
In situ real-time Zooplankton Detection and
Classification

PEDRO NUNO DE QUEIRÓS SALCEDAS DE CARVALHO GERALDES
dezembro de 2021

Instituto Superior de Engenharia do Porto

In situ real-time Zooplankton

Detection and Classification

Pedro Nuno de Queirós Salcedas de Carvalho Geraldes

Master’s Degree in Electrical and Computer Engineering

Specialization Area in Autonomous Systems

Supervisor: Alfredo Manuel Oliveira Martins

December 3, 2021

This page was intentionally left blank.

Ao meu pai, de quem nasceu o gosto por este curso, e à minha tia Bela que, como ele,

tinha todo o gosto em vê-lo terminado.

This page was intentionally left blank.

Abstract

Zooplankton plays a key-role on Earth’s ecosystem, emerging in the oceans and rivers

in great quantities and diversity, making it an important and rather common topic on

scientific studies. It serves as prey for many large living beings, such as fish and whales,

and helps to keep the food chain stabilized by acting not only as prey to other animals

but also as a consumer of phytoplankton, the main producers of oxygen on the planet.

Zooplankton are also good indicators of environmental changes, such as global warming

or rapid fluctuations in carbon dioxide in the atmosphere, since their abundance and

existence is dependent on many environmental factors that indicate such changes. Not

only is it important to study the numbers of zooplankton in the water masses, but also

to know of what different species these numbers are composed of, as different species can

provide information of different environmental attributes.

In this thesis a possible solution for the zooplankton in situ detection and classifi-

cation problem in real-time is proposed using a portable deep learning approach based

on CNNs (Convolutional Neural Networks) deployed on INESC TEC’s MarinEye system.

The proposed solution makes use of two different CNNs, one for the detection problem and

another for the classification problem, running in MarinEye’s plankton imaging system,

and portability is guaranteed by the use of the Movidius™ Neural Compute Stick as the

deep learning motor in the hardware side. The software was implemented as a ROS node,

which guarantees not only portability but facilitates communication between the imaging

system and other MarinEye’s modules.

Keywords: Zooplankton, MarinEye, object detection, image classification, Deep Learn-

ing, Convolutional Neural Networks, Movidius™ Neural Compute Stick.

1

This page was intentionally left blank.

Resumo

O zooplâncton representa um papel fundamental no ecossistema do planeta, surgindo

nos oceanos e rios em grandes quantidades numa elevada diversidade de espécies, sendo um

objecto de estudo comum em publicações e artigos produzidos pela comunidade cient́ıfica.

A sua importância vem de entre outros factores do facto de ser a principal fonte de alimento

de uma grande parte da vida marinha, desde pequenos peixes a baleias, e de ser um grande

consumidor de fitoplâncton, a principal fonte de oxigénio do planeta. O zooplâncton

é também um bom indicador de alterações ambientais, como o aquecimento global ou

variações rápidas na quantidade de dióxido de carbono na atmosfera, uma vez que a

sua abundância depende de diversos factores ambientais relacionados com tais mudanças,

sendo não só importante perceber em que quantidades existe nas massas de água do

planeta, mas também por que diferentes espécies está distribúıdo.

Nesta tese é apresentada uma posśıvel solução para a detecção e classificação de

zooplâncton in situ e em tempo real, recorrendo a uma abordagem facilmente portável

de Deep Learning, baseada em Redes Neuronais Convolucionais implementado no sistema

MarinEye do INESC TEC. A solução proposta faz uso de duas arquitecturas de redes

diferentes, uma dedicada à tarefa de detecção do zooplâncton, e outra dedicada à sua

classificação, implementadas no módulo de aquisição de imagens de plâncton do sistema

MarinEye. A portabilidade e flexibilidade do sistema foi garantida através do uso da Mo-

vidius™ Neural Compute Stick como motor de deep learning, assim como da implementação

do software como um nó de ROS, que garante não só a portabilidade do sistema, como

também permite uma facilidade de comunicação entre os diferentes módulos do MarinEye.

Palavras-chave: Zooplankton, MarinEye, detecção de objectos, classificação de imagens,

Deep Learning, Redes Neurais Convolucionais, Movidius™ Neural Compute Stick.

3

This page was intentionally left blank.

Contents

1 Introduction 15

1.1 Contextualization . 15

1.2 Motivation . 17

1.3 Objectives . 18

1.4 Thesis Structure . 19

2 State Of The Art 21

2.1 Plankton Imaging Systems . 21

2.1.1 Lightframe On-sight Keyspecies Investigation 21

2.1.2 Video Plankton Recorder II . 23

2.1.3 Zooplankton Visualization and Imaging System 25

2.1.4 GUARD1 . 28

2.1.5 Scripps Plankton Camera . 31

2.1.6 Discussion on Plankton Imaging Systems 32

2.2 Plankton Classification Approaches . 34

3 Fundamentals 39

3.1 Learning in Artificial Intelligence . 39

3.1.1 Neurons and Layers . 40

3.1.2 Deep Learning . 44

3.2 How does a Neural Network learn? . 45

3.2.1 Cost Function . 45

3.2.2 Gradient Descent . 46

3.2.3 Backpropagation . 50

3.2.4 Training an Artificial Neural Network 55

3.3 Convolutional Neural Networks . 59

3.3.1 Convolutions . 60

3.3.2 Layers in a CNN . 62

3.3.3 CNN architectures - Classification 68

3.3.4 CNN architectures - Detection . 75

5

4 System Architecture 79

4.1 Solution Description . 79

4.1.1 MarinEye’s Imaging System . 79

4.1.2 CNN Architectures and Engine . 80

4.2 High-Level System Architecture . 82

5 Implementation 85

5.1 First Experiments . 85

5.1.1 Datasets . 85

5.1.2 Experimental Configuration . 87

5.1.3 Results on the First Experiments . 88

5.2 Improvements on Previous Work . 92

5.2.1 Datasets . 92

5.2.2 CNN training . 94

5.2.3 Software . 95

6 Results 97

6.1 Detection . 97

6.2 Classification . 100

7 Conclusions 107

7.1 Achievements and Future Work . 108

6

List of Figures

1.1 The incredible diversity of plankton. 16

1.2 MarinEye system with the zooplankton imaging sensor. 18

2.1 The LOKI system and it’s main components. 22

2.2 Regions of Interest obtained with LOKI. 23

2.3 The VPRII system. 24

2.4 Flowchart of VPRII image processing. 25

2.5 The ZOOVIS system. 26

2.6 Results from the ZOOVIS ROI segmentation method. 27

2.7 Construction of features for example ROI. 28

2.8 Different enclosures for the GUARD1 system. 29

2.9 GUARD1 image processing steps. 30

2.10 The SPC system. 32

2.11 ZooplanktoNet architecture. 35

2.12 Hybrid architecture proposed by Jialun Dai et al. 36

2.13 Hybrid architecture proposed by Jinna Cui et al. 37

3.1 Possible classification model for a Copepod. 41

3.2 The Perceptron. 41

3.3 Activation functions commonly used in Neural Networks. 42

3.4 Comparison between a biological neuron and an artificial neuron. 42

3.5 An example Neural Network with two hidden layers. 43

3.6 Example of a Neural Network for zooplankton image classification. 43

3.7 Difference between Machine Learning and Deep Learning. 44

3.8 Finding a minima of a one input function. 47

3.9 Finding a minima of a two input function. 48

3.10 Example output of an untrained network. 50

3.11 Changes that increase an output neuron’s activation. 52

3.12 Representation of Backpropagation. 54

3.13 Representation of a Convolutional Neural Network. 59

3.14 Feature learning and classification parts of a CNN. 60

7

3.15 Convolution of an input matrix with a 3x3 kernel. 60

3.16 Example of padding and stride. 61

3.17 Convolution of the same image with different kernels. 61

3.18 Local connectivity in Convolutional Layers. 62

3.19 2D visualization of left panel in Figure 3.18. 64

3.20 Activation maps in Convolutional Layers. 64

3.21 Visualization of detected features in a trained CNN, from [43]. 65

3.22 Effect of a ReLU on an activation map. 66

3.23 Pooling layer representation. 67

3.24 Representation of Fully Connected layers. 68

3.25 LeNet-5 architecture [44]. 69

3.26 AlexNet architecture [30]. 70

3.27 Inception module proposed by Szegedy et al. [46]. 71

3.28 GoogLeNet architecture [46]. 72

3.29 VGG-16 architecture (from [47]). 73

3.30 Residual connections block. 73

3.31 Comparison between conventional convolution and separate convolution. . . 74

3.32 The YOLO model [51]. 75

3.33 SSD architecture [54]. 76

3.34 SSD methodology [54]. 77

4.1 MarinEye’s plankton imaging system. 80

4.2 Movidius™ Neural Compute Stick. 81

4.3 High level architecture. 82

4.4 Software Architecture. 83

5.1 Experimental setup with MarinEye’s imaging system components. 86

5.2 Example images obtained with the experimental setup. 86

5.3 Example images from the Kaggle dataset. 87

5.4 Detection results from the first iteration. 88

5.5 Precision-Recall curve for MobileNet-SSD 89

5.6 Precision and Recall curves for MobileNet-SSD. 90

5.7 Accuracy over iterations from ZooplanktoNet 91

5.8 Classification results from ZooplanktoNet over detected ROIs. 91

5.9 Example images from the ZooScan dataset. 93

5.10 Examples of data augmentation. 94

5.11 Example images of created datasets at various threshold values. 95

6.1 Tiny-YOLO-V3 training loss per iteration. 97

6.2 Precision and Recall curves for Tiny-YOLO-V3. 98

8

6.3 Precision-Recall curve for Tiny-YOLO-V3. 98

6.4 Detection results of Tiny-YOLO-V3. 99

6.5 Classification CNNs training and test loss during training. 100

6.6 Classification networks top-1 and top-5 accuracies over iteration. 101

6.7 Confusion matrices of all classification networks. 104

6.8 Confusion matrices of all classification networks on the 170 threshold dataset.105

9

This page was intentionally left blank.

List of Tables

5.1 Detection error analysis . 89

5.2 Inference speed results . 92

5.3 Classification networks training configuration 94

6.1 Training results . 102

6.2 Per class accuracy . 102

6.3 Accuracy on Detection extracted images with different threshold values . . 103

6.4 Average forward pass per Network . 106

11

This page was intentionally left blank.

List of Abbreviations

2D Two Dimensional

3D Three Dimensional

AI Artificial Intelligence

ANN Artificial Neural Networks

API Application Programming Interface

CCD Charge Coupled Device

CHDK Canon Hack Development Kit

CIIMAR Centro Interdisciplinar de Investigação Marinha e Ambiental

CLAHE Contrast Limited Adaptive Histogram Equalization

CM Confusion Matrix

CNN Convolutional Neural Network

CPU Central Processing Unit

DL Deep Learning

DNA Deoxyribonucleic Acid

DNN Deep Neural Network

FPGA Field Programmable Gate Array

FPS Frames Per Second

GPU Graphics Processing Unit

HOG Histogram of Oriented Gradients

INESC TEC Instituto de Engenharia de Sistemas e Computadores Tecnologia e

Ciência

IR Intermediate Representation

ISEP Instituto Superior de Engenharia do Porto

ISIIS In Situ Ichthyoplankton Imaging System

k-NN k-Nearest Neighbor

LMDB Lightning Memory-Mapped Database

LOKI Lightframe On-sight Keyspecies Investigation

13

LSA Laboratório de Sistema Autónomos

LVQ Learning Vector Quantization

mAP mean Average Precision

ML Machine Learning

MSE Mean Squared Error

MSER Maximally Stable Extremal Region

NCS Neural Compute Stick

NMDEE Normalized Multilevel Dominant Eigenvector Estimation

NN Neural Network

PASCAL Pattern Analysis, Statistical modelling and Computational Learning

PCA Principal Component Analysis

PkID Plankton Identifier

RAM Random Access Memory

ReLU Rectified Linear Unit

RF Random Forest

RGB Red Green Blue

RNA Ribonucleic Acid

ROI Region Of Interest

ROS Robot Operating System

SBC Single Board Computer

SDK Software Development Kit

SGD Stochastic Gradient Descent

SHAVE Streaming Hybrid Architecture Vector Engine

SIFT Scale Invariant Feature Transform

SPC Scripps Plankton Camera

SSD Single Shot Multibox Detector

SVM Support Vector Machine

TEDI Tese/Dissertação

USB Universal Serial Bus

VOC Visual Object Classes

VPR Video Plankton Recorder

VPU Vision Processing Unit

WHOI Woods Hole Oceanographic Institution

ZOOMIE Zooplankton Multiple Image Exclusion

ZOOVIS Zooplankton Visualization and Imaging System

14

Chapter 1

Introduction

Never has the idiom “more than meets the eye” been truer than when referring to

Earth’s oceans. Because they cover around 71% of Earth’s surface and around 90% of

it’s biosphere, with depths so immense that not even the Sun’s light can reach them, and

pressures so overwhelming that can easily crush steel submarines, they have been able to

hide most of their secrets from humanity. But even if a scuba diver could go for a swim

with a flashlight and a magical suit that would resist the pressure, and if he covered the

entire 1,335,000,000 km3 of volume the oceans occupy on Earth, he would still be unaware

of many of the secrets the oceans hide, because in the ocean there is a lot more than meets

the eye.

One of the most important inhabitants of the oceans, despite its small size, is plankton.

The study of these beings is a hot topic in the scientific community, with an ever increasing

growth of the state-of-the-art in their detection and classification. This work proposes

novel techniques as an attempt to improve the detection and classification of plankton, in

an in situ real-time scenario.

1.1 Contextualization

Our oceans are abundant with creatures known as plankton. Plankton (from the

Greek planktos, meaning wanderer or drifter) are by definition drifting living organisms

with limited movement capabilities that inhabit most of Earth’s water masses. Their sizes

range from less than 0.2 µm to more than 20 cm. The diversity of plankton is well observed

in Figure 1.1. Although the term plankton involves an enormous variety of species, they

are usually divided in two main groups: phytoplankton and zooplankton.

Phytoplankton consist of bacteria, protists, and mostly of single celled plants. They

are primary producers, or autotrophs, meaning that they can produce their own food,

without need to consume other living organisms to survive. Although all phytoplankton

perform photosynthesis, there are some that get additional energy by consuming other

15

Figure 1.1: The incredible diversity of plankton. (Christian Sardet / Plankton Chronicles

[1])

organisms. Phytoplankton consume carbon dioxide and release oxygen, and scientists

estimate that 50% to 80% of Earth’s oxygen is produced in the ocean, with the majority

coming from plankton. In fact, the smallest photosynthetic organism on Earth, a bacteria

called Prochlorococcus, produces up to 20% of the oxygen in our entire biosphere, a bigger

percentage than all of the tropical rainforests on land combined [2]. Phytoplankton are

also extremely important by making the foundation of the aquatic food web, feeding from

the microscopic zooplankton to the gigantic whales, directly or indirectly, and also plays

a key role in the global carbon cycle, responsible for regulating the planet’s temperature

[3]. But despite their importance, there are also dangers associated with phytoplankton.

Certain species produce powerful bio-toxins that can kill not only marine life but also

people that eat contaminated seafood. Also, when a massive bloom of phytoplankton

occurs, and the dead phytoplankton accumulates on the ocean floor, the bacteria that

decomposes it consume oxygen faster than it can be replenished, creating entire zones

where it is impossible to sustain life, known as dead zones [3].

Zooplankton are the heterotrophic group of plankton, meaning they can’t produce their

own food, and therefore must consume other living organisms to survive. These creatures

play a key role in the oceans ecosystem by serving as the major prey for many large living

beings, such as fish and whales, and keep the food chain stabilized by acting not only as

16

prey to other animals but also as a consumer of phytoplankton. Zooplankton are more

diverse than phytoplankton and include not only species that spend their whole life cycle

as plankton (holoplankton), but also organisms that spend only the initial stage of their

life as plankton (meroplankton), as is the case of fish eggs and larvae (icthyoplankton),

and crustaceans larvae, like crabs and shrimps. Zooplankton are also good indicators of

environmental changes, such as global warming or rapid increases in carbon dioxide in

the atmosphere, since their abundance and existence is dependent on many environmental

factors, functioning as aquatic “canaries-in-a-cage”, as they accumulate over days the

effects of hourly changes in water quality [4]. Like so, it’s understandable that sudden loss

of zooplankton population or a boom of it can result in a great disaster in the ecosystem.

But not only the amount of zooplankton gives valuable information to scientists. Some

studies found that the number of some zooplankton species in a water sample is highly

correlated to pH. In fact some species of Cladocera and Rotifera increase in abundance

when there is a decrease in the water’s pH [5], making species richness a better indicator of

water acidity than zooplankton density (animals per liter of water), as some more tolerant

species can increase in number and replace missing species. Given the facts presented,

and the importance of both phytoplankton and zooplankton, it gets obvious why they

are a common topic in ecological, biological and overall scientific studies, and why it is

important not only to study their numbers in the ocean, but also to know of which different

species those numbers are composed of.

1.2 Motivation

Most plankton detection and classification studies make use of sampled cultures and

don’t consider temporal demands or the behaviour of the beings in their natural habitat,

not being developed for real-time or in situ applications, existing however systems that

aim to study plankton in such conditions, as is the case of INESC TEC’s (Instituto de

Engenharia de Sistemas e Computadores, Tecnologia e Ciência) MarinEye system [6].

MarinEye is an autonomous system for marine integrated physical-chemical and bi-

ological monitoring based on contextualized environmental data. This system combines

imaging, acoustic, sonar, fraction filtration systems coupled to DNA/RNA preservation

and sensors (targeting physical-chemical variables) technologies in a modular, compact

system that can be deployed on fixed and mobile platforms. The imaging subsystem

includes a plankton imaging camera (targeting both zooplankton and phytoplankton) in

conjunction with a coherent illumination strobe, allowing ranging from small water volume

and larger plankton sizes imaging to wide environmental images. The MarinEye system

is illustrated in Figure 1.2.

In this thesis a real-time in situ zooplankton detection and classification system, based

on deep learning methods, developed in INESC TEC’s autonomous systems laboratory

17

Figure 1.2: MarinEye system with the zooplankton imaging sensor.

(LSA - Laboratório de Sistemas Autónomos), is proposed, aiming for a portable solution

that can be easily deployed in MarinEye. This project was developed in the scope of

the subject Thesis/Dissertation (TEDI) of the Master’s degree in Electrical and Com-

puter Engineering, field of Autonomous Systems, at Instituto Superior de Engenharia do

Porto (ISEP). Throughout this document the term real-time is used in the sense that the

methods for detection and classification of plankton occur in the moment the images are

obtained, and not in the reactive computing meaning normally used in computer science,

that programs must guarantee response within specified time constraints.

1.3 Objectives

The main goal of the project, as mentioned in Section 1.2, is to create an in situ zoo-

plankton detection and classification system in real-time, based on deep learning methods,

to implement in MarinEye. To achieve this goal the following objectives must be met:

• Study of existing deep learning methods and architectures;

• Collection of a dataset of zooplankton images;

• Apply data augmentation processes on datasets to reduce overfitting and increase

the system accuracy;

18

• Training of detection and classification networks for different datasets;

• Performance evaluation of different networks;

• Integrate system in MarinEye’s plankton imaging system;

• Testing and validation of the full system;

1.4 Thesis Structure

In Chapter 1 an introduction on the importance of zooplankton and the zooplankton

detection and classification problem is done. The motivation and contextualization for

this thesis is also provided, followed by the objectives that this work proposes to satisfy.

In Chapter 2 a review on existing state of the art based on the zooplankton detection

and classification problem is done.

In Chapter 3 some fundamentals on deep learning and more specifically on Convolu-

tional Neural Networks (CNN) are described.

In Chapter 4 the proposed system specifications are presented, along with the deci-

sion process for the different components chosen. The system’s high-level hardware and

software architectures are also shown.

In Chapter 5 the methods applied to fulfil the project requirements are explained, as

well as the different experiments made to evaluate the decisions taken for the project.

In Chapter 6 the results of the experiments done in the previous chapter are presented

and analysed.

Finally in Chapter 7 the overall analysis of the system and the implemented project is

done, with a final evaluation of the presented solution and how it satisfied the proposed

goals for the project, followed by future work to be implemented for further improvements.

19

This page was intentionally left blank.

Chapter 2

State Of The Art

In this chapter an overview of the approaches that other work followed in order to solve

problems related to this dissertation’s subject is presented. This chapter is subdivided into

two sections. In the first, a study of other plankton imaging systems is done with focus on

how the images are processed in order to detect the plankton and how the classification

is done on the detected regions of interest in the image (i.e. areas of the image that show

plankton organisms), and if this is achieved in situ or even in real-time. In the second

section, previous work related to the plankton classification problem that is not necessarily

related to any plankton imaging system in specific is presented.

The purpose of this chapter is to acknowledge other plankton imaging systems solutions

and possible challenges that must be dealt with to develop MarinEye’s plankton detection

and classification system, and to innovate the latter so that it can be a novelty in the field,

by studying other methods unrelated to any plankton imaging system.

2.1 Plankton Imaging Systems

In this section some plankton imaging systems are presented with focus on their de-

tection and classification methods, particularly if it is done in situ or even in real-time.

2.1.1 Lightframe On-sight Keyspecies Investigation

The Lightframe On-sight Keyspecies Investigation (LOKI) [7] system is a towable

system that consists on four main units: a plankton concentration net with a mesh size

of 200 µm, the main computer unit equipped with a variety of environmental sensors and

a Solid State Drive (SSD), the battery unit and the camera system. This system was

designed for vertical towing in the water column. In Figure 2.1 is a representation of the

LOKI system, with it’s main units highlighted.

As is visible in Figure 2.1, the plankton concentration net is attached to the camera

unit in such a way that during the vertical towing of the system, the captured plankton

21

Figure 2.1: The LOKI system and it’s main components (adapted from [7]).

organisms enter through the top of the net and flow through a channel that passes in front

of the camera. The camera system itself is composed of a Prosilica GC 1380H (Allied

Vision Technologies, Canada) monochromatic camera with a Pentax 2514-M lens, and a

resolution of 360× 1024 pixel at 30 fps (frames per second). For the experiments reported

in [7] a dark field illumination and an image resolution of 23 µm per pixel were used. The

detection of organisms in each frame is done in real-time, by using a threshold and size

filter to detect the regions of interest (ROI). These ROI are cut off from the image with

a proportional add-on to width and height of the bounding box of the object’s convex

hull, and stored on the storage device with a unique time stamp for posterior processing

[8]. In Figure 2.2 are visible some ROI captured by the LOKI system. The obtained ROI

were later imported into their own software LOKI Browser [8] in order to measure and

obtain a set of image parameters, such as object area in mm2, mean grey value of the

pixels or object circularity, used to build the classifier model. A total of 52 parameters

were measured. In order to remove images representing the same individuals the ZOOMIE

(Zooplankton Multiple Image Exclusion) software [9] was applied to all images, so that the

data can be representative of the plankton present in the environment. Image artifacts that

could prevent correct zooplankton classification were detected and removed using Adobe’s

Photoshop CS6. The improved images were later re-imported to LOKI Browser which

22

Figure 2.2: Regions of Interest obtained with LOKI (adapted from [8]).

re-measured the image parameters described earlier, to account for changing parameters

after removing image artifacts. For automatic classification a Random Forest [10] model

was built to distinguish between 114 different categories of zooplankton and other particles

using the parameters measured with the LOKI Browser for the nodes on the decision trees

of the model. The model used 500 trees with 30 predictors at each node. An overall

accuracy and specificity of 86% was obtained. For training and testing of the model a

dataset of 14558 manually identified images was randomly divided in two, one consisting

of 7252 images for training and the remaining 7306 for testing.

2.1.2 Video Plankton Recorder II

The Video Plankton Recorder II (VPRII) [11] is a distributed system developed for

rapid surveys of plankton ranging in size from 100 µm to 1 cm. It consists on two main

units: a towable unit with flight control and data acquisition computers, and shipboard

computers for supervisory control, data logging and processing, and visualization tools for

the user. It is possible to observe the VPRII towable unit in Figure 2.3.

The towable unit contains the plankton imaging system which consists on a 1 MP

Pulnix Inc model 1040 camera, that captures 1008× 1018 pixel monochromatic images at

30 fps, a manual zoom lens from 12.5 to 75 mm, and a 20 W strobe flashing at 30 Hz,

synchronized with the camera shutter. Similarly to the LOKI system this also uses a dark

field illumination technique. No image processing or object detection and classification is

done on the towable unit. Instead, all video and environmental data from the sensors are

sent from the towable unit to the shipboard station via a fiber optic cable, and there the

image processing takes place.

The image processing consisted on in-focus object detection, object feature extraction

and object feature classification. The following steps are described in more detail in

23

Figure 2.3: The VPRII system [11].

[12]. For the in-focus object detection the ROIs on the image are detected using an edge

detection method. The video is corrected for uneven illumination using a running average

of 500 frames, followed by a binarization of the images using a user defined brightness

threshold. Then the white regions of the image (blobs) are detected and if their size is

above a minimum defined value, they are used as a mask on the original image, in order

to determine the gradient in grayscale in that ROI, as a measure of the focus level of the

object. If it is above a user defined threshold, the ROI of the original image is saved for

the next processing steps. From the obtained ROI some feature extraction is applied to

use later in the object classification. The collected features include shape-based features

(moment invariants, granulometry, roundness, and Fourier descriptors), and texture-based,

like co-ocurrence matrices. The features are then combined into a single feature vector

with a total of 237 elements. Finally for classification a neural network classifier was

trained by manually sorting a set of ROI into different taxonomic groups, extracting and

transforming their feature vector, and using the Learning Vector Quantization (LVQ)

method [13] to fit neurons to these transformed feature vectors. The resulting classifier

model was then used to automatically classify the remaining ROI that were unused in the

training moment. The classification method resulted in an accuracy for 7 to 10 classes

from 60% to 90% depending on class. In Figure 2.4 is visible a flow chart of the image

processing method.

24

Figure 2.4: Flowchart of VPRII image processing (adapted from [11]).

2.1.3 Zooplankton Visualization and Imaging System

The Zooplankton Visualization and Imaging System (ZOOVIS) is as the name suggests

a system responsible for zooplankton imaging. Visible in Figure 2.5, this system contains

two pods seperated by a fixed distance, where the imaging sensor, optics and light source

are located. On the illumination pod a specialized optics system enable a higly collimated

red beam (625 nm) produced by an LED to be pulsed at 5 ms intervals. This beam travels

through the water column separating the two pods and in the camera pod it is focused

back to the camera by a set of lenses. The camera itself consists on a high resolution

digital camera with a 12 bit, 5.0 MP Charge Coupled Device (CCD) sensor capable of

acquiring images at 15 Hz. This setup allows for a long depth of field (30 cm), where

objects from 20 to 40 µm and larger can be resolved [14].

Although the ZOOVIS system doesn’t perform any image processing in real-time and

in situ, it just records the images, a study presented in [15] developed a plankton detection

and classification method for images obtained with the ZOOVIS system. In their work,

Hongsheng Bi et al. developed a semi-automated approach to analyze plankton taxa from

images acquired by ZOOVIS within turbid estuarine waters. They proposed a robust

procedure to separate objects from non-uniform background in complex noisy images from

turbid waters, because the existing procedures were either designed for systems that obtain

images from controlled environments with laboratory samples or in situ but from waters

25

Figure 2.5: The ZOOVIS system [14].

with high clarity. Their process includes four steps: segmenting ROIs, ROI denoising,

feature descriptors and taxonomic classification using a Support Vector Machine (SVM).

For the ROI segmentation the method used was considerably different from the ones

applied in the previous systems. Global threshold values for binarization, like the meth-

ods described previously use, have two main problems in the specific case of plankton

identification that occur often, being them:

1. Segmenting large gelatinous zooplankton into separate objects, being complex to

merge these parts together;

2. Missing smaller organisms;

Because of these problems, the authors implemented different approaches for different

object sizes. For larger objects (> 5000 pixels, at around 0.5 mm2) they applied Maxi-

mally Stable Extremal Regions (MSER). While the basic concept of MSER is similar to

thresholding, it differs by selecting only regions which remain nearly the same over a range

of thresholds. For the smaller organisms an adaptive threshold was developed. With these

two methods, the authors combined the two binary images resultant from each method to

obtain one final binary image, from which each detected ROI was then cropped from the

original image and saved. In Figure 2.6 the results of this method are seen.

After obtaining the ROIs the next step is to denoise them, since often an individual ROI

can contain multiple objects. For this the ROIs are converted to a binary image using

the global threshold method. The global threshold method can be used on individual

ROI because in these the background tends to be more uniform than on an entire image.

With the binarized ROI, the connected components (components that are part of the same

organism) are identified. Then the greyscale values of the largest connected component are

extracted from the original ROI and the rest of the connected components were assigned

with the average gray value. The use of the gray values in favor of the binary values was

to retain internal structure, with a special regard to gelatinous zooplankton, which are

organisms that given their transparency can provide better information with its texture

26

Figure 2.6: Results from the ROI segmentation method, (a) raw image from ZOOVIS,

(b) binary image from MSER approach, (c) binary image from adaptive thresholding, (d)

combined binary image with the segmented objects highlighted (adapted from [15]).

than with its shape. With the gray values extracted the texture features for each ROI are

then constructed.

To classify the denoised ROI into different classes, they are first normalized. Then

Histogram of Oriented Gradients (HOG) features are constructed to describe the shape for

each ROI. For this each normalized ROI is decomposed into small cells, each cell containing

16 × 16 pixels. Then each cell is represented by a histogram of edge orientations, with

a number of 9 orientation histogram bins. In Figure 2.7 the method of construction of

feature descriptors for example ROI is shown.

Classification of the ROI is done in a two step procedure using SVM techniques. In

the first step the SVM classifiers were trained using a manually created library composed

of three classes: gelatinous zooplankton, arrow-like and copepod-like. For this a library

containing 80 arrow-like, 65 copepod-like and 65 gelatinous zooplankton images was used.

Since SVM are binary classifiers, a SVM model was created for each of these classes

and therefore in this step some ROI could eventually be classified into more than one

class. For the second step, each ROI was passed through a group-specific SVM classifier,

trained in order to separate target to non-target objects, e.g. for the copepod class the

model was trained with a manually constructed library containing 65 ROI of copepods

and 985 ROI that did not contain copepods. For the other classes similar classifiers were

constructed. Effectively, each model constructed for this second step would function as a

27

Figure 2.7: Construction of features for example ROI. Top: example ROI. Middle: de-

noised and normalized ROI. Bottom: HOG feature descriptors. (adapted from [15]).

binary classification model for the previously detected class. The flow of the classification

of the ROI can be easily explained as:

1. Classify ROI into gelatinous zooplankton, copepod-like or arrow-like;

2. From the result of the previous classification, classify ROI from an actual member

of that class (e.g. copepod) or not an actual member (e.g. copepod-like but not

copepod);

The proposed semi-automated method achieved more than 80% of overall true-positive

rate for the three classes.

2.1.4 GUARD1

The GUARD1 [16, 17] plankton imaging system was designed for recognition of gelati-

nous zooplankton in a small, low-cost and easily deployable manner. The development

of this system was motivated by the lack of systems designed specifically to detect and

measure gelatinous zooplankton quantities, as well as the fact that most of the existing

plankton imaging systems mode of operation require towing from a vessel, which is a

costly operation. In Figure 2.8 it’s possible to see the GUARD1 system in three different

enclosures, for different deployment methods, and mission depths.

The systems imaging components consist on a programmable consumer camera Canon

GX1 with 12.8 MP and two 1 W LEDs for illumination. The camera’s acquisition pa-

rameters, such as ISO, exposure time, focal length or iris aperture can be automatically

28

Figure 2.8: Three different enclosures for the GUARD1 system. Left: for deployment on

depths up to 40 m. Center: for deployment on depths up to 400 m. Right: for deployment

on depths up to 10000 m. [17].

adjusted in order to adapt to the light conditions by using a script based on Canon Hack

Development Kit (CHDK) [18] running on the camera firmware. The image acquisition,

detection and classification techniques are processed in the system’s Central Processing

Unit (CPU) board, a Raspberry Pi [19]. The behaviour of the system during the working

activities is as follows: the system stays in stand-by mode for a defined time interval;

then the light system is activated, if necessary, as well as the image acquisition mod-

ule, for another defined time interval; when the previous step ends the system returns to

stand-by mode. During the image acquisition step, the camera first acquires and stores

a predefined number of images. After a number of acquisition sessions, the CPU board

system downloads the captured images from the camera storage and runs the detection

and classification algorithms on them.

The image detection and classification algorithm consists on five steps: image en-

hancement, background-foreground segmentation, ROI identification, feature extraction

and ROI classification.

Given the transparency and visual characteristics of gelatinous zooplankton, they are

often hard to detect on images acquired by a normal camera, given the low-texture and

uniform background typical of oceanic environments. This can be observed on the first

image of Figure 2.9. Because of this the first step of the GUARD1 image processing

consists on image enhancement. For this step the Contrast Limited Adaptive Histogram

Equalization (CLAHE) algorithm [20] was used. CLAHE calculates histograms of small

adjacent regions of pixels that are equalized separately. The overall equalized image is

obtained as a combination of the equalized neighbouring regions.

For the foreground and background segmentation step a simple box-shaped moving

average filter with a box area of a size comparable with the size of the expected objects

(order of 20 pixels) was used. This filter transforms the original image in a binary image,

separating the image background and foreground. The foreground image regions, or blobs,

are then defined as the set of pixels with higher intensity values than the background and

29

Figure 2.9: GUARD1 image processing steps. From left to right: original image, image en-

hancement with CLAHE, background/foreground segmentation, contour extraction from

original image with Sobel operator, and ROI identification [16].

exceeding a global threshold value. To tune the segmenting filter, information about the

radiometric nature of the jellies is used, as they appear brighter than the surroundings

when illuminated.

After segmenting the image in foreground and background the next step is to select

from the detected blobs which are candidates to be objects of interest. In fact in un-

derwater images it’s common to have artifacts such as light reflections, bubbles or other

suspended particles that will be identified as foreground in the previous step but must

be avoided in the identification step. Since these artifacts are usually characterized by a

blurred contour, they can be easily identified by analysing the internal/external contour

gradient. For this gradient analysis the authors used a filtering process based on the Sobel

operator [21] applied on the original image. Then the contours obtained by this operation

are compared with the blobs extracted in the binary image and if the number of pixels of

the Sobel contour is less than 50% of the pixels of the morphological contour of the blobs

on the binary image, then the blob is not considered relevant. In Figure 2.9 the image

processing steps are shown.

Finished the steps for obtaining the image ROI, it’s now necessary to process them for

classification. For this, a set of features are extracted from them to create a feature vector.

The extracted features can be divided in two groups, shape based and texture based,

similarly to the VPRII method. On the shape based group a set of seven features were

obtained, being them: the lengths of the minor semi-axis, minor and major axis of the ROI

oriented bounding box, describing the size of the relevant subject; the eccentricity, being a

measure of how the ROI differs from a circle; the solidity, being the ration between the area

of the ROI and the area of the corresponding convex hull; the area and the perimeter of

the ROI. On the texture based features a set of four were extracted: the histogram shape

index, which is obtained by transforming the ROI in a grey scale image and extracting a

histogram h of the pixel intensities, and is defined as the standard deviation of h after the

histogram normalization; the standard deviation of the mean grey level, which captures

the variation of the pixel intensity with respect to the ROI mean grey value; the entropy

of h; the normalized contrast index, defined as the ratio between the difference in the

mean grey value inside the ROI and outside the ROI but within the bounding box, and

30

the mean grey value inside the whole bounding box.

For the binary classification (gelatinous zooplankton or non gelatinous zooplankton)

of the ROI using the extracted features three methods were tested: Elastic Net based on

Tikhonov regularization (TR) [22], SVM and Genetic Programming (GP) [23]. In these

methods the authors were not only interested in acquiring overall accuracy, but also which

of the extracted features were essential for the algorithm to provide such performances. In

their results there were no significant differences in the performance of the three methods

in terms of prediction accuracy and other performance indicators, such as true positive

rate, false positive rate and false negative rate, however the authors decided to implement

the Genetic Programming approach in GUARD1 since this method could achieve similar

accuracy to the other methods while using less features than the others. In fact, both

the Tikhonov regularization and the SVM used eight features from the eleven features

extracted, while the Genetic Programming used only two, being them the length of the

minor semi-axis and the eccentricity. More details about the classification methods tested

by the authors can be obtained in [16, 24].

2.1.5 Scripps Plankton Camera

The Scripps Plankton Camera (SPC) system [25] was developed by the Scripps Insti-

tute of Oceanography for in situ real-time plankton observation. The system consists on

three distinct nodes: the imaging system node, a server to manage data and to manage

analysis and an interface for remote clients to observe and annotate images. Depending

on the target size of plankton to obtain images from, four different setups have been de-

veloped, the MACRO-SPC, the MINI-SPC, the MICRO-SPC and DUAL-SPC, the latter

consisting on the imaging components of the MINI- and MACRO- systems in the same

housing. The MACRO-SPC used a projection lens array illumination technique while the

others used dark field illumination. In Figure 2.10 the high level system architecture is

seen, alongside the actual system.

The ROI detection occurs on-board in real-time and consists on down-sampling the

raw image by averaging pixels into 4- or 16-pixel blocks. Then a Canny edge detector is

applied to detect edges on the image, followed by a region filling algorithm used to fill

the contours. Then bounding boxes are drawn from the centroid of the detected blob and

its dimensions are doubled from the blob’s width and height as to completely enclose the

detected objects. Then the ROI are cropped from the original image and stored locally

before being exported to the remote network storage. Since on a first iteration of the SPC

the processing unit consisted on a 1.8 GHz Quad Core Odroid XU3 board with 2 GB of

RAM this process was done at around 8 frames per second, but the classification models

had to be run remotely, given their computational demands. On newer iterations of the

SPC the system used a NVIDIA Jetson TX1 embedded GPU, which would allow real-

31

Figure 2.10: The SPC system. (a) High-level system architecture. (b) MINI- and MICRO-

SPC systems before deployment [25].

time operation at 20 frames per second, as well as simultaneous video and image capture,

possibility of running multiple cameras and on-board classification using complex models,

such as deep neural networks. With this new processing unit in situ classification would

be possible, being dependent only on the creation of a dataset for the desired purposes on

each specific case, and training the chosen models.

2.1.6 Discussion on Plankton Imaging Systems

Here a discussion of the main issues with the presented plankton imaging systems is

done, considering the approaches of each method for the detection and classification of

plankton.

The LOKI system is capable of in situ plankton detection using classic image process-

ing methods. However the method to obtain the ROI is dependent on manually chosen

threshold values, which with non optimal settings may be missing the detection of some

individuals. The detection method applied will also detect and save to the system’s stor-

age images of any object that is detected, be it organic or inorganic objects of no interest,

along with the problems of global thresholding already specified in Subsection 2.1.3. The

way that the system was designed also means that organisms bigger than the plankton

net mesh size will not be catalogued. The classification is not performed in situ and is too

dependent on manual intervention. First the detected ROI require some image enhance-

ment techniques in order to provide relevant features, and the use of many extra software

tools is needed, such as the LOKI Browser, the ZOOMIE and Adobe’s Photoshop. Then

the choice of parameters to measure and to create the classification model must also be

32

manually decided, which means that model accuracy is dependent on manual choice of

parameters to measure. The authors claim that the chosen parameters in [7] provided

good results, which is true, but if one was to try to replicate the results for other images,

datasets or even different classes of zooplankton, some knowledge, on both programming

and zooplankton characteristics, and experimentation is required, and a poor choice of pa-

rameters has a high impact on overall system results. Finally there is the need to choose a

good set of decision trees to create the Random Forest based on the measured parameters.

While the VPRII system’s plankton detection and classification method is technically

made in situ, it is done in a distributed manner, since the unit responsible for image

acquisition is not the same as the one responsible for actually processing it. This means

that the system performance is dependent on the reliability of the communication channel,

in this case on the fiber optic cable. The whole system is also not exactly portable, since

the entire system consists on the towable unit, sheave, cable and two computers on board

of the ship. The towable unit alone weights 400 kg and measures 2.6 × 2.0 × 0.6 m (L × W

× H), and shipboard setup takes a few hours by trained personnel. As is the case with the

LOKI system, VPRII images are also monochromatic, and so colour information can not be

used for plankton identification. The detection of the ROI also depends on many manually

selected values, such as for brightness, focus and object size, and relying on classic image

processing methods, it suffers from some of the same problems as LOKI, such as detecting

any visible object, being it plankton or any non organic objects. The classification method

consisting on machine learning methods like neural networks and LVQ also require some

expertise to create a good model, as well as many feature extraction methods, and so can

be quite complex.

The ZOOVIS system doesn’t actually perform plankton detection and classification in

situ or even in real-time, however there was a method developed to process the images

obtained by the system. In this method the problem of noisy in situ images was addressed,

as well as the problem of global threshold values for image binarization. For the detection

of the ROI this method is indeed an improvement on the two previously mentioned, and

the classification method has a somewhat acceptable result. However the main downside

to this method is the low number of classes that the system can classify the ROI into, and

improving the system to classify for other classes meant retraining the first step of the

classification, and then creating a new SVM model for binary classification for each new

class. As the number of classes increases, so do the computation demands and the false

positive rate.

The GUARD1 system addressed the problem of detecting gelatinous zooplankton in

images obtained in situ and provided good improvements in this aspect. The system

is also very small and easily deployable while still capable of performing detection and

classification in situ of the chosen organisms. However, there are flaws in the method of

image acquisition. Since it captures and stores images in the camera memory based simply

33

on time defined variables, processing them afterwards, it can easily store high amounts of

images with no actual value, i.e. with no objects of interest in frame, and therefore waste

resources with unimportant data. The classification method still depends on a decided

set of features obtained in a variety of methods, and problems previously mentioned in

the other systems related to this are also true in this. With the chosen classification

method of Genetic Programming it was shown that this was not such a big issue for the

specific problem of gelatinous zooplankton, but complexity can easily increase if one was

to try to use these methods for a non-binary classification. For such a case, the Genetic

Programming approach can be non satisfactory, since the search space for a fit individual

increases considerably.

The SPC acquires high resolution coloured images of plankton of various sizes, and has

a computing system capable of performing in situ real-time detection and classification,

although classification is not applied in the system as default. However it is only a matter

of reprogramming and applying the designed and trained desired models, as the system is

capable of running even computational expensive algorithms such as deep convolutional

neural networks. The main drawback is the cost of such a processing unit, and the power

it may consume.

2.2 Plankton Classification Approaches

The success of machine learning methods in the field of pattern recognition made way

for the growing use of such methods in complex detection and classification scenarios, being

promising in the solution of the zooplankton classification problem. The study of image

classification started a few years ago, with the development of the feature designed methods

like Learning Vector Quantization (LVQ), k-Nearest Neighbor (k-NN), Random Forest

(RF), Support Vector Machine (SVM), etc, and in the recent years with the advances of

deep learning, the Convolutional Neural Networks (CNN).

There are some efforts to devote to the study of zooplankton enumeration and clas-

sification methods, which mostly consist in manual counting and identification of these

beings, proven to be an extremely time consuming and hence costly task. To overcome this

problem, with the evolution of machine learning algorithms, a set of automated plankton

analysis approaches arise.

The work of Philippe Grosjean et al. [26] focuses on identifying, counting and measur-

ing digitalized zooplankton samples using the ZooScan system [27] which permits rapid

and complete analysis of preserved zooplankton samples and stores the data in digital

form. This method consists on image processing on sub-sampled images and using several

methods of machine learning for classification, such as k-Nearest Neighbours, Learning

Vector Quantization, decision tree and recursive partitioning methods, Support Vector

Machine and Random Forest. They also tested methods in which two or more differ-

34

Figure 2.11: ZooplanktoNet architecture [28].

ent algorithms are combined. In their experiments, Random Forest and Support Vector

Machine provide more satisfying than other algorithms in zooplankton classification. To

attain the best results this system requires a large number of features to be used in the

selected learning algorithms, it must not be applied to species-rich collections for the most

difficult specimens in the samples human intervention is used.

In the work of Gaby Gorsky et al. [27], focusing on image analysis for zooplankton

classification, a semi-automatic approach is proposed, which entails an automated classi-

fication of images and a manual validation, allowing a rapid and accurate classification

not only of zooplankton but also abiotic objects. For the project the ZooScan system was

used along with ZooProcess and Plankton Identifier (PkID) software. For the extraction

of ROIs in the scanned images, ZooProcess’s image analysis method consists in scanning

and processing a blank (background) image followed by the scan of the sample. The raw

image of the sample is normalized in order to subtract the blank image from it and the

extraction and measurement of the objects (ROI) is made. For plankton identification

with PkID a learning set is built and the construction of the classifier is made and applied

to predict the I.D. of unidentified objects, finally followed by manual validation of the re-

sults. For the classifier construction step a comparison between a few classifiers available

in PkID was made (k-Nearest Neighbor, SVM, Random Forest, a decision tree algorithm

and Multilayer Perceptron), with Random Forest providing the best results. The confu-

sion matrix (CM) of the learning set provided for most categories a recall (rate of true

positives) of about 80% and a contamination rate (false positives) smaller than 20%, and

so stated as not being accurate enough for ecological studies.

Jialun Dai et al. proposes two different convolutional networks in their papers [28]

[29]. The first, ZooplanktoNet, aims to classify zooplankton automatically and effectively.

The deep network, strongly inspired on AlexNet [30] and VGGNet [31], is characterized

by capturing more general and representative features than previous feature extraction

algorithms. The ZooplanktoNet architecture is visible in Figure 2.11. Data augmentation,

consisting in image transformations like rotation and translation on the training images of

the used dataset, is incorporated in order to reduce overfitting for lacking of zooplakton

images. The dataset consisted of microscopic and grayscale images captured by ZooScan

35

Figure 2.12: Hybrid architecture proposed by Jialun Dai et al. in [28].

system and involved 13 classes with 9460 images. With their experiments they concluded

that a ZooplanktoNet with 11 layers achieved the best performance with a final accuracy

of about 93.7%.

For the second, a hybrid convolutional neural network for plankton classification, inter-

class similarity (similarity between planktons of different classes) and intra-class variance

(differences in organisms of the same class) is taken into account and so two feature

extraction methods are proposed, one to obtain object global features (shape and setae),

and another, mainly based on canny edge detector, to obtain local feature (zooplankton

texture). The proposed network architecture consists of three sub Alex networks in a

pyramid fully connected structure, one for training on global feature images, a second

36

Figure 2.13: Hybrid architecture proposed by Jinna Cui et al. in [32].

for training on the original images, and the third one for training on the local feature

images, merging the different inner products from each sub networks in the end. This

network achieves a accuracy rate of 95.83% on a 30 plankton classes dataset. However, it’s

stated that the distribution of plankton in their dataset is highly inhomogeneous, leaving

classification of the plankton effectively on an unbalanced data set for future work. In

Figure 2.12 the proposed architecture for this hybrid method is shown.

Jinna Cui et al. [32] propose a solution consisting of a feature extraction method

followed by a hybrid convolutional neural network for plankton classification. The Woods

Hole Oceanographic Institution (WHOI) Plankton dataset [33], which contains about 3.6

million in situ images labeled into 103 classes, was used. A new texture feature extraction

method based on Gaussian filter is proposed, with the Gaussian high-pass filtering allowing

to get textures of plankton which can not be identified clearly in the original images. Since

the Gaussian high-pass filtering leaves the image too dark, some image enhancement is

applied after the filter. Texture and shape features are emphasized in the hybrid CNN,

claiming to improve classification accuracy with their method. For the shape feature

extraction a Gaussian low-pass filter is used, while for the texture feature extraction a

Gaussian high pass filter. For the image enhancement a logarithmic image enhancement

method was adopted. The hybrid CNN is based on AlexNet and consists of adding a

concat layer before the first convolutional layer, which concatenates the three image inputs

(original image, texture image and shape image) to the convolutional layer. The results

for a 30 classes dataset show improvements in accuracy comparatively to Dai’s hybrid

method, and also shows better accuracy with the three inputs (96.58 %), then to two

(94.93 % with original and shape and 95.27 % with texture and shape and 96.10 % with

original and texture) or one (94.75 %). When trained for the whole WHOI dataset, with

103 classes, where images from 2006-2013 database were used as train dataset and images

from 2014 were used as test, an accuracy of 94.32 % was achieved. In Figure 2.13 the

proposed architecture is shown.

37

From the methods presented in this section it is seen that the ones based on CNNs

show multiple advantages: first, these methods are consistently shown to achieve higher

accuracy values on the datasets they were trained with; they also seem to be able to manage

datasets with a larger number of classes; they don’t require previous feature extraction,

so there is no need for specialized knowledge in plankton from the user, or prior setting

of parameters. For these reasons it seems that CNNs are the best candidates for the final

solution to implement on the proposed work.

38

Chapter 3

Fundamentals

In the previous chapter it was clear that the latest advances in the plankton classifica-

tion methods are resorting to something called Convolutional Neural Networks, or CNN,

replacing older methods such as SVM, k-NN or Random Forest, a scenario common to

most image classification tasks. In fact in the last decade CNNs have been dominating

the state-of-the-art on image classification, and are, at the time of this writing, the most

successful at it. But what exactly are Convolutional Neural Networks? To answer this it’s

first necessary to explain other concepts such as Deep and Machine Learning, or what is

neural about ”Convolutional Neural Networks”.

3.1 Learning in Artificial Intelligence

Artificial Intelligence, or AI, has been for decades of great interest in various topics,

from technology to science-fiction novels and movies. It can be described as the study of

methods and devices that can perceive their environment and act on it in order to achieve

a given goal, without human intervention. As Pedro Domingos writes in The Master

Algorithm [34], ”[T]he goal of AI is to teach computers to do what humans currently

do better, and learning is arguably the most important of those things”. Enter Machine

Learning.

Machine Learning (ML) is a subset of AI where the machine learns how to complete

a given task without being explicitly programmed on how to do it, by being fed lots of

training data and generating a good model to predict the correct values for new similar

data. A frequently used definition for Machine Learning is provided by Tom Mitchell [35]:

”A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E”. With this definition, in the plankton image classification

problem the task T would be recognizing and classifying plankton organisms within im-

ages, the performance measure P would be the percentage of images correctly classified,

39

and the training experience E would be a database of plankton images with their correct

classification labels.

Machine Learning problems are usually divided into two broader classifications: su-

pervised learning and unsupervised learning. In unsupervised learning the problem is

approached with little to no knowledge on what the results should be, as there are no

labels for the data. Instead, unsupervised learning algorithms try to derive relationships

in the data based on their variables, clustering it in groups when such relationships or

patterns are discovered by the algorithm. A popular example of unsupervised learning is

the k-means algorithm.

In supervised learning a dataset is given to the learning algorithm together with labels

that show what the correct output should be for the given data, like the example previ-

ously mentioned of plankton images and their labels. As examples of supervised learning

algorithms there are the ones presented in the introduction of this chapter, such as SVM,

k-NN, Random Forests and also the aforementioned Neural Networks, or more specifically,

Artificial Neural Networks (ANN).

3.1.1 Neurons and Layers

If one wanted to classify a random picture of a zooplankton organism as being a

copepod of the order calanoida, for example, he could look for a particular set of features

that might help, such as:

• Size;

• Width;

• Length;

• Eccentricity of the body;

• Number of antennae;

and by analysing the quantitative values on these features he could decide if it is indeed

an image of a copepod or not (in fact this is, in a very basic form, the idea behind the

binary classification methods of some plankton imaging systems presented in Chapter 2).

Because these variables weight in differently when defining a copepod (e.g. a calanoida

copepod may vary greatly in size but will always have two pairs of antennae), one way to

make a decision is to apply different weights to these variables, multiply each variable with

their weight, sum the result of each multiplication, and pass the result through a function,

called activation function, that converts it into a ”yes” or a ”no”, as seen in Figure 3.1.

40

Figure 3.1: Possible classification model for a Copepod.

The model in Figure 3.1 can be generalized for a variable number of inputs a, and use

the Heaviside step function (equation 3.1) as the activation function:

g(z) =

0, if z < 0

1, if z ≥ 0
(3.1)

It is also possible to add a bias value b before the activation function to change how

easily the output becomes active. If these modifications are applied to Figure 3.1 what is

obtained is what is called a Perceptron (Figure 3.2) created by Frank Rosenblatt in 1958

[36], a predecessor of Neural Networks.

Sometimes it is necessary to obtain other non-binary values, instead of a ”yes” or ”no”

output, for instance to represent a probability of the result. For this it is necessary to use

different activation functions, with the most commonly used being the ReLU (Rectified

Linear Unit), the Sigmoid function, or the Hyperbolic Tangent, visible in Figure 3.3.

Figure 3.2: The Perceptron.

41

Figure 3.3: Activation functions commonly used in Neural Networks. Left: ReLU. Center:

Sigmoid. Right: Hyperbolic Tangent.

A unit that consists of the sum of the product of multiple inputs and their weights,

coupled with a bias value and an activation function that outputs only one value will from

now on be referred to as a neuron, and the value it outputs is called its activation. In fact,

the Perceptron, as well as their successors the Neural Networks, were indeed inspired by

the way real neurons work in the brain. Neurons receive multiple signals through special

extensions of the nerve cell called dendrites, and from these signals it decides whether or

not to emit a signal itself forward to other neurons. In case the neuron decides to transmit

the signal forward, it is done so through an extension of the cell’s body called axon. Such

similarities between biological and artificial neurons are better evidenced in Figure 3.4.

However, it is worth noting that the Perceptron and Neural Networks are only inspired

by, and do not actually work like real neurons.

If several neurons are stacked together at the same level (i.e. the inputs are the

same) what is obtained is called a layer. By adding multiple layers in front of each other

the result is a Neural Network. Every Neural Network has an input layer, that receives

the input data and passes it forward (its neurons activation is the value of the received

data), an output layer, that outputs the prediction results, and the hidden layers that

stand between the previous two, and depending on their inputs, different neurons will be

activated, transmitting information to forward layers that act the same way. In Figure

3.5 is an example of a Neural Network. It is important to note that each neuron will have

Figure 3.4: Comparison between a biological neuron and an artificial neuron.

42

Figure 3.5: An example Neural Network with two hidden layers. Each circle is a neuron

with its own weights and bias values, and activation function, except for the input layer,

where the neuron’s activations are the input data value.

its own values of bias and input weights, otherwise every neuron in the same layer would

become active with the same inputs.

In the case of image classification the input data will be an image, and the output

can be the probability for the given image to belong to a specific class. In this case the

number of neurons in the input layer is determined by the number of pixels in the image,

and the activation value of each neuron will be the value of the corresponding pixel. The

number of neurons on the output layer will be the number of classes that the image can be

classified into, and their activation values will be the probability for the image to belong

to the corresponding class. In Figure 3.6 is an example for such a network for zooplankton

classification.

Figure 3.6: Example of a Neural Network for zooplankton image classification.

43

Figure 3.7: Difference between Machine Learning and Deep Learning in the feature ex-

traction process (from [37]).

3.1.2 Deep Learning

The number of hidden layers is what determines the depth of the network. If the

number of hidden layers is greater than two then the network is a Deep Neural Network,

and the more layers it has, the deeper it is. Deep Neural Networks are the main components

of Deep Learning, while Deep Learning itself is a subset of Machine Learning, the same

way that Machine Learning is a subset of Artificial Intelligence.

In Deep Neral Networks (DNN), each hidden layer is responsible for picking up features

on the output of the previous layer, and the deeper the network goes, the more complex

and abstract data becomes, creating a hierarchy of low-level to high-level features. This

allows the Deep Learning algorithm to solve higher complexity problems with non-linear

data.

Two advantages of Deep Learning over Machine Learning algorithms is that DL perfor-

mance tends to keep improving with the amount of training data, while ML models reach

a saturation point where performance does not increase with increasing training data. The

other advantage of DL is that feature choice and extraction is not done manually, as the

network is responsible not only for classification but also for feature extraction (Figure

3.7).

44

3.2 How does a Neural Network learn?

When a non trained Neural Network is fed with some input data, e.g. an image of a

copepod, the output will be far from the desired, because the parameters that take place

in the decision process, the weights and the biases, will have random values. If the values

of the weights and biases are random, so will the active neurons in the hidden layers be,

and therefore the neurons on the output layer. So what is needed for a Neural Network

(NN) to learn is an algorithm that feeds the network a lot of training data, which for

image classification networks consists on images and their class label, and readjusts the

weights and biases based on the classification results, in order to improve the performance

on that same training data. But before specifying what this algorithm is or does, it is first

necessary to understand a few other concepts.

3.2.1 Cost Function

Picking up the example network from Figure 3.6, the output layer can be seen as a

vector v⃗ where each position of the vector is the activation of each output neuron, or the

probability for the given image to belong to each corresponding class, and v⃗d is a vector

which contains the values for the desired output. If the network is not well trained then

the vectors could be something like Equation 3.2 for a given image of a copepod:

v⃗ =


0.89

0.21

0.07

0.72

 , v⃗d =


0.00

1.00

0.00

0.00

 (3.2)

To be able to train the network it is necessary to measure how well it performed on

the given training example. In other words, it is necessary to obtain some metric, a single

value, that indicates if the network is classifying well, based on v⃗ and v⃗d alone. This value

is called the cost, or loss, and different functions can be used to compute it, where the

choice on which one to use depends on the desired application. One of the most commonly

used functions in Artificial Neural Networks is the Mean Squared Error (MSE), that for

a single training example is given by:

cost0 =
∑
i

(v⃗i − v⃗di)
2 (3.3)

which for the example in equation 3.2 would be (0.89−0.00)2+(0.21−1.00)2+(0.07−
0.00)2 + (0.72 − 0.00)2 = 1.9395. The cost in equation 3.3 is smaller when the network

classifies the image correctly, and larger when the network doesn’t know how to classify it

properly.

45

No matter what function is chosen, for it to be used in neural network evaluation it

must satisfy two properties: it must not be dependent on any other neuron’s activation

value besides the output layer neurons, and it must be able to be written as an average

over all individual training examples, as in:

cost =
1

nimages

nimages−1∑
k=0

(costk) (3.4)

And it is this average over all images in the training data that will be the measure for

the network performance on said data, in other words, the cost.

Because the only parameters that influence the results of the classification are the

weights and biases of the network, these are the parameters that need to be tuned in order

to improve the network performance, i.e. reduce the cost. And so the Cost Function will

be a function that has as inputs all the weights and biases of the network and outputs

the cost, based on all the images on the training data. The Cost Function could then be

represented by:

C(w1, w2, ..., wn) (3.5)

where n is the total number of weights and biases. The next step is to discover what

combination of input parameters brings the output of this function to a minimum.

3.2.2 Gradient Descent

Now that a Cost Function is explained it is time to show how to find its minimum. For

any Deep Learning model the Cost Function will have a lot of inputs. For the example

network of Figure 3.6 with 65025 neurons in the input layer, 5 neurons in each of the two

hidden layers and 4 neurons in the output layer there are 325170 weights and 14 biases,

and so its Cost Function will have 325184 inputs! And this is just a very small example

network for concept explanation, real DNNs usually have millions of weights and biases.

So for a better understanding of the methods to find the function’s minimum it is better

to start with examples of functions with fewer inputs.

To begin the explanation a Cost Function with only one input, like the one seen in

Figure 3.8, is presented. The goal is to find the input value that minimizes the function.

A good way to do this is to start with a random input value and check in which direction

to step in order to lower the output. Refer to Figure 3.8 to better follow the explanation.

If the slope (red line in Figure 3.8) of the function at the point is negative , then the input

must step to the right (green arrows in Figure 3.8), and if the slope is positive then the

input must step to the left (orange arrow in panel 3 of Figure 3.8). It is also possible

to take these steps proportionally to the slope to avoid overshooting (length of arrows in

Figure 3.8). By repeating this process multiple times the slope will eventually become flat,

46

Figure 3.8: Finding a minima of a one input function. Panels 1 to 4 show the sequence

of the method. First its measured the slope at a random initial input value (w1) . If

the slope is negative the input is shifted right (green arrow), and if the slope is positive

the input is shifted left (orange arrow). The step size can be taken proportionally to the

slope’s absolute value (length of arrows). This step is repeated until a local minima is

found (flat slope).

meaning that it reached a minimum value. This process can be imagined as releasing a

ball at a random point of the function and it will eventually roll down, whichever direction

that is. It is important to note that with this method the result will be a local minima,

and not necessarily the global minima of the function, and this will also be true for the

real DNN Cost Function. However this is not an issue in Deep Learning, as usually finding

a local minima is more than enough to provide satisfying results.

If the complexity is increased by using a Cost Function with two inputs and one output,

a similar line of thought can be used. In this case the input space can be seen as the xy

plane, and the Cost Function will be a surface above it. In this example the starting point

will also be random, but instead of computing a slope, what can be done is to determine

in which direction in the input space can the point step in order to decrease the value of

the function the fastest. The Gradient of the function can be used for this purpose. The

Gradient of a function is a vector that indicates the direction to move in the input space,

from the specified point, that provides the biggest possible increment on the output. In

other words it points in which direction is the steepest increase. And so the negative of

the Gradient gives the direction for the steepest decrease. The length of the vector also

47

Figure 3.9: Finding a minima of a two input function. Left: The input space can be seen as

the xy plane. Right: The Cost Function and path from an initial point to a local minima.

The gradient of the Cost Function ∇C(w1, w2) at any input point gives the direction of

the steepest ascent, and its negative indicates the direction of the steepest descent. By

taking a small step in this direction and repeating this process for the next values, a local

minima is achieved.

indicates how ”steep” the steepest slope is. With this the algorithm to discover a minima

of the Cost Function can be as simple as:

1. Compute the gradient ∇C(w1, w2);

2. Take a small step in the direction of −∇C(w1, w2);

3. Repeat step 1 and 2 for the updated weights and biases until a minima is found;

This process of repeatedly adjusting the inputs of a function by a multiple of the

negative of the gradient is called Gradient Descent. With the help of Figure 3.9 it is

easier to visualize and understand the explanation of this method given in the previous

paragraph.

It is important to note that the gradient vector has a component for each input, in

other words, it is the combination of a vector in the x direction and a vector in the y

direction, as seen on the left in Figure 3.9. Because of this the negative Gradient vector

can be seen as a list of how each input of the function must be adjusted. And this is also

true for the 325184 inputs Cost Function. If the values of all the weights and biases of

the network are placed in a vector W⃗ , then the vector ∇C(W⃗) with the same number of

elements, each being an indication on how the corresponding weight or bias in W⃗ must be

adjusted, can be seen as:

48

W⃗ =



w1

b1
...

wn

bm


,∇C(W⃗) =



∂C
∂w1

∂C
∂b1
...

∂C
∂wn

∂C
∂bm


(3.6)

where the sign of each value in ∇C(W⃗) indicates if the corresponding input in W⃗ must

go up or down, and the magnitudes indicate which input changes will affect the cost the

most. Taking a step in the direction of the negative of the function’s gradient simply

means updating the weights and biases in the following manner:

W⃗new = W⃗ − η∇C(W⃗) (3.7)

where η is a constant usually referred to as the learning rate, which will determine

the magnitude of the steps taken in the Gradient Descent (the lengths of the vectors in

Figures 3.8 and 3.9).

What is important to retain is that by adjusting the weights and biases of the network

with the Gradient Descent algorithm to reduce the Cost Function to a minimum, what it

means is that the vector v⃗ in equation 3.2 will start to get closer to the vector v⃗d on the

same equation, thus the network will be classifying the training data better. And because

the cost involves an average over all the data in the training dataset (as seen in Equation

3.4), by minimizing it, it means that the network improves the performance on all of that

data.

Because there are usually thousands and sometimes millions of images in the training

dataset, the Gradient Descent algorithm becomes computationally expensive, since it needs

to add up the influence of every single image at every single Gradient Descent step, so

instead what is normally used is a variation of it called Mini Batch Gradient Descent.

In Mini Batch Gradient Descent the training data is divided into a whole number of

mini batches, each containing only a small number of training data, preferably representa-

tive of all classes to classify into, and the Gradient Descent step is computed according to

each mini batch. Because this method uses a lot less images per step, each step will not be

as accurate to decrease the cost function, and some fluctuation on the error will be verified,

but a minimum is found much faster than when using a real Gradient Descent step. When

each mini batch is composed only of one image, the method is called Stochastic Gradient

Descent.

Now that these concepts are explained it is now time to introduce the algorithm re-

sponsible to compute the Gradient Vector.

49

Figure 3.10: Given an input image of a copepod, an untrained network’s output may differ

largely from the desired output. The activations cannot be changed directly, but keeping

track of in what way they should change is helpful. An increase of the copepod related

neuron is more important than a decrease of the decapod related neuron, since the latter

is already close to what it should be, hence why the arrow for the copepod neuron is larger

than the arrow for the decapod neuron.

3.2.3 Backpropagation

The algorithm responsible for computing the gradient of the cost function is called

Backpropagation. To begin the explanation on how it works the example network from

Figure 3.6 will be used once again. In the case when the network is not trained at all,

when it is fed with a single image of a copepod, the activations on the output layer can

be similar to vector v⃗ in equation 3.2. These activations must be adjusted but can’t

be changed directly, the only way to change them is to adjust the weights and biases.

However it is helpful to keep track of which adjustments should take place on the output

layer, represented by arrows in Figure 3.10, relative to the desired output vector. Because

in the example the desired classification is ”Copepod”, the value in the corresponding

neuron should increase, while the values on all the other neurons should decrease, and the

amount by how much they should change is visually represented by the arrow size. For

instance, an increase on the neuron relative to the label ”Copepod” is more important

than a decrease on the neuron relative to ”Decapod”, because this last value is already

close to what it should be, therefore the ”Copepod” arrow is bigger.

Focusing the analysis only on the neuron which activation value should increase, the

”Copepod” related neuron, its activation is given by:

a
(L)
copepod = g

(∑
i

w
(L)
i a

(L−1)
i + b

(L)
copepod

)
(3.8)

50

where L is only an indication of the layer the neuron belongs to and not an exponent,

and g is the activation function. The objective is to understand how should the weights

w
(L)
i , the bias b

(L)
copepod, or the activations of the previous layer a

(L−1)
i change in order

to increase the activation of the ”Copepod” neuron. For explanation purposes the MSE

function will be used for the cost measure, but others could be used.

Starting with the weights: from equation 3.3 the cost for a single image C0(W⃗),

focusing only on the ”Copepod” neuron related component, is given by:

C0(W⃗) = (a
(L)
copepod − y)2 + ... (3.9)

where y is the desired output for this neuron (in this case y would be 1 for the copepod

image). Then, for ease of comprehension, if the weighted sum and bias are given a new

name z
(L)
copepod, such as:

z
(L)
copepod =

∑
i

w
(L)
i a

(L−1)
i + b

(L)
copepod (3.10)

then the activation is given by:

a
(L)
copepod = g(z

(L)
copepod) (3.11)

The objective now is to understand how a small change in a single weight connected

to the neuron, i.e. ∂w
(L)
i , affects the cost C0, or rather, to compute the ratio:

∂C0

∂w
(L)
i

(3.12)

Because a change in w
(L)
i will produce a change in z

(L)
copepod (equation 3.10), which itself

will cause a change in a
(L)
copepod (equation 3.11), which finally will cause a change in C0

(equation 3.9), the following chain rule can be written:

∂C0

∂w
(L)
i

=
∂z

(L)
copepod

∂w
(L)
i

·
∂a

(L)
copepod

∂z
(L)
copepod

· ∂C0

∂a
(L)
copepod

(3.13)

By computing the relevant derivatives:

∂C0

∂a
(L)
copepod

= 2(a
(L)
copepod − y) (3.14)

∂a
(L)
copepod

∂z
(L)
copepod

= g′(z
(L)
copepod) (3.15)

∂z
(L)
copepod

∂w
(L)
i

= a
(L−1)
i (3.16)

51

Figure 3.11: The output neuron is connected to the previous layer by positive (green lines)

and negative (red lines) weights (left). To increase its activation one can: increase the

weights connected to them proportionally to the activations on the previous layer (center,

weights connected to brighter neurons should increase more); change the activations in

the previous layer, activations of neurons connected to negative weights should decrease,

and the ones connected to positive weights should increase, and these changes should be

proportional to the absolute value of the weights connecting them (right).

and substituting in equation 3.13, the equation becomes:

∂C0

∂w
(L)
i

= a
(L−1)
i g′(z

(L)
copepod)2(a

(L)
copepod − y) (3.17)

It gets obvious from equations 3.14 and 3.17 that the change in the cost is proportional

to the difference between the current activation value and the desired output. When the

neuron’s activation is farther from what it should be, even small increases in a weight

connected to it would have a high impact on the cost function. This is where the sizes

of the arrows in Figure 3.10 comes from. It is also obvious from equation 3.16 that the

amount that a small change in a weight influences the neuron’s activation depends on

the activation value of the neuron it is connected to from the previous layer, and so the

increase in weights connected to higher activations neurons would be greater than the ones

connected to nearly inactive neurons. This is reminiscent of a theory in neuroscience for

how biological neurons learn, Hebbian theory [38], that is often phrased as ”Neurons that

fire together wire together”, and is visually represented in the center panel of Figure 3.11.

The method to determine how the ”Copepod” neuron’s bias should change is similar

to the weights, the only way it differs is replacing ∂w
(L)
i with ∂b

(L)
copepod in the chain rule

in equation 3.13:

52

∂C0

∂b
(L)
copepod

=
∂z

(L)
copepod

∂b
(L)
copepod

·
∂a

(L)
copepod

∂z
(L)
copepod

· ∂C0

∂a
(L)
copepod

(3.18)

and since the partial derivative of z
(L)
copepod in respect to b

(L)
copepod is 1, the chain rule

equation becomes:

∂C0

∂b
(L)
copepod

= g′(z
(L)
copepod)2(a

(L)
copepod − y) (3.19)

The third way the ”Copepod” neuron could increase is by changing the activations of

the neurons in the previous layers, and even though they can’t be changed directly it is

important to keep track on how they should change, the same way it was important to

know how the output neurons should change in Figure 3.10. Like so, the way a change in

the activation on a given neuron from the previous layer, i.e. a
(L−1)
i affects the cost, will

be represented by the chain rule:

∂C0

∂a
(L−1)
i

=
∂z

(L)
copepod

∂a
(L−1)
i

·
∂a

(L)
copepod

∂z
(L)
copepod

· ∂C0

∂a
(L)
copepod

(3.20)

and because:

∂z
(L)
copepod

∂a
(L−1)
i

= w
(L)
i (3.21)

the equation becomes:

∂C0

∂a
(L−1)
i

= w
(L)
i g′(z

(L)
copepod)2(a

(L)
copepod − y) (3.22)

From equations 3.21 and 3.22 it is obvious that how the cost is affected with small

changes in the neuron’s a
(L−1)
i activation is proportional to the weight connecting it to the

”Copepod” output neuron. This means that to decrease the Cost Function the fastest,

the activations in the previous layer should change proportionally to the value of the

weight connecting them to the output neuron. Furthermore, neurons in the previous layer

connected by weights with negative values should decrease their activation and neurons

connected by weights with positive values should increase them. This is visually repre-

sented in the right panel of Figure 3.11.

But note that not only the ”Copepod” neuron has an ”opinion” on how the neurons

in the previous layer should change, as all output neuron’s activations affect the cost, as

seen in equation 3.3. The neurons which activations should decrease also have a say in

this because they are also influenced by the activation values of the previous layer, and so

all their ”opinions” are summed, leaving the chain rule for a neuron in the previous layer

to be:

53

Figure 3.12: Representation of Backpropagation. Left: each neuron in the output layer has

an ”opinion” on how the neurons in the previous layer should change, based on equation

3.20. Center: these ”opinions” are added together and can now be used to compute the

Gradient Vector’s components related to this layer’s weights and biases, and the process

can be repeated for previous layers. Right: When the last hidden layer is reached and the

corresponding gradients are computed, there is now an idea on how all weights and biases

in the network should change. This propagation of the cost backwards, from last to first

layer is what gives the algorithm its name.

∂C0

∂a
(L−1)
i

=

nL−1∑
j=0

(
w

(L)
ji g′(z

(L)
j)2(a

(L)
j − yj)

)
(3.23)

with nL being the number of neurons in layer L (in this case the output layer) and

wji are the weights connecting the neuron i in the previous layer to the neurons j in the

output layer.

Once it’s known how sensitive the cost function is to the activations in the previous

layer, there is now a metric for how each neuron on the previous layer should change, the

same way there was with the output layer in Figure 3.10, and so the corresponding weights

and biases can now be computed and updated, and the process can be repeated for the

layers before this one, propagating the cost backwards, as seen in Figure 3.12. And this

is where the algorithm Backpropagation gets its name from.

And so, generalizing for any network with any activation function g(z) and Cost Func-

tion C(W⃗), the way a weight connecting a neuron j in layer l to a neuron i in layer l− 1,

and the bias of neuron j should change is given by:

∂C0

∂w
(l)
ji

= a
(l−1)
i g′(z

(l)
j) · ∂C0

∂a
(l)
j

(3.24)

and,

54

∂C0

∂b
(l)
j

= g′(z
(l)
j) · ∂C0

∂a
(l)
j

(3.25)

where for the neurons on the output layer ∂C0

∂a
(l)
j

is the partial derivative of the chosen

Cost Function with respect to a
(l)
j , which for MSE is given by:

∂C0

∂a
(l)
j

= 2(alj − yj) (3.26)

and:

∂C0

∂a
(l)
j

=

nl+1−1∑
k=0

(
w

(l+1)
kj g′(z

(l+1)
k) · ∂C0

∂a
(l+1)
k

)
(3.27)

for the neurons in the hidden layers.

Of course, the explanation so far was referring to a single image only, but because of

how the real cost was defined in equation 3.4, for the real Gradient Vector’s parameters

computation, it takes an average over all n training images in the dataset (or in the mini

batch if using Mini Batch Gradient Descent), and so said parameters are given by:

∂C

∂w
(l)
ji

=
1

n

n−1∑
k=0

∂Ck

∂w
(l)
ji

(3.28)

∂C

∂b
(l)
j

=
1

n

n−1∑
k=0

∂Ck

∂b
(l)
j

(3.29)

Note how these are the parameters of ∇C(W⃗) as defined in equation 3.6, just with a

different notation, thus concluding how the Backpropagation algorithm works, and all the

steps and concepts necessary to understand how an ANN is trained are now explained.

3.2.4 Training an Artificial Neural Network

The process of training an ANN becomes fairly straight forward once the concepts

explained in the previous sub-chapters are understood. It simply consists of four different

moments: the forward pass, the cost computation, the backward pass and the weight

update. During the forward pass the training data is passed through the network in

batches for it to predict the classification results. Then the cost computation takes place

based on the classification results and the desired results as defined by the Cost Function.

With the obtained cost it is then possible to compute the Gradient Vector ∇C in the

backward pass, using the Backpropagation algorithm. Finally the network parameters,

the weights and the biases, can be updated by a multiple of the Gradient Vector, as seen

in the Gradient Descent method, in Equation 3.7. By repeating these four steps a given

55

amount of iterations, the network should start to improve the classification results on the

training dataset.

3.2.4.1 Datasets

If the training runs for too long it is possible that the network starts to pick up

specific features from the training data that are not necessarily inherent to the classes on

the dataset but rather residual variation, or noise, that the model can’t distinguish from

actual meaningful features, and although its accuracy improves on the training dataset,

it fails to generalize for new data that the network has never seen before, thus leading to

low accuracy on new input data. This is a problem, because the objective of training is to

be able to generalize to new data. This problem when the model fits its parameters too

specifically for the training data, disregarding actually relevant class features, achieving

high accuracy on training data but low accuracy on new data, is called overfitting, and can

occur for multiple reasons, from insufficient training data, to too complex models, but also

from overtraining. To avoid overtraining the network, and to obtain an unbiased network

evaluation metric, what is usually done is split all labeled data in two different datasets:

the training dataset and the validation dataset. The training dataset will be used for

actual training, to update the network parameters, and the validation dataset will be used

for an unbiased accuracy evaluation only, and won’t have any effect on the weights and

biases updates. This second dataset is important both to see how the network generalizes

to new data and to serve as indication for when to stop training, as training should stop

when the accuracy on the validation dataset stops increasing, even if the accuracy on

the training dataset is still improving. A third dataset called test dataset is used when

evaluating between different network architectures, or different training configurations.

How the data is split between these datasets is dependent on the amount of data available

and on the type of model being trained, but a common rule of thumb, or a good starting

point, is to split it as 80% for the training dataset and 20% for the validation dataset when

evaluating only a single model and training process, or 10% validation dataset and 10%

test dataset, when evaluating multiple models, or a single model with different training

processes.

For the training to be effective it is also necessary to define a set of parameters that

unlike the weights and the biases are not automatically learned by the network during

training, such as the number of iterations, the batch size or the learning rate. These

parameters that are not automatically learned during training are commonly referred to

as hyperparameters, and are set before training starts.

56

3.2.4.2 Hyperparameters

Hyperparameters are both the variables that define the network structure and the ones

that define how the network is trained.

The hyperparameters related to network structure are the type and number of layers,

the number of neurons, the activation functions, and the weights and biases initialization

method, to name a few. The type and number of layers and neurons is important for

obvious reasons as it was already mentioned earlier in this chapter. Shallow networks

with few layers and neurons will easily lead to underfitting the data, that is, they won’t

be able to find the relationship between the input data and the desired output, therefore

leading to low accuracy. By increasing the depth of the network it is possible to increase

accuracy to an extent, with the trade off being that it becomes more computationally

expensive to train.

The choice of the activation functions is also important as they are responsible to

introduce non-linearity to the models, allowing it to learn non-linear prediction boundaries

on the data. As explained earlier in this chapter, the choice of the activation function can

be dependent on the task, so for instance the ReLU could be used in the hidden layers

of a network, being the most popular choice, and a sigmoid function could be used in the

output layer if the task is binary classification, as it outputs a value between 0 and 1 (that

can be seen as the probability for the input data to belong to the chosen class).

Weight initialization is also of utmost importance. If the weights and biases are initial-

ized to 0 then every neuron’s activation will also be 0 at each iteration independently of

the input, and therefore they will all follow the same gradient, thus leading to all neurons

learning the same features. This is also a problem if the weights are all initialized with

equal values, as with the weights and biases being all the same, so will the influence of

each neuron in the cost be the same, leading to identical gradients, and so all the weights

would be updated by the same amounts. This is known as the network failing to break

symmetry. To avoid this it is necessary to initialize the weights with random unequal

values. This will break symmetry, but other problems may arise. Initializing the weights

with too large values will lead to exploding gradients, that is, the gradients start to get

larger and larger as backpropagation advances from the output layer to the input layer,

causing very large weight updates resulting in cost oscillation around the minimum value,

or even gradient descent divergence. On the other hand, initializing the weights with

too small values will lead to the vanishing gradients problem, that is, the gradients start

to get smaller and approaching zero as backpropagation advances, leaving the weights of

the initial layers nearly unchanged, leading to convergence of the cost before it reached a

minimum value. To summarize, the weights and biases must be initialized with unequal

values to break symmetry, with small enough values so there aren’t exploding gradients,

but not too small to avoid the vanishing gradient problem. There are several methods for

57

weight initialization, with uniform distribution of random values being one of the most

commonly used.

The hyperparameters related to training are the ones that define the behaviour of the

training moment itself, for how long it should run, how the cost optimizer should behave

while training, and so on. Examples of these are the batch size, the number of epochs

and the learning rate. The batch size was already mentioned earlier, and is the number

of training samples present in each mini-batch to be fed at each iteration during gradient

descent. Larger batch sizes lead to more accurate update steps, but training becomes both

computationally expensive, as more computer memory is needed at each step to store the

effects of every item in the batch, and slow. With smaller batch sizes it is still possible to

reach a minimum, and faster, but each gradient descent step will not be as accurate.

An epoch is the term used for when the entire training dataset has been fed to the

network during training exactly one time, and it is commonly used to set the duration

of training. Although in pactice the duration of training is usually set by the number of

iterations, the number of epochs is used both for reference and to calculate the equivalent

number of iterations, as there is a relation between them. This relation also includes the

batch size, because the number of iterations needed to complete an epoch is obviously

dependent on the number of data samples per iteration. So for instance if the training

dataset contains 10000 samples, and the batch size is 10, then it takes 1000 iterations to

complete an epoch. From here it is possible to calculate how many iterations are needed for

a given number of epochs with the great power of mathematics. As mentioned previously,

the number of epochs must be high enough to achieve good validation accuracy, but not

too high, to avoid overfitting.

The choice of a good learning rate is important because a too small value will result

in a very slow training process, while a too large value may result in overshooting of the

cost, or even gradient descent divergence, therefore making it impossible to reach a cost

minimum. Sometimes some strategies that change the learning rate as training advances

are adopted, where training starts with a larger learning rate in order to converge faster

in the direction of the cost minimum, and then is gradually reduced as the cost starts to

decrease.

There are even other optimization methods that update the weights differently from

Gradient Descent, such as AdaDelta [39], AdaGrad [40] and Adam [41]. However, all

these methods are also gradient based and the difference they introduce on the overall

explanation on how Artificial Neural Networks work is on the equation used to update the

network parameters, with each introducing its own set of hyperparameters. Therefore it’s

comprehensible that they are only mentioned for completeness of information on the topic,

as the explanation of these methods goes far beyond the scope of both this thesis and this

chapter, which is meant to provide a basic, although solid and extensive as may be, idea

on the basics of Neural Networks. What is, however, important to explore further is a

58

special type of Neural Network that sparked a new interest in Machine Learning in the last

decade, given its remarkable achievements in computer vision applications, dominating at

the time of this writing the state-of-the-art on image classification, becoming one of the

most important achievements in Deep Learning, the Convolutional Neural Networks.

3.3 Convolutional Neural Networks

Regular Neural Networks like the ones presented previously can achieve good results in

many classification tasks, but when the inputs for classification are images they become too

computationally expensive to use. For a 255x255 image for instance, a single neuron in the

first hidden layer would have 65025 weights connecting it to the input neurons. As images

are also commonly represented by three different channels, a red, a green and a blue, this

would mean that the number of weights for a single neuron would actually be three times

this value. Considering that for the network to be able to get good accuracy it must be

complex enough to avoid underfitting, that is, it must have a good amount of neurons per

hidden layer, as well as a good amount of hidden layers, it is easy to comprehend that the

number of weights to train becomes too large to compute. Convolutional Neural Networks

however are designed with the assumption that the inputs are images, allowing to encode

a few properties into their design that make them more efficient, by largely reducing the

amount of learnable parameters in the network. They work with volumes of neurons, with

their layers arranged in three dimensions, a width, a height, and a depth. Each layer in a

CNN receives as inputs 3D volumes of neurons and transform them into a new 3D volume

output, as seen in Figure 3.13. The input layer will have the same width and height as

the input image, and its depth will be the number of channels of the image (for an RGB

image it is 3, for a gray scale image it is 1), with each neuron’s activation value being the

corresponding pixel value at the exact same location. The output layer will contain an

output value per class, as seen earlier.

Figure 3.13: Representation of a Convolutional Neural Network, where each layer is a 3D

volume of neurons.

59

Figure 3.14: Convolutional Neural Networks are divided in two parts, the feature learning

part and the classification part (From [42]).

Convolutional Neural Networks are divided in two parts, one responsible for feature

learning and another responsible for the actual classification. This is achieved with a set

of special layers for each task, as seen in Figure 3.14. But before getting into detail on

how these layers work it is necessary to understand the concept that makes these networks

great for image classification, an operation that gives them their name, the convolution.

3.3.1 Convolutions

Convolutions in image processing is an operation that transforms the input image into

another different image by means of a mathematical convolution of image data and a

kernel. The way it works is by sliding the kernel matrix over the input image, that can be

seen as a matrix of pixel values, multiplying overlapping values of the two matrices and

summing it up to generate the corresponding output value. As the kernel slides through

the image it generates the output matrix. This process is better visualized in Figure 3.15,

where the kernel, a 3x3 matrix with ones in the diagonals and zeros elsewhere, slides

through the 5x5 input to generate the output matrix.

It is visible in Figure 3.15 that after the input got convolved with the kernel, the size of

the output got reduced. It is possible to keep the dimensions of the input by bordering it

Figure 3.15: Convolution of an input matrix with a 3x3 kernel. As the kernel slides

through the input, it generates the output matrix.

60

Figure 3.16: Example of padding and stride. Left: zero-padding is used to maintain the

same dimensions of the input in the output, with a stride of 1. Right: no padding, a stride

of 2 is used to further reduce dimensions in the output.

with zeros all around and then applying the kernel to this augmented input. This process

is called padding, or zero-padding to be more precise, and the number of zeros to pad the

image with is dependent on the kernel size: for a 3x3 kernel it is only necessary to pad the

input once, while with a 5x5 kernel it is necessary to pad it twice, etc. It is also possible

to deliberately reduce the output size in relation to the input by making the kernel move

multiple pixels to the right and down while sliding. The number of pixels to shift over the

input is called stride, and a stride of 1 will make the kernel shift a pixel at a time, a stride

of 2 will make the kernel shift 2 pixels at a time, and so on. In Figure 3.16 examples of

padding and stride are shown.

With different kernels it is possible to transform the image in multiple ways, from

blurring, to sharpening, to edge and corner detection, as seen in Figure 3.17. This is what

makes this operation so important to CNNs, because applying multiple different kernels

to an image can highlight multiple different features of the object in the image that can

be helpful to distinguish it from objects of different classes, e.g. if the kernels evidence

two round wheel-like objects it may be a bicycle, but it probably isn’t a fridge.

Figure 3.17: Convolution of the same image with different kernels.

61

3.3.2 Layers in a CNN

There are three main types of hidden layers that are used to build a Convolutional

Neural Network: Convolutional Layers, Pooling Layers and Fully Connected Layers. The

first two are responsible for the feature extraction part of the network, while the third is

responsible for the classification itself.

3.3.2.1 Convolutional Layers

Convolutional Layers are the core building block of CNN and their objective is to

detect features from the input. To achieve this, Convolutional Layers have two properties

that are behind the success of CNNs in both image classification and parameter reduction:

local connectivity and parameter sharing.

Local connectivity is related to the way the neurons in a Convolutional Layer are

connected to the neurons in the previous layer. Unlike regular Neural Networks, neurons

in this type of layers are not connected to all neurons in the layer before it. Instead, each

neuron in Convolutional layers is only connected to neurons inside a small volume with

dimensions FxFxD1, with F being a hyperparameter usually referred to as receptive field

or filter size, and D1 is the depth of the layer it is connected to. Neurons on the same

depth slice in a convolutional layer (i.e. neurons in the same depth coordinate along width

and height of the layer) are all connected to volumes of neurons of the same dimension,

shifted along the input’s width and height by a hyperparameter stride S, similarly to how

it happens in image convolutions explained earlier. The depth of a Convolutional Layer

is given by a hyperparameter K, referred to as the number of filters, and all neurons at

the same width and height location along the depth, also known as depth column or fibre,

are connected to the same neurons in the previous layer. All these concepts are better

visualized in Figure 3.18.

Figure 3.18: Neurons in the same depth slice are connected to FxFxD1 regions, with

a stride S along the input’s width and height. The Conv Layer’s depth is given by

hyperparameter K. Neurons in a fibre are connected to the same inputs.

62

With Local Connectivity a neuron in the Convolutional Layer introduces FxFxD1

weights and a bias parameter. Considering for example an input image of dimension

255x255x3, a neuron in a Convolutional Layer connected to it with a filter size of 3 will

generate 27 weights and a bias, opposed to the 195075 weights if it was connected in a

fully connected manner.

Of course local connectivity alone won’t reduce the number of parameters in the net-

work enough for it to become computationally feasible in real architectures. Each neuron

may introduce less connections than when fully connected to the input, but if the layer it

is on is composed of hundreds of thousands of neurons, which is not uncommon, it will still

introduce too many parameters. Consider the first Convolutional Layer in Jialun Dai’s

ZooplanktoNet [28] mentioned in Chapter 2, with dimensions 55x55x96, which locally

connects to the 227x227x1 input layer with a receptive field of 11. This layer has 290400

neurons, each connected to 11x11 neurons in the input, introducing 121 weights and a bias

per neuron in the Conv Layer, resulting in a total of 35428800 parameters introduced by

the layer, which is still too much.

Parameter sharing is a property applied in Convolutional Layers to vastly reduce the

amount of parameters in the network. With parameter sharing all neurons in the same

depth slice share the same weights and bias. It may seem counter-intuitive at a first glance

to have whole sets of neurons sharing the same parameters in the layer, but it will all make

sense in a few lines. Back to the layer presented in the last paragraph, which consists of 96

55x55 depth slices, by applying the parameter sharing scheme to it, the number of unique

parameters comes down to 96x11x11 weights and 96 biases, since all 55x55 neurons in each

depth slice will use the same parameters, resulting in a grand total of 11712 parameters.

Using parameter sharing dropped the amount of parameters to store in memory for this

layer by 99.97%!

At this point, the most attentive reader may be realizing that there is something

familiar in the way that Convolutional layers interact with their input layer. The clues

are all there: the inputs to the network are images; neurons are connected to small FxF

regions on the input along its full depth; on the same Conv layer’s depth slice the neurons

are connected to regions defined by a stride along the input width and height; neurons on

the same depth slice all use the same weight and bias values; the activation of a neuron is

obtained by multiplying the values of the neurons it is connected to by the corresponding

weights and then added together, along with a bias value; They are called Convolutional

layers... That’s it! Convolutional Layers operate on the input images exactly the same

way as image convolutions work! In practice it is actually performing image convolutions

with their weights as seen in Figure 3.19, hence where they get their name from. This is

also why the sets of weights in Conv layers are usually called filters or kernels, and why

the output of the layer is also called a feature map, and why the hyperparameter K is the

number of filters.

63

Figure 3.19: 2D visualization of left panel in Figure 3.18. In Convolutional layers the

weights behave like 3D kernels in image convolutions, thanks to local connectivity and

parameter sharing.

So when the network is training, each depth slice is actually learning a 3 dimensional

filter to apply to the image, so one may detect horizontal lines, other can learn to detect

vertical lines, blobs of colours or any other feature, as seen in Figure 3.20, and the output

of each depth slice, or its activation map, is the convolution result, that as seen before are

themselves images. This also explains why parameter sharing is reasonable. It is based

on the assumption that if detecting any type of feature is important at a specific location

in the image, it is also important to detect it at any other location. If a horse is at the

center of an image, or on the left or right, far away or close, a network is still expected

to correctly classify it as a horse if trained to do it. As in image convolutions, it is also

possible to define a padding hyperparameter P in Conv Layers to maintain dimensionality

(along width and height) of the input.

Figure 3.20: Each depth slice in a Convolutional layer is learning a 3 dimensional filter to

convolve with the input, and its activation map is the convolution result.

64

As more and more Convolutional layers are added deeper in the network the complexity

of the features detected increase, from simple shapes in shallow layers, like edges and

colour blobs, to text, full patterns or actual face features in deeper layers. This is visible

in Figure 3.21 from the work of Matthew D. Zeiler and Rob Fergus, ”Visualizing and

Understanding Convolutional Networks” [43]. What is represented here is the top 9 images

that provide the strongest activations for a random activation map at each layer, alongside

the highlighted features that are responsible for such activations. For example in layer

two on the right are two groups of the 9 images that activate the corresponding activation

map the most, and on the left is a projection of the pixels that have the most impact

on such activations. Note that the blocks on the left in layers 1, 2 and 3, and on the

bottom of layers 4 and 5 are not the actual activation maps of some depth slice, but

rather projections of the pixels from the input images (on their right in layers 1, 2 and

3, and above them in layers 4 and 5) that influence the most the activations for a given

feature map, therefore, the types of features that the feature maps actually detect. Here

it is possible to observe the hierarchy of features in the network: from simple lines and

colour patches that are detected in the first layer, to complex and diverse types of features

such as animal eyes, logos and areas with text, and grass in images. It is also visible

that in shallow layers each group of 9 images is fairly consistent in content, whereas on

deeper layers there is much more variance on the 9 images that activate the corresponding

feature map, e.g. layer 5, the group on the right displays images that are apparently not

related whatsoever class-wise, but what causes strong activations is the grass patches in

the background in different regions of the image, and not the foreground ”class” object.

Figure 3.21: Visualization of detected features in a trained CNN, from [43].

65

Figure 3.22: Effect of a ReLU on an activation map.

For Convolutional Neural Networks the most commonly used activation function is

the ReLU, to introduce non-linearity. It is a good choice, since in the case of CNNs it

makes sense to expect non negative outputs, given their image related nature, and this

function converts all negative outputs to 0, while keeping the positive values unchanged.

The effects of a ReLU function on an activation map is seen in Figure 3.22.

To conclude, Convolutional Layers:

• Require setting of four hyperparameters: the number of filters K, the filters size F ,

the stride S and the amount of zero-padding P ;

• Receive as inputs volumes with dimensions W1 ×H1 ×D1 and output a volume of

size W2 ×H2 ×D2, where W2 = (W1 − F + 2P)/S + 1, H2 = (H1 − F + 2P)/S + 1

and D2 = K;

• By using parameter sharing, it introduces (F · F ·D1) ·K weights and K biases;

• Each depth slice in the output is the result of a convolution of the input with its

learned filter with a stride S, offset by a bias;

3.3.2.2 Pooling Layers

Pooling Layers are used to reduce the spatial size of the input volume, in order to

reduce the number of trainable parameters and computation in the network, which also

helps to control overfitting, as it reduces model complexity. The way it works is with FxF

filters, typically 2x2, applied over each depth slice of the input volume independently, with

a defined stride value S. These filters apply a function to the overlapped values in the

input in order to output a value per overlapped area, effectively reducing the feature maps

dimensions while keeping the most important information. The most common types of

pooling are average pooling, which returns the average value of the overlapped area, and

max pooling, which returns the maximum value in said area, with max pooling being the

preferred choice. In Figure 3.23 it is possible to visualize this process using max pooling

with a 2x2 filters with a stride of 2 over a 4x4 depth slice, and the result of such pooling

to an input layer.

Since they apply a fixed function to their inputs, pooling layers don’t introduce learn-

able parameters, their sole purpose is to reduce the network’s parameters by discarding

66

Figure 3.23: Pooling layer representation. Left: Max pooling operation with 2x2 filters

applied with a stride of 2 over a depth slice. Right: results of such pooling over a 64x64x10

input volume resulting in a 32x32x10 pooling layer.

some activations. In fact a pooling layer with 2x2 filters applied with a stride of 2 will

discard 75% of its input layer. Typical applications employ strides of 2 and filter sizes of

2, or 3 in some cases, but larger values are not used as they become too destructive. To

summarize, pooling layers:

• Can have various types, like max pooling or average pooling, with max pooling being

the preferred choice;

• Require setting of three hyperparameters: the type of pooling, the stride S and the

filter size F ;

• Receive as inputs volumes with dimensions W1 ×H1 ×D1 and output a volume of

size W2×H2×D2, where W2 = (W1−F)/S+1, H2 = (H1−F)/S+1 and D2 = D1;

• Introduce zero learnable parameters;

3.3.2.3 Fully Conected Layers

Up until now no classification has actually been done in the previous layers, only feature

extraction and size reductions occurred. Fully Connected layers are the ones responsible

for the actual classification part of the network. As the name suggests, the neurons in these

layers are connected to all neurons in the previous layer, and since these layers introduce

nothing new in terms of operation from the hidden layers of the regular ”plain vanilla”

Neural Networks explained earlier in this chapter, in fact they are the exact same type of

layers, not much will be added about these.

Fully Connected layers are used at the end of CNNs, after all feature extraction and

size reduction is done. The output of the last feature extraction layer used (either Con-

volutional or Pooling) is flattened to a vector of neurons, which will serve as input to the

first Fully Connected layer in the network, as seen in Figure 3.24. Keep in mind that the

67

Figure 3.24: Fully Connected layers are placed in the end of CNNs. The last layer from

the feature extraction part of the network is flattened into a vector and neurons in the

fully connected layers connect to all neurons in the layer before them.

output of the previous layer should hold the activation maps of high-level features from

the input image, and with this, the fully connected layers can learn which of these high

level features most strongly correlate with a particular class.

Usually not many Fully Connected layers are used, not even in very deep CNNs, with

the most notable architectures using a maximum of two or three such layers. The output

layer, which is itself a Fully connected layer, will contain as many neurons as classes in

the dataset, and each neuron will contain a class probability of the corresponding class.

To achieve this it is common in CNNs, and for multi-class classification in general, to use

as the activation function of the output layer the Softmax function:

σ(z⃗)i =
ezi∑K
j=1 e

zj
(3.30)

where z⃗ is the vector of values for each class related neuron to input the activation

function, and K is the number of classes. This function converts the vector of output real

values to a vector of output real values that sum to 1, effectively converting the output to

a probability distribution for all classes.

3.3.3 CNN architectures - Classification

Now that the main types of layers are explained it is time to present some notable

architectures that became famous over the last decade given their remarkable achievements

on image classification and overall innovation in the field.

68

Figure 3.25: LeNet-5 architecture [44].

3.3.3.1 LeNet [44]

Presented in 1998 by LeCun et al. [44], LeNet was the first Convolutional Neural

Network to be applied in practical applications, for handwritten digits recognition, and is

the spark for the interest in Deep Learning in research. From three architectures presented

in the original paper, the most successful one was LeNet-5 (Figure 3.25), that receives as

inputs 32x32x1 images, introduced a total of 60850 parameters, and consisted of seven

layers:

1. C1: Convolutional Layer with K = 6, F = 5, P = 0 and S = 1;

2. S2: Average Pooling Layer with F = 2 and S = 2;

3. C3: Convolutional Layer with K = 16, F = 5 P = 0 and S = 1;

4. S4: Average Pooling Layer with F = 2 and S = 2;

5. F5: Fully Connected Layer with 140 neurons;

6. F6: Fully Connected Layer with 84 neurons;

7. F7: Fully Connected Layer with 10 neurons;

Although achieving great results for the task it was given, classifying small black and

white digits, the network had some limitations and design choices that have now been

dropped from recent architectures. First of all the network was not very deep, which is

not suitable for more complex datasets, as it used few filters per layer. It also used average

pooling for subsampling, which nowadays is rarely used, with max pooling being now the

preffered choice as it offers more rapid convergence since it returns larger gradients during

backpropagation. Not only that, but the pooling method used also introduced learning

weights and biases, applied to the results of the pooling itself. And lastly it used a scaled

hyperbolic tangent function as activation functions, which nowadays has been replaced

mostly by ReLU and ReLU variants.

69

Figure 3.26: AlexNet architecture [30]. Here one GPU is training the neurons related to

the top part of the image and the other is training the neurons related to the bottom part

of the image simultaneously.

3.3.3.2 AlexNet [30]

Developed by Alex Krizhevsky et al. [30], AlexNet was the first CNN to win the

ILSVRC (ImageNet Large Scale Visual Recognition Challenge) [45] in 2012, with such a

large margin over the runner-up, a top 5 error of 15.3% for AlexNet compared to 26.11%

error for the second place, that after it non-neural models became practically obsolete.

For this reason it became one of the most influential architectures in Deep Learning. Its

architecture was similar to LeNet-5, but deeper both in number of layers as in number of

filters per layer, with 5 Convolutional Layers and 3 Fully Connected Layers, with some

max pooling applied after the first, second and last Conv Layer, as seen in Figure 3.26.

It also applied stacks of Convolutional Layers, when before it it was common to always

follow a Convolutional Layer with a Pooling Layer.

Some of the reasons that made AlexNet stand out were: the use of ReLU as activation

function, which led to faster training times when compared to similar networks using

hyperbolic tangent; use of multiple GPUs during training, with one GPU training half

the neurons and another GPU training the other half simultaneously, which also led to

faster training times; the use of overlapping pooling, i.e. pooling with strides that overlap

between subsequent positions of the filter, leading to an error reduction of 0.5%.

As for the number of trainable parameters, the network had around 60 million, which

makes it prone to overfitting. To avoid it the authors used some data augmentation

methods, generating new images in the dataset with translations and horizontal reflections

of the original images, and used a technique during training called dropout, that consists

of ”turning off” a set of random neurons with a predefined probability at each training

iteration. This provides robustness of the learned features, at the cost of increasing training

time.

70

Figure 3.27: Inception module proposed by Szegedy et al. [46].

3.3.3.3 Inception and GoogLeNet [46]

Szegedy et al. proposed a new set of novel concepts to the way layers in a CNN

could be deployed. They suggested a module that would apply Convolutional Layers of

different filter sizes, 1x1, 3x3 and 5x5, as well as a max pooling in parallel, i.e. receiving

as their input the same layer, and then concatenate all outputs into the same output

volume along depth, effectively growing the network not only in depth as was usual in

previous architectures, but also in width. The idea behind this was to be able to detect

more features of different dimensions in a layer by applying different operations to it, as

opposed to previous architectures that would only apply one type of operation or filter size

per layer, possibly dismissing features that couldn’t be captured by it. Another idea in the

proposed module is to place 1x1 convolutions before the 3x3 and 5x5 and after the pooling

layer before concatenating the results, in order to reduce the number of parameters in the

network, that would otherwise become too large to be computationally feasible. These

modules were named Inception modules, which can be seen in Figure 3.27, and would

be stacked on top of similar modules to increase the networks depth and therefore the

complexity of features detected. The networks developed using these modules were named

Inception Networks, with Inception-V1 being the first, also known as GoogLeNet.

GoogLeNet, named in homage to LeNet, won the ILSVRC competition in 2014 with an

amazing result of 6.67% top-5 error rate, a 56.5% relative reduction compared to AlexNet’s

result in 2012. This result was so remarkable that the organisers of the challenge had to

evaluate human level performance to compare, with the human expert achieving a top-5

error rate of 5.1% after a few days of training. GoogleNet’s architecture with the Inception

module amounted to 27 layers, at an incredibly deep implementation as seen in Figure

3.28, but nonetheless having a reduced number of parameters, especially when compared

to networks like AlexNet: only around 4 million parameters, against AlexNet’s over 60

million.

71

Figure 3.28: GoogLeNet architecture [46].

3.3.3.4 VGGNet [31]

Karen Simonyan and Andrew Zisserman from the Visual Geometry Group at the Uni-

versity of Oxford, participated in ILSVRC 2014 with a network architecture that became

known as VGGNet [31], being runner-ups to GoogLeNet in the classification task. Highly

influential in the world of Deep Learning, it shown the community that the depth of a

network is critical for good performance, fueling the research in deeper CNNs. It also

changed the common practice of applying bigger filter sizes in the first layers, by using

only 3x3 convolutions along the network, showing that 3*3 convolutions stacked together

can replicate bigger filter sizes and with more non-linearities present in between them.

The specific architecture presented in ILSVRC is known as VGG-16, and displays an in-

credibly uniform architecture, by applying only 3x3 convolutions and 2x2 poolings, with

the input’s dimensions in width and height being halved as the network gets deeper, while

the number of filters doubles, as can be seen in Figure 3.29.

Despite being runner-ups to GoogLeNet in the classification task, VGG-16 actually got

better performance when applying only a single network (GoogLeNet’s winning participa-

tion applied 7 networks), with a top-5 error of 7% against the 7.9% of a single GoogLeNet,

and when using two networks the resutls came really close to GoogLeNet’s winning partici-

pation, with a top-5 error of 6.8% against GoogLeNet’s 6.7%. It also won the competition’s

object localisation task with a top-5 error of 25.3%, ahead of GoogLeNet’s 26.7% result.

In this task the last Fully Connected layer predicts the objects’ bounding box location

instead of the class scores.

The weight configuration of the trained VGGNet was released to the public, and the

model has been used in many applications as one of the preferred baseline feature ex-

tractors. Because of its homogeneous architecture and great accuracy results, VGGNet

is still used to introduce CNNs to newcomers, and real with its major drawback being

its computational demands. Introducing some astonishing 138 million parameters, which

results in really slow training sessions, and make its deployment less practical for real time

applications.

72

Figure 3.29: VGG-16 architecture (from [47]).

3.3.3.5 ResNet [48]

As mentioned earlier, as CNNs get deeper the gradients start to get smaller and smaller

during backpropagation, as they reach shallower layers, in a problem known as vanishing

gradient. However, VGGNet shown that the performance of a network is critically de-

pendent on its depth. To be able to increase a network’s depth without dealing with the

vanishing gradient problem, He et al. introduced a new concept known as residual or skip

connections which would create alternative paths for the gradients to reach a previous

layer, by skipping layers in between them, as can be seen in Figure 3.30.

With such connections, He et al. were able to create and train incredibly deep networks

known as Residual Networks, or ResNets, with the example of a particular model composed

of 152 layer network that still has lower complexity than VGGNet. With these networks

they won the ILSVRC in 2015 with a top-5 error rate of 3.57%, beating human level

performance for the same dataset. Given this success, researchers started to adopt this

type of connections in modern CNN architectures,being now a common practice.

Figure 3.30: Residual connections block introduced by He et al. (from [48]).

73

3.3.3.6 MobileNet [49]

MobileNet is a CNN architecture especially designed with smaller, less computationally

powerful devices in mind, such as mobile phones or Single Board Computers (SBC), in or-

der to provide these devices the capability of using Deep Learning applications. Developed

by Andrew G. Howard et al. [49], it introduced the concept of separable convolutions, that

instead of applying K 3D convolutions across the layer depth, splits the task in two differ-

ent convolutions: a depth-wise convolution that collects spatial information for each input

channel, and a point-wise convolution that collects the interactions among the various

channels. This distinction can be seen in Figure 3.31.

By applying separable convolutions the number of multiplications drops significantly.

Considering D the dimension of the output, N the number of input channels, F the filter

size and K the number of filters, the number of multiplications M taking place in a

conventional convolution is given by:

M = F 2 ×N ×D2 ×K (3.31)

while for the separable convolution M is given by:

M = (F 2 ×D2 ×N) + (N ×D2 ×K) (3.32)

For the example in Figure 3.31, this results in 86400 multiplications for the conventional

convolution, while for the separate convolution it amounts to 10275. By applying this type

of convolution, MobileNet can highly reduce the computational cost required, without

hurting its accuracy significantly

Figure 3.31: Conventional convolution and separate convolution (from [50]).

74

3.3.4 CNN architectures - Detection

The network architectures presented so far were designed with the sole purpose of

image classification in mind, trying to label an image with a single class, no matter the

number of objects in the image, or the positions of the objects in it, thus being, at a first

glance, of no use for the object detection problem. However, there are other architectures

and methodologies that focus on the detection of the objects in the image, as well as their

classification.

3.3.4.1 You Only Look Once (YOLO) [51]

You Only Look Once (YOLO) is a milestone in the object detection field. As opposed

to other methods that existed at the time of its release, like the R-CNN (Region-Based

Convolutional Neural Networks) that split the object detection problem in two separate

threads, a first step for region proposing and another for proposed region classification,

YOLO was able to perform both tasks in a single step, hence its name. Presented in 2016

by Joseph Redmon et al. [51], YOLO divides the input image into an S × S grid, with

each grid cell predicting a total of B bounding boxes, each with 5 predicted values (x, y,

width, height and confidence), and a probability C for each class in the dataset, resulting

in an output tensor with dimensions S×S× (B ∗ 5+C). This process is visible in Figure

3.32.

Figure 3.32: The YOLO model. In a single step YOLO can predict bounding boxes and

class probabilities from an image, by dividing it in an S × S grid, with each grid cell

predicting B bounding boxes and their confidences, as well as class probabilities (from

[51]).

75

As for the network architecture YOLO was inspired by GoogLeNet, simply using 1×1

reduction layers followed by 3×3 convolutional layers, instead of the inception modules of

GoogLeNet. Two architectures were proposed, one with 24 convolutional layers followed

by 2 fully connected layers for class and bounding box prediction, and another known as

Tiny YOLO which only contained 9 convolutional layers, for even faster object detection,

at an accuracy cost. YOLO achieved an mAP (mean Average Precision) of 63.4% on the

VOC (Visual Object Classes) 2007 dataset running at 45 FPS on an Nvidia Titan X GPU.

Tiny YOLO achieved an mAP of 52.7% on the same dataset, but performing at 155 FPS.

Despite its success at the time, YOLO had some limitations, such as difficulties in

detecting small objects, or objects positioned too close to others, and difficulties in de-

tecting objects with unusual aspect ratios. To overcome these problems new versions have

been introduced throughout the years, with YOLOv2 [52] released in 2017 introducing

significant improvements on anchor boxes and higher resolution, achieving 76.8 mAP at

67 FPS, and 78.6 mAP at 40 FPS on VOC 2007, and YOLOv3 [53] released in 2018 that

improved performance on small objects.

3.3.4.2 Single Shot Multibox Detector (SSD) [54]

The Single Shot Multibox Detector is an object detector based on Convolutional Neural

Networks. Presented in 2016 by W. Liu et al. [54], SSD starts with a base CNN archi-

tecture for feature map extraction, followed by convolutional filters applied to the feature

maps to predict bounding box locations and classifications at different scales, effectively

locating objects of different dimensions in the image, and providing the best classification

for each predicted bounding box. In the original paper the base network used was VGG-

16, to which the fully connected layers are removed, working therefore only as a feature

extractor. After the base network a set of convolutional layers are added with decreasing

dimensions from one to the next to allow detection of objects of different scales. This

architecture can be seen in Figure 3.33.

The resulting feature maps are divided into grids, and a set of predefined bounding

Figure 3.33: SSD architecture with VGG-16 as base network (from [54]).

76

Figure 3.34: SSD methodology. Left: the only thing needed for training of the network

is the images and ground truth boxes. Centre: Feature maps are divided into grid cells

and each cell is equipped with a set of predefined bounding boxes for classification, each

predicting a confidence for each class in the dataset. Right: feature maps at different scales

allow detection of objects of different dimensions, with adjustments to the predicted boxes

taking place during training to fit the ground truth better (from [54]).

boxes with different sizes and aspect ratios are assigned to each grid cell. Then the network

predicts a score for each class in the dataset for every bounding box, adjusting each box

shape as training proceeds, in order to fit the ground truth boxes better. If nothing

is detected in the grid cell, it is considered background. Given the amount of prediction

boxes this process generates, Non-Maximum Suppression is applied to eliminate redundant

predictions. This process can be seen in Figure 3.34.

The network was able to achieve 74.3% mAP on the VOC2007 test set at 59 FPS on

a Nvidia Titan X for 300x300 input images, and 76.9% mAP for 512x512 input images.

Despite being implemented with VGG-16 in the original paper, the authors suggest that

it should also achieve good results with other base architectures.

77

This page was intentionally left blank.

Chapter 4

System Architecture

In this chapter the decisions made to fulfil the project’s objectives are introduced and

explained, along with the high level hardware and software architecture of the proposed

solution. After careful study of the state-of-the-art on zooplankton detection and clas-

sification, both in existing in situ plankton imaging systems that apply their methods

directly, mainly for plankton detection, and in independent approaches that work over

already existing datasets focusing on ways to perform better classifications, and with a

new understanding of the concepts behind Convolutional Neural Networks, it was possible

to envision a solution that would satisfy the project’s objectives proposed in Chapter 1.

4.1 Solution Description

The presented solution aims for both zooplankton detection and classification in situ

and in real-time, in a way that can be easily deployed in MarinEye’s plankton imaging sys-

tem. Given these requirements the choice fell for a conjugation of CNNs that address both

problems in an effective way. For this, a decision for the networks architectures and deep

learning engine for the system was made in a way that would guarantee system portability

and reduced cost while maintaining a good performance. To make such decisions it was

first necessary to know the specifications of MarinEye’s imaging system.

4.1.1 MarinEye’s Imaging System

For plankton imaging, MarinEye is equipped with an IDS UI-3590CP-C-HQ USB 3.0

camera with a resolution of 18MP and a pixel size of 1.25 µm. Coupled is a DTCM230-36

telecentric lens with a working distance of 110 ± 2 mm, a depth of field (DOF) of ± 4.3 mm

at a F11 aperture and a magnification of 0.317x. An external LED illumination strobe,

placed directly in front of the lens, provides scene illumination. To acquire and process the

images, and to communicate with the other MarinEye subsystems, the imaging system is

equipped with an Odroid-XU4 with two CPU, an ARM Cortex-A15 2 GHz Quadcore and

79

Figure 4.1: Top: MarinEye’s plankton imaging system. Bottom: System’s different com-

ponents (adapted from [55]).

a Cortex-A7 1.3 GHz Quadcore. The boards GPU is a Mali-T628 MP6, and it has 2 GB

of RAM. The operating system installed is Ubuntu Mate 16.04. As for the software, the

system uses ROS1 (Robot Operating System) for control, communication and data transfer

between its components. ROS is a free and open source software framework for robotic

applications. It’s comprised of a variety of tools and libraries that creates a hardware

abstraction layer which allows easy communication between different elements running in

the system, from sensors to actuators in a simple methodology. It also offers libraries

and tools for simulation and visualization. Processes running in ROS are called nodes,

and different nodes communicate with each other in a publisher-subscriber fashion via

messages published under specific topics. This type of mechanism allows easy integration

of new applications in the system, since nodes can publish their own data for it to be

easily available for any other node in the system that subscribes to it.

MarinEye’s plankton imaging system, fully developed in the laboratory, can be seen

in Figure 4.1, and more specifications of the whole system can be found in [55].

4.1.2 CNN Architectures and Engine

From the research done in Chapter 2 the decision on the classification algorithm to

use fell on Convolutional Neural Networks, as they dominate the state-of-the-art in image

classification, whatever the object for classification is, a scenario also observed in plankton

classification, with every recent approach resorting to it with good results. For the detec-

tion of zooplankton the presented solution proposes an original approach to the problem,

by also using a CNN for the task, as opposed to other in situ plankton imaging systems

1https://www.ros.org/

80

that make use of traditional computer vision and image processing algorithms. The use of

CNNs for zooplankton detection in situ introduces innovation in the field, with MarinEye

being the first of such systems to follow this approach, as far as the conducted research

allowed to infer.

The idea to use two different models, instead of leaving classification and detection for

the same network, was manifold. First, because of the inexistence of publicly available

zooplankton detection datasets. Second, inspired by other plankton imaging systems that

provide a broader classification in the detection, followed by a more specific classification.

This way the detection CNN could give basic classification for non-class specific tasks, such

as plankton counting and biomass estimation, or to objects that the classification network

is unable to provide a classification with enough confidence, i.e. with low probability of

the inferred class.

Despite the great performance of CNNs in image classification accuracy-wise, they are

still computationally demanding algorithms, being too demanding to deploy in MarinEye’s

imaging system SBC unit to take care of all the processing tasks related to them, while still

having to control every other component in the system. With this configuration detection

and classification couldn’t be performed in real-time. By the time this project was being

planned Intel® launched a novel device called Movidius™ Neural Compute Stick (NCS)2,

which is a USB 3.0 stick especially designed for deep learning applications on devices with

low computational power, allowing to run CNN inferences in real-time, visible in Figure 4.2.

Alternatively, a decision could be made to change the imaging system’s computational unit

altogether for a more powerful device prepared for more demanding applications, perhaps

with a powerful GPU, such as the Nvidia Jetson TX1 Developer Kit 3.

The choice for the Intel® Movidius™ NCS as the system’s deep learning engine fell

on its size, portability and low-cost characteristics, making it suitable for the need of an

easily deployable and high performance solution. With this device not only would it not be

necessary to make changes on the existing plankton imaging system, but it is also possible

to easily deploy deep learning applications in any other system from the laboratory that

Figure 4.2: Movidius™ Neural Compute Stick.

2https://www.intel.com/content/www/us/en/developer/articles/technical/intel-movidius-neural-

compute-stick.html
3https://developer.nvidia.com/embedded/jetson-tx1-developer-kit

81

could benefit from it, just by plugging in the device in an available USB port.

The NCS is powered by the low power high performance Intel® Movidius™ Myriad™
2 Vision Processing Unit (VPU). It is also equipped with 4Gbits of LPDDR3 DRAM,

imaging and vision accelerators, and 12 vector processors called SHAVE (Streaming Hybrid

Architecture Vector Engine), which are used to accelerate neural networks by running parts

of the network in parallel. A Software Development Kit (SDK), called NCSDK, containing

a set of software tools, and an API for both C and Python programming languages,

compatible with deep learning frameworks Caffe4 and Tensorflow5, allow to profile, tune,

and deploy a set of Convolutional Neural Networks on low-power applications requiring

real-time inference, when combined with the NCS.

4.2 High-Level System Architecture

The high-level hardware architecture for the proposed solution is pretty straight for-

ward. Two Movidius™ NCS were used, one for each network, connected to the system’s

processing board, the Odroid-XU4, by the USB 3.0 port. The board controls all devices,

the camera, the lighting system and the NCSs, and sends the images captured by the cam-

era to the NCS, receiving the inference results from it. A representation of the high-level

architecture is seen in Figure 4.3.

The software developed for the system is implemented as a ROS node that subscribes

to the raw image topic from MarinEye’s camera, and publishes both NCS inference re-

sults, so that they can be used for any desired purpose by an user application node (e.g.

zooplankton counting and biomass estimation).

First the node makes the necessary NCS initialization, loading in them the network

related files. For this, the node makes use of the Movidius™ corresponding API functions.

Once both NCSs are correctly initialized, the node subscribes to the images topic to

feed them to the detection CNN’s corresponding NCS and obtains its inference results.

These results consist of a list of zooplankton objects, ROI location in image and probability

of object in ROI being zooplankton for every detected bounding box.

Figure 4.3: High level hardware architecture.

4http://caffe.berkeleyvision.org/
5https://www.tensorflow.org/

82

Figure 4.4: Software Architecture.

From the previous results, the images to feed the NCS related to the classification

CNN are cropped from the original image, creating new images with single organisms to

be classified. The classification results from these cropped areas are added to the detection

results if they return a confidence greater than a specified threshold, otherwise the broader

classification from the detection network is kept. The results are then published in a new

topic. In figure 4.4 the software high level architecture is depicted.

By implementing the software as a ROS node, it becomes even easier to deploy the

plankton detection and classification application to any other system, be it an updated

version of MarinEye’s imaging system, or to any other LSA robotic platform.

83

This page was intentionally left blank.

Chapter 5

Implementation

In this chapter the implementation details and methodology followed for each moment

of the project, in order to fulfil the proposed objectives are shown. First the work developed

in an initial iteration of this project is presented, from dataset creation and gathering to the

experimental configuration used, followed by the respective results. Then the implemented

improvements over this initial work are also reported, with focus on system upgrades and

more methods for obtaining multiple metrics that could provide a better insight on the

overall system performance.

5.1 First Experiments

Here an initial approach to the project is presented in the first experiments made. In

this first iteration the CNN architectures to use in the project were chosen based solely

on the study of the state-of-the-art and the system limitations. For detection an SSD

implementation with MobileNet as base network was used, for a fast region of interest

obtainment to feed to the classification CNN. By using an SSD model it would be possible

to perform object detection, and since MobileNet was designed with less computationally

capable devices in mind, it would be ideal for use as the base network in order to guarantee

real-time execution.

For an accurate classification of the regions of interest provided by the previous net-

work, Jialun Dai’s ZooplanktoNet presented in Chapter 2 was used, given its author’s

claims of better performance when compared with other typical and popular architectures

when accuracy, loss value, training time and model complexity are taken into consideration

[28].

5.1.1 Datasets

The first step for training the networks is gathering the datasets, one for the detection

network and another for the classification network.

85

Figure 5.1: Experimental setup with MarinEye’s imaging system components.

Given the inexistence of publicly available zooplankton datasets for detection or seg-

mentation, it was necessary to create one from the start, from gathering the images,

to manual labelling. To create the dataset an experimental setup was used, containing

MarinEye’s imaging system’s camera and lens mounted in a structure with an acrylic plate

between the camera and a light source, at the camera’s focal distance, where a Petri dish

containing zooplankton samples could be placed. This setup can be seen in Figure 5.1.

With this setup it was only necessary to obtain preserved zooplankton samples, which

were provided by CIIMAR (Centro Interdisciplinar de Investigação Marinha e Ambiental).

From this sample a total of 100 images were captured with two different light modes, dark-

field and bright-field, in order to try to provide the system the flexibility to perform well

under different conditions. Some of these images are visible in Figure 5.2.

After obtaining the images it was time to label each in a binary classification manner,

Figure 5.2: Example images obtained with the experimental setup under two different

light modes, bright-field (left) and dark-field (right).

86

Figure 5.3: Example images from the Kaggle dataset.

i.e. annotating image by image the regions where there was zooplankton, and label it

as such. For this a bounding box drawing script was used, that generated the image

annotation files in PASCAL (Pattern Analysis, Statistical modelling and ComputAtional

Learning) VOC format. To reduce overfitting and to increase the number of images in

the dataset, a data augmentation process was performed, using a Python script developed

for processing the image transformations, and consequently, generating the new bounding

boxes and annotation files relative to the transformed images. These transformations

consisted of:

• Rotations of 45º steps clockwise;

• Vertical and horizontal flip;

• Gaussian blur with three different values;

• Re-scaling by 0.5x and 2x;

The final dataset was then composed of 960 images.

For the classification network the Kaggle dataset [56] was used. Kaggle is a plankton

imagery dataset used for the National Data Science Bowl competition, gathered by the In

Situ Ichthyoplankton Imaging System (ISIIS) [57]. This dataset consists of 121 plankton

classes, with classes ranging from 108 to 1979 images per class. Some images from this

dataset are seen in Figure 5.3.

A data augmentation process similar to the one applied to the detection dataset was

also implemented. After data augmentation both datasets were split in two, one for

training and another for testing, in a ratio of 90%-10%, being then converted to a LMDB

(Lightning Memory-Mapped Database) database for network training.

5.1.2 Experimental Configuration

Both networks were implemented using the Caffe framework, and trained using a

Nvidia® Jetson TX2 platform based on a Nvidia Pascal GPU with 256 Nvidia CUDA

87

cores and 8 Gb of RAM memory. The training stage was performed until the loss sta-

bilized, generating the networks trained models. To validate that with Movidius™NCS
is possible to have a portable and easily deployable low cost detection and classification

system without compromising the performance of the networks accuracy, while being able

to achieve real-time inference, two different ROS nodes were tested, where the function-

ality is the same, but one uses the NCS to do the inference on an input video, while the

other uses the Caffe API installed on the machines native system. This test was exe-

cuted in a laptop powered by an Intel® i5-6300HQ, Quad-Core, 2.30GHz running Ubuntu

16.04 operating system, and on MarinEye’s Odroid-XU4. All systems had ROS Kinetic

distribution. Performance results are depicted in Section 5.1.3.3

Given the differences in images from the classification dataset to the ones obtained

from the experimental setup, some image pre-processing is applied on the detected ROIs,

consisting of a conversion to gray scale followed by an adaptive threshold on pixel values,

in order to improve classification accuracy of the full system.

5.1.3 Results on the First Experiments

Initially, the performance of the two networks was verified separately when applied to

the respective test sets, with an overall system evaluation done afterwards.

5.1.3.1 Detection

MobileNet-SSD trained during approximately three days on the Jetson TX2. In figure

5.4 it’s possible to see detection results on images from the detection test set, both bright-

and dark-field.

The confidence on the detections in the presented images is very high on both the

bright-field and the dark-field scenarios. However the network precision can’t be judged

by image observation alone and confidence of the bounding boxes, but on error data

Figure 5.4: Detection results from the first iteration, bright-field (left) and dark-field

(right).

88

analysis. The first values to obtain to evaluate the network efficiency are the precision

and recall for different confidence threshold values. Confidence threshold is the minimum

confidence value accepted as a true positive from the inference result. Precision and recall

are obtained from the number of true positives (objects that the network correctly predicts

as zooplankton), false positives (objects that the network wrongly predicts as zooplankton)

and false negatives (objects that the network should have predicted as zooplankton but

didn’t), as given by Equations 5.1 and 5.2:

Precision =
TP

TP + FP
(5.1)

Recall =
TP

TP + FN
(5.2)

In Table 5.1 values of TP, FP, FN, precision and recall on the test set images are shown

for different threshold values. The bold rows in the table show the threshold values that

provide the maximum precision and recall.

Table 5.1: Detection error analysis

Threshold(%) TP FP FN Precision(%) Recall(%)

25 492 126 167 79.61 74.66

45 467 113 192 80.52 70.86

65 433 94 226 82.16 67.71

87 367 59 292 86.15 55.69

95 292 53 367 84.64 44.31

In Figure 5.5 the precision-recall curve is presented, and in Figure 5.6 both precision

and recall are shown in relation to the threshold value.

Figure 5.5: Precision-Recall curve for MobileNet-SSD

89

Figure 5.6: Precision and Recall curves for MobileNet-SSD.

For a better figure 5.5 evaluation, an analysis on figure 5.6 is proposed. The high

precision for low threshold values in figure 5.6 is explained by the lack of non-zooplankton

objects in the dataset images and the cause for it to only reach as much as 86.15% is

explained by the high confidence the inference assigns to the false positives (above 90%).

From this figure analysis it’s also possible to see that the recall values start from around

75% even for a threshold value of 0%, instead of starting from close to 100% as it would be

expected, for every zooplankton would have been detected for such low threshold value,

no matter the confidence assigned, leading to the non existence of false negatives. This

suggests that the training was not good enough, probably due to its small dataset, short

training time and lack of non-zooplakton objects. A common metric to evaluate detection

algorithms is the mean of Average Precisions, or mAP. As the name suggests, mAP is

the mean of the Average Precisions, which itself is a metric that evaluates a network

performance based on precision and recall values, given by the area under the precision-

recall curve. When there are multiple classes in the dataset, the mean of all classes AP

is obtained, hence mAP. When there is only one class in the dataset, as is the case, mAP

and AP have the same value. In this experiment the network rached an mAP value of

75%.

5.1.3.2 Classification

ZooplanktoNet training ran for two days and obtained an accuracy of 83%. This value

is far from the results on the original paper, granted that for this the test conditions were

different, since the dataset was a completely different one, with more than 100 classes

to train, instead of the 13 classes dataset used in the networks original paper, and more

imbalance of data between classes.

In Fig 5.7 a graph of the accuracy over the number of training iterations for the

classification network is shown. Here it is possible to see that the set training time was

90

Figure 5.7: Accuracy over iterations from ZooplanktoNet

sufficient, as test accuracy stabilized around 83% and the network did not overfit, as if

that was the case, validation accuracy would start to decrease.

In Figure 5.8 it is possible to see classification results from ZooplanktoNet on the ex-

tracted ROIs from the detection network, alongside images from the classification dataset

corresponding to the class they were classified as. Here it is possible to see that even

though the network was trained with a dataset vastly different from the images cropped

from the detection dataset, it was still able to generalize well enough for this new and

different data, which is an indication that the learned features may indeed be intrinsic

to the specific classes, and not just an overfit phenomena over the dataset it was trained

with.

Figure 5.8: Classification results from ZooplanktoNet over cropped ROIs from the detec-

tion network, alongside images from the corresponding class from the classification dataset.

91

5.1.3.3 System evaluation

The evaluation of the combined system is based on the inference speed on both plat-

forms, the Odroid XU4 and the laptop mentioned in Subsection 5.1.2. In table 5.2 it’s

possible to see the maximum and minimum frame rate when using the Caffe API on each

platform’s CPU and the developed software using the NCSs.

Table 5.2: Inference speed results

Platform CPU (fps) NCS (fps)

Laptop 0.1 1.3 to 9.7

Odroid-XU4 0.02 1.5 to 7

These results show that the use of the Movidius™NCS allowed to get a big improvement

on the inference speed for the proposed frame resolution of 1920x1080 px. Increasing the

image resolution, it was found that, although a larger sample is obtained, the accuracy of

the detection network is very poor. On the other hand, decreasing the resolution allows

a large increase in the detection precision. This is due to the fact that it is necessary to

resize the images to be in accordance with the input expected by MobileNet-SSD, 300x300.

5.2 Improvements on Previous Work

Since the first iteration of the project some improvements have taken place, both to

increase system performance and to keep it up to date with more recent methodologies,

as well as to obtain important metrics for system evaluation.

5.2.1 Datasets

The first rectification done to the previous work was on the datasets. For classification

a dataset obtained with the ZooScan system [27] and publicly available online was used

for three main reasons: images in this dataset are more alike the images extracted by

the detection network, which should in principle contribute to increase accuracy on the

classification of the captured images; number of classes in dataset is smaller and more

representative of the species also found in the images captured for the detection dataset,

with the classes being a little more balanced in terms of number of images; it is the

same dataset used in ZooplanktoNet’s paper [28], allowing to try to reproduce the same

methods, in an attempt to achieve similar results, and to compare it to other networks not

mentioned in the original paper. This dataset contains 9460 grayscale images distributed

by 13 different classes, with 9 classes of single zooplankton individuals, a class for multiple

objects on the same image and three other classes, fibers, bubbles and non-bio. A data

92

Figure 5.9: Example images from the ZooScan dataset.

augmentation process was also applied, this time following a similar approach to the one

used in the ZooplanktoNet’s paper, with similar rotations, translations, rescaling, shearing

and flipping processes, with the addition of gaussian blur. Some images from this dataset

can be found in Figure 5.9.

In the detection dataset some rectifications were also applied. First more images were

obtained, since the original dataset was too small for Deep Learning projects, this time

during several sessions of sampled plankton image collecting at CIIMAR, from which

more than 5000 images were captured. In this new iteration only bright-field lightning

was used, as this is the mode the MarinEye’s plankton imaging system captures its images

during operation. Images that contained artifacts and other non-zooplankton objects

were also added to perform a more robust training. After a careful inspection of these

images, the ones that were too blurred, too similar, that had no significant objects of

interest or with too many beings too close together were eliminated, resulting in a total

of 396 images. These were then labelled with the same image labelling script used in the

first implementation. The data augmentation process was also improved, adding more

transformations that could increase the system’s immunity to different conditions of the

environment, consisting of:

• Vertical and horizontal flip;

• Re-scaling by half, 512x512 and 300x300;

• Three rotations of 90º steps;

• Changes in hue and saturation with two different values;

• Gaussian blur with three different values;

• Contrast normalization with two different values;

• Conversion to grayscale with two different values;

• Gaussian noise;

• ”Salt and pepper” noise;

93

Figure 5.10: Examples of data augmentation.

The final dataset after data augmentation consisted of 7920 images. Some examples

of augmented images from this dataset can be seen in Figure 5.10.

This time both datasets were split in training and test datasets by a ratio of 80%-20%

respectively.

5.2.2 CNN training

Another improvement on the previous work was the introduction of new classification

and detection networks, in order to evaluate the system with different CNN configurations.

For classification, new networks were trained with the new dataset: GoogLeNet, Inception-

V2, Resnet-18, VGG-16 and ZooplanktoNet. The training parameters for each network

can be observed in Table 5.3.

Table 5.3: Classification networks training configuration

Network Base lr lr Policy lr Parameters Batch Size Epochs Training time

GoogLeNet 0.01 Poly Power = 2 64 60 1h 28min

Inception-V2 0.05 Poly Power = 2 32 60 2h 25min

Resnet-18 0.1 Poly Power = 2 128 60 1h

VGG-16 0.005 Poly Power = 2 32 26 3h 46min

ZooplanktoNet 0.01 Step Gamma = 0.1 100 35 36min

Stepsize = 5000

The parameter ”Base lr” is the starting learning rate for the Gradient Descent algo-

rithm, ”lr Policy” is the method of how this learning rate should decrease during training.

With ”Poly” the effective learning rate follows a polynomial decay to be zero by the last

iteration, given by:

lr = lr0 ∗ (1−
i

Ti
)Power (5.3)

with lr0 being the base learning rate, i being the current iteration and Ti the total

number of iterations. ”Power” is the parameter set to adjust the polynomial decay. The

”Step” policy means that the learning rate should be reduced by a factor of ”Gamma”

after a given number of iterations, the ”Stepsize”.

94

For detection the Tiny-YOLO-V3 network was implemented for inputs of 608x608,

with a batch size of 32, base learning rate of 0.02, with a ”Step” policy with a Gamma of

0.1. This network was chosen given its good performance when both inference speed and

precision are taken into account.

The classification networks were implemented in Caffe, and Tiny-YOLO-V3 was im-

plemented in its official framework Darknet. The workstation used to train the networks

contained two Nvidia GeForce RTX 2080 ti with 8Gb of memory each.

5.2.3 Software

Some time after the release of the Movidius™ NCS, Intel introduced support for the

OpenVINO™ framework with this device, which supported more network architectures and

frameworks than NCSDK, which eventually became deprecated. OpenVINO™ provides

a unified methodology for many different computing architectures, from CPUs, GPUs,

the Movidius™ NCS, and FPGAs (Field Programmable Gate Array). The framework

provides two main components important for CNN applications, the Model Optimizer

and the Inference Engine. The Model Optimizer allows conversion of network weight files

from their native framework to an Intermediate Representation (IR) that is supported by

OpenVINO. The Inference Engine provides an API for both Python and C++ to read the

IR files and execute the models on the inference device.

The software developed for the zooplankton detection and classification was therefore

updated to make use of OpenVINO’s tools.

To evaluate how the detected ROI pre-processing step affects the classification accuracy

five new small test datasets with five classes also found in the ZooScan dataset were created

with these obtained images at varying values for the adaptive threshold technique applied,

to evaluate the trained networks performance on them, with an example images of these

datasets displayed in Figure 5.11. The same data augmentation method used in the

ZooScan dataset was also used in these datasets.

Figure 5.11: Example images of created datasets at various threshold values.

95

This page was intentionally left blank.

Chapter 6

Results

As mentioned in Chapter 5 a set of improvements to the overall system were introduced

on all of the system components: from the CNNs and datasets tested, to the API used for

the ROS node. In this chapter the results from these improvements are shown.

6.1 Detection

Training was executed for 15312 iterations, which is around 78 epochs for this dataset

with the set batch size. The training loss per iteration graph of Tiny-Yolo-V3 can be

observed in Figure 6.1. This figure suggests that training wasn’t stopped too early, as

the error seems to have started to stabilize around a value of 2, but could have been

executed for some more time. Nonetheless it reached a maximum mAP of 95.54%, largely

surpassing the value achieved by MobileNet-SSD in the first iteration of the project, in a

far more complex and complete dataset less prone to overfitting.

In Figure 6.2 the precision and the recall curves over the confidence threshold are

shown. In this figure the result looks much more like what would be expected from a well

Figure 6.1: Tiny-YOLO-V3 training loss per iteration.

97

Figure 6.2: Precision and Recall curves for Tiny-YOLO-V3.

learned detection CNN, with precision quickly rising with the increase of the threshold,

while recall starts near 100%, steadily dropping as the threshold is increased.

The Precision-Recall curve is depicted in Figure 6.3. In this figure it is possible to ob-

serve that the trained model nearly behaves like a perfect detector, with precision keeping

a value close to 100% for almost all values of recall, dropping only when recall is itself

approaching 100%. From this figure it is easier to understand the 95.54% mAP value, as

the area under the curve covers almost the entire graph.

Figure 6.3: Precision-Recall curve for Tiny-YOLO-V3.

98

By observing some detection examples on test set images it is possible to confirm the

efficiency of the network suggested by this data. In these images, presented in Figure 6.4,

many things can be observed: first how the network is able to detect so many zooplankton

beings of such different scales on the same image, even on noisy images generated during

data augmentation, as the one in the bottom left corner. It is also possible to observe that

the network is able to detect even transparent examples, such as gelatinous zooplankton

species, as shown by the image at the bottom right corner. It is confirmed that the network

didn’t just learn to detect non-background objects, as can be seen in the middle right

panel, where the image contains artifacts that the network didn’t classify as zooplankton,

indicating that it learned meaningful features of the class.

Figure 6.4: Detection results of Tiny-YOLO-V3.

99

6.2 Classification

In order to evaluate the proposed training for the classification networks provided in

Table 5.3 an analysis on the losses for each network over iterations shown in Figure 6.5

can be done. From the analysis of this figure alone a few interesting remarks can be made.

The first is that almost all networks seem to have stabilized both train and validation

errors for the given training time, perhaps with the exception of VGG-16, which seems

that could have benefited from more training time, despite being the network that by far

Figure 6.5: Classification CNNs training and test loss during training.

100

took longer to train, by far less epochs. This comes to confirm what was mentioned in the

fundamentals that VGG-16 is one of the most computationally expensive CNNs. Another

interesting remark is how fast both ZooplanktoNet and especially Resnet-18 seem to have

reached loss stability. This can be explained by the fact that these two networks are the

least complex of the lot, and by the batch size implemented for these netwoks, that was

considerably larger than the ones used for the remaining CNNs. Batch size is also the

reason why the loss decay is much smoother in these two networks.

In Figure 6.6 it is possible to observe the top-1 and top-5 accuracies over iterations

these networks achieved for the ZooScan dataset.

Figure 6.6: Classification networks top-1 and top-5 accuracies over iteration.

101

These graphs confirm some of the observations made about the loss graphs. It rein-

forces the idea that VGG-16 was still increasing the top-1 accuracy when training stopped.

From these it is also visible that ZooplanktoNet seems to fall behind every other network

in the top-1 accuracy, despite having its accuracy values stabilized, but reached the final

value first. As for the top-5 accuracies all networks seem to have excelled, but it is not

surprising, given the small number of classes in the dataset. With 13 classes it would be

unlikely that a trained network didn’t predict the real classes to be in the top 5 predictions.

The final loss and accuracy values can be seen in Table 6.1, with Inception-V2 being

the best performing network in overall accuracy, and the only one that passed the 99%

mark, but with all networks achieving impressive values. VGG-16 was the second worst

performer of the lot, but as previously seen it hadn’t finished training properly.

Table 6.1: Training results

Network Train loss Test loss top-1 Accuracy top-5 Accuracy

GoogLeNet 1.90e-05 0.059 98.53% 99.99%

Inception-V2 0.0012 0.023 99.37% 99.99%

Resnet-18 0.00047 0.037 98.82% 100%

VGG-16 0.2847 0.1828 94.51% 99.99%

ZooplanktoNet 0.1953 0.2219 92.19% 99.97%

In Table 6.2 the superiority of Inception-V2 is further evidenced by showing that it

achieved the highest per class accuracy for all but one class.

Table 6.2: Per class accuracy

Class GoogLeNet Inception-V2 Resnet-18 VGG-16 ZooplanktoNet

Appendicularia 98.93% 99.51% 99.03% 94.56% 95.63%

Bubble 100% 100% 100% 100% 98.78%

Chaetognatha 98.92% 99.54% 99.39% 97.70% 96.31%

Cladocera Penilia 99.62% 99.89% 99.89% 99.68% 99.24%

Copepoda 99.05% 99.59% 99.63% 96.17% 95.28%

Decapoda 99.19% 99.64% 99.46% 96.60% 95.00%

Doliolida 98.95% 99.82% 99.82% 98.60% 97.02%

Egg 98.96% 100% 99.70% 99.11% 98.52%

Fiber 97.04% 99.01% 98.52% 92.11% 88.16%

Gelatinous 98.79% 99.48% 99.05% 96.45% 92.12%

Multiple 95.59% 97.17% 93.00% 73.25% 60.93%

Nonbio 98.30% 99.32% 98.79% 95.00% 92.57%

Pteropoda 98.06% 99.76% 99.76% 88.83% 91.75%

102

The per class performance of all networks is further evidenced in Figure 6.7, where

the confusion matrices normalized per class of all networks are shown, which displays in a

more easily manner the number of correct predictions per class, compared with the true

label.

As for the networks performance on the datasets of extracted images from the detection

network, both without preprocessing and with different values of adaptive thresholding,

their accuracies are found in Table 6.3.

Table 6.3: Accuracy on Detection extracted images with different threshold values

Unprocessed Threshold Threshold Threshold Threshold

100 128 170 200

GoogLeNet 7.39% 18.5% 33.9% 41.5% 11.0%

Inception-V2 21.1% 0% 2.34% 27.6% 16.2%

Resnet-18 6.2% 3% 5.8% 15.1% 7.3%

VGG-16 45.7% 50.5% 66.1% 65.4% 40.4%

ZooplanktoNet 15.0% 29.6% 56.7% 51.7% 15%

From the analysis of this table it is possible to see that overall performance becomes

poor on these new images, which is not completely unexpected, given the networks were

trained with a dataset that doesn’t have much variation on their images. It is however evi-

dent that the pre-processing applied to the ROIs is effective in increasing the classification

accuracy, with the values 128 and 170 spliting the best performances.

From Table 6.3 it is also interesting to observe that VGG-16 outperformed by far all

other networks in all these new datasets, passing inclusively the 66% mark on the 128

value dataset and coming close to the 50% mark in all others. This seems to indicate that

despite having one of the lowest accuracy values on the dataset it was trained with, it

was actually the network that picked the most class relevant features, showing that it can

generalize better to new data. This confirms what was told in Chapter 3 that VGG-16 is

a great feature extractor, and explains why it is widely used for this task, despite being

more computationally expensive.

The superiority of VGG-16 on the datasets created from the extracted ROIs from the

detection network images over the remaining networks can be better visualized in Figure

6.8, where the confusion matrices for all networks are shown for the 170 threshold value

dataset, which seems to be the one that got the best performances overall, despite not

being the one that got the best result for VGG-16. In the VGG-16 related confusion

matrix the values on the diagonal are much more evidenced, with 4 out of the 5 classes

in the dataset getting more correctly predicted images than incorrect predictions, with

only the ”gelatinous” class failing to gather the most correct predictions. Note that this

dataset only contained 5 classes, so the lack of more values along the diagonal is expected.

103

Figure 6.7: Confusion matrices of all classification networks.

104

Figure 6.8: Confusion matrices of all classification networks on the 170 threshold dataset.

105

The last evaluation metric on the classification CNNs is the average forward pass time,

which provides an insight on the time it takes for each CNN to output the classification

results from an input image. These values are shown in Table 6.4. This test was run in

one Nvidia RTX GeForce 2080 ti from the training workstation. From this it is visible

that the Inception-V2 architecture obtained the best performance, closely followed by

ZooplanktoNet.

Table 6.4: Average forward pass per Network

GoogLeNet Inception-V2 Resnet-18 VGG-16 ZooplanktoNet

Avg Pass time 34.66 ms 22.30 ms 48.94 ms 68.55 ms 24.04 ms

106

Chapter 7

Conclusions

Concluded the presentation of the results obtained from the proposed experiments, it

is now time to do an overall evaluation on the work presented on this document, and how

it covered the objectives proposed for the project.

With these experiments several different project objectives could be validated. System

portability was guaranteed with the use of Movidius™NCS, given that once the software is

installed in the machine, only the small NCS devices must be connected in the USB ports.

This devices also allowed to perform real-time detection at a maximum of 7 FPS using

MarinEye’s imaging system. Portability was further improved by developing the detection

and classification software as a ROS node that subscribes to camera images and publishes

inference results.

Testing of the system in situ must be done in the future, however, with the data

augmentation process done, images aren’t expected to differ much from the ones captured

with the experimental setup, being the water turbidity and the sparsity of the beings the

main difference, while the latter actually helps improve frame rate.

Despite being trained with a dataset different from the one obtained with MarinEye

imaging system, it was shown that with minor processing of the obtained ROIs it is possible

to slightly increase accuracy. Nonetheless, the classification results can largely be improved

when trained on a dataset obtained from the detection network, and a slight increase of

frame rate is expected since minor pre-processing must be implemented. If such a dataset

is obtained, the classification network can even be discarded if the detection CNN is also

able to provide good classification accuracy in a multi-class labeled dataset.

The use of Tiny-YOLO-V2 shown that it’s possible to perform zooplankton detection

with CNNs with great accuracy using laboratory samples. By using CNNs for zooplankton

detection MarinEye innovated in the in situ plankton imaging systems, being the first to

implement CNNs for this purpose, as far as the research done allowed to assess.

107

7.1 Achievements and Future Work

Some of the work developed in this dissertation resulted in a publication of a confer-

ence paper for the MTS/OES OCEANS 2019 conference held in Marseille, France. The

submitted abstract got accepted for the conference’s Student Poster Competition, being

one of the 18 chosen projects out of 59 applicants from 16 different countries. In this

competition the accepted candidates had to create a poster to present the developed work

to the conference attendants, as well as to present it to a panel of juries that would select

the three best papers for a monetary prize. The resulting paper can be visualized in [58].

For future work, it will be necessary to expand the datasets. The creation of a labelled

detection dataset with more classes than ”zooplankton” would be a good improvement on

the project, which would allow the system to perform both detection and classification

with a single network, leading to an increase in performance, at least in terms of frame rate.

It would also be interesting to test the system ”as is” in situ, to evaluate the robustness

of the work developed in a real world experiment.

108

References

[1] Christian Sardet. Plankton Chronicles. url: http://planktonchronicles.org/en/

(visited on Nov. 12, 2020).

[2] NOAA. How much oxygen comes from the ocean? url: https://oceanservice.

noaa.gov/facts/ocean-oxygen.html (visited on Oct. 14, 2020).

[3] NASA Earth Observatory.What are Phytoplankton? url: https://earthobservatory.

nasa.gov/features/Phytoplankton (visited on Oct. 14, 2020).

[4] David Rissik and Iain Suthers. Plankton: A Guide to Their Ecology and Monitoring

for Water Quality. June 2009. isbn: 9780643097131. doi: 10.1071/9780643097131.

[5] George Hendrey. “Acid Rain and Deposition”. In: Dec. 2001, pp. 1–15. isbn: 9780122268656.

doi: 10.1016/B0-12-226865-2/00001-8.

[6] A. Martins et al. “MarinEye: A tool for marine monitoring”. In: OCEANS 2016 -

Shanghai. Apr. 2016, pp. 1–7. doi: 10.1109/OCEANSAP.2016.7485624.

[7] Moritz Sebastian Schmid et al. “The LOKI underwater imaging system and an au-

tomatic identification model for the detection of zooplankton taxa in the Arctic

Ocean”. In: Methods in Oceanography 15-16 (2016). Computer Vision in Oceanog-

raphy, pp. 129–160. issn: 2211-1220. doi: https://doi.org/10.1016/j.mio.

2016.03.003. url: http://www.sciencedirect.com/science/article/pii/

S2211122015300050.

[8] Jan Schulz et al. “Imaging of plankton specimens with the lightframe on-sight

keyspecies investigation (LOKI) system”. In: Journal of the European Optical Society

Rapid Publications 5 (Apr. 2010), 10017s. doi: 10.2971/jeos.2010.10017s.

[9] Moritz Schmid et al. “ZOOMIE v 1.0 (Zooplankton Multiple Image Exclusion)”. In:

(May 2015). doi: 10.5281/zenodo.17928.

[10] Leo Breiman. “Random Forests”. In: Machine Learning 45 (2001). doi: 10.1023/A:

1010933404324.

[11] Cabell Davis et al. “A three-axis fast-tow digital Video Plankton Recorder for rapid

surveys of plankton taxa and hydrography”. In: Limnology and Oceanography: Meth-

ods 3 (Feb. 2005). doi: 10.4319/lom.2005.3.59.

109

[12] C. Davis et al. “Real-time observation of taxa-specific plankton distributions: An op-

tical sampling method”. In: Marine Ecology-progress Series - MAR ECOL-PROGR

SER 284 (Dec. 2004), pp. 77–96. doi: 10.3354/meps284077.

[13] Teuvo Kohonen. “Learning Vector Quantization”. In: Self-Organizing Maps. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1995, pp. 175–189. isbn: 978-3-642-97610-0.

doi: 10.1007/978-3-642-97610-0_6. url: https://doi.org/10.1007/978-3-

642-97610-0_6.

[14] Hongsheng Bi et al. “Deployment of an imaging system to investigate fine-scale spa-

tial distribution of early life stages of the ctenophore Mnemiopsis leidyi in Chesa-

peake Bay”. In: Journal of Plankton Research 35.2 (Dec. 2012), pp. 270–280. issn:

0142-7873. doi: 10.1093/plankt/fbs094. eprint: https://academic.oup.com/

plankt/article-pdf/35/2/270/11495679/fbs094.pdf. url: https://doi.org/

10.1093/plankt/fbs094.

[15] Hongsheng Bi et al. “A Semi-Automated Image Analysis Procedure for In Situ

Plankton Imaging Systems”. In: PLOS ONE 10.5 (May 2015), pp. 1–17. doi: 10.

1371/journal.pone.0127121.

[16] Lorenzo Corgnati et al. “Looking inside the Ocean: Toward an Autonomous Imaging

System for Monitoring Gelatinous Zooplankton”. In: Sensors 16.12 (Dec. 2016),

p. 2124. issn: 1424-8220. doi: 10.3390/s16122124. url: http://dx.doi.org/10.

3390/s16122124.

[17] Simone Marini et al. “GUARD1: An autonomous system for gelatinous zooplankton

image-based recognition”. In: May 2015. doi: 10.1109/OCEANS- Genova.2015.

7271704.

[18] CHDK. Canon Hack Development Kit. url: https://chdk.fandom.com/wiki/CHDK

(visited on Nov. 6, 2020).

[19] Raspberry Pi. url: https://www.raspberrypi.org/ (visited on Nov. 6, 2020).

[20] Ali Reza. “Realization of the Contrast Limited Adaptive Histogram Equalization

(CLAHE) for Real-Time Image Enhancement”. In: VLSI Signal Processing 38 (Aug.

2004), pp. 35–44. doi: 10.1023/B:VLSI.0000028532.53893.82.

[21] D. Walther, D. R. Edgington, and C. Koch. “Detection and tracking of objects in

underwater video”. In: Proceedings of the 2004 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 2004. CVPR 2004. Vol. 1. 2004, pp. I–

I. doi: 10.1109/CVPR.2004.1315079.

[22] Christine Mol et al. “A Regularized Method for Selecting Nested Groups of Relevant

Genes from Microarray Data”. In: Journal of computational biology : a journal of

computational molecular cell biology 16 (June 2009), pp. 677–90. doi: 10.1089/cmb.

2008.0171.

110

[23] J.R. Koza. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press:Cambridge, MA, USA, 1992.

[24] Lorenzo Corgnati et al. “Automated Gelatinous Zooplankton Acquisition and Recog-

nition”. In: Aug. 2014. doi: 10.1109/CVAUI.2014.12.

[25] Eric C. Orenstein et al. “The Scripps Plankton Camera system: A framework and

platform for in situ microscopy”. In: Limnology and Oceanography Methods (2020).

doi: 10 . 1002 / lom3 . 10394. url: https : / / app . dimensions . ai / details /

publication/pub.1131430628%20and%20https://aslopubs.onlinelibrary.

wiley.com/doi/pdfdirect/10.1002/lom3.10394.

[26] Philippe Grosjean et al. “Enumeration, measurement, and identification of net zoo-

plankton samples using the ZOOSCAN digital imaging system”. In: 61 (June 2004),

pp. 518–525.

[27] Gaby Gorsky et al. “Digital zooplankton image analysis using the ZooScan integrated

system”. In: Journal of Plankton Research 32.3 (Mar. 2010), pp. 285–303. issn: 0142-

7873. doi: 10.1093/plankt/fbp124. eprint: http://oup.prod.sis.lan/plankt/

article-pdf/32/3/285/4394627/fbp124.pdf. url: https://doi.org/10.1093/

plankt/fbp124.

[28] J. Dai et al. “ZooplanktoNet: Deep convolutional network for zooplankton classifica-

tion”. In: OCEANS 2016 - Shanghai. Apr. 2016, pp. 1–6. doi: 10.1109/OCEANSAP.

2016.7485680.

[29] Jialun Dai et al. “A Hybrid Convolutional Neural Network for Plankton Classifica-

tion”. In: (Mar. 2017), pp. 102–114.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification

with Deep Convolutional Neural Networks”. In: Advances in Neural Information

Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc., 2012.

[31] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for

Large-Scale Image Recognition”. In: International Conference on Learning Repre-

sentations. 2015.

[32] J. Cui et al. “Texture and Shape Information Fusion of Convolutional Neural Net-

work for Plankton Image Classification”. In: 2018 OCEANS - MTS/IEEE Kobe

Techno-Oceans (OTO). May 2018, pp. 1–5. doi: 10 . 1109 / OCEANSKOBE . 2018 .

8559156.

[33] Eric C. Orenstein et al. “WHOI-Plankton- A Large Scale Fine Grained Visual Recog-

nition Benchmark Dataset for Plankton Classification”. In: CoRR abs/1510.00745

(2015). arXiv: 1510.00745. url: http://arxiv.org/abs/1510.00745.

111

[34] Pedro Domingos. The Master Algorithm: How the Quest for the Ultimate Learning

Machine Will Remake Our World. USA: Basic Books, Inc., 2018. isbn: 0465094279.

[35] Thomas M. Mitchell. Machine Learning. 1st ed. USA: McGraw-Hill, Inc., 1997. isbn:

0070428077.

[36] F. Rosenblatt. The Perceptron - a perceiving and recognizing automaton. Report

85-460-1. Cornell Aeronautical Laboratory, 1957.

[37] Jagreet Kaur Gill. Log Analytics Tools and Automating with Deep learning - Xenon-

Stack. url: https://www.xenonstack.com/blog/log-analytics-deep-machine-

learning/ (visited on Nov. 19, 2020).

[38] Donald O. Hebb. The organization of behavior: A neuropsychological theory. Wiley,

1949.

[39] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. 2012. arXiv:

1212.5701 [cs.LG].

[40] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods for

Online Learning and Stochastic Optimization”. In: Journal of Machine Learning

Research 12 (July 2011), pp. 2121–2159.

[41] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

2017. arXiv: 1412.6980 [cs.LG].

[42] MathWorks.What is a Convolutional Neural Network? url: https://www.mathworks.

com/discovery/convolutional-neural-network-matlab.html (visited on Oct. 21,

2021).

[43] Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Convolutional

Networks. 2013. arXiv: 1311.2901 [cs.CV].

[44] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Pro-

ceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.

[45] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In:

International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. doi:

10.1007/s11263-015-0816-y.

[46] Christian Szegedy et al. Going Deeper with Convolutions. 2014. arXiv: 1409.4842

[cs.CV].

[47] Neurohive. VGG16 – Convolutional Network for Classification and Detection. url:

https://neurohive.io/en/popular-networks/vgg16/ (visited on Oct. 27, 2021).

[48] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.

03385 [cs.CV].

[49] Andrew G. Howard et al. MobileNets: Efficient Convolutional Neural Networks for

Mobile Vision Applications. 2017. arXiv: 1704.04861 [cs.CV].

112

[50] Prakhar Ganesh. Types of Convolution Kernels : Simplified. url: https://towardsdatascience.

com/types- of- convolution- kernels- simplified- f040cb307c37 (visited on

Oct. 28, 2021).

[51] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection.

2016. arXiv: 1506.02640 [cs.CV].

[52] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger. 2016. arXiv:

1612.08242 [cs.CV].

[53] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. 2018.

arXiv: 1804.02767 [cs.CV].

[54] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: Lecture Notes in Computer

Science (2016), pp. 21–37. issn: 1611-3349. doi: 10.1007/978-3-319-46448-0_2.

url: http://dx.doi.org/10.1007/978-3-319-46448-0_2.

[55] João Resende et al. “Autonomous High-Resolution Image Acquisition System for

Plankton”. In: 2021 IEEE International Conference on Autonomous Robot Systems

and Competitions (ICARSC). 2021, pp. 74–78. doi: 10.1109/ICARSC52212.2021.

9429789.

[56] Robert K Cowen et al. “Planktonset 1.0: Plankton imagery data collected from fg

walton smith in straits of florida from 2014–06-03 to 2014–06-06 and used in the 2015

national data science bowl (ncei accession 0127422)”. In: NOAA National Centers

for Environmental Information (2015).

[57] Robert K. Cowen and Cédric Guigand. “In situ Ichthyoplankton Imaging System(ISIIS):

system design and preliminary results”. In: Limnology and Oceanography: Methods

6 (Feb. 2008). doi: 10.4319/lom.2008.6.126.

[58] Pedro Geraldes et al. “In situ real-time Zooplankton Detection and Classification”.

In: OCEANS 2019 - Marseille. 2019, pp. 1–6. doi: 10 . 1109 / OCEANSE . 2019 .

8867552.

113

