability from 

SDMs, while "c" is the degree to the function for the three employed scores, namely c=0.25, 

c=0.5 and c=8. The first score corresponds to a linear relationship with SDMs, whereas the 

others indicate a growing exponential non-linear relationship (Trainor et al., 2013). 

Once were prepared nodes and resistance surfaces for each species, the probability of 

connectivity (PC; Saura & Pascual-Hortal, 2007) was computed, which in turn required the 

following components: functional distance between pairwise nodes, the median dispersal 

threshold associated with each species and amount of habitat within each node. Firstly, a list 

of effective least-cost distances (LCD; m) between pairwise nodes was calculated in the 

"gdistance" R package (v. 1.3-1; van Etten, 2017), which varied each time on the basis of 

species-specific resistance surface and c score utilised (c=0.25, c=0.5 and c=8). Secondly, the 

dispersal probability pij calculated the probability of a link between nodes i and j: 

pij = e − α dij  

where "pij" is the symmetric probability of direct dispersal between a pair of nodes, "dij" is 

the pairwise nodes direct functional distance from "LCD" (on the basis of the selected 

resistance surface), "α" is a species-specific constant (decay parameter) reflecting dispersal 

behaviour and dispersal distance (Saura and Pascual-Hortal, 2007):  

α = 
1

𝑟∗𝑑
   

where "r" corresponds to the median cost value of the resistance surface and "d" the dispersal 

distance of a given species. 

It should be noted in the case that a distance threshold is the median of species dispersal, the 

negative exponential function of "dij" is set in the form that the dispersal probability pij=0.5 

(Saura et al., 2011; Saura & Pascual-Hortal, 2007), a condition previously supported in other 

road ecology studies (e.g., Gurrutxaga and Saura, 2014). The median of dispersal distances 

was derived from the literature for each species (Table S1.6), adopting the same estimation 

used when deriving home-ranges (Table S1.3). Then, by selecting the "Distance" as 

connection type within the CONEFOR software (v.2.2; Saura & Torné, 2009), the probability 

of connectivity "PC" was calculated, which is defined as 'the probability that two animals 

randomly placed within the landscape fall into habitat areas that are reachable from each other' 

(Saura & Pascual-Hortal, 2007): 

(Equation S1.2) 𝑃𝐶 =  
∑ ∑ 𝑎𝑖𝑎𝑗𝑝𝑖𝑗

∗𝑛
𝑗=1

𝑛
𝑖=1

𝐴𝐿
2    

where "n" is the total number of habitat nodes, "ai" is the attribute (ha) of node "i", "aj" is the 

attribute of node "j", while "AL" is the total landscape area (habitat and matrix). The "pij *" is 

the maximum product probability of link scores of the intermediate paths connecting nodes "i" 

and "j". As mentioned in the manuscript, the internodes connection probability was repeated 

for each species due to the different resistance surfaces used, hence generating 3 lists of 

connected pairwise nodes, for which the operative links were considered only for greater 

probability scores than 0.5 (Salgueiro et al., 2021). 

 

1.9 Deriving dispersal distances for each species. 

On the basis of available literature, the dispersal distance for each species was derived, as for 

home-range estimation, by prioritising studies in Portugal or Iberian Peninsula. For non-flying 

mammals, the dispersal distances were inferred by utilising species' home-range sizes (Table 

S1.3), each within the Bowman isometric equation (Bowman et al., 2002). Then, to 
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approximate median dispersal distances, such derived scores were averaged to what found in 

literature. For the other communities, namely birds and bats, personal observations from 

surveyors (PS and DM) were taken into account owing to the scarcity of literature on this issue. 

 

Supplementary table S1.6. Median dispersal distances (m) for each species according to 

literature and other inferences. The * symbol indicated for which species exceptional 

observations were taken into account for calculation. 
Species Dispersal distances (m) References on dispersal movements 

Genet ≈ 7000 Carvalho et al., 2016 

Stone marten ≈ 11500 Wereszczuk and Zalewski, 2018 

Badger ≈ 12500 Revilla and Palomares, 2002 

Mongoose ≈ 8000 
 

Fox ≈ 8000 Servin et al. 1991; Travaini et al. 1993 

Wild boar ≈ 10000 Prévot and Licoppe, 2013; Keuling et al., 2018 

Nuthatch ≈ 6500 Nilsson, 1976; Enoksson and Nilsson, 1983; Cramp and 

Perrins, 1993; Paradis et al., 1998 

Crested tit* ≈ 5300 
 

Woodlark ≈ 4000 Cramp, 1988; Patzold, 1986 in Bowden, 1990; Langston et 

al., 2007; Sirami et al., 2011; Bosco, 2014 

Great tit ≈ 5300 Krebs, 1971; Cramp and Perrins, 1993; Paradis et al., 1998; 

Storch, 1998 

Serinus* ≈ 5800 Cramp and Perrins, 1994; Paradis et al., 1998 

Blue tit ≈ 5300 Cramp and Perrins, 1994; Paradis et al., 1998; Storch, 1998 

Cirl bunting* ≈ 5600 Cramp and Perrins, 1994; Paradis et al., 1998; Dale et al., 

2005 

Chaffinch ≈ 3600 Marler, 1956; Paradis et al., 1998; Storch, 1998 

Lesser horseshoe 

bat 

≈50000 Dietz 2016; Charles-Dominique 2001 

Serotine bat ≈ 50000 Dietz 2016; Charles-Dominique 2001 

Common pipistrelle ≈ 20000 Dietz 2016; Charles-Dominique 2001 

Kuhls' pipistrelle ≈ 40000 Andriollo (2015); Greenfeld, A. (2012) 

Soprano pipistrelle ≈ 180000 Dietz 2016; Charles-Dominique 2001; Nicholls, B. and 

Racey, P. 2006 

 

We take into consideration the following observations: 

• Crested tit: Natal dispersal data pooled (median) from other tits: Parus major, 

Cyanistes caeruleus. 

• Serinus: Natal dispersal data pooled (median) from other true finches: Fringilla 

coelebs, Chloris chloris, Carduelis carduelis, Linaria cannabina. 

• Cirl bunting: Natal dispersal data pooled (median) from other buntings: Emberiza 

citrinella, Emberiza schoeniclus and Emberiza hortulana. 

 

1.10 Roadkill analysis details  

Univariate and multivariate roadkill analysis followed the same methodology of SDMs, 

consequently using a dataset composed of a 0.5 prevalence, between presences and absences. 

However, contrary to presences, roadkills absences were randomly generated on monitored 

roads (pseudo-absences), but carefully avoiding areas overlapping significant species-specific 

roadkill hotspots, to soften potential biases. For each species, significant hotspots were derived 

from kernel density estimations (KDE; Bíl & Andrášik, 2013), adopting a window of 150m 

bandwidth (Bíl & Andrášik, 2013; Medinas et al., 2021). Calculations were carried out 

separately for each road sector to not confound spatio-temporal consistence in KDE 

calculations (Bíl & Andrášik, 2020), resulting into a total of 57 KDE analysis (19 species * 3 

road sectors).  

 

1.11 Road-related metrics calculation. 
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Regarding predictors, a novel experimental approach was also considered in the present study 

for calculate the "traffic volume percentage" predictor. Here, despite a vast number of studies 

infer traffic from the typology of road, such studies often lack the integration of traffic 

variation, being this information attributed to the entire section, and thus, 'diluted'. This is 

similarly the case when considering data from different municipalities, as information on 

traffic is averaged from beginning of road section to the end, and as consequence, losing how 

information varied along a considered road. Also, even when data is available from some 

municipalities, models extrapolation may be difficult on roads assigned to other municipalities 

due to divergent approaches in traffic monitoring, or simply because data might be difficult to 

achieve, or is often inexistent. Given that, a novel data source was selected in this study, which 

in spite of the limited temporal resolution, possess high coverage in terms of spatial extension, 

type of sampled roads, and resolution. Data, in specific, was retrieved from TomTom products, 

namely the “Historical Traffic Stats”, containing trillions of measurements 

(https://www.tomtom.com/products/historical-traffic-stats/). A query was generated for the 

monitored road sector for the present study, relatively “traffic density” product within the 

study period, which is a spatial information at high resolution of traffic density from the dual 

directions of considered roads. Therefore, once probe data on traffic density was converted in 

pixel and averaged for the dual road directions, the information was subsequently converted 

into percentage, being this information relative to vehicle with functioning probes, then not an 

absolute traffic estimation, such as traditional approaches (e.g., volume traffic; Medinas et al. 

2021). This information directly originated from historical trips of TomTom users in the area, 

in the form of georeferenced points transmitted by probes, which frequency is recorded in 

space and time, and stored within an anonymous database, representing a good spatio-temporal 

coverage given the 600 million of GPS and floating car data on which the TomTom is relying. 

Then, "road width" was calculated from PS by georeferencing points along lanes of monitored 

road, approximately every 15m, which corresponds to half of pixel size employed in this study. 

Afterwards, point distances between the two lanes were in parallel calculated for each road 

sector, hence converted into a raster layer. Data on culverts was retrieved from a previous 

study in the area where functional culverts were registered and georeferenced (Craveiro et al., 

2019), allowing the calculation of Euclidean "distance from culverts" predictor, along with 

"culvert density percentage". The culvert density percentage was initially derived through a 

kernel density function, which measures the density of points (culverts) per meter, on the basis 

of bandwidth radius distance from the points. We used as search radius distance the 

abovementioned 150m bandwidth (Section 1.10). For simplicity, calculated values were 

converted into percentage, such as the previously calculated traffic predictors, where higher 

values indicated increases in proportion of culver density.  

 

1.12 Programming languages and hardware employed. 

The programming languages employed for the entire framework were: JavaScript with regards 

to the GEE platform, the C language regarding the Gflow software, and R. Gflow performed 

into 2 high-performant systems (Ubuntu Oss each carrying 12-core processors with 64GB-

RAM) to tackle computational limitations routinely hindering fine-grain connectivity 

approaches (Moilanen, 2011). 
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3.8 Supplementary material S2 

          2.1. Species distribution models (SDMs) results. 

The Boruta feature selection confirmed on average 9 to 21 habitat predictors explaining species 

occurrence (Figure S2.1.1-S2.1.3). Uncorrelated predictors were also identified for each species 

(Table S2.1.1., Figure S2.1.4.). From the multivariate SDMs analysis, the tuning results from 

random forests models are shown (Figure S2.1.4), along with accuracy results (Table S2.1.2) 

and ecological response curves of most important predictors (Figure S2.1.6-Figure S2.1.8). 

Threshold values for converting SDMs into binary maps were also identified (Figure S2.1.9). 

 

Figure S2.1.1 SDMs habitat predictors explaining species occurrence from the Boruta feature 

selection. Boxplots of relative importance of predictors are depicted with the interquartile range 

(box), minimum, maximum, median and outliers, for each non-flying mammal species 

(common genet, stone marten, European badger, Egyptian mongoose, red fox and wild boar), 

while comparing habitat metrics with significant (green) against irrelevant (red) contribution. 

 
Figure S2.1.2 SDMs habitat predictors explaining species occurrence from the Boruta feature 

selection. Boxplots of relative importance of predictors are depicted with the interquartile range 

(box), minimum, maximum, median and outliers, for each bird species (nuthatch, crested tit, 

woodlark, great tit, European serin, Eurasian blue tit and cirl bunting chaffinch), while 

comparing habitat metrics with significant (green) against irrelevant (red) contribution. 
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Figure S2.1.3. SDMs habitat predictors explaining species occurrence from the Boruta feature 

selection. Boxplots of relative importance of predictors are depicted with the interquartile range 

(box), minimum, maximum, median and outliers, for each bat species (lesser horseshoe bat, 

serotine bat, common pipistrelle, Kuhls' pipistrelle and soprano pipistrelle), while comparing 

habitat metrics with significant (green) against irrelevant (red) contribution. 
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Table S2.1.1. Variance inflation factor (VIF) results for the retained habitat metrics prior to 

SDMs multivariate analysis. 
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Figure S2.1.4. Upper-triangular correlation matrices of habitat metrics prior to SDMs 

multivariate analysis, for non-flying mammal (a), bird (b) and bat (c) species. Pearson rank 

correlation values are depicted for each species, together with colours indicating the degree of 

correlation. 
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Figure S2.1.5. The AUC values from SDMs on the basis of selected parameter scores, namely 

under different number of splitted predictors (mtry) and number of trees (ntree), with respecto 

to non-flying mammal a), bird b) and bat c) species. The best model is represented by the highest 

AUC score, according to different combination of mtry and ntree parameters, or solely the ntree 

parameter in case of mtry=1 (see for instance the soprano pipistrelle and commgon pipistrelle 

results). 

 
Table S2.1.2. SDMs accuracy scores, for each species, with mean and standard deviation (SD), 

with respect to the area under the receiver operating characteristic curve (AUC), sensitivity, 

specificity and error rate percentage.  
AUC  Sensitivity  Specificity  Error rate (%) 

Species Mean SD Mean SD Mean SD 
 

Common genet 0.79 0.07 0.74 0.11 0.73 0.11 26.52 

Stone marten  0.75 0.08 0.66 0.1 0.72 0.1 30.68 

European badger  0.72 0.07 0.64 0.11 0.68 0.1 33.53 

Egyptian 
mongoose  

0.75 0.08 0.67 0.12 0.67 0.14 32.59 

Red fox  0.63 0.08 0.54 0.11 0.65 0.12 40.18 

Wild boar 0.83 0.09 0.75 0.12 0.74 0.13 25 

Nuthatch  0.73 0.1 0.68 0.14 0.65 0.14 32.93 

Crested tit  0.79  0.18 0.74 0.25 0.75 0.23 25.33 

Woodlark  0.63 0.09 0.59 0.13 0.58 0.12 41.10 

Great tit 0.64 0.09 0.58 0.12 0.62 0.12 39.88 

European serin  0.55 0.1 0.56 0.15 0.58 0.14 46.15 

Eurasian blue tit 0.69 0.07 0.63 0.1 0.64 0.09 35.2 
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Cirl bunting 0.87 0.13 0.87 0.14 0.71 0.25 18.29 

Chaffinch 0.64 0.08 0.58 0.11 0.59 0.09 41.1 

Serotine bat  0.74 0.14 0.7 0.18 0.68 0.2 30.25 

Kuhl's pipistrelle 0.63 0.1 0.58 0.12 0.57 0.13 45.5 

Soprano 
pipistrelle  

0.53 0.1 0.51 0.14 0.49 0.14 49.2 

Common 
pipistrelle 

0.55 0.12 0.50 0.16 0.54 0.16 47.4 

Lesser horseshoe 
bat  

0.88 0.15 0.85 0.21 0.78 0.24 18.44 

 

Figure S2.1.6. Response curves of most important predictors influencing the probability of 

occurrence (SDMs) for common genet (a), stone marten (b), European badger (c), Egyptian 

mongoose (d), red fox (e) and wild boar (f). The result from the averaged models is depicted by 

dashed lines, whose colours reflect the groups on which habitat metric belong. The grey area 

corresponds to the standard error. 

 
Figure S2.1.7. Response curves of most important predictors influencing the probability of 

occurrence (SDMs) for nuthatch (a), crested tit (b woodlark (c), great tit (d), European serin (e) 

Eurasian blue tit (f), cirl bunting (g) and chaffinch (h). The result from the averaged models is 

depicted by dashed lines, whose colours reflect the groups on which habitat metric belong. The 

grey area corresponds to the standard error. 
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Figure S2.1.8. Response curves of most important predictors influencing occurrence 

probability (SDMs) for lesser horseshoe bat (a), serotine bat (b), common pipistrelle (c), Kuhls' 

pipistrelle (d) and soprano pipistrelle (e). The result from the averaged models is depicted by 

dashed lines, whose colours reflect the groups on which habitat metric belong. The grey area 

corresponds to the standard error. 

 
Figure S2.1.9. Vertical dashed line representing the optimal threshold equalizing sensitivity 

and specificity (from SDMs), for non-flying mammal (a), bird (b) and bat (c) species. 
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2.2. Roadkill risk models (RRMs) results. 

The Boruta feature selection, confirming that retained habitat metrics from SDMs were also 

significant for RRMs, hence in explaining mortality (Figure S2.2.1, Figure S2.2.2, Figure 

S2.2.3). For each species, correlation results are showed for predictors, retaining those with the 

most important scale (Table S2.2.1., Figure S2.2.4.). From RRMs multivariate analysis, 

accuracy results (AUC, sensitivity, specificity and percentage error rate) are highlighted (Table 

S2.2.2), along with ecological response curves for connectivity, habitat, and road most 

important predictors (Figure S2.2.5- S2.1.12). Threshold values for converting RRMs into 

binary maps were also identified (Figure S2.2.13). 

 

Figure S2.2.1. Connectivity and habitat predictors explaining species-specific roadkill risk 

(RRMs) from the Boruta selection. Boxplots of relative importance of multi-scale predictors 

are depicted with the interquartile range (box), minimum, maximum, median and outliers, for 

non-flying mammal species (common genet, stone marten, European badger, Egyptian 

mongoose, red fox and wild boar), while comparing habitat metrics with significant (green) 

against irrelevant (red) contribution. The “sc” suffix is relative to the selected scale (0, 100, 

500), with “Ct” indicating a species-specific circuit-theory connectivity scenario, while “log” 

corresponding to the degree of transformation function (0.25, 2, 8) applied to resistance 

surfaces. 
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Figure S2.2.2. Connectivity and habitat predictors explaining species-specific roadkill risk 

(RRMs) from the Boruta selection. Boxplots of relative importance of multi-scale predictors 

are depicted with the interquartile range (box), minimum, maximum, median and outliers, for 

each bird species (nuthatch, crested tit, woodlark, great tit, European serin, Eurasian blue tit and 

cirl bunting chaffinch), while comparing habitat metrics with significant (green) against 

irrelevant (red) contribution. The “sc” suffix is relative to the selected scale (0, 100, 500), with 

“Ct” indicating a species-specific circuit-theory connectivity scenario, while “log” 

corresponding to the degree of transformation function (0.25, 2, 8) applied to resistance 

surfaces. 

 
 

Figure S2.2.3. Connectivity and habitat predictors explaining species-specific roadkill risk 

(RRMs) from the Boruta selection. Boxplots of relative importance of multi-scale predictors 

are depicted with the interquartile range (box), minimum, maximum, median and outliers, for 

each bat species (lesser horseshoe bat, serotine bat, common pipistrelle, Kuhls' pipistrelle and 

soprano pipistrelle), while comparing habitat metrics with significant (green) against irrelevant 

(red) contribution. The “sc” suffix is relative to the selected scale (0, 100, 500), with “Ct” 

indicating a species-specific circuit-theory connectivity scenario, while “log” corresponding to 

the degree of transformation function (0.25, 2, 8) applied to resistance surfaces. 
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Table S2.2.1. Variance inflation factor (VIF) results for the selected predictors prior to RRMs 

multivariate analysis. 
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Figure S2.2.4. Upper-triangular correlation matrices of habitat metrics prior to RRMs 

multivariate analysis, for non-flying mammal (a), bird (b) and bat (c) species. Pearson rank 

correlation values are depicted for each species, together with colours indicating the degree of 

correlation. 
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Table S2.2.2. RRMs accuracy results with mean and standard deviation (SD) relatively the area 

under the receiver operating characteristic curve (AUC), sensitivity, specificity and error rate 

percentage, for each species.  

  
AUC  Sensitivity  Specificity  Error rate (%) 

Species Mean SD Mean SD Mean SD   

Common genet 0.88 0.07 0.81 0.12 0.81 0.12 18.61 

Stone marten  0.88 0.04 0.79 0.08 0.82 0.08 19.24 

European badger  0.81 0.09 0.72 0.12 0.74 0.14 26.69 

Egyptian mongoose  0.74 0.07 0.67 0.1 0.71 0.1 30.6 

Red fox  0.82 0.03 0.73 0.06 0.77 0.06 24.47 

Wild boar 0.86 0.09 0.81 0.14 0.72 0.18 23.28 

Nuthatch  0.82 0.09 0.7 0.15 0.77 0.12 23.93 

Crested tit  0.89 0.06 0.84 0.1 0.79 0.13 17.77 

Woodlark  0.8 0.08 0.66 0.13 0.8 0.12 26.5 

Great tit 0.85 0.03 0.73 0.06 0.8 0.05 23.03 

European serin  0.82 0.03 0.73 0.05 0.76 0.05 24.96 

Eurasian blue tit 0.88 0.07 0.81 0.11 0.81 0.12 18.61 

Cirl bunting 0.89 0.07 0.83 0.12 0.85 0.11 15.72 

Chaffinch 0.87 0.03 0.77 0.06 0.82 0.05 20.05 

Serotine bat  0.88 0.07 0.81 0.11 0.81 0.12 18.61 

Kuhl's pipistrelle 0.81 0.04 0.7 0.07 0.78 0.06 25.79 

Soprano pipistrelle  0.88 0.04 0.81 0.08 0.77 0.09 28.94 

Common pipistrelle 0.79 0.07 0.68 0.11 0.73 0.12 20.59 

Lesser horseshoe bat  0.89 0.18 0.87 0.22 0.82 0.26 15 
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Figure S2.2.5. Response curves of most important predictors influencing roadkill probability 

(RRMs) for non-flying mammals, namely common genet (a), stone marten (b), European 

badger (c). The result from the averaged models is depicted by dashed lines, whose colours 

reflect the groups on which each predictor belong. The grey area corresponds to the standard 

error.  

 
Figure S2.2.6. Response curves of most important predictors influencing roadkill probability 

(RRMs) for non-flying mammals, namely Egyptian mongoose (d) and red fox (e). The result 

from the averaged models is depicted by dashed lines, whose colours reflect the groups on 

which each predictor belong. The grey area corresponds to the standard error. 

 
 

Figure S2.2.7. Response curves of most important predictors influencing roadkill probability 

(RRMs) for non-flying mammals, namely wild boar (f). The result from the averaged models 

is depicted by dashed lines, whose colours reflect the groups on which each predictor belong. 

The grey area corresponds to the standard error. 
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Figure S2.2.8. Response curves of most important predictors influencing roadkill probability 

(RRMs) for birds, namely nuthatch (a), crested tit (b) and woodlark (c). The result from the 

averaged models is depicted by dashed lines, whose colours reflect the groups on which each 

predictor belong. The grey area corresponds to the standard error. 

 

 
Figure S2.2.9. Response curves of most important predictors influencing roadkill probability 

(RRMs) for birds, namely great tit (d), European serin (e) and Eurasian blue tit (f). The result 

from the averaged models is depicted by dashed lines, whose colours reflect the groups on 

which each predictor belong. The grey area corresponds to the standard error. 
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Figure S2.2.10. Response curves of most important predictors influencing roadkill probability 

(RRMs) for birds, namely cirl bunting (g) and chaffinch (h). The result from the averaged 

models is depicted by dashed lines, whose colours reflect the groups on which each predictor 

belong. The grey area corresponds to the standard error. 

 
Figure S2.2.11. Response curves of most important predictors influencing roadkill probability 

(RRMs) for bats, namely lesser horseshoe bat (a), serotine bat (b) and common pipistrelle (c). 

The result from the averaged models is depicted by dashed lines, whose colours reflect the 

groups on which each predictor belong. The grey area corresponds to the standard error. 

 
Figure S2.2.12. Response curves of most important predictors influencing roadkill probability 

(RRMs) for bats, namely Kuhls' pipistrelle (d) and soprano pipistrelle (e). The result from the 

averaged models is depicted by dashed lines, whose colours reflect the groups on which each 

predictor belong. The grey area corresponds to the standard error. 
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Figure S2.2.6. Vertical dashed line representing the optimal threshold equalizing sensitivity 

and specificity (from RRMs), for non-flying mammals (a), birds (b) and bats (c). 
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Chapter 5 

Synthesis of the main findings, limitations, and future 

challenges 

The development of human societies, prompted by transportation infrastructures, is well-

known to play a major role in the current biodiversity crisis, for which extinction rates are 

likely expected to accelerate in the near future (Dirzo et al. 2014). To bend this pressure, 

there is a need for optimising mitigation actions based on planning and resource 

prioritisation procedures, dealing with limited financial resources (Dalerum, 2014). Such 

problematics has raised some questions. First of all, how mitigations structures for wildlife 

can be best distributed along roads, and what kind of movements at those locations could 

potentially be facilitated. For most of wildlife species exposed to road mortality pressures, 

these questions are still unanswered or ignored today, with planning decisions mostly 

resolved through expert opinions rather than through tested models (Pressey et al., 2017). 

A further complicating factor that exacerbates uncertainties stems from the uneven 

distribution of wildlife across landscapes, making it challenging their integration into 

management plans (Polak et al., 2019), as well the consideration of different types of 

movements (Vasudev et al., 2015). Moreover, it is known that the expansion of roads is 

directly responsible for landscape fragmentation, as well as facilitating human access and 

development of many areas, triggering additional resource exploitation, and often 

intensive practices altering landscapes (Laurance et al., 2014). While representing a 

secondary aspect, when pronounced spatial alterations occurs, it is necessary to secure the 

efficiency of conservation plans with respect to landscape dynamism over large periods 

(Zeller et al., 2020), and to take these effects into consideration for the entire landscape 

(Clevenger & Huijser, 2011). Besides, landscape dynamics may also naturally occur over 

the shorter term, for instance in Mediterranean systems where some habitats, namely 

grasslands associated to montado, may be markedly affected in their conditions by cyclical 

fluctuations associated with different seasons (Mazzoleni et al., 2004). This is of 

conservation interests where grasslands are relatively undisturbed, such as along linear 

habitat elements, and in particular roads verges in human-dominated landscapes, for which 

remote sensing may constitute a resource for detecting wildlife habitats that change 

spatiotemporally at a fine scale.  

The synthesis presented here emphasises the main findings, conclusions, and limitations, 

useful for optimising the best allocation of resources for strategic mitigation plans on 
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existing roads, (chapters 2 and 4), whereas for systematic conservation planning targeting 

identification and management plans for biodiversity refuges occurring in areas 

surrounding roads, (chapter 3). Secondly, the chapter highlights further insights linking 

all the objectives, along with future research recommendations in road ecology about 

spatial prioritisation considering some unresolved gaps. 

5.1 Performance of two different data type models, and different life history 

stages in functional connectivity assessment (Research Goal I)  

For connectivity assessments, it is fundamental to rely on accurate modeling frameworks, 

which in turn have their foundation on two data types: animal movements and species 

occurrence. Gaps are intimately associated to occurrences when those are selected for 

species-based functional connectivity modeling, because real movements are not really 

measured (Zeller et. al., 2012), and thereby independent validations, are required (e.g., 

with roadkills; Laliberté et al., 2020). The results reported in this chapter point to the 

hypotheses that occurrence data type models have the same potential in their prediction 

as those from movement for the common genet since occurrence data was as good as 

movement data for producing accurate predictions of roadkill  patterns. In chapter 2 

(objective 1), it was discussed the possibility of similarity between resistance surfaces 

produced by those different approaches, outlining that this condition may not always be 

expected, but rather be context-dependent. Two major conditions were advanced for 

explaining this similarity, respectively based on (1) the ecological scale analysed, and (2) 

the accessibility of habitat resources, meaning how movement decisions varied across 

sampled individuals within their habitats. The former condition was justified on the basis 

of what was found by Ziółkowska et al. (2016), namely that movement patterns underlining 

movement data type models may not diverge from occurrence when using scales within 

home range. To justify this condition in the road ecology context, findings were compared 

to studies examining road-crossing events for mesocarnivores, for which best ecological 

responses were found when applying scales within the species home range (Červinka et al., 

2015). The second explanation for the similarity between resistance surfaces is based on 

the fact that when movement rules are homogenous, and thus resources selection, simpler 

models such as logistic regressions (e.g., SDMs) may be as capable as sophisticated 

models in predicting movement patterns (Duchesne & Courbin, 2010). Concisely, as 

supported in chapter 2, such a similarity in predicted connectivity patterns had likely been 

owed by a higher constancy in habitat resource selection over the examined species 

biological cycle, even though this argument does not exclude landscape alterations. This 

studied aspect have paramount relevance in mitigation planning, as lesser demanding data 
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may be utilised for the strategical mitigation planning phase.  

Secondly, following the postulate that "animals move in the same way as they select 

habitat" is a controversial issue (Zeller et al., 2021), it was investigated whether roadkill 

prediction performances between PathSFs and SDMs differed with respect to dispersal 

movements (objective 2). More specifically, besides comparison between PathSFs and 

SDMs resistance surfaces in predicting roadkill with respect to daily movements, it was 

also investigated how roadkill performances varied when dispersal was simulated. The 

relation between roadkill and landscape elements have been amply demonstrated by 

numerous studies (Gunson et al., 2011), but roadkill locations have rarely been associated 

with the type of movement. In chapter 2, for the first time it is disentangled at the 

landscape level the problematic of wildlife roadkill empirically associated to different 

movement types. Here, it is shown that no statistical difference in predicting roadkill 

emerged from dispersal movements when compared to daily movements within home 

range, which may provide further support to reduce spatial uncertainty and to ensure 

greater congruence on the decisional implementation of road mitigation measures. 

The overall finding in chapter 2 is that real connectivity cannot be always measured in a 

world of limited resources, but can be inferred though the evaluation of potential 

connectivity which is a useful for robust EIAs (sensu Karlson et al., 2014), thereby 

increasing the cost-efficiency of road planning strategies. The second most important 

finding is that conservation planners can also target both resident and disperser 

individuals, which is also important for enhancing the effectiveness of mitigation 

measures, as those may cover different movements associated to different ecological 

processes (Tulloch et al., 2016). However, it is worth highlighting that although no 

divergences have been found in roadkill prediction between daily movements and 

dispersal within habitats, the study only focused on resistance surface performances 

('continuous' models; Brudvig et al., 2017), thus purely on functional connectivity without 

integrating the structural component ('patch-matrix' models; Brudvig et al., 2017), and in this 

sense, dispersal mortality may additionally occur outside habitats in the matrix, at the road 

interface of communicating networks of populations (Diniz et. al., 2020; Vasudev et al., 

2015). This constituted a limitation in chapter 2, which pursued for the need to 

contextualise site mitigation measures (road units) into a larger ecological network, 

considering also that Clevenger & Huijser (2011) advocate this as a key principle to increase 

the effectiveness of mitigation measures. This gap was subsequently accounted in chapter 

4, by integrating structural within functional connectivity, to analyse mortality risk. In 

chapter 2, it was also recommended that the presented approach may be replicated for 

optimising mitigation measures targeting other mammal species with similar ecological 
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requirements and dispersal abilities, highlighting the possibility of defining similar 

connectivity paths across species, an aspect subsequently examined in chapter 4. 

 

                   

                 Highlights of Research Goal I 

 

• The limitations of SDMs are tested compared to PathSFs in predicting roadkills and 

with respect to different movement types. 

• No statistical divergence was found between data type models in predicting roadkill, 

thereby supporting the reliability of SDMs. 

• No statistical divergence also emerged when simulating dispersal movements 

compared to daily movements, with dispersal mortality having no significant 

influence on SDMs performances. 

• The main implication of this chapter is that SDMs are a costly-effective and simpler 

solution for functional connectivity assessments, hence for guiding the placement of 

mitigation measures within woodlands, facilitating different movements and 

ecological processes. 

 

 

 

5.2 Usefulness of EOS for identifying suitable microhabitats for small species 

of conservation concern (Research Goal II) 

After having analysed the negative impact of roads, an original contribution to road 

ecology was to identify linear habitat elements along roads, and how the identification of 

such microhabitats is influenced by intra-annual variability in landscape conditions. 

Summarising, in chapter 3 an advanced remote sensing-based methodological approach 

was conceived to highlight the spatiotemporal attributes of remotely sensed metrics 

representing different habitat conditions, in order to identify at best some particular 

habitats, such as open grasslands pertaining to the montado system. There is little work in 

this sense regarding the identification of microhabitats in highly dynamic landscapes, for 

which natural resources variation may be considered a consequence of dynamism within 

the montado system (Mazzoleni et al., 2004), even though management practices, 

especially those intensive, constitute a primary factor of changes in the montado patterns, 

often impairing the functioning of the associated ecosystems (Godinho, 2015). This has 

often caused to linear habitat elements constitute the sole refuge in human-dominated 
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landscapes with increasing intensive practice, which directed towards the purpose of this 

research, regarding the beneficial effect of linear habitat elements, including road verges, 

in protecting wildlife species (Pita et al., 2006; Santos et al., 2006). The poor spatial and 

temporal precision of traditional information on the montado land cover characteristics 

limits the spatial identification of very specific habitat elements, as well as temporal 

identification associated intra-annual conditions. On this issue, this work constitutes a 

novelty in the field of both remote sensing and road ecology, as it used advanced remotely 

sensed spatial information on open grasslands, which helped to unveil habitat elements, 

including road verges, of valuable status for the delineation of protected areas as 

microreserves. A more detailed spatial information of the montado system is therefore 

pivotal for understanding its spatiotemporal patterns. Our findings supported that outcome 

for the objective 3, as highly suitable pattern of distribution at high precision and over 

large extensions were identified for an endangered species, the Cabrera vole (Microtus 

cabrerae), along patchy areas and linear habitat elements. Moreover, a super-resolution 

technique was applied on a highly detailed spatiotemporal data easily available, notably 

from Sentinel-2 sensor, for which there was no example of application in conservation 

biology overall, and more specifically for identifying habitats surrounding road verges, which 

may benefit a plethora of species, and may offer protection for some vulnerable (Santos et al., 

2006). Sentinel-2 possesses an unprecedent accuracy for a sensor with this "swath" 

characteristic and at no cost, and in this sense, more precise sensors exist, such as those 

hyperspectral, though they have a little "swath" and are usually mounted on UAV, 

demanding highly qualified technicians and highly costly devices (Emilien et al., 2021). 

Regarding EOS, higher detailed sensors also exist such as panchromatic, with a superior 

resolution, but they are prohibitively expensive (Kpalma et al., 2014; Zhu et al., 2018), and 

therefore Sentinel-2 seems an optimal costly-effective compromise according to present 

findings and conservation goal.  

The findings presented in chapter 3 constitute an unprecedent and pioneering outcome in 

microreserve mapping, as most of studies are used to discover microreserves exclusively 

through field work. In those areas, microhabitat quality was estimated between periods 

pertaining the dry and wet season, and the findings pointed out that Cabrera vole 

distribution was highly determined by conditions during wet periods for which habitat 

quality was higher (Pita et al., 2006; Pita et al., 2007; Santos et al., 2006), even though 

favourability, with a lesser contribute, was also determined in dry period, highlighting 

some microhabitat elements favouring the persistence of populations during adverse 

conditions. The selection of a multi-seasonal Sentinel-2 models integrating spectral bands 

and phenological vegetation conditions improved significantly the classification power, 
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allowing to accurately describe the most suitable vegetation conditions at the temporal 

and spatial level. This ameliorated classification may contribute to reduce the cost in 

optimising the delineation of microreserve areas by minimising oversimplifications from 

traditional landscape products (e.g., land cover), as well may optimise the cost in 

monitoring by better guiding the field campaigns to sample populations of Cabrera vole. 

Traditional products have underpinned the development of SDMs, but may have great  

limitations to represent some particular habitats (Coops & Wulder, 2019), especially those 

with a less contiguous distribution (Cerrejón et al., 2021), and for small species (Kerr & 

Ostrovsky 2003). These outcomes demonstrated that continuous and highly detailed EOS data 

may offer various advantages, jointly with "data fusion" SDMs techniques, for producing 

accurate information on montado spatial patterns, which allowed to explore these aspects in 

an even more challenge in chapter 4, by targeting multiple taxa of different body size (from 

small to mid-sized species). Interestingly, numerous of habitats identified have been found 

along linear landscape features, which, jointly with some metrics in the wet period inferring 

vegetation productivity (e.g., NDI45) and heterogeneity (e.g., Rao's Q), highlight the potential 

role of vegetated road verges in promoting the persistence of Cabrera vole populations (e.g., 

Santos et al., 2006). The research here developed has great relevance to support systematic 

conservation planning and management with precise details on strategic landscape 

elements, particularly along roads, and for species with low detection and localised 

distribution. In this respect, road corridors (sensu Forman & Alexander, 1998) built primarily 

to facilitate human transport, can be exceptionally exploited as corridors for wildlife and plants 

through suitable verges, helping to decrease the isolation of habitat patches and facilitate their 

connectivity (Ascensão et al., 2012; Galantinho et al., 2020; Tikka et al., 2001), as highlighted 

in chapter 3.  

However, it is worth mentioning that this research is based on a two-year sampling, which 

constitute a limitation of the study, as management strategies should be based on more years of 

monitoring and more information on the persistence of those populations, to better apply 

protection measures. A comprehensive understanding on where such microreserves persisted 

was difficult for the present study since Sentinel-2 is a relatively new sensor that has not yet 

covered long monitoring periods. Another limitation stands on the problem that supporting 

habitat for threatened species may also promote the abundance of other more common 

species, which may be likewise controversial, since they may exacerbate vehicle 

collisions, in specific with mesocarnivores, but also raptors and snakes, as these may be 

attracted to road verges due to the increased abundance of prey (D'Amico et al., 2015; Meunier 

et al., 2000; Silva et al., 2019). In this respect, despite the research in this thesis is capable 

of understand where suitable road verges may coincide with risky area of predator species, 



 

173 
 

it did not have found a comprehensive solution in the matter of abovementioned side -

effect. This requires further efforts and challenges in finding a coexistence between the 

support of biodiversity along liner habitats, and the mortality preventions.  

 

 

                     Highlights of Research Goal II 

 

• The spatiotemporal accuracy of EOS remote sensing data is tested to overcome SDMs 

limitations in dynamic landscapes, which is of special relevance for small and rare 

species occupying fragmented habitats. 

• Sentinel-2 dynamic habitat metrics overall explained species distribution spatially and 

temporally, along with static traditional products, notably road proximity. 

• Performances indicated a high discrimination capacity and low error rates, with 

species higher favourability for green and heterogenous areas during the wet season. 

• The main finding is that integrating EOS products within SDMs ensure invaluable 

insights in ecological studies, and for identifying particular habitats (e.g., road verges), 

hence improving the allocation of resources for wildlife conservation and monitoring. 

 

 

 

5.3 Optimising roadkill risk models towards a multi-taxa mitigation planning 

(Research Goal III)  

The spatial and temporal extent to which roads negatively affect  multiple taxa, in 

particular mammal and bird populations at the landscape level represent a research 

priority, given that this knowledge may greatly benefit a better green infrastructure design 

and more effective mitigation planning (Benítez-López et al., 2010; Jaeger, 2015). The 

chapter 4 forms the cornerstone of the thesis in this regard, by integrating road ecology, 

remote sensing and landscape connectivity science within EIA-based modeling tools, developed 

to represent an essential guidance for increasing mitigation efficiency during the strategic 

planning phase (sensu Rytwinski et al., 2015). This methodology integrated connectivity 

through multifunctional corridors, which is generalisable for other contexts, hence having 

the potential to be replicated by conservation planners and practitioners in a costly-efficient 

way through occurrence data type models (SDMs), still, some cautions should be maintained. In 

fact, given the findings in chapter 2, we did not taken occurrences as an absolute preferred 

choice in chapter 4, because an inter-individual heterogeneity in habitat resource selection 
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still could have constituted a potential bias (Duchesne & Courbin, 2010), possibly leading 

to poor functional connectivity proxies for roadkill predictions, thereby undermining 

mitigation measures efficiency. More specifically, taking into account the context-

dependent conditions of similarity between different data types in predicting mortality, 

described in chapter 2, we respected such conditions in the following objectives in chapter 

4. This involved filtering out scales larger than home range, as well as mobile species 

most likely prone to show heterogeneity in selecting habitat resources within their 

biological cycle. Basically, the latter consisted in filtering out species such as apex 

predators (Dupke et al., 2017) and large herbivores (Duchesne & Courbin, 2010), along 

with non-resident species, for obvious reasons (e.g. migratory-induced changes in habitat 

selection). For resident species, the phenological trait was also considered to exclude species 

presenting a pronounced divergence in habitat selection between hibernation and reproduction 

sites (e.g., bats, Smeraldo et al., 2018). 

Given the support of occurrence data (from the findings in chapter 2), and the support of costly-

effective remote sensing data (from the findings in chapter 3) analysed with a free-of-charge 

cloud computing platform (Google Earth Engine; Gorelick et al., 2017), it was constituted an 

even-more financially convenient and replicable framework baseline, which facilitated the 

realisation of the 3 proposed goals in chapter 4. In fact, the long-term monitoring from Landsat 

data taken landscape alterations into account, which was relevant in the context of the montado 

system here addressed, due to its degradation trend over the last decades imposed by two 

contrasting processes, land abandonment and land use intensification (e.g. increase in livestock 

density) (Machado et al., 2020; Godinho et al., 2014). Insofar, landscape dynamism had scarce 

attention in road ecology (Oddone Aquino, 2021), and in addressing landscape dynamics 

concurrently with road mortality, it was also highlighted on the necessity of include multiple 

stressors to reduce the biodiversity loss, as those may act iteratively (Simmons et al., 2021). By 

these means, the relevant scale of impacts was considered, and road planning units were 

contextualised within the entire landscape of study area (southern Portugal), which 

encompassed multifunctional corridors and resilient to inter-annual spatiotemporal 

variation, both representing key principles for increasing the efficiency of mitigation 

measures (Clevenger & Huijser, 2011). While this has little research attention, minimising 

impacts over large temporal scales is considered to benefit wildlife populations across 

multiple generations, possibly allowing for improvements in demographic exchange and 

genetic flow (Cosgrove et al., 2018). The EOS data in chapter 4 involved a long monitoring 

period, in relation to which the availability of remote sensing data was secured by selecting 

Landsat TM, ETM+ and OLI sensors. This allowed the representation, at the landscape 

level, of montado environmental attributes and relative variations over long periods and at fine-
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scales, given the optimal compromise between spatiotemporal resolution, the "swath" and 

temporal coverage of these sensors. Objective 4 addressed in chapter 4, in fact, demonstrated 

that EOS data are able to accurately describe prime habitat characteristics of the wildlife 

taxonomic groups addressed in the study, namely non-flying mammals, birds and bats. Several 

habitat metrics were developed, and each metric was grouped on the basis of biophysical and 

biochemical characteristic. Findings indicated that species within the same taxon responded 

preferentially to a particular group of metrics (optical sensor information with spectral and 

thermal infrared indices, respectively for non-flying mammals and bats; whereas radar sensor 

information with L-band SAR polarisation indices for birds), which supports the usefulness of 

continuous and detailed EOS-derived predictors (He et al., 2015; Pettorelli et al., 2005). Indeed, 

as summarised in chapter 4, the major limitation of categorical products (e.g., CORINE Land 

Cover maps) resides in their inability to represent particular habitat requirements, which may be 

critical when considering multiple species. More specifically, Cushman et al., (2010) on this 

issue casted doubts about the ability of categorical product in the multispecies context by 

questioning: (1) "if biological communities are multivariate gradients of species composition, 

with each species responding individualistically to particular combinations of limiting factors, is 

a categorical patch-based representation appropriate?" and (2) "isn’t representing biological 

communities as categorical patches in a mosaic a de facto ratification of a Clementsian model of 

community composition at the landscape level?" (for further details see Cushman et al., 2010). 

The results of the species ecological responses in objective 4, are in agreement with these 

doubts, as various degrees of environmental tolerance emerged in habitat requirements from the 

employed habitat metrics, reflecting various degrees of habitat specialisation. This means that 

remote sensing information was able to accurately capture those multivariate gradients, resulting 

into a novel ecological aspect in this research area and a relevant step for further analyses. In 

fact, what may emerge is that the utilisation of a categorical product has the risk of 

misrepresentation of multivariate gradients, therefore in capturing ecological differentiations 

between habitat specialist and generalist species, leading to serious consequences across the 

addressed goals, namely to a possible oversimplification and overestimation in EIAs prediction 

mortality risk (objective 5), hence in an inadequate spatial prioritisation capacity for mitigation 

plans (objective 6). Remote sensing in this sense was capable of overcoming these limitations, 

guaranteeing the possibility to represent unique habitat characteristics across species. Habitat 

representation, jointly with resistance surfaces, was based on the previously described "data 

fusion" through a pixel-based procedure which considered species-specific significant landscape 

attributes and finalised through SDMs (Schulte to Bühne & Pettorelli 2018). The findings in 

chapter 4 overall indicated an efficient discrimination capacity through different accuracy 

metrics, supporting the use of freely available cost remote sensing data. It needs to further be 
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emphasised that the thresholding procedure to discriminate habitat from matrix (non-habitat) in 

resistance surfaces could easily result in a lack of accurate information, as multiple species-

specific thresholding procedure is preferable to the generalisation of a single one across species 

(Moilanen, 2011). Even if it represented secondary aspects in chapter 4, it pursued the necessity 

for conceptual models of species-specific structural connectivity integrated within species-

specific functional connectivity, in the form of "hybrid models" ('patch-matrix' and 'continuous'; 

for further details see Brudvig et al., 2017), which have been demonstrated of increasing the 

robustness of connectivity assessments (Brudvig et al., 2017), and overcome theoretical 

limitations, as briefly anticipated in chapter 2.  

Consequently, a main relevance in chapter 4 resides in constructing multispecies corridors from 

species overlay rather than considering connectivity as a general surrogate, meaning that 

consideration was given to how the relationship between functional connectivity and road-

related mortality varied for each species. As such, this included disentangling species-specific 

habitat, functional connectivity, and road metrics to gain comprehensive insight into independent 

effects on the influence of roadkill vulnerability for each species, as aimed for the objective 5 in 

chapter 4. Because functional connectivity and habitat suitability significantly explained roadkill 

patterns across species, findings emphasised the importance of disentangling these effects as 

different ecological processes. In fact, studies in this sense supported to find the most suitable 

explaining factor that may diverge between habitat and connectivity to increase the efficiency of 

mitigation measures (Fabrizio et al., 2019), and our findings agreed with this argument. We 

found in objective 5 that connectivity was a predominant mortality trigger for non-flying 

mammals, but that habitat was equally important in explaining mortality across bird and bat 

species, which highlight the necessity of considering those two factors when explaining 

mortality, which may be useful to lower biases and minimise errors. Results for this objective 

indicated an excellent discrimination capacity in predicting road-related mortality from 

the employed accuracy metrics, increasing the robustness of spatial prediction for 

implementing mitigation structures. Overall, the most important finding here is that an 

ameliorated efficiency of mitigation plans may rely in structures intercepting both 

connected habitat woodlands and the neighbouring non-habitat matrix (open areas), 

corroborating previous research (e.g., Malo et al., 2004). These findings should receive 

more attention, especially when considering that research in road-related mortality has 

been predominantly focused on habitats (Gunson et al., 2011; Oddone Aquino, 2021; 

Pagany, 2020). 

Then, research to finalise objective 6 was conducted through previous objectives in chapter 

4 to represent the multispecies cumulative mortality risk on road planning units, supporting the 

implementation of site-specific structures, such as crossing structures and/or fences, for each 
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taxon and for all taxa. Our results here clearly reported a much higher focus in prioritisation, 

toward road planning units representing high risk of mortality for the maximum number of 

species attainable. This resulted into a more convenient resource allocation and an ameliorated 

mitigation planning efficiency. Indeed, a possible optimisation of mitigation structures on the 

basis of present findings, is that site-specific structures such as underpasses (e.g., culverts), can 

be adapted to multi-use for species with different degree of habitat specialisation, contrary to 

what previously described in literature (Clevenger & Huijser, 2011). It has also been verified 

the condition of reducing mortality for multiple taxa, given the congruence in mortality patterns 

between birds and non-flying mammals, ensuring cost opportunities in planning structures such 

as fences (Armsworth, 2014), so in optimised multitaxa mitigation plans. Acceptable variability 

in predicted mortality risk was found within each taxonomic group, ensuring for flexibility in 

implementing mitigation structures on road sites (or planning units) beyond best sites (highest 

mortality richness). However, based on the current results relative to objective 6, caution is 

needed when a significant mismatch between taxa occurs in terms of mortality risk variability 

and thus flexibility, meaning that in this condition, best road sites should be preferred. This was 

the case of bat group as predicted mortality variability diverged significantly when compared to 

other taxa (birds and non-flying mammals). We advanced the hypotheses on such mismatches 

likely due to greater variability of bats in terms of mobility and home ranges, compared to other 

taxonomic groups. 

From the metrics employed in accuracy and variation across predictions in chapter 4, the 

findings reveal that this work is applicable, as well as replicable, for producing more 

detailed and useful information of sites most prone to multispecies mortality risk, and 

across different taxa. This represents an unprecedented outcome in EIAs towards prioritising 

road mitigation structures and increasing their effectiveness, that are able to benefit species with 

different home-ranges, ecological requirements, and dispersal movements. In fact, their 

integration within mitigation plans is still mostly neglected (Polak et al., 2019), in part because 

there is likely no way of collecting movement data for a multitude of species and with different 

sizes (Salgueiro et al., 2021), in part also due to the difficulty of representing the variety of 

wildlife ecological and movement requirements (Brennan et al., 2020). Such aspects in fact 

continue to pose a challenge to the scientific community, and as solution, some initiatives 

analysed multispecies connectivity as 'species-agnostic' (Koen et al., 2014), or through umbrella 

species, inferring functional connectivity for one species as a surrogate for a wider range of 

species (Krosby et al., 2015). Yet, the shortcomings of these studies lie on a tendency in 

connectivity oversimplification. In this sense, chapter 4 demonstrated that in the absence of 

known movements, there may still be an ameliorated focus with respect to planning units, by 

integrating multifunctional corridors through species-based functional connectivity and habitat 
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models that depend on more affordable data. The solutions proposed are not only circumscribed 

to wildlife, but also relevant for the maintenance of montado, as protection of selected species 

can contribute for the functioning of its ecosystems (e.g., Lourenço et al., 2021), with no cost to 

human societies, excluding the collateral deriving from wildlife vehicle collisions. The latter 

aspect is even more relevant when considering some species that are dangerous for human safety 

on roads (e.g., wild boar), which emphasises even more practical reasons of reducing wildlife 

road-related mortality, beyond those intrinsically linked to ethic or conservation. As such, the 

chapter 2, 3 and 4 have evidenced and supported a mental workflow capable of addressing 

theoretical and practical gaps in EIAs, which should not be ignored (Bennet, 2017). Such 

combined works demonstrated that spatially explicit models, and in specific EIA-based 

modeling tools are useful to cut costs, as well as leveraging opportunity costs at the community 

level, intended for multiple species and taxa (Fletcher et al., 2016), so increasing the efficiency 

of conservation and mitigation measures for multiple generations (Cosgrove et al. 2018), 

optimising at best the financial return throughout more targeted and flexible management 

options. 

Nevertheless, a limitation of the developed research in chapter 4 is that prioritisation of road 

planning units for mitigation is based solely on the 'conservation value' (sensu Margules & 

Pressey, 2000), which included biodiversity, environmental conditions (e.g., variability) and 

risk, but excluded the cost associated with each site for planning mitigation structures, which 

arguably may vary on the basis of type of road, permissions and local site conditions (e.g., 

topography, soil, etc.). This is an aspect that solicitates further research efforts and could be 

potentially solved through pixel-based benefit/cost formulations (e.g., Kujala et al., 2018), which 

are rapidly being employed in road ecology (Polak et al., 2019), though with scarce attempts in 

real-world context and no attempts when including the gaps addressed in this research. The post-

hoc integration of this work into benefit/cost analysis will guarantee, on site-specific road units, 

an even more straightforward identification of where to place costly-effective structures to 

reduce mortality risk. 
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                     Highlights of Research Goal III 

 

• Findings from both chapter 2 and 3 paved the way for occurrence and remote sensing-

based functional connectivity targeting small and mid-sized resident species for 

mitigation plans. 

• SDMs integrating EOS (Landsat) habitat metrics revealed similar ecological 

requirements for similar species belonging to the same taxonomic group. 

• Roadkill was explained by functional connectivity and habitats, highlighting both 

connected woodlands and surrounding matrix areas for mitigation measures. 

• Highest spatial prioritisation for mitigation resources was attained when including the 

maximum number of species vulnerable to mortality risk. 

• Low variability in mortality risk emerged within and across taxonomic groups, 

allowing for opportunity costs and flexibility during the mitigation planning phase. 

• Our findings overall showed that the present inter-disciplinary and costly-effective 

framework is capable to optimise roadkill mitigation plans, that can be transversal for 

species with different size, home range, ecological requirements, and mobility. 

 

 

 

5.4 Future prospective 

Site-specific conservation measures can be ameliorated through costly-efficient plans and 

strategical optimisations by integrating different disciplines, namely remote sensing and 

connectivity science, as they may help to solve theoretical and practical gaps still 

overlooked, such as those presented in this thesis about road ecology. The advantages of 

considering remote sensing information are increasingly attainable, given the open access 

policies adopted by agencies and space missions, which is even more convenient when 

considering data sources nowadays readily accessible at high spatial and temporal resolution, 

from online repositories storing vast amounts of information (e.g., tens of million images only 

considering Landsat missions; Wulder et al., 2016). Such large repositories of remote sensing 

information are organised on cloud platforms, allowing a collection, preparation and 

manipulation of data that can rapidly be finalised (Gorelick et al., 2017). This facilitates 

applications including remote sensing, which is becoming a paradigm in ecology (Pettorelli et 

al., 2014a; Pettorelli et al., 2014b; Schulte to Bühne & Pettorelli 2018). With regard to 

connectivity, faster computations are also actually possible given the recent software 

technological advances (Hall et al., 2021; Landau et al., 2021; Leonard et al., 2017). Approaches 
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linking wildlife conservation with fine-grain connectivity, and/or remote sensing, are also 

encouraged (Marrec et al., 2020; Hu et al., 2015; Zeller et al., 2020). Cross-disciplinary empirical 

applications in conservation biology are leading to the advent of international journals geared 

toward specific partnerships (Pettorelli et al., 2017), as well as special issues (Jennings et al., 

2021). For road ecology, some authors have also been recently encouraged for bridging 

disciplines to further develop generalisable principles (D'Amico et al., 2018). 

The last two decades have been characterised by a rapid development of societies, by a global 

road expansion acknowledged as the most pronounced in history (Gross, 2016), and recognised 

as a proper "infrastructure tsunami" incoming (Laurance, 2018), that will require monitoring 

Earth from space to track impacts on habitats and ecosystems (Scholes et al., 2012). Likewise, 

since the last two decades, humanity has entered in the information age (Castells, 1996), 

characterised by an unprecedented level of automatisation, and increasing capacity in generating, 

organising and processing data (e.g., machine learning for image classification; Keitt & 

Abelson, 2021), which promoted progresses in conservation biology through 

interdisciplinary initiatives. These, in fact, are increasingly mandatory for evidence-based 

prioritisation solutions, for costly-effective efforts and to enhance the guidance for 

resource allocation towards wildlife protection (Pressey et al., 2017; Rose et al., 2019). 
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