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Abstract

Electronics completely transformed the automotive industry as early vehicles were purely
composed by mechanical components but the current reality is quite different. The growing
acceptance for embedded electronics devices led to a significant increase in the number of
microcontroller-based functions embedded in vehicles. With this increase, customer’s safety
concerns raised.

To ensure customers safety from the use of Electrical and Electronic (E/E) automotive
equipment and systematic failures, Original Equipment Manufacturers (OEMs) and their
suppliers must comply with standards such as ISO 26262, the road vehicles functional safety
standard. ISO 26262 provides regulations and recommendations for the product development
process.

When the critical road functionalities are regarded as hard real-time, that shall complete
within the defined time boundaries, coexist in an environment with soft and non real-time
tasks (e.g., multimedia and connectivity activities) the system designer must use an approach
to ensure that no critical activity is jeopardized in order to avoid hazardous events.

To cope with the coexistence of activities with different time boundaries and criticality within
the same system, this work proposes the implementation of uniprocessor reservation-based
mechanisms, namely the Constant Bandwidth Server (CBS) and the Capacity Sharing and
Stealing (CSS), in a real-time operating system for scheduling non-critical activities without
jeopardizing the apriori guarantee of critical activities. Both schedulers use the concept
of server, a task holder where a fraction of the processor bandwidth is reserved for tasks,
thus relaxing the need for knowing certain properties of the tasks such as the WCET. Both
implementations are detailed and compared through the implementation of task sets where
both types of tasks coexist.

Keywords: E/E automotive equipment, ISO 26262, Real-Time Systems, Reservation-based
mechanisms
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Resumo

A eletrónica transformou por completo a indústria automotiva, os primeiros veículos eram
puramente compostos por componentes mecânicos, mas atualmente a realidade é signi-
ficativamente diferente. O aumento da aceitação de dispositivos eletrónicos levou a um
crescimento exponencial do número de funções baseadas em microcontroladores embutidos
em veículos. E com este aumento, as preocupações relativas à segurança por parte dos
clientes aumentaram.

Para garantir a segurança de falhas sistemáticas e de falhas provenientes do uso excessivo
de componentes Elétricos e Eletrónicos (E/E) de um veículo, tanto os Original Equipment
Manufacturers (OEMs) como os seus fornecedores tem que cumprir com standards como
por exemplo o ISO 26262, standard referente à segurança funcional de veículos rodoviários.
O ISO 26262 apresenta os regulamentos e recomendações presentes em todo o processo de
desenvolvimento do produto.

Quando as funcionalidades críticas tambem são consideradas como hard real-time, que tem
que dar resposta a estimulos externos dentro dos limites temporaris definidos, coexistem no
mesmo ambiente com tarefas soft e non real-time (por exemplo, atividades de multimídia
e conectividade), o system designer tem que usar abordagens especificas para continuar a
garantir que nenhuma atividade hard seja comprometida, evitando assim possiveis conse-
quencias catastróficas.

Para fazer face à coexistência de atividades com difrentes niveis de criticalidade e limitações
temporais dentro do mesmo sistema, este trabalho propõe a implementação de mecanismos
baseados em reservas de partes de utilização do processador, nomeadamente o Constant
Bandwidth Server (CBS) e o Capacity Sharing and Stealing (CSS), num sistema operativo
de tempo-real para escalonar atividades não críticas sem comprometer a garantia apriori de
tarefas criticas. Ambos os escalonadores usam o conceito de servidores dedicados, onde
uma fração da largura de banda do processador é reservada para tarefas, relaxando assim
a necessidade de conhecer certas propriedades das tarefas, como o WCET. Ambas as im-
plementações são detalhadas e comparadas através da implementação de um conjunto de
testes onde os dois tipos de tarefas coexistem.

Keywords: E/E automotive equipment, ISO 26262, Real-Time Systems, Reservation-based
mechanisms
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Chapter 1

Introduction

Nowadays, technology is omnipresent in our lives, being employed in and for almost every-
thing. This widespread use of technology occurred due to the trend of embedding computa-
tional capacity (embedded computing systems) into everyday products. Embedded comput-
ing systems can be seen as a microprocessor/microcontroller-based computer system with
both specific hardware and software intended to perform dedicated functions (usually for
monitoring or controlling purposes) within larger electrical or mechanical systems.

Embedded systems components can range from a single chip microcontrollers to a set of
processors with connected peripherals and network, and can be used in an enormous variety
of application domains both traditional and emerging, such as:

1. Home appliances - Household appliances such as refrigerators, washing machines and
microwaves;

2. Consumer electronics - Electronic devices for entertainment, communications and
recreational uses e.g. televisions, digital cameras, computer printers and video game
consoles;

3. Industrial automation - Assembly lines and data collection systems;

4. Military and aerospace applications - Control, navigation and guidance systems;

5. Telecommunication and data communication industries - Communication devices such
as routers and satellite phones;

6. Medical Equipment - Electronic medical devices e.g. scanner and ECG machines.

7. Automotive Industry- In today’s market, any motor vehicle (e.g., bus, car, truck and
motorcycle) can contain, depending on the market segments, up to 5 to 100 embedded
electronics systems, also known as Electronic Controller Units (ECUs);

This work focuses on the embedded development for the automotive industry, where ac-
cording to (Nicolas and Françoise 2009), over the last two decades the growing consumer
acceptance for embedded electronic devices and the own nature of these electronic compo-
nents (e.g., real-time operation, versatility, flexibility, low cost and power) led to an increase
in the number of microcontroller-based functions embedded in vehicles.

This chapter firstly discusses the domain and scope of this dissertation, followed by the
presentation of the problem and a possible solution for the studied problem. Then, an
explanation on how the solution is tested and which are the assessment metrics. It ends by
introducing a primary value analysis of the solution, the work methodology and finally the
structure of the document.
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1.1 Context

Electronics completely transformed the automotive industry. Early vehicles were purely
composed by mechanical components but the current reality is different. ECUs now have a
tremendous role in this industry as modern vehicles have up to 2500 signals (i.e., elementary
information such as the speed of the vehicle and diagnostics) exchanged through up to 100
electronic control units (ECUs) on different types of low-level networks, such as: (i) Local
Interconnect Network (LIN); (ii) Controller Area Network (CAN); (iii) FlexRay; (iv) Serial
Peripheral Interface (SPI); (v) and Inter-Integrated Circuit (I2C).

To ensure passengers safety from the use of Electrical and Electronic (E/E) automotive
equipment and systematic failures, Original Equipment Manufacturers (OEMs) and their
suppliers must comply with standards such as ISO 26262, the road vehicles functional safety
standard. ISO 26262 is a risk-based safety standard derived from IEC 61508 that provides
regulations and recommendations throughout the product development process. Moreover,
it details how to assign an acceptable risk level to a system or component and document
the overall testing process.

Concerning safety risks, ISO 26262 specifies how Hazard Analysis and Risk Assessment
(HARA) should be performed on automotive component (software/hardware) to establish
safety goals and a safety-criticality level. This level can be assigned according to either
Quality Management (QM) or Automotive Safety Integrity Level (ASIL).

Figure 1.1: Risk classification of automotive components.
Image credit: APTIV

ASIL is a risk classification scheme assigned to a system or component by performing risk
analysis of potential hazards. There are three factors that influence this analysis, namely:
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the severity (extend of harm to one or more individuals that can occur in a potentially
hazardous event), exposure (likelihood of an hazardous event) and controllability (if the
system fails, what is the ability to avoid harm or damage through the timely reactions of the
persons involved, possibly with support from external measures - Advanced Driver-Assistance
Systems (ADAS) and Advanced Rider-Assistance Systems (ARAS)). There are four ASILs
levels identified by the ISO 26262 standard: ASIL-A, ASIL-B, ASIL-C, ASIL-D. ASIL-A
dictates the lowest safety requirements that shall be specified on the product and ASIL-D
the highest. There is another level called QM that represents hazards that do not dictate
any safety requirements, Figure 1.1 displays the ISO 26262 risk classification matrix.

Beside the functional safety criticality levels and the typical ECUs system function classi-
fication (e.g., engine management system, Anti-lock Braking System (ABS) and ADAS),
embedded automotive ECUs can also be defined as Real-Time Systems (RTSs) 1 and cat-
egorized according to their real-time constraints. So, according to their time constraints,
ECUs can be categorized as:

1. Hard real-time system - It is a system that must operate within the limit of a stringent
deadline. Any deadline miss may be considered as a root cause for system failures,
which may result in loss of life or property. In current motor based vehicles, the
ECUs related with the engine management, transmission, chassis and ABS are some
examples of this type of system;

2. Soft real-time system - Soft RTSs are systems which have tolerant time requirements.
As opposed to hard systems, soft systems can tolerate some deadline misses, dimin-
ishing the computational output value according to the tardiness, as long as the value
is not zero, Vehicle-to-Vehicle (V2V) communications and instrumentation clusters
are some examples of this type of system.

This dissertation, made to obtain the master’s degree in computational systems engineering,
focuses on an ASIL-B and real-time ECUs, a two-wheeler motor-based vehicle instrumenta-
tion cluster (example of this type of ECU is depicted in Figure 1.2).

1.2 Problem

With the increase in demand for technological and innovative progress along with safety
in the automotive domain, OEMs developed a new two-wheeler instrumentation cluster
category, the full digital rider cockpit. These clusters are no longer just an instrumentation
cluster, as now, almost all operations in a two-wheeler vehicle are sensed with actuators and
displayed in digital format in the cluster itself which provides to the user real-time access
to data. These digital cockpit are considered mixed-criticality systems as they compute
high ASIL critical activities that have strict time boundaries (e.g., telltales and smart rear
mirrors streamed on the cluster) with activities with less stringent constraints regarded as
soft real-time activities (e.g., multimedia and connectivity activities).

When working with mixed-criticality systems, the system designer must guarantee some
sort of temporal isolation between tasks (i.e., the capability for each process to complete
within its timing constraints do not depend on the temporal behavior of other unrelated
processes running on the same system). Without it, the system may not be capable of
guaranteeing the completion of hard real-time activities due to the properties of the soft

1A system that is developed and analyzed to guarantee a worst-case response time to critical events, as
well as acceptable average-case response time to non-critical events (Stefan 2008)
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Figure 1.2: Two-wheeler instrumentation cluster.
Image credit: BMW press group

activities, such as: (i) their dynamic behaviour (ii) no apriori guarantee can be achieved
due to their non-deterministic minimum inter-arrival time; (iii) Worst-Case Execution Time
(WCET) estimations are extremely complicated to obtain for them and thus, significant
upper bounds are used which can lead to waste of CPU resources.

This dissertation focuses on enhancing two-wheeler mixed-criticality instrumentation clusters
safety since a typical general-purpose linux kernel without temporal isolation is commonly
employed. Without temporal isolation, instrumentation cluster’s hard real-time activities
are not guaranteed, and consequently the customers safety, as soft real-time activities can
interfere on their completion within the defined constraint and lead to an hazardous event.

1.3 Objective

A digital instrumentation cluster is generally partitioned into two partitions, see Figure 1.3.
The first partition, is developed using the standardized software framework AUTomotive
Open System ARchitecture (AUTOSAR) - which in simple terms is an OEM and suppliers
consortium that aims to standardize software architecture for this industry, and, a second
partition that focuses on connectivity and the Human-Machine Interface (HMI), which it is
typically managed by a general-purpose linux kernel. This proposed work aim is to cope with
the coexistence of real-time mixed-criticality elements within the second partition.

As current General Purpose Operating System (GPOS) commonly do not provide temporal
isolation, the best approach to resolve the problem of interference between tasks with dif-
ferent time constraints and determinism would be to employ either a Real-Time Operating
System (RTOS) that already has some type of temporal isolation and apriori guarantee of
hard real-time tasks and adjust into this use case or implement in a GPOS real-time mecha-
nisms to guarantee the completion of hard real-time activities and ensure temporal isolation
within the mixed-criticality tasks.

Following this mindset, this work proposes an alternative to the GPOS with temporal iso-
lation mechanisms by demonstrating the adjustment of an open-source RTOS, Real-Time
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Figure 1.3: Cluster partitions

Executive for Multiprocessor Systems (RTEMS), to mixed-criticality systems. To apply
RTEMS into this use case and guarantee that hard real-time tasks are not jeopardized by
the soft activities, this work proposes the implementation of uniprocessor reservation-based
mechanisms, namely the Constant Bandwidth Server (CBS) (Abeni and G. Buttazzo 1998)
and the Capacity Sharing and Stealing (CSS) (Nogueira and Pinho 2007).

These mechanisms allow critical tasks to be scheduled by their absolute deadline, by using an
algorithm known as the Earliest Deadline First (EDF), and the remaining tasks with either
CSS or CBS, which use the concept of dedicated servers where a fraction of the Central
Processing Unit (CPU) bandwidth is reserved for tasks, thus relaxing the need for knowing
certain properties of the tasks such as the WCET.

Concerning the technical work, what is proposed regarding the CBS is an improvement of
the already existing algorithm in RTEMS, since, the current implementation is considered as
a Hard-CBS implementation (further explained in Chapters 2.5 and 4). On the other hand,
the CSS implementation in RTEMS is made from scratch and follows the rules defined in
(Nogueira and Pinho 2007), allowing one to create isolated and non-isolated servers for both
periodic and aperiodic tasks in RTEMS (concept further explained in Chapter 2.6).

The performance of both algorithms is evaluated and compared through a set of generated
task sets executed over both an emulator and a real platform (trying to simulate Hardware-
In-the-Loop (HIL) tests). The task sets encompasses hard, soft real-time periodic tasks, and
soft aperiodic tasks and were repeatedly executed for a significant period of time to ensure
consistency in the results. The metrics used to measure the algorithms performance were
the mean tardiness and average deadline misses, computed over all soft real-time tasks, and
the average length of context switch operations.

1.4 Value Analysis

Integrate a hard RTOS with reservation mechanisms on digital mixed-criticality instrumen-
tation clusters would be a solution with great perspectives within the current automotive
market. Despite the enormous initial costs and work load necessary to develop support for
required Application Programming Interfaces (APIs), teams mindset adjustment, graphical
support and integrate Computer-Generated Imagery (CGI) tools. The presented solution,
not based on a GPOS, would mainly lead to significant increase of product safety and relia-
bility.
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Figure 1.4: Business value.

Figure 1.4 represents the value of an instrumentation cluster developed with the proposed
solution. The right side points out the value for the OEMs, meanwhile the left side represents
the value for the customer. For the customer, this solution based on temporal isolation
would mainly increase his safety as it reduces the possibility of the occurrence of hazardous
events. Additionally, having guarantee the isolation property, OEMs could focus themselves
on improving cluster’s HMI, thus increasing user usability and experience. On the other
hand, for the OEM it would essentially improve the quality of the product and consequently
reduce the number of failures Parts Per Million (PPM). A further detailed value analysis is
presented in section 3.

1.5 Work Methodology

Due to the lack of flexibility and the own nature of the project himself, it has been agreed that
a waterfall approach would be best suited for the development of this solution. On an initial
stage, the problem and context are identified and assessed. And following the New Concept
Development (NCD) mindset, the idea generation and selection follow to chose the most
adequate solution. With the reservation based scheme and the RTOS selected, a thorough
analysis on RTEMS occurs and a selection on which schemes are to be implemented. With
all requirements considered, the development phase follows. Finalizing the solution with the
validation, tests and conclusion phases.

1.6 Document structure

The presented dissertation is composed by the following seven Chapters: Introduction, Back-
ground, Value Analysis, RTEMS, Implementation, Experimentation and Assessment, and at
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last the Conclusions and Future Work.

Chapter one, Introduction, has the aim of contextualizing the context and the problem in
which the solution suits. Moreover, a brief value analysis with the business value for both the
customer and the organization and the steps followed for the development of the solution
are presented.

The second chapter, Background, is divided into seven parts. The first one presents the
assumptions assumed for the development of the solution. The second and third part gives
a more extended overview of the context by detailing further concepts of real-time systems
and real-time scheduling. Section four, discusses some reservation-based approaches existing
in the literature, presents the ideas and goals of each approach and the major blockers of
some of these less successful scheduling policies. The fifth section, specifies the employed
system model. At the end, sections six and seven displays an overview and specifies the
requirements of both the CBS and the CSS.

Chapter three, Value Analysis, an extended value analysis is performed, where value of the
solution is identified and discussed through multiple techniques.

Chapter four, RTEMS, presents the employed real-time operating system and later focuses
on some important concepts of RTEMS, namely task management and the existing schedul-
ing policies.

On the fifth chapter, Implementation, the implementation of both schedulers in RTEMS is
fully described. Additionally, the implementation of some application tests is also presented.

On the sixth chapter, Experimentation and Assessment, the testing and metrics assess-
ment processes are fully explained. It starts by demonstrating the task set and the imple-
mentation of some developed tests, followed by a presentation of the emulator and hardware
employed for the executing and data extraction steps. At last, the data is assessed according
to the defined metrics.

Chapter seven, Conclusions and Future Work, summarizes the work and additionally
presents the difficulties and limitations of this project, and provides the next steps.
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Chapter 2

Background

This chapter is divided into six sections, the initial section presents the system model em-
ployed and some assumptions made for the development of the solution. The second and
third sections aim at presenting some further details concerning some technical concepts
to fully understand the proposed solution. The fourth section presents some reservation
based approaches existing in the literature. Sections five and six present the CBS and CSS
correspondingly. These sections and chapter 4 additionally correspond to the requirements
and design analysis, since from the original articles and operating system study the overall
specification and system design are given and analysed.

2.1 System Model

For this proposed solution of having a hard real-time operating system with capabilities of
offering Quality of Service (QoS) (execution time) to soft real-time tasks without jeopar-
dizing hard critical activities, it is assumed a single-process multiple-threaded system based
on tasks. This assumption is made by the chosen RTOS requirements themselves, where
a single-process is admitted and the tasks are considered the smallest thread of execution
that are able to compete on its own for system resources.

Due to RTEMS limitation to define constraint deadlines, only implicit deadlines are employed.
Deadlines can be described as explicit or implicit, an implicit deadline exists when the deadline
of job Ji ,j is equal to its periodicity Ti . On the other hand, explicit deadlines are characterized
by having a relative deadline shorter than the task periodicity.

Furthermore, a system consisting of two types of task, hard and soft real-time tasks, is con-
sidered. Hard tasks, τi , are defined as periodic where each job Ji ,j of the task is characterized
by an arrival time ri ,j and by two additional parameters, (Ci , Ti), whereas Ci represents the
WCET of each job and Ti is the minimim inter-arrival time between each job, such that
ri ,j+1 = ri ,j + Ti . For soft tasks, both periodic and aperiodic tasks are assumed to match
the soft multimedia and connectivity activities of the cluster and are also represented with
an arrival time, average case execution time and a soft deadline.

2.2 Real-Time Systems

The application of RTSs is seen in several industries, from defense and space systems up
to automotive, medical devices, consumer electronics and even home appliances. They are
mainly used within these domains as a control device in a dedicated application where time
requirements are rigid (Sha et al. 2004). As briefly mentioned in section 1.1, these systems
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are characterized by its predictability and determinism, not only on the logical correctness.
On these systems, the maximum instant in which a system shall respond to an external
stimulus is typically imposed by the environment and is called deadline.

RTSs classification is dictated by the value/utility of the result upon deadline misses, if
there is still value after it, the system is classified as soft (e.g., multimedia and network
systems), otherwise it is firm. If a catastrophe could occur from a deadline miss, the system
is regarded as hard (e.g., earthquake alerts and air traffic control systems). Hard real-time
systems guarantee that all critical tasks will be completed on time and thus all overhead
shall be bounded (e.g., memory operations - fetch and store, Inter Process Communication
(IPC), operating system tasks overhead and I/O operations), on the other hand, soft real-
time systems are much less restrictive concerning their time boundaries and can tolerate late
results as long as the value of the result does not diminishes to zero. Soft RTS are mainly
employed in multimedia and common communications systems.

Moreover, the capability of managing a considerable number of concurrent activities is com-
monly expected from the environment in which the system is integrated. This becomes a
problem in typical synchronous software systems, thus requiring that RTSs shall have mech-
anisms for the processing of internal synchronous activities joined with the external events
(e.g., interrupts). This challenge enhances when dealing with multiprocessors. Despite the
theoretical processing benefit of multiprocessor systems there are new aspects that need to
be considered due to their implication on the predictability of real-time systems, such as:
tasks allocation; inter processor communication channels and global resources that may to
be shared between competing processors.

An essential component of any RTS is its real-time operating system. That besides being a
software responsible for managing hardware resources, it serves as an interface between the
hardware components and applications. RTOS are additionally designed to execute appli-
cations with precise timing and reliability. This timing precision is one of the key elements
that distinguishes RTOS and typical general purpose operating systems. While GPOSs have
random execution pattern, not guarantee response times, dynamic memory mapping and are
non-preemptive 1. RTOS are reliable, predictable, deterministic and have a priority based
preemptive scheduling which is the key to provide accurate real-time responses to external
events.

2.3 Real-Time Scheduling

Scheduling is a process performed by a component named scheduler in which virtual com-
putation elements such as tasks, threads and processes are assigned to hardware elements
(e.g., CPU) in order to be executed and complete their work. In GPOSs the following three
types of schedulers can be found:

1. Long-term scheduler - Also known as the job scheduler, it selects the processes from
the storage pool in the secondary memory and loads them in the main memory for
execution;

2. Medium-term scheduler - Responsible for performing the swapping out and in process,
which is basically the removal of processes from Random Access Memory (RAM) and
placing them on secondary storage (e.g., disk) or vice versa;

1An executing thread can only yield upon completion, I/O operation or volunteer operation.
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3. Short-term scheduler - Also referred as CPU scheduler. It selects from the computation
elements located in main memory that are ready to execute and allocates one of them
to the CPU.

An important concept involved in the scheduling process is the dispatcher. The dispatcher
main function is to perform context switches, which is the act suspending and state storing
of a computation element running in a specific CPU to allocate another computing element
chosen by the scheduler to execute on that CPU. This allocation requires loading the context
of the selected thread or task.

In RTSs, scheduling is regarded as the most important process. The scheduler is gener-
ally a short-term task scheduler and is typically preemptive (i.e., a task which is executing
can be replaced by a task with higher priority). Scheduling can be categorized into static
and dynamic scheduling. With static scheduling, a run-time schedule table is made offline
based on the apriori knowledge of the task set (such as WCET, deadlines, priorities and
precedence) thus allowing the decisions to be made at compile time and, hence, reducing
run-time overhead (Stankovic, Ramamritham, and M. Spuri 1998). Static scheduling is not
recommended to unpredictable or dynamic systems as scheduling table can not be modified
online.

Dynamic scheduling is much more flexible and adaptive but it displays a significant overhead
as decisions are made at run time. An example of a dynamic scheduling algorithm is the
EDF, a dynamic preemptive algorithm based on dynamic priorities in which the tasks with
earliest deadline are assigned with the highest priority.

2.4 Reservation-based Approaches

One of the approaches employed to tackle mixed criticality systems are schemes on which
fractions of the CPU are reserved for the soft and hard real-time activities, known as the
reservation-based schemes. Several solutions based on these schemes were proposed in the
literature to guarantee QoS for soft real-time tasks without jeopardizing the execution of
hard real-time tasks. Next, a few examples of reservation based schemes are presented.

In (K. Jeffay, Stone, and Smith 1992), the authors presented a hard real-time system
used as a test bed for video conferences and scheduled by EDF. Although real-time tasks
could be guaranteed based on their WCET and minimum inter-arrival time, the inter-arrival
time had an unreasonable upper bound due to the network unpredictability. To tackle this
bounding issue, a new task model totally independent from the minimum inter-arrival time
was presented in (Kevin Jeffay and Bennett 1995), the Rate-Based Execution (RBE) task
model. With this model, the schedulability of hard real-time activities were not jeopardized
though network activities were not guaranteed to complete within the expected response
time.

In (Kaneko et al. 1996), Kaneko et al. introduced a scheme based on a periodic process
dedicated to the service of soft real-time tasks in order to integrate soft tasks with hard
real-time tasks. However it only proposes one server to schedule the served tasks. Another
scheme, based on CPU capacity reserves, is presented by Mercer, Savage and Toduka in
(C. W. Mercer, S. Savage, and H. Tokuda 1993). This solution reserves a fraction of the
CPU bandwidth to each task by establishing an upper bound on the computational time
Ci in each period Ti , thus removing the need of knowing apriori the WCET of each task.
However, it presents a serious issue when handling overload situations.
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In (Deng and Liu 1997), the authors presented a hierarchical scheduling model, which requires
the apriori knowledge of the WCET of all tasks and that allowes the coexistence of hard,
soft and non real-time activities within the same system. With this solution, each task is
handled by a dedicated server, which can be the Constant Utilization Server (CUS) (Deng,
Liu, and Sun 1997) for tasks that do not use non-preemptive sections or global resources,
and the Total Bandwidth Server (TBS) (Spuri and Buttazzo 1994) for the remaining tasks.

In (Abeni and G. Buttazzo 1998), Abeni and Butazzo proposed the CBS. This scheme
reserves a fraction of the CPU bandwidth to each task while assuring that task overloads
do not occur by allocating each task to a dedicated server. For that, hard real-time tasks
have a WCET and minimum inter-arrival time, while soft real-time tasks are served assuming
average-case values for execution-time and period. Soft tasks execute in the context of a
server and both hard tasks and servers are executed following the EDF scheduling policy
(further details concerning CBS are provided in Section 2.5).

To increase resource utilization of reservation-based schemes, other works proposed reclaim-
ing capacity not used by dedicated servers, they exploit early completions of tasks executing
in the context of a server. For instance, Caccamo and Buttazzo presented CASH (Caccamo,
G. Buttazzo, and Lui Sha 2000), a scheduler that allows servers to utilize unused capacities,
that are originated from early completions, before using their own budget. CASH stores all
the unused budget in a global queue, ordered by deadline.

In (Mercer, Savage, and Tokuda 1994) Mercer, Savage and Tokuda presented GRUB, a
greedy scheduling model that minimize tasks preemption by allocating all excess bandwidth
to the current executing server and postponing the servers’ deadline before the arrival of a
new job. Nogueira and Pinho proposed in (Nogueira and Pinho 2007) a new way to handle
overloaded servers with CSS, a mechanism based on the assignment of residual bandwidth to
overloaded servers. Moreover, by admitting the coexistence of two bandwidth server types,
this model is capable of diminish the mean tardiness of guaranteed jobs. CSS diverges from
CASH and GRUB by suspending budget recharging and deadline update until a specific time
(further details concerning CSS are provided in Section 2.6).

2.5 Constant Bandwidth Server

The Constant Bandwidth Server (Abeni and G. Buttazzo 1998) is a reservation-based
scheduling algorithm that works on top of EDF and is based on both the TBS (Spuri
and Buttazzo 1994) and the Dynamic Sporadic Server (DSS) (Ghazalie and Baker 1995).
It handles hard and soft real-time tasks by providing temporal protection between tasks
through the means of servers. In this model each task with soft requirements is served
by a server. CBS specifies that a server represented by Ss has two parameters (Qs , Ts),
where Qs corresponds to the maximum budget and Ts is the server period (or also called the
reservation period). The server bandwidth is given by the ratio Us = Qs/Ts . Additionally,
the server has a fixed deadline ds,k .

Temporal isolation is regarded by Abeni and Buttazzo as the most important one as it allows
activities to run without interference from each other concerning their temporal constraints,
and it expressed with the following theorem:
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Theorem 1 Given a set of n periodic hard tasks with processor utilization Up and the sum
of all servers processor utilization Us the whole set is schedulable by EDF if and only if

Up + Us 6 1

With theorem 1 and its respective proof, (Abeni and G. Buttazzo 1998) demonstrated that
the isolation property allowed the system to allocate a faction of the processor utilization
to the soft tasks. Hence, guaranteeing that soft real-time tasks can be scheduled together
with hard tasks without affecting the apriori guarantee of hard tasks. In the original paper,
CBS is defined according to the following rules:

• When a job Ji ,j arrives and is served by an active server Ss the request is enqueued in
a First In, First Out (FIFO) queue.

• Ji ,j is assigned with a deadline equal to the server deadline ds,k , such as di ,j = ds,k .

• At any finite interval of time [ta, tb], the budget cs is different from 0. When cs = 0,
it is recharged to cs = Qs and a new deadline is generated ds,k+1 = ds,k + Ts .

• If there are pending jobs on the server queue at time t, the server is considered active,
otherwise the server is idle and said be inactive.

• When a job Ji ,j arrives and the respective server is inactive, if cs ≥ (ds,k − ri ,j)Us then
the CBS server generates a new deadline ds,i = ri ,j + Ts and the budget is recharged
to the maximum value Qs . Otherwise the job is served using the current deadline and
budget.

• When a server serves a job Ji ,j of τi for a period of time δ, the budget cs is decreased
by δ : cs = cs − δ.

• When a job finishes, if there is any pending job, it is served with the current budget
and deadline.

• When a job Ji ,j arrives and the server is active the request is enqueued in a queue of
pending jobs according to a given non-preemptive discipline.

According to the above rules, CBS offers quality of service (QoS) to each served task
allowing it to execute during the reserved computation time, which is guaranteed by the
server, without compromising the guarantees of any hard real-time task.

2.6 Capacity Sharing and Stealing

The Capacity Sharing and Stealing (Nogueira and Pinho 2007) is a bandwidth-based sched-
uler created to efficiently handle overloaded servers and reduce the mean tardiness of soft
real-time jobs through an efficient management of unused capacities.

CSS recognizes the coexistence of two types of servers: isolated servers, used to schedule
periodic guaranteed tasks and are ensured a specific amount of resource every period; and
non-isolated servers, for aperiodic and sporadic tasks that can be served in a best-effort
manner. Both types of servers are characterized by a tuple (Qs , Ts), where Qs represents
the reserved capacity and Ts the server period. Each server Ss has a current capacity cs , a
deadline ds , a recharging time rs , an activity state, residual capacity cr and a pointer that
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points to the server from which the budget is going to be consumed, or also referred as
budget accounting (the pointed server is selected using a budget allocation mechanism2).

With this scheduler, an isolated or non-isolated server Si can be in an active or inactive
state at time t. Thus, a server is said to be active if: one of the served tasks is ready
to execute; or is executing; the server is supplying capacity to other servers until it reaches
the ongoing deadline. A server is inactive if there are no pending jobs to serve; or the
server has no capacity to be reclaimed by other servers. State transitions are determined
by the arrival of a new job, capacity exhaustion, or the non-existence of pending jobs at
replenishment time. An important aspect of non-isolated servers is that it is not guaranteed
that a task τj served by a non-isolated server Sj can execute Qj for every period Tj since a
portion of the reserved capacity Qj can be stolen by one or several active overloaded servers
(see Inactive non-isolated capacity steal below).

When a job Ji ,j served by a server Ss is released at time t the scheduler executes one of the
following steps:

• When a job Ji ,j arrives and is attached to an inactive server Ss , Ss becomes active and
is inserted into the ready queue. If the job Ji ,j , arrived at ai ,j , and before the server’s
deadline ds,j , such that ai ,j < dsj , the job is served with the ongoing server deadline
ds,j and using the current capacity cs . If the Ji ,j is released after the server’s deadline
ds,j , the capacity is replenished to the maximum budget cs = Qs , a new deadline is
generated ds,j = max{ai ,j , ds,j−1} + Ti , the replenishment time is updated rs = ds,j
and the residual capacity is set to rc = 0.

• if Ss is active and already executing pending work, the new job is inserted in the
server’s queue and served later.

An active server (Ss) has the following set of rules to perform budget allocation:

• Residual capacity reclaim - Ss points to the earliest deadline server Sp from the set
of eligible active servers Ar for capacity reclaiming. Ss uses the residual capacity rpk ,
running with the deadline of the pointed server. When reaching exhaustion or Sp
deadline and there is pending work, Ss disconnects from the pointed server and selects
the next available server.

• Dedicated capacity consumption - when all residual capacity eligible from the set of
active servers Ar is exhausted and the job is not completed, Ss consumes its own
reserved capacity csk either until job completion or csk exhaustion.

• Inactive non-isolated capacity steal - when the capacity csk is exhausted and there is
still pending work to do, Ss connects to the earliest deadline server Sp from the set
of eligible inactive non-isolated server Is to steal its capacity cpk , running with its own
deadline d sk .

When Ss completes its pending work and its capacity is not exhausted cs > 0, Ss releases
its remaining budget as residual capacity rs = cs and sets cs to zero. The released residual
capacity can then be reclaimed by eligible active servers either until Ss current deadline or
rs exhaustion.

2Budget allocation mechanism is a algorithm responsible for assigning a server where the capacity is going
to be consumed.



2.7. Summary 15

2.7 Summary

This chapter described the required context and theoretical details to allow the reader to
comprehend the implementation presented in chapter 5. With this context, the reader can
understand that there are systems which are developed to guarantee worst-case response
times and average-case response times to critical and non-critical events, respectively.

Additionally, an introduction to the temporal isolation mechanisms that exist to cope with
mixed criticality systems is presented, in particular, an analysis of both CBS and CSS is
specified. These algorithms implement the concept of reservation based scheduling, where a
fraction of the CPU is allocated for the scheduling of non-critical activities and the remain-
ing reserved for critical activities (ensuring the temporal non-interference between reserved
fractions).
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Chapter 3

Value Analysis

The term value analysis was originally introduced as an accident of necessity during World
War II, when the administration of the American company General Electric noticed that,
while seeking substitutes for their shortages of skilled labour, raw materials, and component
parts, these substitutions often reduced costs, improved products or even both. In simple
and objective terms, value analysis is a managerial decision-making process to assess how
to increase the value of a product or service at the lowest cost, without sacrificing quality.
This systematic process is divided into the following phases: (i) orientation; (ii) information;
(iii) innovation; (iv) evaluation; and (v) implementation

This chapter specifies the techniques used throughout this systematic process, the business
value and the value generated by the solution presented in this dissertation.

3.1 Innovation process

The value analysis innovation process can be divided into three domains: the Fuzzy Front
End (FFE), the New Product Development (NPD) and the commercialization, see Figure
3.1.

Figure 3.1: Innovation process.
Image credit: (Dimitrijevic 2014)
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Despite the positive outcome of the FFE innovation method, the FFE stymied due to the
difficulty of comparing this method across companies. There was a lack of standardized
language and vocabulary, Nonaka et al. even alleged in (Krogh, Ichijo, and Nonaka 2000)
that it could be impossible to acquire new knowledge and create distinctions between different
phases of the process due to the lack of standardization. To solve this defect, Koen et al.
presented in (Koen et al. 2001) a new theoretical construct to provide insight and common
language for the FFE, the NCD.

3.1.1 New Concept Development

This new model emerged as the solution for the non-standardized language of the FFE model.
The NCD model, Figure 3.2, specifies common terms and definition of the key elements
of the FFE. It follows a circular and interactive flow as ideas and concepts are expected to
go over all defined elements. The arrows pointing to the model represent starting points
and illustrates that projects begin at either opportunity identification or idea generation and
enrichment. The exiting arrow represents how concepts leave the model and enter the NPD
process. NCD is divided into three key parts:

Figure 3.2: New Concept Development model.
Image credit: (Koen et al. 2001)

1. The engine - Is the center of the model, it accounts for the leadership, culture, business
strategy, and overall management issues that drive the five elements of the front end;

2. Inner spoke - Specifies the FFE five controllable elements:

(a) Opportunity identification - Identification of any business or technical that may
solve obstacles and generate market advantages. The opportunities are identified
according to the need of resources, technology on business processes;

(b) Opportunity analysis - Analysis and assessment of the opportunities previously
identified;
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(c) Idea generation and enrichment- Evolutionary process were opportunities are
transformed into mature and concrete product ideas. This phase includes brain-
storming sessions and idea banks;

(d) Idea selection - Assessment of the generated ideas and selection of the ones
with higher prospect according to the organization criteria. Typical criteria are:
financial risk; product market share; development risks and future revenue;

(e) Concept definition - Final stage of the NCD and only exit to the NPD. It consists
on the specification of an investment case with quantitative and qualitative infor-
mation (e.g., market potential, needs of the client and the market, commercial
and technical risk aspects, objectives and other) to present for the decision of
pursue and invest into the new idea.

3. Influencing factors - Factors that that may affect the innovation process, such as:
organization capabilities, distribution channels, law, government policies, economic
climate and technological capabilities and internal know-how.

Applying the five key elements of the NCD process to the solution proposed:

1. Opportunity identification - The digital instrumentation clusters of two wheeler vehicles
have seen a recent breakthrough and with improvements in connectivity, control and
information. Despite all the safety concerns and validation, the new features being
developed for are always increasing and safety must follow. The opportunity identified
is to develop a safe solution expanding the critical functionalities, such as ADAS
features;

2. Opportunity analysis - The analysis focused on how a solution could increase the
responsibilities of the cluster without jeopardizing the safety of the driver and how
OEMs could guarantee that the system does not overload. The full system and known
similar technologies have been studied to ease the idea generation phase;

3. Idea generation and enrichment - This step started by identifying on which partition a
new solution could add more value to the final product. Based on the current author
knowledge, no other technology could easily and swiftly replace AUTOSAR on the first
partition, so ideas were created based on how to boost safety and throughput into the
second partition and still be able to expand the existing functionalities. Two main
ideas emerged: (i) update general purpose linux kernel to schedule and guarantee hard
real-time tasks; (ii) identify a hard RTOS and adjust it to schedule the multimedia
and connectivity features (non-critical activities);

4. Idea selection - After an analysis on both ideas, the selected one is to adapt an hard
RTOS. This idea can be safer on the long run as intensive testing and validation
already exists and the selected RTOS may already have proven itself on different
critical products;

5. Concept definition - On this phase, the operating system and the schedulers are chosen.
As this is simply a proof of concept, the remaining operating system support, namely
video and audio frameworks, are out of this project scope.
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3.2 Value

In (S. Nicola and Ferreira 2012), the authors stated that value creation is key to any business
and that all types of business activities are about exchanging some tangible and/or intangible
good or service and having its value accepted and rewarded by customers or clients. This
high praised business key is the fundamental foundation for a positive economical growth and
sustainability. Value can be seen as the ratio between the benefits and the costs, (Holbrook
1999), where the benefits might include monetary revenue and sales increase, competitive
advantage and even intangible benefits such as employee and client safety, morale and loyalty.
On the other hand, the costs can represent potential risks, investments, intangible costs,
and direct and indirect costs.

Table 3.1 represents the benefits and costs of the proposed solution for both the customer
and selling entity.

Benefits

Safety;
Usability;
Reliability;
Hazards avoidance;
Reduction of failures ppm;
Platform with enormous portability and margin to expand;

Costs
Software tools readjustment;
Initial investment on team training;
High acquisition cost as it is not an individual product;
Effort on schedulability analysis and static code analysis;
Communication and multimedia latency increase in overload corner cases

Table 3.1: Benefits and Costs of the proposed solution

3.2.1 Customer Value

Customer value can be seen as the potential rating of a product or service for the needs
and satisfaction of the client as compared to the possible alternatives. In (Woodall 2003)
Woodall stated that the value for the consumer is the customer personal perception of
advantage acquired with a product or service, and this advantage results from any weighted
combination of costs and benefits over time.

The advantage perceived by the customer for the proposed solution occurs from the ratio
between its benefits and costs or sacrifices for himself. As the cluster is directly sold as
a component of the motorcycle, the initial cost can be relatively high and the positive
outcome of the value ratio might be difficult to be achieved at the acquisition moment and
initial uses. The essential positive outcome will arise on long term uses, as crucial features
(such as ADAS) will be safer and have higher responsibilities and thus ease the dangers for
the customer.
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3.2.2 Perceived Value

The meaning of perceived value can somewhat be extremely similar to the meaning of
customer value, perceived value is the customer’s own perception of a product’s benefit or
desirability to them, especially in comparison to a competitor’s product. To reinforce this
mindset, (Zeithaml 1988) stated that the "... perceived value is the consumer’s overall
assessment of the utility of a product based on perceptions of what is received and what is
given.".

The solution proposed by this dissertation may diverge customers opinions. Many of them
will not see the advantages of having such thorough development and safety concerns, and
the major blocker will be the increased cluster price. Nevertheless, other customers will
realize the safety improvement, specially on the long run, and thus approve this solution
which enhances the possibility of ADAS features and consequently reduce the chances of
rider induced accidents.

3.3 Value Proposition

Value proposition can be seen as how products and services as well as complementary value-
added services are packaged and offered to fulfil the customer needs (Kambil and Bloch
1997). A value proposition can be defined by answering the following questions:

1. What is the product ? - An enhanced RTOS with reservation based schedulers to be
integrated on two wheeler digital instrumentation clusters for increased safety. This
integration offers higher safety to drivers and a portable platform with capabilities to
increase ADAS features;

2. Who is the target customer ? - Concerning the end customer, the target is essentially
the drivers opened to digital clusters. If this solution would be implemented on the
suppliers side, OEMs searching for higher safety standards could also be included as
customers;

3. What value does the product provides ? - The value added by the proposed so-
lution is the safety increase. The solution has lower probabilities to miss any time
deadlines and, thus, the cluster may be used to share of responsibilities on processing
and displaying critical features and data.

3.4 Summary

In this chapter, the reader can perceive both the benefits and costs for the costumer, selling
entity and domain of the proposed solution. All benefits and costs are displayed and measured
by synthesizing several value analysis concepts and models, such as: (i) the NCD which
promotes and evaluates the innovation process; (ii) the value specification, where the added
benefits and costs and presented and calculated with costumer and perceived value; and
at last (iii) the value proposition, in which, the product is grouped and promoted to fulfill
costumer needs.
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Chapter 4

RTEMS

This chapter aim is to present an overview of the real-time operating system employed on
the presented solution. As introduced on chapter 1.3, RTEMS (RTEMS Classic API Guide
n.d.) is a real-time executive that supports open standard APIs such as POSIX and ITRON,
and provides to specific applications domains (e.g., space, flight, medical, networking and
many more) a high performance environment with the following dedicated features:

1. Multitasking capabilities;

2. Homogeneous and heterogeneous multiprocessor systems (i.e., Asymmetric Multipro-
cessing (AMP) and Symmetric Multiprocessing (SMP));

3. Priority-based preemptive scheduling;

4. Intertask communication and synchronization;

5. Priority inheritance;

6. Interrupt management;

7. Dynamic memory allocation;

8. High level of user configurability.

Moreover, as a result of its single address space implementation RTEMS is also regarded
as a closed RTS, whereas there is no separation between user-space and kernel-space, it
consists of a single process multi-threaded environment. Considering its internal architec-
ture, RTEMS can be regarded as a set of layered components that provides services to a
real-time application. The interface presented to the application is formed by joining direc-
tives into logical sets labelled resource managers. RTEMS Core depends on a small set of
processor dependent routines, being part of the executive core functions such as scheduling,
dispatching and object management, that are used by several managers. The co-working
of all components, as displayed in Figure 4.1, generates a powerful run time environment
that promotes the development of efficient real-time application systems. In the following
sections, further explanation of some essential managers and mechanisms is presented.

4.1 Task Manager

As referred in section 2.1, RTEMS environment is characterized by being single process multi-
task based. RTEMS employs tasks as the smallest thread of execution able to compete on
standalone manner for the system resources and are characterized by the Task Control Block
(TCB). RTEMS TCBs are C data structures allocated upon task creation and released to
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Figure 4.1: RTEMS internal architecture.
Image credit: (RTEMS Classic API Guide n.d.)

the TCB free list upon deletion. Each TCB allocated to a task contain all the information
related with the task execution (e.g., task name, ID, current priority, current and starting
states, execution mode, scheduling control structures).

As seen in Figure 4.2, RTEMS tasks can be in one of the following five states:

1. Executing - Tasks that are currently allocated to processors are in the executing state;

2. Ready - Tasks that are currently on the scheduler ready queues (according to the
scheduling policy) and can be allocated to a processor at any time;

3. Blocked - Tasks that can not be currently allocated to any CPU due to blocking
operations, namely I/O operations, blocking resource acquisition calls and synchronous
communication;

4. Dormant - Tasks created that are still waiting for starting directive invocation;

5. Non-existent - Not created or deleted task.

An active task may occupy the executing, ready, blocked or dormant states, otherwise the
task is considered non-existent.Tasks can not reference tasks in the non-existent state as
they do not have a TCB and ID allocated to it. Although dormant tasks already have TCB
and ID, they can not compete for resources and must remain in this state until a specific start
directive is invoked, upon this invocation, dormant tasks are allowed to transit into the ready
state and thus made available for processor allocation and resources competition. Executing
tasks may block themselves (e.g., I/O operations and blocking resource acquisition calls) or
blocked by other tasks in the system (e.g., using a specific directive given by RTEMS api).

4.1.1 Task Priority

In RTEMS, tasks priorities are represented by the built-in data type rtems_task_priority and
can range from 1 to 255, where 1 is considered the highest priority level and 255 the lowest.
An initial priority is given upon task creation, and can be dynamically updated according to
the scheduling policy or upon specific RTEMS API invocation.
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Figure 4.2: RTEMS task state transitions.
Image credit: (RTEMS Classic API Guide n.d.)

4.1.2 Task Modes

RTEMS tasks are additionally characterized by an execution mode that allows the application
to modify the scheduling process and the task run time environment. The execution mode
is specified through the combination of the following components:

1. Preemption - Allows a task to determine when control of the processor is relinquished.
If preemption is disabled, the task will retain control of the processor as long as it
is in the executing state. If preemption is enabled, then the task only controls the
processor until a higher priority task is made ready;

2. Time slicing - Used by the RTEMS scheduler to determine how the processor is allo-
cated to tasks of equal priority. If time slicing is enabled, RTEMS will limit the amount
of time the task can execute before the CPU is allocated to another ready task of
equal priority. If disabled, the task will be allowed to execute until a task with higher
priority is made ready;

3. Asynchronous Service Routines (ASR) processing - Used to determine when received
signals are to be processed by the task. If ASR processing is enabled, the signals
sent to a specific task shall be processed the next time the task executes. If disabled,
all signals received by the specified task shall remain posted until signal processing is
enabled;

4. Interrupt level - Used to specify which interrupts are allowed when the task is running.
In RTEMS, 256 interrupt levels are supported and mapped to the target processor’s
interrupt levels.
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4.2 Memory Management

In RTEMS (RTEMS Classic API Guide n.d.), memory management operations can be
grouped into dynamic memory allocation and address translation, whereas dynamic memory
allocation is employed by user applications whose memory requirements vary dynamically.
Alternatively, address translation is used by applications which share memory with another
processing target.

For these memory operations, three managers are provided by the operating system. The
first one, partition manager, provides directives to manage pools of fixed size entities
such as Resource Control Blocks (RCBs). The second manager, the region manager,
gives a general memory allocation scheme in which variable size blocks of memory can
be dynamically obtained and freed by the application. At last, the dual-ported memory
manager provides support for address translation between internal and external dual-ported
RAM address space.

4.3 Communication and Synchronization

In the real-time domain, communication and synchronization mechanisms are crucial to
attain some of the system requirements. In RTEMS, a vast majority of provided managers
are capable of providing a basic scheme of communication and/or synchronization, though,
some managers are dedicated for this purpose and grant mechanisms to match the required
needs, namely:

1. Semaphore - This manager allows the creation and management of semaphores, both
binary and counting semaphores are supported;

2. Message Queue - The message manager supports both communication and synchro-
nization by passing messages among tasks and interrupts;

3. Event - Provides a high performance synchronization mechanism;

4. Signal - Commonly employed for exception handling, it provides ASR communication.

4.4 Rate Monotonic Manager

To create and use periodic tasks in RTEMS, users have to employ the Rate Monotonic (RM)
manager which has as only goal the handling of the periodic behaviour of tasks. This includes
information about task execution which can then be used to collect data that allows the user
to analyze and tune the application. To clarify, RM manager is not the scheduler per se,
it only provides the means that allows one to handle periodic requests. RTEMS provides a
plugin framework which supports multiple scheduling algorithms, allowing the user to choose
one to use in their application at link-time.

4.5 Scheduling

As referred in section 2.3, scheduling is an essential component of any real-time system
as it dictates the capability of the system to provide responses to external stimulus within
given timing requirements. As part of the vast user configurability provided by RTEMS,
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several scheduling algorithms are available for user selection in both uniprocessor and SMP1

architectures. Even if the given extended scheduling support is not most suitable for the
user use case requirements, RTEMS additionally facilitates through its plugin framework the
implementation and configuration of custom schedulers (RTEMS Classic API Guide n.d.).
Sections 4.5.1 and 4.5.2 present an overview of the current RTEMS schedulers.

4.5.1 Uniprocessor Scheduling

In uniprocessor platforms, RTEMS presents four priority based schedulers: the Deterministic
Priority scheduler, Simple Priority scheduler, EDF scheduler, and the CBS scheduler.

Deterministic Priority Scheduler

The Deterministic Priority scheduler is regarded as the default uniprocessor scheduler, used if
no other is selected by the user at link-time. It has always been in RTEMS and was recently
modified to suit into the operating system plugin framework. This preemptive priority based
scheduler uses an array of FIFO queues in which each queue corresponds to one of the
256 priority levels (maximum priority level range, it can be configured to less upon user
choice). The queues are employed to buffer the ready tasks and order them according to
their priorities. Similar to all priority based schedulers, it selects the highest priority task to
execute.

Simple Priority Scheduler

The Simple Priority scheduler behaviour is extremely similar to the Deterministic Priority
scheduler, though it diverges as it only uses one queue to manage all ready tasks. When
a task transits into the ready state, the scheduler performs a linear search on the queue
to determine where to insert the task. (RTEMS Classic API Guide n.d.) cites that this
algorithm uses much less memory resources when compared to the Deterministic Priority
scheduler even though its space complexity is O(n), where n is the number of ready tasks.

Earliest Deadline First Scheduler

This dynamic priority based scheduler is an alternative scheduling policy for single-core appli-
cations with a CPU utilization that can theoretically reach 100%. In RTEMS, EDF assumes
the following two distinct types of task priority: deadline-driven priorities for periodic tasks
(tasks which employ the RM manager to create and manage the period), and background
priorities for aperiodic tasks (the application defined priority for the task is used). Aperiodic
tasks have a lower importance than the deadline-driven tasks.

Constant Bandwidth Server Scheduler

As mentioned in (RTEMS Classic API Guide n.d.), RTEMS implements a version of the
CBS scheduler that works as a budget aware extension of EDF with the intention of reserving
computation time for all jobs of a given task. The aim of this implementation is to guarantee
temporal isolation of tasks meaning that a task’s execution in terms of meeting deadlines
must not be influenced by other tasks. To attain this goal, RTEMS current implementation
specifies that each task can be assigned a server, where the server is characterized by

1multiprocessor architectures in which all the processors are homogeneous and treated equally by the
operating system



28 Chapter 4. RTEMS

period, which is equal to its deadline, and a computational time (budget). Furthermore,
(RTEMS Classic API Guide n.d.) defines rules for the current version, task cannot exceed
their registered budget and can not be scheduled when the ratio between remaining budget
and remaining deadline is higher than declared bandwidth.

The developer can interact with the scheduler through a special API allowing tasks to indicate
their scheduling parameters through the following CBS directives:

• Initialize the scheduler: rtems_cbs_initialize.

• Create servers: rtems_cbs_create_server.

• Attach a task to a server: rtems_cbs_attach_thread.

• Detach a task from a server: rtems_cbs_detach_thread.

• Destroy a server and subsequently detach all the associated tasks: rtems_cbs_destroy_server.

• Set the server Ss parameters (Qs , Ts) : rtems_cbs_set_parameters.

Current RTEMS implementation has an unexpected way to handle situations where a job
exceeds the budget which does not follow the original paper (Abeni and G. Buttazzo 1998).
In the original paper, when a job Ji ,j served by a server Ss exceeds the allowed computational
time cs the server must replenish the budget and postpone its deadline. However this is not
the case for the CBS implementation in RTEMS since it neither replenishes the budget
nor updates the deadline. Instead, it puts the priority of the task to background execution
which unfortunately affects the job’s execution time, and consequently delays its completion.
Another limitation of the current implementation is that a server can only have one task
attached to it.

4.5.2 Symmetric Multiprocessing Scheduling

For SMP platforms, RTEMS presents four priority based schedulers: the Deterministic Pri-
ority SMP scheduler, Simple Priority SMP scheduler, EDF SMP scheduler, and the Arbitrary
Processor Affinity Priority SMP scheduler. The Deterministic Priority SMP scheduler and
the Simple Priority SMP scheduler will not be further detailed as the concept remains the
same on both SMP and uniprocessor targets.

The Earliest Deadline First SMP scheduler is considered as the default scheduling policy
when more than one CPU is configured. In this policy, task processor affinities of one-
to-one and one-to-all are supported (i.e., task can execute on exactly one processor or all
processors managed by the scheduler instance). When choosing an one-to-all affinity, the
set of processors shall contain all online CPUs.

The Arbitrary Processor Affinity Priority SMP scheduler is a fixed-priority scheduler that
uses one queue per priority level for the ready tasks (similar to the Deterministic Priority
policy). It supports arbitrary task CPU affinities, allowing a task to execute only on certain
processors, depending on the processors set configuration (i.e., a task can be configured to
execute only on a specific set of processors, one-to-n affinity where 1 6 n 6 MAX_CPU).

4.6 Summary

This chapter presented the domains in which RTEMS is employed and its key managers.
The most important managers are the task manager as it manages task states, the rate
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monotonic manager since it specifies how periodic tasks are created and managed, and
finally the scheduling mechanisms as it specifies the RTEMS priority based schedulers.
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Chapter 5

Implementation

The main objective of this work is to present a reliable solution for mixed-criticality systems
that differ from GPOS with enforced real-time capabilities. Aligned with this objective, it has
been assumed that adapting a hard RTOS that has already been qualified and tested for some
of the most critical environments (RTEMS SMP Qualification n.d.) into automotive mixed-
criticality systems could have a considerable positive outcome. The domain adaptation is
performed by implementing two reservation based schemes, CBS and CSS, that act as an
upper scheduling layer of EDF and allows multimedia and communication activities to coexist
with critical tasks.This chapter is divided into two sections, where each section presents a
technical overview and scheduling example for one of the mechanisms.

5.1 Constant Bandwidth Server

For CBS, the proposed implementation focuses on adjusting the current upstream CBS
implementation, regarded as HARD-CBS, to behave as described in the original paper (Abeni
and G. Buttazzo 1998) by correcting the following: (i) number of tasks served by a server;
and (ii) the scheduler behaviour when a job exceeds its reserved capacity. These adjustments
enhance the QoS for soft real-time activities, allowing them to run freely without interfering
on the correct completion of hard real-time activities as long the fraction of CPU time
dedicated for such, noted as Us , and the fraction reserved for hard real-time tasks, Up, are
schedulable:

Us + Up 6 1

On the current upstream implementation, a server can only be attached to one task as it
does not define a data structure to buffer the released jobs from multiple tasks. To solve
this limitation, this presented solution proposes a redefinition of the server structures and
scheduler node (scheduler specialization for per-thread data) to encompass a binary searching
red-black tree to buffer the released jobs. Furthermore, this use of a red-black tree improves
efficiency as jobs are ordered based on their absolute deadline, though no job preemption can
occur on server context, i.e., if a new job released and enqueued into the server red-black
tree becomes the server’s heir (head of the tree), the server will only schedule it if there is
no job being currently served, if there is, the new heir will wait until either the completion
or blocking of the current served job. Appendix A.1 displays the redefined CBS structures.
The following subsections present the proposed primary CBS scheduling mechanisms.
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5.1.1 Release

On the original implementation, when a job of a given task is released by the RM manager
1, it is directly released into EDF context, meaning that no further instructions were given
on CBS context. The proposed implementation redefines this release behavior. Figure 5.1
displays the proposed behavior, in which, when a job of a given task is released, it will only
be released into EDF context if it has no CBS server attached to it, otherwise, the release
is purely handled by the CBS scheduler.

Figure 5.1: CBS job release

When a task releases a job with a server attached, the scheduler behavior depends on the
task state, if the task is on blocked state2 the scheduler only caches the new job absolute

1RTEMS manager responsible for the management of deadline-driven tasks
2State after a regular rate-monotonic release
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deadline and further processing is performed on the unblock operation. On the other hand,
if the task is in ready state (occurs when the rate-monotonic period is immediately initiated
by either being expired3 or never initiated4) the scheduler performs either an expired release
or an active release. Appendix A.2 displays the listing for the CBS release.

On an expired release (see Figure 5.25), where the server’s current served task is the owner
of the released job, the scheduler needs to update the task’s red-black node key. In order
to update the node key, it extracts and re-enqueues the red-black node into the server’s
red-black tree. Once the server’s red-black tree is updated, the scheduler retrieves the heir
(through the _RBTree_Minimum() call) and verifies if it is the expired task, if so, it
performs the budget allocation operation (see subsection 5.1.4), otherwise, if there is a new
heir, the scheduler performs the schedule operations and blocks the current task.

Figure 5.2: CBS expired job release

As depicted in Figure 5.1, on an active release the red-black tree node is enqueued and if the
task’s job is the new heir, the scheduler performs the update heir operation. The Update
heir operation, represented in Figure 5.3, invokes the budget allocation mechanism (denoted
as CBS Schedule Body) and performs the EDF unblock if the task is still to be enqueued
in EDF ready red-black tree.

3Job release after a deadline miss occurred
4First RM period creation
5alt, opt and ref are sequence fragments employed to create and maintain accurate sequence diagram,

and respectively describe alternative scenarios of a workflow, an optional step in workflow, and an interaction
defined on another representation.
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Figure 5.3: CBS update heir

5.1.2 Unblock

When a task state changes from any blocking state into the ready state, the unblock oper-
ation is executed. In other schedulers, such as EDF, this operation is used to enqueue the
task into their chain policy and update the heir if required, following this approach, CBS
unblock implementation performs the same operations. As seen in Figure 5.4, if a job with
a server attached to it is unblocked, it is enqueued into the server red-black tree and if the
server is IDLE and the job is the new server heir, the update heir mechanism is executed.

Figure 5.4: CBS unblock

5.1.3 Block

The block operation is executed when a task state change occurs and the previous state was
the ready state. The proposed implementation, depicted in Figure 5.5, forwards directly hard
real-time tasks into the scheduler generic block, which extracts the task from EDF red-black
tree and schedules EDF new heir. Tasks with a server attached have extra steps before the
generic block. These steps include the extraction of the task’s red-black node from the
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server’s red-black tree and if the task’s job being blocked was the current one being served,
the scheduler caches the server remaining budget (the fraction of CPU time consumed by the
job is removed from the server remaining budget) and the schedule mechanism is invoked.

Figure 5.5: CBS block

The schedule operation is a simple mechanism invoked when a served job is blocked, com-
pleted or can not be served (not heir in the expired release case) where the scheduler retrieves
the heir and performs the update heir operation, see Figure 5.6.

Figure 5.6: CBS schedule

5.1.4 Budget Allocation

As depicted in the flowchart displayed in Figure 5.7, the proposed CBS budget allocation
mechanism is essentially responsible for the following operations:

1. Verify if the server needs to be replenished. A CBS replenishment generates a new
server’s deadline and restores the its capacity, it occurs when the server’s capacity is
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exhausted cs = 0 or when the deadline has been passed ds ≤ T (given time since boot
in ticks);

2. Assignment of the server’s current budget as the job time quantum6;

3. Assign server’s deadline as the new job priority and propagate it.

Figure 5.7: CBS budget allocation

5.1.5 Budget Callout

In RTEMS, the basic unit of time is known as a clock tick or simply tick. The tick interval de-
fines the basic resolution of all interval and calendar time operations, and it is defined by the
application configuration. At each tick, a tick handler is invoked (see appendix A.3), where
if a budget algorithm is employed, the time quantum that the task is able to consume is de-
creased and, in the case of CBS (THREAD_CPU_BUDGET_ALGORITHM_CALLOUT
is declared as budget algorithm) a budget callout is invoked when the time quantum is ex-
hausted.

6cpu_time_budget member in the TCB, defines the maximum interval of time a job can execute
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The CBS callout function replenishes the server budget, generates a new server deadline
based on the previous deadline, allocates the job time quantum based on the server budget,
and finally updates the job priority and propagates it to EDF through the implicit call to the
scheduler update priority. See appendix A.4 for further details concerning the CBS callout
function.

5.1.6 Example

To provide a thorough understanding of the proposed CBS behavior, Figure 5.8 illustrates a
possible execution with the following periodic task set:

1. Server Si characterized by (Qi , Ti) = (3, 8);

2. Hard real-time task characterized with WCET, minimum interarrival time and release
time: tz = (1, 6, 0);

3. Soft real time tasks characterized with average execution times, minimum interarrival
times and release times: tj = (1, 4, 2), tk = (2, 5, 1).

A delay is introduced in the release times to simulate RTEMS behavior when creating periodic
tasks (tasks are initially aperiodic and acquire a period and a deadline-driven priority when
the period is created through the RM manager and the active release performed).

Figure 5.8: CBS scheduling example

At time 4, server Si has already exhausted all its capacity ci = 0, so when tj and tk are
released again at time 6, Si advances its replenishment ci = Qi and postpones its absolute
deadline di ,s = di ,s−1 + Ti (new deadline denoted d2 in Figure 5.8) to have budget to serve
the demanding jobs, this situation occurs again at time 10 and 14. With this example, it is
important to display at time 6 the benefit of employing a deadline ordered red-black tree as
job tj and tk are released at the same time and tj will be the first one to be served since it
has the shortest job deadline.

Moreover, despite the fact that the hard real-time task tz has the longest periodicity and
consequently deadline (only implicit deadlines are defined in RTEMS) among the task set,
soft activities ,tj and tk , do not interfere in the completion of tz since they run under
server context (which by designed has a defined period higher than tz) and due to the early
replenishment policy the server deadline is postponed thus reducing the jobs priority and
avoiding any interference on the apriori guarantee of tz .
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5.2 Capacity Sharing and Stealing

For CSS (Nogueira and Pinho 2007), the goal is the same as the one presented in 5.1,
provide QoS for soft real-time activities without jeopardizing any hard real-time guarantee.
CSS distinguishes himself from CBS as it enhances its abilities to efficiently handle overloaded
servers and reduce the mean tardiness of periodic guaranteed jobs. CSS benefits are achieved
by defining two different types of servers (isolated and non-isolated) in which overloaded
servers can reclaim and steal capacity from other servers, and finally through the budget
recharging suspension until replenishment time.

The proposed solution presents two additional data structures, red-black trees, to manage
the set of active server with positive residual capacity and the set of inactive non-isolated
servers. These red-black trees are further discussed in subsection 5.2.1 as they are used in
the budget allocation mechanism to define the capacity that can be assigned as the job time
quantum. Similar to the proposed CBS work, this implementation also employs a red-black
tree per server to buffer ready jobs.

The following Subsections present the technical details of some mechanisms implemented
for CSS.

5.2.1 Budget Allocation

In the proposed implementation, the CSS budget allocation mechanism is the scheduler core
component as it is here that the main contribution of CSS is implemented, the capacity
of a overloaded server to acquire extra bandwidth from two additional sources: (i) residual
capacity reclaiming, see 5.2.2, when a server performs an early completion; and (ii) capacity
stealing, see 5.2.3, from inactive non-isolated servers used to schedule aperiodic jobs on a
best-effort manner.

As depicted in Figure 5.9, when a server Si is selected to schedule a job and performs
budget allocation, the scheduler starts by verifying if the replenishment time (equivalent to
the deadline ri == di) of Si has been reached, if so, the server budget is recharged and
a new deadline is generated. Following the possible replenishment, the scheduler tries to
define the job time quantum, for such, it initially performs the residual budget reclaiming to
confirm if there is any server on the set of eligible idle active servers (denoted as Ar ). If
there is, the budget is allocated and the job deadline defined, otherwise the scheduler verifies
if it still has capacity ci > 0. If there is none residual capacity from the set Ar and ci > 0,
the scheduler uses its own capacity and deadline to execute the job, otherwise, it tries to
steal capacity from the set of inactive non-isolated servers (denoted Is) as last resource.

At last, if there is non eligible servers from the set Is , the job served by Si is blocked until
Si replenishment time, moment in which the timer is triggered and the job is unblocked and
the budget allocation mechanism performed once again, important to cite that other jobs
being released and/or unblocked from the set of tasks attached to this server will not be
scheduled but only enqueued into the red-black tree as the server’s cur rent_task member
is assigned to the blocked job (this removes the overhead of having to confirm at every tick
if a blocked server reached its replenishment time). If the scheduler successfully defined the
time quantum from any of the tree available capacity sources, the job priority is updated
based. Appendix A.5 displays the budget allocation listing.
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Figure 5.9: CSS budget allocation

5.2.2 Budget Reclaiming

One of the mechanisms that enhances CSS when compared to other reservation based
schemes is its capacity to reclaim active server’s residual capacity generated from early
completions. When a server Si is performing the budget allocation mechanism, it initially
looks in the set of active servers with residual capacity Ar , defined in this implementation
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as a red-black tree ordered by deadline and described as Ar = {Sr |Sr ∈ A, dr > t, cr > 0},
where t is the given time since boot in ticks and A the set of servers defined in the system.
As displayed in Figure 5.10, Si will only reclaim capacity from servers with early completion if
in the set Ar exists a server Sr which complies with following rules: (i) has residual capacity
and its deadline is still active, if a server does not comply with this rule it is extracted from
the red-black tree; (ii) Sr is not currently serving as the accounting server for an active busy
server; (iii) Si has an higher priority (shortest deadline) than the current server retrieved
from Ar . Appendix A.6 displays the budget reclaiming listing.

Figure 5.10: CSS budget reclaiming

5.2.3 Budget Stealing

When a server Si has pending work and there is neither residual capacity from early com-
pletion to reclaim nor own capacity available ci = 0, Si is allowed to steal inactive non-
isolated capacity. In RTEMS, the set of inactive non-isolated servers Is is defined as
a red-black tree ordered by deadline where all inactive non-isolated servers are inserted
Is = {Ss |Ss ∈ I, Ys == 1}, I represent the set of inactive servers and Ys the server’s type.
As displayed in Figure 5.11, Si connects to the earliest server eligible in Is that complies with
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the following rules: (i) Si deadline is shortest (higher priority) than Ss ; (ii) Ss is not serving
as the accounting server of an active busy server; (iii) if Ss replenishment is required, its new
priority shall be lower (longest deadline) than Si ; (iv) shall have positive residual capacity
cs > 0. Appendix A.7 displays the budget stealing listing.

Figure 5.11: CSS budget stealing
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5.2.4 Budget Callout

This follows the same principle as 5.1.5, at each tick a function is invoked where the task
time quantum is decreased and when it reaches 0 a specified callback is invoked, for CSS,
the callback is _Scheduler_CSS_Budget_cal lout. The CSS budget callout function,
essentially invokes the budget accounting mechanism (to try to define a new time quantum
for the task) and if the server is using an additional source of bandwidth, it manages the
accounting server. See CSS budget callout listing in appendix A.8.

5.2.5 Schedule

Similar to CBS, the CSS schedule operation is only invoked when a served job is blocked,
completed or can not be served (not heir in the expired release case). When invoked, the
schedule operation retrieves the heir and schedules it. If there is no heir, the scheduler tries
to insert the server into Ar , if not possible, it changes the server’s state to inactive and if
its a non-isolated server the scheduler inserts it into Is .

5.2.6 Release

The CSS release implementation only contrasts from the CBS implementation by performing
the server activation on active releases (see active release definition in subsection 5.1.1).
The server activation, see listing in appendix A.10 for further details, serves two essential
purposes: (i) enable a server that is in an inactive state; and (ii) remove a server from
any red-black tree of additional bandwidth (idle active servers with residual budget Ar and
inactive non-isolated servers Is). When removing a server from a red-black tree of additional
bandwidth, the scheduler needs to confirm if the server’s capacity is currently being shared,
if it is, the sharing is stopped and budget allocation performed on the task that just lost its
accounting server.

Concerning job releases for servers that are blocked until replenishment time, it is impossible
to a job to perform an expired release for blocked servers, and for active releases the job
is only inserted in the red-black tree as the server’s current task is the heir that has been
blocked with the server.

5.2.7 Unblock

The major differences between CSS and CBS unblock operation (see Subsection 5.1.2) are
the unblocking of jobs that are waiting for the server’s replenishment time and server’s
activation. When a job that was waiting for the server’s replenishment time is unblocked
(means that the server’s replenishment time has arrived), the update heir operation is called
to essentially perform the budget allocation mechanism.

5.2.8 Block

Block operation for CSS behaves like the CBS blocking, the differences lie when a server
and job are blocked until the replenishment time. When a server and, consequently, the heir
job that is still to be inserted into EDF ready context are blocked until timeout, the CSS
blocking mechanism invokes directly the EDF schedule body operation (this allows system
threads to be executed in case there is none application task as EDF heir). When the job
being blocked until server’s replenishment time is EDF heir, the generic block is executed.
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Figure 5.12: CSS unblock

Figure 5.13: CSS block

5.2.9 Example

To fully comprehend CSS behaviour, Figure 5.14 illustrates a possible execution where over-
loads are handled by either using residual capacities or by stealing capacities of inactive
non-isolated servers without postponing deadlines. The task set is the following:

1. Isolated servers characterized by reserved capacity and minimum interarrival times: Sa
= (2,9), Sb = (3,9);
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2. Non-isolated server characterized with reserved capacity and minimum interarrival
times: Sc = (1,4);

3. Soft real-time periodic tasks characterized with average execution times and minimum
interarrival times: tj = (1,7), tk = (2,7);

4. Hard real-time periodic task characterized with WCET and minimum interarrival time:
tz = (1,6).

A delay is also introduced in these release times to simulate RTEMS behavior when creating
periodic tasks.

Figure 5.14: CSS scheduling example

At time 3, the server Sa is able to reclaim capacity from Sb to serve the new released job
jj,1, this available residual capacity originates from the early completion of job jk,1. At time
8, a new job released jk,2 from task tk is blocked until the replenishment time of server Sb
as there is no available residual capacity, cb == 0 and the rules defined to steal capacity
from inactive non-isolated servers are not complied. At time 10, when unblocked, the job
jk,2 is scheduled with the server’s capacity. At time 13, Sa reclaims Sb residual capacity
to execute job jj,2, when completed, Sa is inserted into the red-black tree of active servers
with positive residual capacity (ca == 2). When job jk,3 is released, Sb uses the second
unit of available capacity to define a time quantum of one unit to the served job (the first
unit of Sa residual capacity is decreased at time 15 due to idle CPU). At time 16, the CSS
budget callout is invoked to redefine a new time quantum for the served job, as there is no
available residual capacity, exhausted capacity cb == 0 and Sb complies with the rules to
steal capacity form inactive non-isolated server, Sc is replenished and jk,3 is served with Sc
capacity.
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Chapter 6

Experimentation and Assessment

At the beginning of this dissertation, the performance was to be measured on a real in-
strumentation cluster with a task set composed of ADAS and communication activities
(multimedia tasks would not be implemented due to RTEMS lack of graphical frameworks
and support). The use of a cluster would help to analyze the safety increase of this proposed
solution and identify any new vulnerability. Unfortunately, when the time came to assess
the proposed algorithms, no instrumentation cluster was available, so, the measurement and
comparison of both implementations were made on a Raspberry Pi 1 Model B simulating
the hard and soft real-time activities with static task sets.

The task set used for simulation purposes is a hybrid task set consisting of the following
periodic tasks:

1. Four periodic hard real-time tasks with fixed WCET and minimum interarrival times:
ta = (8, 80), tb = (9, 90), tc = (5, 50), td = (10, 100). These parameters are fixed to
achieve the aimed utilization fraction of Up = 0.4;

2. Dynamic number (up to 5 to 10) of periodic soft real-time tasks with variable mean ex-
ecution times and minimum interarrival times. These parameters were varied between
each test to obtain the desired utilizations 0.4 ≤ Us ≤ 0.7.

3. For CBS, each soft and hard real-time parameters was tested with a dynamic number
of servers (up to 3 to 8) and parameters. The variation on the number of servers
and, consequently, the number of tasks attached to each server allowed to analyze the
performance of ordering the jobs by their deadlines.

4. For CSS, the approach used for CBS was employed. Beside varying the number of
isolated servers (up to 3 to 8), each task set was executed with a variation on the
number of non-isolated servers (up to 0 to 3) obtain average results for CSS.

For each test application a tick interval of 20000 microseconds was configured. Each task
set executed until t= 100000 ticks and was repeated 10 times to ensure the results were
consistent. The metrics used to measure the algorithms performance were the mean tardi-
ness and the average deadline misses, computed for all soft tasks, and the average length of
context switch operations. The reason for choosing these metrics is motivated by the impact
of meeting soft deadlines without jeopardizing hard tasks and to measure the impact of our
implementation in terms of overhead when there is the need to compute the additional time
required by each algorithm to perform budget allocation to the served jobs.
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Figure 6.1: CSS vs CBS.

6.1 Tardiness evaluation

Figure 6.1 shows the performance of both schedulers as a function of the system’s utilization,
measuring the mean tardiness and the average percentage of deadline misses for soft periodic
tasks under different utilizations. The results present that for lower soft tasks utilizations
CBS as a slightly better performance than CSS and stems from the behaviour of each
algorithm when the budget is exhausted. While CSS postpones a task until the server
replenishment time, which in the case of no available budget that means that it may lead to
a deadline miss, CBS updates its deadline and replenishes the budget providing the maximum
reserved capacity to the served job. On extreme cases where soft real-time tasks utilization
surpasses 100%, CBS early replenishment leads to a significant increase of deadline misses
and mean tardiness when compared to CSS.

6.2 Overhead evaluation

Table 6.1 presents the average context switch length in both schedulers, measuring it for
both soft tasks served by servers and hard tasks. These measurements were made on
scenarios where the released job would become the new heir in EDF ready red-black tree
and, consequently, be executed. The context switch length represents the time difference
between the moment in which a job is released and the moment in which EDF updates the
heir and forces the dispatch.

Using this metric it is possible to measure the additional overhead created by the budget
allocation mechanism of both algorithms and compare it to the overhead of hard real-time
tasks. As a result one can see that CSS presents a higher average overhead than CBS
(68.01 milliseconds in CSS against 54.84 in CBS). This result is higher in CSS due to the
budget allocation mechanism since it looks for remaining capacity in other servers to perform
budget accounting.
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Table 6.1: Context Switch average length (milliseconds)

Scheduler Soft jobs Hard jobs
CSS 68.01 45.04
CBS 54.84 44.45

6.3 Discussion

These results show that CBS performs better than CSS in average cases, CBS performance
is worse in extreme cases when the soft real-time utilization surpasses 100%. CSS initial
increase in deadline misses and mean tardiness can be explained by the server’s replenish-
ment suspension when there is no available capacity (the lack of capacity can derive from
the properties of the task set and the capacity stealing defined rules). Additionally, an im-
plementation detail that differs from the original CSS can also justify the initial values. In
the proposed implementation, the capacity of all servers inserted in red-black trees is de-
creased homogeneously since it is dynamically calculated from the moment in which budget
accounting is performed from its capacity, while (Nogueira and Pinho 2007) proposes to only
decrease the server with the earliest deadline when the CPU is idle. This change ensures
system schedulability by guarantying that at time t no server Ss inserted in the set of idle
active servers with positive residual capacity and the set of inactive non-isolated servers has
a budget that allows a job to overrun the server’s deadline: cs + t ≥ ds .
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Chapter 7

Conclusions and Future Work

This chapter presents the conclusions of the proposed work and additionally presents the
open points that could be implemented in the future.

7.1 Conclusion

This work proposed a solution for mixed-criticality automotive systems, where critical hard
real-time tasks coexist with multimedia and communication tasks (considered soft real-
time tasks due to their properties) within the same system. The solution’s aim was to
achieve temporal isolation in a RTOS through the implementation of two reservation-based
schemes, namely the Constant Bandwidth Server and the Capacity Sharing and Stealing,
where a fraction of the CPU is reserved for soft real-time activities, to ensure QoS for soft
activities while guaranteeing critical tasks are not jeopardize. The chosen operating system
was RTEMS due to its real-time properties and application in a multitude of domains.

The performance of both algorithms has been compared by measuring the mean tardiness,
deadline misses and the context switch overhead. CBS presented better results in average
cases, essentially due to its behaviour when the budget is exhausted. In particular, it presents
a lower overhead when performing context switch operations as a consequence of its simpler
budget allocation mechanism.

Based on the preliminary results, this work could one day be a suitable solution for a con-
siderable number of OEMs as both schedulers reasonably achieved their purpose, temporal
isolation (no interference occurred on critical activities from soft real-time tasks). Through-
out the performance analysis, it has been guaranteed that no hard real-time deadline miss
occurred (as long as the fraction of CPU reserved for hard tasks is no over the theoret-
ical maximum utilization). Despite the security increase, the notable drawback with this
proof of concept remains the lack of support and compatibility with multimedia frameworks,
the limited board support packages, the effort to rectify these limitations, and essentially
the poverty of the results (further experimentation on real instrumentation clusters with a
dedicated task set is required to ensure a possible future for this work on the automotive
domain).

7.2 Future work

As future work, an engaging work package that emerged from this work would be to im-
plement the reservation-based schemes presented in this work to SMP platforms, and ad-
ditionally, to increase the number of use cases in which these schemes could be employed,
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implement CPU affinity, i.e., a server could be attached to only one or a set of CPUs (can
only be executed on the specified set). Furthermore, due to the hazard of not having the
possibility to test this proposed solution on a real instrumentation cluster, a future work
would be to enhance the task sets and perform the measurements and comparison on a
cluster.
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Appendix A

Appendices

A.1 CBS Structures

1 /∗∗
2 ∗ Th i s s t r u c t u r e r e p r e s e n t s a t ime s e r v e r .
3 ∗/
4 t y p e d e f s t r u c t {
5 /∗∗
6 ∗ @b r i e f ID o f c u r r e n t s e r v e d t a s k .
7 ∗/
8 r tems_id cu r r e n t_ta s k_ id ;
9

10 /∗∗
11 ∗ @b r i e f S e r v e r pa r amen t e r s .
12 ∗/
13 Scheduler_CBS_Parameters p a r ame t e r s ;
14

15 /∗∗
16 ∗ @b r i e f S e r v e r d e a d l i n e unmapped .
17 ∗/
18 P r i o r i t y_Co n t r o l p r i o r i t y ;
19

20 /∗∗
21 ∗ @b r i e f S e r v e r r ema i n i n g budget .
22 ∗/
23 t ime_t rema in i ng_budget ;
24

25 /∗∗
26 ∗ @b r i e f S c h e d u l e r b a s i c c o n t e x t .
27 ∗/
28 Scheduler_CBS_Server_Context c o n t e x t ;
29

30 /∗∗
31 ∗ @b r i e f I n d i c a t e s i f t h i s CBS s e r v e r i s i n i t i a l i z e d .
32 ∗
33 ∗ @see _Scheduler_CBS_Create_server ( ) and

_Scheduler_CBS_Destroy_server ( ) .
34 ∗/
35 boo l i n i t i a l i z e d ;
36 } Scheduler_CBS_Server ;

Listing A.1: CBS server
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1 t y p e d e f s t r u c t {
2 /∗∗
3 ∗ @b r i e f Con t r o l t r e e f o r the s e r v e r a s s i g n e d t a s k s .
4 ∗/
5 RBTree_Control r e ad y ;
6 } Scheduler_CBS_Server_Context ;

Listing A.2: CBS server context

1 /∗∗
2 ∗ Th i s s t r u c t u r e h a n d l e s CBS s p e c i f i c da ta o f a t h r e a d .
3 ∗/
4 t y p e d e f s t r u c t {
5 /∗∗
6 ∗ @b r i e f EDF s c h e d u l e r s p e c i f i c da ta o f a t a s k .
7 ∗/
8 Scheduler_EDF_Node Base ;
9

10 /∗∗
11 ∗ @b r i e f CBS s e r v e r .
12 ∗/
13 Scheduler_CBS_Server ∗ S e r v e r ;
14

15 /∗∗
16 ∗ @b r i e f Task RBtree node r e l a t e d to the s e r v e r c o n t e x t .
17 ∗/
18 RBTree_Node Node ;
19

20 /∗∗
21 ∗ @b r i e f Task raw d e a d l i n e − key .
22 ∗/
23 P r i o r i t y_Co n t r o l t a s k_ p r i o r i t y ;
24

25 /∗∗
26 ∗ @b r i e f Node employed to p ropaga t e t h r e a d p r i o r i t y
27 ∗/
28 Pr i o r i t y_Node ∗ dead l i n e_node ;
29 } Scheduler_CBS_Node ;

Listing A.3: CBS scheduler node
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A.2 CBS Release

1 v o i d _Scheduler_CBS_Release_job (
2 con s t Schedu l e r_Con t r o l ∗ s c h e d u l e r ,
3 Thread_Contro l ∗ the_thread ,
4 Pr i o r i t y_Node ∗ p r i o r i t y_nod e ,
5 u in t64_t d e a d l i n e ,
6 Thread_queue_Context ∗ queue_context
7 )
8 {
9 Scheduler_CBS_Node ∗node ;

10 Scheduler_CBS_Node ∗ h e i r ;
11 Scheduler_CBS_Server ∗ s e r v_ i n f o ;
12

13 node = _Scheduler_CBS_Thread_get_node ( the_thread ) ;
14 s e r v_ i n f o = node−>Se r v e r ;
15 node−>dead l i n e_node = p r i o r i t y_n o d e ;
16

17 i f ( s e r v_ i n f o != NULL ) {
18 node−> t a s k_ p r i o r i t y = d e a d l i n e ;
19 /∗ Cu r r e n t l y r u n n i n g t h r e a d r e l e a s e s j o b i n s e r v e r con tex t −

enqueu i ng and a c c o un t i n g must be pe r f o rmed ∗/
20 i f ( _Thread_Is_ready ( the_thread ) ) {
21 i f ( s e r v_ i n f o −>cu r r e n t_ta s k_ id == the_thread −>Ob jec t . i d ) {
22 _Schedu le r_CBS_Expi red_re lease ( s c h e d u l e r , node , the_thread ) ;
23 r e t u r n ;
24 }
25

26 _Scheduler_CBS_Enqueue ( node ) ;
27

28 h e i r = _Scheduler_CBS_Node_get_heir ( s e r v_ i n f o ) ;
29 _Assert ( h e i r != NULL ) ;
30

31 i f ( s e r v_ i n f o −>cu r r e n t_ta s k_ id == −1 && h e i r == node ) {
32 _Scheduler_CBS_Update_heir ( s c h e d u l e r , h e i r , f a l s e ) ;
33 }
34 }
35 } e l s e {
36 /∗ Hard t a s k s a r e d i r e c t l y s c h e d u l e d by EDF ∗/
37 _Scheduler_EDF_Release_job (
38 s c h e d u l e r ,
39 the_thread ,
40 p r i o r i t y_nod e ,
41 d e a d l i n e ,
42 queue_context
43 ) ;
44 }
45 }

Listing A.4: CBS release
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A.3 Tick Entry

1 v o i d _Schedu l e r_de fau l t_Tick (
2 con s t Schedu l e r_Con t r o l ∗ s c h e d u l e r ,
3 Thread_Contro l ∗ e x e c u t i n g
4 )
5 {
6 ( v o i d ) s c h e d u l e r ;
7

8 /∗
9 ∗ I f t he t h r e a d i s not p r e emp t i b l e o r i s not ready , then

10 ∗ j u s t r e t u r n .
11 ∗/
12

13 i f ( ! e x e c u t i n g −> i s_p r e emp t i b l e )
14 r e t u r n ;
15

16 i f ( ! _States_Is_ready ( e x e c u t i n g −>cu r r e n t_ s t a t e ) )
17 r e t u r n ;
18

19 /∗
20 ∗ The cpu budget a l g o r i t hm de t e rm i n e s what happens ne x t .
21 ∗/
22

23 sw i t c h ( e x e c u t i n g −>budge t_a lgo r i t hm ) {
24 ca s e THREAD_CPU_BUDGET_ALGORITHM_NONE:
25 b r eak ;
26

27 ca s e THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE:
28 #i f d e f i n e d (RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE)
29 ca s e THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE:
30 #e n d i f
31 i f ( ( i n t ) (−− e x e c u t i n g −>cpu_time_budget ) <= 0 ) {
32

33 /∗
34 ∗ A y i e l d p e r f o rms the r e ad y c h a i n mechan i c s needed when
35 ∗ r e s e t t i n g a t i m e s l i c e . I f no o t h e r t h r e a d ’ s a r e r e ad y
36 ∗ at the p r i o r i t y o f the c u r r e n t l y e x e c u t i n g th r ead , then the
37 ∗ e x e c u t i n g t h r e a d ’ s t i m e s l i c e i s r e s e t . Othe rw i se , the
38 ∗ c u r r e n t l y e x e c u t i n g t h r e a d i s p l a c e d at the r e a r o f the
39 ∗ FIFO f o r t h i s p r i o r i t y and a new h e i r i s s e l e c t e d .
40 ∗/
41 _Thread_Yield ( e x e c u t i n g ) ;
42 e x e c u t i n g −>cpu_time_budget =
43 r t em s_con f i g u r a t i o n_ge t_ t i c k s_pe r_ t ime s l i c e ( ) ;
44 }
45 b r eak ;
46

47 #i f d e f i n e d (RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT)
48 ca s e THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
49 i f ( −− e x e c u t i n g −>cpu_time_budget == 0 )
50 ( ∗ e x e c u t i n g −>budg e t_ca l l o u t ) ( e x e c u t i n g ) ;
51 b r eak ;
52 #e n d i f
53 }
54 }

Listing A.5: Tick entry
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A.4 CBS Budget Callout

1 v o i d _Scheduler_CBS_Budget_cal lout (
2 Thread_Contro l ∗ the_thread
3 )
4 {
5 Scheduler_CBS_Node ∗node ;
6 Thread_queue_Context queue_context ;
7

8 node = _Scheduler_CBS_Thread_get_node ( the_thread ) ;
9

10 _Schedu le r_CBS_rep lan i sh ( node−>Se r v e r , f a l s e ) ;
11 the_thread −>cpu_time_budget = node−>Se r v e r −>rema in i ng_budge t ;
12

13 _Pr i o r i t y_Node_se t_p r i o r i t y (
14 node−>dead l i ne_node ,
15 SCHEDULER_PRIORITY_MAP( node−>Se r v e r −> p r i o r i t y )
16 ) ;
17

18 i f ( _Pr i o r i t y_Node_ i s_ac t i v e ( node−>dead l i n e_node ) ) {
19 _Thread_Pr ior i ty_changed (
20 the_thread ,
21 node−>dead l i ne_node ,
22 f a l s e ,
23 &queue_context
24 ) ;
25 } e l s e {
26 _Thread_Pr ior i ty_add ( the_thread , node−>dead l i ne_node , &

queue_context ) ;
27 }
28 }

Listing A.6: CBS budget callout
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A.5 CSS Budget Allocation
1 RTEMS_INLINE_ROUTINE boo l _Scheduler_CSS_Schedule_Body (
2 Thread_Contro l ∗ the_thread ,
3 Scheduler_CSS_Node ∗node
4 )
5 {
6 Schedu ler_CSS_Server ∗ s e r v e r ;
7 Per_CPU_Control ∗ cpu_se l f ;
8 P r i o r i t y_Co n t r o l p r i o r i t y ;
9 Thread_queue_Context queue_context ;

10 Watchdog_Inte r va l i n t e r v a l ;
11

12 s e r v e r = node−>Se r v e r ;
13 s e r v e r −>cu r r e n t_t a s k = the_thread −>Ob jec t . i d ;
14

15 i f ( s e r v e r −>d e a d l i n e <= _Watchdog_Ticks_since_boot ) {
16 _Schedu le r_CSS_Rep len i sh_serve r ( s e r v e r ) ;
17 s e r v e r −>share_data . r e cha rged_t ime = _Watchdog_Ticks_since_boot ;
18 }
19

20 i n t32_t rem_budget = _Scheduler_CSS_get_budget ( s e r v e r ) ;
21

22 i f ( _Schedu ler_CSS_budget_rec la iming ( s e r v e r ) ) {
23 p r i o r i t y = s e r v e r −>se r v e r_ac coun t i n g −>d e a d l i n e ;
24 } e l s e i f ( rem_budget > 0 ) {
25 s e r v e r −>s e r v e r_a c c o un t i n g = s e r v e r ;
26 p r i o r i t y = s e r v e r −>se r v e r_ac coun t i n g −>d e a d l i n e ;
27 } e l s e i f ( _Schedu le r_CSS_budget_stea l ing ( s e r v e r ) ) {
28 p r i o r i t y = s e r v e r −>d e a d l i n e ;
29 } e l s e {
30 /∗∗ Can not be s chedu l e d , must wa i t f o r r e p l e n h s im e n t . ∗/
31 cpu_se l f = _Thread_Get_CPU( the_thread ) ;
32 i n t e r v a l = s e r v e r −>d e a d l i n e − _Watchdog_Ticks_since_boot ;
33 _Thread_Set_state ( the_thread , STATES_BLOCKED_UNTIL_RC ) ;
34 _Thread_Wait_flags_set ( the_thread , THREAD_WAIT_STATE_BLOCKED ) ;
35 _Thread_Add_timeout_ticks ( the_thread , cpu_se l f , i n t e r v a l ) ;
36 r e t u r n f a l s e ;
37 }
38

39 the_thread −>cpu_time_budget = _Scheduler_CSS_get_budget ( s e r v e r −>
s e r v e r_a c c o un t i n g ) ;

40

41 _Pr i o r i t y_Node_se t_p r i o r i t y (
42 node−>dead l i ne_node ,
43 SCHEDULER_PRIORITY_MAP( p r i o r i t y )
44 ) ;
45

46 i f ( _Pr i o r i t y_Node_ i s_ac t i v e ( node−>dead l i n e_node ) ) {
47 _Thread_Pr ior i ty_changed (
48 the_thread ,
49 node−>dead l i ne_node ,
50 f a l s e ,
51 &queue_context
52 ) ;
53 } e l s e {
54 _Thread_Pr ior i ty_add ( the_thread , node−>dead l i ne_node , &

queue_context ) ;
55 }
56
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57 r e t u r n t r u e ;
58 }

Listing A.7: CSS budget allocation
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A.6 CSS Budget Reclaiming

1 RTEMS_INLINE_ROUTINE boo l _Schedu ler_CSS_budget_rec la iming (
2 Schedu ler_CSS_Server ∗ t h e_s e r v e r
3 )
4 {
5 RBTree_Node ∗ nex t ;
6 Schedu ler_CSS_Server ∗ s e r v e r ;
7

8 nex t = _RBTree_Minimum( &_Act i ve_Serve r s ) ;
9

10 wh i l e ( n e x t != NULL ) {
11 s e r v e r = RTEMS_CONTAINER_OF( next , Scheduler_CSS_Server , Node ) ;
12 i n t32_t rema in i ng_budge t = _Scheduler_CSS_get_budget ( s e r v e r ) ;
13

14 i f ( s e r v e r −>d e a d l i n e <= _Watchdog_Ticks_since_boot | |
r ema in i ng_budge t <= 0 ) {

15 _RBTree_Extract ( &_Act i ve_Serve r s , &s e r v e r −>Node ) ;
16 _Scheduler_CSS_set_state ( s e r v e r , f a l s e ) ;
17 nex t = _RBTree_Minimum( &_Act i ve_Serve r s ) ;
18 c o n t i n u e ;
19 }
20

21 i f ( s e r v e r −>share_data . s e r v i n g_ t a s k != −1 ) {
22 nex t = _RBTree_Successor ( ne x t ) ;
23 c o n t i n u e ;
24 }
25

26 i f ( s e r v e r −>d e a d l i n e > the_se r v e r −>d e a d l i n e ) {
27 b r eak ;
28 }
29

30 s e r v e r −>share_data . s e r v i n g_ t a s k = the_se r v e r −>cu r r e n t_t a s k ;
31 t he_se r v e r −>s e r v e r_a c c o un t i n g = s e r v e r ;
32 r e t u r n t r u e ;
33 } ;
34

35 r e t u r n f a l s e ;
36 }

Listing A.8: CSS budget reclaiming
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A.7 CSS Budget Stealing

1 RTEMS_INLINE_ROUTINE boo l _Schedu le r_CSS_budget_stea l ing (
2 Schedu ler_CSS_Server ∗ t h e_s e r v e r
3 )
4 {
5 RBTree_Node ∗ nex t ;
6 Schedu ler_CSS_Server ∗ s e r v e r ;
7

8 nex t = _RBTree_Minimum( &_Inac t i v e_NI_Se rve r s ) ;
9

10 wh i l e ( n e x t != NULL ) {
11 s e r v e r = RTEMS_CONTAINER_OF( next , Scheduler_CSS_Server , Node ) ;
12

13 i f ( s e r v e r −>d e a d l i n e > the_se r v e r −>d e a d l i n e )
14 b r eak ;
15

16 i f ( s e r v e r −>share_data . s e r v i n g_ t a s k != −1 ) {
17 nex t = _RBTree_Successor ( ne x t ) ;
18 c o n t i n u e ;
19 }
20

21 i f ( s e r v e r −>d e a d l i n e <= _Watchdog_Ticks_since_boot ) {
22 i f ( ( _Watchdog_Ticks_since_boot + s e r v e r −>pa r ame t e r s . d e a d l i n e ) >

the_se r v e r −>d e a d l i n e ) {
23 nex t = _RBTree_Successor ( ne x t ) ;
24 c o n t i n u e ;
25 }
26 _Schedu le r_CSS_Rep len i sh_serve r ( s e r v e r ) ;
27 s e r v e r −>share_data . r e cha rged_t ime = _Watchdog_Ticks_since_boot ;
28 }
29

30 i n t32_t rema in i ng_budge t= _Scheduler_CSS_get_budget ( s e r v e r ) ;
31 i f ( r ema in i ng_budge t <= 0 ) {
32 nex t = _RBTree_Successor ( ne x t ) ;
33 c o n t i n u e ;
34 }
35

36 s e r v e r −>share_data . s e r v i n g_ t a s k = the_se r v e r −>cu r r e n t_t a s k ;
37 t he_se r v e r −>s e r v e r_a c c o un t i n g = s e r v e r ;
38 r e t u r n t r u e ;
39 } ;
40

41 r e t u r n f a l s e ;
42 }

Listing A.9: CSS budget stealing
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A.8 CSS Budget Callout

1 v o i d _Scheduler_CSS_Budget_cal lout (
2 Thread_Contro l ∗ the_thread
3 )
4 {
5 Scheduler_CSS_Node ∗node ;
6 Schedu ler_CSS_Server ∗ s e r v e r ;
7 Schedu ler_CSS_Server ∗ a c c o u n t i n g_s e r v e r ;
8

9 node = _Scheduler_CSS_Thread_get_node ( the_thread ) ;
10 s e r v e r = node−>Se r v e r ;
11 a c c o u n t i n g_s e r v e r = s e r v e r −>s e r v e r_a c c o un t i n g ;
12

13 i f ( a c c o u n t i n g_s e r v e r != s e r v e r ) {
14 a c coun t i n g_se r v e r −>share_data . s e r v i n g_ t a s k = −1;
15

16 i f ( a c c oun t i n g_se r v e r −> s t a t e ) {
17 _RBTree_Extract ( &_Act i ve_Serve r s , &ac coun t i n g_se r v e r −>Node ) ;
18 _Scheduler_CSS_set_state ( a c coun t i n g_se r v e r , f a l s e ) ;
19

20 i f ( a c c oun t i n g_se r v e r −>type == 1 ) {
21 _RBTree_Inse r t_ in l i ne (
22 &_Inact i ve_NI_Serve r s ,
23 &accoun t i n g_se r v e r −>Node ,
24 &accoun t i n g_se r v e r −>d e a d l i n e ,
25 _Schedu l e r_CSS_Serve r_Pr io r i t y_ le s s_equa l
26 ) ;
27 }
28 }
29 }
30

31 s e r v e r −>s e r v e r_a c c o u n t i n g = NULL ;
32 _Scheduler_CSS_Schedule_Body ( the_thread , node ) ;
33 }

Listing A.10: CSS budget callout
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A.9 CSS Schedule

1 RTEMS_INLINE_ROUTINE vo i d _Scheduler_CSS_Schedule (
2 Schedu l e r_Con t r o l ∗ s c h e d u l e r ,
3 Schedu ler_CSS_Server ∗ s e r v e r
4 )
5 {
6 Scheduler_CSS_Node ∗ h e i r ;
7

8 i f ( s e r v e r −>cu r r e n t_t a s k != −1 ) {
9 r e t u r n ;

10 }
11

12 h e i r = _Scheduler_CSS_Node_get_heir ( s e r v e r ) ;
13 i f ( h e i r != NULL ) {
14 /∗∗ S e r v e r has h e i r to s c h e d u l e . ∗/
15 _Scheduler_CSS_Update_heir ( s c h e d u l e r , h e i r , t r u e ) ;
16 } e l s e {
17 /∗∗ No h e i r . ∗/
18 i n t32_t rema in i ng_budge t = _Scheduler_CSS_get_budget ( s e r v e r ) ;
19 i f ( s e r v e r −>d e a d l i n e > _Watchdog_Ticks_since_boot &&

rema in i ng_budge t > 0) {
20 /∗∗ S e r v e r w i l l be i n s e r t e d i n t o the a c t i v e s e r v e r r b t f o r budget

r e c l a i m i n g . ∗/
21 _RBTree_Inse r t_ in l i ne (
22 &_Act ive_Serve r s ,
23 &s e r v e r −>Node ,
24 &s e r v e r −>d e a d l i n e ,
25 _Schedu l e r_CSS_Serve r_Pr io r i t y_ le s s_equa l
26 ) ;
27 } e l s e {
28 _Scheduler_CSS_set_state ( s e r v e r , f a l s e ) ;
29 i f ( s e r v e r −>type == 1 ) {
30 /∗∗ S e r v e r i s a NI S e r v e r and w i l l be i n s e r t e d i n t o NIRBtree . ∗/
31 _RBTree_Inse r t_ in l i ne (
32 &_Inact i ve_NI_Serve r s ,
33 &s e r v e r −>Node ,
34 &s e r v e r −>d e a d l i n e ,
35 _Schedu l e r_CSS_Serve r_Pr io r i t y_ le s s_equa l
36 ) ;
37 }
38 }
39 }
40 }

Listing A.11: CSS schedule
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A.10 CSS Server Activation

1 RTEMS_INLINE_ROUTINE vo i d _Scheduler_CSS_Stop_budget_shar ing (
2 Schedu ler_CSS_Server ∗ s e r v e r
3 )
4 {
5 Scheduler_CSS_Node ∗node ;
6 Thread_Contro l ∗ the_thread ;
7 ISR_lock_Context l o c k_con t e x t ;
8

9 i f ( s e r v e r −>share_data . s e r v i n g_ t a s k == −1 )
10 r e t u r n ;
11

12 the_thread = _Thread_Get ( s e r v e r −>share_data . s e r v i n g_ta s k , &
l o ck_con t e x t ) ;

13 i f ( the_thread == NULL )
14 r e t u r n ;
15

16 _ISR_lock_ISR_enable ( &l o ck_con t e x t ) ;
17 node = _Scheduler_CSS_Thread_get_node ( the_thread ) ;
18 node−>Se r v e r −>s e r v e r_a c c o un t i n g = NULL ;
19 s e r v e r −>share_data . s e r v i n g_ t a s k = −1;
20 _Scheduler_CSS_Schedule_Body ( the_thread , node ) ;
21 }
22

23 RTEMS_INLINE_ROUTINE vo i d _Schedu ler_CSS_Act ivate_Server (
24 Schedu ler_CSS_Server ∗ s e r v e r
25 )
26 {
27 i f ( s e r v e r −> s t a t e && ! _RBTree_Is_node_off_tree ( &s e r v e r −>Node ) {
28 _RBTree_Extract ( &_Act i ve_Serve r s , &s e r v e r −>Node ) ;
29 _Scheduler_CSS_Stop_budget_shar ing ( s e r v e r ) ;
30 } e l s e i f ( ! s e r v e r −> s t a t e ) {
31 _Scheduler_CSS_set_state ( s e r v e r , t r u e ) ;
32 i f ( s e r v e r −>type == 1 ) {
33 _RBTree_Extract ( &_Inact i ve_NI_Serve r s , &s e r v e r −>Node ) ;
34 _Scheduler_CSS_Stop_budget_shar ing ( s e r v e r ) ;
35 }
36 }
37 }

Listing A.12: CSS server activation


