
Utilização da câmara smartphone para
monitorizar a aderência à terapia inalatória

SOFIA ALEXANDRA GONÇALVES FERRAZ
Outubro de 2021

Use of the Smartphone Camera to Monitor

Adherence to Inhaled Therapy

Sofia Alexandra Gonçalves Ferraz

Biomedical Engineer by Instituto Superior de Engenharia do Porto

“Dissertation for the partial fulfillment of the requirements for the master’s degree in

Biomedical Engineering by Instituto Superior de Engenharia do Porto”

Supervisors: Dr. Rute Almeida, Dr. Pedro Marques and Dr. Nuno Escudeiro

January 2020

i

Acknowledgments

Throughout the writing of this dissertation I have received a great deal of support

and assistance.

First and foremost, I am extremely grateful to my supervisors, Dr. Rute Almeida

and Dr. Pedro Marques for their invaluable advice, continuous support, and patience

during my thesis.

In addition, I would like to thank my parents for offering me the opportunity to

pursue studies. I hope that this stage that I now finish can, somehow, compensate for all

the support, affection and friendship they always unconditionally offered me.

Furthermore, I could not have completed this dissertation without the support of

Alexandre Lima, who provided a sympathetic ear as well as words of comfort and

motivation.

Finally, this research was part of the project “mINSPIRE—mHealth to measure

and improve adherence to medication in chronic obstructive respiratory diseases -

generalization and evaluation of gamification, peer support and advanced image

processing technologies”, POCI-01-0145-FEDER-029130, supported by the ERDF

(European Regional Development Fund), COMPETE2020 (Programa Operacional

Competitividade e Internacionalização), Portugal 2020 and by Portuguese Funds through

FCT (Fundação para a Ciência e a Tecnologia).

ii

Abstract

Self-management strategies can lead to improved health outcomes, fewer

unscheduled treatments, and improved disease control. Compliance with inhaled control

drugs is essential to achieve good clinical outcomes in patients with chronic respiratory

diseases. However, compliance assessments suffer from the difficulty of achieving a high

degree of trustworthiness, as patients often self-report high compliance rates and are

considered unreliable. This thesis aims to enable reliable adhesion measurement by

developing a mobile application module to objectively verify inhalation usage using

image snapshots of the inhalation counter.

To achieve this, a mobile application module featuring pre and post processing

techniques and a default machine learning framework was built, for inhaler and dosage

counter numbers detection. In addition, in an effort to improve the app’s capabilities of

text recognition on a worst-performing inhaler, a machine learning model was trained on

an inhaler image dataset. Some of the features worked on during this project were

incorporated on the current version of the app InspirerMundi, a medication management

mobile application, planned to be made available at the PlayStore by the end of 2021.

The proposed approach was validated through a series of different inhaler image

datasets. The carried-out tests with the default machine learning configuration showed

correct detection of dosage counters for 70% of inhaler registration events and 93% for

three commonly used inhalers in Portugal. On the other hand, the trained model had an

average accuracy of 88 % in recognizing the digits on the dose counter of one of the

worst-performing inhaler models.

These results show the potential to explore mobile and embedded capabilities to

gain additional evidence for inhaler compliance. These systems can help bridge the gap

between patients and healthcare professionals. By empowering patients with disease self-

management and drug adherence tools and providing additional relevant data, these

systems pave the way for informed disease management decisions.

Key words: optical character recognition; medication adherence; mHealth;

remote monitoring.

iii

Index

ABSTRACT ... II

INDEX .. III

LIST OF FIGURES ... V

LIST OF TABLES..VII

1. INTRODUCTION ... 1

1.1. CONTEXT, PROBLEM AND MOTIVATION ... 1

1.2. INSPIRERMUNDI APP ... 2

1.2.1. Inhaler Usage Detection ... 3

1.3. AIM AND MAIN OBJECTIVES ... 4

1.4. DOCUMENT STRUCTURE ... 5

2. LITERATURE REVIEW .. 7

2.1. OPTICAL CHARACTER RECOGNITION ... 7

2.2. MOBILE APPROACHES TO OCR ... 10

2.3. OPTICAL CHARACTER RECOGNITION CHALLENGES .. 13

2.4. STANDARD IMAGE PRE-PROCESSING .. 14

2.5. RELATED WORK .. 16

3. METHODS .. 21

3.1. DATASETS ... 22

3.2. COUNTER DETECTION ... 26

3.2.1. Image Pre-Processing ... 26

Step 1: Black and White Filter ... 27

Step 1.5.: Sharpening Filter... 27

Step 2: Rotation ... 27

Step 3: Cropping the Region of Interest ... 28

Step 4: Resize ... 28

3.2.2. Text Recognition with Default Model .. 29

3.3. RESULTS POST-PROCESSING ... 30

3.3.1. Removing Invalid Characters .. 30

3.3.2. Admissibility Range .. 30

3.3.3. Voting System .. 31

3.4. SAVING DATA ... 32

3.5. MODEL OPTIMIZATION ... 32

3.5.1. Annotations ... 33

3.5.2. Tools .. 33

 iv

3.5.3. Dataset Pre-Processing... 34

3.5.4. Split the Dataset... 35

3.5.5. Model Architecture .. 36

3.5.6. Model Train ... 36

3.5.7. Evaluate the Model .. 37

3.5.8. Convert to TF Lite ... 39

3.6. IMPLEMENTATION ON THE APP ... 39

4. RESULTS .. 41

4.1. TESTING MODULE WITH DEFAULT ML KIT’S MODEL .. 41

4.2. RESULTS WITH THE DEFAULT ML KIT’S MODEL OVER IOS IMAGE MODULE DATASET 42

4.3. RESULTS WITH THE DEFAULT ML KIT’S MODEL OVER THE REAL-WORLD USERS DATASET 48

4.4. RESULTS WITH THE DEFAULT ML KIT’S MODEL OVER THE CONTROLLED DATASET 49

4.5. TRAINED MODEL ... 51

4.5.1. Losses .. 52

4.5.2. Evaluation Metrics ... 52

5. DISCUSSION ... 55

5.1. PRE-PROCESSING... 55

5.2. ML KIT TEXT RECOGNITION ... 55

5.2.1. Results from the iOS image module dataset .. 55

5.2.2. Results from the Real-World Users Dataset ... 58

5.2.3. Results from the Controlled Dataset ... 59

5.3. TRAINED MODEL ... 59

5.3.1. Losses and Representativeness ... 59

5.3.2. Evaluation Metrics ... 60

5.4. FINAL REMARKS .. 61

6. CONCLUSION ... 64

REFERENCES ... 65

v

List of Figures

Figure 1 - Workflow for dosage detection counter. ... 4

Figure 2 - General process of optical character recognition. 9

Figure 3 - Technologies incorporated on ML Kit SDK [28]. 11

Figure 4 – Stages for the implementation of the default MLKit model. 21

Figure 5 – Steps for creating a custom MLKit model. ... 21

Figure 6 - The four datasets used on this work and their specifications. 22

Figure 7 - Sample images from the iOS Image Module dataset; photos captured under

suboptimal conditions. .. 24

Figure 8 - Sample representative of the images present in the real-world user’s dataset;

less than ideal acquisition conditions (background noise, poor lighting, etc.). 25

Figure 9 – Methods used for image preprocessing. ... 27

Figure 10 – Segmentation of text in ML Kit’s Text Recognizer (Source: Google

Developers). ... 29

Figure 14 - Post-processing techinques applied to the results. 30

Figure 11 - Interface of the VIA software. .. 33

Figure 12 – Sample of the pre-processed seretaide dataset. 34

Figure 13 - Shape of the OCR Model. ... 36

Figure 15 – (a) Display of the drop-down field menu, with the inhaler model options,

on the app; (b) Display of the layout of the app with all the existing buttons; (c) Display

of the layout for saving the data on Google Drive. .. 41

Figure 16 - Outputs of the preliminary phase of testing. .. 42

Figure 17 - Distribution of the causes for inadmissibility and admissible results. 45

Figure 18 - Causes for error in the controlled dataset. ... 51

Figure 19 - Sample of the predicted text of the trained model, accompanied by the

original images of the validation dataset. .. 51

Figure 20 - Training and Validation Loss over time. ... 52

vi

List of Tables

Table 1 - Comparison of Optical Character Recognition Mobile Approaches. 12

Table 2 - Description of some pre-processing methods. 14

Table 3 - Inhaler distribution for the several datasets used in the present work. 23

Table 4 - Inhaler distribution of the controlled dataset. .. 26

Table 5 - Smartphone model’s specifications. .. 26

Table 6 - Measurements used to perform the cropping of the region of interest: x and

y represent the first pixels of the region of interest; width and height are the measures

of the rectangular crop. ... 28

Table 7 - Maximum dose values for each inhaler model....................................... 31

Table 8 - Frequency of the characters found in the seretaide dataset. 35

Table 9 - Specifications of the android virtual device. .. 41

Table 10 - Text recognizer success rate before and after cropping in the iOS image

module dataset. .. 43

Table 11 - Success Rate before and after removing invalid characters, and

admissibility of the results. ... 44

Table 12 – Number of admissible events and the causes for error in inadmissible

results. ... 45

Table 13 - Success rate of the algorithm considering only admissible and successful

results. ... 46

Table 14 -Results of the inhaler detection module after applying the voting system.

 .. 47

Table 15 – Success rate of the text recognizer on the iOS app versus the Android

app. .. 48

Table 16 – Success rate of the text recognizer in images acquired under less than

ideal conditions by app users. ... 49

Table 17 – Success rate of the text recognizer among different devices. 50

Table 18 - Evaluation Metrics for the Trained Model. .. 52

CHAPTER 1 – INTRODUCTION

 Introduction

1

1. Introduction

1.1. Context, problem and motivation

Asthma exacerbations can be reduced with appropriate regular therapy and patient

education. Despite this, asthma affects about 300 million people globally and accounts

for 1 in every 250 deaths. In Europe alone, approximately 30 million people have asthma

and 15,000 people die yearly from this disease [1]. The economic burden of asthma is

substantial, in 2010, adult asthma accounted for over 2 % of the total healthcare

expenditure in Portugal (3% if children and adults are included). On average, each adult

cost 708.16€ a year, with direct costs representing 93%. Furthermore, uncontrolled

patients’ costs are more than double than those of controlled asthma patients. Thus,

improving asthma control in patients is critical to diminish this burden [2].

Treatment adherence is generally low among patients with asthma. As a matter of

fact, some studies show that adherence is less than 50% in children and as low as 30% in

adults [3]. This low adherence may be due in part to misinformation or confusion

regarding complicated treatment regimens. Additional barriers such as high prescription

cost, taste of medication, and uncertainty about the safety of inhaled corticosteroids may

contribute to poor adherence to inhaled asthma medications.

Poor medication adherence is concerning, since it is shown to increase risk of

asthma exacerbations, leading to higher mortality, greater financial burden for the patient

and health system, as well as decreased quality of life [3]. Numerous adherence-

improvement interventions have been introduced, but most have been only moderately

successful with little evidence of long-term sustainability or reduction of health care

utilization and cost [4].

Mobile Health (mHealth) technologies can improve disease outcomes and may be

an especially powerful tool to deliver effective behavioral health interventions that are

dynamic, user-centric, and continuously adapted [5]. Medication-use monitoring can

provide important information for patients, researchers, and health professionals, with the

aim of facilitating improved adherence and of improving treatment prescribing, but

available monitoring methods vary in quality. Patient self-report and clinician

assessments of medication adherence are notoriously unreliable [6].

Chapter 1

 2

Although subjective, self-reports are still considered one of the preferred methods

to continuously monitor adherence as they are simple, cheap and minimally

intrusive. One self-report measure of medication adherence is Visual Analogue Scale

(VAS)1. Nevertheless, reliance on VAS also has its limitations: patients tend to

overestimate their level of adherence and physicians have been found to be inaccurate in

estimating patients’ adherence when using VAS [7].

Regarding inhaled medication, current mHealth applications require the user to

manually enter the readings from the dose counters of these medical devices. This process

is slow and prone to error. As the internet becomes more embedded into medical monitors

through Wi-Fi and Bluetooth technologies, more sophisticated systems transmit the

values from the connected devices to the smartphone. However, this adds costs to the

manufacturing of the device and brings connectivity issues. Moreover, requiring a reading

to be transmitted over Bluetooth is not applicable to devices that are not Bluetooth-

compatible [8]. People who cannot afford to upgrade to these expensive devices will fail

to receive the benefits [9].

In the United States, smartphones are owned and regularly carried by

approximately 50% of 12–17 year-olds and 75% of adults ages 30–49 [5]. The advantages

of smartphones over other devices is not only the fact that they are affordable, but also

that they are very powerful, with most models nowadays integrating several cores in their

main processor. They are also standalone devices with a camera, a battery, and audio

output and an Internet connection [10]. Therefore, these devices show high potential to

be explored as a relevant mHealth tool.

1.2. InspirerMundi App

The InspirerMundi app aims to provide a verified monitoring of treatment

adherence through gamification and social interaction and is currently available in stores

free of charge. The focus of the app is to support patient’s medication management, while

transforming the process of adherence to treatment into a positive experience.

InspirerMundi’s was developed through a highly iterative process incorporating

input/feedback from patients and physicians throughout [11].

1 The VAS for medication adherence was developed as an adjunct self-report measure of

medication adherence. The VAS asks individuals to mark a line at the point along a continuum showing

how much of each drug they have taken in the past month [60].

 Introduction

3

The app stores the prescribed therapeutic plan (current medications: name, dose,

medication bar code, treatment duration, treatment dosage and schedule) inserted by the

patient and uses it to trigger related reminders and the record of performed inhalations.

Other reminders present are related to symptoms and burden questionnaires and Control

of Allergic Rhinitis and Asthma Test CARAT. The scheduling of events is derived from

the therapeutic plan taking in consideration the periodicity prescribed for intakes and from

predetermined (symptoms and burden questionnaires and Control of Allergic Rhinitis and

Asthma Test CARAT) which have a fixed periodicity. The therapeutic plan includes the

registration of the specific medications name, posology, frequency, and duration of the

treatment. The app includes, as the main interaction interface, a timeline where expected

events of monitoring and medication intake are depicted providing a quick reference

when a medication is due [11].

Inspirer Mundi, by combining features of inhaler usage detection and a

gamification approach based on peer support, delivers an innovative way to measure and

improve the adherence to inhaler [10]. Versions 1.x of the app were made available on

the App store and Playstore, and were used in feasibility studies of the InspirerMundi app

to monitor medication adherence in adolescents and adults with persistent asthma (treated

with daily inhaled medication) [12].

1.2.1. Inhaler Usage Detection

According to the scheduled events, users are prompted to register their medication

intake. These can be of three kinds: inhalation (referred throughout as inhalers), pills and

others (such as a nasal spray or an oral solution). When the event is for an inhaler, the

real-time inhaler medication module is triggered, and the user is requested to collect

images from the inhaler and register the value of the inhaler dosage counter after the use.

The module uses the smartphone camera; and provides, through image processing

techniques and machine learning tools, confirmation of the inhaler presented to the

camera. A more recent version developed only for iOS is also able to access dosage values

inferred from the acquired dose counter image [10][13]. The tool can thus be used as a

pervasive low-cost means of collecting data on patients’ adherence to inhalers. This

functionality is triggered from the timeline when a new inhalation is registered.

The developed detection tool is based on computer vision methods and key visual

features which are common on dose trackable devices: i) a contour or outer shape; ii) a

specific written label/canister; and iii) a dose counter indicating the remaining doses. The

Chapter 1

 4

detection of each dose in the dose counter uses numerical dose OCR (optical character

recognition) standard techniques together with character positioning in addition to object

(foreground) and dial (background) color, when available, for partial number correction.

The detection tool is at a proof-of-concept stage, currently working with virtually all

models of inhalers on the European market with a numerical dosimeter that corresponds

to the number of doses available in the device.

Figure 1 - Workflow for dosage detection counter.

1.3. Aim and Main Objectives

The final goal of the presented work is to improve an inhaler detection module for

the Android version of the Inspirer's Mundi app. To this end, an isolated module was built

in Android Studio, with text recognition features, in order to detect the digits on the dose

counter of commercially available inhalers.

The main objectives of this thesis are:

1. Build an Android module that allows for the text recognition on the

inhaler’s dosage counters.

2. Applying pre-processing and post-processing techniques to improve the

algorithm performance.

3. Enhance the inhaler detection module of the Android version of the

Inspirer's Mundi app.

4. Develop a machine learning algorithm to optimize the efficiency of the

application OCR algorithm.

 Introduction

5

1.4. Document Structure

This thesis is divided into six chapters. Chapter 1 offers a brief contextualization as

well as the motivation for the problem we try to solve. Moreover, this chapter includes

an overview of the app where the proposed solution will be incorporated. The second

chapter examines the literature on OCR and presents possible approaches for text

recognition in mobile apps, as well as challenges that may be posed during development.

Case studies are also analyzed in Chapter 2. The methodology is outlined in the third

chapter. The next chapter addresses the obtained results. Chapter 5 discusses the

limitations of the current work. The conclusions are drawn in the final chapter.

 6

CHAPTER 2 – LITERATURE REVIEW

Literature Review

7

2. Literature Review

In order to collect objective data on patients’ adherence to treatment, an inhaler

usage detection tool based on imaging processing technologies is proposed to measure

and improve the adherence to inhalers. This feature allows to recognize the remaining

doses on the inhaler's meter, and thus monitor medication adherence. The problem of

recognizing digits or characters in real-world applications is encompassed in the study of

optical character recognition (OCR).

There are several aspects to consider in conducting a literature review on the topic

of OCR. The first is to understand the current technology as well as the existing

limitations. The second focus on the OCR engines available to the development of this

method in smartphones. Next, the third consideration consists of various types of

preprocessing steps that can be added, and which can increase the accuracy of our system.

Lastly, there have been several publications on this subject whereby an overview of

similar work to the current case will be presented.

2.1. Optical Character Recognition

Optical character recognition (OCR) is a powerful tool for bringing information

from our analog lives into the increasingly digital world [14]. OCR belongs to the family

of machine recognition techniques performing automatic identification. Automatic

identification is the process where the recognition system identifies objects automatically,

collects data about them and enters data directly into computer systems i.e. without human

involvement [15].

In short, OCR process converts scanned images of typewritten or hand-written

text into machine-readable text [16]. OCR has evolved and became more and more mature

with the advancement of technologies and contributions of well-known companies such

as IBM, HP, Microsoft, Google and etc. through ongoing researches [17]. Although many

commercial systems for performing OCR exist for a wide variety of applications, the

available machines are still not able to compete with human reading capabilities with

desired accuracy levels [15].

The whole process of an OCR algorithm includes several stages as shown in

Figure 3. These stages are as follows:

Chapter 2

 8

▪ Image Acquisition: This step consists in capturing the image from an external

source (e.g. a smartphone’s camera).

▪ Location Segmentation: Segmentation is a process that determines the

constituents of an image, locating the regions of the document where characters

have been printed and distinguish them from figures and graphics.

▪ Preprocessing: Once the image has been acquired, different preprocessing steps

can be performed to improve the quality of image. Since processing color images

is computationally more expensive, most of the applications in character

recognition systems utilize binary or grey images, thus, conversion of color

images is performed in this step [18].

▪ Character segmentation: The characters in the image are separated so that they

can be recognized. Character segmentation can be categorized into three

strategies: top-down, bottom-up and hybrid. The top-down approach (e.g.

projection profile, filtering techniques, Hough transform) takes as input the entire

image of text and attempts to divide it into different text-lines images. In contrast,

the bottom-up strategies start by searching for interest pixels and then groups

interest pixel level. They then manage those interest pixels into connected

components that constitute characters which are then combined into words, and

lines or text blocks. The integration of both top-down and bottom-up methods is

called hybrid approaches [18] [19].

▪ Feature extraction: The segmented characters are then processed to extract

different features. Based on these features, the characters are recognized.

Extraction of representative and essential features from an input image is the main

key to improving the performance of a recognition system.

▪ Character classification: This step maps the features of segmented image to

different categories or classes. There are different types of character classification

techniques. Structural classification techniques are based on features extracted

from the structure of the image and use different decision rules to classify

characters. Statistical pattern classification methods are based on probabilistic

models and other statistical methods to classify the characters [20].

▪ Post processing: After classification, the results are not 100% correct, especially

for complex languages. Post processing techniques can be performed to improve

the accuracy of OCR systems. One of the approaches is to use more than one

classifier in cascading, parallel or hierarchical fashion. The results of the

 Literature Review

9

classifiers can then be combined using various approaches. Moreover, contextual

analysis can also be performed, i.e. the geometrical and document context of the

image can help in reducing the chances of errors. Lexical processing based on

Markov models and dictionary can also help in improving the results of OCR [21].

Figure 2 - General process of optical character recognition.

Chapter 2

 10

2.2. Mobile Approaches to OCR

Although OCR has been in research for several years, it is still not customized for

the cameras that come on modern day smartphones. There has been intensive research on

building mobile systems for text extraction and recognition both in the commercial space

and in the academia world. Both the industry as well as the research and opensource

communities offer comparable systems like:

▪ Tesseract: The Tesseract is probably one of the most widely used and accurate

open source OCR engines available. It was initially created by HP and is currently

developed by Google. Tesseract works on Linux, Windows and Mac OSX. The

source can also be compiled for other platforms, including Android and iPhone.

It supports around 149 languages which come as different packages [22].

▪ Azure cognitive services: Azure's Computer Vision API includes Optical

Character Recognition (OCR) capabilities that extract printed or handwritten text

from images. It can extract text from images, such as photos of license plates or

containers with serial numbers, as well as from documents - invoices, bills,

financial reports, articles, and more [23].

▪ ABBYY: In industry, ABBYY provides a powerful mobile OCR engine which is

claimed to provide real time processing with a very high accuracy and is

compatible with several mobile platforms such as Windows Mobile, Nokia

Symbian, iPhone, and Android [14]. ABBYY Mobile Capture is an SDK which

offers automatic data capture within your mobile app, providing real-time

recognition and capturing photos of documents for on-device or back-end

processing [24].

▪ Dynamsoft Camera SDK: is compatible with iOS and Android and is designed

for programming of mobile document imaging. It provides document boundary

detection, intelligent cropping, trapezoid distortion correction and image

enhancement for the quality of captured documents. In addition, it can be used to

can capture contracts, ID cards, presentations, receipts, passports, driving licenses,

or any other documents [25].

▪ Anyline SDK: Anyline is a mobile text recognition SDK, natively developed for

iOS, Android, and UWP, that enables developers to build text recognition apps

with ease [26].

▪ ML Kit: ML Kit SDK is a relatively new product from Google that was presented

in 2018. ML Kit is a software development kit (SDK) that makes it possible for

 Literature Review

11

developers to simplify the integration of machine learning models into their

mobile apps, including OCR. This kit provides a variety of highly skilled and

accurate pre-trained models developed on deep learning strategies. It also

incorporates Google ML technologies, such as: Google Cloud Vision API,

TensorFlow Lite, Android Neural Networks API in a single SDK to apply ML

techniques easily in your apps (Figure 3) [27].

Figure 3 - Technologies incorporated on ML Kit SDK [28].

Different OCR engines tend to make different mistakes. This remark can be

explained by the fact that different engines use different approaches for classifying

characters, are possibly trained on different data sets with different character and word

distributions and are possibly using different language models [29].

Chapter 2

 12

Table 1 - Comparison of Optical Character Recognition Mobile Approaches.

M
a

in
 F

ea
tu

re
s

O
C

R
.

O
C

R
,
Im

ag
e

U
n

d
er

st
an

d
in

g
,
S

p
at

ia
l

A
n

al
y

si
s,

 F
le

x
ib

le
 D

ep
lo

y
m

en
t.

O
C

R
,
C

u
st

o
m

iz
ab

le
 D

at
a

C
ap

tu
re

,

A
u

to
m

at
ic

 D
o

cu
m

en
t

D
et

ec
ti

o
n

.

O
C

R
,
D

o
cu

m
en

t
B

o
u

n
d

ar
y

D
et

ec
ti

o
n

,
In

te
ll

ig
en

t
C

ro
p

p
in

g
,

T
ra

p
ez

o
id

 D
is

to
rt

io
n

 C
o

rr
ec

ti
o

n
,

Im
ag

e
E

n
h

an
ce

m
en

t.

O
C

R
,
C

o
n
ti

n
u

o
u
s

S
ca

n
n

in
g

,

A
u

to
m

at
ic

 T
o

rc
h

 f
o

r
L

o
w

 L
ig

h
t

C
o

n
d

it
io

n
s,

 A
u

to
 &

 M
an

u
al

 F
o

cu
s

S
et

ti
n

g
s.

O
C

R
,
B

ar
co

d
e

S
ca

n
n

in
g
,

F
ac

e
D

et
ec

ti
o

n
,

Im
ag

e
L

ab
el

in
g

.

L
ic

en
se

O
p

en
S

o
u

rc
e

O
p

en
 S

o
u

rc
e

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

O
p

en
 S

o
u

rc
e

M
o
b

il
e

P
la

tf
o
rm

s

iO
S

,
A

n
d
ro

id
.

iO
S

,
A

n
d
ro

id
,

W
in

d
o
w

s
P

h
o
n
e.

W
in

d
o
w

s
M

o
b
il

e,

N
o
k
ia

 S
y
m

b
ia

n
,

iP
h
o
n
e,

 A
n
d
ro

id
.

iO
S

,
A

n
d
ro

id
.

iO
S

,
A

n
d
ro

id
.

iO
S

,
A

n
d
ro

id
.

R
el

ea
se

Y
ea

r

2
0
1
9

2
0
2
0

2
0
1
9

2
0
1
2

--
--

-

2
0
2
0

L
a
te

st

V
er

si
o
n

4
.1

.1

3
.1

1
5

8
.2

.

--
--

-

1
7
.0

.0

N
a

m
e

T
es

se
ra

ct

A
zu

re
 C

o
g

n
it

iv
e

S
er

v
ic

es

A
B

B
Y

Y
 M

o
b

il
e

C
a

p
tu

re

D
y

n
a

m
so

ft
 C

a
m

er
a

S
D

K

A
n

y
li

n
e

S
D

K

M
L

 K
it

 Literature Review

13

2.3. Optical Character Recognition Challenges

With the increase in the number of portable cameras, smartphones, and

surveillance cameras, the detail in images captured with these devices have considerably

increased. As a result, the information in these image details cannot be analyzed by

humans. Thus, efficiently and automatically analyzing this information is an important

challenge faced by image processing and pattern recognition [30].

The performance and accuracy of OCR is directly dependent upon the quality of

input images. Thus, most OCR engines require the input image to have a clean

background and clear foreground. However, the source images may be taken under

various conditions, which increase exponentially the difficulty of recognizing the target

characters [31].

In general, the processing of an image obtained by a smartphone is affected by

several factors, such as:

▪ Tilt: the perspective distortion that can take place when the text image plan to

capture is not parallel to the smartphone’s camera plane, results on the smaller

appearance of the characters located farther and the hypothesis of parallel lines of

the edges of the document page no longer fits to those in the captured image [19].

▪ Lighting conditions: the variation in illumination is common, due to the physical

environment such as shadows or reflective surfaces and lack of controlled lighting

[19].

▪ Text properties: from one document text to another, the text properties may vary,

such as: variety of sizes, fonts, styles, colors [19].

▪ Complex background: The most notable and probably an inherent challenge

faced by almost all vision-based systems is scene complexity. Background

cluttering and noise can often create outliers and mislead a machine learning

system into classifying non-textual information as text [32].

▪ Blur distortion: When using a mobile camera in real world scenarios, there is a

tendency to capture out of focus, shaken or blurry images. Compression and

decompression can also produce their own noise. In those cases, character (and

feature) sharpness is generally affected [32].

Chapter 2

 14

2.4. Standard Image Pre-processing

The aim of pre-processing is to eliminate undesired characteristics or noise in an

image without missing any significant information. It enhances the image and prepares it

for the next phases in OCR. Most of the challenges listed in the previous section need to

be addressed in preprocessing stage. Some common operations of pre-processing can be

listed as follows: binarization, noise reduction, skew correction, morphological

operations, slant removal, filtering, thresholding, smoothing, compression, and thinning

[18]. Table 2 presents some of these pre-processing methods in more detail.

Table 2 - Description of some pre-processing methods.

Processes Description

Binarization

Most OCR systems are designed to work with binarized images and

good binarization is crucial for reliable performance. A satisfactory

choice of binarization algorithm appears to be dependent on the

application domain and experimentation on relevant data sets [33].

Nonetheless, binarization has long been recognized as a standard

method to solve uneven lighting in OCR.

The goal of the binarization process is to classify image pixels from the

given input grayscale or color image into either foreground (text) or

background. In general, the binarization process for grayscale images

can be grouped into two broad categories: global binarization, and local

binarization. Global binarization methods (e.g. Otsu’s algorithm) try to

find a single threshold value for the whole image. Each pixel is then

assigned to either foreground or background based on its grey value.

On the other hand, local binarization methods (e.g. Niblack’s algorithm,

Sauvola’s algorithm) compute thresholds individually for each pixel

using information from the local neighborhood of that pixel.

Filtering

Filtering aims to remove noise and diminish spurious points usually

introduced by uneven writing surface and poor sampling rate of the data

acquisition device. Various spatial and frequency domain filters have

been designed for this purpose. The basic idea is to convolute a

predefined mask with the image to assign a value to a pixel as a function

of the gray values of its neighboring pixels. Several filters have been

designed for smoothing, sharpening, thresholding, removing slightly

textured or colored background and contrast adjustment purposes

[34][35].

 Literature Review

15

Skew

Correction

Due to inaccuracies in the capturing process and writing style the

writing may be slightly tilted or curved within the image. This can hurt

the effectiveness of the algorithms and thus should be detected and

corrected [35].

Thresholding

To reduce storage requirements and to increase processing speed it is

often desirable to represent gray scale or color images as binary images

by picking a threshold value. The two important categories of

thresholding are viz global and local. The global thresholding picks one

threshold value for the entire character image which is often based on

an estimation of the background level from the intensity histogram of

the image. The local or adaptive thresholding use different values for

each pixel according to the local area information. A comparison of

common global and local thresholding techniques is given by using an

evaluation criterion that is goal directed keeping in view of the desired

accuracy of the OCR system. It has been shown that Niblack’s locally

adaptive method produces the best result [34][35].

Chapter 2

 16

2.5. Related Work

As previously mentioned, nonadherence to asthma medications is a well-

recognized problem. Nonetheless, over the period of 30 years, the effectiveness of

adherence interventions has not progressively improved. Thus, the potential for mobile

communication technology, such as mobile health apps and inhaler-based devices, to

improve the management of asthma has gathered abruptly growing interest [4].

The development of electronic sensing devices that attach to inhaled respiratory

medications has mitigated this problem. The inhaler compliance assessment device,

commercially referred to under the trademark of INCA® (Inhaler Compliance

Assessment), has the advantage of being an automatic and objective measure of both

adherence and inhaler technique [36]. The aforementioned device, when attached to an

inhaler, allows to identify and record the time and technique of inhaler use, thereby

providing objective longitudinal data on an individual’s adherence to inhaled medication

[37]. Actuation sensors are now available worldwide, and their use has been associated

with lower overall costs for asthma care and better clinical outcomes [38].

In relation to mobile health applications, there are more than 500 asthma-related

apps currently available, whether standalone or paired with sensors on inhalers, offering

functions that span health education, symptom tracking, environmental alerts, and

medication reminders [39]. Standalone asthma apps are less costly to design, create, and

maintain than their interactive counterparts and are frequently downloaded from the App

Store and Google Play Store [38]. Although standalone apps often allow to collect

symptoms and inhaler usage data, these tools rely on patient self-report.

With all this in mind, combining features of inhaler usage detection and a

gamification approach based on peer support, delivers an innovative way to measure and

improve the adherence to inhaler, by using a smartphone camera to register the value of

the inhaler dosage counter after the use. The developed detection tool is based on

computer vision techniques, namely OCR (optical character recognition) to detect

remaining doses according to the dose counter [11].

Several academic projects and commercial products have tried to use mobile

phone cameras to build interesting OCR applications. The recent developments regarding

OCR have led to numerous applications of this technology in daily life, such as helping

vision-impaired people understand text information, automatic document generation, or

even in surveillance systems [10].

 Literature Review

17

The following review focused on finding articles that apply OCR strategies in

real-world scenarios with applications in the medical field. However, papers from other

application fields, whose methodology proved to be potentially useful for the work at

hand, were not excluded. The search was conducted manually in Science Direct, IEEE,

and Google Scholar databases.

Rusyn et al. proposes an approach to the automatic digit recognition of exposures

from medical devices, such as blood pressure meters, glucometers, substance content

harmfulness analyzers. The authors proposed solving the problem of optical character

recognition using methods of deep learning. To do so, the researchers used a database of

4500 images to train and validate the created network. Their team found the deep learning

model suitable for detecting and recognizing low contrast and defocus images. In

addition, their results show these methods to be more accurate than more classical

approaches, such as k-nearest neighbors and decision tree [40].

Tangtisanon suggested a medicine alert system for the elderly population that can

operated in an Android smartphone with Internet connection. The proposed application

allows to convert a medicine label picture into a text file, so the user can set up the right

medicine name. The author used tesseract to implement this functionality, along with

some pre-processing techniques (e.g. adaptive thresholding). The results show that the

program output 100% correctly for typewriter font in local-based testing. On the other

hand, for server-based testing only 90% of the output text match with the uploaded picture

label correctly, due to a higher picture sampling before the upload to the server [41].

In contrast, Čakić et al. [42] used Tesseract OCR to get additional information

about a specific bottle of wine (i.e. type, vintage, origin, ratings), based on existing wine

labels that contain unique serial numbers, using only a smart mobile phone equipped with

camera. The results obtained by the authors highlighted the importance of image pre-

processing, since the success rate varies significantly depending on the application of this

stage in the OCR (around 62 % of the images were correctly recognized without pre-

processing; this value increases to 87.5% after performing pre-processing).

An increasing number of studies have attempted to develop software to detect and

classify digits from images captured from medical devices, namely from seven-segment

displays. Many of these systems follow a process of locate a region of interest (ROI),

binarize the ROI, locate digits within the binarized region and finally classify the digits

by their numeric value. Significant differences in these systems occur for the methods

used for region extraction and digit classification.

Chapter 2

 18

In the healthcare sector, Finnegan and co-workers [8] presented an automated

process for the detection and reading of seven-segment digits from images of medical

devices that used LCD screens, from two frequently-used medical devices: blood glucose

meters and blood pressure monitors. The algorithm took in consideration unfavorable

illumination effects by applying Retinex theory using bilateral filters. Moreover, a multi-

layer perceptron was built using Matlab’s ‘Neural Network Pattern Recognition’ toolbox.

The model achieved 93% accuracy on digits found on the medical devices. However, this

system was not yet implemented on a smartphone.

 Similarly, Shenoy et al. [9] developed a smartphone based system (running on iOS

8 and above), to automatically recognize and record biometric measurements captured

from medical devices. In the search for an algorithmic model to implement, the

researchers concluded that while Tesseract is strong at reading regular text on a page, it

has difficulty to accurately read seven segment displays. Alternatively, the authors

implemented an algorithm in Python 2.7, that accurately read the monitor 98.2% of the

time. Packages such as scikit-learn and OpenCV were used to execute Random Forest

Classifier and feature extraction along with image normalization, respectively.

In [31] the authors presented an accelerated optical character recognition approach

of seven-segment display digits found on digital medical devices. Using the proposed

system, patients are expected to scan a medical instrument with a smartphone to

automatically extract measurements related to their health. The authors overcame the

challenges posed by changes in illumination through an adaptive thresholding method,

and achieved an OCR accuracy of 96,22 %.

Outside the medical field, Ghugardare et al. [43] propose a generalized module

for automatic calibration of any measuring instruments using OCR, in order to better

replicate and objectify measuring, as well as significantly minimize the quantity of work

for calibration. This paper mainly suggests algorithms for recognition of seven segment

display characters present on digital multi-meters. Despite the high accuracy of 95%, the

proposed method focuses on serial execution and the algorithm is neither optimized for

speed, nor performance is the focus of this research.

More recently, Kanagarathinam and Sekar [16] conducted text recognition in

energy meters with a seven segment display. Their dataset included images captured

under challenging text recognition conditions such as tilted position, blurred, day and

night light. Their findings suggest that existing open source OCR software could not

recognize the text of seven-segment numerals because of the discontinuity in the digit

 Literature Review

19

representation. As such, a MSER algorithm was used to detect the text regions in an image

and an OCR function available in MATLAB was used to increase the recognition rate.

Their results showed a recognition rate of 93,17 % in the test set.

 In the last few years, much more information on OCR has become available as

well open-source engines that allow the application of this technology in mobile apps.

Although ML Kit is a relatively recent product (presented by Google in 2018), it has

already been incorporated in some commercial apps, namely ZYL and Lose It!.

Lose It! is an app that helps users manage their diets through food logging. Their

team used ML Kit to scan nutrition labels from the camera view in real time, and instantly

fill in the nutrition information for any new food in the app. The implementation of ML

Kit significantly reduced the image analysis time for nutrition label reading. Moreover,

since ML Kit allows to host models in Firebase, enables the seamlessly update of models

on device without updating the app, reduces the app size, and allows A/B test model

versions [44].

The InspirerMundi's app also incorporates Google's ML Kit technology to monitor

the adherence to inhaled control medications. In a pilot implementation of a detection tool

for this mobile app for iOS, the dose in the dose counter of the inhaler is recognized to

assist with the adherence monitorization. This functionality uses template matching to

locate the dose counter for a set of commonly used inhaler devices. Only then the app

performs the recognition of each numerical dose in the dose counter. The counter numbers

were detected in 42% of the 101 images. To improve these results, an additional step was

added where if no numbers are detected in the region of interest (ROI), a crop is

performed around this area and submitted to text analysis again. The cropping of the

image’s ROI was tested on 20 images subset and allowed to retrieve correctly the doses

of 15 images (75%) [42].

In a more recent study, the tests performed with the InspirerMundi application

resulted in the correct value identification for the dosage counter in 79% of the

registration events with all inhalers and over 90% for the three most widely used inhalers

in Portugal [13].

20

CHAPTER 3 –METHODOLOGY

 Methodology

21

3. Methods

The goal of the presented work is the development of a module dedicated to

recognizing the text of inhaler counters. As such, a module was built, in Android Studio,

with ML Kit and tested on several datasets. Pre and post processing techniques were

applied where it was deemed necessary. Subsequently, certain features of the project were

integrated in the most current version of the app, planned to be made available at the

PlayStore by the end of 2021 (Figure 4).

Figure 4 – Stages for the implementation of the default MLKit model.

 The second phase of the project aimed to improve the performance of the text

recognizer by creating a TensorFlow model, trained on images of inhalers. This stage

encompasses the steps described in Figure 5 and will be addressed later on. It should be

noted that this process was only performed for one inhaler type: the seretaide.

Figure 5 – Steps for creating a custom MLKit model.

Chapter 3

 22

3.1. Datasets

 To test the many variables that can affect the performance of the text recognizer, four

datasets were considered, each with a different set of characteristics (Figure 5).

Figure 6 - The four datasets used on this work and their specifications.

 A subset of inhaler images, used in previous studies of the iOS inhaler detection

module, was made available for text recognition testing. The database consists of 1322

RGB images, in PNG format, with dimensions of 640 x 360 pixels. This dataset contains

all the currently marketable inhaler types, with numerical dose counters at Portugal and

Spain (Figure 7). However, the distribution of each inhaler in the dataset is variable (Table

3).

1322 Images

12 Inhaler Models

640 x 360 pixels

5 frames per event

Suboptimal Conditions

iOS Image Module

DATASET

50 Images

10 Inhaler Models

Variable Sizes

1 frame per event

Less-than- ideal Conditions

Real World Users
DATASET

27 Images

4 Inhaler Models

Variable Sizes

1 frame per event

Suboptimal Conditions

Controlled
DATASET

349 Images

1 Inhaler Model

640 x 360 pixels

1 frame per event

Ideal Conditions

Seretaide
DATASET

 Methodology

23

Table 3 - Inhaler distribution for the several datasets used in the present work.

Inhaler

Model

No. of images

iOS Image

Module

Dataset

Real World

Users Dataset

Controlled

Dataset

Seretaide

Dataset

Diskus 229 3 6 ---

Easyhaler 146 4 9 ---

Ellipta 53 7 --- ---

Flutiform 95 2 --- ---

K-haler 232 4 5 ---

Mdi3m 79 --- --- ---

Nexthaler 62 2 --- ---

Novolizer 82 4 7 ---

Seretaide 152 4 --- 349

Spiromax 47 8 --- ---

Turbohaler 69 12 --- ---

Twisthaler 76 --- --- ---

TOTAL 1322 50 27 349

Chapter 3

 24

Figure 7 - Sample images from the iOS Image Module dataset; photos captured under

suboptimal conditions.

 The images provided were acquired by 24 volunteers under controlled conditions

using an iPhone 6S and a Swift implementation of method [13] described at section 2.5

Related Work. It’s also important to note that the acquisition of these images was

performed with a template matching tool, which allowed for the inhalers to remain

similarly positioned on the screen. In addition, this dataset many times contained frames

of the same event for each inhaler.

A second dataset containing images collected from v1.x app users (iOS and

Android) was provided to test the text recognition in even more realistic conditions. This

dataset of 50 RGB images in PNG format, includes photos acquired by testers but also

real patients, recruited as participants of the Inspirers Studies [12]. Additionally, the

photos collected for the real-world user’s dataset were acquired after the process of

template matching. Contrary to the iOS image module database, in this dataset there is

only one frame per inhaler event.

 Methodology

25

The images were collected under less-than-ideal conditions (poor lighting, camera

blur, background noise, etc.; Figure 8). The size of these images varies depending on the

camera used to obtain the photo. This dataset contained images representative of all the

inhalers available, except for the mdi3m and twisthaler models.

Figure 8 - Sample representative of the images present in the real-world user’s dataset; less than

ideal acquisition conditions (background noise, poor lighting, etc.).

A dataset acquired under controlled conditions was provided specifically to test

the interference of using different cameras in the text recognition results. For this purpose,

photos from three different devices: a tablet (Lenovo TB-7504F) and two smartphones

(Huawei P8 Lite and Redmi Note 8T) were obtained. The specifications for each

instrument can be found in Table 6. These devices were used to collect photos of different

inhaler models through the InspireMundi version 1.2.2. The captured photos form a

dataset containing a total of 27 frames, however the distribution of images for each device

is non-uniform and not all succeeded in the process of template matching.

Chapter 3

 26

Table 4 - Inhaler distribution of the controlled dataset.

Device Model
Number of Images per Inhaler Model

Diskus Novolizer Easyhaler K-haler Total

Lenovo TB-7504F 4 2 5 2 13

Huawei P8 Lite 2 3 3 2 10

Redmi Note 8T --- 2 1 1 4

Table 5 - Smartphone model’s specifications.

Model Inches
Resolution

(pixels)
Ratio Operative System

Lenovo TB-7504F 7’’ 720 x 1280 16:9 Android 7

Huawei P8 Lite 5.2’’ 1080 x 1920 16:9 Android 8

Redmi Note 8T 6.3’’ 1080 x 2340 19.5:9 Android 10

At last, the seretaide database consists of 349 images of the seretaide inhaler

model in PNG format, with dimensions of 640 x 360 pixels, collected under ideal

conditions using a LG-V700 (Android) camera app. These images show a wide

representation of digits in the dose counter; additionally, the background varies between

black, white, and multicolor, and the lighting source of the photo varies between natural

light and artificial light.

3.2. Counter Detection

3.2.1. Image Pre-Processing

Before processing the images through the text recognition model, it's important to

improve the image data by suppressing undesired distortions and enhancing some

relevant image features. With this goal in mind, several steps were followed during

preprocessing, namely, the application of filters, image rotation and cropping of the

region of interest (Figure 9).

 Methodology

27

Figure 9 – Methods used for image preprocessing.

Step 1: Black and White Filter

In order to facilitate text recognition, a black and white filter was applied to all

images. The reason for this pre-processing step is that less information needs to be

provided for each pixel (a single intensity value for each pixel, as opposed to the three

intensities needed to specify each pixel in a full color image), thus making the algorithm

more efficient.

Step 1.5.: Sharpening Filter

A sharpening filter was applied to some key inhaler models, to improve the

definition of fine detail and sharpen edges in the original image. The filter works by

creating a fine highlight on the darker side of the edge, and a tiny lowlight on the lighter

side of the edge.

This intermediate step was only applied to the seretaide and k-haler inhaler

models, due to the poor performance of the text recognition algorithm in the images of

these inhaler types [13].

Step 2: Rotation

The pictures of the inhalers were captured horizontally by the camera of a

smartphone. However, the ML Kit algorithm does not recognize horizontal text, so all the

collected images were rotated vertically.

In most cases, the images were rotated 90 degrees to the right, with the exception

of the mdi3m inhaler model (rotated 180 degrees right). This process was automatically

made in Android Studio.

Chapter 3

 28

Step 3: Cropping the Region of Interest

The main goal of this work is to recognize the digits that are represented on the

dose counter of an inhaler. However, the text recognizer in the ML Kit recognizes not

only the text on the dose counter, but also text in the background or on the labels present

in the inhalers. Therefore, to ensure that the text collected does indeed belong to the dose

counter, an image cropping centered on the dose counter display of the inhaler was

performed. For this process, it had to be considered that the location on the image of the

dose counters varies according to the type of inhaler. Therefore, image cropping was

performed with different measurements and different coordinates based on the inhaler

model (Table 6).

Table 6 - Measurements used to perform the cropping of the region of interest: x and y

represent the first pixels of the region of interest; width and height are the measures of the

rectangular crop.

Inhaler Model x y Width Height

Diskus 170 240 140 100

Easyhaler 100 350 140 80

Ellipta 160 370 110 80

Flutiform 120 200 140 130

k-haler 140 140 100 100

Mdi3m 430 125 140 100

Nexthaler 180 300 120 80

Novolizer 120 100 140 80

Seretaide 130 440 140 80

Spiromax 140 280 140 80

Turbohaler 180 220 140 80

Twisthaler 120 450 140 80

Step 4: Resize

Resizing images is an essential part of image processing. In this case, the image

resizing is performed by scaling down the image, to speed the processing phase. To create

a resized image, the original image is divided by a scale factor. The scale factor is

determined by selecting the greater of two values (
𝐼𝑚𝑎𝑔𝑒 𝑊𝑖𝑑𝑡ℎ

𝑇𝑎𝑟𝑔𝑒𝑡 𝑊𝑖𝑑𝑡ℎ
,

𝐼𝑚𝑎𝑔𝑒 𝐻𝑒𝑖𝑔ℎ𝑡

𝑇𝑎𝑟𝑔𝑒𝑡 𝐻𝑒𝑖𝑔ℎ𝑡
).

 Methodology

29

3.2.2. Text Recognition with Default Model

Machine learning-based technologies were utilized to solve the problem of

reading the dose counter. In particular, the MLKit SDK, which provides an off-the-shelf,

simple solution for mobile developers to incorporate machine learning into their apps

without having to fully grasp the entire model training process. The inhaler detection

module was modified to include the ML Kit text mining API for dose counter value

number extraction in order to provide objective verification of adherence.

In essence, the code configures a text recognition detector, parses the results and

displays them in the app, showing the text recognition results and bounding boxes

overlaid on top of the original image.

The ML Kit’s Text Recognizer segments text into blocks, lines, and elements

(Figure 10):

• a Block is a contiguous set of text lines, such as a paragraph or column,

• a Line is a contiguous set of words on the same axis, and

• an Element is a contiguous set of alphanumeric characters ("word") on the

same axis in most Latin languages, or a character in others.

Figure 10 – Segmentation of text in ML Kit’s Text Recognizer (Source: Google Developers).

If the text recognition operation succeeds, a Text object is passed to the success

listener. A Text object contains the full text recognized in the image and zero or

more TextBlock objects. Each TextBlock represents a rectangular block of text, which

contains zero or more Line objects. In turn, each Line object contains zero or

more Element objects, which represent words and word-like entities such as dates and

numbers [45].

Chapter 3

 30

3.3. Results Post-Processing

After processing the images and obtaining the results, certain post-processing

techniques were applied to the outcomes, in order to avoid errors in the results. Some

examples of preventable errors include the presence of non-numerical characters in the

final result or detected values that do not fall within the dosage range of the inhaler. Thus,

the method represented in Figure 14 were implemented by the illustrated order.

Figure 11 - Post-processing techniques applied to the results.

3.3.1. Removing Invalid Characters

The dose counter of an inhaler can only display numerical characters. Thus, any

detection of a non-numerical character could be handled one of two ways: either correct

the recognized text to match a number (change the 'o' to 0, or 'I' to 1) or exclude any

character that does not match a digit from the result. From these two different approaches,

the latter was chosen, as it is simpler and the conversion from text to number would imply

studying the dataset.

Hence, all characters that were not digits, including alphabetic and special

characters, were excluded from the recognized text.

3.3.2. Admissibility Range

The value obtained from the text recognition can be considered inadmissible for

several motives. These reasons may be that there is no recognized text, no character

remaining after removing invalid characters, or that the text does not fit into the range of

admissible values.

It is worth noting that the values that are illustrated on the inhaler counter display

are limited by ranges. That is, each inhaler has a maximum dose value and a minimum

value (0). Thus, for each character recognition result it is important to verify whether the

result was admissible within the known value range for each inhaler (Table 7).

 Methodology

31

Table 7 - Maximum dose values for each inhaler model.

Inhaler Model Maximum Dosage

Diskus 60

Easyhaler 200

Ellipta 30

Flutiform 120

K-haler 124

Mdi3m 120

Nexthaler 120

Novolizer 200

Seretaide 124

Spiromax 120

Turbohaler 200

Twisthaler 120

However, it is worth noting that in certain instances the text recognizer has

simultaneously detected two dose values (particularly among the easyhaler and

turbohaler inhaler models). The ML Kit aggregates the text blocks detected in the image

in order to generate the final result. Therefore, there were some cases in which the results

were erroneously considered to be outside the admissibility range. Thus, for these

occurrences, the admissibility of the results was amended manually.

3.3.3. Voting System

In order to increase the effectiveness of the algorithm, a voting system was

implemented. This system consists of collecting 5 frames from the same inhaler. These

frames are temporarily stored in the cell phone. For each frame, text recognition is

performed. From the five results obtained, the text that was recognized most often is

selected. This is then considered the correct one. If there are two most common numbers,

the algorithm selects the one with the lower value.

Chapter 3

 32

3.4. Saving Data

Each time an image is processed all the information regarding that same image

and the detected text are stored temporarily in the device. Towards access the saved values

an export is performed, to load the data obtained by the app in Google Drive under the

form of a .csv file. This data encompasses: the timestamp, the inhaler model, the file

name, the detected text, the corrected detected text, whether the value is in the

admissibility range, and the most common detection among five frames.

3.5. Model Optimization

Following data processing and analysis of the results, a discrepancy in the

performance of the text recognizer was observed between different inhaler models. In

fact, the results for certain inhalers were lower than expected when compared to the

others.

By default, ML Kit’s APIs make use of Google trained machine learning models.

These models are designed to cover a wide range of applications. However, some use

cases require models that are more targeted. That is why some ML Kit APIs now allow

you to replace the default models with custom TensorFlow Lite models.

Thus, it was proposed to train a TensorFlow Lite model on images belonging to a

specific type of inhaler, to improve the accuracy of the text recognizer. The inhaler

models with worst results (in iOS) were Twisthaler and Seretaide [13], however the

Twisthaler model is rarely used among Portugal users, according with medical specialists

of the team Inspirers; hence, the Seretaide model was selected for this study.

In order to create a TensorFlow Lite model the following steps were completed:

1. Annotate the dataset.

2. Get crops for each image where the dose counters are located.

3. Split the seretaide dataset into train and validation datasets.

4. Train the model.

5. Make prediction on cropped images of the test dataset.

6. Evaluate the model.

7. Convert the model to TFLite format.

 Methodology

33

3.5.1. Annotations

For the purpose of training a machine learning model on inhaler pictures, a manual

annotation process was performed on all images present in the Seretaide inhaler dataset.

This task was accomplished with the help of the VGG Image Annotator (VIA) tool. VIA

is an open source standalone manual annotation software for image, based solely on

HTML, JavaScript and CSS (no dependency on external libraries)[46]. This software was

selected among other annotation tools due to the simplicity of its interface (Figure 11)

and the fact that there is no installation required (runs in a web browser).

Figure 12 - Interface of the VIA software.

With the aid of this software, it was possible to collect annotations regarding the

position and dimensions of the dose counter and the corresponding digits that appear on

the display. The annotations were saved under a csv file with information regarding the

filename, the width and height of the dose counter, the coordinates for the first pixel

corresponding the dose counter and the number of dosages displayed in the dose counter.

The data referent to the location and dimensions of the dosage counter allowed to get

crops of each image at a later stage.

3.5.2. Tools

Google Colaboratory, or “Colab” for short, is a web integrated development

environment (IDE) for python that allows anybody to write and execute arbitrary python

code through the browser, and is especially well suited to machine learning, data analysis

Chapter 3

 34

and education. More technically, Colab is a hosted Jupyter notebook service that requires

no setup to use, while providing free access to computing resources including Graphic

Processing Units (GPUs) [47].

A good GPU is indispensable for machine learning. Training models is a hardware

intensive task, and a proper GPU will make sure the computation of neural networks goes

smoothly. Hence, the use of Google Colab in this case was indispensable given the limited

hardware resources available. The types of GPUs that are available in Colab vary over

time. The GPUs available in Colab often include Nvidia K80s, T4s, P4s and P100s.

Nevertheless, there is no way to choose what type of GPU you can connect to in Colab at

any given time [47].

Since, the goal is to train a model to be integrated in MLKit API, the model has

to be in a TensorFlow Lite format. TensorFlow is a free and open-source software library

for machine learning and artificial intelligence. It can be used across a range of tasks but

has a particular focus on training and inference of deep neural networks, enabling

developers to build and deploy ML-powered applications. In addition, TensorFlow offers

intuitive high-level APIs that enable immediate model iteration and simplified debugging

and can be executed in Colab notebooks [48].

3.5.3. Dataset Pre-Processing

The dataset contains 354 files as jpg images. All images suffered four pre-

processing steps: rotation, cropping, convert to grayscale and resizing. The images in the

dataset were rotated 90º right and cropped according to the dimensions of the dose counter

indicated on the annotations file. Since the cropping measurements were not consistent

across the dataset, the cropped-out images did not have the same size; hence, all images

were resized to standardize the data (Figure 12).

Figure 13 – Sample of the pre-processed seretaide dataset.

 Methodology

35

The label for each sample is a string with the characters illustrated in the image of

the dose counter. Each character in the string was mapped to an integer for training the

model. Similarly, the predictions of the model were mapped back to strings. For this

purpose, two dictionaries were maintained, mapping characters to integers, and integers

to characters, respectively. The characters that are present in the dose counter, and

therefore are needed to encode and posteriorly decode for predictions, are digits from 0

through 9. All transcriptions of the dose counter digits are 3 characters long.

3.5.4. Split the Dataset

In order to test the model, a training and validation set must be generated. The

network can be trained using the training set and verified using the validation set. For this

purpose, the dataset was shuffled randomly, so that each time the dataset is split a new

training and validation dataset are created. Additionally, the dataset split into 90 %

training set and 10 % validation set. That is, of total images present in the seretaide

dataset, 90 % were used for training the model and 10 % for validating the model’s

performance:

• Training Dataset Size: 318 images;

• Validation Dataset Size: 36 images.

The classes found in the seretaide dataset are digits that range from 0 to 9, and the

frequency of each one in the dataset can be seen in Table 8.

Table 8 - Frequency of the characters found in the seretaide dataset.

Character Frequency (%)

0 33,90

1 26,08

2 10,92

3 8,47

4 3,95

5 3,39

6 3,39

7 3,11

8 3,39

9 3,39

Chapter 3

 36

3.5.5. Model Architecture

When attempting to recognize characters, neural networks (NN) are a good choice

as they outperform all other approaches at the moment. The NN for such use-cases usually

consists of convolutional layers (CNN) to extract a sequence of features and recurrent

layers (RNN) to propagate information through this sequence. The network outputs

character-scores for each sequence-element, which simply is represented by a matrix

[49]. In this case, the model combines a CNN and an RNN, and it instantiates a new

“endpoint layer” for implementing CTC loss. The former enables using unsegmented

pairs of images and corresponding text transcriptions to train the model without any

character/frame-level alignment [50].

More specifically, the architecture of the NN consists of an input layer, two

convolutional layers each followed by a pooling layer, two bidirectional layers, a CTC

layer and finally an output layer (Figure 13). The input layer consists of an array of floats

that represent the pixels in the image of a dose counter. It is important to notice that the

value of a pixel is the intensity of a symbol at a given position, with 255 being a black

pixel with ink, and 0 being a white pixel without ink. The final layer is the output layer

and it has 11 nodes.

Figure 14 - Shape of the OCR Model.

3.5.6. Model Train

Training is the machine learning stage where the model is gradually optimized, or

the model learns the dataset. The goal is to learn enough about the structure of the training

data set to make predictions about unseen data. If you learn too much about the training

data set, the predictions will only work for the data it has seen and will not be

generalizable (i.e. overfitting) [51]. The problem in question (OCR of dose counter digits

in inhalers) is an example of supervised machine learning, in particular, a multi-label

 Methodology

37

classification problem: the model is trained from examples that were previously labelled

with the corresponding class; in this case a class is a label from the set {0, 1, 2, …, 9}).

During the training stage the model needs to calculate loss. This measures how

much a model's predictions are off the desired label, in other words, how bad the model

is doing. In this case, the model computes its loss using the CTC Loss which calculates a

loss between a continuous (unsegmented) time series and a target sequence. It does this

by summing over the probability of possible alignments of input to target, producing a

loss value which is differentiable with respect to each input node [52].

In addition, TensorFlow has many optimization algorithms available for training.

This model uses the optimization algorithm Adam which is a replacement optimization

algorithm for stochastic gradient descent for training deep learning models. The Adam

algorithm combines the best properties of the AdaGrad and RMSProp algorithms. Adam

is relatively easy to configure where the default configuration parameters do well on most

problems [53].

3.5.7. Evaluate the Model

The critical step after implementing a machine learning algorithm is to find out

the effectiveness of the model based on metrics. Different available performance metrics

are used to evaluate machine learning algorithms. In OCR tasks, we can use multi-label

classification performance metrics such as accuracy, precision, recall and F-measure [54].

The evaluation of a multi-label classification algorithm is difficult mostly because

multi-label prediction has an additional notion of being partially correct. One trivial way

around would be just to ignore partially correct (consider them as incorrect) and extend

the accuracy used in single label case for multi-label prediction. This is called Exact

Match Ratio (MR) and it can be described by the following expression:

 (1)

where, I is the indicator function. Clearly, a disadvantage of this measure is that it

doesn’t distinguish between complete incorrect and partially correct [54].

In order to account for partially correctness, Godbole et. at in [55] proposed

following set of definitions for accuracy, precision, recall, and F1 measure. As in single

label multi-class classification, the higher the value of referred metrics, the better the

performance of the learning algorithm.

Chapter 3

 38

The accuracy determines the fraction of correct predictions. If �̂�𝑖 is the predicted

value of the i-th sample and 𝑦𝑖 is the corresponding true value, then the fraction of correct

predictions over 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is defined as [56]:

 (2)

Another evaluation metric is precision (P), which corresponds to the proportion

of predicted correct labels to the total number of actual labels, averaged over all instances:

 (3)

On the other hand, recall (R) is the proportion of predicted correct labels to the

total number of predicted labels, averaged over all instances:

 (4)

F1-Measure (F) is the definition for precision and recall naturally leads to the

following definition for F1-measure (harmonic mean of precision and recall).

 (5)

Hamming Loss (HL) reports how many times on average, the relevance of an

example to a class label is incorrectly predicted. Therefore, hamming loss considers the

prediction error (an incorrect label is predicted) and the missing error (a relevant label not

predicted), normalized over total number of classes and total number of examples.

(6)

where I is the indicator function. Ideally, we would expect hamming loss, HL = 0,

which would imply no error; practically the smaller the value of hamming loss, the better

the performance of the learning algorithm [54].

Accuracy

 Methodology

39

3.5.8. Convert to TF Lite

In order to replace the default models on ML Kit APIs with a custom model, the

existing TensorFlow OCR Model had to be converted to a TensoflowLite format. To do

so, the has to meet some compatibility requirements must be met [57]:

• The model must have only one input tensor with the following constraints:

• The data is in RGB pixel format.

• The data is UINT8 or FLOAT32 type. If the input tensor type is

FLOAT32, it must specify the Normalization Options by

attaching Metadata.

• The tensor has 4 dimensions: BxHxWxC, where:

o B is the batch size. It must be 1 (inference on larger batches is

not supported).

o W and H are the input width and height.

o C is the number of expected channels. It must be 3.

• The model must have at least one output tensor with N classes and either 2 or

4 dimensions:

• (1xN)

• (1x1x1xN)

3.6. Implementation on the app

All previously mentioned steps were developed and implemented over in an

Android Studio project independent of the InspirersMundi app. Therefore, after

establishing that the image processing and text recognition worked, the goal is to integrate

this work in the current version of the Android app Inspirers Mundi. The pre-processing

features and the text recognition were included on the app through a team collaboration,

and over the next course of weeks the voting system will be implemented to improve the

app’s performance.

40

CHAPTER 4 – RESULTS

 Results

41

4. Results

4.1. Testing Module with Default ML Kit’s Model

In order to test app's operation, Android Studio emulator was used to simulate the

virtual device Pixel 4 API 28. The specifications for this device can be found in Table 9.

Table 9 - Specifications of the android virtual device.

Name Resolution API Target CPU/ABI

Pixel 4 API 28
1080 x 2280:

440dpi
28 Android 9.0 x86

As shown in Figure 15 (a), the mobile app module has a drop-down field menu

that allows the user to select which of the inhaler model is going to be processed. The

menu offers 12 options corresponding to the commercially available inhalers with

numerical dose counters. In addition, the app has a ‘PROCESS’ button that starts the

image processing and OCR, and a ‘EXPORT’ button (Figure 15 (b)). The former allows

loading to Google Drive all the data that has been temporarily saved on the device, in a

cvs format for future analysis (Figure 15 (c)). After the text recognition is complete, the

obtained values are displayed on the screen alongside the bounding boxes.

(a) (b) (c)

Figure 15 – (a) Display of the drop-down field menu, with the inhaler model options, on
the app; (b) Display of the layout of the app with all the existing buttons; (c) Display of the

layout for saving the data on Google Drive.

Chapter 4

 42

In a preliminary analysis, the text recognition program often picks up much more

text than the one present in the dose counter, namely text from the inhaler labels and text

present at the background of the photo (Figure 16).

Figure 16 - Outputs of the preliminary phase of testing.

4.2. Results with the Default ML Kit’s Model over iOS Image Module

Dataset

To evaluate the performance of the text recognizer, a manual annotation of the

text expected to be recognized by the app was performed. This way, all the results

obtained were compared to the expected text, according to the success rate. The success

rate is measurement corresponding to the number of correct results divided by all the

images that were processed (Equation 7).

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 (%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
 (7)

To verify the impact of preprocessing on the quality of the system performance,

data was collected on the text recognition app before cropping and afterwards (Table 10).

This study was performed on the iOS Image Module dataset.

 Results

43

Table 10 - Text recognizer success rate before and after cropping in the iOS image

module dataset.

Inhaler Models
Number of

Images (n)

Success Rate (%)

(before cropping)

Success Rate (%)

(after cropping)

Diskus 229 49,34 77,83

Easyhaler 146 36,30 76,71

Ellipta 53 62,26 77,36

Flutiform 95 16,84 51,58

Khaler 232 12,5 24,14

Mdi3m 79 79,74 86,08

Nexthaler 62 40,32 96,77

Novolizer 82 80,48 92,68

Seretaide 152 19,10 38,16

Spiromax 47 31,91 55,32

Turbohaler 69 28,99 81,16

Twisthaler 76 2,63 9,21

 Similarly, to study the effect of post-processing on the output quality, the results

obtained before and after post-processing were compared. As such, a pre-processed iOS

image module dataset was used for this analysis.

 As mentioned previously, the results underwent three stages of post-processing:

the removal of invalid characters, the fitting into the admissibility range, and the voting

system. In order to evaluate the influence of these methods on the outcomes, the results

were analyzed for each post-processing step. In this regard, Table 11 presents the success

rate of the algorithm before and after the removal of invalid characters. In Table 11, it’s

also possible to verify which percentage of the results were considered admissible after

the exclusion of non-numerical character.

Chapter 4

 44

Table 11 - Success Rate before and after removing invalid characters, and admissibility

of the results.

 It is important to note that only a percentage of the corrected results were

considered admissible. Thus, the causes for a result to be considered inadmissible (image

quality, default model malfunction, etc.) were investigated. As such, a study was

performed on the iOS image module dataset, in which the images were inspected one by

one to determine the cause of the algorithm’s failure. In Table 12, the causes for

inadmissibility can be verified according to the inhaler model. On the other hand, in

Figure 17, the causes for inadmissibility can be viewed without distinguishing between

inhaler types.

Inhaler

Models
Events (n)

Success Rate

(%)

(before exclusion of

invalid characters)

Success Rate

(%)

(after exclusion of

invalid characters)

Admissible

Results (%)

Diskus 229 77,83 80,43 66,52

Easyhaler 146 87,67 89,04 75,34

Ellipta 53 77,36 79,25 66,04

Flutiform 95 51,58 51,58 48,42

Khaler 232 24,14 24,14 64,66

Mdi3m 79 86,08 87,34 81,01

Nexthaler 62 96,77 96,77 74,19

Novolizer 82 92,68 93,90 68,29

Seretaide 152 38,16 38,16 25,66

Spiromax 47 55,32 57,45 48,94

Turbohaler 69 82,61 82,61 79,71

Twisthaler 76 9,21 9,21 34,21

Total 1322 64,95 65,82 61,10

 Results

45

Table 12 – Number of admissible events and the causes for error in inadmissible results.

Inhaler Type

Causes for inadmissibility

Admissible
Total of

Images

T
em

p
la

te

M
a
tc

h
in

g

C
ro

p
p

in
g

B
lu

rr
in

g

A
d

m
is

si
b

il
it

y

R
a
n

g
e

U
n

k
n

o
w

n

Diskus 37 8 8 10 14 152 229

Easyhaler 22 3 7 1 3 110 146

Ellipta 0 9 0 0 9 35 53

Flutiform 1 13 4 2 29 46 95

K-haler 35 6 3 0 38 150 232

Mdi3m 12 0 2 0 1 64 79

Nexthaler 10 3 3 0 0 46 62

Novolizer 10 8 3 1 4 56 82

Seretaide 33 1 21 1 57 39 152

Spiromax 9 0 0 0 15 23 47

Turbohaler 12 0 0 0 2 55 69

Twisthaler 15 0 0 0 35 26 76

Figure 17 - Distribution of the causes for inadmissibility and admissible results.

196; 15%

51; 4%
51; 4%
15; 1%

207; 15%802; 61%

Inadmissible due to template
matching

Inadmissible due to cropping

Inadmissible due to bluring

Inadmissible due to the
admissibility range

Inadmissible due to unknown
causes

Admissible

Chapter 4

 46

 Thereby, Table 13 shows the success rate of the algorithm only on results

considered admissible.

Table 13 - Success rate of the algorithm considering only admissible and successful

results.

 Finally, the results obtained after the implementation of the last post-processing

step can be found in Table 14. As mentioned previously, the voting system considers five

admissible frames of the same inhaler and saves the most common result of the text

recognizer among them. In Table 14, the success rate after the deployment of this method

can be found, as well as for the number of events, in which an event corresponds to the

processing of five admissible frames.

Inhaler

Models

Number of

Admissible Results

Number of Successful and

Admissible Results

Success

Rate (%)

Diskus 153 147 96,07

Easyhaler 110 97 88,18

Ellipta 35 33 94,29

Flutiform 46 28 60,87

Khaler 150 13 8,67

Mdi3m 64 55 85,94

Nexthaler 46 45 97,83

Novolizer 56 56 100

Seretaide 39 4 10,26

Spiromax 23 23 100

Turbohaler 55 45 81,82

Twisthaler 26 0 0

Total 803 546 68,00

 Results

47

Table 14 -Results of the inhaler detection module after applying the voting system.

 In addition, it was also imperative to evaluate if the performance of the Android

text recognizer is comparable to the performance of the iOS app. Therefore, Table 15

presents the success rates of both Android and iOS projects, when applied to the iOS

module study. It’s worth noting that all data from the iOS study went through similar pre

and pos processing mechanisms to the ones used on the Android project. In addition, the

results presented in Table 15 are only from images where template matching was

successful.

Inhaler Models Events (n)
Success Rate (%)

(after applying the voting system)

Diskus 31 96,67

Easyhaler 21 90,47

Ellipta 6 100

Flutiform 9 77,78

Khaler 30 3,33

Mdi3m 12 100

Nexthaler 9 100

Novolizer 11 100

Seretaide 7 0

Spiromax 4 100

Turbohaler 11 81,82

Twisthaler 5 0

Total 156 69,65

Chapter 4

 48

Table 15 – Success rate of the text recognizer on the iOS app versus the Android app.

Inhaler

Models

Success Rate (%)

iOS version

Success Rate (%)

Android version

Diskus 85,64 85,08

Easyhaler 87,50 89,17

Ellipta 77,27 79,55

Flutiform 62,16 41,89

Khaler 46,33 10,17

Mdi3m 83,61 83,61

Nexthaler 90,38 96,15

Novolizer 92,06 92,06

Seretaide 5,13 27,35

Spiromax 100 61,11

Turbohaler 94,44 79,63

Twisthaler 0 0

TOTAL 68,71 62,15

4.3. Results with the Default ML Kit’s Model over the Real-World

Users Dataset

A second database was also studied in an effort to analyze the quality of the results

under suboptimal conditions. All images from this dataset have undergone all stages of

pre-processing. However, due to the limitations of the number of available photos, the

voting system step of post-processing was not performed. The results from this analysis

can be found in Table 16.

As it can be seen in Table 16, there are 4 inhaler models whose results were

deemed inadmissible. In fact, a significant percentage of the results (30 %) weren’t

considered admissible due to problems related to the image, more specifically: incorrectly

performed cropping.

 Results

49

Table 16 – Success rate of the text recognizer in images acquired under less than ideal

conditions by app users.

Inhaler

Models

Number of

images

Admissible Results

(%)

Success Rate (%)

among admissible

results

Diskus 3 0 Non-applicable

Easyhaler 4 50,00 0

Ellipta 7 57,14 100

Flutiform 2 0 Non-applicable

K-haler 4 0 Non-applicable

Nexthaler 2 0 Non-applicable

Novolizer 4 50,00 100

Seretaide 4 75,00 0

Spiromax 8 37,50 33,33

Turbohaler 12 16,67 50

TOTAL 50 28,63 47,22

4.4. Results with the Default ML Kit’s Model over the Controlled

Dataset

The results in Table 17 were acquired by applying the text recognizer on the

controlled dataset. The study of these results will allow us to understand if the model of

the smartphone with which the photo was acquired may interfere with the quality of the

results. Given the scarcity of images in this database the voting system method of pos-

processing was not applied.

Chapter 4

 50

Table 17 – Success rate of the text recognizer among different devices.

 Inhaler Model

Diskus Novolizer Easyhaler K-Haler Total

S
m

a
rt

p
h

o
n

e
M

o
d

el

Lenovo

TB-

7504F

Number of

Images
4 2 5 2 13

Admissible

Results (%)
0 0 0 0 0

Success Rate

(%)
0 0 0 0 0

Huawei

P8 Lite

Number of

Images
2 3 3 2 10

Admissible

Results (%)
0 100 100 0 50,00

Success Rate

(%)
0 100 66,67 0 91,67

Redmi

Note 8T

Number of

Images
--- 2 1 1 4

Admissible

Results (%)
--- 100 100 0 66,67

Success Rate

(%)
--- 50,00 100 0 50,00

Due to the lack of admissible results in some devices, the possible causes for these

outcomes were studied. The findings of this analysis are shown in the graph in Figure 18.

 Results

51

Figure 18 - Causes for error in the controlled dataset.

4.5. Trained Model

As mentioned previously, this project runs using the Google Colab environment

and the network was built using TensorFlow 2. 6.. The model was trained in 200 epochs

and a batch size of 5.

A sample of the outputs of the model (predicted text) on the validation dataset are

presented in Figure 19, along with the input images. Moreover, as it can be seen in Figure

19, if the output string is less than 3 characters, the model predicts an unknow character

([UNK]).

Figure 19 - Sample of the predicted text of the trained model, accompanied by the original

images of the validation dataset.

0,00 20,00 40,00 60,00 80,00 100,00

Lenovo TB-7504F

Huawei P8 Lite

Redmi Note 8T

30,77

40,00

69,23

25,00

60,00

75,00

Percentage of Error

Cropping Error Blurring Problem Unknwon Error Admissible Results

Chapter 4

 52

4.5.1. Losses

During the training of a machine learning model, the current state of the model at

each step of the training algorithm can be evaluated. In this case, the metrics training loss

and validation loss were used to evaluate the model over time (Figure 20). This measures

how much a model's predictions are off the desired label. The training loss indicates how

well the model is fitting the training data (“learning”), while the validation loss indicates

how well the model fits new data (“generalizing”) [58].

Figure 20 - Training and Validation Loss over time.

4.5.2. Evaluation Metrics

To evaluate the model, several metrics were taken into consideration to assess the

model’s performance (Table 18).

Table 18 - Evaluation Metrics for the Trained Model.

Metrics Results

Exact Match Ratio 83,34 %

Hamming Loss 0,17 %

Recall 84,72 %

Precision 83,34 %

F1-measure 83,34 %

 Results

53

 To evaluate the model’s accuracy, the model was tested in 5 different training and

validation datasets of the same size (Table 19). Recall that all the images used belonged

to the seretaide dataset.

Table 19 – Validation accuracy for different training and validation datasets.

Test

Average
Standard

Deviation 1 2 3 4 5

Accuracy

(%)
80,56 94,44 83,33 94,44 91,67 88,89 6,51

54

CHAPTER 5 – DISCUSSION

 Discussion

55

5. Discussion

In this thesis, a study designed to validate the inhaler dosage counter value

identification module through an Android solution is introduced and the results presented.

The module allows for an objective assessment of inhaler usage, which can enable and

facilitate remote monitoring of patient adherence by a healthcare professional. A broad

set of inhaler devices, with heterogeneous forms and dosages, were used for testing

purposes.

In this chapter, the results of all performed experiments are summed up and

discussed. First, the results of preprocessing are discussed. Followed by the outcomes of

the performed OCR in the several datasets with MLKit default model, and finally the

results of the trained model are discussed. Each step is briefly explained, followed by a

summary of the results for each topic.

5.1. Pre-processing

During the processing of the images, it was possible to conclude that the ML Kit

algorithm was not able to recognize the numbers contained in the dose counter when the

picture was positioned horizontally. As such, the image rotation proved to be one of the

most important preprocessing steps.

Among all the preprocessing steps, only cropping the region of interest was tested

separately. The ML Kit algorithm can recognize text in images, however this entailed that

the preliminary results presented all text captured in the image and not only the numbers

in the dose counter. Thus, cropping the region of interest proved to be a critical step in

noise removal, and without which it would not be possible to achieve an objective dosage

value.

As it can be seen in Table 11, the cropping of the region of interest greatly

impacted the results of the success of the algorithm to detect correctly the number on the

dose counter. The inhaler models whose results seemed to benefit more from the cropping

step were the Nexthaler, Turbohaler and Easyhaler.

5.2. ML Kit Text Recognition

5.2.1. Results from the iOS image module dataset

Regarding the iOS image module dataset, the exclusion of non-numerical

characters seemed to slightly improve the algorithm’s performance in some inhaler

Chapter 5

 56

models. However, the addition of this pre-processing step did not have a considerable

impact on the overall results, since the success rate before and after removing non-

numerical characters differs only 0,9 % (Table 12).

The results of the ML Kit algorithm can be unsuccessful for several reasons: the

number detected may be wrong, the result may contain more characters than those

contained in the dose counter, or it may simply not find the number to detect. Some of

these errors can be corrected by post-processing the results, however, others may derive

from errors made in previous steps.

After the inspection of the images used for text extraction, it was possible to

identify some of reasons for results to be deemed inadmissible (Figure 15). Three of the

causes were due to the inadmissibility of the image: template matching, cropping errors

and blurring. The images in the iOS module study dataset were acquired through the use

of the app InspirersMundi, meaning the images went through a template matching process

to guarantee that the inhaler was on the right position in the moment of the image capture.

However, not all images were successful in the template matching step, and consequently

not all inhalers were in the correct position during the cropping of the region of interest.

Thus, a small percentage of the images (15 %) used did not frame the dose counter of the

inhalers and were considered inadmissible due to template matching errors. On the other

hand, there were some images where the template matching was successful, but the

cropping was still poorly performed. This may be due to the measurements used for the

cropping of the region of interest that despite working for most images, cannot be

generalized for all cases. Moreover, in cases where the image was too blurred for the

algorithm to recognize any digit, the error occurred during the photo acquisition and the

images were considered inadmissible due to blurring.

However, a small percentage of inadmissible results are due to unknown causes

of error (15 %), as visual verification of the cropped image does not allow to identify an

evident problem. The most likely explanation for these unknown causes of error is the

failure of the MLKit algorithm to detect the numbers, as the default ML Kit’s Model may

be insufficient.

The Seretaide model has one of the lowest admissibility rates, this is mainly due

to unknown motives (37,5 %), although template matching errors (21,71 %) and out-of-

focus pictures (13,81 %) also occur. One of the unknown causes contributing to the low

admissibility rate, might be a problem with the ML Kit library recognizing the type of

font present in the counter. Another possible explanation for so many inadmissible results,

 Discussion

57

is the small size and deep dosage counter in the Seretaide model, which creates additional

difficulties.

Moreover, although the diskus inhaler model had a relatively high rate of

admissible results, it was, among all the models, the one with the highest number of

inadmissible images due to dose counter framing errors in the template matching phase.

In fact, around one quarter of the images were found to be inadmissible for this reason

(24, 34 %).

Additionally, the K-haler and Twisthaler inhaler models also had some of the

highest number of events of picture inadmissibility due to unknown causes, with 16,38 %

and 46,05 % of their images considered inadmissible for this reason, respectively. On

closer inspection of these images, it’s possible to discern that the orientation of the digits

in the dose counters of these inhaler models is arranged vertically, whereas on other

inhaler types the values are displayed horizontally. However, there is nothing in the ML

Kit’s documentation that may explain this discrepancy, since it clearly states that the

model should be able to detect a contiguous set of words no matter the axis. Therefore,

the problem may reside in the angle in which the numbers of the photo are lined, making

it hard for the default model to detect them at all.

It was also observed that the text recognizer can be sensitive to strong reflexes or

shadows that are able to obscure the numbers. These effects prevent the acquisition of an

image of enough quality to allow text detection, even for human eyes. Such is the case

for the Flutiform inhaler model, where it was found that many of the failed results are due

to light reflected in the dose counter display. In fact, flashes of light prevented the

detection of one digit in most cases and in some instances the light completely obstructed

the vision of the dose counter. These observations were perceived during the image

processing phase.

Among the results that were deemed admissible, in 68 % of the events it was

possible to obtain a valid identification of the numeric values in the dosage counter. The

inhaler models with higher rates of success were the Novolizer, Spiromax, Nexthaler,

Diskus and Ellipta (all above 90%; Table 13). The inhaler model with the worst results is

the Twisthaler, whose success rate is 0% among results considered admissible (Table 13).

Nevertheless, twisthaler is rarely used in clinical practice, so the impact of the

performance of the tool for this type of inhaler, in clinical practice, will be minimal [13].

Overall, by considering only the admissible images, the success rate of the algorithm

improved by 2,2 %.

Chapter 5

 58

 These results are in line with the findings of the iOS study [13], which indicates

that the Diskus and Spiromax inhaler models are among the best performing inhalers.

Similarly, the twisthaler inhaler model is also among the worst performing inhalers

according to the InspiresMundi study.

The goal of the developed voting system is to make the algorithm less prone to

errors. By collecting five frames instead of one, even if the algorithm does not on occasion

predict correctly the numbers displayed in the dose counter, it is still possible to correctly

identify the values form the majority. The number of frames to collect (5) and was chosen

in accordance with the previously developed system in iOS by the Inspirers team.

Although the number of frames could be higher or lower, five frames seemed to suffice

the needs of the developed work.

Compared with the initial tests, the voting system phase performance improved

the results for most inhalers. Nevertheless, this was found to be untrue for the inhaler

model Seretaide. The cause for this disfavoring of the results was due to failures to

correctly detect the text in the first place, i.e. the ML Kit failed to correctly recognize the

numbers in the individual frames of the image, so the most voted text among the five

frames will not match the expected text.

 When comparing the performance of the ML Kit engine in the iOS (68.71 %) and

Android (62,15 %) version of the image module on the same image subset, there is a

difference of approximately 6,56 % among the success rates of the algorithm (Table 14).

Although an attempt was made to implement all the pre-processing and post-processing

steps met in the study performed on the iOS version [59], the differences between the

base functions and algorithms in Android Studio and Swift may have contributed to this

discrepancy.

5.2.2. Results from the Real-World Users Dataset

 Furthermore, it’s possible to observe a contrast between the rate of admissible

results of the iOS Image module dataset and of the Real-World Users dataset. By

considering only the inhaler models present in both datasets, the rate of admissible results

is, respectively, 61 % and 29 % (approximately).

This discrepancy may be due to the conditions under which the datasets were

acquired: while the iOS Image module dataset was attained in a study with volunteers

(sub-optimal conditions), the real-world user’s dataset was acquired by patients that use

the iOS app in their daily life (less than ideal conditions). It’s also important to note that

 Discussion

59

the sizes of the dataset are very distinct in size (the images range from 50 to 1322 among

the datasets) which may affect the differences among the rates of admissible. In addition,

the heterogeneity of the equipment used in the real-world user’s dataset could be one of

the factors for the low admissibility rate in this dataset.

5.2.3. Results from the Controlled Dataset

Additionally, the images that have been acquired in a more controlled

environment had more end to end results. Nevertheless, this was to be expected

considering the small size of the dataset (27 images). All images acquired with the Lenovo

TB-7504F were found to be inadmissible. This is justified by the fact that the expected

result was to not detect text, since the quality of the image wouldn’t allow it. Around 30%

of the pictures the cropping did not frame the dose counter, and nearly 70% of the pictures

were too blurry to detect any text (Figure 18). In relation to the incorrect cropping, this

was only confirmed for an inhaler model: Diskus; thus, after verifying the images it was

shown that, the dose counter was on the opposite side of the image. Hence, the cropping

error derived from a previous one: the improper positioning of the inhaler model Diskus.

After a closer inspection, it was found that half the images were not successful in the

template matching phase. However, even the images were the template matching had

been successful, were found in an incorrect position. This was due to the initial orientation

of the image. While all images used so far were acquired by a smartphone and

consequently were captured in a vertical position, the images acquired from the tablet

were acquired in a horizontal position. This variation at the time of the image capture,

invalidated the pre-processing steps performed, i.e. the rotation 90º degrees to the right

did not allowed for the correct position of the dose counter, during the cropping of the

region of interest.

With regards to the high rate of blurred pictures, the explanation may be the

weaker resolution of the camera of this device (tablet), in comparison with the other two

studied equipment (smartphones; Table 17).

5.3. Trained Model

5.3.1. Losses and Representativeness

As it can be seen in Figure 20, the training and validation loss decreases over time

to a point of stability, achieving low error values. In addition, it’s also possible to observe

that the gap between the two final loss values is minimal. All the previously mentioned

Chapter 5

 60

aspects are indicators that the model has a good fit, and that continued training would

likely lead to an overfit.

The curves on Figure 20 can also be used to diagnose properties of a dataset and

whether it is relatively representative, i.e., if it reflects proportionally statistical

characteristics in another dataset from the same domain. From the observation of the

graph in Figure 20, the training dataset seems to be representative in relation to the

validation dataset and vice-versa. Some of the signals that may indicate unrepresentative

datasets are a large gap between the curves, noisy movements of the validation loss

around the training loss and a validation loss that is lower than the training loss. None of

these cases seems to apply for this instance.

5.3.2. Evaluation Metrics

The exact match ratio can be considered a challenging metric since it doesn’t

support the notion of being partially correct. In other words, this metric only considers

the outputs as being correct if the whole sequence of characters corresponds to the ground

truth. As it can be seen in Table 18, the exact match ratio is 83, 34%, which indicates that

a large part of the predicted results were entirely correct, and consequently reflects a good

model performance.

As mentioned in subsection 3.4.6., the Hamming Loss informs how many times

on average, the relevance of an example to a class label is incorrectly predicted.

Therefore, this metric considers the incorrect label predictions and the relevant labels not

predicted, over the total number of labels. In this case, the computed hamming loss is 0,17

%, which is a significantly low value and indicates a good performance of the learning

algorithm.

Recall metric quantifies the number of predicted correct labels made out of all the

positive predictions that could have been made. Unlike precision that only comments on

the correctly predicted labels out of all the positive predictions, the recall provides an

indication of the missed positive predictions. For this model, the calculated recall was

84,74 % (Table 18), which indicates that a large number of the actual labels were

predicted.

On the other hand, precision is the ratio of how much of the predicted is correct,

i.e., it only considers the positive predicted results. In this case, the precision equals the

exact match ratio (83,34 %).

 Discussion

61

Furthermore, the F1 measure is the harmonic mean of Precision and Recall and

gives a better measure of the incorrectly classified cases than the Accuracy Metric. The

F1 measure reaches 83,34 %, which is an indication of both good precision and good

recall.

Finally, as previously mentioned, the model was tested in different training and

validation datasets in order to evaluate the accuracy of the model under different

circumstances. After inspecting the results on Table 19, it is possible to observe that the

best performance of the model was 94,44% and that the average accuracy of the model is

88,89%. This method achieved reasonable results and the obtained results are a significant

improvement in relation to the ML Kit default model performance. Thus, this method

shows promise and can be implemented in other worst-performing inhaler models to

enhance the text recognition performance.

5.4. Final Remarks

The inhalers models that seemed to perform best across all the datasets were

Diskus and Novolizer, two of the most common inhalers in Portugal during 2016 [13].

Nevertheless, the datasets have different sizes and inhaler distributions meaning that the

success of the algorithm may depend on that variation.

Furthermore, the developed self-contained module allows for easy integration into

other applications with the same goal: an objective measure of adherence to inhaler

medications.

Regarding the trained model, in spite of the good performance (average validation

accuracy of 88,89%), the model only works in a narrow cropping of the inhaler dose

counter. This aspect of the model is not ideal, since for the model to work the dose counter

would have to be cropped with precision, which is unrealistic for real life applications.

Thus, improvements on the custom model are necessary in order to be suited for the app

functions.

Althought, the frequency of distribution of the characters does not seem to insert

bias into the model, a larger dataset with more variety of characters could achieve better

results. In addition, the model was trained in images acquired under optimal conditions,

which means that the model may not have the performance on photos captured in the less-

than-ideal environments (e.g. poor lighting). As such, in future works the model should

be trained in a larger dataset with pictures acquired under a wider variety of scenarios.

Chapter 5

 62

Moreover, the deep learning model can be easily translated across datasets and could be

applied in other worst-performing inhaler models to improve the text recognition

performance.

 In future work, the TensorFlow Lite Model could be integrated in the inhaler

detection model of the app.

63

CHAPTER 6 - CONCLUSION

Chapter 6

 64

6. Conclusion

The purpose of this thesis was to develop a mobile application module that could

detect the dose counter digits, in commercially available inhalers with numerical

counters. This goal was met by creating a text detection module on Android, equipped

with machine learning capabilities, as well as pre and post processing features. The work

was taken further by improving the performance of the text recognizer on a worst

performing inhaler. This was done by building a machine learning model, trained on a

database of inhaler images, compatible with mobile applications. In addition, the new

datasets collected for this work could be used in future research.

The method of image recognition used in this implementation proved to be

practicable and promising when it came to obtain additional evidence to monitor

adherence to inhaled medicines. Moreover, it provides patients with the tools to self-

manage the treatment and promote compliance with therapeutic plan.

Although this approach is revealed to be feasible and promising for acquiring

additional data that can be easily shared with the health professional remotely, it’s still

dependent on patient adherence to the application and the recording of inhalers.

Nonetheless, this system has the potential to assist in a smoother transition from a health

professional supported scenario to a more empowered self-management setting.

To the best of my knowledge, there are not many approaches in the literature that

help to reduce the unreliability of patient compliance and self-reporting by making use of

mobile devices to record effective dosage in inhaler dose counters. Furthermore, the

proposed work explores the potential of mobile devices without external devices or

expensive electronic monitoring devices, thus making this work relevant to help

mitigating the patient’s unreliable, self-reported adherence.

Nevertheless, further improvements are still needed to enhance the detection

performance. In future work, an object detector-like algorithm can be implemented to

detect the dose counter, thus avoiding the cropping stage in the image pre-processing.

Additionally, the trained models can be improved and integrated in the current version of

the app.

References

65

References

[1] J. E. Fergeson, S. S. Patel, and R. F. Lockey, “Acute asthma, prognosis, and

treatment,” J. Allergy Clin. Immunol., vol. 139, no. 2, pp. 438–447, 2017, doi:

10.1016/j.jaci.2016.06.054.

[2] J. P. Barbosa, M. Ferreira-Magalhães, A. Sá-Sousa, L. F. Azevedo, and J. A.

Fonseca, “Cost of asthma in Portuguese adults: A population-based, cost-of-illness

study,” Rev. Port. Pneumol. (English Ed., vol. 23, no. 6, pp. 323–330, Nov. 2017,

doi: 10.1016/j.rppnen.2017.07.003.

[3] R. Jeminiwa, L. Hohmann, J. Qian, K. Garza, R. Hansen, and B. I. Fox, “Impact

of eHealth on medication adherence among patients with asthma: A systematic

review and meta-analysis,” Respir. Med., vol. 149, no. February, pp. 59–68, 2019,

doi: 10.1016/j.rmed.2019.02.011.

[4] B. G. Bender, “Technology Interventions for Nonadherence: New Approaches to

an Old Problem,” J. Allergy Clin. Immunol. Pract., vol. 6, no. 3, pp. 794–800,

2018, doi: 10.1016/j.jaip.2017.10.029.

[5] D. A. Fedele et al., “Applying Interactive Mobile health to Asthma Care in Teens

(AIM2ACT): Development and design of a randomized controlled trial,” Contemp.

Clin. Trials, vol. 64, no. March, pp. 230–237, 2018, doi:

10.1016/j.cct.2017.09.007.

[6] A. H. Y. Chan, H. K. Reddel, A. Apter, M. Eakin, K. Riekert, and J. M. Foster,

“Adherence Monitoring and E-Health: How Clinicians and Researchers Can Use

Technology to Promote Inhaler Adherence for Asthma,” J. Allergy Clin. Immunol.

Pract., vol. 1, no. 5, pp. 446–454, 2013, doi: 10.1016/j.jaip.2013.06.015.

[7] C. Jácome et al., “Patient-physician discordance in assessment of adherence to

inhaled controller medication: a cross-sectional analysis of two cohorts,” BMJ

Open, vol. 9, no. 11, p. e031732, Nov. 2019, doi: 10.1136/BMJOPEN-2019-

031732.

[8] E. Finnegan, M. Villarroel, C. Velardo, and L. Tarassenko, “Automated method

for detecting and reading seven-segment digits from images of blood glucose

metres and blood pressure monitors,” J. Med. Eng. Technol., vol. 43, no. 6, pp.

341–355, 2019, doi: 10.1080/03091902.2019.1673844.

[9] V. N. Shenoy and O. O. Aalami, “Utilizing smartphone-based machine learning in

medical monitor data collection: Seven segment digit recognition,” arXiv, pp.

1564–1570, 2018.

[10] H. Jiang, T. Gonnot, W. J. Yi, and J. Saniie, “Computer vision and text recognition

for assisting visually impaired people using Android smartphone,” IEEE Int. Conf.

Electro Inf. Technol., pp. 350–353, 2017, doi: 10.1109/EIT.2017.8053384.

[11] C. Jácome et al., “Inspirers: An app to measure and improve adherence to inhaled

treatment,” Proc. Int. Conf. E-Health, EH 2017 - Part Multi Conf. Comput. Sci.

Inf. Syst. 2017, pp. 135–139, 2017.

[12] Cristina et al., “Feasibility and Acceptability of an Asthma App to Monitor

Medication Adherence: Mixed Methods Study,” JMIR Mhealth Uhealth

Chapter 6

 66

2021;9(5)e26442 https//mhealth.jmir.org/2021/5/e26442, vol. 9, no. 5, p. e26442,

May 2021, doi: 10.2196/26442.

[13] P. Vieira-Marques et al., “InspirerMundi—Remote Monitoring of Inhaled

Medication Adherence through Objective Verification Based on Combined Image

Processing Techniques,” Methods Inf. Med., vol. 60, no. S 01, pp. e9–e19, Apr.

2021, doi: 10.1055/S-0041-1726277.

[14] M. Zhang, A. Joshi, R. Kadmawala, K. Dantu, S. Poduri, and G. S. Sukhatme,

“OCRdroid: A framework to digitize text using mobile phones,” Lect. Notes Inst.

Comput. Sci. Soc. Telecommun. Eng., vol. 35 LNICST, pp. 273–292, 2010, doi:

10.1007/978-3-642-12607-9_18.

[15] A. Chaudhuri, K. Mandaviya, P. Badelia, and S. K. Ghosh, Optical character

recognition systems, vol. 352. 2017.

[16] K. Kanagarathinam and K. Sekar, “Text detection and recognition in raw image

dataset of seven segment digital energy meter display,” Energy Reports, vol. 5, pp.

842–852, 2019, doi: 10.1016/j.egyr.2019.07.004.

[17] S. Ramiah, T. Y. Liong, and M. Jayabalan, “Detecting text based image with

optical character recognition for English translation and speech using Android,”

2015 IEEE Student Conf. Res. Dev. SCOReD 2015, pp. 272–277, 2015, doi:

10.1109/SCORED.2015.7449339.

[18] K. Hamad and M. Kaya, “A Detailed Analysis of Optical Character Recognition

Technology,” Int. J. Appl. Math. Electron. Comput., vol. 4, no. Special Issue-1, pp.

244–244, 2016, doi: 10.18100/ijamec.270374.

[19] H. El Bahi and A. Zatni, “Text recognition in document images obtained by a

smartphone based on deep convolutional and recurrent neural network,” Multimed.

Tools Appl., vol. 78, no. 18, pp. 26453–26481, 2019, doi: 10.1007/s11042-019-

07855-z.

[20] N. Reddy Soora and P. S. Deshpande, “Review of Feature Extraction Techniques

for Character Recognition,” IETE J. Res., vol. 64, no. 2, pp. 280–295, 2018, doi:

10.1080/03772063.2017.1351323.

[21] N. Islam, Z. Islam, and N. Noor, “A survey on optical character recognition

system,” arXiv. 2017.

[22] D. González Verdugo, “OCR on Android, optical character recognition:

Tesseract,” Feb. 26, 2017. https://solidgeargroup.com/en/ocr-on-android/

(accessed Nov. 29, 2020).

[23] Microsoft, “Optical Character Recognition (OCR) - Computer Vision - Azure

Cognitive Services | Microsoft Docs,” Nov. 08, 2020.

https://docs.microsoft.com/en-us/azure/cognitive-services/computer-

vision/concept-recognizing-text (accessed Nov. 29, 2020).

[24] ABBYY, “ABBYY Mobile Document Capture and Real-Time Recognition SDK,”

2020. https://www.abbyy.com/mobile-capture-sdk/ (accessed Nov. 29, 2020).

[25] Dynamsoft, “Document scanning API for Mobile | Dynamsoft Camera SDK,”

2020. https://www.dynamsoft.com/Products/dynamsoft-webcam-sdk.aspx

(accessed Nov. 29, 2020).

 References

67

[26] Anyline, “Anyline Mobile Scanning Technology for Mobile Data Capture |

Anyline.” https://anyline.com/technology/ (accessed Nov. 29, 2020).

[27] “ML Kit | Google Developers.” https://developers.google.com/ml-kit (accessed

Nov. 29, 2020).

[28] V. Kuprenko, “ML Kit for Firebase: features, capabilities, pros and cons | by Vitaly

Kuprenko | Towards Data Science,” Aug. 21, 2019.

https://towardsdatascience.com/ml-kit-for-firebase-features-capabilities-pros-

and-cons-a182b4299cc (accessed Nov. 29, 2020).

[29] A. Abdulkader and M. R. Casey, “Low cost correction of OCR errors using

learning in a multi-engine environment,” Proc. Int. Conf. Doc. Anal. Recognition,

ICDAR, pp. 576–580, 2009, doi: 10.1109/ICDAR.2009.242.

[30] C. S. Yang and Y. H. Yang, “Improved local binary pattern for real scene optical

character recognition,” Pattern Recognit. Lett., vol. 100, pp. 14–21, 2017, doi:

10.1016/j.patrec.2017.08.005.

[31] D. Tsiktsiris, K. Kechagias, M. Dasygenis, and P. Angelidis, “Accelerated Seven

Segment Optical Character Recognition Algorithm,” 5th Panhellenic Conf.

Electron. Telecommun. PACET 2019, pp. 1–5, 2019, doi:

10.1109/PACET48583.2019.8956283.

[32] N. Sourvanos and G. Tsatiris, “Challenges in input preprocessing for mobile OCR

applications: A realistic testing scenario,” 2018 9th Int. Conf. Information, Intell.

Syst. Appl. IISA 2018, 2019, doi: 10.1109/IISA.2018.8633688.

[33] X. Peng, H. Cao, S. Setlur, V. Govindaraju, and P. Natarajan, “Multilingual OCR

research and applications: An overview,” ACM Int. Conf. Proceeding Ser., no. ii,

2013, doi: 10.1145/2505377.2509977.

[34] N. Arica and F. T. Yarman-Vural, “An overview of character recognition focused

on off-line handwriting,” IEEE Transactions on Systems, Man and Cybernetics

Part C: Applications and Reviews, vol. 31, no. 2. pp. 216–233, May 2001, doi:

10.1109/5326.941845.

[35] A. Chaudhuri, K. Mandaviya, P. Badelia, and S. K Ghosh, Optical Character

Recognition Systems for Different Languages with Soft Computing. 2017.

[36] I. Hesso, S. Nabhani Gebara, G. Greene, R. W. Co stello, and R. Kayyali, “A

quantitative evaluation of adherence and inhalation technique among respiratory

patients: An observational study using an electronic inhaler assessment device,”

Int. J. Clin. Pract., vol. 74, no. 2, Feb. 2020, doi: 10.1111/ijcp.13437.

[37] S. M. O’Dwyer et al., “The effect of providing feedback on inhaler technique and

adherence from an electronic audio recording device, INCA®, in a community

pharmacy setting: Study protocol for a randomised controlled trial,” Trials, vol.

17, no. 1, p. 226, May 2016, doi: 10.1186/s13063-016-1362-9.

[38] S. Kagen and A. Garland, “Asthma and Allergy Mobile Apps in 2018,” Current

Allergy and Asthma Reports, vol. 19, no. 1. 2019, doi: 10.1007/s11882-019-0840-

z.

[39] B. E. Himes, L. Leszinsky, R. Walsh, H. Hepner, and A. C. Wu, “Mobile Health

and Inhaler-Based Monitoring Devices for Asthma Management,” J. Allergy Clin.

Chapter 6

 68

Immunol. Pract., vol. 7, no. 8, pp. 2535–2543, Nov. 2019, doi:

10.1016/j.jaip.2019.08.034.

[40] B. Rusyn, O. Lutsyk, R. Kosarevych, and Y. Varetsky, “Automated Recognition

of Numeric Display Based on Deep Learning,” in 2019 3rd International

Conference on Advanced Information and Communications Technologies, AICT

2019 - Proceedings, Jul. 2019, pp. 244–247, doi: 10.1109/AIACT.2019.8847868.

[41] P. Tangtisanon, “Healthcare system for elders with automatic drug label

detection,” in International Conference on Control, Automation and Systems, Jan.

2016, vol. 0, pp. 666–670, doi: 10.1109/ICCAS.2016.7832390.

[42] S. Cakic, T. Popovic, S. Sandi, S. Krco, and A. Gazivoda, “The Use of Tesseract

OCR Number Recognition for Food Tracking and Tracing,” 2020 24th Int. Conf.

Inf. Technol. IT 2020, no. February, 2020, doi: 10.1109/IT48810.2020.9070558.

[43] R. P. Ghugardare, S. P. Narote, P. Mukherji, and P. M. Kulkarni, “Optical character

recognition system for seven segment display images of measuring instruments,”

2009, doi: 10.1109/TENCON.2009.5395994.

[44] G. Developers, “Lose It! uses ML Kit to extract data from nutrition labels and

improve user experience,” 2020. https://developers.google.com/ml-kit/case-

studies/lose-it (accessed Jan. 03, 2021).

[45] G. Developers, “Text Recognition | ML Kit,” 2021.

https://developers.google.com/ml-kit/vision/text-recognition (accessed Oct. 01,

2021).

[46] A. Dutta and A. Zisserman, “The VIA annotation software for images, audio and

video,” MM 2019 - Proc. 27th ACM Int. Conf. Multimed., pp. 2276–2279, Oct.

2019, doi: 10.1145/3343031.3350535.

[47] G. Colaboratory, “Colaboratory | Frequently Asked Questions,” 2021.

https://research.google.com/colaboratory/faq.html (accessed Oct. 22, 2021).

[48] TensorFlow, “TensorFlow,” 2021. https://www.tensorflow.org/ (accessed Oct. 22,

2021).

[49] H. Scheidl, “An Intuitive Explanation of Connectionist Temporal Classification,”

Towards Data Science, 2018. https://towardsdatascience.com/intuitively-

understanding-connectionist-temporal-classification-3797e43a86c (accessed Oct.

17, 2021).

[50] M. Yousef, K. F. Hussain, and U. S. Mohammed, “Accurate, data-efficient,

unconstrained text recognition with convolutional neural networks,” Pattern

Recognit., vol. 108, p. 107482, Dec. 2020, doi: 10.1016/J.PATCOG.2020.107482.

[51] T. Core, “Treinamento personalizado: passo a passo,” 2021.

https://www.tensorflow.org/tutorials/customization/custom_training_walkthroug

h#define_the_loss_and_gradient_function (accessed Oct. 24, 2021).

[52] PyTorch, “CTC Loss,” 2019.

https://pytorch.org/docs/stable/generated/torch.nn.CTCLoss.html (accessed Oct.

24, 2021).

[53] J. Brownlee, “Gentle Introduction to the Adam Optimization Algorithm for Deep

 References

69

Learning,” 2017. https://machinelearningmastery.com/adam-optimization-

algorithm-for-deep-learning/ (accessed Oct. 24, 2021).

[54] M. Sorower, “A literature survey on algorithms for multi-label learning,” Oregon

State Univ. Corvallis, 2010.

[55] S. Godbole and S. Sarawagi, “Discriminative methods for multi-labeled

classification,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2004, vol.

3056, pp. 22–30, doi: 10.1007/978-3-540-24775-3_5.

[56] S. Developers, “Metrics and scoring: quantifying the quality of predictions,” 2021.

https://scikit-learn.org/stable/modules/model_evaluation.html#accuracy-score

(accessed Oct. 24, 2021).

[57] G. Developers, “Custom Models with ML Kit,” 2021.

https://developers.google.com/ml-kit/custom-

models#train_your_own_image_classification_model (accessed Oct. 17, 2021).

[58] Baeldung on Computer Science, “Learning Curves in Machine Learning,” 2020.

https://www.baeldung.com/cs/learning-curve-ml (accessed Oct. 24, 2021).

[59] P. Vieira-Marques et al., “Combined Image-Based Approach for Monitoring the

Adherence to Inhaled Medications,” in IFMBE Proceedings, Sep. 2020, vol. 76,

pp. 1399–1404, doi: 10.1007/978-3-030-31635-8_171.

[60] S. C. Kalichman et al., “A Simple Single Item Rating Scale to Measure Medication

Adherence: Further Evidence for Convergent Validity,” J. Int. Assoc. Physicians

AIDS Care (Chic)., vol. 8, no. 6, p. 367, Nov. 2009, doi:

10.1177/1545109709352884.

