FROM IN SILICO TO ANIMAL MODELS FOR THE STUDY OF HUMAN DISEASES

Scientific Committee:

Prof. Rita Ferreira, QOPNA & LAQV, Department of Chemistry, UA
Prof. Pedro Oliveira, QOPNA & LAQV, Department of Chemistry, UA
Prof. Margarida Fardilha, iBiMED, Department of Medical Sciences, UA
Prof. Francisco Amado, QOPNA & LAQV, Department of Chemistry, UA
Prof. Paula Oliveira, CITAB, Department of Veterinarian Sciences, UTAD

Organizing Committee:

Núcleo de Estudantes de Química

Alexandra Moreira-Pais, CIAFEL, QOPNA&LAQV & CITAB, FADEUP,

DQUA & UTAD

Bárbara Matos, iBiMED, Department of Medical Sciences, UA

Bárbara Matos, iBiMED, Department of Medical Sciences, UA Pedro Corda, iBiMED, Department of Medical Sciences, UA

Acknowledgments:

This workshop is supported by the Associated Laboratory for Green Chemistry (LAQV) and the Institute of Biomedicine (iBiMED), though the Portuguese Foundation for Science and Technology (FCT), references LAQV: UIDB/50006/2020 and iBiMED: UIDB/04501/2020.

CERTIFICATE OF PARTICIPATION

We hereby certify that Ana Faustino has attended to the Workshop

"From in silico to animal models for the study of human diseases", held on
the Zoom Platform, on March 17, 2021 and presented the lecture entitled

Animal models of disease: Useful or not?

On behalf of the Workshop's Committees,

Prof. Dra. Margarida Fardilha

Jedro Oliveira

Prof. Dr. Pedro Oliveira

FROM IN SILICO TO ANIMAL MODELS FOR THE STUDY OF HUMAN DISEASES

17TH MARCH 15H30

١		N UNLINE		
5	15h15 - 15h30	Opening Session		
	15h30 - 15h55	The dynamics of molecular design Giorgio Colombo, University of Pavia - Italy		
	15h55 - 16h15 Transitioning from 2D towards 3D models in the study of cell physiolog Pedro F. Oliveira, LAGV-00-UA			
	16h15 - 16h35 Development and disease: Lessons from the chicken embryo			
	16h35- 16h55	Animal models of disease: Useful or not? Ana Faustino, CITAB-UE		
	16h55 - 17h15	Zebrafish: An animal model for Environmental Health Studies Magda Henriques, 18:MED-UA		
	17h15 - 17h35	Animal models for the study of transgenerational and intergenerational transmission of metabolic traits Marco G. Alves, UMIB-ICBAS/UP		
	17h35 - 17h55	Animal models of exercise in health and disease: What considerations to hold in mind? Daniel Moreira Gonçalves, CIAFEL-FADEUP		
	17h55 - 18h05	Concluding Remarks		

SCIENTIFIC COMMITTEE:

PROGRAM

Prof. Rita Ferreira, QOPNA & LAQV, Department of Chemistry, UA

Prof. Pedro Oliveira, QOPNA & LAQV, Department of Chemistry, UA

Prof. Margarida Fardilha, iBiMED, Department of Medical Sciences, UA Prof. Francisco Amado, QOPNA & LAQV, Department of Chemistry, UA

Prof. Paula Oliveira, CITAB, Department of Veterinarian Sciences, UTAD

ORGANIZING COMMITTEE:

Núcleo de Estudantes de Química da da Associação Académica

da Universidade de Aveiro

Alexandra Moreira-Pais, CIAFEL, DOPNASLAQV & CITAB, FADEUP.

DQUA & UTAD

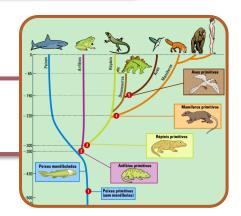
Bárbara Matos, iBiMED, Department of Medical Sciences, UA

Pedro Corda, iBiMED, Department of Medical Sciences, UA

This workshop is supported by the Associated Laboratory for Green Chemistry (LAQV) and the Institute of Biomedicine (iBiMED), though the Portuguese Foundation for Science and Technology (FCT), References LAQV: UIDB/50006/2020 and iBiMED: UIDB/04501/2020.

FREE ONLINE REGISTRATION UNTIL 15TH MARCH!

Animal models of disease: useful or not?

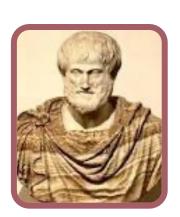

Ana I. Faustino

Modelo animal

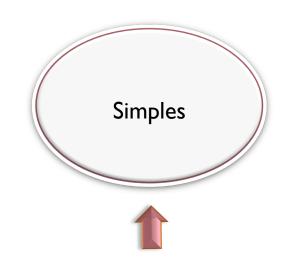
O Homem elaborou uma escala zoológica

Assumiu o primeiro lugar na evolução das espécies

2000 a.C. Babilónios e Assírios

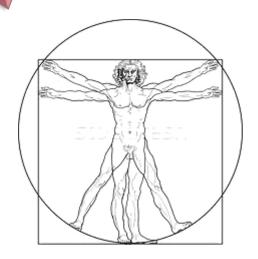

• Cirurgias em animais

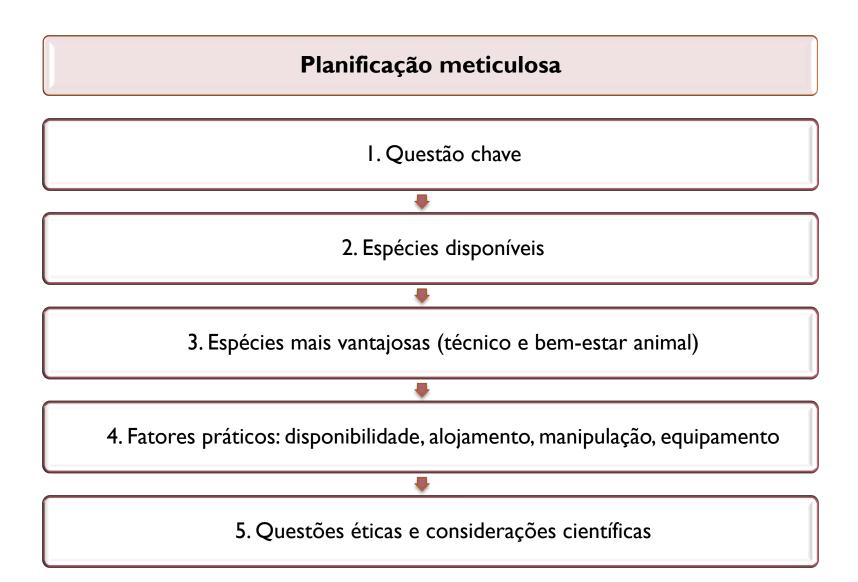
384-322 a.C. Aristóteles


- Fundador da Biologia
- Diferenças internas entre animais

340-258 a.C. Erasistratus

• Ensaios com animais




Modelo animal ideal

Seleção de um modelo animal

Animais selvagens

Vantagens

- Ciclo natural da doença
- Hospedeiro natural/reservatório
- Patogenicidade no hospedeiro natural

Desvantagens

- Limitações de observação e registo
- Dificuldade de manutenção em laboratório
- Risco de zoonoses
- Comportamento agressivo
- Risco de extinção da espécie

Animais domésticos

Vantagens

- Ambiente semelhante ao do Homem
- Estudo de doenças espontâneas
- Animais dóceis

Desvantagens

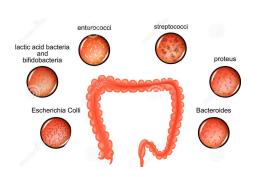
- Custo de manutenção
- Animais de companhia
- Animais de produção

Animais de laboratório

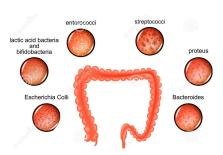
Vantagens

- Fácil manutenção
- Fácil manipulação
- Tempo de vida curto
- Descendência numerosa
- Utilização de maior n° de animais
- Custos reduzidos de aquisição e manutenção

Desvantagens


- Ambiente de laboratório (artificial)
- Doenças não espontâneas/induzidas

Ecologia

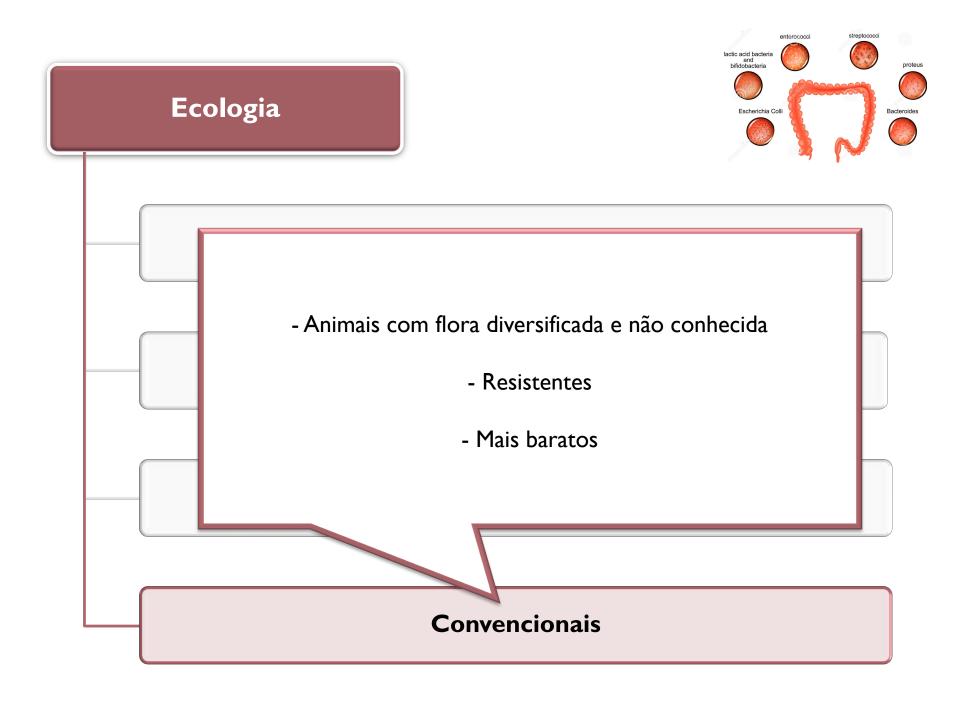

Genética

Indução

Ecologia

Gnotobióticos

Axénicos/Germ Free


Specific Germ Free

Convencionais

streptococci lactic acid bacteria and bifidobacteria **Ecologia G**notobióticos - Animais com flora conhecida - Produção de vacinas víricas **Convencionais**

Ecologia Gnotobióticos Axénicos/Germ Free - Animais isentos de microrganismos - Doenças entéricas, dentárias e nutricionais

Ecologia - Animais isentos de um microrganismo específico - Estudos toxicológicos - Gerontologia - ↑ Esperança média de vida Specific Germ Free **Convencionais**

Genética

Outbred

Inbred

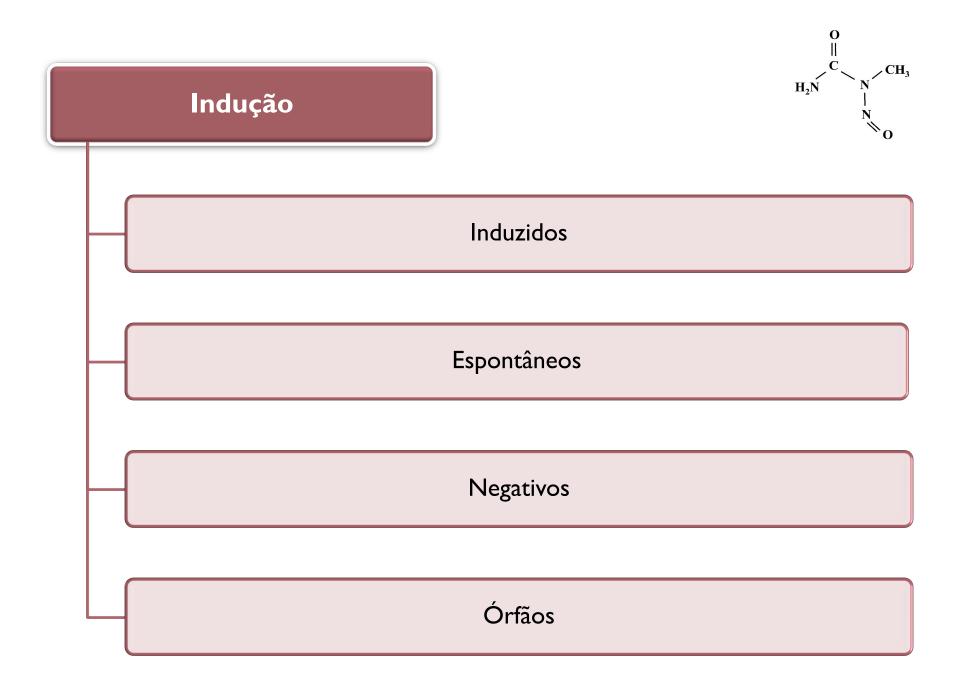
Transgénicos

Genética

Outbred

- Animais não consanguíneos
 - Elevada heterozigose
- Colónias com uma grande diversidade genética

Genética **Outbred** Inbred - Animais consanguíneos - Elevada homozigose (99%)


- Colónias muito uniformes

Genética

- Animais têm incorporado segmento de DNA estranho no seu genoma

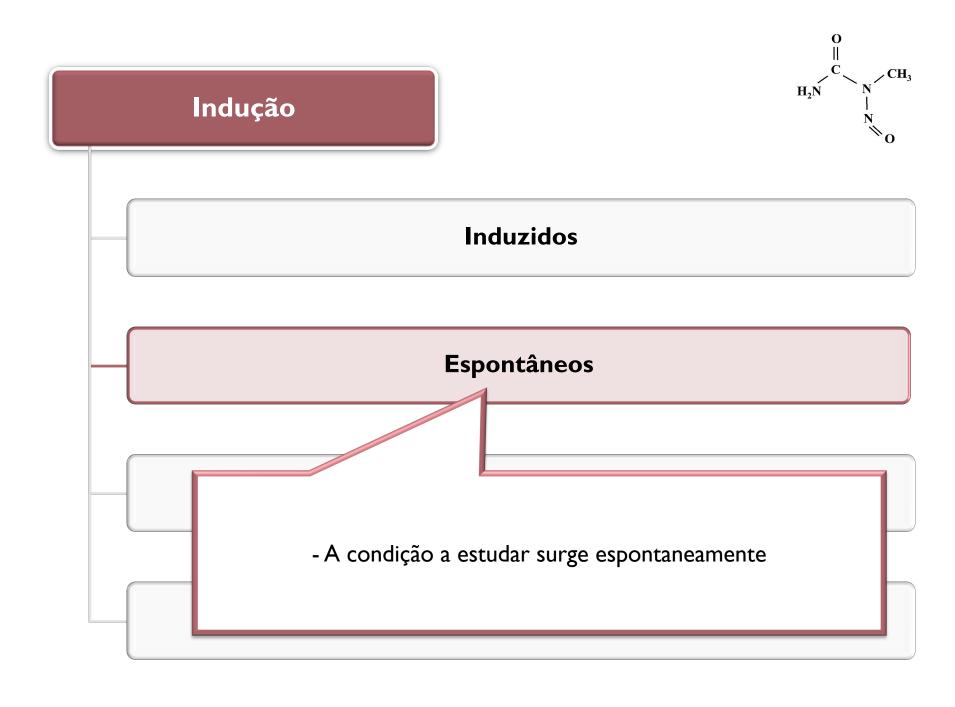
Transgénicos

Implantação de linhas celulares

Xenógrafo

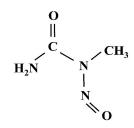
- Linhas celulares derivadas de neoplasias humanas

Singeneico


- Linhas celulares derivadas de animais geneticamente semelhantes

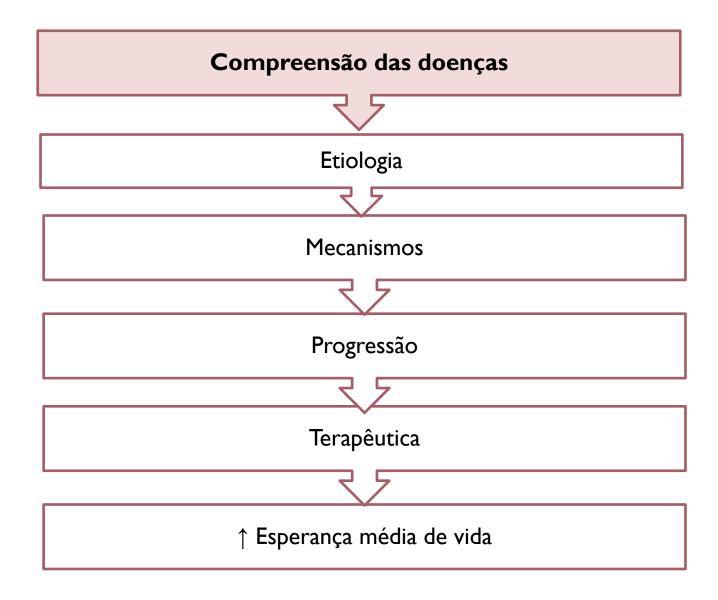
Ortotópico

- Implantação no local de origem da neoplasia


Heterotópico

- Implantação SC, IP, IM

Indução - Estirpes que não desenvolvem determinada doença - São insensíveis a estímulos Negativos Órfãos


Indução

- Descrevem a condição que ocorre naturalmente em espécies nãohumanas
 - Doenças ainda não descritas em humanos
 - Doenças podem ser posteriormente identificadas

Órfãos

Modelo animal na Biomedicina

Year	Researcher	Animals used	Subject
1984	Niels K. Jerne, Georges J.F. Köhler and César Milstein	Mouse	Techniques of monoclonal antibody formation
1985	Michael S. Brown and Joseph L. Goldstein	Rats	Regulation of cholesterol metabolism
	Joseph E. Murray E. Donnall Thomas	Dog Dog	Organ transplantation techniques
1991	Erwin Neher and Bert Sakmann	Frog	Chemical communication between cells
1992	Edmond H. Fischer	Rabbit	Reversible protein phosphorylation as a regulatory
1992	Edwin G. Krebs	Rabbit, Rat	mechanism
1993	Richard J. Roberts	Rat	Split genes
1995	Edward B. Lewis, Christiane Nüsslein- Volhard and Eric F. Wieschaus	Fruit fly	Genetic control of early embryonic development
2000	Arvid Carlsson, Paul Greengard and Eric R. Kandel	Sea slug, mouse	Signal transduction in the nervous system
2001	Leland H. Hartwell	Sea urchin, frog	
2001	Tim Hunt	Sea urchin, frog, rabbit, xenopus, clam	Key regulators of the cell cycle
2001	Sir Paul M. Nurse	Sea urchin, frog	
2003	Paul C. Lauterbur and Sir Peter Mansfield	Clam, mouse, dog, rat, chimpanzee, pig, rabbit, frog	Magnetic resonance imaging (MRI)
2008	Harald zur Hausen	Hamster, mouse, cow	Human papilloma viruses as a cause of cervical cancer
2008	Françoise Barré-Sinoussi and Luc Montagnier	Monkey, chimpanzee, mouse	Human immunodeficiency virus
2010	Robert G. Edwards	Rabbit	In vitro fertilization
2015	Youyou Tu	Mouse, dogs, sheep, cattle, chicken, monkey	Therapy against Malaria
2020	Harvey J. Alter, Michael Houghton and Charles M. Rice	Chimpanzee	Hepatitis C virus