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Resumo 

 

A neurofibromatose tipo 1 (NF1) é uma perturbação do desenvolvimento 

neurológico com implicações cognitivas adultas. Provoca anomalias do sistema nervoso 

central e afeta 1 em 3000 indivíduos em todo o mundo. Contudo, pouco se sabe sobre os 

efeitos no sistema visual e como estes podem estar associados a défices cognitivos e 

preveem a sua progressão. Neste trabalho, avalia-se as potenciais alterações na fisiologia 

da retina num modelo genético de murgalho de NF1, utilizando uma técnica 

neurofisiológica não invasiva, o eletroretinograma (ERG), para determinar o seu 

potencial diagnóstico. Como um indicador fiável da função da retina em resposta à luz, o 

ERG tem a capacidade de ajudar a nossa interpretação da fisiopatologia das perturbações 

do neurodesenvolvimento e neurodegenerativas. 

Os principais objetivos desta tese são a caracterização fenotípica do sistema visual 

num modelo animal de NF1 e o desenvolvimento de ferramentas informáticas (MATLAB 

e Phyton) para processamento de sinais, análise de forma de onda, extração de 

características, e classificação. Verificou-se que os parâmetros ERG relacionados 

principalmente com a atividade oscilatória inibitória revelam alterações subtis 

dependentes do sexo. Para vários potenciais oscilatórios, machos e fêmeas exibem 

alterações opostas associadas ao genótipo mutante. Além disso, as características do ERG 

foram utilizadas para formar um classificador de aprendizagem de máquina baseado nos 

aglomerados significativos encontrados para algumas interações entre indivíduos, um 

classificador que se destina a ser capaz de receber um sinal e devolver o provável 

diagnóstico.  
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Abstract 

 

Neurofibromatosis type 1 (NF1) is a neurodevelopmental disorder with adult 

cognitive implications. It causes central nervous system anomalies and affects 1 in 3000 

individuals worldwide. However, little is known about the effects on the visual system 

circuitry and how these may be associated with cognitive deficits and predicts its 

progression. In this work, it was evaluated the potential alterations in retinal physiology 

in a genetic mouse model of NF1, using a non-invasive neurophysiological technique, the 

electroretinogram (ERG), to ascertain its diagnostic potential. As a reliable indicator of 

retinal function in response to light, the ERG has the ability to aid our interpretation of 

the pathophysiology of neurodevelopmental and neurodegenerative disorders. 

The main objectives of this thesis are the phenotypic characterization of the visual 

system in an animal model of NF1 and the development of computer tools (MATLAB 

and Phyton) for signal processing, waveform analysis, feature extraction, and 

classification. This work found that ERG parameters mainly related to inhibitory 

oscillatory activity reveal subtle sex-dependent alterations. For various oscillatory 

potentials males and females exhibit opposite changes associated with the transgenic 

background. Furthermore, the ERG features were used to form a machine learning 

classifier based on the significant clusters found for some interactions between 

individuals, a classifier that is meant to be able to receive a signal and return the likely 

diagnosis.  
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1. Introduction 

 

1.1. Motivation and Objectives  

According to WHO [1]- World Health Organization, One in 160 children has an 

autism spectrum disorder worldwide, which is a neurodevelopmental disorder marked by 

social interaction deficiencies as well as limited activities and atypical sensory responses 

[2]. This type of disease presents optic manifestations, which make possible to distinguish 

an autistic individual in several visual examinations [3], such as those treated in the 

subject of the current thesis. 

Therefore, one of the objectives of this research is to describe the visual system in 

an animal model of NF1, in order to differentiate the form of Autism from healthy people. 

The main goal of this paper is to develop computer tools for automated analysis of 

electroretinogram (ERG) component analysis and the study of their behavior in the 

different models with statistical analysis to preform to the ERGs components. It is also 

critical to determine the ability of ERG components to predict previously reported 

cognitive deficits. 

 

1.2. Dissertation Structure 

This dissertation is divided into six chapters. This first chapter introduces the main 

objectives of the work and the respective motivation. The structure of the dissertation is 

also presented here. 

Chapter 2 is the literature review on the main themes of this work. An approach 

is made to the human eye and retina, objects of study of the techniques. Autism and 

respective strain concerned, neurofibromatosis type 1, is defined. It is described and 

characterized the technique used in the study of autism strain in the human visual system, 

the electroretinogram and its applications. The subject of signal processing is addressed 

with the aim of characterizing the digital filters applied in the development of the subject, 

as well as the concepts and definitions relating to statistical analysis and the respective 

tests applied to the data. Finally, the subject of machine leaning and the algorithm used 

in this work is addressed. 
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The third chapter consists in the exposition and analysis of some literature studies 

already done relating the techniques in question and the disease. 

In the fourth section, the materials and methods chosen to de development of the 

theme and define the problem are described and justified. 

Chapter five, Development, presents de solution chosen to the existing problem 

and describes the procedure followed. 

The sixth section presents the results obtained with the solution found and 

developed, which includes the signal processing, point identification, return of 

information from the signal and from each component, development of various graphics 

and images to aid in data comprehension, statistical analysis and respective tests results 

and the semi-automatic method created for characterization and provable diagnosis. 

Finally, chapter 7 presents the main conclusions of this work and gives some 

suggestions for future work.
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2. Theoretical Foundations 

The purpose of chapter 2 is to present the theoretical development necessary for 

the project. This chapter has the intention of defining and characterizing the concepts that 

the subject of the current dissertation includes. 

 

2.1. Human Eye 

Our eyes never stay still and are always moving to sense differences in the world. 

As a result, research into eye activity is critical in vision science. Eye movement due to 

external stimulus is a significant research field for scientists because external stimuli are 

called environmental changes. Face movement can actually be studied in response to a 

variety of external stimuli, including visual, auditory, and olfactory stimuli. Over the 

years, psychologists have used a number of methods to research eye activity in response 

to external stimulus [4].  

The eyes are crucial to our daily lives because visibility provides us with about 

70% of the input we get from our environment. They are situated within the upper face's 

eye sockets, which are two cavities [5]. 

The human eye has several constituents in its structure as shown in Figure 2.1. 

 

 

Figure 2.1 -Anatomy of the human eye [4]. 
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Cornea is the eye's outer layer, which is kept wet by the tear fluid that coats it. The 

cornea behaves similarly to a window in that it is disk-shaped, translucent, and allows 

light to reach the eye. It also protects the eyes from harmful environmental influences 

including soil, pollen, and surface injuries. It has a high natural resistance. Its curvature 

has optical properties and is crucial in allowing us to see clearly. 

Sclera prevents the retina from damage by being thicker and heavier than the 

cornea. It protects the whole eye, with two exceptions: the cornea is included in the center, 

and the optic nerve fibers are located in the rear. 

Pupils are the black spots in the human eye's middle. It adjusts to the strength of 

incident light by reacting to it. The scale of our pupils will also be affected by our 

emotional state [6]. 

Iris is a colored ring that circles the pupil and monitors the amount of light entering 

the eye in the same manner that an aperture does. It means that the pupil shrinks in a 

bright setting, allowing a smaller volume of light to pass through [7]. The iris is also 

responsible for the color of our eyes and has a distinct shape in each of us. 

Chambers of the eye (camerae bulbi) are aqueous fluid-filled spaces in the anterior 

section. It includes the anterior and posterior chambers. The posterior chamber (not 

shown) is a small structure between the iris and ciliary. The fluid includes nutrients for 

the lens and cornea, supplies oxygen, and aids in the battle against pathogens. The 

aqueous fluid in the eye chambers often has another purpose: it assists in the eye's form 

maintenance. 

The crystalline lens of the eye absorbs light that passes through the pupil and 

forms a sharp image on the retina. It is pliable and can change shape with the help of the 

ciliary muscle to focus on both distant and close objects [6]. The picture is reversed by 

the lens and projected on the retina from back to front. When the vision is viewed later 

by the brain, it is just reversed back to the correct direction [8]. 

The ciliary body and beam body (corpus ciliare) are essential for vision because 

they create aqueous fluid and house the ciliary muscle (musculus ciliaris). By adapting 

the lens, it’s possible to focus on things both near and far apart. 

The corpus vitreous is the largest portion of the eye which, as the name indicates, 

represents the body of the eye. It's translucent and made up of 98% water, 2% sodium 

hyaluronate, and collagen fibers [6]. 
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The retina absorbs light and color sensations before transmitting them to the brain 

via the optic nerve. In other words, the retina serves as a medium, converting incoming 

light into a form that can be processed by the brain. Cones and rods make up these sensory 

cells. They are located in more high concentrations nowhere else in the eye except in the 

macula, or middle of the retina: 95 percent of all sensory cells are clustered in an area of 

around 5 square millimeters [9]. 

Between the sclera and the retina, the choroid extends to the ciliary body and the 

iris. It guarantees that nutrients are delivered to the retina's receptors, maintains a stable 

retinal temperature, and aids in accommodation. 

The optic nerve (nervis opticus) is in charge of sending data from the eye to the 

brain. It has over a million nerve fibers (axons) and is about half a centimeter thick until 

exiting the retina via the papilla. 

The fovea is a tiny component of our optical structure that plays an important role 

in our vision. It is found in the middle of the retina and is packed with sensory cells that 

enable us to see in color and as plainly as possible throughout the day [6]. 

 

2.1.1. Retina 

The retina of the human eye converts light into an electrical signal, making it the 

component responsible for the transition from the sensory to the nervous systems [10]. 

The light wave must travel through multiple layers of neurons before contacting 

the photoreceptors (detailed in Figure 3), and the central fovea and the blind spot are the 

two locations where this does not happen, since the signal is captured directly by 

photoreceptors or there are no photoreceptors, respectively. The region where the optic 

nerve and blood vessels enter, as well as the absence of photoreceptors, is known as the 

blind spot. The information is then sent to the ganglion cell axons, which are in charge of 

forming the optic nerve transporting action potentials to the brain [11]. 

The cones, which are responsible for catching colors and helping us to see with 

greater clarity, and the rods, which, while being more numerous, have less resolution and 

form images in low light environments. The central fovea is made up entirely of cones, 

and since light signals do not have to travel through several layers before reaching the 
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photoreceptors, it is the region that generates the clearest images and is the most 

commonly used in functional ophthalmic evaluations [9]. 

The human retina has 120 million rods and 6 million cones with just 1.2 million 

retinal ganglion cells, implying a high degree of neuron convergence. The cone pathways 

have less overall convergence than rod pathways, reaching the ratio of cone to retinal 

ganglion cells of about 1 to 1 in the fovea. This also explains why the resolution of the 

images produced by the cones is much higher than that generated by the rods. Since the 

light signals received by the rods are too small, this phenomenon aids in the production 

of action potentials [12]. 

Phototransduction is a phenomenon that happens in photoreceptors that turns light 

into an electrical signal that is then transmitted to the brain. The release of glutamate, a 

neurotransmitter responsible for the transfer of information from photoreceptors to 

bipolar and retinal ganglion cells, is decreased in rods when light hits the photoreceptor. 

The mechanism is identical in cones, but the pigment responsible for fading is distinct. 

There are only three types of cones in humans based on light wavelength their pigment is 

most sensitive: red or L (long-wavelength, ~560 nm), green or M (middle-wavelength, 

~530 nm), and blue or S (short-wavelength, ~420 nm) [13]. Contrarily to primates, 

rodents do not have the red or L-cone. While the majority of visual input is sent to the 

visual cortex, a small amount, specifically 20% of it, is sent to the superior colliculi, which 

enable eye motor control, such as tracking moving objects [11]. 

 

2.2. Autism 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder marked by 

social interaction deficiencies as well as limited activities and atypical sensory responses 

[2]. Although the cause of ASD is unclear in the majority of cases, genetic and 

environmental factors are thought to play a role in the phenotype by modulating synaptic 

connectivity [14] and controlling neurotransmitters and their transcription factors [15], 

[16]. While several genetic alterations have been related to ASD, the majority of cases 

have yet to be found. Alterations in sensory input processing, which are necessary for a 

thorough and accurate understanding of the social environment, could provide clues. As 

behavioral responses depend on the perception and integration of sensory information, 

effective sensory processing is crucial to higher-level cognition. Changes in sensory 
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processing pathways at any level can cause behavioral changes, with potentially 

debilitating effects on social competence [17]. Inefficient sensory integration has been 

widely documented in ASD research, and atypical sensory perception has recently been 

identified as a potentially significant cause of ASD symptoms [18], [19]. Extreme 

sensitivity to certain auditory sounds or textures, as well as altered pain levels, are 

examples of such behavioral indicators [20]. 

The Light-Adapted Electrocardiogram is a possible marker for 

neurodevelopmental disorders like ASD in children, according to a broad, multicenter 

review. This method can assist drug exploration that targets CNS production of signaling 

pathways common to the CNS and retina by providing a reproducible, noninvasive, and 

robust measure of CNS operation [21]. 

 

2.2.1. Neurofibromatosis type 1 

Neurofibromatosis is a monogenetic neurocutaneous condition marked by a proclivity 

for tumor development that may be benign or malignant [22]. Other clinical characteristics 

vary depending on the type of neurofibromatosis being studied. There are two types of 

neurofibromatosis: type 1, which is the most prevalent and is also known as classic 

neurofibromatosis, and type 2, which varies in the position of the mutation, and may appear 

on chromosome 17 or 22, respectively [23]. 

The type of neurofibromatosis analyzed in this paper is type 1, which is classified as 

a neurodevelopmental disorder because patients with this syndrome have cognitive 

impairments and CNS abnormalities [24]. Neurofibromatosis is an autosomal dominant 

disease caused by mutations in the NF1 gene, which codes for the neurofibromin protein [25]. 

Neurofibromin is a key regulator of a signaling pathway which controls cell growth and 

differentiation and is also involved in learning and memory processes. When developed 

properly, neurofibromin functions as an inhibitor of the above-mentioned pathway. This 

protein also functions as a GABAergic neurotransmitter modulator, according to previous 

reports [26]. 

Neurofibromatosis type 1 (NF1) is the most prevalent condition that causes anomalies 

in the CNS, affecting 1 in 3500 people worldwide, it affects people of all ethnicities and has 

no sex preference [27]. 
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NF1 is a multisystemic disorder that manifests itself in a variety of ways through the 

human body's processes. It affects the central and peripheral nervous systems, as well as the 

skin, bones, blood vessels, endocrine system, and endocrine system. It is normal for 

neurological complications to occur in infancy, with cognitive impairments being the most 

common and, as a result, the ones that cause the most anxiety for patients suffering from this 

disorder [24]. Cognitive impairments are responsible for a large amount of academic and 

behavioral issues. The most frequent cutaneous and neuronal signs of patients with this 

mutation are Cafe'-au-lait stains, Lisch nodules, and cutaneous neurofibromas, which are 

present in almost 100% of patients (Table 2.1) [28]. 

 

Table 2.1 - Symptoms and Incidence of NF1 (Adapted from [28]). 

Symptoms Percentage of Incidence 

Cafe'-au-lait spots 94-100% 

Lisch nodules 22-96% 

Cutaneous neurofibromas 14 -95% 

Freckles on the lower arm or groin 67% 

Impairment of Learning 30–65% (Kids) 

Short Stature 25–35% 

Plexiform Neurofibromas ∼ 25% 

Optic Gliomas 20 % 

Headache ∼ 20% 

Scoliosis 12–20% 

Mental Retardation 4-8% 

Epilepsy 3–5% 

Intracranial Tumors 1–2% 

Hydrocephalus 2% 

Pseudotrosis 3% 

Sphenoidal Wing Dysplasia < 1% 

Renal Artery Stenosis 1–2% 

Pheochromocytoma < 1% 
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Lisch nodules and cutaneous neurofibromas have a wide range of incidence 

percentages, owing to the fact that these are the symptoms that develop over time and become 

more common as the patient ages, peaking at 20 and 30 years of age, respectively [28]. 

The clinical evolution of patients is used to make a diagnosis of this disease [24]. The 

clinical features found in most NF1 patients are the development of cafe-au-lait spots, optic 

gliomas and pseudarthrosis; these symptoms manifest within the first ten years of life, 

allowing the diagnosis to be made during this period [25]. If a person shows some of these 

symptoms, NF1 should be recognized as a possible diagnosis, and formal diagnostic 

guidelines have been developed [29]. 

The features mentioned above are detected using a variety of methods. Ultraviolet 

light may be used to correctly count the spots that individuals have on their skin, such as café-

au-lait spots, since others may not be noticeable. There are several molecular genetic tests 

which could be used to detect the presence of this mutation before injuries arise, although 

they are rarely needed. Magnetic resonance imaging (MRI) can be used to assess whether 

plexiform neurofibromas have reached the end of their growth cycle [29].  

 

2.3.  Autism Optical Manifestations 

Vision is determinant of many behavioral responses and plays an important role 

in correct perception of social environments. A person's atypical visual processing can 

cause them to overlook essential social signals like eye contact and variations in facial 

expression or skin pigmentation, which can have a detrimental impact on their ability to 

learn and develop social skills [30], [31]. ASD patients also have atypical visual 

phenotypes [32], and several studies have shown that ASD patients prefer intricate 

descriptions of a visual scene (“local details”) over a contextual understanding of the 

picture as a whole (“global structure”). These phenotypes are thought to be caused by 

changes in neural processing of spatial vision or a relatively increased response to 

information with high spatial frequencies [33]. Outcomes from patient trials have been 

mixed, and there is still a lot of discussion. Establishing a reliable animal model for 

studying ASD-related alterations in visual processing might reveal the nature and 

underlying mechanisms of altered visual function observed in these patients [3], [34], 

[35]. 
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Contrast sensitivity was measured across a spectrum of spatial frequencies in a 

human sample for both luminance and texture-defined vertically oriented sinewave 

gratings. According to the results, autistic people are more vulnerable to luminance-

defined, high spatial frequency gratings [36]. In another study, children with ASD were 

found to be deficient in many aspects of facial image recognition, but they performed 

better when matching faces using high rather than low spatial frequency information [37]. 

Visual evoked potentials were used in another study to demonstrate that adults with ASD 

had improved fine-form processing but poorer face form processing due to a lack of 

incorporation of various local high spatial frequency information in the fusiform gyrus 

[38]. These results suggest that localized perception in ASD is triggered, at least in part, 

by improvements in early spatial response processes that favor precise spatial information 

processing, which may lead to atypical social awareness and interaction. 

However, these findings are not universal, and the literature's mixed results have 

prompted much discussion. Although some studies have reported ‘super vision' in ASD 

patients, later studies have generally accepted the notion that visual acuity in this 

population is normal [39]–[41]. Furthermore, no difference in contrast sensitivity was 

observed between ASD and control groups in other studies [42], [43]. The wide range of 

visual phenotypes identified in the literature may be due to the fact that ASD is a 

continuum disorder, with symptoms ranging in severity and presentation. Furthermore, 

because of large differences in research techniques, sample sizes, availability of high-

functioning subjects, cooperativeness during visual testing, and social and 

communication problems, measuring visual function (including spatial acuity and 

contrast sensitivity) in this demographic, especially in children, has been challenging 

[32], [33]. 

The study of oscillatory potential indicates that improvements in post-

photoreceptor retinal circuitry could be a compensatory occurrence for decreased 

photoreceptor input, which could lead, at least in part, to the improved visual functions 

found in the BTBR mice. This mouse model of autism has been shown to have disturbed 

sensory circuitry in the brain, with altered structural shape and reduced synaptic pruning 

in the dorsal lateral geniculate nucleus (dLGN), a central component in the visual 

pathway, while not specifically linked to the transmission of Optokinetic-associated 

stimuli [20].  
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Neuroimaging trials on people with ASD can help researchers figure out what's 

behind their atypical vision. Brainstem hypoplasia has been identified in any case of 

autism that has been studied to date, independent of age [44]. As previously stated, the 

optokinetic response is controlled by the accessory optic system, which relays 

information to the motor system through midbrain (brainstem) nuclei. Although 

deformation of the dLGN has been observed [45] in BTBR mice, it has yet to be 

determined if structural defects exist along the accessory optic system. There have been 

several reports on treatments for alleviating vision difficulties in people with ASD, and 

the findings have been mixed. Understanding vision changes may lead to new approaches 

to address the needs of people with autism and, as a result, reduce the disorder's symptoms 

[46]. 

2.3.1. Neurofibromatosis type 1  

Little is known about the possible retinal effects in NF1 patients, especially at the 

level of retinal circuitry. So far, clinical studies have mainly found structural changes 

associated with the presence with optic gliomas [47]. 

Palpebral plexiform neurofibroma is generally monolateral, affects the upper 

eyelid commonly, and arises after 2 years of life; it has a proclivity for growing and 

causing asymmetric ptosis with palpebral edge distortion [48].  

Lisch nodules, a kind of iris hamartoma in NF1, are uncommon before the age of 

two, and may be seen rarely before the age of six, but their prevalence, quantity, and size 

in individual instances rise dramatically as they become older [49].  

Glaucoma was found in 23 % of NF1 patients with orbital–facial involvement 

(such as plexiform palpebral neurofibroma) in recent research. This study revealed slight 

ocular enlargement in oculofacial NF1, even in eyes with normotensive intraocular 

pressure. Even in eyes with normotensive intraocular pressure, our investigation indicated 

mild ocular enlargement in oculofacial NF1; indeed, it has been postulated that 

megalophthalmous may be present in NF1 regardless of ocular hypertension [50]. 

The thickness of the choroidal and individual retinal layers was measured in 

individuals with NF1 and the mean choroidal thickness was shown to be reduced. When 

NF1 patients were compared to healthy control participants, the thickness of the 

neuroepithelium, photoreceptor-retinal pigment epithelium, and outer nuclear layer were 
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all decreased. It led to the hypothesis that retinal thinning might be caused by abnormal 

choroidal circulation caused by the presence of nodules [51].  

Topcu-Yilmaz and colleagues, 2014 [52], assessed the macular volume and retinal 

nerve fiber layer thickness and found that within NF1 patients only those with optic 

glioma presented thinning of retinal nerve fiber layer and decrease macular volume. 

 

2.4. Electroretinogram 

The electroretinogram (ERG) can be used to probe and quantify complex retinal 

signaling channels, which are an open model of neuronal integration in the brain [10]. In 

dark- and light-adapted settings, the ERG tracks the difference in voltage created by the 

retina over time in response to fleeting bursts of light [53], [54]. When dark-adapted or 

in low light conditions, rod photoreceptors synapse with rod ON-bipolar cells and 

horizontal cells drives the signal path; when light-adapted in bright light, cone 

photoreceptors synapse with both ON- and OFF— cone bipolar cells and horizontal cells 

drive the signal path. The ERG waveform reflets each cell type proportional 

contributions: the first negative a-wave indicates photoreceptor hyperpolarization to light, 

while the next positive b-wave indicates depolarizing bipolar cells. 

When an amphibian eye was exposed to light in 1865, Holmgren observed 

electrical potentials [55]. By 1908, three waves of ERG had been identified: a, b, and c. 

Ragnar Granit published several experiments on cat retinas in 1933, modifying anesthetic 

levels to separate various components that lead to the ERG [56]. He discovered that the 

a-wave comes from retinal photoreceptors, the b-wave comes from the mid-retina (bipolar 

cells), and the c-wave comes from the retinal pigment epithelium. Ragnar Granit received 

the Nobel Prize in Physiology or Medicine in 1967 for this work. 

Electroretinograms were first used in clinical practice in the 1950s, but the 

mainstream use of clinical ERGs and visually evoked potentials (VEPs) correlates with 

the advent of averaging computers in the 1960s. Electroretinograms and visually evoked 

potentials have advanced in complexity in tandem with advancements in computing 

technology, with multifocal ERGs and multifocal VEPs approaching present levels of 

sophistication. 



Theoretical Foundations 

 

17 

A biphasic waveform recordable at the cornea is elicited by a burst of light, close 

to the one seen in Figure 2.2. The a- and b-waves are the most often measured 

components. The first strong negative variable is the a-wave, which is replaced by the b-

wave, which is positive and normally has a greater amplitude than the a-wave [57]. 

 

Figure 2.2 - ERG waveform [57]. 

In a clinical exam, the amplitude of the a-wave is determined from the mean 

baseline to the negative trough, and the amplitude of the b-wave is measured from the 

trough of the a-wave to the peak of the b-wave. The time from flash onset to the trough 

of the a-wave and the time from flash onset to the peak of the b-wave are quantified. 

These times or latencies are referred to as "implicit times" in electroretinography jargon. 

The positive pole of the amplifier is usually placed on the cornea of the eye and is shown 

as upward in ERG; the negative pole is normally placed on the head and is shown as 

downward in ERG. 

The a-wave, also known as the "late receptor potential," reflects the general 

functional fitness of the photoreceptors in the outer retina (Figure 3). The b-wave, on the 

other hand, represents the fitness of the retinal inner layers, such as ON bipolar cells and 

Müller cells [58], and is influenced by the activity of all constituents of the mid-retina, 

horizontal, amacrine, and other forms of bipolar cells. The c-wave, which originates in 

the pigment epithelium [59], [60], and the d-wave, which shows activation of the OFF 

bipolar cells [61], [62], are two other waveforms that are periodically reported clinically. 

Oscillatory potentials (OPs), which were first identified by Cobb and Morton on the 

ascending limb of b-waves, appear alongside a-, b-, and c-waves (1954). Extracellular 

currents in the feedback loop between bipolar cells, amacrine cells, and ganglion cells 

can be connected to OPs [63], [64]. 
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Figure 2.3 - Diagram of retina showing origin of ERG components [57]. 

The early receptor potential (ERP) is a small biphasic portion preceding the a-

wave that occurs in the first 2 ms after a bright flash and reflects the photoreceptor outer 

segments' earliest chemical responses to light. In human, cones account for roughly 70% 

of the overall contribution. The ERP has a latency of under 60 microseconds. ERPs are 

better reported with a nonmetal electrode, such as a cotton wick, owing to photovoltaic 

effects. The ERP is difficult to report and is only used in therapeutic environments [57]. 

 

2.4.1. Full-Field ERG 

Full-field ERGs (ffERGs) are generated in dark-adapted and light-adapted 

environments using full-field flash stimulus. Between procedures, the testing sequence 

and flash triggers differ. Rod and cone function can be distinguished using the colors of 

flashes and the rate of stimulus. The ffERG is the most effective tool for measuring retinal 

dysfunction in the retina [65]. 

Context light, trigger hue, and flash intensity are all better regulated with the 

Ganzfeld. With the aid of a computer, the ERG can be recorded after a single flash or 

average responses to multiple flashes using a strobe lamp, LED flash, or Ganzfeld flash 

stimulus. 

Dark-adapted rod-driven ccotopic and mixed flash ERGs: Proposed protocols 

allow for dark adaptation for at least 20 minutes before recording ERGs, with some 
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laboratories going as far as 30 minutes. Rod activity is measured using dim pulses of light 

after dark adaptation. The International Society for Clinical Electrophysiology of Vision 

(ISCEV) basic white-flash protocol [66] is the most widely used protocol. Bright white 

flashes in the dark-adapted condition produce the large-amplitude ERGs characterized by 

large-amplitude a-wave appearing at short implicit time followed by a large-amplitude b-

wave with OPs on the ascending limb. For assessing rod and cone roles, the light intensity 

is varied so that dim flash ERGs are driven by rods and bright white flash ERGs 

demonstrate mixed rod-cone responses [67]. 

Light-Adapted Cone-Driven ERG: After 10 minutes of light adaptation, light-

adapted ERG responses are reported with a background illumination of 30 cdm-2. Cone 

feature is assessed using single photopic bright white flash ERGs and 30 Hz flicker, as 

well as the x portion of the scotopic dim red flash ERG [68]. 

 

2.4.2. Pattern ERG 

The pattern electroretinogram measures the retinal response to a pattern reversal 

stimulus, which is used to determine retinal ganglion cell activity. PERG is used in the 

diagnosis of glaucoma, optic neuropathies, and ganglion cell disorders in patients. It has 

a small amplitude, normally less than 10 µV, with a small initial negative component with 

a latency of around 35 ms, a much larger positive component peaking about 50 ms, and a 

large negative component peaking about 95 ms. Macular function is reflected in the P50 

component, and retinal ganglion cell function is mirrored in the N95 component [69]. 

 

2.4.3. Multifocal ERG 

The recording is a mass potential representing the wellbeing of the entire retina 

and may not be susceptible to changes in small parts of the retina, which is a disadvantage 

of the conventional global, full-field ERG. The full-field ERG is normally common until 

20% or more of the retina is affected by illness. The ERG of a person with macular 

degeneration, expanded blind spot or other small central scotomas may appear normal. 

The multifocal ERG is the most notable breakthrough of ERGs in the last 25 years. Erich 

Sutter modified the binary m-sequences mathematical sequences to create applications 

that can remove hundreds of focal ERGs from a single electrical signal channel. This 
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system can measure ERG function in a number of small areas of the retina. The ERG 

responses from hundreds of retinal areas can be recorded in a limited amount of time 

using this system [70]. 

 

2.4.4. Focal Flash ERG 

The focal ERG (fERG) is a test that evaluates the activity of a single small area of 

the retina, usually the foveal or macular region. Different stimulus frequencies are used, 

as well as different stimulus field sizes ranging from 3° to 18°. Focal ERGs, in 

combination with mfERGs, can be used to assess macular function in patients with age-

related macular degeneration. fERG assesses only one region, while multifocal ERGs 

generate a map of up to 60° of central visual field [71]. 

 

2.4.5. Applications of Electroretinography 

ERG recording is noninvasive and can help with the diagnosis of retinal disorder 

in the clinic. The multifocal methodology has expanded the usefulness of 

electrodiagnostic research through helping physicians to objectively define local 

functional conditions and equate them with subjective measurements including perimetry 

as well as systemic measures offered by current imaging techniques. The ISCEV’s criteria 

and recommendations provide valuable knowledge for clinical research. The ERG can be 

used to investigate normal retinal activity in both humans and animals [72]. The rod and 

cone processes can be analyzed independently, and specific stages of processing can be 

measured, using the right stimuli. ERGs can also be used for noninvasive, in vivo 

assessment of retinal activity in physiologically intact mammals thanks to a greater 

understanding of their origins. The rodent ERG is similar to human ERG and the main 

components such as a-wave, b-wave, and OPs are readily observable in both rats and 

mice. This can be a valuable supplement to functional knowledge gained from single cell 

studies. As retinas in humans and animal models degenerate and change their circuitries 

as a result of acquired disease and genetic mutations, the ERG is useful for noninvasively 

monitoring the improvement of retinal function and the deterioration of retinal function. 

The ERG shows potential as a translatable technique that can be used as a practical 
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outcome measure in animal models and clinical trials, particularly as new therapies for 

blindness disease become available [73]. 

 

2.5. Signal Processing  

The acquisition and processing of physiological signals is of essential importance 

in the diagnosis of certain pathologies. 

The signal is a function of a set of independent variables. The signal itself carries 

some kind of information available for observation. As far as processing is concerned, to 

process means operating in some way on the signal to extract some useful information. 

In many cases this processing will be a non-destructive "transformation" of the of the 

given data signal, however, sometimes important processing turn out to be irreversible 

and therefore destructive [74]. 

Our world is full of signals, some of these signals are natural, but most signals are 

man-made. Some signals are necessary, such as speech, some are pleasant, like music 

while many are undesirable or unnecessary in a given situation. In an engineering context, 

signals are carriers of information, both useful and undesired. Therefore, extracting or 

changing the useful information from a mix of undesirable information is the simplest 

form of signal processing. Generally, signal processing is an operation designed to 

extract, enhance, store, and transmit useful information [75]. 

 

2.5.1. Digital Filters 

Analog signal analysis needs specific care since its capture is coupled with a 

variety of contaminants, such as noise. In this regard, the employment of filters allows 

for the treatment of data to enable the discussion of the information that has been 

eliminated, as well as to improve the accuracy of the signal's diagnosis. Depending on the 

criteria used for categorization, filters can be divided into numerous categories. Finite 

impulse response (FIR) and infinite impulse response (IIR) filters are the two major types 

of digital filters. [76]. 

IIR (Infinite Impulse Response) filters allow us to generate a theoretically infinite 

number of output pulses from a single input value. The output of the IIR filter is known 
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to be dependent on the preceding input and output samples. Because IIR filters don't have 

a linear phase characteristic, they can only be utilized in applications where signal 

linearity isn't essential. Because IIR filters include zeros and poles, if the zeros and poles 

are outside the unit circle, the filter might become unstable [77]. 

We get a limited number of return pulses by utilizing FIR filters. The output no 

longer depends on past output samples, but simply on previous input samples. It allows 

to obtain a linear phase characteristic with a FIR because the sequence of coefficients 

may be made symmetric around the center coefficient. Because FIR filters are meant to 

have a linear phase characteristic, they should be utilized in applications that demand it. 

By making the coefficient sequence symmetric around the center coefficient, we may 

achieve a linear phase characteristic. This indicates that the first and last coefficients are 

the same, and the second and third coefficients are the same, and so on. The issue with 

FIR filters is that they use more memory than IIR filters since they are not recursive and 

hence require more coefficients. This fact also causes a delay in calculation [78].  

 

2.6. Statistical Analysis 

The discipline of gathering data and identifying patterns and trends is known as 

statistical analysis [79]. After data collection, regardless of research design, the initial 

step should be description rather than comparison. Following the acquisition of data, each 

variable in the data set should be visually evaluated, investigated, and summarized in line 

with the predetermined analytical strategy established before data collection began. In 

addition to giving written explanations of events, steps may include:  

• Reviewing data for typos and missing values; 

• Computing each continuous variable's measures of central tendency (e.g., 

mean, median, and mode) and dispersion (e.g., range,  interquartile range); 

• To visually examine for normality and probable outliers by plotting 

continuous variables as scatter plots, histograms, box-and-whisker plots, 

or violin plots;  

• Calculating the proportion of data in each category and tabulating 

categorical variables [80]. 
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Using a histogram to visualize continuous data helps the researcher to assess if the 

variables are regularly distributed, which can help define the type of hypothesis testing to 

be undertaken. Notably, non-normally distributed data, such as the right-skewed example 

in Figure 2.4, may frequently be changed to a normal gaussian distribution using 

logarithmic or square root transformations [81]. Because differences among normally 

distributed variables may be analyzed using parametric hypothesis tests, and differences 

among nonnormally distributed variables are best assessed with nonparametric tests, 

determining normality is an important part of the data exploration process [82]. In 

addition to visual inspection, statistical tests of normality, such as the D’Agostino K-

squared test, the Kolmogorov-Smirnov test, and the Shapiro-Wilk test are available, 

which test the data against the null hypothesis that they are normally distributed. Each of 

these tests has different performance characteristics, and none is particularly powerful for 

small sample sizes. They may not reject the null hypothesis of normality, even for data 

that deviate significantly from the gaussian distribution. For small sample sizes, it is 

recommended that nonparametric tests be used even if the data appear normally 

distributed on formal testing. It should be noted that when sample sizes are exceptionally 

large, formal testing may reject the null hypothesis of normality, even for trivial 

deviations that have little to no effect on the conclusions drawn from parametric 

hypothesis tests. Therefore, for most medical data sets, visual inspection for normality is 

sufficient [83]. 

 

 

Figure 2.4 - Normally distributed data compared with skewed data. Left panel: Visual 

inspection of the data reveals them to be normally distributed [80]. 
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2.6.1. Statistical Analysis Software 

Data collection and analysis can begin once a research topic, study design, and 

statistical analysis methodology have been determined. It is necessary to be familiar with 

one or more frequently used data management systems and statistical software programs. 

Although beginners may find free web-based analysis tools like MedCalc and OpenEpi 

useful, intermediate users will likely prefer Excel, which not only allows for data entry, 

storage, and filtering, but also provides a graphical user interface for graphical data 

exploration, descriptive and comparative statistics, and correlation and regression 

analysis through the Analysis ToolPak. GraphPad Prism, Minitab, SPSS, and PSPP are 

some more graphical user interface-based choices that are easily available. Most 

researchers, on the other hand, will want to learn to program in a robust statistical 

programming environment like R, Stata, SAS, or Anaconda/Python [84]. 

 

2.6.2. Analysis of Linear and Logistic Regression 

The main method for identifying the behavior of a dependent outcome variable in 

respect to one or more independent predictor factors is regression analysis. A classic 

example in research is determining the influence of one or more continuous or categorical 

independent (predictor) variables on a continuous dependent variable of interest using 

linear regression. While logistic regression is similar to linear regression, it contains a 

binary dependent variable [85]. 

Linear and logistic regression, like other statistical models, involve assumptions 

about data distribution that should be evaluated before the model is built. The connection 

between predictor and outcome variables is assumed to be linear in linear regression. It 

also presupposes homoscedasticity and normally distributed input variables. Linearity is 

also assumed in logistic regression. Both techniques also imply that independent variables 

have little or no collinearity. 

Determining the amount of predictor variables that can be included in a 

multivariate regression model is a crucial step in regression modeling. Making the 

decision to include predictor variables in a regression model in the first place is a distinct 

challenge. To acquire unadjusted results, one need first construct univariate regression 

models for each possible predictor variable. Then, while developing multivariate models, 
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predictor variables should ideally be chosen in a sensible, hypothesis-driven way based 

on disease pathophysiology knowledge [86].  

 

2.6.3. Correlation Analysis 

In the same way that regression investigates the statistical connection between two 

variables, correlation analysis does the same [87].  

It is not commonly used for prediction, since it does not presume a causal link, 

unlike regression. Its goal is to determine and quantify the degree of connection or 

relatedness between two variables, which is expressed as a correlation coefficient. 

Multiple forms of correlation analysis exist, much like other statistical approaches, and 

the best method relies on the nature of the data in question [88].  

 

2.6.4. Categorical Data Analysis 

In pathology, binary categorical and multilayer categorical data are frequently 

encountered. For analysis, these data are frequently presented in tabular form. Conducting 

two-sample or multisample comparisons using categorical variables is typically of 

interest, just as it is with numeric data. 

Data tabulation is also used to assess the accuracy of diagnostic tests. Sensitivity 

and specificity, or the likelihood that a test result will be positive or negative depending 

on whether the illness is present or absent, are intrinsic to a diagnostic test and are not 

affected by disease prevalence. 

A receiver operating characteristic (ROC) curve, which also offers a visual 

evaluation of diagnostic test accuracy, can be used to investigate the relationship between 

a diagnostic test's sensitivity and specificity. Positive and negative predictive values, on 

the other hand, rely on the prevalence of the disease in the population being tested, as do 

the likelihood that the disease is present or absent when the test is positive or negative, 

respectively. These prevalence-dependent values are extremely useful, yet they are 

frequently neglected in pathology research [89].  
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2.6.5. Survival Analysis 

The term "survival analysis" refers to a group of statistical methods for analyzing 

time-to-event data. Overall survival, cancer-specific survival, and progression-free 

survival are all examples of pathology. A continuous variable and a binary variable 

combine to provide time-to-event data [90]. The period is computed from diagnosis to 

death date for participants who have died, and the event is represented in the data set by 

the numeral 1. The time interval is estimated for living participants from the date of 

diagnosis to the last known date when they were alive or known to be progression-free. 

These factors may be combined and fed into a survival function, which calculates 

the likelihood that the subject will live (or not) for a certain period of time. The two 

variables (time and status) may be used to create a Kaplan-Meier survival curve, which 

is a nonparametric function that shows % survival on the y axis and time on the x axis. 

The curve drops down each time an event occurs, forming a ladder-like line. Tick marks 

are used to signify censored topics [91].  

Many sorts of investigations in pathology include findings that must be explained 

and appraised but do not really include statistical comparisons. Descriptive statistics 

approaches allow summarize a dataset using frequency, central tendency, dispersion or 

variance, and position or rank [92]. Inferential statistics, on the other hand, uses 

hypothesis testing to generalize findings from a smaller data set to a larger population. 

More crucially, the nature of the observations typically determines the statistical 

description that is required, and an analytic strategy should ideally be pre-specified before 

commencing descriptive research, just as it would be for a randomized trial [93]. 

 

2.6.6. Parametric and Nonparametric Two-Sample and Multisample 

Comparisons 

Statistical tests are necessary after a comparison is introduced to an experiment to 

establish whether observed differences are likely to represent true differences. The use of 

statistical hypothesis testing to generalize findings from a sample to the wider population 

from which the sample was obtained is one of the approaches of inferential statistics. The 

type of data to be compared determines the comparative test to use. The difference 

between numeric and categorical variables is crucial. Numeric variables can be defined 

using discrete values or a continuous range of values.  
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A parametric statistical test can be used to determine if a numeric-dependent 

variable differs between two or more groups if it is normally distributed [94]. Post hoc 

testing can be used to examine the significance of an individual effect size in multisample 

tests, whether parametric or nonparametric [95]. However, studies are seldom sufficiently 

powered for decisive post hoc testing, which is a caution. Post hoc testing results should 

be viewed as exploratory in nature and should preferably be subjected to independent 

evaluation in a different experiment. Furthermore, if their original hypothesis was not 

confirmed by their experiment, researchers should not utilize post hoc testing to data 

dredge subgroups. Nonparametric tests should be employed at least as often as parametric 

tests, if not more often, in pathology since sample sizes are frequently small [96]. For data 

with a skewed distribution or in the form of a discrete or ranking scale, nonparametric 

tests are utilized. These tests offer the benefit of letting go of preconceptions regarding 

data distribution. They function by giving rankings to data and comparing the ranks 

without taking into consideration the sample size difference. 

Extreme outlier values can readily sway parametric tests, such as t-tests. 

Nonparametric tests, on the other hand, are unaffected by outliers since the rank scheme 

between the results remains fixed. It's worth reiterating that a nonparametric test could be 

used on normally distributed data, and while this would limit the power of the test to find 

differences, substantial differences would still be discovered [97]. 

Student's t test (t test) and analysis of variance (ANOVA) are statistical procedures 

for comparing means between groups in hypothesis testing. The testing variable 

(dependent variable) should be on a continuous scale and roughly regularly distributed 

for these approaches. The mean is the typical measure for a normally distributed 

continuous variable, and parametric techniques are statistical methods used to compare 

the means. The median is a typical measure for nonnormal continuous variables, and in 

this case, nonparametric approaches are used to compare the groups. Most parametric 

tests have a nonparametric counterpart [83], [98]. 

The Student's t test (also known as the T-test) is used to compare the means of two 

groups with no need for multiple comparisons because a single P value is observed, 

whereas the ANOVA is used to compare the means of three or more groups with no need 

for multiple comparisons because a single P value is observed [99]. In an ANOVA, the 

first variable receives a shared P value. A significant P value in an ANOVA test implies 

that the mean difference between at least one pair was statistically significant [100].  
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Hypothesis testing steps 

Building hypotheses: Just like other tests, there are two types of hypotheses: null 

and alternative hypotheses. The alternative hypothesis asserts that there is a statistically 

significant difference between the means, whereas the null hypothesis maintains that there 

is no such difference.  

Test statistics computation: The first step in these tests is to compute test statistics 

(also known as calculated value) (called t value in student's t test and F value in ANOVA 

test). It is determined by entering data (from the samples) into a statistical test algorithm. 

The computed t value in a student's t test is the ratio of mean difference to standard error, 

whereas the generated F value in an ANOVA test is the ratio of variability between groups 

to variability of observations within groups. 

Value tabulated: The appropriate tabular value of the T test or F test is determined 

based on the degree of freedom of the provided observations and the desired level of 

confidence (typically at two-sided test, which is more powerful than one-sided test). 

Null hypothesis and comparison of calculated and tabulated values: If the 

calculated value is larger than the tabulated value, reject the null hypothesis, which claims 

that the groups' means are statistically equal. As the sample size grows, the degree of 

freedom rises as well. Higher degrees of freedom have a lower tabulated value for a given 

level of confidence. When a result, as the sample size grows, the significance level grows 

as well (i.e., P value is decreasing) [83], [98], [101]. 

 

2.6.6.1. T-Test 

It's one of the most used statistical methods for determining if a difference in mean 

between two groups is statistically significant. The null hypothesis claimed that both 

means are statistically equal, but the alternative hypothesis stated that both means are 

statistically distinct from one another [98], [101]. 

The test is performed by comparing the means of two samples to see if they are 

substantially different. It accomplishes this by computing the standard error of the 

difference in means, which may be used to determine how probable a difference exists if 

the two samples have the same mean (the null hypothesis). By comparing the t statistic 
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obtained by the test to crucial values from the t-distribution, the t statistic may be 

understood. With the percent point function (PPF), the critical value may be determined 

using degrees of freedom and a significance level. In a two-tailed test, the statistic value 

might be interpreted to suggest that if the null hypothesis is rejected, it could be because 

the first mean is less or bigger than the second mean. To do so, we may compute the test 

statistic's absolute value and compare it to the positive (right tailed) critical value, as 

shown below: 

• If |t-statistic| is equal to the critical value, accept the null hypothesis of 

equal means. 

• If |t-statistic| is not equal to the critical value, reject the null hypothesis of 

equal means. 

To compute a p-value, we may use the cumulative distribution function (CDF) of 

the t-distribution to extract the cumulative probability of witnessing the absolute value of 

the t-statistic. The p-value can then be compared to a pre-determined significance 

threshold (alpha), such as 0.05, to see if the null hypothesis can be dismissed: 

• If p > alpha, accept the null hypothesis that the means are identical. 

• If p ≤ alpha, the null hypothesis that the means are equal is rejected. 

The test assumes that both samples were selected from a Gaussian distribution 

when working with their means. The test also implies that the samples are of the same 

variance and size, albeit there are remedies if these assumptions are not met [102]. 

 

One‑sample t test  

The one sample t test is a statistical process for determining if a sample's mean 

value is statistically the same as or different from the mean value of the parent population 

from which the sample was chosen. The mean, standard deviation (SD), sample size (Test 

variable), and population mean, or hypothetical mean value (Test value) are all utilized 

to perform this test. The sample must be a continuous variable with a normal distribution. 

When the sample size is smaller than 30, a one-sample t test is employed. When the 

sample size is equal to or more than 30, one sample z test is preferred over one sample t 

test, albeit population SD must be known for one sample z test. If the population SD is 
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unknown, a one-sample t test with any sample size can be employed. The tabulated value 

in one sample Z test is z value (instead of t value in one sample t test) [103], [104]. 

 

Independent samples t test 

The independent t test, also known as the unpaired t test, is an inferential statistical 

test that examines if two unrelated (independent) groups have statistically significant 

differences in their means. A continuous normally distributed variable (Test variable) and 

a categorical variable with two categories (Grouping variable) are utilized to perform this 

test. To determine the significance level, the mean, SD, and number of observations of 

groups 1 and 2 would be utilized. In this procedure, the first significance level of Levene's 

test is calculated, and if it is insignificant (P > 0.05), equal variances are assumed between 

the groups; if it is significant (P ≤ 0.05), unequal variances are assumed between the 

groups, and the appropriate P value for independent samples t test is selected [104], [105].  

 

Paired samples t test 

The dependent samples t test, also known as the paired samples t test, is used to 

see if the difference in means between two paired observations is statistically significant. 

The same participants are assessed at two separate time points or observed using two 

different ways in this test. Pair variables (pre and post observations of the same 

individuals) are employed in this test, and the paired variables should be continuous and 

regularly distributed. The sample size (i.e., the number of pairs) and the mean and SD of 

the paired differences would be used to compute the significance level [104], [106]. 

 

2.6.6.2. ANOVA 

The ANOVA or F test is a statistical technique for comparing the means of three 

or more groups. It’s significant P value implies that the mean difference in at least one 

pair is statistically significant. Post hoc tests (many comparisons) are performed to 

determine the specific pairs. There are several types of ANOVA tests, each with its own 

set of objectives. One-way ANOVA and one-way repeated measures ANOVA are the 

two primary forms of ANOVA. The first method is used for independent observations, 

while the second method is used for dependent observations. When just one categorical 
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independent variable is used, it is referred to as one-way ANOVA, however when two 

categorical independent variables are used, it is referred to as two-way ANOVA [107], 

[108]. 

 

ANOVA Assumptions 

• The residuals (experimental error) are distributed about regularly 

(Shapiro-Wilks test or histogram) 

• Homoscedasticity or Homogeneity of Variances (variances are equal 

between treatment groups) (Levene's or Bartlett's Test) 

• The observations are sampled in a random order (no relation in 

observations between the groups and within the groups) 

• The dependent variable must be a continuous variable. If the dependent 

variable is ordinal or rank, the assumptions of normality and homogeneity 

of variances are more likely to be violated. 

 

After an ANOVA has been shown to be significant, post hoc tests (pairwise 

multiple comparisons) are utilized to find the significant pair(s). Before doing a posthoc 

test (in between subject variables), one should make sure the variances in the groups are 

homogeneous (Levene's test). If the variances are homogenous (P ≥ 0.05), one of several 

post hoc tests can be chosen: least significant difference (LSD), Bonferroni, Tukey's, and 

other multiple comparison procedures. If the variances are not homogenous (P < 0.05), 

choose from Games-Howell, Tamhane's T2, and other multiple comparison methods 

[109], [110]. 

 

One‑way ANOVA 

The one-way ANOVA is an extension of the independent samples t test (which 

compares the means of two independent groups, whereas the one-way ANOVA compares 

the means of three or more separate groups). This test's significant P value relates to the 

multiple comparisons test used to find the significant pair (s). One continuous dependent 

variable and one categorical independent variable, each with at least three categories, are 

utilized in this test [111]. 
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Two‑way ANOVA 

The two-way ANOVA is an extension of the one-way ANOVA (only one 

independent variable is used in one-way ANOVA, whereas two independent variables are 

used in two-way ANOVA). The basic goal of a two-way ANOVA is to determine if two 

independent variables on a dependent variable have any association. Two categorical 

independent variables and a continuous dependent variable (roughly normally 

distributed) are utilized in this test [112]. 

 

2.7. Machine learning 

Machine learning is one of the hottest fields in computer science, with a wide 

range of applications. It is the process of automatically detecting meaningful patterns in 

data. The goal of machine learning technologies is to provide algorithms the capacity to 

learn and adapt [113]. 

As a consequence of the expansion of smart and nano technology, there has been 

considerable improvement in data mining and machine learning, which has sparked 

interest in discovering hidden patterns in data to derive value. The combination of 

statistics, machine learning, information theory, and computers has resulted in a robust 

discipline with a strong mathematical foundation and a set of extremely powerful tools. 

Machine learning algorithms are classified into a taxonomy based on the algorithm's 

expected output. The function that translates inputs to desired outputs is generated 

through supervised learning. Machine learning algorithms have gotten increasingly 

sophisticated as a result of unprecedented data production [114]. 

A learning problem, in general, takes a set of n samples of data and then attempts 

to predict unknown data attributes. A sample is considered to include numerous qualities 

or features if it contains more than one number, such as a multi-dimensional entry. 

There are a few types of learning problems: 

• Supervised learning, in which the data has extra characteristics that we 

wish to forecast. 

o Classification: samples are divided into two or more classes, and 

we want to learn how to predict the class of unlabeled data using 

data that has previously been labeled. Another approach to think of 
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classification is as a discrete kind of supervised learning in which 

one is given a restricted number of categories and is asked to 

classify each of the n samples with the proper category or class. 

o Regression: the job is called regression if the intended output 

consists of one or more continuous variables. 

• Unsupervised learning: the training data is made up of a series of x input 

vectors with no matching target values. The goal of such problems may be 

to find groups of similar examples within the data, which is known as 

clustering, or to determine the distribution of data within the input space, 

which is known as density estimation, or to project data from a high-

dimensional space down to two or three dimensions for visualization, 

which is known as projection [115]. 

 

2.7.1. Classification Algorithms  

The act of classifying thoughts and things involves identifying, comprehending, 

and arranging them into predetermined groups or "sub-populations." Machine learning 

systems classify future datasets into categories using pre-categorized training datasets and 

a range of techniques. 

In machine learning, classification algorithms utilize input training data to predict 

whether following data will fall into one of the established categories. 

In a nutshell, classification is a type of "pattern recognition" in which 

classification algorithms are applied to training data in order to detect the same pattern in 

subsequent data sets [116]. 

Linear Classifiers, Logistic Regression, Nave Bayes Classifier, Perceptron, 

Support Vector Machine; Quadratic Classifiers, K-Means Clustering, Boosting, Decision 

Tree, Random Forest (RF); Neural networks, Bayesian Networks, and so on are among 

the supervised machine learning algorithms that deal with classification [114]. 

 

2.7.1.1. Random Forest 

RF is a well-known and effective ensemble supervised classification algorithm. 

RF has been successfully used to several machine learning applications, including those 
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in bioinformatics and medical imaging, due to its superior accuracy and resilience, as well 

as some capacity to give insights via ranking of its features. RF is made up of a "forest" 

of classifiers, each of which is formed using the bagging method with no pruning, 

resulting in a "forest" of classifiers voting for a certain class. Two parameters, the number 

of trees in the forest and the number of randomly selected features/variables used to assess 

at each tree node, as well as a training database containing ground-truth class labels, must 

be given in order to train an RF. The voting threshold or cutoff (percentage of trees in the 

forest required to vote for a specific class) may also be adjusted using RF, which is used 

to compute recall, accuracy, and f-score. Out of Bag Error (OOB) is the accuracy estimate 

built into the RF method and all of its software implementations, and it estimates the 

average misclassification ratio of samples not utilized for RF training [116]. 

There are several advantages to employing it such as: 

• There are several trees and each tree is trained on a portion of data, the RF 

technique is not biased. As a result, the algorithm's overall bias is 

minimized. 

• This algorithm is quite dependable. Even if a new data point is added to 

the dataset, the overall process is unaffected because while new data may 

change one tree, it is extremely unlikely to affect all trees [117]. 

• When both category and numerical information is used, the RF approach 

performs effectively. 

• When data has missing values or has not been scaled correctly, the RF 

technique performs well. 

The disadvantages of employing RF are: 

• The intricacy of random forests is one of its key drawbacks. Due to the 

enormous number of decision trees combined, they required much greater 

processing resources. 

• They take substantially longer to train than other equivalent algorithms 

due to their complexity [118]. 
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3. State of The Art 

 

3.1.  Animal Models 

Many studies of the role of the visual system [119]–[121] and the processes of 

developmental visual plasticity [122] have used genetically engineered mice, and many 

mouse models of visual system diseases have been developed and tested [123]–[125]. 

Despite the use of mice in vision studies, no basic knowledge about their spatial vision or 

how experimental manipulations of the visual system affect their vision is available. The 

lack of quick and simple behavioral methods to quantify vision in mice is one of the major 

causes of this deficiency [126]. 

Mice's spatial perception has been quantified using reinforcement-based visual 

discrimination tasks [127]. While these exercises have been used to assess the impact of 

experimental manipulations on the mouse's vision, they take a significant amount of time 

to produce valid psychophysical levels, and their application is effectively restricted to 

juvenile-adult mice since younger animals seem to lack the cognitive ability to easily 

master the tasks [127], [128]. 

 Increased neural inhibition underpins cognitive and learning abnormalities in 

NF1, according to studies on NF1 mice [129]–[131], [13]. Neurofibromin interacts with 

the hyperpolarization-activated cyclic nucleotide-gated (HCN), a voltage-gated ion 

channel that mediates an inward cationic current that modulates neuronal excitability 

[132]. In adult NF1 mice, pharmacological stimulation of HCN channels can improve 

electrophysiological and spatial learning deficiencies [133].  

In contrast to the hippocampus origin of the spatial learning loss in NF1 animals, 

cognitive abnormalities in NF1 humans may develop largely in the cortex. While 

hippocampal plasticity stays high throughout life [134], cortical plasticity decreases once 

important developmental periods have passed. As a result, NF1 may produce cortical 

development deficiencies that cannot be rectified by therapy at a later age [135]. 
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3.2. Electroretinogram Applied to the Study of Autism 

The shape of the ERG is believed to be altered in certain neurological disorders. 

The growing use of the ERG in psychological illnesses, as well as its capacity for 

distinguishing symptoms dependent on the ERG waveform, has been highlighted in a 

recent systematic study [136]. For e.g., smaller LA a- and b-wave amplitudes as well as 

longer b-wave peak periods were observed in schizophrenia, and a delayed cone b-wave 

period to peak was found in depression [137]. The ERG a-wave amplitudes under LA and 

DA conditions were recently used to distinguish schizophrenia from bipolar disorder 

[138]. These results suggest that the ERG can detect variations in the form of synaptic 

transmission despite the fact that the same CNS neurotransmitters are involved. The 

ERG's overlapping interactions with genes implicated in ASD and schizophrenia [139], 

as well as similar changes in a- and b-wave amplitudes and b-wave time to peak in 

schizophrenia [138] and those reported in this study, suggest that it could aid our 

understanding of a wide range of psychiatric disorders, including ASD [10], [136]. As a 

non-invasive and reliable indicator of retinal function in response to fleeting bursts of 

light, the ERG has the ability to aid our interpretation of neurodevelopmental and 

neurodegenerative disorders [10]. 

Differences in the ERG waveform in people with ASD could assist our 

comprehension of the biology of the factors that cause ASD. There have only been three 

human trials on the retinal activity of people with ASD conducted to date. The first two 

studies, published 30 years earlier, found a smaller DA-ERG b-wave in a diverse number 

of children with ASD [140], as well as disparities between siblings and probands within 

a population [141]. This result was recently verified in a small sample of adults with ASD 

[21]. Constable et al. (2016) have looked at the LA-ERG b-wave amplitude and 

discovered that it was lower at different flash intensities. Constable et al. (2016)'s novel 

LA-ERG findings are backed up by reports of altered ERGs in mouse models of 

neurodevelopmental diseases such as ASD [35], [3], Fragile X syndrome and ADHD 

[142]. The greater sophistication of the cone pathways makes the LA-ERG an effective 

instrument for probing the detail of a retina's reaction to light [10], [68], and the LA-ERG 

is a faster and more suitable assay than the DA-ERG since it does not need dark adaptation 

period. 

Some studies used full-field electroretinogram (ffERG) recordings to investigate 

retinal activity [143],[144]. Experiments were carried out under scotopic (rod-dominated) 
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and photopic (cone-dominated) conditions in order to explore rod-versus cone-driven 

pathways more extensively. The observations were similar to those of an inbred strain of 

mice with typical levels of social interaction and repeated activities, which is commonly 

used as a control for BTBR mice in autism research [145]. Under both scotopic and 

photopic conditions, the results point to retina-based changes, mainly in the cone 

pathway, and robustly improved visual recognition of finer spatial information and more 

complex contrasts at higher spatial frequencies [20]. 

 

3.3. ERG Processing and Points of Interest Detection 

The Herrera et al. [146] ERGs were sent to an acquisition system, where the data 

is processed and shown in a graph for proper illness treatment [147]. A front-end design 

of the high-pass filter described by Spinelli et al. for AC coupling was utilized for each 

lead; the cutoff frequency to eliminate dc was 0.16HZ. A low pass filter (fourth grade 

Butterworth) is employed to reduce high frequency noise in the following step [148]. Its 

cutoff frequency is 300 Hz. A band stop filter, with a rejection range of 57 to 63 Hz, is 

also included in the system, which eliminates the 60 Hz AC power line signal [149]. 

Finally, two amplifier stages with a minimum of 40dB and a maximum of 100dB are 

installed. To complete this project, a MATLAB application (Figure 3.1) was created to 

capture the signal from the PC sound card. The signal received from the cornea has a 

maximum frequency component on the order of 250 Hz. The biological signal is 

vulnerable to ambient noise due to its magnitude of a few microvolts; the majority of this 

noise is removed by the biopotentials amplifier's pass band filter, but there is a portion 

that is not destroyed since it is in the filtered band [1, 5, 6]. They used MATLAB to create 

a Butterworth filter to remove the noise in this situation.  

 

Figure 3.1 - Block diagram of the electroretinography used in [146]. 
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In Gauvin M., Lina J-M and Lachapelle P.(2014) [150], ERG waves from both 

eyes were averaged to create a single waveform with a pre-stimulus baseline of 20ms and 

a duration of 150ms (sampling rate: 3413.33Hz). The a-wave amplitude was measured 

from the prestimulus baseline to the ERG's most negative trough, whereas the b-wave 

amplitude was measured from the a-wave trough to the highest positive peak of the ERG 

that followed the a-wave. Peak timings were calculated from the beginning of the flash 

to the peak of the a- and b-waves [151]. These ERG measurements will be referred to as 

time domain measurements since they are taken in the time domain. The fast Fourier 

transform technique implemented in MATLAB was used to perform frequency domain 

analysis of the ERG. They were able to compute the FFT coefficients for frequencies 

ranging from 0 to 1706.66Hz in increments of 6.66Hz using the size (512 data points) and 

sample frequency (3413.33Hz) of our ERG waveforms. Due to the limitations imposed 

by our recording bandwidth (1–1000Hz), we confined our study to frequencies spanning 

from 0 to 300Hz in order to minimize artifactual contamination (such as that predicted by 

the Nyquist-Shannon sampling theorem [152]). The time domain analysis revealed two 

major ERG components, one peaking at 13.53 ± 1.55ms (mean SD in our 40 subjects) 

with an amplitude of 32.21 ± 5.11V (identified as the a-wave in Figure 3.2) and the other 

peaking at 30.98 ± 1.33 ms with an amplitude of 104.81 ± 18.66V (identified as the b-

wave in Figure 3.2). The FA, such as that produced using the FFT, can be used to identify 

the frequency components that contribute to the origin of the ERG [150]. 

 

 

Figure 3.2 - FA of a composite ERG, averaged from 40 subjects, showing the 3 typical 

frequency components that contribute to the ERG (∼30Hz: a- and b-waves contribution, black 

arrow; ∼75 Hz and ∼150Hz: oscillatory potentials (OPs) contribution, gray arrows) [150]. 
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According to Creel D. and Yu M. [57], a rate of 30 Hz is commonly used to 

determine if a retina's cone physiology is excellent. The lowest and higher frequency 

limitations for recording OPs components are 75 to 100 Hz and 300 to 1000 Hz, 

respectively. Analyzing the OPs with digital filtering and frequency spectrum analysis 

using a Fast Fourier Transform is more convenient. The frequency spectrum is computed 

from the raw ERG waveform during this procedure, and the amplitudes of the components 

in different frequencies are calculated. The frequency spectrum of the experimental group 

may be directly compared to that of the control group. Another technique is to extract the 

OPs waveform using band-pass filtering, which selects components of the frequency 

spectrum in the region of 100–150 Hz. The amplitudes of the several OPs wavelets may 

then be examined separately [153]. 

A phased procedure is used in Alaql A [154]. Graduate Thesis to achieve the best 

answer, and each stage will be detailed in this section. The ERG data gathering procedure 

is depicted in Figure 3.3 as a phased approach. To eliminate unwanted frequencies, a band 

pass filter is utilized [155]. The bandwidth of the filter used in this application is generally 

0.3 Hz-500 Hz. The filtered signal is captured by an analog to digital converter and sent 

to the processing unit [154]. The ERG response is then shown in time domain on the 

computer using a display unit. It can also save data for further analysis, as well as collect 

several ERG signals and average them to eliminate noise [155]. A response can be either 

a Scotopic or a Photopic ERG signal, depending on the light hue and intensity settings as 

well as the start period. 

 

 

Figure 3.3 - ERG Data Collection Block Diagram used in [154]. 

 

A sampling frequency of 2000 Hz was used to sample the averaged signal 

collected. The ERG response is a 16-bit signal with a sample frequency of 2000 Hz, which 
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has been averaged from 10 raw recorded responses to remove noise. The initial negative 

peak (a-wave) and the subsequent positive peak (b-wave) are measured from the base 

line, and the implicit time from t=0 ms. The implicit time of the highest point of the wave's 

peak, as well as the amplitude of the wave's peak, are used to apply the time domain 

properties of a-wave and b-wave ERG signals. A-wave has an implied time of 16.5 

milliseconds and a voltage value of -28.7 microvolts at its maximum point. The ERG's 

greatest peak is the B-wave, which has an amplitude of 66.9 microvolts and an implied 

duration of 28 milliseconds. The duration difference between the a-wave and b-wave 

critical points is 11.5 milliseconds, while the amplitude difference between the two peaks 

is 95.6 microvolts. The ERG response has been split into five signals, each with a specific 

frequency spectrum. In this part, a breakdown of ERG components is performed using 

DWT and Castro's ERG Model. The ERG model of Castor was used to eliminate the a-

wave and b-wave components of the signal in this section of the thesis. The breakdown 

of ERG components is depicted in Figure 3.4 as a block diagram [154]. 

 

Figure 3.4 - ERG Components Decomposition Process of [154]. 
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3.4. Statistical Analysis 

Ten issues of The American Journal of Pathology were chosen by Mata D. and 

Milnerat D. [80], for evaluation between January 2014 and December 2018. The type and 

number of statistical tests provided per article were studied in the papers published in the 

issues. There were 195 articles found in the ten issues, with 93% of them claiming to have 

used one or more statistical tests. There was a total of 426 statistical tests reported, with 

an average of two tests per article. Figure 3.5 shows an overview of the statistical tests 

presented in the publications. These included normality tests, P-value correction methods 

for multiple testing, two-sample parametric and nonparametric tests, multi-sample 

parametric and nonparametric tests, post hoc tests, tests for evaluating categorical 

variable differences, correlation analysis, generalized linear models, survival analysis, 

and other specialized methods. Parametric tests were thus overused, accounting for 54% 

of tests. Two-sample parametric tests were the most common, accounting for 32% of all 

tests, followed by multisample parametric testing, which accounted for 22% of all tests. 

Only 8% of two-sample tests reported were nonparametric. 68% of studies reporting 

multisample tests did not conduct post hoc tests to investigate differences between study 

groups. Only a few studies adjusted P values to account for multiple testing. Finally, 

despite the fact that numerous researches supplied data that might have been analyzed 

utilizing correlation, regression, and survival analysis approaches, they were 

underutilized (Figure 3.5). 

 

Figure 3.5 - Statistical tests utilized by the articles surveyed by [80]. A bar chart is shown with 

the breakdown of test type, total number encountered, and percentage of total. The graph shows 

all tests (not all articles). 
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3.4.1. T-test 

Due to its resilience, the heavy-tailed Student-t distribution has gotten a lot of 

attention from elements like statistical modeling [156], [157] or autoregression issues 

[158] instead of the Gaussian and its mixture. The Student-t model has recently been 

proposed as an alternative to the Gaussian on state estimation, allowing for non-

Gaussianity in the model.  

 

3.4.2. Two-Way ANOVA 

Tukey [159], who examined the variances of variance component estimation for 

balanced data under the assumptions of independence and normality in 1956, was one of 

several academics interested in finite population effects for variance component 

estimation. The finite population correction, on the other hand, would be connected to the 

estimate of variances if one sampled from limited populations. The predicted values of 

mean squares in trials with balanced data were next considered by Cornfield and Tukey 

(1956) [160]. To establish the formulae for crossing and nested classifications, they 

employed a model with enough generality and flexibility. Furthermore, Tukey (1957) 

[161], presented the variance components for one-way classification for unbalanced data, 

while Searle and Henderson (1961) [162], discussed the two-way classification model 

with one fixed factor for unbalanced data. Following that, Hartley (1967) [163], 

developed a general procedure for directly yielding the numerical values of the 

coefficients in the formulas of expected mean squares (EMS) for one-way and two-way 

classifications with unequal numbers when sampling from an infinite population using 

random and mixed models. Mathematical formulae for the numerical coefficients needed 

to generate the variance and covariance formulas for anticipated mean squares were 

beneficial. Following that, Searle and Fawcett (1970) [164], investigated the EMS in 

variance component models with random effects collected from finite populations. They 

came up with a rule for transforming expectations from infinite to limited population 

models. It may also be used to both balanced and unbalanced data, as well as nested and 

cross classifications, assuming the set levels for each factor are believed to be finite. 

Simmachan, Borkowski, and Budsaba (2012) [165], calculated the EMS of treatments 

and error for random effects in only the one-way ANOVA model with normal errors, 

assuming a finite population. 
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The predicted mean squares for the random effects in the random and mixed 

effects models in the two-factor factorial model assuming finite populations for A, B, and 

AB interaction effects were determined in Suphirat C, Chomtee B., and Borkowski J. 

study [166]. When the random effects are sampled from limited populations, the 

anticipated mean square formulae for components A, B, and the AB interaction are the 

same as in the infinite population scenario. The values of the variance components, on 

the other hand, are the most significant differences. They are supposed to follow normal 

distributions in the infinite case, whereas they are the variances of finite populations in 

the finite case. The anticipated mean square of error for a finite population is equivalent 

to the expected mean square of error for an infinite population in an imbalanced situation. 

Because they are dependent on the multiplier values of the population variances, the 

predicted value of mean square in component A, B, and the AB interaction will not be the 

same. They are the variances of finite populations in the finite situation. 

As an example, Hui F et al. [167] utilized 20 healthy people and 15 people with 

glaucoma in their study. A portable device was used to capture photopic ERGs in one eye 

per participant utilizing a sequence of red flashes on a blue background. A repeated 

measures (RM) 2-way ANOVA was utilized to compare controls to glaucoma, with 

frequency nested inside, to evaluate changes related with interstimulus frequency and the 

ERG. When there was a significant difference between groups, Tukey's multiple 

comparisons approach was utilized. While there were minor variations in amplitude and 

timing with frequency, the a-wave (amplitude: F = 1.74, P = 0.15) and b-wave (amplitude: 

F = 1.65, P = 0.17) showed no significant differences. However, the photopic negative 

response (PhNR) was likewise attenuated more in the glaucoma group than in the controls 

(F = 4.84, P = 0.03).  

 

3.5. Classification Algorithm  

Neural networks, SVM, decision trees, and rule-based classifiers are examples of 

machine learning approaches. They are automated tools that need little human 

intervention during data processing. R [168], Scikitlearn [169], Statistics and machine 

learning MATLAB toolbox [170], and WEKA [171] are only a few examples of software 

packages with inbuilt machine learning methodologies. 
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A small number of reviews have been published on the use of machine learning 

in the study of autism [172]–[178]. The majority of evaluations have only touched on one 

or a few facets of ASD (the role of classification during the diagnosis process, application 

of a certain machine learning class of algorithms, differentiating between features of 

autism and ADHD, identifying small sets of features to shorten diagnosis time among 

others). For instance, Pratap, et al. [175], Wall et al. [179], Bone et al. [173], and Lopez 

Marcano et al. [178], looked at how alternative algorithms, such as neural networks and 

tree models (decision tree and RF), may be used to speed up the ASD diagnosis process. 

Bone et al. [173] and Bone et al. [177], used the same algorithms to synthesize and re-

examine the results and methods of Wall et al. [179]. The authors pointed out many 

drawbacks, including eliminating difficult-to-classify cases, which leads to skewed 

accuracy, the lack of a real-world clinical context throughout the evaluation process, and 

the use of inadequate ASD codes to develop the classification system. Experimental 

reviews of six machine learning algorithms were undertaken by Duda et al. [172] and Chu 

et al. [180] in order to establish the best fitting model for ADHD and ASD. Without a 

particular focus on autism, Wolfers et al. [176],explored typical issues associated with 

mental diseases, such as limited sample sizes, external validity, and machine learning 

algorithmic obstacles. 

Most recent studies claim to have developed a machine learning approach for 

automated ASD detection, however in most cases, the researchers are just repurposing 

existing machine learning algorithms and applying them to autism datasets 

independently. SVM, such as in the studies of Bone et al. [177], Duda et al. [172] and 

Kosmicki et al. [181], logistic regression and decision trees, such as in Wall et al. [182] 

and Wall et al. [179], and self-organizing map and naive Bayes, such as in Pratap and 

Kanimozhiselvi [183], and Pratap et al. [175], are common algorithms used in the training 

phase. The researchers wanted to improve sensitivity, specificity, and classification 

accuracy, as well as distinguish between ASD and ADHD. Consequently, several copies 

of the input dataset (different features) are trained to maximize the metrics, with the ASD 

prediction system claiming to be the version with the greatest performance outcomes. 
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3.5.1. Random Forest 

There are numerous articles in the literature that present RF machine learning 

algorithms to achieve different goals, be it classification or linear regression. In this 

section different research papers are presented that apply this type of algorithms to the 

study of autism. 

Sluban et al. (2012) [184], built on the work of Petric et al. (2007) [185], who used 

text mining to discover an unusual link between ASD and calcineurin. The authors 

searched the PubMed database for 15,243 abstracts using phrases that connect ASD and 

calcineurin. The authors used naive Bayes, RF, and SVM classification techniques to find 

groups of outlier texts that link ASD with calcineurin. Outliers detected by at least two of 

the categorization methods were also assembled into union and Bmajority sets by the 

authors. Between 70% and 90% of the bridge phrases were discovered in less than 5% of 

all texts in the sample across the five outlier selections.  

Chen et al. (2015) [186], analyzed neuroimaging data for diagnostic categorization 

purposes using machine learning models, including RF. For a sample of 126 people with 

ASD and 126 people with typically developing, low-motion resting-state functional MRI 

(rs-fMRI) scans were employed. Age, nonverbal IQ, and head motion were used to match 

the participants. A matrix of functional connection between 220 identified areas of 

interest served as the foundation for diagnostic categorization. An RF achieved the 

highest degree of diagnostic classification accuracy of the models examined, at 91%, with 

a sensitivity of 89% and a specificity of 93%, using the top 100 areas of interest. When 

applied to the top 10 regions of interest, the RF had a 75 % sensitivity, and a 75 % 

specificity. The large number of locations required to diagnose ASD with good accuracy 

might indicate that ASD biomarkers are dispersed rather than centralized in the brain. RF 

classifiers have also been utilized to create ASD screening systems that are both 

inexpensive and effective. 

RF has also been employed for ASD surveillance and monitoring. The Autism 

and Development Disabilities Monitoring (ADDM) Network is responsible for 

population-based monitoring of ASD in children aged 8 in the United States. To assess a 

child's diagnostic status, physicians used to manually analyze developmental exams. 

Maenner et al. (2016) [187], used the 2008 Georgia ADDM data to train an RF classifier 

in order to identify children who match the ASD surveillance requirements. A bag-of-

words technique with term-frequency-inverse-document-frequency (Tf-idf) weighting 
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was used to preprocess 5396 assessments from 601 children with ASD and 561 children 

with TD. To (1) find words and phrases suitable for categorizing ASD and (2) categorize 

ASD, RF classifiers were utilized. The classification model was evaluated on 9811 

assessments from 754 children with ASD and 696 children with TD. The final RF of 3000 

trees had an accuracy of 86.5 %, a sensitivity of 84 %, a specificity of 89.2 %, and an 

AUC of 0.932. Machine learning, according to the authors, can assist distinguish 

youngsters who match the monitoring requirements; nevertheless, this model should be 

used as a filter rather than a final classification tool. 

On a dataset of 2925 patients, Duda et al. (2016) [172], used six machine learning 

methods to identify ASD from ADHD instances (2775 ASD cases and 150 ADHD cases). 

The goal of the study was to use electronic and digital apps to reduce the time it took to 

pre-diagnose ADHD and ASD. The study used 65 characteristics from the Simplex Simon 

Collection (SSC) version 1532, which are based on the Social Responsiveness Scale 

(SRS), a parent-administered questionnaire used to assess autistic tendencies. The authors 

pre-processed the data in the machine learning algorithms trials by deleting cases and 

controls with more than four incomplete responses on their sheets. As a result, the input 

dataset is limited to data samples having five missing responses. Furthermore, the authors 

used forward feature selection and cross validation during the training phase of the 

classification algorithms to minimize data dimensionality to less than 10 features. 

Furthermore, the authors modified the data by under sampling to a ratio of 1.5:1 before 

developing the classification model in order to balance the class labels. Six characteristics 

from the SRS data remained after pre-processing, according to the results. The majority 

of the evaluated machine learning algorithms, particularly functions-based algorithms 

like logistic regression, obtained excellent classification accuracy (usually better than 

95%), but decision tree-based algorithms like RF had poor accuracy. There was no 

obvious path forward for identifying the difficult cases that overlapped ASD and ADHD. 

Based on a parental questionnaire and behaviors observed in home recordings, 

Abbas et al. (2018) [188], merged two separate classifiers to produce an ASD screening 

tool. Multiple repositories were utilized to harvest Autism Diagnostic Interview – Revised 

(ADI-R) and Autism Diagnostic Observation Schedule (ADOS) scoresheets from 

children ages 18 to 84 months, which were used to train an RF for a parental questionnaire 

and an RF video classifier, respectively, using clinical diagnosis as the target variable. 

ADI-R interviews were given to a random sample of low-risk youngsters to assist balance 
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the results. Because language development has been shown to influence the presentation 

of ASD, the classifiers were trained and evaluated individually on children aged 4 and 

under. A total of 2299 children with ASD, 100 children with TD, and 287 children with 

another diagnosis were used to train the parental classifier. Also, 3310 children with ASD, 

585 children with TD, and 364 children with another diagnosis were used to train the 

video classifier. The existence and intensity of behaviors, as evaluated by analysts 

watching two to three 1-minute semi-structured home films, were employed as inputs by 

the video classifier once it had been trained. Based on the ROC curves, the final diagnosis 

used logistic regression on the questionnaire and video classifier results and outperformed 

other established screening tools such as the Modified Checklist for Autism in Toddlers 

(MCHAT; Robins et al. 2014 [189]). 
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4. Materials and Methods 

 

4.1. Data Acquisition and Pre-Processing 

Neurofibromatosis type 1 is a neurodevelopmental disease with adult cognitive 

implications. However, little is known about the effects on the visual system and how 

these may be associated with and predict cognitive deficits. 

The RETI-port/scan 21 unit from the Roland Consult Stasche & Finger GmbH 

includes the stimulator units and the data recording and analyzing system. 

Electrophysiological test unit is usable for scotopic and photopic ERG and it can be 

adapted for rodent ERG by using ring cornea electrodes and needle reference electrodes.  

A preamplifier is located near the subject in the biosignal amplifier. A database 

stores all the subject's information as well as the outcomes. The signal and averaged 

curves from all channels can be monitored. The system automatically sets point markers 

and calculates major parameters in the analyze mode [190]. 

In Figure 4.1 it is possible to see the analysis interface of the RETI-port program 

along with the window responsible for applying digital filters by equalizer to extract the 

characteristics, in this case to obtain the b-wave. 

This program has other features such as it is possible to see on top-left of figure 

4.1, allowing the user to access the program Selector and Controls, other than the analysis 

interface. In this interface it is possible to see the ERG recorded for the different light 

intensity stimulus, apply filters to feature extraction, manually select the points of interest, 

and see the amplitudes and latencies collected for each channel. 
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Figure 4.1 - Analysis Interface of RETI-port software. 

 

This process of analysis presents different problems and difficulties for the user 

such as: There is a high lack of automation in the process of signal collection since after 

the collection the user needs to manually apply filters for extraction of b-wave and OPs 

for each light intensity. Difficulty in identifying regions and points of interest, as the user 

needs prior knowledge of the typical ranges of each component to manually select the 

point of interest. Method of data analysis merely numerical through the table of values 

obtained after the extraction of characteristics, not facilitating the visualization and 

meaning of the results. 

Besides the signal processing difficulties, it is not known what correlation these 

data have and whether they differentiate between pathological and non-pathological. 

Therefore, it can be stated that these data need a statistical study with several ERGs to 

define groups of differentiating characteristics. 

 

 

 



Materials and Methods  

 

55 

4.2. Animals 

In this study we used a transgenic animal model of NF1, both males and females. 

All animals were genotyped, which allowed us to determine genotype group each animal 

belongs, either heterozygous NF1 (Nf1+/-) or wild-type (WT).  

Male and female mice (8 weeks-old) were anesthetized with intraperitoneal 

injection of 80 mg/kg ketamine and 5 mg/kg xylazine. The animals were maintained at 

22 ± 1ºC on a 12h light/12h dark cycle, with access to water and food ad libitum. For 

pupil dilation eye drops of 0.5% tropicamine were used.  

The choice of the mouse as a model is due to its similarities in terms of 

mechanisms and characteristics when expressing the mutation in the NF1 gene compared 

to humans.  The 98% similarity rate of the NF1 gene product when compared to humans 

makes them the best choice to study cognitive and behavioral manifestations, which are 

also observed in humans with this condition [191]. 

 

4.3. Light stimulation 

A Ganzfeld stimulator [190] was used to deliver light stimuli. Based on 

recommendations for ERG procedure [192] and four different ERG responses were 

recorded: 

• Scotopic Luminance Responses: The dark-adapted animals were exposed 

to a sequence of white light flashes of seven different intensities (0.0095 

to 9.49 cd-s/m2)  three times at 0.1 Hz. 

• Photopic Adaptometry: Bright white flashes (9.49 cd-s/m2) were delivered 

three times at 1.3 Hz at the commencement of light adaptation and at 2, 4, 

8, and 16 minutes to measure the light adaptation process using a white 

background light (25 cd/m2). 

• Photopic Luminance Responses: White flashes of seven different light 

intensities (0.0095 to 9.49 cd-s/m2) were delivered three times at 1.3 Hz 

against a white background light (25 cd/m2). 

• Photopic Flicker: White brilliant flashes (3.00 and 9.49 cd-s/m2) were 

delivered 10 times at 6.3 Hz against a white background light (25 cd/m2). 
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4.4.  ERG Recordings 

In the present work, only the scotopic luminance responses were analyzed since 

they represent a richer signal in rodent ERG. Future works will continue to explore other 

ERG tests. ERGs were obtained after overnight dark adaptation, none of the animals was 

injected with drugs or received any treatment. 

Before the ERG recording, the pupil was fully dilated with topical tropicamide 

(0.5%). Celluvisc® eye drops were sufficient to maintain stable corneal potential 

(impedance < 6 kohm) through the entire recording protocol. The body temperature of 

the animals was maintained with a heating pad set to 37ºC during the procedure. The 

electrical responses were recorded with a gold wire electrode placed at the cornea, a 

reference electrode placed at the head, and a ground electrode in the tail. Electrode 

impedance did not exceed 6 kohm during the entire procedure. The ERG waveforms were 

recorded with a band width of 1 to 300 Hz and sampled at 3.4 kHz (except for flicker test 

in which a 0.65 kHz sampling rate was used) by a digital acquisition system (Roland 

Consult GmbH, Brandenburg, Germany), and they were analyzed with the MATLAB and 

Python.  

 

4.5.  Database 

Each file represents a tested individual, includes his or her identification, sex, test 

date, and the collected ERGs, corresponding to 16 readings taken with eight different 

light intensities for each eye. Each electroretinogram is composed of 512 points 

representing 150 milliseconds of recording. The intensities tested were infrared light as 

the lowest light intensity and 7 readings for each eye with intensities varying between -

25dB and +5dB, always adding +5dB in each new reading. A total of 60 files were made 

available, 17 female and 43 male individuals for a final number of 30 Wild-type and 30 

NF1 pathological individuals. For some of these individuals their visual acuity was 

collected, as well as some notes regarding reading and signal quality. Table in attachment 

A represents the database used in this paper. 
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5. Development 

The development of the topic goes through three main phases. The first phase 

consists of reading, processing and point detection all ERGs received as Excel files. For 

this stage two programs with different functions were developed. The second phase of the 

development consists of the statistical analysis of the ERG components detected by the 

first phase of the theme development process. For statistical analysis of the features t-

tests and two-way ANOVA analysis were performed. For the development of the last 

phase consisting of testing the ability to predict cognitive deficits in ERGs, an algorithm 

of the RF classification was used. 

 

5.1. The Solution – Electroretinogram 

As a solution to the problem presented by the analysis interface of the RETI-port 

program, two programs were developed: 

a) One for readding, processing and detect points of interest in the 16 

channels recorded for each individual, developed in MATLAB for the use 

of the laboratory. 

b) Another for analysis of multiple ERGs for the same light intensity, in order 

to solve the lack of automation and difficulty in identifying points of 

interest, making the whole analysis simpler, developed in Python.  

For both programs the same process and digital filters defined in the previous 

solution were applied. In Figure 5.1 we can observe the filters applied by equalizer for a) 

the extraction of the b-wave peak, which is a low-pass filter with cutoff frequency at 47.5 

Hz and b) for the extraction of oscillatory potentials with a high-pass filter for frequencies 

above 60 Hz. 
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Figure 5.1 - Filters applied by equalizer in RETI-port. a) (left) the extraction of the b-wave peak 

with low-pass filter with cutoff frequency at 47.5 Hz. b) (right) for the extraction of oscillatory 

potentials with a high-pass filter for frequencies above 60 Hz. In each image there are two 

graphs, the first one shows the original signal in green, the filtered signal in red, and the second 

graph shows the distribution of frequencies after the application of the filter. 

 

In order to clarify the process to be implemented in the solution, we built the pipeline 

represented in Figure 5.2, in which the pre-stimulus baseline, the first 16 ms, is 

disregarded. All the components under study were collected after applying the respective 

filter to the original signal. 

 

Figure 5.2 - Pipeline used in the signal processing and points detection. 
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While the program developed in MATLAB is mainly intended to analyze all the 

ERGs collected for the same individual, for the 7 light intensities tested, the program 

developed in Python, although it also has the function of analyzing a single file, is 

intended to analyze several files (different individuals) for the same light intensity, in 

order to find sex or genetic similarities. 

 

5.2. The Solution – Statistic Analysis 

For the first exploratory test we want to compare the samples by genotype and by 

sex, individually. Once the dataset has: 

• Dependent variable that is continuous  

• Independent variable that is categorical 

• Independent samples/groups - There is no relationship between the 

subjects in each sample. This means that: 

o Subjects in the first group cannot also be in the second group 

o No subject in either group can influence subjects in the other group 

o No group can influence the other group 

• Random sample of data from the population 

That said, two independent t-tests were performed, one to sex and other to 

genotype, the Independent t-test examines the means of the two independent groups to 

see if statistical evidence exists that the related population means differ substantially [83]. 

A two-way ANOVA is used to determine how the mean of a quantitative variable 

varies when two category factors are changed. A two-way ANOVA was employed in this 

study to see how the two independent factors affected the dependent variables when they 

were combined. 

 

5.3. The Solution – Classification Algorithm 

To develop a basic classification algorithm, we used scikit-learn, a library in 

Python that provides many unsupervised and supervised learning algorithms. It is built 

upon some of the technology like NumPy, pandas, and Matplotlib. 
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The functionality that scikit-learn provides include Regression, Classification, 

Clustering, Model selection and Preprocessing. 

A comparison of a several classifiers in scikit-learn on synthetic datasets is shown 

in Figure 5.3. The point of this example is to illustrate the nature of decision boundaries 

of different classifiers [169]. 

 

Figure 5.3 - Comparison between some scikit-learn algorithms by [169]. 

 

The dataset is expected to behave like the dataset in the third row of figure 4.4, 

and so at an early stage of this development, RF was used to predict the genotype of the 

individuals tested, since it was one of the algorithms that showed in [169], an accuracy of 

0.95. In addition, there are many other advantages to using this type of algorithm such as: 

• It outperforms the decision tree algorithm in terms of accuracy. 

• It is a useful tool for dealing with missing data. 

• Without hyper-parameter adjustment, it can provide a fair forecast. 

• It overcomes the problem of decision tree overfitting. 

• At the node's splitting point in every random forest tree, a subset of 

characteristics is chosen at random [117]. 
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6. Evaluation and Results 

 

6.1. Electroretinogram processing and Points Detection 

 

After collecting the ERGs it is possible to export an Excel file with the collected 

data, this file has a common data arrangement among all files, being constituted initially 

with a header with information about the laboratory, the animal and the signal collection, 

then it presents the data table but only 128 points per line for each channel (each reading 

consists of 512 points), which means that to read the complete ERG one must access the 

first line of each channel, and connect with the continuation of the same signal that 

happens 16 lines below this one, and so on. 

As mentioned before, this point was developed in two environments. In MATLAB 

the main objective is the analysis of the various channels for the same ERG and therefore, 

in this point no distinction is made between pathological and non-pathological. After 

reading the file a visual representation of all the channels is built, represented in figure 

6.1, being the channels on the left side (odd numbers) the representation of the right eye 

tests and vice-versa. 

The signal was converted to the time scale knowing that the total reading time is 

0.15 seconds, knowing that these are divided into 512 points we can state that each point 

represents 0.29 milliseconds and therefore that the sampling frequency is 3406.7 Hz. 

In all signal processing the first 16 milliseconds of the signal are disregarded since 

they represent the pre-trigger baseline recording, in other words, it is the time the 

acquisition system records voltage measurements before the light flash is delivered. The 

light flash instant is represented in Figure 6.1 by the vertical blue line. 

The animal whose ERG is represented in figure 6.1 has the ID 929.6. Checking 

the Table in Attachment A we know that it is a wild-type male individual that apparently 

had no reading problems such as outside noise or movement during the test. 
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Figure 6.1 - Original ERGs, all the 16 channels recorded with infrared light and 7 other light 

intensities, for both eyes, in MATLAB. The ERGs shown on the left side correspond to readings 

taken with the right eye and vice versa. The blue vertical line corresponds to the default, normal 

reaction latency. 

 

After viewing all channels of the ERG, the signal processing step begins, 

following the process described previously in Figure 4.3.  

A previous study on the estimation of the window in milliseconds (latencies) 

where the waves appear according to the intensity of the luminous flash was done for the 

two lowest and the two highest luminous intensities, to restrict the search for the points 

and therefore, make the reading more correct. The represents the estimations 6.1. 

 

Table 6.1 - Estimation of the window in milliseconds (latencies) where the waves appear 

according to the intensity of the luminous flash.  

Light 

Intensity 
a-wave b-wave OP1 OP2 OP3 OP4 

1 not detected (43-86) ms not detected not detected not detected not detected 

2 not detected (33-87) ms (19-31) ms (28-39) ms (35-48) ms (44-60) ms 

6 (8-19) ms (28-59) ms (11-17) ms (19-26) ms (26-39) ms (35-54) ms 

7 (9-13) ms (26-55) ms (13-16) ms (19-26) ms (26-39) ms (37-53) ms 
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Figure 6.2 is an example of the processing performed for just one of the channels, 

channel 5. The same process is repeated for all 16 available. 

A-wave a is identified directly in the original signal as the minimum peak of the 

signal between point 81 and 120 since all peaks corresponding to a-wave happen up to 

this point. This identification corresponds to the upper left graph in figure 6.2. 

After identifying the a-wave, we proceed to apply a fifth-order Butterworth low-

pass filter with cutoff frequency at 47.5 Hz. This filter allows discarding all oscillations 

of frequency higher than the typical maximum frequency of b-wave to facilitate its 

detection and corresponding amplitude latency. The identification of this wave is depicted 

in Figure 6.2 in the upper right graph. 

Finally, to identify the oscillatory potentials, a fifth-order Butterworth high-pass 

filter with a 60 Hz cutoff frequency was applied, so as to display only the higher frequency 

oscillations that correspond to the oscillatory potentials. MATLAB's findpeaks function 

was used to determine the position of the oscillatory potentials, this function returns a 

vector with the local maxima (peaks) of the input signal vector, data. A local peak is a 

data sample that is larger than its two neighboring samples. This identification is shown 

in the bottom graph of Figure 6.2. 

 

 

Figure 6.2 - Points detected after filters were applied in MATLAB. The top left graph shows the 

original signal, and the red dot the detection made of the a-wave. The top right graph is the 

signal after application of the defined low-pass filter and the red dot represents the detection 

made of the b-wave in the wave. Finally, in the bottom graph we see the application of the low-

pass filter and the detection of oscillatory potentials (red dots). 
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In the case that the user does not want to see the point detection per channel, a loop was 

created that performs the same procedure for all channels and returns the collected 

information. 

As mentioned before, the same process was done in Python but this time with the intention 

of analyzing several files at the same time. However, it is also possible to apply the 

developed code to a single file and build visualization graphs similar to those obtained in 

MATLAB, figure 6.3 is the graph representation of the individual 929.6. obtained in 

Python, equivalent to figure 6.1, where the red vertical line is equivalent to the light flash 

instant. 

 

Figure 6.3 - Original ERGs, all the 16 channels recorded with infrared light and 7 other light 

intensities, for both eyes, in Python. The ERGs shown on the left side correspond to readings 

taken with the right eye and vice versa. The blue vertical line corresponds to the default, normal 

reaction latency. 
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For point detection the process performed was the same as described above and 

represented in figure 5.3. Figure 6.4 shows the detection performed in Python for channel 

15. 

 

Figure 6.4 - Points detected after filters were applied in Python. a) a-wave detected in the 

original signal. b) b-wave detected after low-pass filter. c) Oscillatory Potentials detected after 

high-pass filter. 

 

Since the main objective of this development is to analyze the points detected for 

several waveforms/animals at the same time, in order to find similarities between them 

for groups between sexes and genotypes, previous separation of files the entry was made, 

ie, with the prior information of sex and genotype of the file, and this was stored in a 

variable of its own. 

After collecting the files by lists, dividing them by sex and genotype, the files for 

each list are read and the points for each file are detected, by means of cycles, which go 

through all the files on the list in question, performing the same signal processing on each 

of them, in the end, when the characteristics for the analysis of a respective file are found, 

they are stored in lists for the respective characteristic, sex and genotype.  

The reading of the signals and their graphical representation was done similarly 

to what was developed in MATLAB. The point detection was done in a slightly different 

way since it is intended to analyze the features by defining the light intensity applied, 

unlike what was developed in MATLAB, which was intended to analyze the points of 

interest for all light intensities applied to an individual.  Since the statistical analysis will 
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be applied only to the two strongest light intensities, we took as normal latency intervals 

of the ERG components, those shown in Table 6.1. The a-wave is searched for between 

points 81 and 200 and found by min function. The a-wave amplitude is measured from 

the baseline to the a-wave trough, where baseline is the average value of the first 3 ms 

after the reaction latency. The b-wave detection is made after the application of a fifth-

order Butterworth low-pass filter with cutoff frequency at 47.5 Hz and found between 

point 100 and 300 by the max function. The b-wave amplitude is the amplitude from a-

wave peak to b-wave peak. Finally, to identify the oscillatory potentials, a fifth-order 

Butterworth high-pass filter with a 60 Hz cutoff frequency was applied. The OPs were 

searched between the a-wave peak and point 239 (according to Table 6.1 is the limit range 

for OP4) and found by find_peaks function from scipy.signal library. The amplitude of 

the first oscillatory potential is measure from a-wave peak to the first OP peak, the other 

3 OPs are measure from the previous valley to the peak of the OP. Sometimes an ERG 

can have only 3 OPs, in this case the OP4 columns have ND as Not Detected.  

The process was repeated for all the files expect for ID 943.7 that was noticed 

with extreme noise in Attachment A. The Table with all the points detected to the 59 files 

analyzed for Channel 15, is presented in Attachment B. 

The average values found for each of the characteristics under study are shown in 

Table 6.2. The reading, processing and detection of points of interest from all files is 

useful for the statistical analysis of the data performed in the following development 

point. 

 

Table 6.2 - Mean values obtained for each feature in study for WT and NF1. 

 Wild-Type Neurofibramatosis Type 1 

A-wave Amplitude (V) -0.0001279 -0.0001291 

A-wave Latency (s) 0.0272259 0.0276172 

B-wave Amplitude (V) 0.0002910 0.0003205 

B-wave Latency (s) 0.0625640 0.0642480 

OP1 Amplitude (V) 0.0001997 0.0002215 

OP1 Latency (s) 0.0310042 0.0309766 

OP2 Amplitude (V) 0.0001172 0.0001251 

OP2 Latency (s) 0.0386416 0.0384863 

OP3 Amplitude (V) 0.0002011 0.0002119 

OP3 Latency (s) 0.0478852 0.0474316 

OP4 Amplitude (V) 0.0000934 0.0001057 
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6.2. Statistical Analysis 

A dataset of 59 animals was considered, 29 Wild-type and 30 NF1. The analysis 

was performed only for the two highest light intensities, considering channel 13 (6th light 

intensity for the right eye) and channel 15 (7th light intensity for the right eye). At this 

point only the analysis for channel 15 was presented, based on the data collected in the 

previous section and represented in the figure in attachment B. 

First, to check if there is any visible difference between clusters two Scatter plots 

were created, one for the a and b waves, Figure 6.5 a) and one for the OPs, Figure 6.5 b). 

 

Figure 6.5 - Scatter plot of oscillatory potentials. 

 

Through the analysis of Figures 6.5 and 6.6 we can see that no clear differences 

between genotypes, with the exception of a-wave, where there seems to be a tendency of 

greater latency and a greater range of amplitudes for NF1. To check more specifically 

whether there are significant differences between groups, two t-tests, one to compare 

genotypes and one to compare sexes, and a two-way ANOVA were performed. 

All tests are used to decide whether to accept or reject the null hypothesis. The hypotheses 

to be considered in this statistical analysis for each trait under study are: 

• Null hypothesis: There are no statistically significant differences between groups. 

OP4 Latency (s) 0.0602574 0.0589648 
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• Alternative hypothesis: There are statistically significant differences between 

groups and therefore this may be a differentiating characteristic between groups. 

If statistically significant differences between groups are found, the characteristics in 

question can be used in the future as determining factors for the diagnosis of pathology. 

6.2.1. T-test – Genotype 

T-test was performed for the independent variable Genotype with alpha = 0.05 

(95% confidence level). 59 files were considered however one of the ERG did not show 

4 OPs but only 3.  

Recalling what was presented before in Section 2.6.6.1, the test works by checking 

the means from two samples to see if they are significantly different from each other. It 

does this by calculating the standard error in the difference between means. 

We can interpret the statistic value in a two-tailed test by comparing it to the 

positive critical value, as follows: 

• If |t-statistic| ≤ critical value: Accept null hypothesis. 

• If |t-statistic| > critical value: Reject the null hypothesis. 

The p-value can then be compared to the significance level (alpha), 0.05, to 

determine if the null hypothesis can be rejected: 

• If p > alpha: Accept null hypothesis. 

• If p <= alpha: Reject null hypothesis [83]. 

The library scipy.stats was used to perform the t-test to each one of the 

characteristics. The summary of all the results is presented in Table 6.3. 

 

Table 6.3 - T-test Table for Genotype. 

 T-stat DF CV P-value 

a(V) 0.0750401 57 1.6720289 0.9404456 

a(s) -1.9807585 57 1.6720289 0.0524512 

b(V) -1.1428225 57 1.6720289 0.2578898 

b(s) -0.7203082 57 1.6720289 0.4742789 

OP1(V) -1.0252876 57 1.6720289 0.3095591 

OP1(s) 0.1147859 57 1.6720289 0.9090182 

OP2(V) -0.6175279 57 1.6720289 0.5393459 

OP2(s) 0.2440262 57 1.6720289 0.8080868 
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OP3(V) -0.4395313 57 1.6720289 0.6619386 

OP3(s) 0.4323773 57 1.6720289 0.6670986 

OP4(V) -0.8603927 56 1.6725223 0.3932413 

OP4(s) 1.0130848 56 1.6725223 0.3153770 

 

By analyzing Table 6.3 we can see that no p-value is statistically significant 

(<0.05), however the p-value for the latency of the a-wave is very close to being so, it is 

also observed that no T-stat is statistically significant (|t-stat|>CV). Therefore, it can be 

concluded that the only characteristic under study that can represent a differentiating 

parameter between genotypes is the a-wave latency. 

 

6.2.2. T-test – Sex  

T-test was performed for the independent variable Sex with alpha = 0.05 (95% 

confidence level). 59 files were considered, 16 female and 43 male individuals, however 

one of the ERG did not show 4 OPs but only 3. 

To decide whether or not to accept the null hypothesis, in each case, we should 

compare the results as described above. Figure 6.4 shows the results obtained for each of 

the characteristics under analysis. 

 

Table 6.4 - T-test Table for Sex. 

 T-stat DF CV P-value 

a(V) 1.5984970 57 1.6720289 0.1154616 

a(s) -0.2409656 57 1.6720289 0.8104465 

b(V) -1.1652362 57 1.6720289 0.2487767 

b(s) 0.5292036 57 1.6720289 0.5987192 

OP1(V) -1.1085502 57 1.6720289 0.2722798 

OP1(s) 1.8174021 57 1.6720289 0.0744131 

OP2(V) -1.3137871 57 1.6720289 0.1941812 

OP2(s) 2.8436851 57 1.6720289 0.0061813 

OP3(V) -2.5693850 57 1.6720289 0.0128289 

OP3(s) 2.8086445 57 1.6720289 0.0068023 

OP4(V) 2.5401528 56 1.6725223 0.0138814 

OP4(s) -1.8755496 56 1.6725223 0.0659339 
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By analyzing Table 6.4 we can see that the p-values that are statistically significant 

(<0.05) are the latency of the second and third OP and the amplitudes of the third and 

fourth OP. It is also observed that for the same parameters, the T-stat is also statistically 

significant (|t-stat|>CV), with the addition of the latency of the first and fourth OB. 

Therefore, it can be concluded that the latencies and amplitudes of some OPs are sex 

differentiating factors and the null hypothesis should therefore be rejected in these cases. 

 

6.2.3. Two-Way ANOVA 

 Since t-test is not able to evaluate potential interactions between sex and 

genotype, a two-way ANOVA was performed in order to verify, which may be relevant 

for the differentiation between samples. 

A boxplot was generated to see the distribution of the data by characteristic, 

showing in Figure 6.6 the graphs for the a- and b-waves, in Figure 6.7 for the two firsts 

OPs and in Figure 6.8 for the third and fourth OPs. Using the boxplot, we can easily detect 

the differences between the different types, comparing sex and genotype. 

 

Figure 6.6 - Boxplot of a and b wave, comparing sex and genotype. 
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By observing the graphs in figure 6.6 we can see that the distributions are different 

between groups, but the interaction with the most evident differences appears to be in 

relation to the amplitude of the b-wave in males, since the range of values in this case is 

much wider in NF1. 

 

Figure 6.7 - Boxplot of the first and second oscillatory potentials, comparing sex and genotype. 

 

From the graphs in figure 6.7 we can see that the distributions are different 

between groups, but there are no apparent significant differences, and there is no clear 

distribution characteristic to point to. 

 

 

Figure 6.8 - Boxplot of the third and fourth oscillatory potentials, comparing sex and genotype. 
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Finally, the graphs in Figure 6.8 appear to be a distinguishing factor for some 

characteristics, with minor differences in the mean value or range. 

It is important to point out that visual analysis only provides indicative 

information that cannot be taken into account to distinguish groups, only to confirm 

statistical values obtained. 

All the functions used to elaborate the ANOVA analysis were imported from 

statsmodels.api and statsmodels.formula.api libraries. 

Visual analysis and the Shapiro test were be used to test the assumptions, for all 

the characteristics tested. The standardized residuals lie around the 45- degree line, which 

suggests that the residuals were approximately normally distributed and the distribution 

does appeared approximately normal for the majority of the data. The Shapiro-Wilk test 

confirmed that there's no normal distribution of residuals. 

 

6.2.3.1. A-wave Amplitude 

Table 6.5 presents the ANOVA table, where df corresponds to the degrees of 

freedom, sum_sq means sum of squares, mean_sq is the mean of the squares which is the 

previous value divided by the df, F is the F-ratio that represents the mean square of the 

term dived by the residual mean square and PR(>F) is the p-value that is inversely 

proportional to the F-ratio. 

 

Table 6.5 - ANOVA table for the a-wave amplitude. 

 df sum_sq mean_sq F PR(>F) 

C(Genotype) 1.0 1.018882e-11 1.018882e-11 0.002912 0.957158 

C(Sex) 1.0 1.376032e-08 1.376032e-08 3.933197 0.052344 

C(Genotype):C(Sex) 1.0 6.448443e-09 6.448443e-09 1.843199 0.180121 

Residual 55.0 1.924179e-07 3.498507e-09 NaN NaN 

 

As the p-value obtained from ANOVA analysis for genotype, sex and interaction 

are not statistically significant (p < 0.05), it is concluded that genotype type does not 

significantly affect the production outcome, and sex does not significantly affect the 

production outcome and also the interaction of genotype and sex does not significantly 
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affect the production outcome. However, the effect of sex has a p-value close to being 

significant. 

Although the p-values are not significant, the interaction graph (also called profile 

graph) in figure 6.9 can give some additional information. 

 

Figure 6.9 - Interaction plot for the a-wave amplitude. 

 

Although in the graph in Figure 6.19, the interaction effect seems significant 

between genotype and sex because the lines are not parallel (approximately parallel factor 

lines indicate no interaction - additive model), it is not statistically significant as seen in 

ANOVA results. 

Although the ANOVA table showed no significant interactions, these may exist 

between specific groups individually, so multiple pairwise comparison (Post-hoc 

comparison) analysis using Tukey's HSD test was performed, the results of which are 

shown in Table 6.6.  

The comparisons that are relevant and answer the experimental question were 

performed instead of comparing all to all, since this increases the p value because of the 

correction. For example, it would not be relevant to compare WT-M with NF1-F (and 

similar) because it has two variables implied and only ANOVA is able to answer this. 

Therefore, we performed 4 comparisons in which one variable was kept in order to better 

understand which groups vary more. It is preformed the comparisons that are relevant and 

answer the experimental question rather than comparing all to all, since that increases the 

p value because of the correction. For example, it would not be relevant to compare WT-

M with NF1-F (and similar) because it has two variables implied and only ANOVA is 
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able to answer this. Therefore, we performed 4 comparisons in which one variable was 

kept in order to better understand which groups vary more. 

 

Table 6.6 - Tukey's table for the a-wave amplitude. 

group1 group2 Diff Lower Upper q-value p-value 

(WT, F) (WT, M) 0.000009 -0.000059 0.000077 0.482499 0.9 

(NF1, F) (NF1, M) 0.000056  -0.000006 0.000118   3.364519 0.093144 

(WT, F) (NF1, F) 0.000034 -0.000045 0.000113 1.602955 0.651943 

(WT, M) (NF1, M) 0.000014 -0.000034 0.000061 1.059602 0.864805 

 

By analyzing the p-values in Table 6.6 from Tukey's test we can confirm that there 

is no significant interaction.  

 

6.2.3.2. A-wave Latency 

For the a-wave latency we performed the same process as described for the a-wave 

amplitude, starting by analyzing the ANOVA table, Table 6.7, in search of statistically 

significant p-values. 

 

Table 6.7 - ANOVA table for the a-wave latency. 

 df sum_sq mean_sq F PR(>F) 

C(Genotype) 1.0 2.229614e-06   2.229614e-06   3.747270   0.058041 

C(Sex) 1.0 8.666840e-09   8.666840e-09   0.014566   0.904376 

C(Genotype):C(Sex) 1.0 3.053460e-08   3.053460e-08   0.051319   0.821624 

Residual 55.0 3.272484e-05   5.949971e-07 NaN NaN 

 

Once the p-values obtained from the ANOVA analysis for genotype, sex, and 

interaction are not statistically significant (p < 0.05), it is concluded that genotype as well 

as sex or the interaction genotype:sex has no significant impact on the output outcome, 

though the genotype effect has a p-value that is close to being significant, which could 

mean that this can be a differentiating factor between groups.  

Although the p-values do not seem to be significant we should analyze the 

interaction plot, Figure 6.10. 
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Figure 6.10 - Interaction plot for the a-wave latency. 

 

In the graph in Figure 6.10, it’s possible to understand that this is quite different 

from what happens for the wave amplitude, since in this case the interaction effect is not 

significant between genotype and sex because the lines are almost parallel.  Even so, 

Tukey's table was generated, Table 6.8, to confirm the results. 

 

Table 6.8 - Tukey's table for the a-wave latency. 

group1 group2 Diff Lower Upper q-value p-value 

(WT, F) (WT, M) 0.000029 -0.000858 0.000915 0.120562 0.900000 

(NF1, F) (NF1, M) 0.000074  -0.000740   0.000889   0.342396   0.900000 

(WT, F) (NF1, F) 0.000465 -0.000565 0.001495 1.691798 0.617139 

(WT, M) (NF1, M) 0.000362 -0.000261 0.000986 2.176004 0.423337 

 

By analyzing the p-values in Table 6.6 from Tukey's test we can confirm that there 

is no significant interaction.  

 

6.2.3.3. B-wave Amplitude 

Table 6.9 shows the ANOVA table for the b-wave amplitude. 

Table 6.9 - ANOVA table for b-wave amplitude. 

 df sum_sq mean_sq F PR(>F) 

C(Genotype) 1.0 1.086186e-08   1.086186e-08   1.168358   0.284456 

C(Sex) 1.0 1.845110e-08   1.845110e-08   1.984696   0.164525 

C(Genotype):C(Sex) 1.0 3.927857e-08   3.927857e-08   4.225008   0.044593 

Residual 55.0 5.113177e-07   9.296685e-09 NaN NaN 
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Since the p-value obtained from the ANOVA analysis for genotype and sex are 

not statistically significant (p < 0.05), it is concluded that genotype and sex does not 

significantly affect the output outcome. However, the interaction of genotype and sex 

have significantly affected the output outcome since the p-value is smaller than 0.05. 

To verify whether there appear to be significant differences between sex and/or 

genotype, we created the interaction graph of Figure 6.11. 

 

 

Figure 6.11 - Interaction plot for b-wave amplitude. 

 

In the graph in Figure 6.11, the interaction effect is significant between genotype 

and sex because the lines are not parallel. It can be seen that for males there are almost 

no visible differences, but among females the difference is clear, the mean value for the 

group (NF1, F) is higher than the mean value for the groups (WT, F) and (WT, M). 

To confirm the ANOVA table that showed significant interactions, the post-hoc 

comparison was performed using Tukey's HSD test, the results are shown in Table 6.10. 

 

Table 6.10 - Tukey's table for b-wave amplitude. 

group1 group2 Diff Lower Upper q-value p-value 

(WT, F) (WT, M) 0.000023 -0.000087   0.000134   0.793882   0.900000 

(NF1, F) (NF1, M) 0.000093  -0.000009   0.000195   3.433535   0.083776 

(WT, F) (NF1, F) 0.000113 -0.000016   0.000241   3.278360   0.106398 

(WT, M) (NF1, M) 0.000004 -0.000074   0.000082   0.197716   0.900000 
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By analysing the p-values in Table 6.10 from Tukey's test it’s possible to see that 

there is no significant interaction. This is contradictory to the ANOVA table, which 

showed that there were significant differences in the interaction between sex and 

genotype. Thus, considering that the interaction that was highlighted as relevant in the 

analysis of the graph in figure 6.11 was between the group (NF1, F) with (WT, F) and 

(WT, M), if we check the p-values of these interactions relative to the others, we can see 

that they are indeed the most significant interactions, although the p-value is not 

statistically significant. The discrepancy between the p-value of the ANOVA table and 

the Tukey table can be due to outliers that are directly affecting the power of the analysis 

between gene and genotype. 

 

6.2.3.4. B-wave Latency 

For the b-wave latency we performed the same process as described for the b-

wave amplitude, starting by analysing the ANOVA table, Table 6.11, in search of 

statistically significant p-values. 

 

Table 6.11 - ANOVA table for b-wave latency. 

 df sum_sq mean_sq F PR(>F) 

C(Genotype) 1.0 0.000046   0.000046   0.566472   0.454874 

C(Sex) 1.0 0.000030   0.000030   0.364494   0.548503 

C(Genotype):C(Sex) 1.0 0.000040   0.000040   0.492018   0.485986 

Residual 55.0 0.004507   0.000082        NaN NaN 

 

Because the p-values for genotype, sex, and interaction from the ANOVA analysis 

are not statistically significant (p > 0.05), it is concluded that genotype has no effect on 

the output outcome, sex has no effect on the output outcome, and the interaction of 

genotype and sex has no effect on the output outcome. 

The interaction graph (also known as a profile graph) in Figure 6.12 can provide 

some extra information, even though the p-values are not significant. 
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Figure 6.12 - Interaction plot for b-wave latency. 

 

The interaction effect between genotype and sex seems to be apparent since the 

lines in Figure 6.12 are not parallel. When comparing sex in NF1, males have nearly no 

noticeable differences, while females have a distinct difference: the mean value for the 

group (NF1, F) is greater than the mean value for the groups (WT, F). 

Tukey's HSD test was used as a post-hoc comparison to confirm the ANOVA 

table, which revealed significant interactions; the results are presented in Table 6.12. 

 

Table 6.12 - Tukey's table for b-wave latency. 

Group 1 Group 2 Diff Lower Upper q-value p-value 

(WT, F) (WT, M) 0.003634 -0.006774   0.014041   1.308153   0.767432 

(NF1, F) (NF1, M) 0.000107 -0.009448   0.009662   0.041941   0.900000 

(WT, F) (NF1, F) 0.004515 -0.007571   0.016602   1.399824   0.731520 

(WT, M) (NF1, M) 0.000775 -0.006542   0.008092   0.396826   0.900000 

 

We can check that there is no significant interaction by looking at the p-values in 

Table 6.12 from Tukey's test. 

 

6.2.3.5. OP1 Amplitude 

Now begins the analysis of OP, this being the section of analysis to the amplitude 

of the first OP, we present Table 6.13 which contains the ANOVA analysis. 
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Table 6.13 - ANOVA table for the first oscillatory potential amplitude. 

 df sum_sq mean_sq F PR(>F) 

C(Genotype) 1.0 5.853487e-09 5.853487e-09 0.923205 0.340840 

C(Sex) 1.0 1.148363e-08 1.148363e-08 1.811184 0.183888 

C(Genotype):C(Sex) 1.0 2.437590e-08 2.437590e-08 3.844539 0.054980 

Residual 55.0 3.487219e-07 6.340398e-09 NaN NaN 

 

Since the p-value obtained from the ANOVA analysis for genotype, sex and 

interaction are not statistically significant (p < 0.05), it is concluded that genotype, sex 

and the interaction of genotype and sex does not significantly affect the output outcome, 

however the interaction of genotype/sex has a p-value close to being significant. 

Although the p-values are not significant, the interaction graph in Figure 6.13 can 

give some additional information. 

 

Figure 6.13 - Interaction plot for the first oscillatory potential amplitude. 

 

Because the lines in Figure 6.13 are not parallel, the interaction effect between 

genotype and sex may be substantial. Males have almost no visible differences, and the 

same applies when comparing sexes in WT, but females have a clear difference: the mean 

value for the group (NF1, F) is higher than the mean value for the groups (WT, F) and 

(WT, M). 

The post-hoc comparison was done using Tukey's HSD test to corroborate the 

ANOVA table that demonstrated significant interactions; the findings are provided in 

Table 6.14. 
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Table 6.14 - Tukey's table for the first oscillatory potential amplitude. 

group1 group2 Diff Lower Upper q-value p-value 

(WT, F) (WT, M) 0.000018 -0.000073   0.000110   0.755439   0.900000 

(NF1, F) (NF1, M) 0.000074  -0.000011   0.000158   3.277309   0.106569 

(WT, F) (NF1, F) 0.000087 -0.000019   0.000194   3.075814   0.143049 

(WT, M) (NF1, M) 0.000005 -0.000060   0.000069   0.273597   0.900000 

 

We can validate that there is no significant interaction by looking at the p-values 

in Table 6.6 from Tukey's test. 

 

6.2.3.6. OP1 Latency 

Table 6.15 represents the ANOVA table for the latency of the first OP. 

Table 6.15 - ANOVA table for the first oscillatory potential latency. 

 df sum_sq mean_sq F PR(>F) 

C(Genotype) 1.0 2.420727e-12   2.420727e-12   0.000003   0.998633 

C(Sex) 1.0 2.500964e-06   2.500964e-06   3.060403   0.085800 

C(Genotype):C(Sex) 1.0 1.305210e-06   1.305210e-06   1.597172   0.211635 

Residual 55.0 4.494605e-05       8.172009e-07 NaN NaN 

 

Since the p-value obtained from the ANOVA analysis for genotype, sex and 

interaction are not statistically significant (p < 0.05), it is concluded that genotype does 

not significantly affect the output outcome, sex does not significantly affect the output 

outcome and the interaction of genotype and sex does not significantly affect the output 

outcome. Although the p-values are not significant, the interaction graph in Figure 6.14 

can give some additional information. 

 

Figure 6.14 - Interaction plot for the first oscillatory potential latency. 
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In the graph in Figure 6.14, the interaction effect seem significant between 

genotype and sex because the lines are not parallel since approximately parallel factor 

lines indicate no interaction.  This interaction is also called an ordinal interaction because 

the lines do not intersect. We can see that the means for females are always lower than 

the means for males. 

Although the ANOVA table showed no significant interactions, these may exist 

between specific groups individually, so a multi-pair comparison analysis (post-hoc 

comparison) was performed using Tukey's HSD test, the results of which are shown in 

Table 6.16. 

 

Table 6.16 - Tukey's table for the first oscillatory potential latency. 

group1 group2 Diff Lower Upper q-value p-value 

(WT, F) (WT, M) 0.000099 -0.000940   0.001138   0.356628   0.9 

(NF1, F) (NF1, M) 0.000772  -0.000182   0.001726   3.031166   0.152443 

(WT, F) (NF1, F) 0.000493 -0.000714 0.001700   1.530197   0.680444 

(WT, M) (NF1, M) 0.000180 -0.000551   0.000911   0.923496   0.9 

 

Tukey’s table confirm that there is no relevant interaction for this characteristic. 

 

6.2.3.7. OP2 Amplitude 

For the amplitude of the second oscillatory potential, the Table 6.17 presents the 

ANOVA analysis. 

Table 6.17 ANOVA table for the second oscillatory potential amplitude. 

 df sum_sq mean_sq F PR(>F) 

C(Genotype) 1.0 6.583688e-10   6.583688e-10   0.311406   0.579083 

C(Sex) 1.0 4.310945e-09   4.310945e-09   2.039063   0.158958 

C(Genotype):C(Sex) 1.0 1.518078e-08   1.518078e-08   7.180461   0.009704 

Residual 55.0 1.162799e-07   2.114180e-09        NaN NaN 

 

The ANOVA table shows that the relevant interaction is between sex and 

genotype, presenting a p-value smaller than 0,05. 

To check if iterations are evident, the interaction plot shown in Figure 6.15 was 

created. 
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Figure 6.15 - Interaction plot for the second oscillatory potential amplitude. 

 

We can see that for males there are almost no visible differences, but among 

females the difference is clear, the mean value for the group (NF1, F) is higher than the 

average of the groups (WT, F). 

We know that treatment differences are statistically significant because of 

ANOVA analysis, but ANOVA does not tell us which treatments are substantially 

different from one another. To determine the pairs of significant different treatments, we 

will use Tukey's honestly significantly different (HSD) test to do multiple pairwise 

comparison (post hoc comparison) analysis for all unplanned comparisons presented in 

Table 6.18. 

 

Table 6.18 - Tukey's table for the second oscillatory potential amplitude. 

group1 group2 Diff Lower Upper q-value p-value 

(WT, F) (WT, M) 0.000020 -0.000033   0.000073   1.425765   0.721357 

(NF1, F) (NF1, M) 0.000052   0.000004   0.000101   4.050462   0.029307 

(WT, F) (NF1, F) 0.000060 -0.000002   0.000121   3.650524   0.058858 

(WT, M) (NF1, M) 0.000013 -0.000024   0.000050   1.287403   0.775561 

 

By analysing the p-values in Table 6.18 from Tukey's test it is possible to observe 

that exist significant interaction exists between genders in individuals NF1 and the p-

value for the interaction between (WT, F) and (NF1, F) is close to be significant (0,059).  
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6.2.3.8. OP2 Latency 

Table 6.19 presents de ANOVA table for the second OP latency. 

Table 6.19 - ANOVA table for the second oscillatory potential latency. 

 df sum_sq mean_sq F PR(>F) 

C(Genotype) 1.0 6.907996e-08 6.907996e-08   0.012030   0.913060 

C(Sex) 1.0 2.536500e-05   2.536500e-05   4.417346   0.040169 

C(Genotype):C(Sex) 1.0 1.252463e-06   1.252463e-06   0.218118   0.642323 

Residual 55.0 3.158175e-04   5.742136e-06        NaN NaN 

 

As the p-value obtained from the ANOVA analysis for sex is statistically 

significant (p < 0.05), we conclude that sex significantly affects the production outcome. 

Since the sex effect is significant, let's view the interaction graph in Figure 6.16 for 

interaction effects. 

 

Figure 6.16 - Interaction plot for the second oscillatory potential latency. 

In the interaction plot, the interaction effect is not significant between genotype 

and sex because the lines are close to parallel which indicates that there is no 

genotype/genotype interaction as the ANOVA indicates. However, the means differ in 

genotype, as determined by the ANOVA table. 

ANOVA analysis shows us that treatment differences are statistically significant, 

but it doesn't tell us which treatments are significantly different from one another. We 

will use Tukey's honestly significantly difference (HSD) test, Table 6.20, to undertake 

multiple pairwise comparison (post hoc comparison) analysis for all unplanned 

comparisons to discover the pairs of significant different treatments. 
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Table 6.20 - Tukey's table for the second oscillatory potential latency. 

group1 group2 Diff Lower Upper q-value p-value 

(WT, F) (WT, M) 0.001836 -0.000919   0.004591   2.496707   0.301010 

(NF1, F) (NF1, M) 0.001177 -0.001353   0.003706   1.742809   0.597154 

(WT, F) (NF1, F) 0.000414 -0.002786   0.003613   0.484685   0.900000 

(WT, M) (NF1, M) 0.000245 -0.001691   0.002182   0.474739   0.900000 

 

Tukey’s table confirm that the only relevant interaction is between sex. 

 

6.2.3.9. OP3 Amplitude 

Now, for the amplitude of the third OP, the Table 6.21 presents the ANOVA 

analysis. 

Table 6.21 - ANOVA table for the third oscillatory potential amplitude. 

 df sum_sq mean_sq F PR(>F) 

C(Genotype) 1.0 6.412174e-10   6.412174e-10   0.082638   0.774834 

C(Sex) 1.0 5.873044e-08   5.873044e-08   7.569023   0.008024 

C(Genotype):C(Sex) 1.0 2.564107e-08   2.564107e-08   3.304553   0.074536 

Residual 55.0 4.267624e-07   7.759316e-09        NaN NaN 

 

The ANOVA table suggests that sex is a determining factor for distinguishing an 

OP3, it also indicates that there may be relevant gene/genotype interactions and therefore 

one should pay attention to the Tukey table. First, I should look at the interactions plot 

presented in figure 6.17. 

 

Figure 6.17 - Interaction plot for the third oscillatory potential amplitude. 
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By the analysis of figure 6.17 we can see that the averages of the WT individuals 

have a lower range of values than the NF1 individuals. There is a clear difference between 

sexes, with all female individuals having higher mean values than male individuals, and 

there are also significant differences between NF1 female individuals and WT 

individuals. For all comparisons, it’s used Tukey's honestly significant difference test, 

Table 6.22, to conduct post hoc comparison analysis to find the pairs of significant distinct 

treatments. 

 

Table 6.22 - Tukey's table for the third oscillatory potential amplitude. 

group1 group2 Diff Lower Upper q-value p-value 

(WT, F) (WT, M) 0.000020 -0.000081   0.000121   0.737586   0.900000 

(NF1, F) (NF1, M) 0.000114   0.000021   0.000207   4.604684   0.010158 

(WT, F) (NF1, F) 0.000076 -0.000042   0.000193   2.409764   0.331619 

(WT, M) (NF1, M) 0.000019 -0.000053   0.000090   0.983574   0.894590 

 

By the analysis of Table 6.22, it’s confirmed that there’s relevant interactions in 

sex and between (NF1, M) and (NF1, F). 

 

6.2.3.10. OP3 Latency 

As previous performed, the ANOVA table is presented (Table 6.23). 

 

Table 6.23 - ANOVA table for the third oscillatory potential latency. 

 df sum_sq mean_sq F PR(>F) 

C(Genotype) 1.0 0.000001   0.000001   0.092418   0.762273 

C(Sex) 1.0 0.000067   0.000067   4.316029   0.042437 

C(Genotype):C(Sex) 1.0 0.000008   0.000008   0.526931   0.470978 

Residual 55.0 0.000854   0.000016        NaN NaN 

 

 

ANOVA analysis only suggests that sex is a determinant parameter for 

differentiating groups. 

The interaction plot is presented in Figure 6.18. 
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Figure 6.18 - Interaction plot for the third oscillatory potential latency. 

 

In the graph in Figure 6.18, the interaction effect may not be significant between 

genotype and sex because the lines are almost parallel (approximately parallel factor lines 

indicate no interaction - additive model). This interaction is also called an ordinal 

interaction because the lines do not intersect. However, there are clear differences 

between sexes since the values for female individuals are higher than the values presented 

for males. These assumptions should be verified by analyzing Table 6.24. 

 

Table 6.24 - Tukey's table for the third oscillatory potential latency. 

group1 group2 Diff Lower Upper q-value p-value 

(WT, F) (WT, M) 0.003318 -0.001214   0.007850   2.743196   0.223819 

(NF1, F) (NF1, M) 0.001632  -0.002528   0.005793   1.469964   0.704040 

(WT, F) (NF1, F) 0.000921 -0.004342   0.006184   0.655548   0.900000 

(WT, M) (NF1, M) 0.000765 -0.002421   0.003951   0.899419 0.900000 

 

By analysing the p-values in Table 6.24 from Tukey's test it’s possible to verify 

that sex is the only relevant parameter.  

 

6.2.3.11. OP4 Amplitude 

ANOVA analysis is presented in Table 6.25. 

Table 6.25 - ANOVA table for the fourth oscillatory potential amplitude. 

 df sum_sq mean_sq F PR(>F) 

C(Genotype) 1.0 1.519228e-09   1.519228e-09   0.572236   0.452600 

C(Sex) 1.0 1.699741e-08   1.699741e-08   6.402288   0.014290 
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C(Genotype):C(Sex) 1.0 6.007560e-09   6.007560e-09   2.262822   0.138234 

Residual 55.0 1.460193e-07   2.654897e-09        NaN NaN 

 

As the p-value obtained from the ANOVA analysis for sex is statistically 

significant (p < 0.05), we conclude that sex significantly affects the production outcome. 

Since the sex effect is significant, let's view the interaction graph in Figure 6.19 for 

interaction effects. 

 

Figure 6.19 - Interaction plot for the fourth oscillatory potential amplitude. 

In the interaction plot, the interaction effect is not significant between genotype 

and sex because the lines are close to parallel which indicates that there is no 

genotype/genotype interaction which is in accordance with ANOVA result. 

ANOVA analysis shows us that treatment differences are statistically significant, 

but it doesn't tell us which treatments are significantly different from one another. We 

will use Tukey's honestly significantly difference (HSD) test, Table 6.26, to undertake 

multiple pairwise comparison (post hoc comparison) analysis for all unplanned 

comparisons to discover the pairs of significant different treatments. 

 

Table 6.26 - Tukey's table for the fourth oscillatory potential amplitude. 

group1 group2 Diff Lower Upper q-value p-value 

(WT, F) (WT, M) 0.000013 -0.000046   0.000073   0.852965   0.900000 

(NF1, F) (NF1, M) 0.000059   0.000005   0.000114   4.074637   0.028043 

(WT, F) (NF1, F) 0.000044 -0.000025   0.000112   2.373884   0.344988 

(WT, M) (NF1, M) 0.000002 -0.000040   0.000044   0.186529   0.900000 
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Tukey’s table confirm that sex is a relevant interaction but is also shows that the 

interaction (WT, M)/(NF1, F) is relevant since it has a p-value smaller than 0,05. 

 

6.2.3.12. OP4 Latency 

To find statistical relevant values for the latency of OP4, the Table 6.27 was 

generated to perform the ANOVA analysis. 

Table 6.27 - ANOVA table for the fourth oscillatory potential latency. 

 df sum_sq mean_sq F PR(>F) 

C(Genotype) 1.0 0.000021   0.000021   0.937541   0.337150 

C(Sex) 1.0 0.000052   0.000052   2.300833   0.135032 

C(Genotype):C(Sex) 1.0 0.000035   0.000035   1.534657   0.220676 

Residual 55.0 .001246   0.000023        NaN NaN 

 

Because the p-values for genotype, sex, and interaction from the ANOVA analysis 

are not statistically significant (p > 0.05), it is concluded that genotype has no effect on 

the output outcome, sex has no effect on the output outcome, and the interaction of 

genotype and sex has no effect on the output outcome. 

The interaction graph in Figure 6.20 can provide some extra information, even 

though the p-values are not significant. 

 

Figure 6.20 - Interaction plot for the fourth oscillatory potential latency. 

  

 

The interaction effect between genotype and sex seems to be significant since the 

lines in Figure 6.20 are not parallel. When comparing sex in NF1, males and females have 
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nearly no noticeable differences, while in WT have a distinct difference: the mean value 

for the group (WT, M) is greater than the mean value for the groups (WT, F). 

Tukey's HSD test was used as a post-hoc comparison to confirm the ANOVA 

table, which revealed significant interactions; the results are presented in Table 6.28. 

 

Table 6.28 - Tukey's table for the fourth oscillatory potential latency. 

group1 group2 Diff Lower Upper q-value p-value 

(WT, F) (WT, M) 0.004004 -0.001469   0.009477   2.741293   0.224360 

(NF1, F) (NF1, M) 0.000530  -0.004494   0.005555   0.395336   0.900000 

(WT, F) (NF1, F) 0.001339 -0.005016   0.007695   0.789576   0.900000 

(WT, M) (NF1, M) 0.002134 -0.001713   0.005982   2.078693   0.463574 

 

We can check that there is no significant interaction by looking at the p-values in 

Table 6.28 from Tukey's test. 

 

6.3. Classification Algorithm  

As mentioned before, the algorithm chosen to study the possibility of determining 

an individual's genotype by analyzing his ERG was Random Forest (RF), based on the 

bibliography. To develop it, all the functions used belong to the sklearn library. 

An algorithm was created that is intended to be able to make binary decisions and 

for this the RandomForestClassifier() function was used. 

Initially the dataset was prepared, being the points detected at the end of the step 

presented in section 6.1, the WT genotype was replaced by 0 and the NF1 by 1 to start 

training the algorithm.  

An algorithm study was conducted to study which number of decision trees would 

have the highest accuracy. The results are shown in figure 6.21. 
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Figure 6.21 - Decision Trees number exploration. 

 

Regarding the results of this analysis, the algorithm was trained with 40 decision 

trees. 

The function train_test_split receives the data to train and the size of the test, in 

this case a test was performed with 60% of the initial dataset and splits data into training 

and testing sets. To train the algorithm the function RandomForestClassifier is then 

applied that also takes n_estimators as a parameter, the number of trees used is 40 trees. 

The results obtained are shown in Figure 6.22, where the graph on the left shows 

the actual genotypes tested and the graph on the right or predicted by the algorithm. 

 

Figure 6.22 - Results of the application of the algorithm. 
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It can be seen that some results do not correspond with the actual genotype of the 

test. It remains to be evaluated the algorithm, so the confusion matrix and a classification 

report were generated, the confusion matrix is represented in Table 6.29. 

 

Table 6.29 - Confusion Matrix of predictions. 

 
 Real Value 

 Positive Negative 

Predicted Value 
Positive 12 5 

Negative 12 7 

 

Some results do not correspond with the actual genotype of the test. It remains to 

evaluate the algorithm, so the confusion matrix and a classification report were generated, 

the confusion matrix is represented in Table 6.28. 

 

Table 6.30 - Classification Report of the Algorithm. 

 Precision Recall F1-score Support 

WT 0.50 0.71 0.59 17 

NF1 0.58 0.37 0.45 19 

Accuracy - - 0.53 36 

Macro avg 0.54 0.54 0.52 36 

Weighted avg 0.54 0.53 0.51 36 

The accuracy achieved for by our random forest classifier with 40 trees is 52,78%, 

being higher, as previously analyzed, in the detection of WT (59%). 

The reported averages include macro average (averaging the unweighted mean 

per label), weighted average (averaging the support-weighted mean per label), and sample 

average (only for multilabel classification). 
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7. Conclusions 

This section presents a general summary of all the work done, exploring the main 

results obtained and objectives achieved, and referring the main limitations of the work. 

 

7.1. Conclusion 

One of the initial objectives of this development was to automate and facilitate the 

reading, processing and detection of points of interest of ERGs, since the currently 

implemented solution, the RETI-port software, presents problems and difficulties for the 

user such as: lack of automation in the process of signal collection since after the 

collection the user needs to manually apply filters for extraction of b-wave and OPs for 

each light intensity, difficulty in identifying regions and points of interest, as the user 

needs prior knowledge of the typical ranges of each component to manually select the 

point of interest. In addition, the method of data analysis is merely numerical through the 

table of values obtained after the extraction of characteristics, which do not facilitate the 

visualization, and meaning of the results. As a solution to the problem presented by the 

analysis interface of the RETI-port program, two programs were developed. While the 

program developed in MATLAB is mainly intended to analyze all the ERGs collected for 

the same individual, for the 7 light intensities tested, the program developed in Python, 

although it also has the function of analyzing a single file, it is intended to analyze several 

files for the same light intensity. About this development it is possible to conclude that 

both programs reached the automation objectives and are a good alternative to the current 

process, being the Python program more complete and robust, since, having the capacity 

to perform the same processing as the one developed in MATLAB, it presents capabilities 

such as multiple file analysis, distinction by genotype and sex, more infographic 

alternatives such as plots, scatter plots, box plots, interaction plots, QQ-plots and 

histograms. Although MATLAB also has the equivalent functions, these were only 

developed in Python since the entire development of the statistical analysis and 

classification algorithm required it. 

Besides the signal processing difficulties, it was not known what correlation these 

data have and whether they differentiate between pathological and non-pathological. 

Therefore, these data needed a statistical study with several ERGs to define groups of 
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differentiating characteristics. Two independent t-tests were performed, one to sex and 

other to genotype, to see if statistical evidence exists that the related population means 

differ substantially. A two-way ANOVA was employed in this study to see how the two 

independent factors affected the dependent variables when they were combined.  

The results of each test applied to each of the collected signal characteristics for 

the two tested intensities (2 highest intensities) are summarized in Table 6.1. 

 

Table 7.1 - Differential parameters found in the statistical analyses. 

Characteristics 
Intensity 6 Intensity 7 

T-test Two-way ANOVA T-test Two-way ANOVA 

a-Wave Amplitude (V) Sex Sex - ≈ Sex 

a-Wave Latency (s) - - Genotype ≈ Genotype 

b-Wave Amplitude (V) - - - - 

b-Wave Latency (s) - - - - 

OP1 Amplitude (V) Sex 
Sex and 

Sex:Genotype 
- - 

OP1 Latency (s) - - - - 

OP2 Amplitude (V) Sex 
Sex and 

Sex:Genotype 
- (Sex:Genotype 

OP2 Latency (s) - - Sex Sex 

OP3 Amplitude (V) - - Sex 
Sex and 

Sex:Genotype 

OP3 Latency (s) - - Sex Sex 

OP4 Amplitude (V) - - Sex 
Sex and 

Sex:Genotype 

OP4 Latency (s) - - - - 

 

It can be concluded from the analysis of table 6.1 that ERG parameters mainly 

related to inhibitory oscillatory activity reveal subtle sex-dependent alterations. For 

various oscillatory potentials males and females exhibit opposite changes associated with 

the transgenic background. The parameter that, in the ERG analysis of the highest light 

intensity, revealed itself as differentiating between groups by genotype was the a-wave 

latency, which was noticeably higher in individuals with NF1. Therefore, this 

characteristic of the signal represents the main effect of NF1 on the visual system 

circuitry. 

Finally, it was intended to test the ability to predict previously reported cognitive 

deficits by using the ERG features to form a machine learning classifier based on the 
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significant clusters found for some interactions between individuals, a classifier that is 

intended to be able to receive a signal and return the likely diagnosis. Based on the 

literature, a simple RF algorithm was created to predict the genotype of the individuals 

tested. The algorithm created showed a low accuracy (53%), some results do not 

correspond with the actual genotype of the test, this is due to the fact that the differences 

between genotypes are not clear or easily detected. The algorithm can be improved by 

increasing the number of files available, restricting the reading by sex or even analyzing 

only male individuals since the sex differences found in ERG data can confuse the 

algorithm and are a small, unbalanced portion of the dataset. 

In conclusion, the thesis objectives were achieved, having automated the process 

of reading, processing and detecting dots, having found the characteristic of the signal 

representing the main effect of NF1 on the visual system and having tested the ability to 

predict previously reported cognitive deficits by using the ERG features. 

 

7.2. Future Work 

Regarding the work done, there are some processes that can be improved in the 

future, such as the statistical analysis that could be performed for all the different light 

intensities, once there are the latency estimates to restrict the search windows in order to 

improve the detection of points of interest. The machine learning classificatory algorithm 

can be improved by increasing the dataset size and better defining the differentiating 

parameters between genotypes. Other types of algorithms should also be tested in order 

to find the best possible accuracy. 

In order to better support the hypothesis of differences in the visual system in 

individuals with neurodevelopmental disorders, several other non-invasive imaging 

techniques and neurophysiology of the visual system should be used in the future to 

ascertain the diagnostic potential of each technique, these include optical coherence 

tomography (OCT), optomotor test performance (OMR) and functional magnetic 

resonance imaging (fMRI). The computer tools developed in this work should be 

improved in order to perform the analysis of images and performances in the various 

techniques and correlation between the modalities. 
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Attachment A 

ID Sex Genotype Visual Acuity Notes 

926.0. F WT 0,050 Noise 

926.1. F WT 0,350 Noise 

926.3. F NF1 0,400 Noise 

926.4. F WT 0,350 Noise 

926.5. F NF1 0,300  

926.6. F NF1 0,100 Noise 

929.1. M NF1 0,400  

929.5. M NF1 0,350 Example of difficult b-wave filter at 0.3 

929.6. M WT 0,300  

930.0. F NF1 0,400 Example of difficult OP times at 0.03 

930.3. F WT 0,350  

930.4. F NF1 0,350  

942.0. M WT 0,400  

942.2. M WT 0,500 Example of difficult b-wave filter at 0.3 

942.3. M NF1 0,500  

942.6. M WT 0,450  

943.1. F NF1 0,400  

943.4. F WT 0,450 Noise 

943.5. F NF1 0,375  

943.7. F WT 0,350 Extreme noise 

958.1. M NF1  Example of difficult b-wave filter at 9.49 

958.3. M NF1   

958.4. M WT  Example of difficult b-wave filter at 0.3 and 9.49 

958.6. M WT   

959.0. F WT   

959.2. F NF1   

959.5. F WT   

988.1. M NF1  Noise, OP not convincing 

988.3. M WT   

988.5. M NF1   

988.7. M NF1   

988.8. M WT   

988.9. M WT   

990.0. M WT   

990.2. M WT  Noise 

1005.0. M NF1 0,450  

1005.1. M NF1 0,400 No whiskers 

1005.4. M NF1 0,450 PF repeated, the animal maybe moved 
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1005.5. M WT 0,400 No whiskers 

1005.8. M NF1 0,450  

1005.9. M WT 0,400  

1017.0. M WT 0,400  

1017.1. M WT 0,450  

1017.3. M NF1 0,450  

1018.2. F NF1 0,500  

1059.1. M WT 0,500  

1059.2. M NF1 0,450  

1059.3. M NF1 0,400  

1059.4. M WT 0,400 Right eye with blood 

1059.8. M WT 0,375 Right eye opaque 

1059.10. M WT 0,400 Had more anesthesia than others 

1085.2. M NF1 0,400  

1085.3. M WT 0,400  

1085.4. M NF1 0,400  

1085.9. M NF1 0,450  

1085.10. M WT 0,400  

1087.0. M NF1 0,400  

1087.1. M NF1 0,450  

1087.7. M NF1 0,450  

1087.9. M WT 0,500  
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Attachment B - Channel 15 
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Attachment C - Channel 13 

 


