
O Paradigma "Code Push-Down"

TIAGO LEÃO GOMES
Outubro de 2021

The “Code Push-Down” Paradigm

Tiago Leão Gomes

Dissertation to obtain the master’s degree in Informatics Engineering,

Specialization in Software Engineering

Supervisor: António José Rocha De Oliveira

Porto, 2021

ii

iii

Resumo

A SAP é um dos maiores e mais bem-conceituados fornecedores de sistemas ERP. Tal como a

maioria dos sistemas ERP, estes também têm estado em constante evolução.

Desde a disponibilização da sua base de dados SAP High-Speed Analytical Appliance (HANA), a

SAP tem tentado persuadir os seus clientes a adotar esta base de dados.

Em 2018, a SAP anunciou que iria acabar o suporte do seu ERP, SAP ECC, favorecendo a

adoção do seu novo ERP, SAP S/4 HANA, que apenas suporta o uso de bases de dados SAP

HANA. O suporte estava previsto acabar em 2025, no entanto foi adiado para 2027 a pedido

dos seus clientes.

O fim deste suporte significa que uma porção significativa dos clientes da SAP irão migrar para

o ERP SAP S/4 HANA (+ SAP HANA) e, como recomendado pela SAP, provavelmente também

irão adotar o paradigma de desenvolvimento “Code Push-Down”, que se foca em empurrar

lógica aplicacional para a camada/nível da base de dados.

Apesar desta mudança no paradigma de desenvolvimento poder, supostamente, trazer

benefícios significativos de desempenho, também pode ter consequências no que toca às

outras qualidades do software desenvolvido.

Este trabalho tem como objetivo analisar o paradigma de desenvolvimento “Code Push-

Down”, descobrir possíveis desvantagens/limitações e tentar elaborar um guião geral de

como aplicar o paradigma de forma a tentar mitigá-las.

E talvez, ao suceder nos seus objetivos, também incentivar a realização de mais trabalhos

sobre o tema.

Palavras-chave: “Code Push-Down”, SAP ABAP, SAP HANA, Paradigma de Desenvolvimento,

Guião.

iv

v

Abstract

SAP is one of the biggest and most well-established ERP system providers. Like most ERP

systems, their ERP systems and surrounding ecosystems have been in constant evolution.

Since the introduction of their SAP High-Speed Analytical Appliance (HANA) database, they

have been pushing their clients towards its adoption.

In 2018, they announced the end of support for their SAP ECC ERP in favor of the new SAP S/4

HANA ERP, which only supports SAP HANA. This end of support was to take place in 2025 but,

due to requests by their customers, it has since been extended to 2027.

This end of support means a significant portion of SAP’s clients are migrating to SAP S/4 HANA

(+ SAP HANA) and, as recommended by SAP, will most likely also adopt their “Code Push-

Down” development paradigm, which is based around pushing application logic down to the

database tier/layer.

Although this shift in development paradigms can, supposedly, bring significant gains in

performance, it may also have consequences when it comes to other qualities of the

developed software.

This work aims to analyze the “Code Push-Down” development paradigm, discover possible

downsides/tradeoffs and try to provide general guidelines on how to apply it in order to

possibly mitigate them.

And perhaps, by succeeding in meeting the objectives, to incentivize further work about this

topic.

Keywords: “Code Push-Down”, SAP ABAP, SAP HANA, Development Paradigm, Guidelines

vi

vii

Acknowledgments

To keep this short and sweet.

I would like to thank my family for all the support and love they give me, as without it I

wouldn’t be where I am.

I would like to thank my girlfriend for all the support, patience, and encouragement she has

provided me.

I would also like to thank José Bento from Inetum, who was my mentor when I joined ROFF

(now Inetum) and helped me with the infrastructure for the developments and the problem

statement amongst others.

I would also like to thank my thesis advisor António Rocha for all the help and encouragement

provided.

Finally, I would like to thank ISEP for the great master’s degree from which I’ve learned so

much.

viii

ix

Table of Contents

1 Introduction .. 19

1.1 Context ..19

1.2 Problem ..21

1.3 Objectives ...22

1.4 Document Structure ...23

2 Background ... 25

2.1 ERP Systems ...25

2.2 Database & Database Management System (DBMS) ..26

2.3 Database Migration ...26

3 State of the Art .. 27

3.1 Software Architecture ...27
3.1.1 Tiered Architectures ...29
3.1.2 Layered Architecture Style ...31
3.1.3 General responsibility assignment software principles (GRASP)33

3.2 SAP Technologies & Development Tools ..38
3.2.1 SAP ERP System’s Architecture ...38
3.2.2 SAP ABAP ..39
3.2.3 Core Data Services (CDS) ..41

3.3 SAP Software Development ...44
3.3.1 SAP “Standard” Development Paradigm ..44
3.3.2 “Code Push-Down” Development Paradigm ..45

4 Value Analysis .. 49

4.1 New Concept Development Model (NCD) ...49

4.2 Opportunity Identification ..51

4.3 Opportunity Analysis ...51

4.4 Idea Generation and Enrichment ..52

4.5 Idea Selection ...53
4.5.1 Analytic Hierarchy Process (AHP) ..53
4.5.2 Applying AHP ..54

4.6 Concept Definition ...58
4.6.1 Value Proposition ...59

5 Simulated Problem Statement .. 61

5.1 Problem Statement – “S00124_2017 - Management of External Suppliers”61
5.1.1 Scope of the Document ..62
5.1.2 Technical and Functional Requirements ..63

x

5.1.3 Identification of Interfaces ... 68
5.1.4 Identification of Access Profiles ... 68
5.1.5 Data Migration Needs .. 68

6 Analysis ... 69

6.1 Domain Model ... 69

6.2 Requirement Engineering ... 70
6.2.1 FURPS+ System for Requirement Classification .. 70
6.2.2 Requirements ... 72

7 Design ... 75

7.1 “Standard” development paradigm ... 75
7.1.1 General Solution Architecture .. 75
7.1.2 Use Case Specification .. 77
7.1.3 Data Model .. 81

7.2 “Code Push-Down” development paradigm .. 82
7.2.1 General Solution Architecture .. 82
7.2.2 Use Case Specification .. 84
7.2.3 Data Model .. 86

8 Development .. 87

8.1 Development Environment & Tools .. 87
8.1.1 SAP ERP .. 87
8.1.2 Database... 87
8.1.3 ABAP Application Server .. 88
8.1.4 Development Tools... 88

8.2 Solution .. 88

9 Comparison .. 95

9.1 Implementation Comparison ... 95
9.1.1 General Solution Architecture .. 96
9.1.2 Functional Requirement Implementation. .. 98

9.2 Partial Software Product Quality Comparison ... 102
9.2.1 Maintainability .. 102
9.2.2 Portability ... 103

9.3 Conclusions ... 104
9.3.1 Implementation .. 104
9.3.2 Maintainability .. 104
9.3.3 Portability ... 105

10 Guidelines ... 107

10.1 “Code Push-Down” – A Pragmatic Point-Of-View .. 107

10.2 “Code Push-Down” – Applying the Paradigm ... 108
10.2.1 When/Where to apply the “Code Push-Down” developing paradigm 108
10.2.2 How to apply the “Code Push-Down” developing paradigm 108

xi

11 Conclusions ... 113

11.1 The “Code Push-Down” Development Paradigm ... 113

11.2 SAP’s Posture Regarding “Code Push-Down” ... 113

11.3 Achieved Objectives ... 114

11.4 Difficulties .. 114

11.5 Improvements... 115

11.6 Future Work ... 115

xii

Table of Figures

Figure 1 - ERP Market Share [3], [4] ... 20

Figure 2 - SAP Release Timeline ... 21

Figure 3 - IDC 2019 SAP S/4 HANA Survey ... 21

Figure 4 - Database Migration Diagram[14]... 26

Figure 5 - Product Quality Model[18] .. 28

Figure 6 - 3-Tier Deployment[20] ... 30

Figure 7 - 4-tier deployment[23] .. 31

Figure 8 - The logical architecture view of a layered system[25] .. 32

Figure 9 - SAP S/4 HANA 3-Tier Architecture[34]... 38

Figure 10 - CDS Languages [48] .. 42

Figure 11 - CDS DDL [50] .. 42

Figure 12 - "Standard" SAP Development Architecture[59] .. 44

Figure 13 - Code Push-Down[42] ... 45

Figure 14 - Code Push-Down Result[42] .. 46

Figure 15 - Top-Down approach to “Code Push-Down”[60] .. 47

Figure 16 - Bottom-Up approach to “Code Push-Down”[61] .. 47

Figure 17 - The New Concept Development (NCD) diagram [64] .. 50

Figure 18 - AHP Hierarchical Model Tree ... 55

Figure 19 - Problem Overview.. 62

Figure 20 - Domain Model ... 69

Figure 21 - Use case Diagram ... 72

Figure 22 - "Standard" Component Diagram ... 76

Figure 23 - UC1 Sequence Diagram .. 77

Figure 24 - UC2 Sequence Diagram .. 78

Figure 25 - UC3 Sequence Diagram .. 78

Figure 26 - UC4 Sequence Diagram .. 79

Figure 27 - UC5 Sequence Diagram .. 80

Figure 28 - UC6 Sequence Diagram .. 80

Figure 29 - "Standard" Data Model .. 81

Figure 30 - "Code Push-Down" Component Diagram .. 83

Figure 31 - UC2 "Code Push-Down" Sequence Diagram .. 84

Figure 32 - “Code Push-Down” Data Model... 86

Figure 33 - External Supplier table maintenance “screen” program ... 89

Figure 34 - Reporting Program’s Selection-Screen .. 90

Figure 35 - Reporting Program's Report .. 90

Figure 36 - Reporting Program's PDF Export .. 91

Figure 37 - Reporting Program's Exported PDF File (in Adobe Reader) 91

Figure 38 - Reporting Program's XML Export ... 92

Figure 39 - Reporting Program's XML Exported File (in VS Code) .. 92

Figure 40 - Cockpit Program's Main Screen ... 93

xiv

Figure 41 - Cockpits Program's Data Insertion Screen ... 94

Figure 42 - "Standard" Component Diagram (Changes) .. 96

Figure 43 - "Code Push-Down" Component Diagram (Changes) ... 97

Figure 44 - "Code Push-Down" Decision Tree .. 111

xv

List of Tables

Table 1 - AHP Activity Comparison Importance Scale .. 54

Table 2 - AHP Evaluation Tree .. 55

Table 3 - Normalized AHP Evaluation Tree .. 56

Table 4 - AHP Criteria Priorities .. 56

Table 5 - Problem Statement General Information ... 61

Table 6 - External Supplier Table.. 63

Table 7 - External Accounting Movements Table .. 64

Table 8 - List Format Table ... 65

xvi

Acronyms

ERP Enterprise Resource Planning

SaaS Software-as-a-Service

PaaS Platform-as-a-Service

DBMS Database Management System

ISO International Organization for Standardization

CRUD Create – Read – Update – Delete

OMG Object Management Group

SQL Structured Query Language

UC Use Case

UR Usability Requirement

SR Supportability Requirement

IPR Implementation Requirement

API Application Interface

xviii

1 Introduction

This chapter intends to present an overview of this dissertation and the work done. Focusing

on contextualizing the problem, describing the objectives set to overcome the problem and

the motivation behind the work done. This chapter also describes the structure of the present

document itself.

1.1 Context

Since their inception, enterprise resource planning (ERP) systems have brought a lot of value

to enterprises [1] and, as such, their adoption has been increasing throughout the years,

making it a multi-billion-dollar market [2], even when looking at “old” data.

One of the ERP system providers which has consistently had a significant market share

throughout the years is SAP, as shown in Figure 1.

20

Figure 1 - ERP Market Share [3], [4]

According to SAP itself, it has “more than 440,000 customers in more than 180 countries” and

“Today, 77% of all business transactions worldwide touch an SAP system. For example, SAP’s

customers produce 78% of the world’s food products and 82% of the world’s medical devices.”

[5]

Besides providing the usual Software-as-a-Service (SaaS), like most other ERP systems, SAP’s

ERP systems give consumers the option of also using it as a Platform-as-a-Service (PaaS). This

means they, themselves or by use of other organizations, can extend and/or develop their

own software within their SAP ERP system by using the provided “tools” as they see fit.

Since its release in 2004, SAP’s “Flagship” ERP system has been SAP ECC. This ERP is database

agnostic, meaning it can operate with different databases, such as Oracle, MySQL, and HANA.

In 2011, SAP’s high-performance analytic appliance (HANA) DBMS started to become available

to its customers. This database, as the name implies, has a big focus on high performance and,

its usage has been growing since.

In 2015, SAP released its new ERP system, SAP S/4 HANA, alongside other changes and

improvements, this new ERP system focuses on leveraging the use of the SAP HANA DBMS

and, therefore, stops supporting other DBMSs.

21

1.2 Problem

In 2018, SAP announced that they would be ending support for their older ERP systems, such

as SAP ECC. The end of support date has been extended, since the announcement, to 2027, as

of the release of the present document [6], [7]. For better context the release timeline can be

observed in the figure below.

Figure 2 - SAP Release Timeline

Since the end of life announcement, in 2019, IDC conducted a survey with over 300 SAP

customers, coming to the conclusion of: “It’s not a matter of if companies will adopt SAP S/4

HANA anymore, but when.”[8]

“Across a multitude of industries, IDC found that 73 percent of the surveyed businesses were

planning to deploy and, 18 percent are currently deploying SAP S/4HANA. The remaining 9

percent of the companies stated they already have SAP S/4HANA in production. Customers

were also asked about the planned timeline for their transition to our leading ERP system.

According to the survey, 54 percent of SAP customers say they will make the switch within

three years.”[8] This last part of the survey can be observed in the figure below.

Figure 3 - IDC 2019 SAP S/4 HANA Survey

9%

18%

54%

19%

Already on S/4
HANA

Currently Upgrading

Upgrading within 3
years

Upgrading after 3
years

22

By ending the support of its older ERP systems, SAP will “force” their clients to migrate to

their new ERP systems and therefore to the adoption of the SAP HANA DBMS as well.

Now this by itself raises quite a few different issues/questions regarding the migration process,

the compatibility of new systems with old “custom” software, possible database lock in, etc.

And although these are important concerns that also deserve to be worked on, the present

work focuses on the following.

With the migration to the new SAP S/4 HANA ERP system and SAP HANA DBMS, SAP

recommends the adoption of their “Code Push-Down” developing paradigm, to better

leverage the, alleged, high performance of their SAP HANA DBMS. [9], [10]

This new, to the SAP ecosystem, development paradigm seems to go against current

development trends and patterns by “blurring” the segregation between traditional

application/business and data layers and/or tiers while, possibly, compromising the solution’s

architectural quality for performance benefits.

1.3 Objectives

The present work has the following objectives:

• Understand the current development paradigm, within the SAP Ecosystem;

• Understand SAP’s take on the “Code Push-Down” development paradigm and its tools;

• Apply & compare both development paradigms;

• Identify potential compromises & problems with the application of “Code Push-Down”;

• Develop “General Guidelines” on how to view/apply the “Code Push-Down”

development paradigm (and hopefully mitigate any identified

problems/compromises).

23

1.4 Document Structure

The present document follows the following structure:

1. Introduction: Problem context, identification and motivation that drives the present

work;

2. Background: Explanation and definition of some concepts that may be helpful to

better understand the work done;

3. State of the Art: Summary of the current context and tools existent to try to solve the

problem(s) at hand;

4. Value Analysis: Description of the value analysis done for this work;

5. Simulated Problem Statement: A problem to be used to develop two solutions;

6. Analysis: Analysis and requirement engineering of the problem statement;

7. Design: Design of both solutions;

8. Development: Development of both solutions;

9. Comparison: Evaluation and comparison of both developed solutions;

10. Guidelines: Conclusions about the developed solutions and guidelines developed

based on those conclusions;

11. Conclusions: Further conclusions about the developed work, opinions, improvements,

and future work.

24

2 Background

This chapter focuses on explaining and defining some concepts and tools whose grasp may be

helpful to better understanding the rest of the document.

2.1 ERP Systems

Taking into consideration the context of this document, this definition will be given from SAP’s

point of view.

Enterprise Resource Planning (ERP) Systems are systems that are composed of multiple

applications, also commonly referred to as “modules”, tightly connected that usually share a

single database. Each application (or module) typically focuses on one business area (Finance,

HR, manufacturing, Supply Chain, etc.). In SAP’s ERP Systems it is usually possible to combine

different modules as seen fit by the customer to better suit their needs.[11]

There are multiple types of ERP Systems from various providers, but SAP currently offers

these types as to better suit the customer’s needs[11]:

• Cloud ERP Systems;

• On-Premises ERP Systems;

• Hybrid ERP Systems.

Depending on the type of ERP system the client has, the provided solution can be what is

classified as a Software-as-a-Service (SaaS) all the way to what is classified as a Platform-as-a-

Service (PaaS), where additional software development/integration is supported. This specific

type of ERP Systems is the one this work focuses on.

26

2.2 Database & Database Management System (DBMS)

As simply explained by Oracle, “A database is an organized collection of structured

information, or data, typically stored electronically in a computer system. A database is

usually controlled by a database management system (DBMS).

Together, the data and the DBMS, along with the applications that are associated with them,

are referred to as a database system, often shortened to just database.

Data within the most common types of databases in operation today is typically modeled in

rows and columns in a series of tables to make processing and data querying efficient. The

data can then be easily accessed, managed, modified, updated, controlled, and organized.

Most databases use structured query language (SQL) for writing and querying data.”[12]

A DBMS is an interface between the database and its end users or programs, allowing users to

control, organize and optimize the data. A DBMS also facilitates oversight and control of

databases, enabling a variety of administrative operations such as performance monitoring,

tuning, and backup and recovery.[12]

2.3 Database Migration

As defined by Google, “Database migration is the process of migrating data from one or more

source databases to one or more target databases by using a database migration service.

When a migration is finished, the dataset in the source databases resides fully, though

possibly restructured, in the target databases. Clients that accessed the source databases are

then switched over to the target databases, and the source databases are turned down.”[13]

The following diagram illustrates this process in a simple way:

Figure 4 - Database Migration Diagram[14]

3 State of the Art

In order to achieve and understand what good solutions to the problem at hand can be, we

need to understand the current state of the art.

Taking into consideration the current problem at hand and its context, it is pertinent to

understand:

• The current state of the art of software architecture, with a focus on the common

“Standard” practices within the SAP ecosystem;

• The state of the art when it comes to software development infrastructure and tools

in an SAP context;

• The state of the art when it comes to both the “Standard” development paradigm and

the “Code Push-Down” development paradigm.

3.1 Software Architecture

This subchapter focuses on explaining the concept of software architecture and its current

state, in this work’s context.

We can define software architecture, in the context of application development, as a set of

patterns, techniques and best practices. This set of patterns, techniques and best practices

should be specifically chosen as to best guide the development process in order to assure that

the main desired qualities for the solution are achieved.[15]–[17]

28

Taking this definition into account, let us focus on the software qualities that may end up

being compromised with the application of the “Code Push-Down” paradigm.

Knowing that this paradigm is centered around “pushing” the application processing load

“down” to the database, we can narrow down the scope of the qualities, as defined by ISO, to

the most likely to be affected by this change in responsibilities, to the ones highlighted in the

figure below:

Figure 5 - Product Quality Model[18]

• Maintainability: The degree of effectiveness and efficiency with which a product or

system can be modified (these modifications can include corrections, improvements

or adaptations of the software to changes in environment, and in requirements

and/or functional specifications) by the people/systems maintaining it, whoever they

might be.[19]

o Modularity: The degree to which a system or computer program is composed

of discrete components such that a change to one component has minimal

impact on other components. This attribute is usually a consequence of high

cohesion and low coupling;[19]

o Reusability: The degree to which an asset can be used in more than one

system, context or in building other assets;[19]

o Analyzability: The degree of effectiveness and efficiency with which it is

possible to assess the impact on a product or system of an intended change to

one or more of its parts, or to diagnose a product for deficiencies or causes of

failures, or to identify parts to be modified;[19]

29

o Modifiability: The degree to which a product or system can be effectively and

efficiently modified without introducing defects or degrading existing product

quality;[19]

o Testability: The degree of effectiveness and efficiency with which test criteria

can be established for a system, product or component and tests can be

performed to determine whether those criteria have been met.[19]

• Portability: The degree of effectiveness and efficiency with which a system, product

or component can be transferred from one hardware, software or other operational

or usage environment to another.[19]

o Adaptability: The degree to which a product or system can effectively and

efficiently be scaled or adapted for different or evolving hardware, software

or other operational or usage environments;[19]

o Installability: The degree of effectiveness and efficiency with which a product

or system can be successfully installed and/or uninstalled in a specified

environment;[19]

o Replaceability: The degree to which a product can replace another specified

software product for the same purpose in the same environment.[19]

Keeping this in mind, in this subchapter we will focus on the patterns, practices, guidelines,

techniques that focus and/or impact directly the mentioned quality attributes.

It is also important to note that, there are countless patterns, practices, guidelines, and

techniques within the software architecture scope. But since the present work focuses on the

SAP development landscape, the scope will be narrowed down to focus on tiered/layered

architectures, as these are the core development principles applied in the SAP development

landscape.

3.1.1 Tiered Architectures

These architectural styles are some of the most commonly used architectural patterns in

software development for traditional client-server applications as it can, usually, create value

and improve modularity and testability attributes.

These architectural styles are of particular importance to the present work as the changes,

proposed by the “Code Push-Down” paradigm, are largely targeted to, considerably, change

the way these architectural styles are applied.

30

3.1.1.1 3-Tier

The 3-tier architecture organizes applications into the following three logical and physical

computing tiers, as shown in the figure below:

Figure 6 - 3-Tier Deployment[20]

• Presentation Tier: The presentation tier is the user interface and communication layer

of the application, where the end user interacts with the application. Its main purpose

is to display information to and collect information from the user. This top-level tier

usually runs on a web browser, as a desktop application or a graphical user interface

(GUI) of some sort;[21], [22]

• Application Tier: The application tier, also known as, the logic or business tier, is the

“heart” of the application. In this tier, information collected in the presentation tier is

processed - sometimes against other information in the data tier - using business logic,

a specific set of business rules. The application tier can also perform CRUD operations

to the data in the data tier; [21], [22]

• Database Tier: The database tier, or sometimes called data tier, is where the

information processed by the application is stored and managed. This can be a

relational database management system or a NoSQL Database server.[21], [22]

It is important to note that, in a 3-tier application, all communication goes through the

application tier. The presentation tier and the data tier cannot communicate directly with one

another. [22]

The main benefits of this type of architecture are the level of modularity, and consequent

testability provided by the tier’s inherent high cohesion and low coupling. Additionally,

another big benefit of 3-tier architecture is that, because each tier runs on its own

infrastructure, each tier can be developed simultaneously by a separate development team

and can be updated or scaled as needed without impacting the other tiers.[22]

31

3.1.1.2 N-Tier Architecture

The N-tier architecture style, also called multi-tier architecture, refers to any application

architecture with more than one tier. But applications with more or less than three layers are

much less common. As a result, n-tier architecture and multi-tier architecture are usually

synonyms for three-tier architecture. The figure below represents an n-tier architecture.

Figure 7 - 4-tier deployment[23]

3.1.2 Layered Architecture Style

This architectural style is one of the most commonly used architectural patterns in software

development as it can, usually, create value and improve modularity and testability attributes

in a lot of varying contexts.

This architectural style is of particular importance to the present work, as the changes

proposed by the “Code Push-Down” paradigm, are largely targeted to, considerably, change

the way this architectural style is applied.

3.1.2.1 Layered Architecture

This architectural style focuses on segregating and encapsulating a solution, or part of it, into

broad functional layers. These layers, sometimes also referred to as modules, represent large

portions of the solution which are, typically, loosely coupled between each other and their

scope tends to be clearly defined.[24] Usually there are at least three functional layers, as

shown in the figure below.

32

Figure 8 - The logical architecture view of a layered system[25]

• Presentation: The presentation layer corresponds to the user interface portion and

part of the communication portion of the solution. It’s main responsibility is to display

information and turn user interaction into actionable requests for the domain

layer;[26]

• Domain: The domain layer, also usually called as business layer, typically harbors most,

if not all, business logic, rules, and domains that the solution provides. Its purpose is

to process incoming requests by applying the business logic to the data provided by

the data layer;[26]

• Data: The data layer is typically responsible for the data management portion of the

solution, from data operations requested by the domain layer to dealing with the data

in storage.[26]

These 3 layers tend to be a particularly common way of layering a solution particularly due to

the inherent low coupling and high cohesion that these modules of the solution tend to have.

That said, it is also common to find different and/or additional layers like Services or

Controller layer depending on the context and the module of the solution being layered.[26],

[27]

33

3.1.2.2 Tier vs. Layer

When discussing Tiered Architectures and Layered Architectures, the terms and concepts of

“tier” and “layer” tend to, mistakenly, be used interchangeably. That said, they are not the

same. A “layer” refers to a functional division of the software, but a “tier” refers to a

functional division of the software that runs on infrastructure separate from the other

divisions. And although all the layers of each component of a solution tend to be in the same

tier, it is not always the case and they do not have to be confined to the same tier.[21], [22]

For example, a simple desktop application like a calculator app can have multiple layers but

only a single tier.

3.1.3 General responsibility assignment software principles (GRASP)

General Responsibility Assignment Software Principles/Patterns are a set of guidelines to

better assign responsibilities to classes and objects in object-oriented design. These guidelines

aim to reduce the ambiguity of the responsibility assignment process by doing it in a

methodical, rational, and comprehensive way. [28], [29]

Before diving into the principles let’s define the concept of responsibility. OMG defines

responsibility as “A contract or an obligation of an element in its relationship to other

elements”.[30] And these responsibilities/obligations tend to be of the following types:

• Doing Responsibilities:

o Doing something itself, such as creating an object or doing a calculation;

o Initiating actions in other objects;

o Controlling and coordinating activities in other objects.

• Knowing Responsibilities:

o Knowing about private encapsulated data;

o Knowing about related objects;

o Knowing about things it can derive or calculate.[28]

These types of responsibilities are the most usual reasons as to why you should attribute a

responsibility to a specific object. The information to determine these responsibilities is

usually gathered from the domain.[28]

These are the 4 main patterns of GRASP, as these are the ones that address the most common

questions and fundamental design issues[28]:

34

3.1.3.1 Information Expert (or Expert)

Problem

What is the general principle of assigning responsibilities to objects?

An application may require hundreds or thousands of responsibilities to be fulfilled. At various

stages we make choices about the assignment of responsibilities to software classes. Done

well, systems tend to be easier to understand, maintain, and extend, and there is more

opportunity to reuse components in future applications.[28], [29]

Solution

Assign a responsibility to the information expert. This being the class/object that has the

information necessary to fulfill the responsibility.

This guideline tries to represent common “intuition” as objects should be related to the

information they have. Notice that the fulfillment of a responsibility often requires

information that is spread across different classes of objects. This implies that there are many

"partial" information experts who will collaborate in the task. [28], [29]

Contraindications

There are situations where a solution suggested by Expert is undesirable, usually because of

problems in coupling and cohesion (these principles are discussed later). These problems,

usually, indicate violation of a basic architectural principle(s): design for a separation of major

system concerns. Keep application logic in one place (such as the domain software objects),

keep database logic in another place (such as a separate persistence services subsystem), and

so forth, rather than intermingling different system concerns in the same component.[28], [29]

Key Benefits

• Information encapsulation is maintained since objects use their own information to

fulfill tasks. This usually supports low coupling, which leads to more robust and

maintainable systems;[28]

• Behavior is distributed across the classes that have the required information, thus

encouraging more cohesive "lightweight" class definitions that are, usually, easier to

understand and maintain, promoting high cohesion.[28]

35

3.1.3.2 Low Coupling

Problem

How to support low dependency, low change impact, and increased reuse?

Coupling is the measure of how strongly one element is connected to, has knowledge of, or

relies on other elements. An element with low (or weak) coupling is not dependent on too,

relatively, many other elements. These elements can be classes, subsystems, systems, and so

on. [28], [31]

An element with high (or strong) coupling relies on many other elements. Such elements may

become undesirable as its likely they will suffer from the following problems [28], [31]:

• Changes in related elements force local changes;

• Harder to understand in isolation;

• Harder to reuse because its use requires the additional presence of the elements on

which it is dependent.

Solution

Assign responsibilities in a way that coupling remains low.

Low Coupling is a principle to keep in mind during all design decisions. It is an evaluative

principle that a designer applies while evaluating all design decisions. Common forms of

coupling from TypeX to TypeY include [28], [31]:

• TypeX has an attribute (data member or instance variable) that refers to a TypeY

instance, or TypeY itself;

• A TypeX object calls on services of a TypeY object;

• TypeX has a method that references an instance of TypeY, or TypeY itself, by any

means. These typically include a parameter or local variable of type TypeY, or the

object returned from a message being an instance of TypeY;

• TypeX is a direct or indirect subclass of TypeY;

• TypeY is an interface, and TypeX implements that interface.

Low Coupling encourages assigning a responsibility so that its placement does not increase

the coupling to such a level that it leads to the negative results that high coupling can

produce.[28], [31]

36

Contraindications

Unless taken to extremes, low coupling is seldom a problem.

Key Benefits

• Not affected by changes in other components;

• Simple to understand in isolation;

• Convenient to reuse.

3.1.3.3 High Cohesion

Problem

How to keep complexity manageable?

Cohesion (or more specifically, functional cohesion) is a measure of how strongly related and

focused the responsibilities of an element are. An element with highly related responsibilities,

has high cohesion. These elements include classes, subsystems, and so on. [28], [31]

A class with low cohesion does many unrelated things. Such classes are undesirable as they,

usually, suffer from the following problems [28], [31]:

• Hard to comprehend;

• Hard to reuse;

• Hard to maintain;

• Delicate. Constantly affected by change;

• Low cohesion classes often represent a very "large grain" of abstraction or have taken

on responsibilities that should have been delegated to other objects.

37

Solution

Assign a single responsibility so that cohesion remains high.

Like Low Coupling, High Cohesion is a principle to keep in mind during all design decisions. It is

an evaluative principle that a designer applies while evaluating all design decisions. [28], [31]

As a rule of thumb, a class with high cohesion has a relatively small number of methods, with

highly related functionality, and does not do too much work. It collaborates with other objects

to share the effort if the task is large.[28], [31]

A class with high cohesion is advantageous because it is relatively easy to maintain,

understand, and reuse. The high degree of related functionality, combined with a small

number of operations, also simplifies maintenance and enhancements. The fine grain of highly

related functionality also supports increased reusability.[28], [31]

Contraindications

There are a few cases in which accepting lower cohesion is justified.

One case is the grouping of responsibilities or code into one class or component to simplify

maintenance by one person although, be warned, that such grouping may also make

maintenance worse.[28], [31]

Another case for components with lower cohesion is with distributed server objects. Because

of overhead and performance implications associated with remote objects and remote

communication, it is sometimes desirable to create fewer and larger, less cohesive server

objects that provide an interface for many operations.[28], [31]

Key Benefits

• Clarity and ease of comprehension of the design is increased;

• Maintenance and enhancements are simplified;

• Low coupling is often supported;

• The fine grain of highly related functionality supports increased reuse because a

cohesive class can be used for a very specific purpose.

38

3.2 SAP Technologies & Development Tools

This subchapter focuses on explaining the current state of the art of the SAP technology and

development tools landscape.

Although SAPs ecosystem is quite vast and diverse, this subchapter will focus on the core

technologies and tools used for more “standard” and common developments within the SAP

landscape.

3.2.1 SAP ERP System’s Architecture

Since 1992, with the introduction of SAP R/3, until more recently with the introduction of SAP

S/4 HANA, SAP’s “on-premise” ERP systems have followed client-server and 3-Tier

architectures [32], [33], as shown in the figure below.

Figure 9 - SAP S/4 HANA 3-Tier Architecture[34]

Their version of the 3-Tier architecture follows the same pattern of the architecture explained

in the subchapter 3-Tier.

39

3.2.2 SAP ABAP

This subsection focuses on explaining the current state of the art regarding the SAP Advanced

Business Application Programing (ABAP) language and its tools.

3.2.2.1 ABAP Language / Application Server ABAP

SAP ABAP is a programming language developed by SAP for the development of business

applications in the SAP environment.[35]

A prerequisite for the use of the ABAP programming language is the installation and use of an

Application Server ABAP. Most of the components of an AS ABAP can be organized in the

layers (presentation, application, and database) of a three-tier client-server architecture in

accordance with their tasks.[35]

• The presentation layer is distributed to the workstations of individual users and

represents the user interface of an AS ABAP (SAP GUI or Web browser);

• The application layer is implemented using one or more application servers. The

application layer contains the ABAP runtime environment in which ABAP programs

are executed;

• The database layer consists of a database system in which the central dataset of an AS

ABAP is saved.

ABAP supports the following programming models [35]:

• An object-oriented programming model based on classes and interfaces;

• A procedural programming model based on function modules and subroutines.

Both programing models can be used simultaneously and interchangeably although SAP

recommends the use of the object-oriented approach.[35]

40

3.2.2.2 Database Access

One of the fundamental properties of ABAP as a programming language for business

applications is that access to database and data structures is fully integrated into the language.

[35]

This integration can be split into two main parts:

• Data Modeling: ABAP data modeling makes it possible to create data models for

business applications. ABAP has two major ways modeling data:

o ABAP Dictionary: This is a persistent repository for data types and their

dependencies;

o ABAP Core Data Services (ABAP CDS): This expands the ABAP Dictionary by

adding an implementation of the CDS concept for AS ABAP.

• Database Access: Access to data in the database is fully integrated in ABAP. This data

can be directly accessed using two different methods:

o Open SQL: This makes it possible to access database objects defined in ABAP

Dictionary or ABAP CDS and data from the database;

o Native SQL: makes platform-specific access to databases possible.

3.2.2.3 ABAP Dictionary

The ABAP Dictionary is used to create and manage data definitions (metadata). It allows for a

central description of all the data used in the system without redundancies. New or modified

information is automatically provided for all the system components. This ensures data

integrity, data consistency and data security.[35]–[37]

The ABAP Dictionary supports the definition and/or creation of the main following objects:

• Tables;

• Views;

• Types;

• Lock Objects;

• Domains.

It describes the logical structure of the objects used in application development and shows

how they are mapped to the underlying relational database in tables or views. It also provides

41

standard functions for editing fields on the screen, for example for assigning input help to a

screen field. [35]–[37]

The ABAP Dictionary is completely integrated in the ABAP Workbench. The SAP system works

interpretatively, permitting the ABAP Dictionary to be actively integrated in the development

environment. [35]–[37]

3.2.2.4 Open SQL

As said by SAP, Open SQL is the umbrella term for a subset of SQL realized using ABAP

statements, including the Data Manipulation Language (DML) part. The Open SQL statements

use the Open SQL interface of the database interface to access an AS ABAP database. [38]

The Open SQL Interface is part of the database interface that is responsible for Open SQL

commands. The Open SQL interface converts all Open SQL commands that access the central

database of an AS ABAP to manufacturer-specific SQL and forwards this to the database

system. [39]

This is important to know for the present work because it means that the Open SQL

expressions are passed to the database system, executed there, and the result is passed to the

application server if necessary. [40]

3.2.3 Core Data Services (CDS)

This subsection focuses on explaining the current state of the art of the core data services

(CDS) developed by SAP.

3.2.3.1 ABAP Core Data Services (ABAP CDS)

ABAP Core Data Services (CDS) are a data dictionary infrastructure that was introduced with

SAP AS ABAP 7.40. It allows for the definition and consumption of semantically rich data

models. The CDS framework, although database agnostic, was introduced to leverage the

computational power of HANA DB as some of the main tools for the application of the “Code

Push-Down” paradigm.[41]–[45]

As such, although ABAP CDS are platform independent, it does not mean that the

performance, when accessing CDS entities, is the same for all platforms.[45]

The structure of these abstract data models is mapped directly to entities in the database. At

the same time, the application logic is moved from the application server to the database

server ("“Code Push-Down”"). This means that the data is processed where it is saved, which

in principle should result in an improvement in performance.[46]

42

For the purpose of defining and consuming data models, the CDS framework has been

enhanced by SQL with the languages shown in the figure below:[42], [44], [45], [47]

Figure 10 - CDS Languages [48]

Currently, this framework is focused on leveraging the functionalities of the data definition

language (DDL), as shown in the figure below, to create what are called CDS views and CDS

table functions (usually referred to as AMDP).[44], [45], [47], [49]

Figure 11 - CDS DDL [50]

• CDS Views: A CDS view is defined for existing database tables and any other views or

CDS views in ABAP Dictionary using the CDS DDL in ABAP Core Data Services (CDS) [51].

For the development of CDS views, the use of ABAP Development Tools (ADT) is

required;

43

• CDS Table Functions: A CDS table function is defined in CDS source code of a CDS data

definition in the ABAP Development Tools (ADT) using the ABAP Core Data Services

(CDS) DDL. CDS table functions can only be used in a database system that supports

AMDP (ABAP Managed Database Procedures)[52]. Since its release, it seems that the

SAP HANA DB is still the only one supporting these AMDP [53], [54].

One thing to note is that, according to the SAP’s AMDP Programing Guidelines, “The use of

AMDP is not recommended if the same task can be achieved using Open SQL (or ABAP CDS).”

[53], [55] as “AMDP should be used only if it enables database-specific functions to be

accessed that do not exist in Open SQL (see the example for Currency Conversion) or if large

process flows or analyses that incur repeated transports of large amounts of data between

the database and the application server can be swapped out.” [53], [55].

As stated previously, these ABAP CDS objects are maintained and managed by the ABAP

Dictionary, ending up extending its original functionality.

3.2.3.2 HANA Core Data Services (HANA CDS)

Much like the ABAP CDS, HANA Core Data Services (CDS) are a data dictionary infrastructure

that was introduced with the SAP HANA DBMS for the definition and consumption of

semantically rich data models. The CDS framework was introduced to leverage the

computational power of HANA DB for the application of the “Code Push-Down”

paradigm.[56]–[58]

3.2.3.3 ABAP CDS vs. HANA CDS

Although these core data services serve very similar purposes, they are not the same, and are

not, usually, interchangeable. If you know the DDL of CDS, you should be able to understand

definitions of both CDS entities.

The main difference is that HANA CDS, being proprietary to the SAP HANA DB, can use specific

functions and operations (such as specific arithmetic & cast expressions) that are not

necessarily available on other databases.[41], [56]

44

3.3 SAP Software Development

This subchapter focuses on explaining the current state of the art of software development

within SAP ERP systems.

The focus will be on their “On-premises” ERPs that are platforms (SAP R/3, SAP ECC and SAP

S/4 HANA), allowing for the development of software within themselves.

3.3.1 SAP “Standard” Development Paradigm

Although there can be some variation to the architecture of developments within the SAP ERP

platform, due to the architecture of the system itself and the way the ABAP dictionary is

integrated within the SAP ERP system, the “Standard” development follows a typical layered &

tiered architecture, as shown in the figure below.

Figure 12 - "Standard" SAP Development Architecture[59]

These layers have the exact same purpose as the ones detailed in the subchapter “Layered

Architecture”

These tiers have the exact same purpose as the ones detailed in the subchapter “Tiered

Architectures”

45

3.3.2 “Code Push-Down” Development Paradigm

As stated previously in this document, SAP recommends the adoption of their “Code Push-

Down” developing paradigm, to better leverage, the alleged, high performance of their SAP

HANA DBMS. [9], [10]

This new, to the SAP ecosystem, development paradigm was introduced in SAP NetWeaver

Application Server ABAP 7.4 (NW AS ABAP 7.4) as Core Data Services (CDS).[10] These CDS are

the main tools, alongside ABAP + Open SQL, to be used for the application of the “Code Push-

Down” paradigm (although Open SQL was already present before, the way it is to be applied

changes when applied to the “Code Push-Down” paradigm).

The focus of this development paradigm is to be applied on/over the SAP “Standard”

Development Paradigm by, as the name implies, “pushing” the application code/logic “down”

to the database tier. This is done, mainly, to exploit the following traits in search of

performance:[10], [42]

• Use the, alleged, performance of the SAP HANA database to do most of the heavy

processing tasks as possible.

• Reduce the amount of data to be transferred between tiers and layers.

The figure below shows an overview of the “Code Push-Down” development paradigm as a

whole.

Figure 13 - Code Push-Down[42]

46

It is also important to note that although SAP does not provide public specific

guidelines/processes, at least none were found, on how to choose what type of

data/processes to apply the “Code Push-Down” paradigm to, they, however, do state that:

“Code pushdown means delegating data intense calculations to the database layer. It does not

mean push ALL calculations to the database, but only those that make sense.”[10], [42]

So, according to SAP, the result should be that only a portion of the application logic should be

pushed down, as shown in the figure below. That said, how big of a portion or what could

make sense is up to the developer(s).

Figure 14 - Code Push-Down Result[42]

Now, focusing on the changes to the use of ABAP + Open SQL to apply the “Code Push-Down”

paradigm. Traditionally its use, usually, resulted in “simpler” queries and the remaining

business logic, regarding what to do with the data, was done with ABAP. Now, the logic should

be integrated with the Open SQL queries themselves, as this, as explained before, will result in

the business/application logic being push down and executed in the database.

If using a CDS (ABAP CDS or HANA CDS), depending on its type, the “Code Push-Down”

paradigm can be applied in one of two ways.

47

Figure 15 - Top-Down approach to “Code Push-Down”[60]

This approach, as shown in the figure above, is the approach based on the use of ABAP CDS,

and is the one recommended by SAP for most cases [10]. This is due to ABAP CDS objects

being maintained in the ABAP dictionary.

Figure 16 - Bottom-Up approach to “Code Push-Down”[61]

This approach, as shown in the figure above, is the approach based on the use of HANA CDS,

and although it can be used, it should only be used when HANA CDS are required.[10] This is

due to HANA CDS being on the HANA database itself.

48

One thing to also keep in mind is that, as was implied before, this paradigm, although new in

the SAP ecosystem, is not new to software development in general. One example of this is

Oracle, who had the following to say regarding the “Code Push-Down” paradigm:

“SAP used to think of a database as a dumb data store. Whenever a user wants to do

something useful with the data, it must be transferred, because the intelligence sits in the SAP

Application Server. The disadvantages of this approach are obvious: If the sum of 1 million

values needs to be calculated and if those values represent money in different currencies, 1

million individual values are transferred from the database server to the application server –

only to be thrown away after the calculation has been done.

As a response to this insight, SAP developed the “Code Push-Down“ strategy: push down code

that requires data-intensive computations from the application layer to the database layer.

They developed a completely new programming model that allows ABAP code to (implicitly or

explicitly) call procedures stored in the database. And they defined a library of standard

procedures, called SAP NetWeaver Core Data Services (CDS).

20 years earlier, Oracle had already had the same idea and made the same decision. Since

version 7 Oracle Database allows developers to create procedures and functions that can be

stored and run within the database. It was therefore possible to make CDS available for Oracle

Database as well, and today SAP application developers can make use of it.”[62]

Another thing to keep in mind is that, for some time now, software development in general

has been moving away from this type of development paradigms. Possibly meaning that,

generally, the benefits of these paradigms may not outweigh the drawbacks.

4 Value Analysis

Value analysis can be defined as a systematic, formal, and organized process of analysis and

evaluation that takes into account the function of a product and its ability to fulfill its purpose

being used by the customer(s). [63]

So, in order for a product to create/have value for the customer, it must meet their needs by,

usually, solving/preventing need/problems, reducing costs and/or improving product

performance. Otherwise, it may bring no value to the customer.

In this chapter, the value analysis will be done according to the “New Concept Development

Model” while the value proposition part will be demonstrated according to the business

model canvas.

4.1 New Concept Development Model (NCD)

The New Concept Development Model (NCD) is a model that attempts to provide a common

language and insights to the Fuzzy Front-End Concept (FFE). [64], [65]

The Fuzzy Front End (FFE) being “activities that come before the formal, and well structured,

New Product and Process Development (NPPD)” [65].

The NCD model consists of three key parts, as shown in the diagram below:

• The engine or the portion of the diagram is the leadership, culture, and business

strategy of the organization that drives the five key elements that are controllable by

the corporation [64], [65];

• The inner gray area defines the five controllable activity elements (opportunity

identification, opportunity analysis, idea generation and enrichment, idea selection,

and concept definition) of the FFE [64], [65];

50

• The influencing factors, on the outside of the diagram, consist of organizational

capabilities, the outside world (distribution channels, law, government policy,

customers, competitors, and political and economic climate), and the enabling

sciences (internal and external) that may be involved. These factors affect the entire

innovation process through to commercialization. These influencing factors are

relatively uncontrollable by the corporation [64], [65].

Figure 17 - The New Concept Development (NCD) diagram [64]

It is important to note that the NCD is not linear. The circular shape of the NCD diagram above

is meant to suggest that ideas and concepts are expected to iterate across the five elements.

The arrows pointing into the model represent starting points and indicate that projects begin

at either opportunity identification or idea generation and enrichment. The outbound arrow

represents how concepts leave the model and enter the new product development (NPD) or

technology stage gate (TSG) process [64], [65].

51

4.2 Opportunity Identification

This subchapter attempts to identify opportunities that might be worth pursuing. An

opportunity can be defined as “… a near-term response to a competitive threat, a

breakthrough possibility for capturing competitive advantage, or a means to simplify/speed-

up/reduce the cost of operations. The opportunity could be an entirely new direction for the

business or a minor upgrade to an existing product. It could also be a new product platform, a

new manufacturing process, a new service offering, or a new marketing or sales approach.”

[64], [65].

One of the most effective methods/tools/techniques to be used is technology and trend

analysis [64], [65]. This tool is particularly suited when looking at the scope of the present

work.

Taking in the knowledge learned in the chapters “Context” and “Problem” of the present work

and using the aforementioned, “Technology trend analysis” technique one can identify that

the “sudden” technology shift in ERP system, Database System and development paradigm to

SAP S/4 HANA + SAP HANA + “Code Push-Down” can, possibly, provide opportunities to take

advantage of.

4.3 Opportunity Analysis

This subchapter attempts to analyze the identified opportunity in order to determine if it

might be worth pursuing. For this, additional information and research is needed. The amount

of effort put into this step versus the early and/or uncertain decisions depend on the value of

the information and the impact it may have on the attractiveness of the opportunity [64], [65].

For this step, many of the tools that can be used for the “Opportunity Identification” step are

also used here. That said, this step requires more effort and focus into determining the

attractiveness of said opportunity [64], [65].

Taking this into account and the knowledge learned in the chapters “Context” and “Problem”

of the present work, we can see that this technological shift seems inevitable, and given the

market share of the SAP ERP systems and the surveys related to the application of this

technological shift, we can assess that this opportunity may be worth pursuing.

52

4.4 Idea Generation and Enrichment

This subchapter attempts to generate ideas, and enrich those ideas, to try to best take

advantage of the identified opportunity. Idea generation is evolutionary. Ideas can be built up,

torn down, combined, reshaped, modified, and upgraded. An idea may go through many

iterations and changes as it is examined, studied, and discussed [64], [65].

This process may also be formal, coming up from brainstorming for example or may be

informal coming up from outside sources or unusual experiments [64], [65].

For this work the brainstorming approach was taken to generate and enrich ideas to try to

best take advantage of the opportunity, in this particular case the sudden technological shift

prompted by SAP. These are the resulting ideas:

1. SAP HANA Database Performance Comparison: The focus of this idea would be to

independently test SAP’s claims on SAP HANA performance and how it compares to other

databases applying their “version” of the “Code Push-Down” tools:

• “Code Push-Down” Development Guidelines: The focus of this idea would be to

provide a set of guidelines to complete what little guidelines exist regarding the

application of the “Code Push-Down” development paradigm on standard

development contexts;

• Set of Surveys regarding the “Code Push-Down” Development Paradigm: The focus

of this idea would be to gain a better understanding of the current state of the

application of the “Code Push-Down” Development Paradigm, the felt impact and the

quality attributes that tend to be prioritized by the required solutions;

• Guidelines on the Migration of existing solutions to the “Code Push-Down”

Development Paradigm: The focus of this idea would be to provide a set of guidelines

to complete what little guidelines exist regarding the application of the “Code Push-

Down” development paradigm on already existing solutions;

• “Code Push-Down” Development Guidelines for Edge Cases: The focus of this idea

would be to provide a set of guidelines to complete what little guidelines exist

regarding the application of the “Code Push-Down” development paradigm on edge

case solutions that don’t follow the traditional development paradigm;

• A study on the apparent Database Lock-in and possible “middleware” creation: The

focus of this idea would be to determine the possible state of the SAP HANA database

lock-in and, if possible/needed, develop a compatibility layer as a sort of

“middleware”/Application interface to allow for the use of other databases alongside

SAP S/4 HANA.

53

4.5 Idea Selection

This subchapter attempts to find and choose the idea(s) that may provide the biggest value at

the present time for the current state-of-the-art. Selection may be as simple as an individual’s

choice among many self-generated options or as a formalized and/or complex process [64],

[65].

To help with the idea selection step, the analytic hierarchy process by Thomas L. Saaty will be

used.

4.5.1 Analytic Hierarchy Process (AHP)

The AHP is a decision-making tool which was developed in 1980. It allows us to make an

organized decision via the following process, as detailed in the document “Decision making

with the analytic hierarchy process” by Thomas L. Saaty [66]:

1. Define the problem and determine the kind of knowledge sought;

2. Structure the decision hierarchy from the top with the goal of the decision, then the

objectives from a broad perspective, through the intermediate levels (criteria on

which subsequent elements depend) to the lowest level (which usually is a set of the

alternatives);

3. Construct a set of pairwise comparison matrices. Each element in an upper level is

used to compare the elements in the level immediately below with respect to it;

4. Use the priorities obtained from the comparisons to weigh the priorities in the level

immediately below. Do this for every element. Then, for each element in the level

below, add its weighted values and obtain its overall or global priority. Continue this

process of weighing and adding until the final priorities of the alternatives in the

bottom most level are obtained.

To make comparisons, we need a scale of numbers that indicates how many times more

important or dominant one element is over another element with respect to the criterion or

property with respect to which they are compared. The following table exhibits the scale:

54

Table 1 - AHP Activity Comparison Importance Scale

Intensity of Importance* Definition Explanation

1 Equal Importance Two activities contribute equally to the
objective. 2 Weak or slight

3 Moderate
importance

Experience and judgement slightly favour
one activity over another.

4 Moderate plus

5 Strong importance Experience and judgement strongly
favour one activity over another. 6 Strong plus

7 Very strong An activity is favoured very strongly over
another; its dominance is demonstrated
in practice.

8 Very strong plus

9 Extreme importance The evidence favouring one activity over
another is of the highest possible order
of affirmation.

* If an activity “X” has one of the above non-zero numbers assigned to it when compared with

an activity “Y”, then “Y” has the reciprocal value when compared with “X”.

In cases where the difference between each importance may be too great, one can also use

decimals (e.g., X.1 – X.9)

4.5.2 Applying AHP

Following the steps defined above, we can start by stating that the goal is to select the most

valuable, feasible idea from the generated ones.

Then we must define criteria by which to evaluate each idea. These criteria were chosen

considering the ideas themselves, the scope of this work and the knowledge of the author.

The following are the chosen criteria:

• Time Restrictions: If the idea presents time restrictions as this work has a pre-defined

due date and is limited by it;

• Idea Precedence: If the knowledge gained by implementing the idea could benefit the

other;

• Impact: The impact this idea may have in the current state-of-the-art;

• Time Sensitivity: The importance of the idea being implemented sooner than later.

55

This results in the following diagram:

Figure 18 - AHP Hierarchical Model Tree

Now, in order to evaluate the ideas, let’s create an evaluation table based on the “Table 1 -

AHP Activity Comparison Importance Scale”

Table 2 - AHP Evaluation Tree

Criterion Time Restriction Idea Precedence Impact Time Sensitivity

Time Restriction 1 6 3 5

Idea Precedence 1/6 1 1/5 1/3

Impact 1/3 5 1 2

Time Sensitivity 1/5 3 1/2 1

Sum 1,70 15 4,70 8,33

After defining the importance of each criteria, using the pairwise comparison of the table

above, it must be normalized in order to retrieve the priorities of each measure. This is done

by calculating the mean value of each row.

56

The following table does just that:

Table 3 - Normalized AHP Evaluation Tree

Criterion Time Restriction Idea Precedence Impact Time Sensitivity Mean

Time
Restriction

0,588 0,400 0,638 0,600 0,557

Idea
Precedence

0,098 0,067 0,043 0,040 0,062

Impact 0,196 0,333 0,213 0,240 0,246

Time
Sensitivity

0,118 0,200 0,106 0,120 0,136

With the normalized AHP evaluation tree complete, we now can define the overall priority

each criterion has.

Table 4 - AHP Criteria Priorities

Priority Criterion Significance

1 Time Restriction 55,7%

2 Impact 24,6%

3 Time Sensitivity 13,6%

4 Idea Precedence 6,2%

Based on these priorities, shown in the table above, let’s classify each of the ideas in order to

obtain the most valuable one, currently.

• SAP HANA Database Performance Comparison:

o Time Restriction: This idea seems to be doable in the available time;

o Impact: This idea’s impact would most likely be low as the use of the HANA

DB is required;

o Time Sensitivity: This idea isn’t time sensitive as its impact would be the

same now or in the near future;

o Idea Precedence: This idea would not bring benefits to be implemented

before the others.

57

• “Code Push-Down” Development Guidelines:

o Time Restriction: This idea seems to be doable in the available time;

o Impact: This idea’s impact would likely be significant as the technological

shift leverages its use;

o Time Sensitivity: This idea is time sensitive as the technological shift is

starting to occur now;

o Idea Precedence: This idea would be useful if it were implemented before

the others.

• Set of Surveys regarding the “Code Push-Down” Development Paradigm:

o Time Restriction: This idea seems like it wouldn’t be doable in the available

time;

o Impact: This idea’s impact would likely be moderate as its use would be more

informative than anything to act on;

o Time Sensitivity: This idea is somewhat time sensitive as it might have an

impact on the application of the “Code Push-Down” development Paradigm;

o Idea Precedence: This idea would be useful if it were implemented before

the others.

• Guidelines on the Migration of existing solutions to the “Code Push-Down”

Development Paradigm:

o Time Restriction: This idea seems to be doable in the available time;

o Impact: This idea’s impact would likely be significant as the technological

shift leverages its use;

o Time Sensitivity: This idea is time sensitive as the technological shift is

starting to occur now;

o Idea Precedence: This idea would be useful if it were implemented before

the others.

58

• “Code Push-Down” Development Guidelines for Edge Cases:

o Time Restriction: This idea seems to be doable in the available time;

o Impact: This idea’s impact would likely be moderately significant as these are

niche use cases;

o Time Sensitivity: This idea is time sensitive as the technological shift is

starting to occur now;

o Idea Precedence: This idea would be useful if it were implemented before

the others.

• A study on the apparent Database Lock-in and possible “middleware” creation:

o Time Restriction: This idea seems like it wouldn’t be doable in the available

time;

o Impact: This idea’s impact would likely be very significant as the technological

shift may significantly shift because of this;

o Time Sensitivity: This idea is time sensitive as the technological shift is

starting to occur now;

o Idea Precedence: This idea would not bring benefits to be implemented

before the others.

By following the analysis done and taking into account the criteria priorities we can conclude

that the idea that would bring the most value to be done now is ““Code Push-Down”

Development Guidelines”.

4.6 Concept Definition

This final subchapter serves to present the purpose and value of the current project alongside

the implementation of the current idea.

The current technological shift occurring within the SAP Ecosystem serves as an opportunity

that the present work attempted to present several ideas for. From those the ““Code Push-

Down” Development Guidelines” idea was selected for development in the current work.

59

4.6.1 Value Proposition

If done successfully, the present work should allow for a more unbiased point of view on the

technological shift that is happening within the SAP Ecosystem. This work also strives to

validate SAP’s claims on the “Code Push-Down” development paradigm while also providing a

set of simple to follow guidelines supported by an experiment, in order to complement the

existing guidelines/documentations about the subject.

61

5 Simulated Problem Statement

In order to apply and compare both development paradigms, a simulated problem statement

will be used.

This problem statement has been provided by the ROFF Consulting [67] (now called Inetum)

ABAP Academy. The problem statement is used in the ABAP academy to simulate a realistic

development in the SAP context, in terms of scope, size and complexity. As such, this

statement should be an adequate candidate on which to build our solutions.

The problem statement has been provided in Portuguese. As such, it has been translated and

shortened by removing some sections that, although relevant in a business context, are not as

important for the present work.

The original document is appended to the present work as “Appendix A”.

5.1 Problem Statement – “S00124_2017 - Management of
External Suppliers”

 Table 5 - Problem Statement General Information

System: SAP ERP

Reference: DF_SAP_ MM _S00124_2017

Date: 27.07.2017

Version: 4.0

Author: José Bento

Description: Functional design of the management module for external suppliers

62

5.1.1 Scope of the Document

This document’s purpose is to specify the technical and functional requirements necessary for

the development of a management module for ROFF's external suppliers.

Currently, ROFF is supplied, both in terms of goods and services, by several suppliers, having

been identified that these also use their own suppliers. Since the organization’s control and

management unit (UCG) will start to audit the cost structure as of the next fiscal year, it is

necessary to implement a module that allows storing and consulting monthly data on the

volume of goods and services supplied indirectly by external suppliers with the intention of

perhaps contracting them directly with the aim of reducing costs.

The following diagram should help understand the current situation.

Figure 19 - Problem Overview

63

5.1.2 Technical and Functional Requirements

To manage data from external suppliers, it will be necessary to define two tables in the

database, one to store individual data from external suppliers and the other to store data

from monthly accounting movements. Both tables will be non-expandable.

The table where the individual data will be saved must have a maintenance screen and an

access transaction to allow maintenance by the UCG. This table will be named ZTMM _FEX _

<Initials> and will have the following structure:

 Table 6 - External Supplier Table

Field name Data Element Description

MANDT* MANDT Client

FEXNR* ZMM _
FEXNR_<Initials>

External Supplier. It will be a CHAR field of size 10. It
will have a conversion routine associated in order to
allow the control of leading zeros.

NAME BAPITDOBNAME External Supplier Name

FEXTY ZMM _
FEXTY_<Initials>

External Supplier Type. It will be a CHAR field of size
1 and should take only 1 value from the following
list:
1 – Active Supplier
2 - Old Supplier
3 – Eventual Supplier
4 – Auxiliary Supplier
5 – Other

STCEG STCEG VAT Registration Number

WAERS WAERS Currency Key

STRAS STRAS_GP Street and House Number

ORT01 ORT01_GP City

PSTLZ PSTLZ Postal Code

LAND1 LAND1_GP Country Key

* Key fields

The transaction to access the maintenance screen of this table will be named ZMM _FEX

_<Initials>.

The table where the data of monthly accounting movements will be saved will have the name

ZTMM _MOV FEX_<Initials> and will have the following structure:

64

 Table 7 - External Accounting Movements Table

Field name Data Element Description

MANDT* MANDT Client

WERKS* WERKS_D Plant

LGORT* LGORT_D Storage Location

FEXNR* ZMM _
FEXNR_<Initials>

External Supplier. It will be a CHAR field of size 10. It
will have associated a conversion routine to allow the
control of leading zeros.

GJAHR* GJAHR Fiscal Year

MONAT* MONAT Fiscal Period

WRBTR WRBTR Amount in Document Currency

GSWRT GSWRT Total Value of Item

ANZLI MC_ANZLI No. of deliveries

* Key fields

The search help ZSH MM _ FEXNR_<Initials> must be defined to allow the search for external

suppliers. This search help helps us use the table ZTMM _FEX_ <Initial> as a selection method

and it will be available on all screens that have the External Supplier as a selection field.

A reporting program will be developed with a view to consult monthly accounting movement

data. This program will have the name ZRMM _MOVMES FEX_<Initials> and it will have the

following elements in its selection screen:

• Plant: Simple selection parameter, mandatory;

• Storage Location: Simple selection parameter, mandatory;

• External Supplier: Multiple selection parameter;

• Current Period: Radio button parameter, selected by default;

• Current Year: Radio button parameter;

• Free Selection: Radio button parameter;

• Fiscal Year: Multiple selection parameter;

• Period: Multiple selection parameter.

65

To execute the program, the user must fill in the “Plant” and “Storage Location” fields and

indicate, through the radio button parameters, which period of time he wishes to consult. The

fields “Fiscal Year” and “Period” must be hidden except when the user selects the option

“Free Selection”, in which case they will be available.

At the end of the program execution, an output listing will be presented, in ALV Grid format,

which will have the following structure:

 Table 8 - List Format Table

Field name Data Element Description

GJAHR GJAHR Fiscal Year

MONAT MONAT Fiscal Period

FEXNR Z MM_
FEXNR_<Initials>

External Supplier

FEXTY Z MM_
FEXTY_<Initials>

External Supplier Type

NAME BAPITDOBNAME External Supplier Name

WRBTR WRBTR Amount in Document Currency

GSWRT GSWRT Total Value of Item

PERVT PRZOPKUM Percentage of Total Value of Item (WRBTR / GSWRT)

ANZLI MC_ANZLI No. of deliveries

VALMF BINV_VALUE Average Value per Supply (WRBTR / ANZLI)

WAERS WAERS Currency Key

All entries whose Total Value of Item percentage has a value between 50% and 80% should be

colored yellow; all entries whose percentage of the Total Value of Item is more than 80%

should be painted red.

The ALV output listing must be ordered by Year, Period and External Supplier, and these fields

must also be marked as key fields.

It should be displayed at the end of the list, the sum of all the fields Amount in Document

Currency, Total Value of Item, and number of supplies.

66

At the top of the output listing, an ALV header should be presented containing three pieces of

information:

• The Plant indicated on the selection screen and its description;

• The Storage Location indicated on the selection screen and its description;

• Search time period indicated on the selection screen:

o Month and Year, if the Current Period has been selected;

o Year, if only the Current Year has been selected;

o Free selection, if any free selection has been selected.

The transaction for accessing the ZRMM_MOVMESFEX_<Initials> program will be

ZMM_MOVMESFEX_<Initials>.

In the button bar of the output listing in ALV Grid format, a new button “Export to PDF”

should be added, which will have associated the functionality to export the output listing to a

Smartform form and save it in a local file in PDF format.

The user should be presented with a popup window to indicate the city and name of the file

to be saved on his computer. The name of the file must be pre-filled which will be

<PLANT>_<STORAGE LOCATION>_ <CURRENT_DATE>_<CURRENT_TIME>.PDF

The form must have the following structure:

• The ROFF company logo in the upper left corner;

• The Plant and the Storage Location and their descriptions at the top;

• Time period of research in the upper right corner:

o Month and Year, if the Current Period has been selected;

o Year, if the Current Year was selected;

o Free Selection, if any free selection has been selected.

67

• A table with the data from the ALV Grid output listing with the respective headers

listing the fields Year, Period, External Supplier, External Supplier Type, Amount in

Document Currency, Total Value of Item, Number of Deliveries and Currency and a

footer with the total of the Amount in Document Currency, Total Value of Item and

Number of Supplies;

• The indication of the page/total of pages, of the user who generated the file and the

date of generation of the file in the lower right corner.

A new button “Export to XML” should be added to the button bar of the output listing in ALV

Grid format, which will have associated the functionality of exporting the output listing to a

local file in XML format with the following structure:

<MOVMESFEX>

 <HEAD>
 <WERKS>…</WERKS> * the Plant and its description
 <LGORT>...</LGORT> *Storage Location and their descriptions
will
 <PERIO>…</PERIO> * o Time period of research
 <WRBTR>…</WRBTR> * the total Amount in Document Currency
 <GSWRT>…</GSWRT> * the total of the Total Value of Item
 <ANZLI>…</ANZLI> * the total number of deliveries
 </HEAD>
 <ITEM> *content of each line in the listing
 <GJAHR >… </GJAHR >
 <MONAT >… </MONAT >
 <FEXNR >… </FEXNR >
 <FEXTY >… </FEXTY >
 <NAMEF >… </NAMEF >
 <WRBTR >… </WRBTR >
 <GSWRT >… </GSWRT >
 <PERVT >… </PERVT >
 <ANZLI >… </ANZLI >
 <VALMF >… </VALMF >
 <WAERS >… </WAERS >
 </ITEM>
 …
</MOVMESFEX>

The user should be presented with a popup window to indicate the city and name of the file

to be saved on his computer. The name of the file must be pre-filled, which will be MOV MES

FEX _<CURRENT_DATE>_<CURRENT_TIME> .XML .

68

In order to centralize access to current (and possible future) transactions developed within

the scope of this module for managing external suppliers, a cockpit should be developed that

allows access to them using indicative and illustrative buttons. These buttons should be on the

cockpit input screen. Additionally, a third button must be defined that will allow access to a

second screen where the user can manually insert records in the ZTMM_MOVFEX_ <Initials>

table.

As such, this screen must have input fields that allow filling in the information present in the

table and specified above. Data recording functionalities, cleaning of field content and others

that may be useful should be implemented.

This cockpit will be implemented via the Module Pool ZMM_GESTAO_FEX_<Initials> and will

be accessed via transaction ZMM _ G FEX_<Initials>.

5.1.3 Identification of Interfaces

Apart from the ZMM_FEX_<Initials>, ZMM_MOVMESFEX_<Initials> and

ZMM_GFEX_<Initials> transactions, it will not be necessary to develop any other interface or

accesses.

5.1.4 Identification of Access Profiles

Transactions to be defined within the scope of this request will be open access, without any

restrictions on the access profiles of UCG users.

5.1.5 Data Migration Needs

The process of feeding the table where the accounting movement data will be saved will be

defined and programmed by the UCG through daily uploads.

6 Analysis

This chapter will attempt to analyze and correctly interpret the problem statement at hand.

This will be done by modelling the business and defining the requirements in order to help

define the scope and design the solutions.

6.1 Domain Model

The following domain model allows a visual representation of the business and the way it

relates to its entities.

Figure 20 - Domain Model

70

One thing to note is that this problem statement is focused on the interaction of the

organization with suppliers and external suppliers. As such, the domain model focuses on

modeling these entities:

• Supplier: The entity that is directly contracted by the organization to provide goods

and/or services.

• External Supplier: The entity that is contracted by a supplier, in order to provide

goods and/or services to the organization.

• External Accounting Movement: This entity represents an instance (or multiple

instances for the same key fields) where an external supplier provided goods and/or

services to the organization.

6.2 Requirement Engineering

Although the problem statement itself is already detailed and well sectioned to start with,

there is some further work that can be done to better define the scope of the problem at

hand.

To achieve this, this subchapter will try to clearly interpret and define the requirements for

the solutions. A requirement can be defined as “…a condition or capability to which a system

must conform; either derived directly from user needs, or stated in a contract, standard,

specification, or other formally imposed document.”[68]

In order to define these requirements, the FURPS+ system for requirement classification will

be used.

6.2.1 FURPS+ System for Requirement Classification

This system was devised by Robert Grady with the intention of better classifying and

understanding functional and non-functional requirements.

71

For this purpose, the acronym FURPS+ was devised representing the following classifications

[68]:

• Functionality: This classification represents the main product features of the solution.

These features may be domain specific or not;

• Usability: This classification represents concerns such as documentation, UI/UX

consistency, and accessibility;

• Reliability: This classification represents concerns such as availability, accuracy, and

failure frequency;

• Performance: This classification represents concerns such as response time, system

startup time, recovery time, and processing capacity;

• Supportability: This classification represents concerns such as testability,

maintainability, adaptability, and scalability.

The “+” in this acronym was added to also take into consideration concerns/constraints such

as:

• Design Requirements: This classification represents architectural/design constraints;

• Implementation Requirements: This classification represents constraints regarding

coding or the construction of the solution;

• Interface Requirements: This classification represents constraints regarding the

interaction with other systems;

• Physical Requirements: This classification represents constraints regarding hardware.

72

6.2.2 Requirements

This subchapter will attempt to identify and classify the problem statement’s requirements

according to the FURPS+ classification system.

It is to note that some specific information about the requirements is omitted in order to

better summarize the requirements (e.g., The specific color or name of something).

6.2.2.1 Functionality

This chapter contains the use case diagram below to give a visual representation of the

identified functional requirements.

Figure 21 - Use case Diagram

UC - 1: The user must be able to maintain the “External Supplier” table’s data.

UC - 2: The user must be able to consult the Monthly External Supplier Accounting

Movements reporting information.

UC - 3: The user must be able to export the Monthly External Supplier Accounting

Movements reporting information to a PDF Smartform.

UC - 4: The user must be able to export the Monthly External Supplier Accounting

Movements reporting information to an XML file.

UC - 5: The user must be able to access all transactions via the cockpit’s transaction as

specified in the problem statement.

UC - 6: The user must be able to insert External Supplier Accounting Movements via

the cockpit.

73

6.2.2.2 Usability

UR - 1: All screens that contain the “External Supplier” field must have a search help

as specified in the problem statement.

UR - 2: The reporting program’s selection screen must have specific input fields as

specified in the problem statement.

UR - 3: The reporting program’s results must be color coded as specified in the

problem statement.

UR - 4: The reporting program’s results must be ordered as specified in the problem

statement.

UR - 5: The reporting program must contain sums for specific fields as specified in the

problem statement.

UR - 6: The reporting program’s output must have a header as specified in the

problem statement.

UR - 7: The reporting program’s output to a PDF Smartform must have a button as

specified in the problem statement.

UR - 8: The reporting program’s output to a PDF Smartform must have a directory

selection popup window.

UR - 9: The reporting program’s output to a PDF Smartform must be structured as

specified in the problem statement.

UR - 10: The reporting program’s output to an XML file must have a button as specified

in the problem statement.

UR - 11: The reporting program’s output to an XML file must have a directory selection

popup window.

UR - 12: The reporting program’s output to an XML file must be structured as specified

in the problem statement.

UR - 13: The cockpit must be structured as specified in the problem statement.

74

6.2.2.3 Supportability

SR - 1: The cockpit will allow for future extensions as the addition of further

navigation to other transactions.

6.2.2.4 Implementation Requirements

IPR - 1: The database must have a non-extensible “External Supplier” table structured

as specified in the problem statement.

IPR - 2: The database must have a non-extensible “Monthly External Supplier

Accounting Movements” table structured as specified in the problem statement.

IPR - 3: The “External Supplier” table must have a maintenance screen.

IPR - 4: The “External Supplier” table’s maintenance screen must be accessible via a

transaction.

IPR - 5: The Monthly External Supplier Accounting Movements information must be

implemented in a reporting program.

IPR - 6: The reporting program’s main output must be an ALV Grid as specified in the

problem statement.

IPR - 7: The reporting program must be accessible via a transaction.

IPR - 8: The Monthly External Supplier Accounting Movements should be visible via a

reporting program.

IPR - 9: The cockpit must be implemented using module pools.

7 Design

This chapter tries to provide suitable designs, taking into account the requirements and

analysis done, for both development paradigms in order to achieve what would be considered

“Realistic” solutions.

One thing to take into consideration is that, although there are multiple other sensible

Architectural Styles/Patterns, Principles, Guidelines, etc., that could also be used in these

solutions, we have to consider the scope of this work and the focus on what is the “Standard”

SAP general development paradigm and the “Code Push-Down” development paradigm.

7.1 “Standard” development paradigm

This subchapter attempts to provide a suitable design for a solution that follows the “Standard”

development paradigm.

7.1.1 General Solution Architecture

A general solution architecture is a set of coherent and compatible design patterns chosen

and applied, considering all the project requirements, restrictions, and recommendations, in

an effort to provide a solution suitable to the current needs.

Considering the fact that the provided problem statement tries to mimic what a “Standard”

development problem is, the general solution architecture, and that the focus of this solution

is the “SAP “Standard” Development ”, the following component diagram will be the resulting

general solution architecture.

76

Figure 22 - "Standard" Component Diagram

One important thing to note is that, when created, the Table Maintenance “Screen” program

is automatically generated and maintained by the SAP ERP system and is independent from

the remaining solution. As such, in the component diagram above and remaining diagrams, it

will be represented as a “black box”, except the Transaction component as this is the only

component that is relevant to represent for this work.

77

7.1.2 Use Case Specification

This subchapter intends to provide a design to the main problem statement’s identified

functional requirements.

7.1.2.1 UC - 1: The user must be able to maintain the “External Supplier” table’s data

For this use case, the user wants to be able to access what is designated as a “Maintenance

Screen” program via a transaction in order to maintain the correspondent database table’s

data.

The following sequence diagram shows the design of this use case.

Figure 23 - UC1 Sequence Diagram

7.1.2.2 UC - 2: The user must be able to consult the Monthly External Supplier Accounting

Movements reporting information

For this use case, the user wants to be able to consult the Monthly External Supplier

Accounting Movements according to the chosen filtering criteria.

78

The following sequence diagram shows the design of this use case.

Figure 24 - UC2 Sequence Diagram

7.1.2.3 UC - 3: The user must be able to export the Monthly External Supplier Accounting

Movements reporting information to a PDF Smartform

For this use case, the user wants to be able to export to a PDF file the Monthly External

Supplier Accounting Movements currently displayed in the ALV.

To simplify the following sequence diagram, it will start where the sequence diagram for “UC -

2: The user must be able to consult the Monthly External Supplier Accounting Movements

reporting information” ends, as this functional requirement is related to the results provided

by the previous use case.

The following sequence diagram shows the design of this use case.

Figure 25 - UC3 Sequence Diagram

79

7.1.2.4 UC - 4: The user must be able to export the Monthly External Supplier Accounting

Movements reporting information to an XML file

For this use case, the user wants to be able to export to an XML file the Monthly External

Supplier Accounting Movements currently displayed in the ALV.

To simplify the following sequence diagram, it will start where the sequence diagram for “UC -

2: The user must be able to consult the Monthly External Supplier Accounting Movements

reporting information” ends, as this functional requirement is related to the results provided

by the previous use case.

The following sequence diagram shows the design of this use case.

Figure 26 - UC4 Sequence Diagram

80

7.1.2.5 UC - 5: The user must be able to access all transactions via the cockpit’s transaction

as specified in the problem statement

For this use case, the user wants to access a Cockpit that aggregates all the solution

components for easy navigation. This sequence diagram is somewhat simplified as some of

the details of the inner workings of the program are not pertinent to this use case

The following sequence diagram shows the design of this use case.

Figure 27 - UC5 Sequence Diagram

7.1.2.6 UC - 6: The user must be able to insert External Supplier Accounting Movements

via the cockpit

For this use case, the user wants to be able to insert new external supplier accounting

movements via the cockpit program.

The following sequence diagram shows the design of this use case.

Figure 28 - UC6 Sequence Diagram

81

7.1.3 Data Model

This subchapter details the data design for the solution. The data model design was complete

enough in the provided problem statement. As such, the diagram below will try to represent

the defined data model as it was provided.

Figure 29 - "Standard" Data Model

82

7.2 “Code Push-Down” development paradigm

This subchapter attempts to provide a suitable design for a solution that follows the “Code

Push-Down” development paradigm.

7.2.1 General Solution Architecture

As stated previously, a general solution architecture is a set of coherent and compatible

design patterns chosen and applied, considering all the project requirements, restrictions, and

recommendations, in an effort to provide a solution suitable to the current needs.

Considering that the “Code Push-Down” Development Paradigm focuses on pushing down the

application/business logic code, to the data layer or even database. This general application

architecture will reflect the changes done to the “Standard” architecture in order to focus this

subchapter.

Currently, as shown in Figure 22 - "Standard" Component Diagram, there are three

components in the solution who access the database. As such, these would be candidates for

the use of the “Code Push-Down” paradigm, but since the Maintenance Screen (Program) is

generated and maintained by the SAP ERP, this component will be excluded from the

candidate components. As such, the “Code Push-Down” paradigm will be applied to the

Reporting Program and the Cockpit program.

The following component diagram represents the created general solution architecture.

83

Figure 30 - "Code Push-Down" Component Diagram

As shown in the diagram above, in terms of the changes to the general solution architecture

itself, there was the introduction of an ABAP CDS View (to be used alongside ABAP + Open

SQL) and, consequently, a database view (a HANA CDS View in this particular case) that is

deployed, as per the use of the recommended “Top-Down” approach in the “Code Push-Down”

Development Paradigm.

The inclusion of an ABAP CDS View alongside ABAP + Open SQL was to promote reusability by

facilitating access to data in this format, as its logic seems to be a good candidate for use by

other solutions in the future. That said, the use of an ABAP CDS AMDP would also be possible

and would, perhaps, simplify the distribution of the business logic for the data. But its use

would force the use of an SAP HANA database.

84

It is important to mention that the current solution and the “Code Push-Down” tools it uses

do not necessarily force the use of SAP HANA.

7.2.2 Use Case Specification

As stated previously, this subchapter intends to provide a design to the main problem

statement’s identified functional requirements.

As mentioned before, this subchapter is taking into account that the “Code Push-Down”

Development Paradigm focuses on pushing down the application/business logic code to the

data layer or even database. As such, this subchapter will focus on what changed with the

application of this paradigm.

7.2.2.1 UC - 2: The user must be able to consult the Monthly External Supplier Accounting

Movements reporting information

For this use case, the user wants to be able to consult the Monthly External Supplier

Accounting Movements according to the chosen filtering criteria.

This use case is the one that ends up having the most significant changes. Although the same

effect could be achieved with “just” a more complex Open SQL query, there was value to be

had with the introduction of the ABAP CDS view. This value is due to the nature of the

information provided by this view and the fact that this business logic seems like it can be

useful to other future solutions.

The following sequence diagram shows the design of this use case.

Figure 31 - UC2 "Code Push-Down" Sequence Diagram

85

7.2.2.2 UC - 3: The user must be able to export the Monthly External Supplier Accounting

Movements reporting information to a PDF Smartform

For this use case, the user wants to be able to export to a PDF file the Monthly External

Supplier Accounting Movements currently displayed in the ALV.

Although this use case is affected by the changes as this starts by having the same business

flow as the UC2, the proprietary business logic for this use case ends up being the same as the

one depicted in UC - 3: The user must be able to export the Monthly External Supplier

Accounting Movements reporting information to a PDF Smartform

7.2.2.3 UC - 4: The user must be able to export the Monthly External Supplier Accounting

Movements reporting information to an XML file

For this use case, the user wants to be able to export to an XML file the Monthly External

Supplier Accounting Movements currently displayed in the ALV.

Although this use case is affected by the changes as this starts by having the same business

flow as the UC2, the proprietary business logic for this use case ends up being the same as the

one depicted in UC - 4: The user must be able to export the Monthly External Supplier

Accounting Movements reporting information to an XML file.

7.2.2.4 UC - 6: The user must be able to insert External Supplier Accounting Movements

via the cockpit

For this use case, the user wants to be able to insert new external supplier accounting

movements via the cockpit program.

Although this use case accesses the database, the way it is implemented stays the same as

before. The way it accesses the database via ABAP + Open SQL (which in itself is a form of

“Code Push-Down”) is quite simple and basic in terms of business logic and was already

pushing down the application logic that could be pushed down.

86

7.2.3 Data Model

This subchapter details the data design for the solution. This data model design was done by

applying the “Code Push-Down” development paradigm to the existing data model.

This resulted in the addition of an ABAP CDS View (and consequent HANA CDS View) following

SAP’s Top-Down approach. As such, this ABAP CDS View will be maintained in the ABAP DDIC

and the system will deploy it as a HANA CDS View to the database.

The diagram below represents the resulting data model.

Figure 32 - “Code Push-Down” Data Model

8 Development

This chapter serves to provide information regarding the way the solutions were developed

and the developing environment and tools.

This chapter also tries to show how the solutions solve the use cases and remaining

requirements. Since from the user’s perspective there is no difference between the solutions

the information shown will be the same for both.

The developing environments and tools were all gracefully provided by ROFF Consulting [67].

8.1 Development Environment & Tools

This subchapter focuses on showing the developing environment and tools used for the

development of both solutions.

8.1.1 SAP ERP

These two solutions were developed using an instance of SAP S/4 HANA. Although both these

solutions were developed using this ERP version, the “Standard” solution could also be

developed in an older version of it.

8.1.2 Database

As implied by the version of the SAP ERP being used, the database is an instance of SAP HANA.

This said, and as stated previously the developed solutions do not require an SAP HANA

database necessarily.

88

8.1.3 ABAP Application Server

These two solutions were developed in an SAP ABAP AS 7.54 SP0 application server. This is

important as most CDS tools were available after the 7.40 version.

8.1.4 Development Tools

Although there was the use of more tools than the ones mentioned here, these were the ones

required for the development of the solutions.

8.1.4.1 SAP GUI

For the development of most of both solutions, SAP GUI 7.60 was used alongside developing

programs inside of SAP ERP itself (SE11, SE38, SE80 mainly).

8.1.4.2 Eclipse + SAP ADT

These tools are a requirement for the use of most CDS tools. These were used specifically to

develop the ABAP CDS View used in the “Code Push-Down” solution. Eclipse 2021-06 + SAP

ABAP Development Tools (ADT) were used.

8.2 Solution

This subchapter intends to try to demonstrate the solution to each of the functional

requirements. Although the remaining requirements are not specified in this subchapter, they

are all addressed by both the solutions.

It is also important to mention that this subsection will be quite short. Although there is some

value to showing how the solutions turned out, their quality and suitability as solutions to this

problem, has little to no importance to the present work. What is of importance are the

comparisons that can and will be made between them and the resulting conclusions that are

in the following chapters.

89

8.2.1.1 UC - 1: The user must be able to maintain the “External Supplier” table’s data.

The following figure shows the main portion of the resulting solution to UC-1.

Figure 33 - External Supplier table maintenance “screen” program

90

8.2.1.2 UC - 2: The user must be able to consult the Monthly External Supplier Accounting

Movements reporting information.

The following figure shows the selection screen portion of the resulting solution to UC-2.

Figure 34 - Reporting Program’s Selection-Screen

The following figure shows the main portion of the resulting solution to UC-2.

Figure 35 - Reporting Program's Report

91

8.2.1.3 UC - 3: The user must be able to export the Monthly External Supplier Accounting

Movements reporting information to a PDF Smartform.

The following figure shows the main portion of the resulting solution to UC-3.

Figure 36 - Reporting Program's PDF Export

The following figure shows the resulting PDF file.

Figure 37 - Reporting Program's Exported PDF File (in Adobe Reader)

92

8.2.1.4 UC - 4: The user must be able to export the Monthly External Supplier Accounting

Movements reporting information to an XML file.

The following figure shows the main portion of the resulting solution to UC-4.

Figure 38 - Reporting Program's XML Export

The following figure shows the resulting XML file.

Figure 39 - Reporting Program's XML Exported File (in VS Code)

93

8.2.1.5 UC - 5: The user must be able to access all transactions via the cockpit’s transaction

as specified in the problem statement.

The following figure shows the main portion of the resulting solution to UC-5.

Figure 40 - Cockpit Program's Main Screen

94

8.2.1.6 UC - 6: The user must be able to insert External Supplier Accounting Movements

via the cockpit.

The following figure shows the main portion of the resulting solution to UC-6.

Figure 41 - Cockpits Program's Data Insertion Screen

9 Comparison

This section focuses on comparing both solutions according to the ISO’s maintainability and

portability criteria for Software Product Quality, as described in the section “Software

Architecture”.

As also stated in this section, the two criteria were selected because they are the ones that

may be more significantly affected by the application of the “Code Push-Down” paradigm.

Since the present work focuses on identifying if there are possible tradeoffs and compromises

by applying the “Code Push-Down” development paradigm, this section will focus on where

the two solutions differ due to the application of the paradigm.

9.1 Implementation Comparison

Let’s start then by comparing both solutions where they differ, and therefore may change the

solution’s properties.

This comparison will be made on a general solution architecture level, to try and find possible

problems on an architecture/solution level. And it will also be made on a functionality level to

try and find more specific problems that may appear from a development standpoint.

96

9.1.1 General Solution Architecture

As stated in the section “General Solution Architecture” for the “Code Push-Down” section of

this work, the main differences to the general solution architecture are highlighted in the

diagrams below.

Figure 42 - "Standard" Component Diagram (Changes)

97

Figure 43 - "Code Push-Down" Component Diagram (Changes)

On a general architecture level, the changes done were the introduction of an ABAP CDS View

(and its correspondent database view) maintained by the ABAP data dictionary. This view

ends up being used by the report program to query data.

This introduced the need to develop, maintain and use a new database view. For this, the

developer has the need to understand and know how to apply ABAP core data services and

know how to use SAP ABAP development toolset for its development (Eclipse + SAP ADT).

In this particular case, since the CDS used were ABAP, these are maintained by the ABAP DDIC,

meaning that transporting these developments between systems and keeping track of

changes are integrated into the ABAP DDIC version control and transport system, if it were the

case that HANA CDS were used the difficulty to maintain, and transport said development

would be much bigger.

98

It is also relevant to remember, as mentioned before in the subsection “ABAP Core Data

Services (ABAP CDS)”, that, although not used for this solution in particular, if ABAP CDS

AMDPs were to be used, this solution would end up being only possible with the use of an SAP

HANA database as, currently, no other databases support this type of procedure.

9.1.2 Functional Requirement Implementation.

This subchapter will focus on showing the differences in implementation caused by the

application of the “Code Push-Down” development paradigm.

Since the new ABAP CDS View is only used by the reporting program, the only functional

requirements implemented that could, and end up, being affected are:

• UC - 2: The user must be able to consult the Monthly External Supplier Accounting

Movements reporting information;

• UC - 3: The user must be able to export the Monthly External Supplier Accounting

Movements reporting information to a PDF Smartform;

• UC - 4: The user must be able to export the Monthly External Supplier Accounting

Movements reporting information to an XML file.

This is the case because UC2 is where the access to the database is done and UC3 & UC4 are

directly dependent on UC2.

Before the application of the “Code Push-Down” paradigm to this use case, all the business

logic related to the data was being done in the application layer.

99

The following code snippet has the business flow to retrieve and combine the needed data:

* Obtem os dados

DATA lr_fexnr TYPE ty_r_fexnr.
DATA lr_gjahr TYPE ty_r_gjahr.
DATA lr_monat TYPE ty_r_monat.

APPEND LINES OF s_fexnr TO lr_fexnr.
APPEND LINES OF s_gjahr TO lr_gjahr.
APPEND LINES OF s_monat TO lr_monat.

go_data_layer->obter_for_ext(
 EXPORTING
 ir_fexnr = lr_fexnr
 IMPORTING
 et_data = DATA(lt_for_ext)
 EXCEPTIONS
 ex_no_data = 1
 OTHERS = 2
).
IF sy-subrc <> 0.
 MESSAGE ID sy-msgid TYPE sy-msgty NUMBER sy-msgno
 WITH sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
 LEAVE PROGRAM.
ENDIF.

go_data_layer->obter_mov_cont_mens(
 EXPORTING
 ir_fexnr = lr_fexnr
 iv_werks = p_werks
 iv_lgort = p_lgort
 ir_gjahr = lr_gjahr
 ir_monat = lr_monat
 IMPORTING
 et_data = DATA(lt_mov_cont_mens)
 EXCEPTIONS
 ex_no_data = 1
 OTHERS = 2
).
IF sy-subrc <> 0.
 MESSAGE ID sy-msgid TYPE sy-msgty NUMBER sy-msgno
 WITH sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
* LEAVE PROGRAM.
 RETURN.
ENDIF.

* Cruza os dados

cruza_dados(
 EXPORTING
 it_for_ext = lt_for_ext
 it_mov_cont = lt_mov_cont_mens
 IMPORTING
 et_fex_movfex = DATA(lt_fex_movfex)
).

100

This implementation was retrieving the data from each of the database tables and combining

the data, according to the business logic, to later show in the report.

When the “Code Push-Down” paradigm was applied and the ABAP CDS View was introduced,

the data related business logic was spread across the Application and Data layer as well as the

Application and Data tiers.

The previous snippet was replaced by the following one:

* Obtem os dados

 DATA lr_fexnr TYPE ty_r_fexnr.
 DATA lr_gjahr TYPE ty_r_gjahr.
 DATA lr_monat TYPE ty_r_monat.

 APPEND LINES OF s_fexnr TO lr_fexnr.
 APPEND LINES OF s_gjahr TO lr_gjahr.
 APPEND LINES OF s_monat TO lr_monat.

 go_data_layer->obter_dados(
 EXPORTING
 ir_fexnr = lr_fexnr
 iv_werks = p_werks
 iv_lgort = p_lgort
 ir_gjahr = lr_gjahr
 ir_monat = lr_monat
 IMPORTING
 et_data = DATA(lt_fex_movfex)
 EXCEPTIONS
 ex_no_data = 1
 OTHERS = 2
).

 IF sy-subrc <> 0.
 MESSAGE ID sy-msgid TYPE sy-msgty NUMBER sy-msgno
 WITH sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
 RETURN.
 ENDIF.

101

And the business logic for the data filtering and combining was spread across the data layer

with the following Open SQL snippet:

SELECT * FROM zvmm_movmesfex_tlg(
 in_werks = @iv_werks,
 in_lgort = @iv_lgort)
 WHERE fexnr IN @ir_fexnr
 AND gjahr IN @ir_gjahr
 AND monat IN @ir_monat
 INTO TABLE @et_data.

 IF sy-subrc <> 0.
 MESSAGE s789(m7) DISPLAY LIKE 'E'
 RAISING ex_no_data.
 ENDIF.

And spread across the database tier with the following ABAP CDS view:

@AbapCatalog.sqlViewName: 'ZV_MOVMESFEX_DB'
@AbapCatalog.compiler.compareFilter: true
@AbapCatalog.preserveKey: true
@AccessControl.authorizationCheck: #CHECK
@EndUserText.label: 'Dados contabilisticos fornecedores ext.'
define view ZVMM_MOVMESFEX_TLG with parameters in_werks : werks_d,
 in_lgort : lgort_d
 as select from ztmm_fex_tlg
 join ztmm_movfex_tlg on ztmm_movfex_tlg.fexnr = ztmm_fex_tlg.fexnr
{
 key ztmm_fex_tlg.fexnr,
 ztmm_fex_tlg.nomef,
 ztmm_fex_tlg.fexty,
 ztmm_fex_tlg.waers,
 ztmm_movfex_tlg.gjahr,
 ztmm_movfex_tlg.monat,
 ztmm_movfex_tlg.wrbtr,
 ztmm_movfex_tlg.gswrt,
 ztmm_movfex_tlg.anzli
}
where
 werks = $parameters.in_werks and
 lgort = $parameters.in_lgort

As mentioned in the subchapter “General Solution Architecture”, the use of an ABAP CDS

AMDP would probably allow to concentrate the business logic for the data in the procedure,

but the limitations this would impose do not seem to outweigh the benefit in this case.

102

9.2 Partial Software Product Quality Comparison

Using the information gathered from the comparison of the solutions, this subsection will try

to evaluate if and which aspects of the chosen evaluation criteria may be compromised.

As described in the subsection “Software Architecture”, these are the criteria to evaluate.

9.2.1 Maintainability

Looking at ISO’s description for maintainability in the mentioned subsection, we can say that,

yes, the maintainability of the solution is affected in a, mostly, negative way. The following

subchapters will show why.

9.2.1.1 Modularity

By spreading the business logic across multiple layers and even multiple tiers, the cohesion of

each component is decreased, and the coupling increased. As a result, the modularity was

reduced by applying the “Code Push-Down” paradigm.

9.2.1.2 Reusability

By introducing an ABAP CDS View, the reusability of this portion of the business logic itself

was improved externally. Before, the data itself was being done exclusively by the Reporting

Program and was not able to be easily reused by any future components to the solution. As a

result, the reusability was improved by applying the “Code Push-Down” paradigm, at least on

an external level.

9.2.1.3 Analyzability

Since the business logic is now spread across multiple layers and tiers and there was the

introduction of a new “framework” and as a consequence, new development tools, the

analyzability of the solution was hindered as it is harder to find and track possible problems in

the solution. As a result, the analyzability was reduced by applying the “Code Push-Down”

paradigm.

103

9.2.1.4 Modifiability

With the spread of business logic across multiple layers and tiers and with the introduction of

components that can be reused across multiple other components, the modifiability of the

solution may be compromised. This is so because changes to the view can affect multiple

other components (even ones external to the solution) and, since the business logic is spread,

the number of changes needed to the existing components is likely to be higher. As a result,

the modifiability was reduced by applying the “Code Push-Down” paradigm.

9.2.1.5 Testability

The solution’s testability can be affected depending on the type of tests being done. That said,

it is likely that this was affected in a negative way, as the cohesion of the components

decreased, its coupling increased, and this tends to affect testability in a negative way.

9.2.2 Portability

Looking at ISO’s description for portability in the mentioned subsection, we can say that, in

this particular case, the solution’s portability seems to be affected, mostly, in a negative way.

The following subchapters will show why.

9.2.2.1 Adaptability

The use of ABAP core data services in the “Code Push-Down” solution means that the version

of the ABAP application server version must be equal to or more recent than the 7.40 version.

As a result, the adaptability of the solution was reduced by the application of the “Code Push-

Down” paradigm.

9.2.2.2 Installability

The changes done to the solution by the use of the “Code Push-Down” paradigm do not seem

to affect the installability of the solution.

9.2.2.3 Replaceability

The changes done to the solution by the use of the “Code Push-Down” paradigm do not seem

to affect the replaceability of the solution.

104

9.3 Conclusions

Analyzing the comparison done, one can clearly see that there are significant tradeoffs when

applying the “Code Push-Down” development paradigm.

As stated in the chapter “Software Architecture”, the scope of this comparison was narrowed

down to ISO’s maintainability and portability software quality attributes. And, as expected,

like most development paradigms that leverage the use of database related tools for

performance gains, significant compromises were encountered for both software quality

attributes.

9.3.1 Implementation

Regarding the implementation, the application logic was spread out more across multiple

locations and tools.

The compromises found here are that, in this particular case, and generally when using CDS,

the application of the “Code Push-Down” development paradigm requires that the developer

knows how to use and implement a bigger set of tools, development environments, and good

development practices.

9.3.2 Maintainability

From a maintainability standpoint, a total of 4 out of 5 characteristics were affected in a

negative way and 1 of them was affected in a positive way.

This means that, according to ISO, the degree of effectiveness and efficiency with which a

product or system can be modified was, mostly, negatively impacted in a significant way.

105

9.3.3 Portability

From a portability standpoint, a total of 1 out of 3 characteristics were affected in a negative

way, while the other remaining 2 remained unchanged.

This means that the degree of effectiveness and efficiency with which a system, product or

component can be transferred from one hardware, software or other operational or usage

environment to another was also negatively impacted.

It is important to note that, although this particular solution wasn’t heavily affected, the

impacts of the “Code Push-Down” development paradigm can, quite easily, be more severe

when it comes to portability. This is due to the fact that a significant portion of the tools that

can be used for “Code Push-Down” can also lock in the solution to a particular database (SAP

HANA in most cases), and this can impact one or both of the remaining characteristics in a

negative way as well.

106

10 Guidelines

This chapter takes into account what was learned from the present work, especially from the

state-of-the-art and the solution comparison to try to provide general guidelines regarding the

“Code Push-Down” paradigm and its tools.

These guidelines will try to provide a pragmatic view on what the “Code Push-Down”

development paradigm is and attempts to guide how and when to apply its tools in order to,

hopefully, mitigate some of its drawbacks.

10.1 “Code Push-Down” – A Pragmatic Point-Of-View

After analyzing the current state-of-the-art regarding the “Code Push-Down” development

paradigm and software development (focused on the type of development targeted by this),

one can see that this, despite what SAP seems to make it look like, is not a new development

paradigm. It is, however, a new take on an existing one(s).

Leveraging database “tools” to, hopefully, maximize performance isn’t anything new, as tools

such as database views and procedures have been around for decades. From what we can

conclude from the present work, like the existing takes on these existing development

paradigms, there are benefits and drawbacks/tradeoffs to the “Code Push-Down”

development paradigm. The same ones as why software development, in general, has

somewhat moved away from such paradigms.

As such, this paradigm should not be looked at as “THE” development paradigm, but as an

alternative solution (or partial solution), or as a set of tools that can be used to achieve certain

goals or to promote certain quality attributes within a solution, while sacrificing others.

108

Good Software development practices teach us that, one should try to provide the best suited

solution(s) for a problem(s) based on a solid requirement engineering process, not to try to

force a solution to fit every problem.

10.2 “Code Push-Down” – Applying the Paradigm

Although this work determined that there are trade-offs to the application of this

development paradigm (mainly maintainability and portability), there are also benefits,

according to SAP, mainly when it comes to performance. Performance that is theoretically

gained by reducing data transfers while also leveraging the database processing power (in

high performance databases)

As such, if performance is of importance to the solution, the application of this development

paradigm may be one of the best, easiest, and most supported ways (within the SAP

Ecosystem) to promote this solution quality attribute.

Assuming one wants to apply this development paradigm, let us focus on these two points:

10.2.1 When/Where to apply the “Code Push-Down” developing paradigm

As mentioned in the subchapter ““Code Push-Down” Development Paradigm”, according to

SAP: “Code pushdown means delegating data intensive calculations to the database layer. It

does not mean push ALL calculations to the database, but only those that make sense.” [10],

[42]

From what was learned from the present work we can be more specific about what “… makes

sense”. So, “Code Push-Down” should be applied to:

Application logic that requires, relative, intense data processing and/or processing of large

datasets, of data present in the database, and whose performance is directly correlated to the

solutions requirements.

If this guideline is followed, this paradigm should only be applied in cases where there will be

a significant performance impact, and in cases where that performance impact is relevant to

the requirements.

10.2.2 How to apply the “Code Push-Down” developing paradigm

Now that when this paradigm is to be applied is specified, we can focus on how to apply it.

To apply this paradigm, one needs to use the tools provided by SAP to do it (within the SAP

Ecosystem). And to use such tools, one must start by knowing the tools and then know which

to choose.

109

It is important to mention that SAP’s Development Guidelines for Database Accesses [69] and

specific tool guidelines [38], [51], [52], amongst others, were closely followed alongside the

present work to create this subchapter.

Another important thing to note is that, as explained in the chapters “HANA Core Data

Services (HANA CDS)” and “ABAP CDS vs. HANA CDS”, SAP states that HANA CDS are tools to

be used in very specific use cases. And, as explained in the chapter ““Code Push-Down”

Development Paradigm”, SAP doesn’t recommend its use unless strictly necessary.

As such, these guidelines can’t be more specific or clear regarding the use of HANA CDS, since

the cases where their use is required there is no alternative.

10.2.2.1 Tool Analysis

The available tools and their purpose/use have been specified in the chapter ““Code Push-

Down” Development Paradigm”, so here let’s focus on defining their main benefits and

drawbacks/Limitations.

• Open SQL:

o Benefits:

▪ Database Agnostic;

▪ Doesn’t require new knowledge to use;

▪ “Simple”.

o Drawbacks/Limitations:

▪ Not Reusable;

▪ Limited Functionality (When compared CDS Views & CDS AMDP).

110

• CDS Views:

o Benefits:

▪ Database Agnostic;

▪ Reusable;

▪ Extensible;

▪ Supports more complex logic (When compared to Open SQL) (e.g.:

annotations).

o Drawbacks/Limitations:

▪ Requires CDS Knowledge;

▪ Requires the use of different development tools;

▪ Limited Functionality (When compared to CDS AMDP).

• CDS ABAP Managed Database Procedures (AMDP):

o Benefits:

▪ Reusable;

▪ Allows for the use of database specific tools;

▪ Supports more complex logic (When compared to Open SQL & CDS

Views) (e.g.: return of multiple datasets; more complex input

parameters; etc.).

o Drawbacks/Limitations:

▪ Requires CDS Knowledge;

▪ Requires the use of different development tools;

▪ Database specific (Currently limited to SAP HANA databases);

▪ Requires the use of database specific language (Native SQL; SQL

Script; …).

111

10.2.2.2 Tool Selection

Having knowledge of the available tools, what they do, their benefits and

drawbacks/limitations, one now must choose what tool(s) to use. To simplify this choice the

following flow chart was made:

Figure 44 - "Code Push-Down" Decision Tree

It is important to note that this decision tree should only be followed if there aren’t

requirements that specify what tool to use.

Although there will be a lot of cases where there is more than one tool that can be used to

“solve” the requirement(s), this decision tree should help narrow down the choices to the

one(s) that provide the least amount, or the least significant,

drawbacks/limitations/compromises.

112

11 Conclusions

This chapter concludes this document. It evaluates the work as a whole and provides some

further deductions/conclusions, some opinions, a comparison of what was achieved versus

the objectives, alongside difficulties, possible improvements, and future work.

11.1 The “Code Push-Down” Development Paradigm

After the present work, taking out of the “equation” SAP’s “marketing” we can see that this

development paradigm, although not new, is a valid take on existing ones. And if applied

correctly, it can perhaps have less, or less significant, downsides/compromises, than more

“traditional” versions of “Code Push-Down”.

This is due to, when applying Open SQL and/or ABAP CDS, the architectural tiers don’t end up

being crossed, unlike the more “traditional” versions of “Code Push-Down”, “just” the

architectural layers. This distinction is explained in the subchapter “Tier vs. Layer”.

11.2 SAP’s Posture Regarding “Code Push-Down”

After sifting through a significant portion of documentation, varying from more marketing

directed documentation, technical documentation, official blog posts, tutorials, guides,

paid/non-public courses (from SAP Learning Hub [70]), etc., my opinion is that SAP’s posture

when presenting/pitching the “Code Push-Down” development paradigm, from a marketing

perspective is not truthful.

• This development paradigm is not new;

• This development paradigm does not only bring benefits;

114

• This development paradigm should not always be used.

And SAP’s posture when presenting/pitching the “Code Push-Down” development paradigm,

from a development/implementation perspective is not suitable.

• Documentation is scarce and hard to procure;

• Documentation is focused on why this paradigm can be beneficial and how it works

but rarely/never on drawbacks/limitations;

• No Guidelines (or not specific enough) on how/when to apply the “Code Push-Down”

tools.

11.3 Achieved Objectives

I believe the present work achieves with success all the objectives set.

The present work was set to provide insight on the status of the SAP Ecosystem, scrutinize the

“Code Push-Down” development paradigm, and the claims surrounding it and finally to

provide guidelines on how it can be used, if/when suitable.

The present work, although not set as an objective, was also meant to try to identify other

possible problems in the current SAP Ecosystem and try to instigate further discussion/work

about this topic the others found. And, independently of the actual quality of the present

work, I think it manages to do so as well.

11.4 Difficulties

During the elaboration of the present work, these were the main difficulties felt:

• Focusing the scope of the work, when contextualizing and defining the current SAP

Ecosystem multiple problems became apparent regarding this shift in paradigm;

• Determining a suitable way to analyze and present the “Code Push-Down”

development paradigm;

• Finding suitable documentation: SAP’s available documentation, is often redundant,

spread across many platforms (some of whom are not public) and its quality varies

significantly;

• Finding a balance of relevance and completeness regarding the development of the

state-of-the-art for software development;

115

• Keeping consistency throughout the document when the knowledge about the topic

and circumstances changes so drastically throughout time.

11.5 Improvements

Throughout the development of the present work, there were a few compromises that had to

be made in order to try to stay within schedule. These are the main ones done or work that

could be done to add value to the work already done.

• The present work could benefit from the following surveys:

o Survey to assess the current awareness of this development paradigm

amongst developers, their thoughts on it, and their commitment on its use;

o Survey to gauge the priority given to ISO’s software quality attributes

regarding custom developments;

o Survey to gauge the “felt” benefits & tradeoffs of the application of the “Code

Push-Down” development paradigm

• The present work could also benefit from comparing both solutions from a

performance standpoint;

• The present work could also benefit from studying “edge cases” when it comes to

developments, both in terms of abnormality in requirements and in terms of

complexity.

11.6 Future Work

This section refers to work that could be done standalone or as a continuation of the present

work. This section is heavily based on the subchapter “Idea Generation and Enrichment”. It is

also important to mention that the improvements mentioned above also are “future work”.

• Studies on the other possible problems raised by the switch to SAP S/4 HANA & SAP

HANA:

o Possible SAP HANA database lock-in;

o Guidelines on the Migration of existing solutions to the “Code Push-Down”

Development Paradigm;

o “Code Push-Down” Development Guidelines for Edge Cases.

116

• SAP HANA Database Performance Comparison;

• A study on the apparent Database Lock-in and possible “middleware” creation.

References

[1] D. E. O’Leary, Enterprise Resource Planning Systems : Systems, Life Cycle, Electronic
Commerce, and Risk. Cambridge, UK: Cambridge University Press, 2000. Accessed: Dec.
07, 2020. [Online]. Available:
http://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=77574&lang=pt
-pt&site=ehost-live&scope=site

[2] S. Jacobson, J. Shepherd, M. D’Aquila, and K. Carter, “The ERP Market Sizing Report,
2006–201,” p. 36, 2007.

[3] L. Columbus, “Gartner’s ERP Market Share Update Shows The Future Of Cloud ERP Is
Now,” Forbes, May 12, 2014.
https://www.forbes.com/sites/louiscolumbus/2014/05/12/gartners-erp-market-share-
update-shows-the-future-of-cloud-erp-is-now/ (accessed Dec. 07, 2020).

[4] Y. Dharmasthira, C. Eschinger, C. Pang, K. Brant, and K. Motoyoshi, “Market Share
Analysis: ERP Software, Worldwide, 2012,” Gartner, May 07, 2013.
https://www.gartner.com/en/documents/2477517/market-share-analysis-erp-software-
worldwide-2012 (accessed Dec. 07, 2020).

[5] “From inventing the enterprise software sector to helping the world run better,” SAP,
2020. https://www.sap.com/documents/2020/02/70eee289-847d-0010-87a3-
c30de2ffd8ff.html (accessed Dec. 07, 2020).

[6] SAP, “SAP Support Strategy,” 2020. https://support.sap.com/en/offerings-
programs/strategy.html (accessed Dec. 07, 2020).

[7] SAP, “End of Maintenance Information,” Jul. 26, 2016.
https://archive.sap.com/documents/docs/DOC-8280 (accessed Dec. 07, 2020).

[8] T. Saueressig, “IDC Survey on SAP S/4HANA Customer Migration,” SAP News Center, Jun.
27, 2019. https://news.sap.com/2019/06/sap-s4hana-customer-migration-idc-survey/
(accessed Mar. 01, 2021).

[9] S. Krishnamurthy, “Code Push-Down for HANA Starts with ABAP Open SQL | SAP Blogs,”
Sep. 26, 2014. https://blogs.sap.com/2014/09/26/code-push-down-for-hana-from-abap-
starts-with-open-sql/ (accessed Nov. 29, 2020).

[10] J. Weiler, “ABAP for HANA and ‘Code Push-Down’ | SAP Blogs,” Feb. 03, 2014.
https://blogs.sap.com/2014/02/03/abap-for-hana-code-push-down/ (accessed Nov. 29,
2020).

[11] SAP, “What is ERP?,” SAP Insights, Jun. 11, 2020. https://insights.sap.com/what-is-erp/
(accessed Jan. 03, 2021).

[12] Oracle, “What is a database?,” Database Topics, Jan. 26, 2021.
https://www.oracle.com/pt/database/what-is-database/ (accessed Jan. 26, 2021).

[13] Google, “Database migration: Concepts and principles (Part 1) | Solutions,” Google
Cloud, Jan. 26, 2021. https://cloud.google.com/solutions/database-migration-concepts-
principles-part-1 (accessed Jan. 26, 2021).

[14] Google, “database-migration-concepts-principles-part-1-migration-process.png
(639×214),” DB Migration Process, Jan. 26, 2021.
https://cloud.google.com/solutions/images/database-migration-concepts-principles-
part-1-migration-process.png (accessed Jan. 26, 2021).

[15] M. Fowler, “Design - Who needs an architect?,” IEEE Softw., vol. 20, no. 5, pp. 11–13,
Sep. 2003, doi: 10.1109/MS.2003.1231144.

118

[16] M. W. Maier, D. Emery, and R. Hilliard, “Software architecture: introducing IEEE
Standard 1471,” Computer, vol. 34, no. 4, pp. 107–109, Apr. 2001, doi:
10.1109/2.917550.

[17] Red Hat, “What is an application architecture?,” Jan. 28, 2021.
https://www.redhat.com/en/topics/cloud-native-apps/what-is-an-application-
architecture (accessed Jan. 30, 2021).

[18] M. Bertoa, “Fig. 2. Software product quality model in ISO/IEC 25010,” ResearchGate, Sep.
2013. https://www.researchgate.net/figure/Software-product-quality-model-in-ISO-IEC-
25010_fig1_256460076 (accessed Feb. 02, 2021).

[19] ISO, “ISO/IEC 25010:2011,” ISO, Mar. 2011.
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/57/35
733.html (accessed Jan. 31, 2021).

[20] Microsoft, “3-tier deployment,” Jan. 13, 2010. https://docs.microsoft.com/en-
us/previous-versions/msp-n-p/images/ee658120.2e360038-9224-4ce3-a901-
4eebd2eef2c7(en-us,pandp.10).png (accessed Feb. 04, 2021).

[21] Microsoft, “Microsoft Application Architecture Guide, 2nd Edition - Chapter 19: Physical
Tiers and Deployment,” Jan. 13, 2010. https://docs.microsoft.com/en-us/previous-
versions/msp-n-p/ee658120(v=pandp.10) (accessed Feb. 04, 2021).

[22] IBM, “What is Three-Tier Architecture,” Oct. 30, 2020.
https://www.ibm.com/cloud/learn/three-tier-architecture (accessed Feb. 02, 2021).

[23] Microsoft, “4-tier deployment,” Jan. 13, 2010. https://docs.microsoft.com/en-
us/previous-versions/msp-n-p/images/ee658120.0dcbd491-f321-408e-9f94-
b0561bf46478(en-us,pandp.10).png (accessed Feb. 04, 2021).

[24] M. Fowler, “PresentationDomainDataLayering,” martinfowler.com, Aug. 25, 2015.
https://martinfowler.com/bliki/PresentationDomainDataLayering.html (accessed Jan. 30,
2021).

[25] Microsoft, “The logical architecture view of a layered system,” Jan. 13, 2010.
https://docs.microsoft.com/en-us/previous-versions/msp-n-
p/images/ee658109.a4691b48-1b2c-4102-984d-4fd1233f369d(en-us,pandp.10).png
(accessed Feb. 03, 2021).

[26] Microsoft, “Microsoft Application Architecture Guide, 2nd Edition - Chapter 5: Layered
Application Guidelines,” Jan. 13, 2010. https://docs.microsoft.com/en-us/previous-
versions/msp-n-p/ee658109(v=pandp.10) (accessed Feb. 03, 2021).

[27] Microsoft, “Microsoft Application Architecture Guide, 2nd Edition - Chapter 23:
Designing Rich Internet Applications,” Jan. 13, 2010. https://docs.microsoft.com/en-
us/previous-versions/msp-n-p/ee658083(v=pandp.10) (accessed Feb. 06, 2021).

[28] C. Larman, “Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Pr,” p. 616, Jan. 2002.

[29] “ESOFT 2015-2016 Requisitos, Análise e Design (T) (IT1).pdf.” Accessed: Feb. 08, 2021.
[Online]. Available:
https://moodle2.isep.ipp.pt/pluginfile.php/101967/mod_resource/content/0/ESOFT%2
02015-
2016%20Requisitos%2C%20Ana%CC%81lise%20e%20Design%20%28T%29%20%28IT1%
29.pdf

[30] OMG, “Unified Modeling Language, v2.5.1,” Unified Model. Lang., p. 796, Dec. 2017.
[31] “ESOFT 2015-2016 Design OO (T) IT2.pdf.” Accessed: Feb. 08, 2021. [Online]. Available:

https://moodle2.isep.ipp.pt/pluginfile.php/106043/mod_resource/content/0/ESOFT%2
02015-2016%20Design%20OO%20%28T%29%20IT2.pdf

119

[32] SAP, “The SAP R/3 era | SAP History | About SAP SE,” SAP, 2020.
https://www.sap.com/corporate/en/company/history/1991-2000.html (accessed Feb.
28, 2021).

[33] SAP, “SAP HANA in a Classic 3-tier Architecture - SAP Help Portal,” Jun. 26, 2020.
https://help.sap.com/viewer/b3ee5778bc2e4a089d3299b82ec762a7/2.0.05/en-
US/059031f3ba4b40bcb5dbbbe46cb21235.html (accessed Feb. 27, 2021).

[34] S. Elfner, “TEC206: Architecture and Components of SAP S/4HANA, 2015 Las Vegas,” SAP
TechEd Archive, 2015. http://events.sap.com/teched/en/session/22662 (accessed Feb.
28, 2021).

[35] SAP, “ABAP Programming Language - Overview - ABAP Keyword Documentation,” 2020.
https://help.sap.com/doc/abapdocu_751_index_htm/7.51/en-
us/abenabap_overview.htm (accessed Mar. 01, 2021).

[36] SAP, “ABAP Dictionary,” 2020.
https://help.sap.com/doc/saphelp_nw73ehp1/7.31.19/en-
US/cf/21ea0b446011d189700000e8322d00/frameset.htm (accessed Mar. 01, 2021).

[37] “ABAP Dictionary - ABAP Keyword Documentation.”
https://help.sap.com/doc/abapdocu_751_index_htm/7.51/en-
us/abenabap_dictionary_glosry.htm (accessed Mar. 03, 2021).

[38] “Open SQL - ABAP Keyword Documentation.”
https://help.sap.com/doc/abapdocu_751_index_htm/7.51/en-
US/abenopen_sql_glosry.htm (accessed Sep. 11, 2021).

[39] “Open SQL interface - ABAP Keyword Documentation.”
https://help.sap.com/doc/abapdocu_751_index_htm/7.51/en-
US/abenopen_sql_interface_glosry.htm (accessed Sep. 11, 2021).

[40] SAP, “ABAP Keyword Documentation - Select Expression.”
https://help.sap.com/doc/abapdocu_740_index_htm/7.40/en-
US/index.htm?file=ABAPSQL_EXPR.htm (accessed Sep. 11, 2021).

[41] T. Sharma, “ABAP Core Data Services – Introduction (ABAP CDS view) | SAP Blogs,” Jul.
09, 2017. https://blogs.sap.com/2017/09/09/abap-core-data-services-introduction-
abap-cds-view/ (accessed Nov. 29, 2020).

[42] SAP, “ABAP Core Data Services | S/4HANA - Best Practice Guide,” SAP, Feb. 2020.
https://www.sap.com/documents/2019/01/0e6d5904-367d-0010-87a3-
c30de2ffd8ff.html (accessed Mar. 05, 2021).

[43] R. Kumaria, “The Semantically Rich Data Model – An ABAP based CDS Views example |
SAP Blogs,” Aug. 30, 2016. https://blogs.sap.com/2016/08/30/the-semantically-rich-
data-model-an-abap-based-cds-views-example/ (accessed Mar. 06, 2021).

[44] A. Belati and F. Alomari, An Overview of SAP Core Data Services. 2020.
[45] SAP, “ABAP CDS in ABAP Dictionary - ABAP Keyword Documentation,” 2016.

https://help.sap.com/doc/abapdocu_751_index_htm/7.51/en-us/abencds.htm
(accessed Mar. 06, 2021).

[46] SAP, “ABAP CDS - Performance Note - ABAP Keyword Documentation,” 2016.
https://help.sap.com/doc/abapdocu_751_index_htm/7.51/en-
us/abenabap_cds_perfo.htm (accessed Mar. 06, 2021).

[47] M. Ahmed, “ABAP on SAP HANA. Part IV. Core Data Services | SAP Yard |,” Jun. 28, 2016.
https://sapyard.com/abap-on-sap-hana-part-iv/ (accessed Mar. 06, 2021).

[48] SAP, “CDS Languages,” 2016. https://sapyard.com/wp-content/uploads/2016/06/9-
2.jpg?x55810 (accessed Mar. 06, 2021).

120

[49] SAP, “ABAP Core Data Services - ABAP Keyword Documentation,” 2016.
https://help.sap.com/doc/abapdocu_751_index_htm/7.51/en-
us/abenabap_core_data_services_glosry.htm (accessed Mar. 06, 2021).

[50] SAP, “CDS DDL,” 2016. https://blogs.sap.com/wp-content/uploads/2017/08/2-8.jpg
(accessed Mar. 06, 2021).

[51] SAP, “ABAP CDS - Views - ABAP Keyword Documentation,” 2016.
https://help.sap.com/doc/abapdocu_751_index_htm/7.51/en-
us/abenddic_cds_views.htm (accessed Mar. 06, 2021).

[52] SAP, “ABAP CDS - Table Functions - ABAP Keyword Documentation,” 2016.
https://help.sap.com/doc/abapdocu_751_index_htm/7.51/en-
us/abenddic_cds_table_functions.htm (accessed Mar. 06, 2021).

[53] H. Keller, “ABAP Language News for Release 7.40, SP05 | SAP Blogs.”
https://blogs.sap.com/2014/02/06/abap-news-for-release-740-sp05/ (accessed Sep. 11,
2021).

[54] SAP, “AMDP - ABAP Managed Database Procedures - ABAP Keyword Documentation.”
https://help.sap.com/doc/abapdocu_752_index_htm/7.52/en-
US/abenamdp.htm?file=abenamdp.htm (accessed Sep. 11, 2021).

[55] SAP, “ABAP Keyword Documentation - AMDP - ABAP Managed Database Procedures.”
https://help.sap.com/doc/abapdocu_740_index_htm/7.40/en-
US/index.htm?file=ABENAMDP.htm (accessed Sep. 11, 2021).

[56] H. Keller, “CDS – One Concept, Two Flavors | SAP Blogs,” Jul. 20, 2015.
https://blogs.sap.com/2015/07/20/cds-one-model-two-flavors/ (accessed Mar. 06,
2021).

[57] “New Core Data Services Features in SAP HANA 1.0 SPS 10 | SAP Blogs.”
https://blogs.sap.com/2015/07/01/new-core-data-services-features-in-sap-hana-10-sps-
10/ (accessed May 08, 2021).

[58] “Getting Started with Core Data Services - SAP Help Portal.”
https://help.sap.com/viewer/09b6623836854766b682356393c6c416/2.0.02/en-
US/b710731496cf43b7ba76e15a928f1a80.html (accessed Mar. 05, 2021).

[59] “TEMPLATE_image004.gif (480×359),” Dec. 05, 2021.
https://help.sap.com/saphelp_scm70/helpdata/ru/97/68d64260752a78e10000000a155
106/TEMPLATE_image004.gif (accessed May 12, 2021).

[60] “topdown_377308.png (1525×625).” https://blogs.sap.com/wp-
content/uploads/2014/02/topdown_377308.png (accessed May 22, 2021).

[61] “bottomup_377307.png (1558×671).” https://blogs.sap.com/wp-
content/uploads/2014/02/bottomup_377307.png (accessed May 22, 2021).

[62] C. Kersten, “Oracle for SAP Database Update,” p. 16, Jun. 2020.
[63] N. Rich and H. Matthias, “Value analysis. Value engineering: Innoregio: dissemination of

innovation and knowledge management techniques,” p. 32, Jan. 2000.
[64] P. A. Koen et al., “Fuzzy Front End: Effective Methods, Tools, and Techniques,” PDMA

ToolBook New Prod. Dev., p. 32, 2002.
[65] P. Koen et al., “Providing Clarity and Common Language to the Fuzzy Front End,” Res.-

Technol. Manag., vol. 44, pp. 46–55, Mar. 2001.
[66] T. L. Saaty, “Decision making with the analytic hierarchy process,” Int. J. Serv. Sci., vol. 1,

no. 1, pp. 83–98, Jan. 2008, doi: 10.1504/IJSSci.2008.01759.
[67] “ROFF Consulting,” ROFF Consulting. https://www.roffconsulting.com/en (accessed Jul.

03, 2021).
[68] P. Eeles, “Capturing Architectural Requirements,” Nov. 2001.

121

[69] SAP, “ABAP Keyword Documentation - Database Accesses.”
https://help.sap.com/doc/abapdocu_740_index_htm/7.40/en-
US/index.htm?file=abendatabase_access_guidl.htm (accessed Sep. 11, 2021).

[70] “SAP Learning Hub.” https://learninghub.sap.com/ (accessed Sep. 30, 2021).

122

Appendix A

Desenho Funcional

S00124_2017 – Gestão dos
Fornecedores Externos

Sistema:

SAP ERP

Referência: DF_SAP_MM_S00124_2017

Data: 27.07.2017

Versão: 4.0

124

Autor: José Bento

Descrição: Desenho funcional do módulo de gestão dos fornecedores externos

Histórico do Documento:

Versão Data Responsável Descrição de Alterações

1.0 10.07.2017 José Bento Versão Inicial

2.0 17.07.2017 José Bento Versão revista

3.0 18.07.2017 José Bento Versão revista

4.0 27.07.2017 José Bento Versão revista

125

ÍNDICE

1 - Âmbito do Documento .. 126

2 - Plano .. 126

3 - Requisitos Técnicos e Funcionais .. 126

4 - Requisitos de Segurança .. 132

5 - Diagrama de Processos ... 132

6 - Desenho da Arquitectura Aplicacional .. 132

7 - Identificação dos Interfaces ... 132

8 - Identificação dos Perfis de Acesso .. 132

9 - Necessidades de Migração de Dados .. 133

10 - Formação .. 133

11 - Documentos Anexos .. 133

126

1 - Âmbito do Documento

Este documento tem como objetivo especificar os requisitos técnicos e funcionais necessários
ao desenvolvimento dum módulo de gestão dos fornecedores externos da ROFF.
Presentemente, a ROFF é fornecida, tanto ao nível de bens como de serviços, por diversos
fornecedores tendo-se identificado que estes também recorrem a fornecedores próprios.
Uma vez que a Unidade de Controlo e Gestão (UCG) da ROFF irá começar a efetuar auditorias
à estrutura de custos a partir do próximo ano fiscal, é necessário implementar um módulo que
permita guardar e consultar dados mensais do volume de bens e serviços fornecidos
indiretamente pelos fornecedores externos com vista a uma eventual adjudicação direta com
o objetivo de reduzir custos.

2 - Plano

Para o desenvolvimento requerido será necessário um recurso técnico para tratar das
implementações ABAP. Os testes e posteriores ajustes serão efetuados pela equipa de 1ª
linha da ROFF.

3 - Requisitos Técnicos e Funcionais

127

Para gerir os dados dos fornecedores externos será necessário definir duas tabelas na BD,
uma para guardar os dados individuais dos fornecedores externos e outra para guardar os
dados dos movimentos contabilísticos mensais. Ambas as tabelas serão não ampliáveis.

A tabela onde serão guardados os dados individuais deverá possuir um ecrã de manutenção e
uma transação de acesso para permitir a sua manutenção pela UCG. Esta tabela terá como
nome ZTMM_FEX_<Iniciais> e possuirá a seguinte estrutura:

Nome do
Campo

Elemento de Dados Descrição

MANDT* MANDT Mandante

FEXNR* ZMM_FEXNR_<Iniciais> Fornecedor Externo. Será um campo CHAR de
tamanho 10. Terá associada uma rotina de
conversão de modo a permitir o controlo dos zeros
à esquerda.

NOMEF BAPITDOBNAME Nome do Fornecedor Externo

FEXTY ZMM_FEXTY_<Iniciais> Tipo do Fornecedor Externo. Será um campo CHAR
de tamanho 1 e que deverá assumir apenas 1 valor
da seguinte lista:

• 1 – Fornecedor Ativo

• 2 – Fornecedor Antigo

• 3 – Fornecedor Eventual

• 4 – Fornecedor Auxiliar

• 5 – Outro

STCEG STCEG NIF

WAERS WAERS Moeda

STRAS STRAS_GP Rua e Nº

ORT01 ORT01_GP Localidade

PSTLZ PSTLZ Código Postal

LAND1 LAND1_GP País

* Campos-chave
A transação de acesso ao ecrã de manutenção desta tabela terá como nome
ZMM_FEX_<Iniciais>.

A tabela onde serão guardados os dados dos movimentos contabilísticos mensais terá como
nome ZTMM_MOVFEX_<Iniciais> e possuirá a seguinte estrutura:

Nome do
Campo

Elemento de Dados Descrição

MANDT* MANDT Mandante

WERKS* WERKS_D Centro

LGORT* LGORT_D Depósito

FEXNR* ZMM_FEXNR_<Iniciais> Fornecedor Externo. Será um campo CHAR de
tamanho 10. Terá associada uma rotina de
conversão de modo a permitir o controlo dos zeros
à esquerda.

128

GJAHR* GJAHR Exercício

MONAT* MONAT Período

WRBTR WRBTR Montante

GSWRT GSWRT Valor Total

ANZLI MC_ANZLI Nº de fornecimentos

* Campos-chave

Deverá ser definida a ajuda de pesquisa ZSHMM_FEXNR_<Iniciais> para permitir a pesquisa
de fornecedores externos. Esta ajuda de pesquisa usará a tabela ZTMM_FEX_<Iniciais> como
método de seleção e será disponibilizada em todos os ecrãs que tenham o Fornecedor
Externo como campo de seleção.

Será desenvolvido um programa de reporte com vista à consulta dos dados dos movimentos
contabilísticos mensais. Este programa terá como nome ZRMM_MOVMESFEX_<Iniciais> e
terá os seguintes elementos no seu ecrã de seleção:

• Centro – Parâmetro de seleção simples, obrigatório

• Depósito – Parâmetro de seleção simples, obrigatório

• Fornecedor Externo – Parâmetro de seleção múltipla

• Período Atual – Parâmetro radiobutton, selecionado por omissão

• Ano Atual – Parâmetro radiobutton

• Seleção Livre – Parâmetro radiobutton

• Exercício – Parâmetro de seleção múltipla

• Período – Parâmetro de seleção múltipla

Para executar o programa, o utilizador deverá preencher os campos “Centro” e “Depósito” e
indicar, através dos parâmetros radiobutton, qual o período temporal que deseja consultar.
Os campos “Exercício” e “Período” deverão estar ocultos exceto quando o utilizador
selecionar a opção “Seleção Livre”, situação na qual estarão disponíveis.

No final da execução do programa será apresentada uma listagem de saída, em formato ALV

Grid que possuirá a seguinte estrutura:

Nome do
Campo

Elemento de Dados Descrição

GJAHR GJAHR Exercício

MONAT MONAT Período

FEXNR ZMM_FEXNR_<Iniciais> Fornecedor Externo

FEXTY ZMM_FEXTY_<Iniciais> Tipo do Fornecedor Externo

NOMEF BAPITDOBNAME Nome do Fornecedor Externo

WRBTR WRBTR Montante

GSWRT GSWRT Valor Total

PERVT PRZOPKUM Percentagem do Valor Total (WRBTR / GSWRT)

ANZLI MC_ANZLI Nº de fornecimentos

VALMF BINV_VALUE Valor Médio por Fornecimento (WRBTR / ANZLI)

WAERS WAERS Moeda

129

Todas as entradas cuja Percentagem do Valor Total tenha um valor entre 50% e 80% deverão

ser pintadas de cor amarela; todas as entradas cuja Percentagem do Valor Total seja superior

a 80% deverão ser pintadas de cor vermelha.

A listagem de saída ALV deverá estar ordenada por Exercício, Período e Fornecedor Externo

sendo que estes campos também deverão estar assinalados como campos-chave.

Deverá ser apresentado, no final da listagem, o somatório do total dos campos Montante,

Valor Total e Nº de Fornecimentos.

No topo a listagem de saída deverá ser apresentado um cabeçalho ALV contendo três

informações:

o Centro indicado no ecrã de seleção e a sua descrição;

o Depósito indicado no ecrã de seleção e a sua descrição;

o Período temporal de pesquisa indicado no ecrã de seleção:

Mês e Ano, caso se tenha selecionado o Período Atual;

Ano, caso se tenha selecionado o Ano Atual;

Seleção Livre, caso se tenha selecionado uma seleção livre qualquer.

A transação para acesso ao programa ZRMM_MOVMESFEX_<Iniciais> será

ZMM_MOVMESFEX_<Iniciais>.

Na barra de botões da listagem de saída em formato ALV Grid deverá ser acrescentado um

botão novo “Exportar para PDF” que terá associada a funcionalidade de exportar a listagem

de saída para um formulário Smartform e guardá-lo num ficheiro local em formato PDF.

Deverá ser apresentada ao utilizador uma janela popup para este indicar a localização e o

nome do ficheiro a gravar no seu computador. Deverá ser pré-preenchido o nome do ficheiro

que será:

130

<CENTRO>_<DEPÓSITO>_<DATA_ACTUAL>_<HORA_ACTUAL>.PDF

O formulário deverá possuir a seguinte estrutura:

o logótipo da ROFF no canto superior esquerdo;

o Centro e o Depósito e as respetivas descrições no topo;

o Período temporal de pesquisa no canto superior direito:

Mês e Ano, caso se tenha selecionado o Período Atual;

Ano, caso se tenha selecionado o Ano Atual;

Seleção Livre, caso se tenha selecionado uma seleção livre qualquer;

uma tabela com os dados da listagem de saída ALV Grid com os respetivos cabeçalhos listando

os campos Exercício, Período, Fornecedor Externo, Tipo de Fornecedor Externo, Montante,

Valor Total, Nº Fornecimentos e Moeda e um rodapé com o total dos campos Montante, Valor

Total e Nº Fornecimentos;

a indicação da página / total de páginas, do utilizador que gerou o ficheiro e a data de geração

do ficheiro no canto inferior direito.

Na barra de botões da listagem de saída em formato ALV Grid deverá ser acrescentado um

botão novo “Exportar para XML” que terá associada a funcionalidade de exportar a listagem

de saída para um ficheiro local em formato XML com a seguinte estrutura:

<MOVMESFEX>

 <HEAD>

 <WERKS>…</WERKS> * o Centro e a respetiva descrição

 <LGORT>…</LGORT> * o Depósito e a respetiva descrição

 <PERIO>…</PERIO> * o Período temporal de pesquisa

 <WRBTR>…</WRBTR> * o total do Montante

131

 <GSWRT>…</GSWRT> * o total do Valor Total

 <ANZLI>…</ANZLI> * o total do Nº Fornecimentos

 </HEAD>

 <ITEM> * conteúdo de cada linha da listagem

 <GJAHR>…</GJAHR>

 <MONAT>…</MONAT>

 <FEXNR>…</FEXNR>

 <FEXTY>…</FEXTY>

 <NOMEF>…</NOMEF>

 <WRBTR>…</WRBTR>

 <GSWRT>…</GSWRT>

 <PERVT>…</PERVT>

 <ANZLI>…</ANZLI>

 <VALMF>…</VALMF>

 <WAERS>…</WAERS>

 </ITEM>

 …

</MOVMESFEX>

Deverá ser apresentada ao utilizador uma janela popup para este indicar a localização e o

nome do ficheiro a gravar no seu computador. Deverá ser pré-preenchido o nome do ficheiro

que será:

MOVMESFEX_<DATA_ACTUAL>_<HORA_ACTUAL>.XML

132

De modo a centralizar os acessos às transações atuais (e eventuais futuras) desenvolvidas no

âmbito deste módulo de gestão dos fornecedores externos deverá ser desenvolvido um

cockpit que permita aceder a elas a partir de botões indicativos e ilustrativos. Estes botões

deverão estar no ecrã de entrada do cockpit. Adicionalmente, deverá ser definido um terceiro

botão que permitirá o acesso a um segundo ecrã onde o utilizador pode inserir manualmente

registos na tabela ZTMM_MOVFEX_<Iniciais>. Como tal, este ecrã deverá possuir campos de

entrada que permitam o preenchimento da informação presente na tabela e especificada

acima. Deverão ser implementadas as funcionalidades de gravação dos dados, limpeza do

conteúdo dos campos e demais que possam ser úteis.

Este cockpit será implementado através do Pool de Módulos ZMM_GESTAO_FEX_<Iniciais> e

será acedido via a transação ZMM_GFEX_<Iniciais>.

4 - Requisitos de Segurança

N/A

5 - Diagrama de Processos

N/A

6 - Desenho da Arquitetura Aplicacional

N/A

7 - Identificação dos Interfaces

Para além das transações ZMM_FEX_<Iniciais>, ZMM_MOVMESFEX_<Iniciais> e
ZMM_GFEX_<Iniciais> não será necessário desenvolver qualquer outra interface ou acesso.

8 - Identificação dos Perfis de Acesso

133

As transações a definir no âmbito deste pedido serão de acesso livre, sem quaisquer
restrições nos perfis de acesso dos utilizadores da UCG.

9 - Necessidades de Migração de Dados

O processo de alimentação da tabela onde serão guardados os dados dos movimentos
contabilísticos será definido e programado pela UCG através de carregamentos diários.

10 - Formação

N/A

11 - Documentos Anexos

N/A

