
Chaos 31, 053118 (2021); https://doi.org/10.1063/5.0052088 31, 053118

© 2021 Author(s).

Diffuse reflectance and machine learning
techniques to differentiate colorectal cancer
ex vivo
Cite as: Chaos 31, 053118 (2021); https://doi.org/10.1063/5.0052088
Submitted: 29 March 2021 . Accepted: 20 April 2021 . Published Online: 17 May 2021

 Luís Fernandes,  Sónia Carvalho,  Isa Carneiro,  Rui Henrique,  Valery V. Tuchin,  Hélder P. Oliveira,

and  Luís M. Oliveira

https://images.scitation.org/redirect.spark?MID=176720&plid=1398160&setID=379030&channelID=0&CID=495576&banID=520306874&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=c2b4158cdc518133878f7349ab9b6b7de9c25ed7&location=
https://doi.org/10.1063/5.0052088
https://doi.org/10.1063/5.0052088
http://orcid.org/0000-0001-8306-3362
https://aip.scitation.org/author/Fernandes%2C+Lu%C3%ADs
http://orcid.org/0000-0003-1925-5081
https://aip.scitation.org/author/Carvalho%2C+S%C3%B3nia
http://orcid.org/0000-0002-0561-3880
https://aip.scitation.org/author/Carneiro%2C+Isa
http://orcid.org/0000-0003-3171-4666
https://aip.scitation.org/author/Henrique%2C+Rui
http://orcid.org/0000-0001-7479-2694
https://aip.scitation.org/author/Tuchin%2C+Valery+V
http://orcid.org/0000-0002-6193-8540
https://aip.scitation.org/author/Oliveira%2C+H%C3%A9lder+P
http://orcid.org/0000-0003-0667-3428
https://aip.scitation.org/author/Oliveira%2C+Lu%C3%ADs+M
https://doi.org/10.1063/5.0052088
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0052088
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0052088&domain=aip.scitation.org&date_stamp=2021-05-17


Chaos ARTICLE scitation.org/journal/cha

Diffuse reflectance and machine learning
techniques to differentiate colorectal
cancer ex vivo

Cite as: Chaos 31, 053118 (2021); doi: 10.1063/5.0052088

Submitted: 29March 2021 · Accepted: 20 April 2021 ·

Published Online: 17May 2021 View Online Export Citation CrossMark

Luís Fernandes,1,2 Sónia Carvalho,3,4 Isa Carneiro,3 Rui Henrique,3,5 Valery V. Tuchin,6,7,8

Hélder P. Oliveira,9,10 and Luís M. Oliveira1,2,a)

AFFILIATIONS

1Center for Innovation in Engineering and Industrial Technology, Polytechnic of Porto—School of Engineering, 4249-015 Porto,

Portugal
2Physics Department, Polytechnic of Porto—School of Engineering, 4249-015 Porto, Portugal
3Department of Pathology and Cancer Biology and Epigenetics Group-Research Center, Portuguese Oncology Institute of

Porto, 4200-072 Porto, Portugal
4Department of Pathology, Santa Luzia Hospital, ULSAM, 4904-858 Viana do Castelo, Portugal
5Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto

(ICBAS-UP), 4050-313 Porto, Portugal
6Science Medical Center, Saratov State University, Saratov 410012, Russia
7Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, Tomsk 634050, Russia
8Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian

Academy of Sciences, Saratov 410028, Russia
9Institute for Systems and Computer Engineering, Technology and Science, INESC TEC, 4200-465 Porto, Portugal
10Faculty of Science, University of Porto, FCUP, 4169-007 Porto, Portugal

Note: This paper is part of the Focus Issue, In Memory of Vadim S. Anishchenko: Statistical Physics and Nonlinear Dynamics of

Complex Systems.
a)Author to whom correspondence should be addressed: lmo@isep.ipp.pt

ABSTRACT

In this study, we used machine learning techniques to reconstruct the wavelength dependence of the absorption coefficient of human
normal and pathological colorectal mucosa tissues. Using only diffuse reflectance spectra from the ex vivo mucosa tissues as input to
algorithms, several approaches were tried before obtaining good matching between the generated absorption coefficients and the ones
previously calculated for the mucosa tissues from invasive experimental spectral measurements. Considering the optimized match for the
results generated with the multilayer perceptron regression method, we were able to identify differentiated accumulation of lipofuscin in
the absorption coefficient spectra of both mucosa tissues as we have done before with the corresponding results calculated directly from
invasive measurements. Considering the random forest regressor algorithm, the estimated absorption coefficient spectra almost matched
the ones previously calculated. By subtracting the absorption of lipofuscin from these spectra, we obtained similar hemoglobin ratios at
410/550 nm: 18.9-fold/9.3-fold for the healthy mucosa and 46.6-fold/24.2-fold for the pathological mucosa, while from direct calculations,
those ratios were 19.7-fold/10.1-fold for the healthy mucosa and 33.1-fold/17.3-fold for the pathological mucosa. The higher values obtained
in this study indicate a higher blood content in the pathological samples used to measure the diffuse reflectance spectra. In light of such
accuracy and sensibility to the presence of hidden absorbers, with a different accumulation between healthy and pathological tissues, good
perspectives become available to develop minimally invasive spectroscopy methods for in vivo early detection and monitoring of colorectal
cancer.
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The application of machine learning methods to noninvasive-
like diffuse reflectance spectra allowed us to reconstruct the
absorption coefficient spectra of human healthy and pathological
mucosa tissues from the colorectal wall. Consequently, we were
able to obtain differentiated blood and pigment content in both
tissues, which can be used for the development of new noninvasive
diagnostic methods for colorectal cancer.

I. INTRODUCTION

The optical properties of biological tissues condition how light
beams propagate inside those tissues and interact with their bio-
logical components. There are some optical properties that can be
estimated/calculated for a biological material, but the most com-
monly used are the refractive index (RI), the absorption coefficient
(µa), the scattering coefficient (µs), and the anisotropy-factor (g).1–3

These fundamental properties quantify the speed of light inside the
material and the number of photons that are absorbed and/or scat-
tered per unit length inside the medium and characterize the mean
directionality of such scattering.2 The wavelength dependence of the
optical properties of a tissue provides useful information for the
optimization of current optical methods in clinical practice or for the
development of new methods that operate at individual wavelengths
within the electromagnetic spectrum.4 There are some traditional
tissue windows, located at certain wavelength ranges, where current
optical diagnostic and therapeutic methods work: I (625–975 nm),
II (1100–1350 nm), III (1600–1870 nm), and IV (2100–2300 nm).5,6

In addition to these natural tissue windows, where local maxima for
the light penetration depth are observed,3,7 other optical diagnostic
and treatment windows can be induced through the application of
optical clearing treatments, as recently demonstrated for the ultravi-
olet (UV) range with transmittance efficiency peaks at 230, 275, and
300 nm.8,9

Considering such recent discovery of UV-induced-windows to
diagnose and treat pathologies, the current optical methods that
work at visible and near infrared (NIR) wavelengths, and the emerg-
ing THz techniques for clinical application, the need to map the
optical properties of both normal and pathological tissues in a wide
spectral range becomes urgent.10 The estimation or calculation of
a set of optical properties for any tissue provides individual infor-
mation, such as an identity card for that tissue, and consequently
their evaluation might help in the discrimination of pathologies.
By knowing the optical properties of tissues, it is also possible to
create individual light propagation models that can be used in the
development of novel noninvasive optical diagnostic and treatment
procedures.2,11,12

The traditional methods to estimate the optical properties of
biological tissues rely on performing inverse simulations that use
codes,2,3 which were constructed based on the radiation transfer the-
ory, such as the Monte Carlo,13 or the adding-doubling14 methods.
Being part of a wider range of estimation methods, these two are
the most precise in the estimation of the optical properties.2 To per-
form an estimation of the optical properties of a tissue with any of
these methods, a set of optical measurements that were experimen-
tally acquired from a tissue sample are used as input in the inverse
simulation. The simulation code uses arbitrary optical properties to

generate the total transmittance (Tt), the total reflectance (Rt), and
possibly the collimated transmittance (Tc) for the tissue under study.
These generated values are compared with the corresponding exper-
imental values that were introduced as input to the simulations to
check the difference. While the difference between the generated and
the experimental values is above a certain limiting value, the optical
properties in the simulation are corrected and the simulation runs
again.3,15 When the difference between the generated and the exper-
imental values is minimal, the simulation ends and the last set of
optical properties used is presented to the user. The major problem
with these estimation codes is that each simulation generates results
for a single wavelength,3,14,15 turning these methods time-consuming
if we want to estimate the optical properties for a tissue in a wide
spectral range.

Several studies using the inverse Monte Carlo (IMC) or the
inverse Adding-Doubling (IAD) methods were performed for var-
ious tissues to estimate their optical properties at individual wave-
lengths, which were later used to determine their wavelength depen-
dence for a selected spectral range.7,11,16–23 Since only the wave-
length dependence of µa is not well described by an equation, an
alternate calculation method has been recently proposed, which
obtains almost all spectral optical properties directly from experi-
mental spectra that were acquired from the tissue samples.4,24 In this
method, the Tt, Rt, and Tc spectra are measured from thin tissue
samples for a wide spectral range. To obtain the µa spectrum of the
tissue sample, a simple calculation, as described by Eq. (1) that uses
the sample thickness (d) and the Tt and Rt spectra, can be made,24

µa(λ) =
1 −

(

Tt(λ)+Rt(λ)

100

)

d
. (1)

Usually, Tt(λ) and Rt(λ) are measured in percentage, meaning
that to perform the calculation with Eq. (1), these spectra need to
be normalized (divided by 100) to vary between 0 and 1. If d is rep-
resented in cm, µa(λ) will be calculated in cm−1.4,24 To obtain the
scattering coefficient spectrum, µs(λ), the Bouguer–Beer–Lambert
(BBL) equation25 can be used as represented by Eq. (2), where Tc(λ)
is also divided by 100 to vary between 0 and 1, as described above
for Tt(λ) and Rt(λ) in Eq. (1),2,3,24

µs(λ) = −
ln
[

Tc(λ)

100

]

d
− µa(λ). (2)

In Eq. (2), µa(λ) is the one calculated through Eq. (1).4,24 To obtain
the wavelength dependence for the reduced scattering coefficient
(µ′

s), a set of IAD simulations, performed at individual wavelengths
within the range of interest,4,24 needs to be performed. The IAD
code generates µ′

s with significant precision,26 and since its wave-
length dependence is well described mathematically,1 simulations at
a certain number of wavelengths are sufficient.24 Once these discrete
values of µ′

s are estimated, they can be fitted with a curve described
by Eq. (3),24

µ′
s(λ) = a′ ×

(

fRay ×

(

λ

500 nm

)−4

+ (1 − fRay) ×

(

λ

500 nm

)−bMie
)

,

(3)

which accounts both for the Rayleigh and the Mie scattering
regimes.1 In Eq. (3), a′ is a normalizing factor that represents the
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reduced scattering coefficient of the tissue at 500 nm, fRay represents
the Rayleigh scattering fraction, and bMie is the mean size of the Mie
scatterers.24 Equation (3), which can also be used to fit µs(λ),24 has
been successfully used to fit the wavelength dependence for data of
many biological soft tissues.1,27,28 Once µs(λ) is obtained through
Eq. (2) and µ′

s(λ) is obtained through Eq. (3), they can be combined
in Eq. (4) to obtain g(λ),24

g(λ) = 1 −
µ′

s(λ)

µs(λ)
. (4)

Another useful optical property, the light penetration depth (δ),
can also be calculated from µa and µ′

s,
3,16,24

δ(λ) =
1

√

3µa(λ) × (µa(λ) + µ′
s(λ))

. (5)

This calculation method, which only needs IAD simulations
to estimate µ′

s(λ), is fast in the determination of the wavelength
dependencies of the optical properties of biological tissues. A disad-
vantage of this method is that to perform such calculations, spectral
measurements, which are collected from ex vivo tissue samples, are
necessary. A noninvasive or minimally invasive method that could
estimate the optical properties of in vivo tissues and their wavelength
dependence without the need for sample excision would be a valu-
able tool in clinical practice and in the detection of pathologies, even
at their early stage of development.

To develop such an innovative method, new approaches are
necessary. One particular and interesting approach relies on the
combination of noninvasive-like spectral measurements, such as dif-
fuse reflectance (Rd), with machine learning (ML) techniques. Some
of these ML techniques consist of the application of neural network
geometries, without the need for significant programing to develop a
model that can predict a desired outcome from specific experimen-
tal data.29 Such techniques have already proven useful in the imaging
and spectroscopy fields of biophotonics,30 and they can be used for a
fast estimation of the spectral optical properties of biological tissues
from noninvasive optical measurements.

The ML method, which consists of the development of a model
that learns to calculate desired outcomes, was first proposed by
McCulloch and Pitts.31 In this paper, the authors presented a mathe-
matical model that was able to reproduce the behavior of the nervous
system from experimentally collected data. Since then, different
learning strategies have been used, and nowadays ML is used to
automate functions such as classification or estimation of features,
without any specific programming.32 During the learning process,
the parameters of the ML model are incrementally adjusted so that
it can reproduce the desired outcome.

By exploring this ability, it is possible to produce a model that
can estimate µa(λ) from Rd spectra, without the need to define a
specific relation between the two variables. The use of Monte Carlo
simulations to create Look-Up tables (LUT), and more recently,
the use of ML algorithms to estimate the optical properties of tis-
sues have been reported.33–36 An example of the use of mathematical
models to estimate the optical properties of tissues is described in
Ref. 33, where the authors defined a formula and fitted it to empir-
ical data to retrieve the µa values to evaluate the goodness of the
fit. In Ref. 34, the authors used previously generated LUT to find

an initial estimation of the optical properties. Using this initial esti-
mation in a Monte Carlo simulation, they generated the diffuse
reflectance spectrum to compare with measured spectra. By adjust-
ing the simulation parameters, the following simulations generated
new Rd spectra that were better matched to the measured Rd(λ). In
another work,35 a neural network was used to estimate the optical
properties, based on Rd values estimated with the radiation transfer
equation. In this work, the neural network consisted of three lay-
ers: one input layer with eight nodes, a second layer with also eight
nodes, and an output layer of two nodes. Reference 36 shows further
examples on the use of ML methods to estimate the optical proper-
ties of biological tissues. In this study, the authors used a random
forest regressor with 15 estimators to obtain the µ′

s and µa values.
Once again, the data used to train the model were generated with
Monte Carlo simulations.

Considering the estimation of the spectral optical properties
of biological tissues, the ML method can also be a powerful tool.
In opposition to the traditional IMC or IAD simulations, it allows
estimating the entire spectral properties at once, and the model
can be trained with in vivo spectral data as input, which opens the
possibility of developing noninvasive diagnostic protocols.

There are several ML algorithms available that can be applied
to spectral data, such as the single layer perceptron (SLP), the ran-
dom forest regressor, the K-nearest neighbor (KNN), the decision
tree for multioutput regression (DTFMR), and the linear regression
for multioutput (LRFMO).37 Depending on the available experimen-
tal data to use in the learning process to develop the desired model,
some of these algorithms may have better performance than oth-
ers. This means that for a specific task, the various ML algorithms
must be tested first to check which is the one that can produce better
estimations of the desired outcome.

With the objective of exploring the use of ML techniques in the
estimation of tissues’ spectral optical properties, we have measured
the Rd spectra from human normal and pathological (adenocarci-
noma) colorectal mucosa tissues to reconstruct their µa(λ). Since the
µa spectra for these tissues were previously calculated with Eq. (1)
and allowed the discrimination of colorectal cancer through the
evaluation of differentiated content of a pigment,24 we tried to repro-
duce those calculations and obtain the same results. In this study,
and having the objective to establish a protocol that can be used in
future in vivo and noninvasive (or minimally invasive) detection of
colorectal cancer, we used the methodology described in Sec. II to
obtain the results presented in Sec. III.

II. MATERIALS AND METHODS

A. Tissue sample collection and preparation

All the tissue samples used in the present study were collected
from the mucosa layer of the human colorectal wall. Following the
guidelines of the Ethics Committee of the Portuguese Oncology
Institute of Porto (Portugal), the healthy and pathological (ade-
nocarcinoma) areas were separated from the surgical resections of
patients under treatment at that institution. To confirm the diag-
nosis, a histological analysis of the surgical specimens was the
gold standard for tissue examination. All the cases were classified
(according to the current World Health Organization classification)
as “colorectal adenocarcinoma not otherwise specified” (a malignant
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epithelial tumor originating from glandular cells in the superfi-
cial colorectal layer, which comprises about 90% of all colorectal
cancers).38

A cryostat (LeicaTM, model CM 1850 UV) was used to prepare
the mucosa samples for the present study. Ten samples were pre-
pared from the healthy areas and ten samples were prepared from
the pathological areas, having an approximated circular form, with
a diameter of about 1 cm and uniform thickness (d) of 0.5 mm. All
these samples were submitted to spectral diffuse reflectance (Rd(λ))
measurements, as described next.

B. Spectral measurements

To calculate the reference µa spectra to use in the present study,
Tt and Rt spectra were acquired from both healthy and pathologi-
cal mucosa samples between 200 and 1000 nm. Ten healthy and ten
pathological samples were submitted to those measurements, using
the setups presented in Figs. 1(a) and in 1(b).

Although those measurements and calculations were made in
the study of Ref. 24, we will describe them here for better perception.
In the present study, to perform the estimation of µa(λ) through ML
algorithms, Rd spectra were also necessary to be acquired. Consider-
ing ten new healthy and ten new pathological colorectal tissue sam-
ples, we performed those measurements using the setup presented
in Fig. 1(c). All the Rd spectral measurements were also acquired
between 200 and 1000 nm.

FIG. 1. Experimental setups to measure T t (a), Rt (b), and Rd (c) spectra.

Considering the Tt setup [Fig. 1(a)], a broadband pulsed xenon
lamp was used to illuminate the tissue sample. The beam was deliv-
ered to the sample by using an optical fiber cable and a collimating
lens (below the tissue sample), which limited the beam diameter
to 6 mm before reaching the sample. The transmitted light entered
an integrating sphere, where it was integrated before being deliv-
ered to the spectrometer through another optical fiber cable. The
Rt setup is similar to the one used to acquire the Tt measurements
and it uses the same optical components. The only difference is
that sample illumination is made through the integrating sphere, to
integrate the reflected beam, instead of integrating the transmitted
beam—see Fig. 1(b). For the Rd measurements, to which all healthy
and pathological samples were also submitted, the sample was illu-
minated with a broadband deuterium-halogen lamp. An Rd optical
fiber sensor was used both to illuminate the sample and to collect
its diffuse reflected light—see Fig. 1(c). In these measurements, the
tip of the Rd sensor was kept at a constant distance of 2 mm above
the tissue sample’s surface. All of this equipment was acquired from
AvantesTM (Apeldoorn, The Netherlands), with the exception of the
optical fiber sensor to measure Rd, which was kindly supplied to our
research by ArtPhotonicsTM (Berlin, Germany). This sensor con-
tained a detection fiber at the center, which was surrounded by seven
irradiation fibers. All fibers were made of silica with a core diame-
ter of 400 µm and a cladding thickness of 20 µm. Their numerical
aperture was 0.22. The detection fiber at the center had an aluminum
cover, having a total diameter of 560 µm. The irradiation fibers had a
polyamide cover, and their global diameter was 465 µm. These fibers
were packed around the detection fiber, without any spacing. With
this geometry and dimensions, the source-detector separation was
512.5 µm.

C. Calculation of µa(λ)

After all spectra were collected, calculations were made to
obtain the wavelength dependence for all optical properties of the
healthy and pathological colorectal mucosa. The description of those
calculations and the corresponding results for the mean optical
properties of the mucosa tissues were already published in Ref. 24.
Considering, in particular, the wavelength dependence of µa, sample
thickness, Tt and Rt spectra were used in Eq. (1) to calculate µa(λ)
for each mucosa condition. After calculating 10 µa spectra for the
healthy and 10 µa spectra for the pathological mucosa, mean and
standard deviation (SD) were calculated for each case. These mean
spectra were considered as reference in the present study in the esti-
mations with ML models. Those estimations were made from Rd

spectra measured from similar tissue samples, with the objective of
reconstructing the mean µa(λ) of both mucosa tissues. Our objective
was to evaluate if the estimated data can also be used to discriminate
cancer. The ML estimation procedure is described in Sec. II D, and
the final calculations to check if the estimated data can be used for
cancer detection are described in Sec. II E.

D. Machine learning to estimate µa(λ)

Different ML algorithms were tested, with empirical parame-
ter tuning, to access the best model to estimate µa(λ) from Rd(λ)
data. Furthermore, during these computational experiments, the
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models were trained in either of the two ways: (a) using only nor-
mal or pathological samples (Trained Separately—TS model) or
(b) using all the samples (Trained Together—TT model) with fur-
ther separation of the estimated spectra in normal and pathological
categories.

The Single Layer Perceptron (SLP) model was created using the
TensorFlow framework for Python. Since the acquired experimen-
tal spectra ranged from 200 to 1000 nm with a 1 nm resolution, the
input dimension was set to 801 in the model so that data at each
wavelength from an experimental Rd spectrum are interpreted by
using the SLP model as a feature. The SLP model architecture was
set into two layers: one with ten output nodes (to generate ten spec-
tra) and a second with 801 output nodes (to obtain same spectral
resolution and bandwidth as the measured Rd spectra). Since we had
a small amount of spectra (ten for healthy and ten for pathological
mucosa tissues), we decided to minimize the architecture dimension
in order to prevent overfitting.

In the K-Nearest Neighbor (KNN) algorithm, the number of
neighbors was set as 5, since further increments tended to increase
the error on the spectral shape estimation. When fine-tuning the
parameters of the KNN model, the k value was set between 1 and
9 for the models that were trained with only normal or pathologi-
cal data and between 1 and 19 for the model that was trained with
all the data. Taking into account the initial computational exper-
iments, and since higher increments did not improve the spectral
shape estimation, the number of trees in the Random Forest Regres-
sion (RFR) was set to 5. For the Decision Tree for Multioutput
Regression (DTFMR) algorithm, the depth was fixed at 4, in order to
prevent overfitting. With respect to the Linear Regression for Multi-
output (LRFMO) algorithm, the simplest models used in this study
automatically found the best slope for the data fitting.

The neural network was implemented using the TensorFlow
framework for Python, using all the ML algorithms available in the
scikit learn library, also available for the Python language. Due to
the low amount of experimental spectra, the Leave One Out (LOO)
method was adopted.39 This method consists of the following:

a. place a random µa spectrum out,
b. train the model using the other µa spectra,
c. evaluate the model performance with the µa spectrum that was

left out in the training,
d. compare between the estimated µa spectra and the reference

ones that were calculated from invasive measurements, and
e. repeat the entire process, leaving a different µa out at each

time (this process is repeated the number of times equal to the
number of samples used).

After having the individual estimated µa spectra, the mean
µa(λ) was calculated and compared with the mean µa(λ) that
was calculated from invasive measurements (considered as refer-
ence spectra). To evaluate the performance of the different ML
algorithms, the Euclidean Distance (ED) was calculated for each
wavelength, between the estimated and the corresponding reference
spectrum, which was calculated from invasive measurements. The
formula used to calculate the ED in one dimension is the following:

ED = |a − b|, (6)

where a represents µa for the estimated spectrum and b represents
µa for the reference spectrum, as retrieved from the calculations
based on invasive measurements. As previously referred, for each
ML algorithm, the models were trained with µa data from normal or
pathological samples or with µa data from all samples available with
later classification of the estimated spectra as normal or pathological,
depending on the previous known sample category. In future works,
we plan to perform an automatic classification of the estimated µa

spectra.

E. Pigment accumulation estimation

After estimating the mean µa spectra both for the healthy and
the pathological mucosa tissues, we selected the estimations that pre-
sented better performance to implement a final calculation. In our
previous study,24 we suspected that a hidden absorber in the mucosa
tissues was camouflaging the true blood content. In that study, we
concluded that such an absorber was a pigment called lipofuscin
with an absorption coefficient spectrum as described by Eq. (7),40

µa - lip(λ) = A × 5.2 + A × e(3.524−0.01087×λ). (7)

In Eq. (7), µa−lip(λ) represents the wavelength dependence for
the absorption coefficient of lipofuscin, represented in cm−1; λ is
the wavelength (in nm) for the range between 200 and 1000 nm;
and A represents the lipofuscin content in the tissue, which should
be 1 for the normal mucosa and 1.1 for the pathological mucosa
(10% more content), as determined in the study of Ref. 24. Here,
we performed the same calculation to compare results with the
ones obtained only from invasive measurements and so quantify
the accuracy of the different ML algorithms. Assuming here also
a different lipofuscin content in the healthy and pathological tis-
sues (A = 1 for the healthy mucosa and A = 1.1 for the pathological
mucosa), we subtracted µa−lip(λ) from the µa spectra of both tissues
to obtain the accurate blood ratios at the hemoglobin bands (410 and
550 nm). Such calculation was made with the estimations produced
by the SLP, KNN, and RFR algorithms, which were the ones that pre-
sented better performance. A comparison between the hemoglobin
ratios obtained in the present study and the ones obtained in the
study of Ref. 24 was made.

III. RESULTS AND DISCUSSION

We initiated this experimental study by measuring the Rd

spectra from ten healthy and ten pathological mucosa samples. Con-
sidering the Tt and Rt spectra from the study reported in Ref. 24 and
sample thickness of d = 0.05 cm in Eq. (1), we calculated µa(λ) for
each particular sample. Figure 2 presents the mean Rd spectra and
the mean calculated µa spectra for both colorectal mucosa tissues,
with the data from the normal mucosa identified as NM and the
data from the pathological mucosa identified as PM.

Using the individual Rd and µa spectra that originated from
the mean results presented in Fig. 2, we started to develop the ML
models with different approaches. The individual estimations for all
models can be seen in Figs. S1–S20 in the supplementary material.
The first approach consisted of using the SLP model. As previously
indicated, the models were trained in two distinct ways: TS or TT.
The ten spectral estimations obtained with the LOO method were
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FIG. 2. Mean Rd (a) and µa (b) spectra of the normal (NM-green) and pathological (PM-red) mucosa.

FIG. 3. Comparison between the mean reference spectra (MRS) and the mean estimated spectra (MES) that result from the SLP algorithm.
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FIG. 4. Comparison between the mean reference spectra (MRS) and the mean estimated spectra (MES) that result from the KNN algorithm.

averaged to compare with the mean reference spectra (MRS) for
both tissues. The mean results obtained with this approach are pre-
sented in Fig. 3, where the left panels correspond to the healthy tissue
(N) and the right panels correspond to the pathological (P) tissue.

By making a comparison between the mean estimated spectra
that result from training with the TS model and the ones that were
trained with the TT model, we see that the TS model has a better per-
formance. Furthermore, all the SLP models tend to output a mean
estimated spectra with a higher SD than the reference spectra in the
nonlinear domain (200–600 wavelength). Such fact can be related to
the linearity of perceptron mathematical model, which is the basis
of the SLP building blocks. This may cause the model to have higher
difficulty in estimating nonlinear output. The next algorithm that
was studied was the KNN. Figure 4, which is organized in the same
manner as in Fig. 3, presents the mean estimated spectra that result
from this study.

In a first analysis of the panels in Fig. 4, it seems that the KNN
model has an overall good performance, but all the estimated spec-
tra tend to be close to the mean with a low SD, which could be
a sign of overfitting. However, by analyzing the individual estima-
tions (Figs. S5–S8 in the supplementary material), it is possible to

see that the model estimates differently for different samples, and,
therefore, there is no overfitting. When the model is over fitted, it
means that there is a memory leak from the data to the model. Con-
sequently, the model will have an unwanted better performance in
the training set, when compared with the data set. To prevent this
from happening not only in the KNN models but also in the other
ML algorithms, the learning process was stopped before the valida-
tion error increased and the parameters of the models were tuned
for the best of their performance.41 After obtaining the estimations
with the KNN algorithm, new estimations were generated using the
RFR algorithm. Figure 5 presents the results of those estimations.

Similarly to what was observed with the KNN algorithm, the
estimations with the RFR algorithm present an overall good per-
formance of the models except for the mean pathological spectra
from the TT model. This could be because most of the individual
estimated spectra have a lower value than expected, which results
in a lower mean spectrum. Performing other estimation with the
DTFMR algorithm, we observe from Fig. 6 a smaller performance
when compared with the above algorithms.

The resulting mean estimations presented in the panels of
Fig. 6 are more distant from the reference spectra and have a higher
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FIG. 5. Comparison between the mean reference spectra (MRS) and the mean estimated spectra (MES) that result from the RFR algorithm.

SD. The final estimations were made using the LRFMO algorithm.
Figure 7 presents the mean results of these estimations.

As we can see from the panels in Fig. 7, the estimations with the
LRFMO algorithm result in mean spectra that indicate the overall
worst performance for this algorithm. In Fig. 7, we see that the SD
presents a big increase with increasing wavelength. From the indi-
vidual spectra estimations (see Figs. S13–S16 in the supplementary
material), we can see that the models tended to estimate the µa spec-
tra significantly above or below the reference spectra, which results
in an increase of the standard deviation of the averaged µa spectra.

The shortcomings of our study rely on the reduced number
of samples used in the development of the machine learning algo-
rithms. If a significant number of samples was available, all the
generated models would be more reliable, but unfortunately such
samples were not available at the time of this study. Consider-
ing the models developed in the present study, with a reduced
number of samples, we can say that our approach works as a fea-
sibility test. Nevertheless, and remembering that we decided to
use a LOO approach in order to minimize the overfitting, such
approach has additionally allowed for pathology discrimination,
with reasonable values for the pigment and blood content in both
tissue conditions. For future studies for which a reduced number

of samples is available, we can open a research line in the machine
learning approach, designated as “generative models,” in order to
artificially generate more samples and to increase the number of
samples for training.

After testing the ML algorithms, the average of the ED between
the estimated and the reference spectra was calculated in order to
compare the performance between the various algorithms. Figure 8
presents the results of this calculation.

The data in Fig. 8 show that the DTFMR and LRFMO algo-
rithms estimate spectra that are significantly distant from the ref-
erence spectra. The SLP, KNN, and RFR algorithms, on the other
hand, present higher accuracy in the approximation of the estimated
to the reference spectra. Within these three algorithms, the results
obtained with the TS approach are better than the ones obtained
with the TT approach. This means that the Rd spectra contain infor-
mation about the absorption coefficient and that such information
is different for the healthy and pathological tissues.

Considering such quality factors, we selected the estimations
obtained with the TS approach from the SLP, KNN, and RFR
algorithms to perform the calculations reported in Ref. 24. These
calculations consisted of subtracting µa−lip to the mean generated
µa spectra of healthy and pathological mucosa to obtain adequate
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FIG. 6. Comparison between the mean reference spectra (MRS) and the mean estimated spectra (MES) that result from the DTFMR algorithm.

blood and pigment content. In the case of healthy mucosa, the
µa−lip(λ) was considered as described by Eq. (7), with A = 1, and
in the case of pathological mucosa, the same equation was used,
but with A = 1.1 (10% more pigment in the pathological tissue).24

Figure 9 contains the results of those final calculations for each
particular case.

After performing a differentiated subtraction of µa−lip(λ) to the
estimated µa(λ) of the tissues, the hemoglobin ratios were calculated
at 410 and 550 nm for each case (see Fig. 9). In a first analysis of
the data in Fig. 9, we looked to check if the results from all estima-
tions produced higher magnitude ratios for the pathological tissue.
For the estimation with the SLP and RFR algorithms, we obtained
such results, but for the estimation with the KNN algorithm, the
calculated hemoglobin ratios present a lower magnitude for the
pathological tissue. Such fact could happen due to a minimum value
of µa (close to 1000 nm) in the estimated spectrum for the patholog-
ical tissue to be lower than expected, which consequently increases
the ratios.

Our second concern was to check how close the calculated
ratios are to the ones presented in Ref. 24, as obtained from invasive

measurements. In that study, the obtained hemoglobin ratios at 410
and 550 nm were: 19.7-fold and 10.1-fold for the healthy mucosa and
33.1-fold and 17.3-fold for the pathological mucosa, respectively.24

Looking into the data generated with the SLP algorithm in Fig. 9(a),
we see that the hemoglobin ratios for the pathological mucosa are
excessively high. This means that by subtracting the µa−lip(λ), with
A = 1.1, the minimum value in the red curve becomes too low, which
leads to excessively high ratios at both wavelengths.

The ratios obtained from the RFR estimations are more
approximated to the ones previously published,24 although for the
case of the pathological mucosa, they are a little higher. Such dif-
ference can possibly be related to the colorectal cancer samples that
were used to acquire the Rd spectra—they could have a higher blood
content than the ones used for the study in Ref. 24. Considering the
ratios obtained with the RFR algorithm, we can consider that they
are the optimal reconstruction of the ratios previously calculated
from invasive measurements. Such results show that the combina-
tion of noninvasive Rd spectral measurements with the RFR learning
algorithm is a good approach to develop new methods for colorectal
cancer detection.

Chaos 31, 053118 (2021); doi: 10.1063/5.0052088 31, 053118-9

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 7. Comparison between the mean reference spectra (MRS) and the mean estimated spectra (MES) that result from the LRFMO algorithm.

FIG. 8. Average of the Euclidean distances for the different models when they
are trained with data from separated samples (TS) or with data from all samples
(TT).

IV. CONCLUSION

The present study consisted of using ML methods to recon-
struct the µa spectra of human colorectal mucosa tissues, both in
healthy and in pathological (adenocarcinoma) versions. Such recon-
struction was made using various ML algorithms, where the only
inputs were noninvasive-like Rd measurements. To train the algo-
rithms, we used µa spectra from both tissue conditions that were
previously used in another study. The tissues used to perform all
experimental measurements were freshly excised from patients via
surgical procedure. Since the tissues were kept in saline before
measurements to maintain their hydration, it is expected that the
obtained optical properties mimic the ones for the in vivo situa-
tion. The differences should be minimal and within the experimental
measurement error.

The efficiency of the various algorithms was analyzed, verifying
that the DTFMR and LRFMO algorithms present the worst effi-
ciency in the reconstruction of the µa spectra. The SLP, KNN, and
RFR algorithms presented the best efficiency in that reconstruction
and they were selected to perform additional calculations to obtain
the blood and lipofuscin contents in both tissues and compare them
with the results obtained from invasive measurements. In this final
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FIG. 9. Wavelength dependencies ofµa for lipofuscin (orange), for healthy (N) and pathological (P) mucosa, before (blue) and after (green or red) subtracting the absorption
of lipofuscin. Results obtained with the SLP (a), KNN (b), and RFR (c) algorithms.
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analysis, the estimation made with the RFR algorithm presented the
most approximated results to the ones previously obtained. In these
calculations, the pathological tissue presented a little higher blood
content than in the previous calculation, a difference that can be
due to the different samples used in the Tt/Rt and Rd measurements.
The results obtained using the TS approach in the RFR algorithm
show that such a method presents good sensitivity and specificity for
recognizing malignancy in the samples. This study proves the appli-
cability of ML techniques in biophotonics, which, combined with
noninvasive spectral measurements, can be used to detect patholo-
gies. Considering the increasing content of blood and lipofuscin in
colorectal mucosa tissues, the TS approach in the RFR algorithm can
be used to monitor cancer progression. A future research perspec-
tive would consist of applying the ML techniques to estimate the
spectral RI of tissues from noninvasive or minimally invasive mea-
surements such as Rd spectra. Such research may produce results
that can allow pathology differentiation through the spectral refrac-
tive index. Another research that can be developed is to use the
knowledge gained in this study to perform the estimation of the
optical properties for other tissues or other tissue conditions and
pathologies. Using the transfer learning procedure, the algorithms
developed in this study can be adapted for other tissues, provided
that similar spectral measurements are made from those tissues. If
different methods are available, the development of new algorithms
should be made using machine learning procedures.

SUPPLEMENTARY MATERIAL

See the supplementary material for the individual estimated
spectra with all models.
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