OCS6: Free Theme

Moderator: Sandra Ventura (ESTSP.IPP)

OC23: Apparent diffusion coefficient in the analysis of prostate cancer

Nuno Adubeiro ${ }^{1}$, Luísa Nogueira¹, Eduardo Ribeiro ${ }^{1}$, Sandra Alves ${ }^{1}$ Hugo Ferreira ${ }^{3}$, José La Fuente ${ }^{4}$
${ }^{1}$ Department of Radiology, School of Allied Health Technologies, Polytechnic Institute of Porto, Portugal
${ }^{2}$ Department of Biomathematics and biostatistics, School of Allied Health Technologies, Polytechnic Institute of Porto, Portugal
${ }^{3}$ Biophysics and Biomedical Engineering Institute, Faculty of Sciences, University of Lisbon, Portugal
${ }^{4}$ Instituto de Ciências Biomédicas Abel Salazar / Centro Hospitalar do Porto - Serviço de Urologia, Porto

Presenting author: nca@eu.ipp.pt

Introduction: The multiparametric magnetic resonance imaging (MPMRI) approach, has allowed the diagnostic performance in the detection and characterization of prostate cancer (PCa). Diffusion-weighted imaging (DWI), is an important technique in the MPMRI, that provides qualitative and quantitative biological information regarding water diffusivity in a non-invasive manner. The apparent diffusion coefficient (ADC) measures water mobility and can be quantified from the signal intensity loss between two or more b-values. Different studies reported that ADC values are directly associated with microvessel density and cellularity. One of the main aspects that is in discussion is the b-values that must be used in the DWI sequence in order to compute ADC

Objectives: In this study we analyzed different b-values combinations, with the purpose of determining which combination enables an optimal differentiation between normal and malignant tissues via the apparent diffusion coefficient (ADC) parameter.

Materials and Methods: This prospective study analyzed 43 patients with clinical indication to perform pelvic MPMRI, with symptoms highly suggestive of PCa or PCa already diagnosed.

Results and Discussion: ADC values derived from b50, $2000 \mathrm{~s} / \mathrm{mm} 2$ were for PCa, healthy peripheral zone tissue and healthy central gland tissue $0.694 \pm 0.13 \times 10-{ }^{-3} \mathrm{~mm}^{2} / \mathrm{s}, 1.016 \pm 0.135 \times 10-{ }^{3} \mathrm{~mm}^{2} / \mathrm{s}$ and $0.971 \pm 0.118 \times 10^{-3} \mathrm{~mm}^{2} / \mathrm{s}$, respectively. Using this b-value pair combination and an ADC cutoff of $0.891 \times 10-$ ${ }^{3} \mathrm{~mm}^{2} / \mathrm{s}$ we achieved a sensitivity of 95.5%, specificity of 93.2% and an accuracy of 94.4%.
Conclusion: The best combination of b-value to study the prostate cancer was $b 50,2000 \mathrm{~s} / \mathrm{mm} 2$. Other b values instead of $\mathrm{bO} \mathrm{s} / \mathrm{mm}^{2}$ should preferentially be included in ADC estimation.

References

1. Bae H, Yoshida S, Matsuoka Y, et al. Apparent diffusion coefficient value as a biomarker reflecting morphological and biological features of prostate cancer. Int Urol Nephrol 2014;46:555.
2. Jagannathan, N. R. (2014). Prostate MR: current status, challenges and future directions. NMR in Biomedicine, 27(1), 1-2.
