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Abstract 

Self-management strategies can lead to improved health outcomes, fewer 

unscheduled treatments, and improved disease control. Compliance with inhaled control 

drugs is essential to achieve good clinical outcomes in patients with chronic respiratory 

diseases. However, compliance assessments suffer from the difficulty of achieving a high 

degree of trustworthiness, as patients often self-report high compliance rates and are 

considered unreliable. This thesis aims to enable reliable adhesion measurement by 

developing a mobile application module to objectively verify inhalation usage using 

image snapshots of the inhalation counter.  

To achieve this, a mobile application module featuring pre and post processing 

techniques and a default machine learning framework was built, for inhaler and dosage 

counter numbers detection. In addition, in an effort to improve the app’s capabilities of 

text recognition on a worst-performing inhaler, a machine learning model was trained on 

an inhaler image dataset. Some of the features worked on during this project were 

incorporated on the current version of the app InspirerMundi, a medication management 

mobile application, planned to be made available at the PlayStore by the end of 2021. 

The proposed approach was validated through a series of different inhaler image 

datasets. The carried-out tests with the default machine learning configuration showed 

correct detection of dosage counters for 70% of inhaler registration events and 93% for 

three commonly used inhalers in Portugal. On the other hand, the trained model had an 

average accuracy of 88 % in recognizing the digits on the dose counter of one of the 

worst-performing inhaler models. 

These results show the potential to explore mobile and embedded capabilities to 

gain additional evidence for inhaler compliance. These systems can help bridge the gap 

between patients and healthcare professionals. By empowering patients with disease self-

management and drug adherence tools and providing additional relevant data, these 

systems pave the way for informed disease management decisions.  

 

Key words: optical character recognition; medication adherence; mHealth; 

remote monitoring. 
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1. Introduction  

1.1.  Context, problem and motivation 

Asthma exacerbations can be reduced with appropriate regular therapy and patient 

education. Despite this, asthma affects about 300 million people globally and accounts 

for 1 in every 250 deaths. In Europe alone, approximately 30 million people have asthma 

and 15,000 people die yearly from this disease [1]. The economic burden of asthma is 

substantial, in 2010, adult asthma accounted for over 2 % of the total healthcare 

expenditure in Portugal (3% if children and adults are included). On average, each adult 

cost 708.16€ a year, with direct costs representing 93%. Furthermore, uncontrolled 

patients’ costs are more than double than those of controlled asthma patients. Thus, 

improving asthma control in patients is critical to diminish this burden [2].   

Treatment adherence is generally low among patients with asthma. As a matter of 

fact, some studies show that adherence is less than 50% in children and as low as 30% in 

adults [3]. This low adherence may be due in part to misinformation or confusion 

regarding complicated treatment regimens. Additional barriers such as high prescription 

cost, taste of medication, and uncertainty about the safety of inhaled corticosteroids may 

contribute to poor adherence to inhaled asthma medications. 

Poor medication adherence is concerning, since it is shown to increase risk of 

asthma exacerbations, leading to higher mortality, greater financial burden for the patient 

and health system, as well as decreased quality of life [3]. Numerous adherence-

improvement interventions have been introduced, but most have been only moderately 

successful with little evidence of long-term sustainability or reduction of health care 

utilization and cost [4]. 

Mobile Health (mHealth) technologies can improve disease outcomes and may be 

an especially powerful tool to deliver effective behavioral health interventions that are 

dynamic, user-centric, and continuously adapted [5]. Medication-use monitoring can 

provide important information for patients, researchers, and health professionals, with the 

aim of facilitating improved adherence and of improving treatment prescribing, but 

available monitoring methods vary in quality. Patient self-report and clinician 

assessments of medication adherence are notoriously unreliable [6].  
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Although subjective, self-reports are still considered one of the preferred methods 

to continuously monitor adherence as they are simple, cheap and minimally 

intrusive. One self-report measure of medication adherence is Visual Analogue Scale 

(VAS)1. Nevertheless, reliance on VAS also has its limitations: patients tend to 

overestimate their level of adherence and physicians have been found to be inaccurate in 

estimating patients’ adherence when using VAS [7]. 

Regarding inhaled medication, current mHealth applications require the user to 

manually enter the readings from the dose counters of these medical devices. This process 

is slow and prone to error. As the internet becomes more embedded into medical monitors 

through Wi-Fi and Bluetooth technologies, more sophisticated systems transmit the 

values from the connected devices to the smartphone. However, this adds costs to the 

manufacturing of the device and brings connectivity issues. Moreover, requiring a reading 

to be transmitted over Bluetooth is not applicable to devices that are not Bluetooth-

compatible [8]. People who cannot afford to upgrade to these expensive devices will fail 

to receive the benefits [9].  

In the United States, smartphones are owned and regularly carried by 

approximately 50% of 12–17 year-olds and 75% of adults ages 30–49 [5]. The advantages 

of smartphones over other devices is not only the fact that they are affordable, but also 

that they are very powerful, with most models nowadays integrating several cores in their 

main processor. They are also standalone devices with a camera, a battery, and audio 

output and an Internet connection [10]. Therefore, these devices show high potential to 

be explored as a relevant mHealth tool. 

1.2.   InspirerMundi App 

The InspirerMundi app aims to provide a verified monitoring of treatment 

adherence through gamification and social interaction and is currently available in stores 

free of charge. The focus of the app is to support patient’s medication management, while 

transforming the process of adherence to treatment into a positive experience. 

InspirerMundi’s was developed through a highly iterative process incorporating 

input/feedback from patients and physicians throughout [11]. 

                                                

1 The VAS for medication adherence was developed as an adjunct self-report measure of 

medication adherence. The VAS asks individuals to mark a line at the point along a continuum showing 

how much of each drug they have taken in the past month [60]. 
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The app stores the prescribed therapeutic plan (current medications: name, dose, 

medication bar code, treatment duration, treatment dosage and schedule) inserted by the 

patient and uses it to trigger related reminders and the record of performed inhalations. 

Other reminders present are related to symptoms and burden questionnaires and Control 

of Allergic Rhinitis and Asthma Test CARAT. The scheduling of events is derived from 

the therapeutic plan taking in consideration the periodicity prescribed for intakes and from 

predetermined (symptoms and burden questionnaires and Control of Allergic Rhinitis and 

Asthma Test CARAT) which have a fixed periodicity. The therapeutic plan includes the 

registration of the specific medications name, posology, frequency, and duration of the 

treatment. The app includes, as the main interaction interface, a timeline where expected 

events of monitoring and medication intake are depicted providing a quick reference 

when a medication is due [11]. 

Inspirer Mundi, by combining features of inhaler usage detection and a 

gamification approach based on peer support, delivers an innovative way to measure and 

improve the adherence to inhaler [10]. Versions 1.x of the app were made available on 

the App store and Playstore, and were used in feasibility studies of the InspirerMundi app 

to monitor medication adherence in adolescents and adults with persistent asthma (treated 

with daily inhaled medication) [12]. 

1.2.1. Inhaler Usage Detection 

According to the scheduled events, users are prompted to register their medication 

intake. These can be of three kinds: inhalation (referred throughout as inhalers), pills and 

others (such as a nasal spray or an oral solution). When the event is for an inhaler, the 

real-time inhaler medication module is triggered, and the user is requested to collect 

images from the inhaler and register the value of the inhaler dosage counter after the use. 

The module uses the smartphone camera; and provides, through image processing 

techniques and machine learning tools, confirmation of the inhaler presented to the 

camera. A more recent version developed only for iOS is also able to access dosage values 

inferred from the acquired dose counter image [10][13]. The tool can thus be used as a 

pervasive low-cost means of collecting data on patients’ adherence to inhalers. This 

functionality is triggered from the timeline when a new inhalation is registered. 

The developed detection tool is based on computer vision methods and key visual 

features which are common on dose trackable devices: i) a contour or outer shape; ii) a 

specific written label/canister; and iii) a dose counter indicating the remaining doses. The 
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detection of each dose in the dose counter uses numerical dose OCR (optical character 

recognition) standard techniques together with character positioning in addition to object 

(foreground) and dial (background) color, when available, for partial number correction. 

The detection tool is at a proof-of-concept stage, currently working with virtually all 

models of inhalers on the European market with a numerical dosimeter that corresponds 

to the number of doses available in the device.  

 

Figure 1 - Workflow for dosage detection counter. 

 

1.3. Aim and Main Objectives 

The final goal of the presented work is to improve an inhaler detection module for 

the Android version of the Inspirer's Mundi app. To this end, an isolated module was built 

in Android Studio, with text recognition features, in order to detect the digits on the dose 

counter of commercially available inhalers.  

The main objectives of this thesis are: 

1. Build an Android module that allows for the text recognition on the 

inhaler’s dosage counters. 

2. Applying pre-processing and post-processing techniques to improve the 

algorithm performance.  

3. Enhance the inhaler detection module of the Android version of the 

Inspirer's Mundi app. 

4. Develop a machine learning algorithm to optimize the efficiency of the 

application OCR algorithm. 
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1.4. Document Structure 

This thesis is divided into six chapters. Chapter 1 offers a brief contextualization as 

well as the motivation for the problem we try to solve. Moreover, this chapter includes 

an overview of the app where the proposed solution will be incorporated. The second 

chapter examines the literature on OCR and presents possible approaches for text 

recognition in mobile apps, as well as challenges that may be posed during development. 

Case studies are also analyzed in Chapter 2. The methodology is outlined in the third 

chapter. The next chapter addresses the obtained results. Chapter 5 discusses the 

limitations of the current work. The conclusions are drawn in the final chapter. 
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2. Literature Review 

In order to collect objective data on patients’ adherence to treatment, an inhaler 

usage detection tool based on imaging processing technologies is proposed to measure 

and improve the adherence to inhalers. This feature allows to recognize the remaining 

doses on the inhaler's meter, and thus monitor medication adherence. The problem of 

recognizing digits or characters in real-world applications is encompassed in the study of 

optical character recognition (OCR). 

There are several aspects to consider in conducting a literature review on the topic 

of OCR. The first is to understand the current technology as well as the existing 

limitations. The second focus on the OCR engines available to the development of this 

method in smartphones. Next, the third consideration consists of various types of 

preprocessing steps that can be added, and which can increase the accuracy of our system. 

Lastly, there have been several publications on this subject whereby an overview of 

similar work to the current case will be presented. 

2.1.     Optical Character Recognition 

Optical character recognition (OCR) is a powerful tool for bringing information 

from our analog lives into the increasingly digital world [14]. OCR belongs to the family 

of machine recognition techniques performing automatic identification. Automatic 

identification is the process where the recognition system identifies objects automatically, 

collects data about them and enters data directly into computer systems i.e. without human 

involvement [15].  

In short, OCR process converts scanned images of typewritten or hand-written 

text into machine-readable text [16]. OCR has evolved and became more and more mature 

with the advancement of technologies and contributions of well-known companies such 

as IBM, HP, Microsoft, Google and etc. through ongoing researches [17]. Although many 

commercial systems for performing OCR exist for a wide variety of applications, the 

available machines are still not able to compete with human reading capabilities with 

desired accuracy levels [15]. 

The whole process of an OCR algorithm includes several stages as shown in 

Figure 3. These stages are as follows: 
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▪ Image Acquisition: This step consists in capturing the image from an external 

source (e.g. a smartphone’s camera). 

▪ Location Segmentation: Segmentation is a process that determines the 

constituents of an image, locating the regions of the document where characters 

have been printed and distinguish them from figures and graphics. 

▪ Preprocessing: Once the image has been acquired, different preprocessing steps 

can be performed to improve the quality of image. Since processing color images 

is computationally more expensive, most of the applications in character 

recognition systems utilize binary or grey images, thus, conversion of color 

images is performed in this step [18]. 

▪ Character segmentation: The characters in the image are separated so that they 

can be recognized. Character segmentation can be categorized into three 

strategies: top-down, bottom-up and hybrid. The top-down approach (e.g. 

projection profile, filtering techniques, Hough transform) takes as input the entire 

image of text and attempts to divide it into different text-lines images. In contrast, 

the bottom-up strategies start by searching for interest pixels and then groups 

interest pixel level. They then manage those interest pixels into connected 

components that constitute characters which are then combined into words, and 

lines or text blocks. The integration of both top-down and bottom-up methods is 

called hybrid approaches [18] [19].  

▪ Feature extraction: The segmented characters are then processed to extract 

different features. Based on these features, the characters are recognized. 

Extraction of representative and essential features from an input image is the main 

key to improving the performance of a recognition system.  

▪ Character classification: This step maps the features of segmented image to 

different categories or classes. There are different types of character classification 

techniques. Structural classification techniques are based on features extracted 

from the structure of the image and use different decision rules to classify 

characters. Statistical pattern classification methods are based on probabilistic 

models and other statistical methods to classify the characters [20].  

▪ Post processing: After classification, the results are not 100% correct, especially 

for complex languages. Post processing techniques can be performed to improve 

the accuracy of OCR systems. One of the approaches is to use more than one 

classifier in cascading, parallel or hierarchical fashion. The results of the 
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classifiers can then be combined using various approaches. Moreover, contextual 

analysis can also be performed, i.e. the geometrical and document context of the 

image can help in reducing the chances of errors. Lexical processing based on 

Markov models and dictionary can also help in improving the results of OCR [21]. 

 

Figure 2 - General process of optical character recognition. 
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2.2. Mobile Approaches to OCR 

Although OCR has been in research for several years, it is still not customized for 

the cameras that come on modern day smartphones. There has been intensive research on 

building mobile systems for text extraction and recognition both in the commercial space 

and in the academia world. Both the industry as well as the research and opensource 

communities offer comparable systems like: 

▪ Tesseract:  The Tesseract is probably one of the most widely used and accurate 

open source OCR engines available. It was initially created by HP and is currently 

developed by Google. Tesseract works on Linux, Windows and Mac OSX. The 

source can also be compiled for other platforms, including Android and iPhone. 

It supports around 149 languages which come as different packages [22].  

▪ Azure cognitive services: Azure's Computer Vision API includes Optical 

Character Recognition (OCR) capabilities that extract printed or handwritten text 

from images. It can extract text from images, such as photos of license plates or 

containers with serial numbers, as well as from documents - invoices, bills, 

financial reports, articles, and more [23].  

▪ ABBYY: In industry, ABBYY provides a powerful mobile OCR engine which is 

claimed to provide real time processing with a very high accuracy and is 

compatible with several mobile platforms such as Windows Mobile, Nokia 

Symbian, iPhone, and Android [14]. ABBYY Mobile Capture is an SDK which 

offers automatic data capture within your mobile app, providing real-time 

recognition and capturing photos of documents for on-device or back-end 

processing [24].  

▪ Dynamsoft Camera SDK: is compatible with iOS and Android and is designed 

for programming of mobile document imaging. It provides document boundary 

detection, intelligent cropping, trapezoid distortion correction and image 

enhancement for the quality of captured documents. In addition, it can be used to 

can capture contracts, ID cards, presentations, receipts, passports, driving licenses, 

or any other documents [25].  

▪ Anyline SDK: Anyline is a mobile text recognition SDK, natively developed for 

iOS, Android, and UWP, that enables developers to build text recognition apps 

with ease [26].  

▪ ML Kit: ML Kit SDK is a relatively new product from Google that was presented 

in 2018. ML Kit is a software development kit (SDK) that makes it possible for 
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developers to simplify the integration of machine learning models into their 

mobile apps, including OCR. This kit provides a variety of highly skilled and 

accurate pre-trained models developed on deep learning strategies. It also 

incorporates Google ML technologies, such as: Google Cloud Vision API, 

TensorFlow Lite, Android Neural Networks API in a single SDK to apply ML 

techniques easily in your apps (Figure 3) [27]. 

 

 

Figure 3 - Technologies incorporated on ML Kit SDK [28]. 

 

Different OCR engines tend to make different mistakes. This remark can be 

explained by the fact that different engines use different approaches for classifying 

characters, are possibly trained on different data sets with different character and word 

distributions and are possibly using different language models [29].  
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Table 1 - Comparison of Optical Character Recognition Mobile Approaches. 
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2.3. Optical Character Recognition Challenges 

With the increase in the number of portable cameras, smartphones, and 

surveillance cameras, the detail in images captured with these devices have considerably 

increased. As a result, the information in these image details cannot be analyzed by 

humans. Thus, efficiently and automatically analyzing this information is an important 

challenge faced by image processing and pattern recognition [30]. 

The performance and accuracy of OCR is directly dependent upon the quality of 

input images. Thus, most OCR engines require the input image to have a clean 

background and clear foreground. However, the source images may be taken under 

various conditions, which increase exponentially the difficulty of recognizing the target 

characters [31]. 

In general, the processing of an image obtained by a smartphone is affected by 

several factors, such as: 

▪ Tilt: the perspective distortion that can take place when the text image plan to 

capture is not parallel to the smartphone’s camera plane, results on the smaller 

appearance of the characters located farther and the hypothesis of parallel lines of 

the edges of the document page no longer fits to those in the captured image [19]. 

▪ Lighting conditions: the variation in illumination is common, due to the physical 

environment such as shadows or reflective surfaces and lack of controlled lighting 

[19].  

▪ Text properties: from one document text to another, the text properties may vary, 

such as: variety of sizes, fonts, styles, colors [19]. 

▪ Complex background: The most notable and probably an inherent challenge 

faced by almost all vision-based systems is scene complexity. Background 

cluttering and noise can often create outliers and mislead a machine learning 

system into classifying non-textual information as text [32]. 

▪ Blur distortion: When using a mobile camera in real world scenarios, there is a 

tendency to capture out of focus, shaken or blurry images. Compression and 

decompression can also produce their own noise. In those cases, character (and 

feature) sharpness is generally affected [32]. 

 

  



Chapter 2 

  

   14 

2.4. Standard Image Pre-processing 

The aim of pre-processing is to eliminate undesired characteristics or noise in an 

image without missing any significant information. It enhances the image and prepares it 

for the next phases in OCR. Most of the challenges listed in the previous section need to 

be addressed in preprocessing stage. Some common operations of pre-processing can be 

listed as follows: binarization, noise reduction, skew correction, morphological 

operations, slant removal, filtering, thresholding, smoothing, compression, and thinning 

[18]. Table 2 presents some of these pre-processing methods in more detail. 

Table 2 - Description of some pre-processing methods. 

Processes Description 

Binarization 

Most OCR systems are designed to work with binarized images and 

good binarization is crucial for reliable performance. A satisfactory 

choice of binarization algorithm appears to be dependent on the 

application domain and experimentation on relevant data sets [33]. 

Nonetheless, binarization has long been recognized as a standard 

method to solve uneven lighting in OCR. 

The goal of the binarization process is to classify image pixels from the 

given input grayscale or color image into either foreground (text) or 

background. In general, the binarization process for grayscale images 

can be grouped into two broad categories: global binarization, and local 

binarization. Global binarization methods (e.g. Otsu’s algorithm) try to 

find a single threshold value for the whole image. Each pixel is then 

assigned to either foreground or background based on its grey value. 

On the other hand, local binarization methods (e.g. Niblack’s algorithm, 

Sauvola’s algorithm) compute thresholds individually for each pixel 

using information from the local neighborhood of that pixel.  

Filtering 

Filtering aims to remove noise and diminish spurious points usually 

introduced by uneven writing surface and poor sampling rate of the data 

acquisition device. Various spatial and frequency domain filters have 

been designed for this purpose. The basic idea is to convolute a 

predefined mask with the image to assign a value to a pixel as a function 

of the gray values of its neighboring pixels. Several filters have been 

designed for smoothing, sharpening, thresholding, removing slightly 

textured or colored background and contrast adjustment purposes 

[34][35]. 
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Skew 

Correction 

Due to inaccuracies in the capturing process and writing style the 

writing may be slightly tilted or curved within the image. This can hurt 

the effectiveness of the algorithms and thus should be detected and 

corrected [35]. 

Thresholding 

To reduce storage requirements and to increase processing speed it is 

often desirable to represent gray scale or color images as binary images 

by picking a threshold value. The two important categories of 

thresholding are viz global and local. The global thresholding picks one 

threshold value for the entire character image which is often based on 

an estimation of the background level from the intensity histogram of 

the image. The local or adaptive thresholding use different values for 

each pixel according to the local area information. A comparison of 

common global and local thresholding techniques is given by using an 

evaluation criterion that is goal directed keeping in view of the desired 

accuracy of the OCR system. It has been shown that Niblack’s locally 

adaptive method produces the best result [34][35]. 
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2.5. Related Work 

As previously mentioned, nonadherence to asthma medications is a well-

recognized problem. Nonetheless, over the period of 30 years, the effectiveness of 

adherence interventions has not progressively improved. Thus, the potential for mobile 

communication technology, such as mobile health apps and inhaler-based devices, to 

improve the management of asthma has gathered abruptly growing interest [4]. 

The development of electronic sensing devices that attach to inhaled respiratory 

medications has mitigated this problem. The inhaler compliance assessment device, 

commercially referred to under the trademark of INCA® (Inhaler Compliance 

Assessment), has the advantage of being an automatic and objective measure of both 

adherence and inhaler technique [36].  The aforementioned device, when attached to an 

inhaler, allows to identify and record the time and technique of inhaler use, thereby 

providing objective longitudinal data on an individual’s adherence to inhaled medication 

[37]. Actuation sensors are now available worldwide, and their use has been associated 

with lower overall costs for asthma care and better clinical outcomes [38]. 

In relation to mobile health applications, there are more than 500 asthma-related 

apps currently available, whether standalone or paired with sensors on inhalers, offering 

functions that span health education, symptom tracking, environmental alerts, and 

medication reminders [39]. Standalone asthma apps are less costly to design, create, and 

maintain than their interactive counterparts and are frequently downloaded from the App 

Store and Google Play Store [38]. Although standalone apps often allow to collect 

symptoms and inhaler usage data, these tools rely on patient  self-report.   

With all this in mind, combining features of inhaler usage detection and a 

gamification approach based on peer support, delivers an innovative way to measure and 

improve the adherence to inhaler, by using a smartphone camera to register the value of 

the inhaler dosage counter after the use. The developed detection tool is based on 

computer vision techniques, namely OCR (optical character recognition) to detect 

remaining doses according to the dose counter [11].  

Several academic projects and commercial products have tried to use mobile 

phone cameras to build interesting OCR applications. The recent developments regarding 

OCR have led to numerous applications of this technology in daily life, such as helping 

vision-impaired people understand text information, automatic document generation, or 

even in surveillance systems [10]. 
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The following review focused on finding articles that apply OCR strategies in 

real-world scenarios with applications in the medical field. However, papers from other 

application fields, whose methodology proved to be potentially useful for the work at 

hand, were not excluded. The search was conducted manually in Science Direct, IEEE, 

and Google Scholar databases.  

Rusyn et al. proposes an approach to the automatic digit recognition of exposures 

from medical devices, such as blood pressure meters, glucometers, substance content 

harmfulness analyzers. The authors proposed solving the problem of optical character 

recognition using methods of deep learning. To do so, the researchers used a database of 

4500 images to train and validate the created network. Their team found the deep learning 

model suitable for detecting and recognizing low contrast and defocus images. In 

addition, their results show these methods to be more accurate than more classical 

approaches, such as k-nearest neighbors and decision tree [40]. 

Tangtisanon suggested a medicine alert system for the elderly population that can 

operated in an Android smartphone with Internet connection. The proposed application 

allows to convert a medicine label picture into a text file, so the user can set up the right 

medicine name. The author used tesseract to implement this functionality, along with 

some pre-processing techniques (e.g. adaptive thresholding). The results show that the 

program output 100% correctly for typewriter font in local-based testing. On the other 

hand, for server-based testing only 90% of the output text match with the uploaded picture 

label correctly, due to a higher picture sampling before the upload to the server [41]. 

In contrast, Čakić et al. [42] used Tesseract OCR to get additional information 

about a specific bottle of wine (i.e. type, vintage, origin, ratings), based on existing wine 

labels that contain unique serial numbers, using only a smart mobile phone equipped with 

camera. The results obtained by the authors highlighted the importance of image pre-

processing, since the success rate varies significantly depending on the application of this 

stage in the OCR (around 62 % of the images were correctly recognized without pre-

processing; this value increases to 87.5% after performing pre-processing).  

An increasing number of studies have attempted to develop software to detect and 

classify digits from images captured from medical devices, namely from seven-segment 

displays. Many of these systems follow a process of locate a region of interest (ROI), 

binarize the ROI, locate digits within the binarized region and finally classify the digits 

by their numeric value. Significant differences in these systems occur for the methods 

used for region extraction and digit classification. 
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In the healthcare sector, Finnegan and co-workers [8] presented an automated 

process for the detection and reading of seven-segment digits from images of medical 

devices that used LCD screens, from two frequently-used medical devices: blood glucose 

meters and blood pressure monitors. The algorithm took in consideration unfavorable 

illumination effects by applying Retinex theory using bilateral filters. Moreover, a multi-

layer perceptron was built using Matlab’s ‘Neural Network Pattern Recognition’ toolbox. 

The model achieved 93% accuracy on digits found on the medical devices. However, this 

system was not yet implemented on a smartphone. 

 Similarly, Shenoy et al. [9] developed a smartphone based system (running on iOS 

8 and above), to automatically recognize and record biometric measurements captured 

from medical devices. In the search for an algorithmic model to implement, the 

researchers concluded that while Tesseract is strong at reading regular text on a page, it 

has difficulty to accurately read seven segment displays. Alternatively, the authors 

implemented an algorithm in Python 2.7, that accurately read the monitor 98.2% of the 

time. Packages such as scikit-learn and OpenCV were used to execute Random Forest 

Classifier and feature extraction along with image normalization, respectively.  

In [31] the authors presented an accelerated optical character recognition approach 

of seven-segment display digits found on digital medical devices. Using the proposed 

system, patients are expected to scan a medical instrument with a smartphone to 

automatically extract measurements related to their health. The authors overcame the 

challenges posed by changes in illumination through an adaptive thresholding method, 

and achieved an OCR accuracy of 96,22 %. 

Outside the medical field, Ghugardare et al. [43] propose a generalized module 

for automatic calibration of any measuring instruments using OCR, in order to better 

replicate and objectify measuring, as well as significantly minimize the quantity of work 

for calibration. This paper mainly suggests algorithms for recognition of seven segment 

display characters present on digital multi-meters. Despite the high accuracy of 95%, the 

proposed method focuses on serial execution and the algorithm is neither optimized for 

speed, nor performance is the focus of this research. 

More recently, Kanagarathinam and Sekar [16] conducted text recognition in 

energy meters with a seven segment display. Their dataset included images captured 

under challenging text recognition conditions such as tilted position, blurred, day and 

night light. Their findings suggest that existing open source OCR software could not 

recognize the text of seven-segment numerals because of the discontinuity in the digit 
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representation. As such, a MSER algorithm was used to detect the text regions in an image 

and an OCR function available in MATLAB was used to increase the recognition rate. 

Their results showed a recognition rate of 93,17 % in the test set. 

 In the last few years, much more information on OCR has become available as 

well open-source engines that allow the application of this technology in mobile apps. 

Although ML Kit is a relatively recent product (presented by Google in 2018), it has 

already been incorporated in some commercial apps, namely ZYL and Lose It!.  

Lose It! is an app that helps users manage their diets through food logging. Their 

team used ML Kit to scan nutrition labels from the camera view in real time, and instantly 

fill in the nutrition information for any new food in the app. The implementation of ML 

Kit significantly reduced the image analysis time for nutrition label reading. Moreover, 

since ML Kit allows to host models in Firebase, enables the seamlessly update of models 

on device without updating the app, reduces the app size, and allows A/B test model 

versions [44].   

The InspirerMundi's app also incorporates Google's ML Kit technology to monitor 

the adherence to inhaled control medications. In a pilot implementation of a detection tool 

for this mobile app for iOS, the dose in the dose counter of the inhaler is recognized to 

assist with the adherence monitorization. This functionality uses template matching to 

locate the dose counter for a set of commonly used inhaler devices. Only then the app 

performs the recognition of each numerical dose in the dose counter. The counter numbers 

were detected in 42% of the 101 images. To improve these results, an additional step was 

added where if no numbers are detected in the region of interest (ROI), a crop is 

performed around this area and submitted to text analysis again. The cropping of the 

image’s ROI was tested on 20 images subset and allowed to retrieve correctly the doses 

of 15 images (75%) [42]. 

In a more recent study, the tests performed with the  InspirerMundi application 

resulted in the correct value identification for the dosage counter in 79% of the 

registration events with all inhalers and over 90% for the three most widely used inhalers 

in Portugal [13].  

 

  

 



 

20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 –METHODOLOGY 



   Methodology 

21 

3. Methods 

The goal of the presented work is the development of a module dedicated to 

recognizing the text of inhaler counters. As such, a module was built, in Android Studio, 

with ML Kit and tested on several datasets. Pre and post processing techniques were 

applied where it was deemed necessary. Subsequently, certain features of the project were 

integrated in the most current version of the app, planned to be made available at the 

PlayStore by the end of 2021 (Figure 4).  

 

Figure 4 – Stages for the implementation of the default MLKit model. 

  

 The second phase of the project aimed to improve the performance of the text 

recognizer by creating a TensorFlow model, trained on images of inhalers. This stage 

encompasses the steps described in Figure 5 and will be addressed later on. It should be 

noted that this process was only performed for one inhaler type: the seretaide. 

 

Figure 5 – Steps for creating a custom MLKit model. 
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3.1. Datasets 

 To test the many variables that can affect the performance of the text recognizer, four 

datasets were considered, each with a different set of characteristics (Figure 5). 

 

Figure 6 - The four datasets used on this work and their specifications. 

 

 A subset of inhaler images, used in previous studies of the iOS inhaler detection 

module, was made available for text recognition testing. The database consists of 1322 

RGB images, in PNG format, with dimensions of 640 x 360 pixels. This dataset contains 

all the currently marketable inhaler types, with numerical dose counters at Portugal and 

Spain (Figure 7). However, the distribution of each inhaler in the dataset is variable (Table 

3).  

  

1322 Images 

12 Inhaler Models 

640 x 360 pixels 

5 frames per event 

Suboptimal Conditions 

iOS Image Module 

DATASET 
 

50 Images 

10 Inhaler Models 

Variable Sizes 

1 frame per event 

Less-than- ideal Conditions 

Real World Users  
DATASET 

 

27 Images 

4 Inhaler Models 

Variable Sizes 

1 frame per event 

Suboptimal Conditions 

Controlled  
DATASET 

349 Images 

1 Inhaler Model 

640 x 360 pixels 

1 frame per event 

Ideal Conditions 

Seretaide  
DATASET 
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Table 3 - Inhaler distribution for the several datasets used in the present work. 

Inhaler 

Model 

No. of images 

iOS Image 

Module 

Dataset 

Real World 

Users Dataset 

Controlled 

Dataset 

Seretaide 

Dataset 

Diskus 229 3 6 --- 

Easyhaler 146 4 9 --- 

Ellipta 53 7 --- --- 

Flutiform 95 2 --- --- 

K-haler 232 4 5 --- 

Mdi3m 79 --- --- --- 

Nexthaler 62 2 --- --- 

Novolizer 82 4 7 --- 

Seretaide 152 4 --- 349 

Spiromax 47 8 --- --- 

Turbohaler 69 12 --- --- 

Twisthaler 76 --- --- --- 

TOTAL 1322 50 27 349 
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Figure 7 - Sample images from the iOS Image Module dataset; photos captured under 

suboptimal conditions. 

  

 The images provided were acquired by 24 volunteers under controlled conditions 

using an iPhone 6S and a Swift implementation of method [13] described at section 2.5 

Related Work. It’s also important to note that the acquisition of these images was 

performed with a template matching tool, which allowed for the inhalers to remain 

similarly positioned on the screen. In addition, this dataset many times contained frames 

of the same event for each inhaler. 

A second dataset containing images collected from v1.x app users (iOS and 

Android) was provided to test the text recognition in even more realistic conditions. This 

dataset of 50 RGB images in PNG format, includes photos acquired by testers but also 

real patients, recruited as participants of the Inspirers Studies [12]. Additionally, the 

photos collected for the real-world user’s dataset were acquired after the process of 

template matching. Contrary to the iOS image module database, in this dataset there is 

only one frame per inhaler event. 
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The images were collected under less-than-ideal conditions (poor lighting, camera 

blur, background noise, etc.; Figure 8). The size of these images varies depending on the 

camera used to obtain the photo. This dataset contained images representative of all the 

inhalers available, except for the mdi3m and twisthaler models. 

 

 

Figure 8 - Sample representative of the images present in the real-world user’s dataset; less than 

ideal acquisition conditions (background noise, poor lighting, etc.). 

 

A dataset acquired under controlled conditions was provided specifically to test 

the interference of using different cameras in the text recognition results. For this purpose, 

photos from three different devices: a tablet (Lenovo TB-7504F) and two smartphones 

(Huawei P8 Lite and Redmi Note 8T) were obtained. The specifications for each 

instrument can be found in Table 6. These devices were used to collect photos of different 

inhaler models through the InspireMundi version 1.2.2. The captured photos form a 

dataset containing a total of 27 frames, however the distribution of images for each device 

is non-uniform and not all succeeded in the process of template matching. 
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Table 4 - Inhaler distribution of the controlled dataset. 

Device Model 
Number of Images per Inhaler Model 

Diskus Novolizer Easyhaler K-haler Total 

Lenovo TB-7504F 4 2 5 2 13 

Huawei P8 Lite 2 3 3 2 10 

Redmi Note 8T --- 2 1 1 4 

 

Table 5 - Smartphone model’s specifications. 

Model Inches 
Resolution 

(pixels) 
Ratio Operative System 

Lenovo TB-7504F 7’’ 720 x 1280 16:9 Android 7 

Huawei P8 Lite 5.2’’ 1080 x 1920 16:9 Android 8 

Redmi Note 8T 6.3’’ 1080 x 2340 19.5:9 Android 10 

 

At last, the seretaide database consists of 349 images of the seretaide inhaler 

model in PNG format, with dimensions of 640 x 360 pixels, collected under ideal 

conditions using a LG-V700 (Android) camera app. These images show a wide 

representation of digits in the dose counter; additionally, the background varies between 

black, white, and multicolor, and the lighting source of the photo varies between natural 

light and artificial light. 

3.2.  Counter Detection  

3.2.1. Image Pre-Processing 

Before processing the images through the text recognition model, it's important to 

improve the image data by suppressing undesired distortions and enhancing some 

relevant image features. With this goal in mind, several steps were followed during 

preprocessing, namely, the application of filters, image rotation and cropping of the 

region of interest (Figure 9). 



   Methodology 

27 

   

Figure 9 – Methods used for image preprocessing. 

 

Step 1: Black and White Filter 

In order to facilitate text recognition, a black and white filter was applied to all 

images. The reason for this pre-processing step is that less information needs to be 

provided for each pixel (a single intensity value for each pixel, as opposed to the three 

intensities needed to specify each pixel in a full color image), thus making the algorithm 

more efficient.  

Step 1.5.: Sharpening Filter 

A sharpening filter was applied to some key inhaler models, to improve the 

definition of fine detail and sharpen edges in the original image. The filter works by 

creating a fine highlight on the darker side of the edge, and a tiny lowlight on the lighter 

side of the edge. 

This intermediate step was only applied to the seretaide and k-haler inhaler 

models, due to the poor performance of the text recognition algorithm in the images of 

these inhaler types [13]. 

Step 2: Rotation 

The pictures of the inhalers were captured horizontally by the camera of a 

smartphone. However, the ML Kit algorithm does not recognize horizontal text, so all the 

collected images were rotated vertically. 

In most cases, the images were rotated 90 degrees to the right, with the exception 

of the mdi3m inhaler model (rotated 180 degrees right). This process was automatically 

made in Android Studio. 
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Step 3: Cropping the Region of Interest 

The main goal of this work is to recognize the digits that are represented on the 

dose counter of an inhaler. However, the text recognizer in the ML Kit recognizes not 

only the text on the dose counter, but also text in the background or on the labels present 

in the inhalers. Therefore, to ensure that the text collected does indeed belong to the dose 

counter, an image cropping centered on the dose counter display of the inhaler was 

performed. For this process, it had to be considered that the location on the image of the 

dose counters varies according to the type of inhaler. Therefore, image cropping was 

performed with different measurements and different coordinates based on the inhaler 

model (Table 6).  

 

Table 6 - Measurements used to perform the cropping of the region of interest: x and y 

represent the first pixels of the region of interest; width and height are the measures of the 

rectangular crop. 

Inhaler Model x y Width Height 

Diskus 170 240 140 100 

Easyhaler 100 350 140 80 

Ellipta 160 370 110 80 

Flutiform 120 200 140 130 

k-haler 140 140 100 100 

Mdi3m 430 125 140 100 

Nexthaler 180 300 120 80 

Novolizer 120 100 140 80 

Seretaide 130 440 140 80 

Spiromax 140 280 140 80 

Turbohaler 180 220 140 80 

Twisthaler 120 450 140 80 

 

Step 4: Resize  

Resizing images is an essential part of image processing. In this case, the image 

resizing is performed by scaling down the image, to speed the processing phase. To create 

a resized image, the original image is divided by a scale factor. The scale factor is 

determined by selecting the greater of two values (
𝐼𝑚𝑎𝑔𝑒 𝑊𝑖𝑑𝑡ℎ

𝑇𝑎𝑟𝑔𝑒𝑡 𝑊𝑖𝑑𝑡ℎ
,

𝐼𝑚𝑎𝑔𝑒 𝐻𝑒𝑖𝑔ℎ𝑡

𝑇𝑎𝑟𝑔𝑒𝑡 𝐻𝑒𝑖𝑔ℎ𝑡
). 
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3.2.2.  Text Recognition with Default Model 

Machine learning-based technologies were utilized to solve the problem of 

reading the dose counter. In particular, the MLKit SDK, which provides an off-the-shelf, 

simple solution for mobile developers to incorporate machine learning into their apps 

without having to fully grasp the entire model training process. The inhaler detection 

module was modified to include the ML Kit text mining API for dose counter value 

number extraction in order to provide objective verification of adherence. 

In essence, the code configures a text recognition detector, parses the results and 

displays them in the app, showing the text recognition results and bounding boxes 

overlaid on top of the original image.  

The ML Kit’s Text Recognizer segments text into blocks, lines, and elements 

(Figure 10): 

• a Block is a contiguous set of text lines, such as a paragraph or column, 

• a Line is a contiguous set of words on the same axis, and 

• an Element is a contiguous set of alphanumeric characters ("word") on the 

same axis in most Latin languages, or a character in others. 

 

Figure 10 – Segmentation of text in ML Kit’s Text Recognizer (Source: Google Developers). 

If the text recognition operation succeeds, a Text object is passed to the success 

listener. A Text object contains the full text recognized in the image and zero or 

more TextBlock objects. Each TextBlock represents a rectangular block of text, which 

contains zero or more Line objects. In turn, each Line object contains zero or 

more Element objects, which represent words and word-like entities such as dates and 

numbers [45].  
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3.3.  Results Post-Processing 

After processing the images and obtaining the results, certain post-processing 

techniques were applied to the outcomes, in order to avoid errors in the results. Some 

examples of preventable errors include the presence of non-numerical characters in the 

final result or detected values that do not fall within the dosage range of the inhaler. Thus, 

the method represented in Figure 14 were implemented by the illustrated order. 

 

 

Figure 11 - Post-processing techniques applied to the results. 

 

3.3.1. Removing Invalid Characters 

The dose counter of an inhaler can only display numerical characters. Thus, any 

detection of a non-numerical character could be handled one of two ways: either correct 

the recognized text to match a number (change the 'o' to 0, or 'I' to 1) or exclude any 

character that does not match a digit from the result. From these two different approaches, 

the latter was chosen, as it is simpler and the conversion from text to number would imply 

studying the dataset. 

Hence, all characters that were not digits, including alphabetic and special 

characters, were excluded from the recognized text. 

 

3.3.2. Admissibility Range 

The value obtained from the text recognition can be considered inadmissible for 

several motives. These reasons may be that there is no recognized text, no character 

remaining after removing invalid characters, or that the text does not fit into the range of 

admissible values. 

It is worth noting that the values that are illustrated on the inhaler counter display 

are limited by ranges. That is, each inhaler has a maximum dose value and a minimum 

value (0). Thus, for each character recognition result it is important to verify whether the 

result was admissible within the known value range for each inhaler (Table 7). 
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Table 7 - Maximum dose values for each inhaler model. 

Inhaler Model Maximum Dosage 

Diskus 60 

Easyhaler 200 

Ellipta 30 

Flutiform 120 

K-haler 124 

Mdi3m 120 

Nexthaler 120 

Novolizer 200 

Seretaide 124 

Spiromax 120 

Turbohaler 200 

Twisthaler 120 

 

However, it is worth noting that in certain instances the text recognizer has 

simultaneously detected two dose values (particularly among the easyhaler and 

turbohaler inhaler models). The ML Kit aggregates the text blocks detected in the image 

in order to generate the final result. Therefore, there were some cases in which the results 

were erroneously considered to be outside the admissibility range. Thus, for these 

occurrences, the admissibility of the results was amended manually. 

 

3.3.3. Voting System 

In order to increase the effectiveness of the algorithm, a voting system was 

implemented. This system consists of collecting 5 frames from the same inhaler. These 

frames are temporarily stored in the cell phone. For each frame, text recognition is 

performed. From the five results obtained, the text that was recognized most often is 

selected. This is then considered the correct one. If there are two most common numbers, 

the algorithm selects the one with the lower value. 
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3.4.  Saving Data 

Each time an image is processed all the information regarding that same image 

and the detected text are stored temporarily in the device. Towards access the saved values 

an export is performed, to load the data obtained by the app in Google Drive under the 

form of a .csv file. This data encompasses: the timestamp, the inhaler model, the file 

name, the detected text, the corrected detected text, whether the value is in the 

admissibility range, and the most common detection among five frames. 

 

3.5.  Model Optimization 

Following data processing and analysis of the results, a discrepancy in the 

performance of the text recognizer was observed between different inhaler models. In 

fact, the results for certain inhalers were lower than expected when compared to the 

others.  

By default, ML Kit’s APIs make use of Google trained machine learning models. 

These models are designed to cover a wide range of applications. However, some use 

cases require models that are more targeted. That is why some ML Kit APIs now allow 

you to replace the default models with custom TensorFlow Lite models.  

Thus, it was proposed to train a TensorFlow Lite model on images belonging to a 

specific type of inhaler, to improve the accuracy of the text recognizer. The inhaler 

models with worst results (in iOS) were Twisthaler and Seretaide [13], however the 

Twisthaler model is rarely used among Portugal users, according with medical specialists 

of the team Inspirers; hence, the Seretaide model was selected for this study.  

 

In order to create a TensorFlow Lite model the following steps were completed: 

1. Annotate the dataset. 

2. Get crops for each image where the dose counters are located. 

3. Split the seretaide dataset into train and validation datasets. 

4. Train the model. 

5. Make prediction on cropped images of the test dataset. 

6. Evaluate the model. 

7. Convert the model to TFLite format. 
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3.5.1. Annotations 

For the purpose of training a machine learning model on inhaler pictures, a manual 

annotation process was performed on all images present in the Seretaide inhaler dataset. 

This task was accomplished with the help of the VGG Image Annotator (VIA) tool. VIA 

is an open source standalone manual annotation software for image, based solely on 

HTML, JavaScript and CSS (no dependency on external libraries)[46]. This software was 

selected among other annotation tools due to the simplicity of its interface (Figure 11) 

and the fact that there is no installation required (runs in a web browser).  

 

 

Figure 12 - Interface of the VIA software. 

With the aid of this software, it was possible to collect annotations regarding the 

position and dimensions of the dose counter and the corresponding digits that appear on 

the display. The annotations were saved under a csv file with information regarding the 

filename, the width and height of the dose counter, the coordinates for the first pixel 

corresponding the dose counter and the number of dosages displayed in the dose counter. 

The data referent to the location and dimensions of the dosage counter allowed to get 

crops of each image at a later stage. 

3.5.2. Tools 

Google Colaboratory, or “Colab” for short, is a web integrated development 

environment (IDE) for python that allows anybody to write and execute arbitrary python 

code through the browser, and is especially well suited to machine learning, data analysis 
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and education.  More technically, Colab is a hosted Jupyter notebook service that requires 

no setup to use, while providing free access to computing resources including Graphic 

Processing Units (GPUs) [47].  

A good GPU is indispensable for machine learning. Training models is a hardware 

intensive task, and a proper GPU will make sure the computation of neural networks goes 

smoothly. Hence, the use of Google Colab in this case was indispensable given the limited 

hardware resources available. The types of GPUs that are available in Colab vary over 

time. The GPUs available in Colab often include Nvidia K80s, T4s, P4s and P100s. 

Nevertheless, there is no way to choose what type of GPU you can connect to in Colab at 

any given time [47].  

Since, the goal is to train a model to be integrated in MLKit API, the model has 

to be in a TensorFlow Lite format. TensorFlow is a free and open-source software library 

for machine learning and artificial intelligence. It can be used across a range of tasks but 

has a particular focus on training and inference of deep neural networks, enabling 

developers to build and deploy ML-powered applications. In addition, TensorFlow offers 

intuitive high-level APIs that enable immediate model iteration and simplified debugging 

and can be executed in Colab notebooks [48]. 

 

3.5.3. Dataset Pre-Processing 

The dataset contains 354 files as jpg images. All images suffered four pre-

processing steps: rotation, cropping, convert to grayscale and resizing. The images in the 

dataset were rotated 90º right and cropped according to the dimensions of the dose counter 

indicated on the annotations file. Since the cropping measurements were not consistent 

across the dataset, the cropped-out images did not have the same size; hence, all images 

were resized to standardize the data (Figure 12). 

 

Figure 13 – Sample of the pre-processed seretaide dataset. 
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The label for each sample is a string with the characters illustrated in the image of 

the dose counter. Each character in the string was mapped to an integer for training the 

model. Similarly, the predictions of the model were mapped back to strings. For this 

purpose, two dictionaries were maintained, mapping characters to integers, and integers 

to characters, respectively. The characters that are present in the dose counter, and 

therefore are needed to encode and posteriorly decode for predictions, are digits from 0 

through 9. All transcriptions of the dose counter digits are 3 characters long. 

3.5.4. Split the Dataset 

In order to test the model, a training and validation set must be generated. The 

network can be trained using the training set and verified using the validation set. For this 

purpose, the dataset was shuffled randomly, so that each time the dataset is split a new 

training and validation dataset are created. Additionally, the dataset split into 90 % 

training set and 10 % validation set. That is, of total images present in the seretaide 

dataset, 90 % were used for training the model and 10 % for validating the model’s 

performance: 

• Training Dataset Size: 318 images; 

• Validation Dataset Size: 36 images. 

The classes found in the seretaide dataset are digits that range from 0 to 9, and the 

frequency of each one in the dataset can be seen in Table 8. 

 

Table 8 - Frequency of the characters found in the seretaide dataset. 

Character Frequency (%) 

0 33,90 

1 26,08 

2 10,92 

3 8,47 

4 3,95 

5 3,39 

6 3,39 

7 3,11 

8 3,39 

9 3,39 
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3.5.5. Model Architecture 

When attempting to recognize characters, neural networks (NN) are a good choice 

as they outperform all other approaches at the moment. The NN for such use-cases usually 

consists of convolutional layers (CNN) to extract a sequence of features and recurrent 

layers (RNN) to propagate information through this sequence. The network outputs 

character-scores for each sequence-element, which simply is represented by a matrix 

[49]. In this case, the model combines a CNN and an RNN, and it instantiates a new 

“endpoint layer” for implementing CTC loss. The former enables using unsegmented 

pairs of images and corresponding text transcriptions to train the model without any 

character/frame-level alignment [50].  

More specifically, the architecture of the NN consists of an input layer, two 

convolutional layers each followed by a pooling layer, two bidirectional layers, a CTC 

layer and finally an output layer (Figure 13). The input layer consists of an array of floats 

that represent the pixels in the image of a dose counter. It is important to notice that the 

value of a pixel is the intensity of a symbol at a given position, with 255 being a black 

pixel with ink, and 0 being a white pixel without ink. The final layer is the output layer 

and it has 11 nodes. 

 

Figure 14 - Shape of the OCR Model. 

 

3.5.6. Model Train 

Training is the machine learning stage where the model is gradually optimized, or 

the model learns the dataset. The goal is to learn enough about the structure of the training 

data set to make predictions about unseen data. If you learn too much about the training 

data set, the predictions will only work for the data it has seen and will not be 

generalizable (i.e. overfitting) [51]. The problem in question (OCR of dose counter digits 

in inhalers) is an example of supervised machine learning, in particular, a multi-label 
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classification problem: the model is trained from examples that were previously labelled 

with the corresponding class; in this case a class is a label from the set {0, 1, 2, …, 9}).  

During the training stage the model needs to calculate loss. This measures how 

much a model's predictions are off the desired label, in other words, how bad the model 

is doing. In this case, the model computes its loss using the CTC Loss which calculates a 

loss between a continuous (unsegmented) time series and a target sequence. It does this 

by summing over the probability of possible alignments of input to target, producing a 

loss value which is differentiable with respect to each input node [52].  

In addition, TensorFlow has many optimization algorithms available for training. 

This model uses the optimization algorithm Adam which is a replacement optimization 

algorithm for stochastic gradient descent for training deep learning models. The Adam 

algorithm combines the best properties of the AdaGrad and RMSProp algorithms. Adam 

is relatively easy to configure where the default configuration parameters do well on most 

problems [53]. 

3.5.7. Evaluate the Model 

The critical step after implementing a machine learning algorithm is to find out 

the effectiveness of the model based on metrics. Different available performance metrics 

are used to evaluate machine learning algorithms. In OCR tasks, we can use multi-label 

classification performance metrics such as accuracy, precision, recall and F-measure [54]. 

The evaluation of a multi-label classification algorithm is difficult mostly because 

multi-label prediction has an additional notion of being partially correct. One trivial way 

around would be just to ignore partially correct (consider them as incorrect) and extend 

the accuracy used in single label case for multi-label prediction. This is called Exact 

Match Ratio (MR) and it can be described by the following expression: 

   

          (1) 

 

where, I is the indicator function. Clearly, a disadvantage of this measure is that it 

doesn’t distinguish between complete incorrect and partially correct [54]. 

In order to account for partially correctness, Godbole et. at in [55] proposed 

following set of definitions for accuracy, precision, recall, and F1 measure. As in single 

label multi-class classification, the higher the value of referred metrics, the better the 

performance of the learning algorithm. 
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The accuracy determines the fraction of correct predictions. If �̂�𝑖 is the predicted 

value of the i-th sample and 𝑦𝑖 is the corresponding true value, then the fraction of correct 

predictions over 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠  is defined as [56]:  

           (2) 

 

 

 

Another evaluation metric is precision (P), which corresponds to the proportion 

of predicted correct labels to the total number of actual labels, averaged over all instances: 

 (3) 

 

 

On the other hand, recall (R) is the proportion of predicted correct labels to the 

total number of predicted labels, averaged over all instances: 

 

 (4) 

 

F1-Measure (F) is the definition for precision and recall naturally leads to the 

following definition for F1-measure (harmonic mean of precision and recall). 

 

  (5) 

  

Hamming Loss (HL) reports how many times on average, the relevance of an 

example to a class label is incorrectly predicted. Therefore, hamming loss considers the 

prediction error (an incorrect label is predicted) and the missing error (a relevant label not 

predicted), normalized over total number of classes and total number of examples. 

 

(6) 

  

where I is the indicator function. Ideally, we would expect hamming loss, HL = 0, 

which would imply no error; practically the smaller the value of hamming loss, the better 

the performance of the learning algorithm [54].  

Accuracy 
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3.5.8. Convert to TF Lite 

In order to replace the default models on ML Kit APIs with a custom model, the 

existing TensorFlow OCR Model had to be converted to a TensoflowLite format. To do 

so, the has to meet some compatibility requirements must be met [57]: 

• The model must have only one input tensor with the following constraints: 

• The data is in RGB pixel format. 

• The data is UINT8 or FLOAT32 type. If the input tensor type is 

FLOAT32, it must specify the Normalization Options by 

attaching Metadata. 

• The tensor has 4 dimensions: BxHxWxC, where: 

o B is the batch size. It must be 1 (inference on larger batches is 

not supported). 

o W and H are the input width and height. 

o C is the number of expected channels. It must be 3. 

• The model must have at least one output tensor with N classes and either 2 or 

4 dimensions: 

• (1xN) 

• (1x1x1xN) 

 

3.6.  Implementation on the app 

All previously mentioned steps were developed and implemented over in an 

Android Studio project independent of the InspirersMundi app. Therefore, after 

establishing that the image processing and text recognition worked, the goal is to integrate 

this work in the current version of the Android app Inspirers Mundi. The pre-processing 

features and the text recognition were included on the app through a team collaboration, 

and over the next course of weeks the voting system will be implemented to improve the 

app’s performance. 
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4. Results 

4.1. Testing Module with Default ML Kit’s Model 

In order to test app's operation, Android Studio emulator was used to simulate the 

virtual device Pixel 4 API 28. The specifications for this device can be found in Table 9. 

 

Table 9 - Specifications of the android virtual device. 

Name Resolution API Target CPU/ABI 

Pixel 4 API 28 
1080 x 2280: 

440dpi 
28 Android 9.0 x86 

 

As shown in Figure 15 (a), the mobile app module has a drop-down field menu 

that allows the user to select which of the inhaler model is going to be processed. The 

menu offers 12 options corresponding to the commercially available inhalers with 

numerical dose counters. In addition, the app has a ‘PROCESS’ button that starts the 

image processing and OCR, and a ‘EXPORT’ button (Figure 15 (b)). The former allows 

loading to Google Drive all the data that has been temporarily saved on the device, in a 

cvs format for future analysis (Figure 15 (c)). After the text recognition is complete, the 

obtained values are displayed on the screen alongside the bounding boxes. 

 

         

(a)                 (b)                       (c) 

Figure 15 – (a) Display of the drop-down field menu, with the inhaler model options, on 
the app; (b) Display of the layout of the app with all the existing buttons; (c) Display of the 

layout for saving the data on Google Drive. 
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In a preliminary analysis, the text recognition program often picks up much more 

text than the one present in the dose counter, namely text from the inhaler labels and text 

present at the background of the photo (Figure 16). 

 

 

Figure 16 - Outputs of the preliminary phase of testing. 

 

4.2.  Results with the Default ML Kit’s Model over iOS Image Module 

Dataset 

To evaluate the performance of the text recognizer, a manual annotation of the 

text expected to be recognized by the app was performed. This way, all the results 

obtained were compared to the expected text, according to the success rate. The success 

rate is measurement corresponding to the number of correct results divided by all the 

images that were processed (Equation 7).   

 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 (%) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
 (7) 

 

To verify the impact of preprocessing on the quality of the system performance, 

data was collected on the text recognition app before cropping and afterwards (Table 10). 

This study was performed on the iOS Image Module dataset.  
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Table 10 - Text recognizer success rate before and after cropping in the iOS image 

module dataset. 

Inhaler Models 
Number of 

Images (n) 

Success Rate (%) 

(before cropping) 

Success Rate (%) 

(after cropping) 

Diskus 229 49,34 77,83 

Easyhaler 146 36,30 76,71 

Ellipta 53 62,26 77,36 

Flutiform 95 16,84 51,58 

Khaler 232 12,5 24,14 

Mdi3m 79 79,74 86,08 

Nexthaler 62 40,32 96,77 

Novolizer 82 80,48 92,68 

Seretaide 152 19,10 38,16 

Spiromax 47 31,91 55,32 

Turbohaler 69 28,99 81,16 

Twisthaler 76 2,63 9,21 

 

 Similarly, to study the effect of post-processing on the output quality, the results 

obtained before and after post-processing were compared. As such, a pre-processed iOS 

image module dataset was used for this analysis.  

 As mentioned previously, the results underwent three stages of post-processing: 

the removal of invalid characters, the fitting into the admissibility range, and the voting 

system. In order to evaluate the influence of these methods on the outcomes, the results 

were analyzed for each post-processing step. In this regard, Table 11 presents the success 

rate of the algorithm before and after the removal of invalid characters. In Table 11, it’s 

also possible to verify which percentage of the results were considered admissible after 

the exclusion of non-numerical character. 
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Table 11 - Success Rate before and after removing invalid characters, and admissibility 

of the results. 

  

 It is important to note that only a percentage of the corrected results were 

considered admissible. Thus, the causes for a result to be considered inadmissible (image 

quality, default model malfunction, etc.) were investigated. As such, a study was 

performed on the iOS image module dataset, in which the images were inspected one by 

one to determine the cause of the algorithm’s failure. In Table 12, the causes for 

inadmissibility can be verified according to the inhaler model. On the other hand, in 

Figure 17, the causes for inadmissibility can be viewed without distinguishing between 

inhaler types. 

 

 

 

 

Inhaler 

Models 
Events (n) 

Success Rate 

(%) 

(before exclusion of 

invalid characters) 

Success Rate 

(%) 

(after exclusion of 

invalid characters) 

Admissible 

Results (%) 

Diskus 229 77,83 80,43 66,52 

Easyhaler 146 87,67 89,04 75,34 

Ellipta 53 77,36 79,25 66,04 

Flutiform 95 51,58 51,58 48,42 

Khaler 232 24,14 24,14 64,66 

Mdi3m 79 86,08 87,34 81,01 

Nexthaler 62 96,77 96,77 74,19 

Novolizer 82 92,68 93,90 68,29 

Seretaide 152 38,16 38,16 25,66 

Spiromax 47 55,32 57,45 48,94 

Turbohaler 69 82,61 82,61 79,71 

Twisthaler 76 9,21 9,21 34,21 

Total 1322 64,95 65,82 61,10 
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Table 12 – Number of admissible events and the causes for error in inadmissible results. 

Inhaler Type 

Causes for inadmissibility 

Admissible 
Total of 

Images 

T
em
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la

te
 

M
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h
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g
 

C
ro

p
p

in
g

 

B
lu

rr
in

g
 

A
d

m
is

si
b

il
it

y
 

R
a
n

g
e 

U
n

k
n

o
w

n
 

Diskus 37 8 8 10 14 152 229 

Easyhaler 22 3 7 1 3 110 146 

Ellipta 0 9 0 0 9 35 53 

Flutiform 1 13 4 2 29 46 95 

K-haler 35 6 3 0 38 150 232 

Mdi3m 12 0 2 0 1 64 79 

Nexthaler 10 3 3 0 0 46 62 

Novolizer 10 8 3 1 4 56 82 

Seretaide 33 1 21 1 57 39 152 

Spiromax 9 0 0 0 15 23 47 

Turbohaler 12 0 0 0 2 55 69 

Twisthaler 15 0 0 0 35 26 76 

 

Figure 17 - Distribution of the causes for inadmissibility and admissible results. 

 

  

196; 15%

51; 4%
51; 4%
15; 1%

207; 15%802; 61%

Inadmissible due to template
matching

Inadmissible due to cropping

Inadmissible due to bluring

Inadmissible due to the
admissibility range

Inadmissible due to unknown
causes

Admissible
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 Thereby, Table 13 shows the success rate of the algorithm only on results 

considered admissible. 

 

Table 13 - Success rate of the algorithm considering only admissible and successful 

results. 

  

  Finally, the results obtained after the implementation of the last post-processing 

step can be found in Table 14. As mentioned previously, the voting system considers five 

admissible frames of the same inhaler and saves the most common result of the text 

recognizer among them. In Table 14, the success rate after the deployment of this method 

can be found, as well as for the number of events, in which an event corresponds to the 

processing of five admissible frames. 

 

 

 

 

Inhaler 

Models 

Number of 

Admissible Results 

Number of Successful and 

Admissible Results 

Success 

Rate (%) 

Diskus 153 147 96,07 

Easyhaler 110 97 88,18 

Ellipta 35 33 94,29 

Flutiform 46 28 60,87 

Khaler 150 13 8,67 

Mdi3m 64 55 85,94 

Nexthaler 46 45 97,83 

Novolizer 56 56 100 

Seretaide 39 4 10,26 

Spiromax 23 23 100 

Turbohaler 55 45 81,82 

Twisthaler 26 0 0 

Total 803 546 68,00 



   Results 

47 

Table 14 -Results of the inhaler detection module after applying the voting system. 

 

 In addition, it was also imperative to evaluate if the performance of the Android 

text recognizer is comparable to the performance of the iOS app. Therefore, Table 15 

presents the success rates of both Android and iOS projects, when applied to the iOS 

module study. It’s worth noting that all data from the iOS study went through similar pre 

and pos processing mechanisms to the ones used on the Android project. In addition, the 

results presented in Table 15 are only from images where template matching was 

successful. 

 

 

 

 

 

 

 

Inhaler Models Events (n) 
Success Rate (%) 

(after applying the voting system) 

Diskus 31 96,67 

Easyhaler 21 90,47 

Ellipta 6 100 

Flutiform 9 77,78 

Khaler 30 3,33 

Mdi3m 12 100 

Nexthaler 9 100 

Novolizer 11 100 

Seretaide 7 0 

Spiromax 4 100 

Turbohaler 11 81,82 

Twisthaler 5 0 

Total 156 69,65 
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Table 15 – Success rate of the text recognizer on the iOS app versus the Android app. 

Inhaler 

Models 

Success Rate (%) 

iOS version 

Success Rate (%) 

Android version 

Diskus 85,64 85,08 

Easyhaler 87,50 89,17 

Ellipta 77,27 79,55 

Flutiform 62,16 41,89 

Khaler 46,33 10,17 

Mdi3m 83,61 83,61 

Nexthaler 90,38 96,15 

Novolizer 92,06 92,06 

Seretaide 5,13 27,35 

Spiromax 100 61,11 

Turbohaler 94,44 79,63 

Twisthaler 0 0 

TOTAL 68,71 62,15 

 

4.3.  Results with the Default ML Kit’s Model over the Real-World 

Users Dataset 

A second database was also studied in an effort to analyze the quality of the results 

under suboptimal conditions. All images from this dataset have undergone all stages of 

pre-processing. However, due to the limitations of the number of available photos, the 

voting system step of post-processing was not performed. The results from this analysis 

can be found in Table 16.  

As it can be seen in Table 16, there are 4 inhaler models whose results were 

deemed inadmissible. In fact, a significant percentage of the results (30 %) weren’t 

considered admissible due to problems related to the image, more specifically: incorrectly 

performed cropping. 
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Table 16 – Success rate of the text recognizer in images acquired under less than ideal 

conditions by app users. 

Inhaler 

Models 

Number of 

images 

Admissible Results 

(%) 

Success Rate (%) 

among admissible 

results 

Diskus 3 0 Non-applicable 

Easyhaler 4 50,00 0 

Ellipta 7 57,14 100 

Flutiform 2 0 Non-applicable 

K-haler 4 0 Non-applicable 

Nexthaler 2 0 Non-applicable 

Novolizer 4 50,00 100 

Seretaide 4 75,00 0 

Spiromax 8 37,50 33,33 

Turbohaler 12 16,67 50 

TOTAL 50 28,63 47,22 

 

4.4.  Results with the Default ML Kit’s Model over the Controlled 

Dataset 

The results in Table 17 were acquired by applying the text recognizer on the 

controlled dataset. The study of these results will allow us to understand if the model of 

the smartphone with which the photo was acquired may interfere with the quality of the 

results. Given the scarcity of images in this database the voting system method of pos-

processing was not applied. 
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Table 17 – Success rate of the text recognizer among different devices. 

 Inhaler Model 

Diskus Novolizer Easyhaler K-Haler Total 

S
m

a
rt

p
h

o
n

e 
M

o
d

el
 

Lenovo 

TB-

7504F 

Number of 

Images 
4 2 5 2 13 

Admissible 

Results (%) 
0 0 0 0 0 

Success Rate 

(%) 
0 0 0 0 0 

Huawei 

P8 Lite 

Number of 

Images 
2 3 3 2 10 

Admissible 

Results (%) 
0 100 100 0 50,00 

Success Rate 

(%) 
0 100 66,67 0 91,67 

Redmi 

Note 8T 

Number of 

Images 
--- 2 1 1 4 

Admissible 

Results (%) 
--- 100 100 0 66,67 

Success Rate 

(%) 
--- 50,00 100 0 50,00 

 

Due to the lack of admissible results in some devices, the possible causes for these 

outcomes were studied. The findings of this analysis are shown in the graph in Figure 18. 
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Figure 18 - Causes for error in the controlled dataset. 

 

4.5.  Trained Model 

As mentioned previously, this project runs using the Google Colab environment 

and the network was built using TensorFlow 2. 6.. The model was trained in 200 epochs 

and a batch size of 5.  

A sample of the outputs of the model (predicted text) on the validation dataset are 

presented in Figure 19, along with the input images. Moreover, as it can be seen in Figure 

19, if the output string is less than 3 characters, the model predicts an unknow character 

([UNK]). 

 

  

Figure 19 - Sample of the predicted text of the trained model, accompanied by the original 

images of the validation dataset.  
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4.5.1. Losses 

During the training of a machine learning model, the current state of the model at 

each step of the training algorithm can be evaluated. In this case, the metrics training loss 

and validation loss were used to evaluate the model over time (Figure 20). This measures 

how much a model's predictions are off the desired label. The training loss indicates how 

well the model is fitting the training data (“learning”), while the validation loss indicates 

how well the model fits new data (“generalizing”) [58].  

 

 

Figure 20 - Training and Validation Loss over time. 

 

4.5.2. Evaluation Metrics 

To evaluate the model, several metrics were taken into consideration to assess the 

model’s performance (Table 18).   

 

Table 18 - Evaluation Metrics for the Trained Model. 

Metrics Results 

Exact Match Ratio 83,34 % 

Hamming Loss 0,17 % 

Recall 84,72 % 

Precision 83,34 % 

F1-measure 83,34 % 
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 To evaluate the model’s accuracy, the model was tested in 5 different training and 

validation datasets of the same size (Table 19). Recall that all the images used belonged 

to the seretaide dataset.  

 

Table 19 – Validation accuracy for different training and validation datasets. 

 
Test 

Average 
Standard 

Deviation 1 2 3 4 5 

Accuracy 

(%) 
80,56 94,44 83,33 94,44 91,67 88,89 6,51 
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5. Discussion 

In this thesis, a study designed to validate the inhaler dosage counter value 

identification module through an Android solution is introduced and the results presented. 

The module allows for an objective assessment of inhaler usage, which can enable and 

facilitate remote monitoring of patient adherence by a healthcare professional. A broad 

set of inhaler devices, with heterogeneous forms and dosages, were used for testing 

purposes. 

In this chapter, the results of all performed experiments are summed up and 

discussed. First, the results of preprocessing are discussed. Followed by the outcomes of 

the performed OCR in the several datasets with MLKit default model, and finally the 

results of the trained model are discussed.  Each step is briefly explained, followed by a 

summary of the results for each topic. 

5.1.  Pre-processing 

During the processing of the images, it was possible to conclude that the ML Kit 

algorithm was not able to recognize the numbers contained in the dose counter when the 

picture was positioned horizontally. As such, the image rotation proved to be one of the 

most important preprocessing steps. 

Among all the preprocessing steps, only cropping the region of interest was tested 

separately. The ML Kit algorithm can recognize text in images, however this entailed that 

the preliminary results presented all text captured in the image and not only the numbers 

in the dose counter. Thus, cropping the region of interest proved to be a critical step in 

noise removal, and without which it would not be possible to achieve an objective dosage 

value.  

As it can be seen in Table 11, the cropping of the region of interest greatly 

impacted the results of the success of the algorithm to detect correctly the number on the 

dose counter. The inhaler models whose results seemed to benefit more from the cropping 

step were the Nexthaler, Turbohaler and Easyhaler.  

5.2.  ML Kit Text Recognition 

5.2.1. Results from the iOS image module dataset 

Regarding the iOS image module dataset, the exclusion of non-numerical 

characters seemed to slightly improve the algorithm’s performance in some inhaler 
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models. However, the addition of this pre-processing step did not have a considerable 

impact on the overall results, since the success rate before and after removing non-

numerical characters differs only 0,9 % (Table 12).  

The results of the ML Kit algorithm can be unsuccessful for several reasons: the 

number detected may be wrong, the result may contain more characters than those 

contained in the dose counter, or it may simply not find the number to detect. Some of 

these errors can be corrected by post-processing the results, however, others may derive 

from errors made in previous steps.  

After the inspection of the images used for text extraction, it was possible to 

identify some of reasons for results to be deemed inadmissible (Figure 15). Three of the 

causes were due to the inadmissibility of the image: template matching, cropping errors 

and blurring. The images in the iOS module study dataset were acquired through the use 

of the app InspirersMundi, meaning the images went through a template matching process 

to guarantee that the inhaler was on the right position in the moment of the image capture. 

However, not all images were successful in the template matching step, and consequently 

not all inhalers were in the correct position during the cropping of the region of interest. 

Thus, a small percentage of the images (15 %) used did not frame the dose counter of the 

inhalers and were considered inadmissible due to template matching errors. On the other 

hand, there were some images where the template matching was successful, but the 

cropping was still poorly performed. This may be due to the measurements used for the 

cropping of the region of interest that despite working for most images, cannot be 

generalized for all cases. Moreover, in cases where the image was too blurred for the 

algorithm to recognize any digit, the error occurred during the photo acquisition and the 

images were considered inadmissible due to blurring. 

However, a small percentage of inadmissible results are due to unknown causes 

of error (15 %), as visual verification of the cropped image does not allow to identify an 

evident problem. The most likely explanation for these unknown causes of error is the 

failure of the MLKit algorithm to detect the numbers, as the default ML Kit’s Model may 

be insufficient.  

The Seretaide model has one of the lowest admissibility rates, this is mainly due 

to unknown motives (37,5 %), although template matching errors (21,71 %) and out-of-

focus pictures (13,81 %) also occur. One of the unknown causes contributing to the low 

admissibility rate, might be a problem with the ML Kit library recognizing the type of 

font present in the counter. Another possible explanation for so many inadmissible results, 
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is the small size and deep dosage counter in the Seretaide model, which creates additional 

difficulties. 

Moreover, although the diskus inhaler model had a relatively high rate of 

admissible results, it was, among all the models, the one with the highest number of 

inadmissible images due to dose counter framing errors in the template matching phase. 

In fact, around one quarter of the images were found to be inadmissible for this reason 

(24, 34 %).  

Additionally, the K-haler and Twisthaler inhaler models also had some of the 

highest number of events of picture inadmissibility due to unknown causes, with 16,38 % 

and 46,05 % of their images considered inadmissible for this reason, respectively. On 

closer inspection of these images, it’s possible to discern that the orientation of the digits 

in the dose counters of these inhaler models is arranged vertically, whereas on other 

inhaler types the values are displayed horizontally. However, there is nothing in the ML 

Kit’s documentation that may explain this discrepancy, since it clearly states that the 

model should be able to detect a contiguous set of words no matter the axis. Therefore, 

the problem may reside in the angle in which the numbers of the photo are lined, making 

it hard for the default model to detect them at all. 

It was also observed that the text recognizer can be sensitive to strong reflexes or 

shadows that are able to obscure the numbers. These effects prevent the acquisition of an 

image of enough quality to allow text detection, even for human eyes. Such is the case 

for the Flutiform inhaler model, where it was found that many of the failed results are due 

to light reflected in the dose counter display. In fact, flashes of light prevented the 

detection of one digit in most cases and in some instances the light completely obstructed 

the vision of the dose counter. These observations were perceived during the image 

processing phase. 

Among the results that were deemed admissible, in 68 % of the events it was 

possible to obtain a valid identification of the numeric values in the dosage counter. The 

inhaler models with higher rates of success were the Novolizer, Spiromax, Nexthaler, 

Diskus and Ellipta (all above 90%; Table 13). The inhaler model with the worst results is 

the Twisthaler, whose success rate is 0% among results considered admissible (Table 13). 

Nevertheless, twisthaler is rarely used in clinical practice, so the impact of the 

performance of the tool for this type of inhaler, in clinical practice, will be minimal [13]. 

Overall, by considering only the admissible images, the success rate of the algorithm 

improved by 2,2 %.  
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 These results are in line with the findings of the iOS study [13], which indicates 

that the Diskus and Spiromax inhaler models are among the best performing inhalers. 

Similarly, the twisthaler inhaler model is also among the worst performing inhalers 

according to the InspiresMundi study. 

The goal of the developed voting system is to make the algorithm less prone to 

errors. By collecting five frames instead of one, even if the algorithm does not on occasion 

predict correctly the numbers displayed in the dose counter, it is still possible to correctly 

identify the values form the majority. The number of frames to collect (5) and was chosen 

in accordance with the previously developed system in iOS by the Inspirers team. 

Although the number of frames could be higher or lower, five frames seemed to suffice 

the needs of the developed work. 

Compared with the initial tests, the voting system phase performance improved 

the results for most inhalers. Nevertheless, this was found to be untrue for the inhaler 

model Seretaide. The cause for this disfavoring of the results was due to failures to 

correctly detect the text in the first place, i.e. the ML Kit failed to correctly recognize the 

numbers in the individual frames of the image, so the most voted text among the five 

frames will not match the expected text.  

 When comparing the performance of the ML Kit engine in the iOS (68.71 %) and 

Android (62,15 %) version of the image module on the same image subset, there is a 

difference of approximately 6,56 % among the success rates of the algorithm (Table 14). 

Although an attempt was made to implement all the pre-processing and post-processing 

steps met in the study performed on the iOS version [59], the differences between the 

base functions and algorithms in Android Studio and Swift may have contributed to this 

discrepancy. 

5.2.2. Results from the Real-World Users Dataset 

 Furthermore, it’s possible to observe a contrast between the rate of admissible 

results of the iOS Image module dataset and of the Real-World Users dataset. By 

considering only the inhaler models present in both datasets, the rate of admissible results 

is, respectively, 61 % and 29 % (approximately). 

This discrepancy may be due to the conditions under which the datasets were 

acquired: while the iOS Image module dataset was attained in a study with volunteers 

(sub-optimal conditions), the real-world user’s dataset was acquired by patients that use 

the iOS app in their daily life (less than ideal conditions). It’s also important to note that 
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the sizes of the dataset are very distinct in size (the images range from 50 to 1322 among 

the datasets) which may affect the differences among the rates of admissible. In addition, 

the heterogeneity of the equipment used in the real-world user’s dataset could be one of 

the factors for the low admissibility rate in this dataset. 

5.2.3. Results from the Controlled Dataset 

Additionally, the images that have been acquired in a more controlled 

environment had more end to end results. Nevertheless, this was to be expected 

considering the small size of the dataset (27 images). All images acquired with the Lenovo 

TB-7504F were found to be inadmissible. This is justified by the fact that the expected 

result was to not detect text, since the quality of the image wouldn’t allow it. Around 30% 

of the pictures the cropping did not frame the dose counter, and nearly 70% of the pictures 

were too blurry to detect any text (Figure 18). In relation to the incorrect cropping, this 

was only confirmed for an inhaler model: Diskus; thus, after verifying the images it was 

shown that, the dose counter was on the opposite side of the image. Hence, the cropping 

error derived from a previous one: the improper positioning of the inhaler model Diskus. 

After a closer inspection, it was found that half the images were not successful in the 

template matching phase. However, even the images were the template matching had 

been successful, were found in an incorrect position. This was due to the initial orientation 

of the image. While all images used so far were acquired by a smartphone and 

consequently were captured in a vertical position, the images acquired from the tablet 

were acquired in a horizontal position. This variation at the time of the image capture, 

invalidated the pre-processing steps performed, i.e. the rotation 90º degrees to the right 

did not allowed for the correct position of the dose counter, during the cropping of the 

region of interest.  

With regards to the high rate of blurred pictures, the explanation may be the 

weaker resolution of the camera of this device (tablet), in comparison with the other two 

studied equipment (smartphones; Table 17). 

5.3. Trained Model 

5.3.1. Losses and Representativeness 

As it can be seen in Figure 20, the training and validation loss decreases over time 

to a point of stability, achieving low error values. In addition, it’s also possible to observe 

that the gap between the two final loss values is minimal. All the previously mentioned 
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aspects are indicators that the model has a good fit, and that continued training would 

likely lead to an overfit. 

The curves on Figure 20 can also be used to diagnose properties of a dataset and 

whether it is relatively representative, i.e., if it reflects proportionally statistical 

characteristics in another dataset from the same domain. From the observation of the 

graph in Figure 20, the training dataset seems to be representative in relation to the 

validation dataset and vice-versa. Some of the signals that may indicate unrepresentative 

datasets are a large gap between the curves, noisy movements of the validation loss 

around the training loss and a validation loss that is lower than the training loss. None of 

these cases seems to apply for this instance. 

5.3.2. Evaluation Metrics 

The exact match ratio can be considered a challenging metric since it doesn’t 

support the notion of being partially correct. In other words, this metric only considers 

the outputs as being correct if the whole sequence of characters corresponds to the ground 

truth. As it can be seen in Table 18, the exact match ratio is 83, 34%, which indicates that 

a large part of the predicted results were entirely correct, and consequently reflects a good 

model performance. 

As mentioned in subsection 3.4.6., the Hamming Loss informs how many times 

on average, the relevance of an example to a class label is incorrectly predicted. 

Therefore, this metric considers the incorrect label predictions and the relevant labels not 

predicted, over the total number of labels. In this case, the computed hamming loss is 0,17 

%, which is a significantly low value and indicates a good performance of the learning 

algorithm. 

Recall metric quantifies the number of predicted correct labels made out of all the 

positive predictions that could have been made. Unlike precision that only comments on 

the correctly predicted labels out of all the positive predictions, the recall provides an 

indication of the missed positive predictions. For this model, the calculated recall was 

84,74 % (Table 18), which indicates that a large number of the actual labels were 

predicted. 

On the other hand, precision is the ratio of how much of the predicted is correct, 

i.e., it only considers the positive predicted results. In this case, the precision equals the 

exact match ratio (83,34 %). 
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Furthermore, the F1 measure is the harmonic mean of Precision and Recall and 

gives a better measure of the incorrectly classified cases than the Accuracy Metric. The 

F1 measure reaches 83,34 %, which is an indication of both good precision and good 

recall. 

Finally, as previously mentioned, the model was tested in different training and 

validation datasets in order to evaluate the accuracy of the model under different 

circumstances. After inspecting the results on Table 19, it is possible to observe that the 

best performance of the model was 94,44% and that the average accuracy of the model is 

88,89%. This method achieved reasonable results and the obtained results are a significant 

improvement in relation to the ML Kit default model performance. Thus, this method 

shows promise and can be implemented in other worst-performing inhaler models to 

enhance the text recognition performance. 

 

5.4.  Final Remarks 

The inhalers models that seemed to perform best across all the datasets were 

Diskus and Novolizer, two of the most common inhalers in Portugal during 2016 [13]. 

Nevertheless, the datasets have different sizes and inhaler distributions meaning that the 

success of the algorithm may depend on that variation. 

Furthermore, the developed self-contained module allows for easy integration into 

other applications with the same goal: an objective measure of adherence to inhaler 

medications. 

Regarding the trained model, in spite of the good performance (average validation 

accuracy of 88,89%), the model only works in a narrow cropping of the inhaler dose 

counter. This aspect of the model is not ideal, since for the model to work the dose counter 

would have to be cropped with precision, which is unrealistic for real life applications. 

Thus, improvements on the custom model are necessary in order to be suited for the app 

functions. 

Althought, the frequency of distribution of the characters does not seem to insert 

bias into the model, a larger dataset with more variety of characters could achieve better 

results. In addition, the model was trained in images acquired under optimal conditions, 

which means that the model may not have the performance on photos captured in the less-

than-ideal environments (e.g. poor lighting). As such, in future works the model should 

be trained in a larger dataset with pictures acquired under a wider variety of scenarios. 
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Moreover, the deep learning model can be easily translated across datasets and could be 

applied in other worst-performing inhaler models to improve the text recognition 

performance. 

 In future work, the TensorFlow Lite Model could be integrated in the inhaler 

detection model of the app. 
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6. Conclusion 

The purpose of this thesis was to develop a mobile application module that could 

detect the dose counter digits, in commercially available inhalers with numerical 

counters. This goal was met by creating a text detection module on Android, equipped 

with machine learning capabilities, as well as pre and post processing features. The work 

was taken further by improving the performance of the text recognizer on a worst 

performing inhaler. This was done by building a machine learning model, trained on a 

database of inhaler images, compatible with mobile applications. In addition, the new 

datasets collected for this work could be used in future research. 

The method of image recognition used in this implementation proved to be 

practicable and promising when it came to obtain additional evidence to monitor 

adherence to inhaled medicines. Moreover, it provides patients with the tools to self-

manage the treatment and promote compliance with therapeutic plan. 

Although this approach is revealed to be feasible and promising for acquiring 

additional data that can be easily shared with the health professional remotely, it’s still 

dependent on patient adherence to the application and the recording of inhalers. 

Nonetheless, this system has the potential to assist in a smoother transition from a health 

professional supported scenario to a more empowered self-management setting. 

To the best of my knowledge, there are not many approaches in the literature that 

help to reduce the unreliability of patient compliance and self-reporting by making use of 

mobile devices to record effective dosage in inhaler dose counters. Furthermore, the 

proposed work explores the potential of mobile devices without external devices or 

expensive electronic monitoring devices, thus making this work relevant to help 

mitigating the patient’s unreliable, self-reported adherence. 

Nevertheless, further improvements are still needed to enhance the detection 

performance. In future work, an object detector-like algorithm can be implemented to 

detect the dose counter, thus avoiding the cropping stage in the image pre-processing. 

Additionally, the trained models can be improved and integrated in the current version of 

the app. 
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