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“Learning is the only thing the mind never 

exhausts, never fears, and never regrets.” 

 

Leonardo da Vinci 
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Resumo 

O aumento do consumo energético em edifícios residenciais tem levado a um maior foco 

nos métodos de eficiência energética. Deste modo, surge um sistema de gestão de energia 

residencial que poderá permitir controlar os recursos energéticos em pequena escala dos 

edifícios, levando a uma diminuição significativa dos custos energéticos através de um 

escalonamento eficiente. No entanto, a natureza intermitente das fontes de energia 

renováveis resulta num problema complexo. Para resolver este desafio, esta tese propõe 

um escalonamento energético baseado na otimização robusta, considerando a incerteza 

relacionada com a produção fotovoltaica.  

A otimização robusta é um método emergente e eficaz para lidar com a incerteza e 

apresenta soluções ótimas considerando o pior cenário da incerteza, ou seja, encontra a 

melhor solução entre todos os piores cenários possíveis. Um problema de Programação 

Linear Binária é inicialmente formulado para minimizar os custos do escalonamento 

energético. De seguida, o objetivo desta tese é transformar o modelo determinístico num 

problema robusto equivalente para proporcionar-lhe imunidade contra a incerteza 

associada à produção fotovoltaica. O modelo determinístico é, assim, transformado num 

modelo do pior cenário possível. 

Para validar a eficiência e a eficácia do modelo, a metodologia proposta foi implementada 

em dois cenários sendo cada um deles constituído por três casos de estudo de 

escalonamento de energia, para um horizonte de escalonamento a curto prazo. Os 

resultados da simulação demonstram que a abordagem robusta consegue, efetivamente, 

minimizar os custos totais de eletricidade do edifício, mitigando, simultaneamente, os 

obstáculos referentes à incerteza relacionada com a produção fotovoltaica. É também 

demonstrado que a estratégia desenvolvida permite o ajustamento do escalonamento dos 

recursos energéticos do edifício de acordo com o nível de robustez selecionado. 

Palavras-Chave 

Escalonamento de energia, Incerteza fotovoltaica, Otimização Robusta, Programação 

Linear Binária, Sistema de gestão de energia.  
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Abstract 

The increase of energy demand in residential buildings has led to a higher focus on energy 

efficiency methods. This way, the home energy management system arises to control 

small-scale energy resources on buildings allowing a significant electricity bill decrease 

throughout efficient scheduling. However, the intermittent and uncertain nature of 

renewable energy sources results in a complex problem. To solve this challenge, this 

thesis proposes robust optimization-based scheduling considering the uncertainty in solar 

generation.  

Robust Optimization is a very recent and effective technique to deal with uncertainty and 

provides optimal solutions for the worst-case realization of the uncertain parameter, i.e., 

it finds the best solution among all the worst scenarios. A Mixed Binary Linear 

Programming problem is initially formulated to minimize the costs of the energy resource 

scheduling. Then, this thesis's purpose is to transform the deterministic model into a 

trackable robust counterpart problem to provide immunity against the photovoltaic output 

uncertainty. The deterministic model is transformed into the worst-case model.  

To validate the model’s efficiency and effectiveness, the proposed methodology was 

implemented in two scenarios with three different energy scheduling case studies for a 

short-term scheduling horizon. The simulation results demonstrate that the robust 

approach can effectively minimize the electricity costs of the building while mitigating 

the drawbacks associated with solar uncertainty. It also proves that the proposed strategy 

adjusts the energy scheduling according to the selected robustness level. 

 

Keywords 

Energy Management System, Energy Scheduling, Mixed Binary Linear Programming, 

Photovoltaic Uncertainty, Robust Optimization.  
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1. INTRODUCTION 

This chapter presents an introductory framework, the motivation of this thesis as well as its 

main objectives. It, then, provides a list of publications resulting from the work developed, 

the outline, and, finally, a brief description of the organization.   

1.1. FRAMEWORK 

With the depletion of non-renewable sources and global warming, renewable energy sources 

and decentralized generation are gaining broad interest; therefore, allowing the reduction of 

oil dependency and greenhouse gas emissions.  

End-users, becoming prosumers, are now able to manage their electricity generation and 

their energy consumption by considering several resources such as solar photovoltaic panels, 

electric vehicles, and energy storage systems. These energy resources can optimize energy 

costs, increase the stability and reliability of systems, and change consumption patterns. 

 Due to the intermittent nature of renewable energy sources, forecasting techniques are also 

needed to predict electricity generation and, also, to manage storage systems. However, these 

forecasted values are not accurate due to the uncertainties associated with photovoltaic 

power generation.  

This dissertation proposes the intelligent integration of solar photovoltaic for 

self-consumption and storage systems in residential buildings, considering the photovoltaic 
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uncertainty. The development of optimization techniques and energy resources management 

will be crucial to increase the efficiency of energy consumption in residential buildings. It is 

expected to achieve a significant electricity costs reduction and contribute to rational and 

efficient energy use.  

This work will require an energy resources management system, considering the uncertainty 

of the penetration of renewable-based generation in the residential building, to enable the 

proper building’s energy resources scheduling and, therefore, optimize energy costs.  

1.2. MOTIVATIONS 

This work was developed in Research Group on Intelligent Engineering and Computing for 

Advanced Innovation and Development (GECAD), as part of the project SAICT-FCT 

(POCI-01-0145-FEDER-029070-PTDC/EEI-EEE/29070/2017), BENEFICE: Gestão de 

Recursos em Edifícios para flexibilização da Potência Contratada. 

1.3. OBJECTIVES 

The main objective of this work is the intelligent integration of renewable energy sources 

for self-consumption and energy storage systems (use of electric vehicles and batteries) in 

collective residential buildings, considering the uncertainty associated with photovoltaic 

power generation. To achieve this, the development and implementation of optimization 

models and energy resources management in buildings are essential to reduce electricity 

consumption costs and to contribute to energy efficiency in a residential building.  

Succinctly, the initial objectives proposed for this work are the following: 

• State of the art analysis; 

• Definition of the mathematical formulation of the energy resource optimization 

problem; 

• Implementation of the optimization technique; 

• Development of the case study and the corresponding scenarios and simulations; and 

• Analysis of results.  
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1.4. CALENDARIZATION 

The calendarization of this dissertation work is presented in Table 1. It includes several tasks, 

such as writing the state of the art, search for optimization models, implementing the 

mathematical formulation of the optimization problem, simulation of the different case 

studies, and analysis of results. According to this table, this work will have a duration of 

approximately seven (7) months.  

Table 1 Dissertation Schedule. 

 

1.5. DOCUMENT ORGANIZATION 

This thesis is composed of six (6) main chapters, which are briefly described below. 

• Chapter 1: Introduction.  

Chapter 1, Introduction, provides contextualization of the theme addressed in this 

dissertation, its motivation, main objectives, and a list of publications related to the project. 

Also, the calendarization of this work and the organization of this document are stipulated. 

• Chapter 2: State of the Art. 

Chapter 2 reviews the State of the Art, emphasizing the importance of energy management 

resources (photovoltaic generation, energy storage systems, electric vehicles, and 

forecasting techniques) in smart buildings and energy-efficient buildings.  

• Chapter 3: Problem Statement. 
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Chapter 3 presents the optimization approach implemented in this thesis to deal with 

uncertainty and the description of the problem, as well as some assumptions.  

• Chapter 4: Intelligent Energy Management System (EMS) for Smart Building 

Considering PV Uncertainty. 

Chapter 4 describes the proposed methodology used in this work, with a detailed description 

of the mathematical formulation of the deterministic model and its transformation to a robust 

optimization approach.  

• Chapter 5: Case Study and Results.  

Chapter 5 defines the case study and the scenarios created for the implementation of the 

proposed methodology. After the numerical simulations, the results are analyzed and 

discussed.  

• Chapter 6: Conclusions.  

Finally, Chapter 6 exposes the main contributors and conclusions of this work, as well as the 

limitations found during this dissertation and a few suggestions for future work to be 

explored. 
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2. STATE OF THE ART 

 

The main purpose of this chapter is to present a review of the current state of the art within 

the scope of energy resources in buildings, energy efficiency in buildings, smart buildings, 

and energy resources management in buildings.  

2.1. ENERGY RESOURCES IN BUILDINGS 

This section presents the different types of energy resources that are normally found in 

buildings: Photovoltaic (PV) power generation, energy storage systems (ESS), electric 

vehicles (EVs), and forecasting techniques for renewable generation. A brief presentation of 

all these concepts is provided.  

2.1.1. PHOTOVOLTAIC POWER GENERATION 

Solar energy is directly related to the sun’s radiation and can produce heat, cause chemical 

reactions, and/or generate electricity.  This type of energy is the cleanest and most abundant 

renewable energy source available, being an indispensable resource at a national level [1]. 

The concept of PV solar energy is the direct conversion of sunlight into electricity, based on 

the photovoltaic effect [2]. The PV solar panels are composed of PV cells consisting of 
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semiconductor materials. When the sunlight reaches the cells, electrons are released from 

their atoms, thus, generating electricity. This is due to the photovoltaic effect, which 

corresponds to a potential difference at the extremes of a semiconductor material structure, 

after the absorption of sunlight [3]. 

Compared to traditional energy sources, PV solar energy does not cause any significant 

impact on the environment but rather mitigates the effects of greenhouse gas (GHG) 

emissions and global warming. However, PV solar energy can have a high cost for initial 

installation and relies on geographical conditions, especially in regions where there is a lack 

of solar radiation [2]. 

Figure 1 presents a grid-connected PV system, installed in a building, and consisting of PV 

panels, an inverter, an electricity meter, and the distribution network. The electricity 

produced by the PV panels is available in direct current and, therefore, PV systems are 

connected to an inverter. This inverter is installed between the panels and the building’s 

electrical installation, allowing the conversion of direct current into alternating current [4]. 

 

Figure 1 Grid-connected Photovoltaic System. Adopted from [5]. 

Figure 2 highlights the balance of electricity production in mainland Portugal until August 

2021, in which renewable electricity generation represents 68.8% of the total electricity 

produced, in which solar production corresponds to 3.80% of the total.  
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Figure 2 Balance of electricity production of Portugal in 2021 [6]. 

Figure 3 illustrates the total national energy production from each renewable source from 

2012 to 2021. It is possible to observe that PV production is slightly increasing, reaching the 

highest values in 2021.  

 

Figure 3 Evolution of renewable electricity generation in Portugal, 2012 to 2021 [7]. 
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Distributed generation has been gaining broad interest from final consumers, especially the 

use of PV energy. The PV solar panels installation enables consumers to produce electricity 

in their households, allows them to use this electricity for self-consumption, and/or sell it to 

the grid. The consumers, by consuming and producing their own energy, become prosumers. 

According to Figure 4, in addition to consuming energy, prosumers also share the surplus 

PV energy generated with the grid and/or with other consumers in the community [8]. 

 

Figure 4 The concept of prosumer [8]. 

2.1.2. ENERGY STORAGE SYSTEMS  

The Energy Storage Systems consist in transforming a certain type of energy into another 

type and, when necessary, can return the stored energy in a more efficient, reliable, and 

profitable way. Furthermore, as there is a wide variety of energy production technologies, 

ESS technologies also present a huge diversity [9]. Among these storage technologies, 

hydroelectric power is the oldest and most efficient and capable of quickly generating large 

amounts of energy. About 99% of the global electrical energy storage is pumped hydro 

storage [10]. There are also other storage technologies which are represented in Figure 5.  

Prosumer

Sells energy

Produces 
energy

Consumes 
energy
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Figure 5 Technology mix in energy storage deployments, 2011-2016 [11]. 

ESS can be classified into five (5) major categories: (1) mechanical storage system; 

(2) chemical storage system; (3) electrical storage system; (4) electrochemical storage 

system; and (5) thermal storage system. Table 2 presents the energy storage categories and 

the storage technologies and devices associated with each one, based on [12].  

Table 2 Classification of energy storage technologies.  

Categories Storage technologies 

Mechanical Energy Storage Pumped hydroelectric storage; compressed air 

energy storage; flywheel energy storage. 

Chemical Energy Storage Hydrogen storage (hydrogen gas, fuel cell); biofuel. 

Electrical Energy Storage Capacitors; supercapacitors; electromagnetic energy 

storage. 

Electrochemical Energy Storage Different types of batteries (lead-acid, lithium-ion, 

sodium-sulfur). 

Thermal Energy Storage Sensible heat storage; latent heat storage; thermal 

absorption and adsorption systems. 
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In the last years, global warming and climate change have had increasingly impactful 

consequences on our lives. One of the main causes of global warming is GHG emissions 

from electricity production using fossil fuels to meet daily energy demands. To mitigate this 

problem and achieve carbon neutrality, renewable energy sources (RES) have been replacing 

fossil fuels [13]. However, the intermittent nature of RES can cause problems of instability 

in the electrical grid. To smooth out these grid variations, ESS are needed, and they can 

maximize the introduction of renewable energy [14]. 

ESS are conceived to sustain unforeseen occurrences during peak and off-peak periods. The 

integration of ESS, with other energy sources (especially renewable), significantly reduces 

electricity production as well as GHG emissions. Since not all generated electricity is used, 

the storage of surplus energy at off-peak hours can greatly increase system reliability and 

sustain varying power demands at different periods of the day [15].  

The high penetration of RES in the grid leads to a significant waste of electrical energy when 

production exceeds consumption. To avoid energy waste and provide grid flexibility, ESS 

can support the integration of renewable energy by balancing the power flow in the network, 

matching the supply with the demand, and helping distribution systems operators to satisfy 

demand in a reliable and sustainable way. There is great potential in the use of ESS, both 

from the point of view of grid operators and final consumers  [14], [16].  The storage system 

can help balance the changing demand for electricity on a daily basis, storing energy when 

demand is low and releasing it when demand is high [15].  

The increased installation of PV panels in residential buildings requires a replanning of the 

capacity of storage resources, which have been acquired to meet peak loads and system 

reserve requirements. Consequently, power flow direction can reverse and potentially cause 

issues with the quality of power, safety, and reliability which may result from local and 

intermittent energy generation during the day. Decentralized storage, such as batteries 

connected to solar installations, installed in residential buildings, plays a key role when faced 

with possible grid fluctuations or system failures. Thus, ESS are considered an enabling 

element of a future low-carbon electric grid as they allow large amounts of renewable energy 

on the grid [10], [17]. 
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2.1.3. ELECTRIC VEHICLES  

Nowadays, the conventional transportation system is incorporated with an internal 

combustion engine causing it to be one of the main causes of air pollution. To decrease GHG 

emissions and the dependence on oil in the transport sector, electric vehicles have been 

gaining popularity in the past few years [18]. Between 2011 and 2015, the search for electric 

or hybrid vehicles increased exponentially, worldwide, with more than 565,000 plug-in 

electric vehicles sold [19]. Figure 6 shows the evolution of EVs sales worldwide, as well as 

market shares, from 2010 to 2020.  

 

Figure 6 Global electric car sales, 2010-2020 [20].  

EVs use batteries, ultra-condensers, and fuel cells as energy sources and do not depend on 

fossil fuels and, therefore, do not emit polluting gases. Depending on the type of EV, these 

sources can be used individually or collectively in an EV. EVs can be divided into two (2) 

main categories: (1) hybrid electric vehicles (HEVs); and (2) all-electric vehicles (AEVs).  

Figure 7 presents the classification of these two (2) EV categories, according to [18].  
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Figure 7 Classification of Electric Vehicles [18]. 

These vehicles, when connected to a charging station or outlet, store energy in the batteries 

which will then be used by the electric engine. The charging time of an EV depends on the 

storage capacity, the power the vehicle is capable of receiving, and the energy provided by 

the charging station [21]. Efficient charging strategies, interoperability of the charging 

stations, and battery costs are some challenges that need to be resolved in order to make EVs 

competitive in the market [18].  

A significant number of EV charging stations result from a rising EV market. The charging 

stations can be classified into residential and non-residential categories and can promote 

slow or fast charging. A substantial portion of EV charging is residential and slow charging 

[18].  

The integration of PV production and EVs in residential buildings has increased in the past 

few years. The EV battery can work as an ESS, discharging energy when necessary. Thus, 

joining the charging load of an EV to the household load can improve the self-consumption 

of PV production [22]. The inclusion of EVs in buildings integrated by renewable production 

systems can shift the loads at peak hours to off-peak hours and provide flexible energy for 

domestic use and transportation [23]. This way, in addition to being a means of 

transportation, EVs are also used as batteries for the storage of surplus energy from 

renewable production in buildings [24]. 
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2.1.4. RENEWABLE GENERATION FORECAST 

The growth of PV production facilities in recent years is associated with several 

environmental benefits and the reduction of fossil fuels. However, the intermittent nature of 

this renewable source can cause some technical challenges for the electric power system and 

can be relieved if the natural resource can be forecast accurately. Solar energy forecasting is 

made for short-range, i.e., up to a few hours ahead. The PV power production forecast is 

essential for the energy sector because it improves the stability and reliability of the electrical 

system, enabling operators to plan a profitable and optimized power dispatched strategy [25]. 

Forecasting PV power generation depends on several factors, such as the time horizons for 

which the forecast is made. The forecast horizon is the length of time into the future for 

which the PV power outputs are forecasted [26]. This forecast can be divided into three (3) 

categories based on time horizon, as shown in Figure 8, where the time horizon increases 

from top to bottom.  

 

Figure 8 Classification of PV power generation forecasting based on time horizon [26]. 

Short-term forecast is done for one or several hours, one (1) day, or up to (7) seven days and 

improves the security of the network operation. The forecasting of PV power generation for 

more than one (1) week to one (1) month is known as medium-term forecasting and it 

smooths the planning of the power system and maintenance schedule by predicting energy 

availability in the future. A long-term forecast is performed from one (1) month to one (1) 

year and it is useful for energy production, transportation, and distribution planning [26].  
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There are several models and techniques developed for PV power forecasting, including 

physical models, statistical and probabilistic models, and intelligent models based on 

machine learning or hybrid techniques. The forecast models based on Artificial Intelligence 

(AI) are often used more, than the others mentioned, due to their ability to find complex 

relationships without using difficult mathematics. The most common of the AI techniques is 

the artificial neural network (ANN) which simulates the behavior of human brain functions 

[25]. This method is widely used in forecasting PV energy production due to the 

non-linearity of the meteorological data [26]. 

Any forecast must be submitted to an evaluation of its accuracy, calculating its performance 

[27]. Measuring the accuracy of the selected forecast model is a crucial part of the forecasting 

process. This evaluation is made through the calculation of some metrics, such as mean 

absolute error, mean absolute percentage error, and the square root of the mean error [26].  

2.2. ENERGY EFFICIENCY IN BUILDINGS  

Over the past decade, energy consumption in buildings has significantly increased, also 

leading up to a rise for energy saving strategies. Nowadays, the building sector represents 

about 30% of the final energy consumption in Portugal, of which more than one-half (½) can 

be reduced through energy efficiency measures. Therefore, the European Union (EU) 

Member Countries have been promoting a set of measures aimed at encouraging the 

improvement of energy performance and comfort conditions of buildings. These measures 

conform with Directive 2010/31/EU of 19 May 2010 [28].  

Directive 2010/31/EU about the energy performance of buildings aims at improving the 

energy performance of EU buildings, taking into consideration the different climatic and 

local conditions. Another objective of this directive is to establish minimum requirements 

and a common framework for calculating energy performance. These minimum 

requirements should be established by each EU Member Country, and they must be reviewed 

every five (5) years. These requirements should include buildings, their components, and the 

energy used for [29]: 

• Space heating and/or cooling; 

• Hot water for domestic use; 



 43 

• Ventilation; 

• Lighting; and 

• Other technical building systems.  

Regarding new buildings, the concept of Nearly-Zero Energy Buildings (nZEB) emerged, 

requiring that by December 31, 2020, their energy needs were almost zero (0), being 

supported by RES. Therefore, new buildings must fulfill minimum requirements according 

to the Directive [28]. For existing buildings, if they are undergoing major renovations, their 

energy performance should be improved in order to meet the applicable requirements [29].  

Additionally, EU Member Countries should establish an energy performance certification 

(EPC) system. These certificates must provide potential buyers/renters with information 

about the energy classification of the building and include recommendations for possible 

improvements [29]. The implementation of an EPC system in buildings is mandatory and 

allows to provide information to the user about the energy performance of the building. It 

also provides cost reduction with energy use, enhancement of thermal comfort, and access 

to tax benefits [28], [30].  

The EPC is emitted by a qualified specialist, and it describes the energy performance of the 

building on a scale of 8 categories (from A+ to F), with A+ corresponding to the most energy 

efficient level and F to the least efficient. Figure 9 presents the EPC adopted for buildings.  

 

Figure 9 Energy categories of the buildings energy certification [30].  



 44 

2.3. SMART BUILDINGS  

Smart Buildings (SB) represent about 40% of energy consumption in the EU and 36% of 

GHG emissions. Consequently, they are considered the biggest energy consumers in Europe. 

Currently, in the European context, 35% of buildings are more than 50 years old and the 

renovation of existing buildings can lead to significant energy savings, reducing total energy 

consumption by about 5% and 6%. The Directive 2010/31/EU was also created in order to 

modernize the building sector and transforming them into Smart Buildings (SB) [31]. This 

directive introduced the concept of nZEB, which are buildings that have a high energy 

performance and the scarce energy, that they need, comes from RES produced on-site or in 

their proximity [32].  

Buildings are facing a transition period, becoming highly efficient, consuming, producing, 

storing, and supplying energy. The concept of SB was introduced by the aforementioned 

Directive as being the main promoter of the future of the electric sector [33]. One of the main 

objectives of SB is to monitor, reduce and manage their energy consumption without 

compromising the comfort and safety of their occupants and energy performance [34].  

SB can manage and control renewable production sources, adapt to grid conditions, 

communicate with other buildings, and respond actively in an efficient way to any change 

in the operation of the building’s technical system or the external environment, as well as to 

the energy needs of their occupants [33]. These are some of the basic functions of SB, 

represented in Figure 10.  
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Figure 10 Smart Buildings basic functions [33].  

SB are considered to be one of the most important elements of the built environment inside 

a smart city, information and communication technologies (ICTs) and the Internet of Things 

(IoT) contributed to its development [35]. There has been an increased interest in using IoT 

devices to turn buildings more intelligent and efficient, such as sensors, actuators, or 

micro-chips. These IoT devices generate a huge amount of data that can be extracted, 

filtered, analyzed, and used for the evaluation of consumption profiles. Big data analytics 

can be used to analyze and improve energy efficiency and user experience of the buildings’ 

occupants [34]. 

In terms of infrastructural components, SB have different components that maintain the 

occupants’ comfort level. Some of them include Heating, Ventilating and Air-Conditioning 

(HVAC) systems; electricity, gas and water smart meters; occupancy monitoring systems; 

and hybrid EV charging technology [34].  

Figure 11 presents the main key technologies related to the functions of SB to facilitate the 

utilization of smart features.  
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Figure 11 Key technologies related to Smart Buildings [33].  

2.4. BUILDING ENERGY RESOURCES MANAGEMENT  

The concept of SB also includes the incorporation of technology and energy systems in 

buildings and with their management. Building Energy Management System (BEMS) 

consists of a combination of strategies and techniques required to enhance its performance, 

efficiency, and use of energy. The key purpose of energy management is the methodical and 

effective analysis of energy use, focusing on energy cost optimization relating to user 

characteristics, financing capability, energy needs, funding opportunities, and pollution 

reduction accomplished [36]. 

BEMS can be classified into four management strategies based on active approaches, which 

are represented in Figure 12.  

 

Figure 12 BEMS management strategies [36]. 
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Data collection for electricity generation and consumption should be considered in a BEMS, 

allowing forecasting data for the period to be managed. The management system should also 

consider the users’ needs to control their energy resources in the most optimized approach 

to achieve the following goals: savings in electricity bills, reducing peak consumption, and 

polluting emissions [37]. 

Associated with data forecasting, uncertainty is one of the main concerns of energy 

management systems as it can affect decision-making. Solar radiation and electricity market 

prices are the uncertainties that cause the biggest impact and that influence the operation of 

BEMS [38]. Based on the issues of data uncertainty, optimization has two approaches: (1) 

robust; and (2) stochastic optimization. [36].   

In buildings, the combination of PV power production with ESS and their interaction allows 

a reduction in energy costs and the dependency on the use of fossil fuels [39]. Figure 13 

illustrates an example of the integration of the PV system and energy storage using batteries 

in a residential building.   

 

Figure 13 Combined solar PV production system with battery storage system in a residential 

building [40].  

The reduction of electricity costs is obtained by buying and storing electricity during periods 

of lower demand, when the energy prices are cheaper. Through the combination 

demonstrated in Figure 14, it is also possible to store surplus renewable energy production 
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during off-peak hours and use it during peak hours, when energy is more expensive, which 

reduces consumer demand. The efficient battery charge and discharge scheduling are 

important to optimize the amount of electricity generated by PV panels and to minimize the 

cost of energy consumed. This requires an energy management system to define during 

which periods are most advantageous for electricity consumption: from the grid, from the 

PV production, or from the battery storage system [39].   

2.5. CONCLUSIONS 

This chapter presented a literature review about the subject matter of this thesis. The different 

energy resources that can be found in buildings and their management system were 

presented. Residential buildings are constituted of energy resources such as PV power 

generation, ESS, such as batteries and EVs, and the forecast of production.  

Regarding energy efficiency in buildings, the EU has been promoting a set of measures to 

boost the improvement of energy performance and building conditions, to increase the 

comfort levels of its occupants.  

The concept of SB enables a state of transition from existing buildings to highly efficient 

and effective buildings, which can produce, store, consume and supply energy.  

The main purpose of an energy resource management system is the effective analysis of 

energy used to control the energy resources optimally, aiming at energy cost optimization 

considering the users’ needs. 
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3. PROBLEM STATEMENT 

This chapter describes the optimization approach implemented to minimize the energy costs 

of the residential building considering the uncertainty of the PV power generation. First, a 

survey about optimization models and optimization under uncertainty is made, emphasizing 

the Robust Optimization technique. A description of the problem and residential building is 

performed, along with some assumptions about the problem.  

3.1. OPTIMIZATION MODEL 

Mathematical optimization is a scientific discipline that aims to find the best decision among 

a set of available alternatives, in a given quantitative context. To define what is meant by a 

“best decision”, the concept of an objective function is required. An objective function 

determines the objective value 𝑓(𝑥) of a decision 𝑥 ∈ 𝑋, where 𝑥 is feasible if 𝑥 ∈ 𝑋. The 

concept of best decision is then defined as a feasible decision that has either the maximum 

or the minimum possible objective value. According to this, an optimization problem can be 

formulated as demonstrated in Equations (1a)-(1b) [41]. 

minimize or maximize 𝑓(𝑥) (1a) 

subject to 𝑥 ∈ 𝑋 (1b) 
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The characteristics of the feasible set 𝑋 and the objective function 𝑓 are used to classify 

optimization problems in these two categories [41]: 

• Linear Programs (LP) – The objective function 𝑓 is linear and the set 𝑋 can be 

defined by a finite number of affine inequalities.   

• Non-Linear Programs (NLP) – Either the objective function 𝑓 or some of the 

constraint functions defining the feasible set 𝑋 are non-linear.  

Mathematical optimization is commonly applied to problems related to residential energy 

resources management, i.e., the scheduling of home appliances. LP is the simplest approach 

of mathematical optimization, where the objective and constraints are connected functions. 

They can be solved in polynomial time but may not be sufficiently accurate in describing 

the household energy system [42].  

In LP, the objective is always to maximize or minimize some linear function of the decision 

variables. Decision variables are values that are determined in some optimal way. The LP 

problem can be formulated as follows, where the number of constraints is denoted by 𝑚 and 

𝑛 indicates the number of decision variables.  

minimize or maximize 𝑍 =  𝑐1𝑥1 +  𝑐2𝑥2 + . . . + 𝑐𝑛𝑥𝑛   
(2a) 

                   subject to 
 

                       𝑎𝑚1𝑥1 +  𝑐𝑚2𝑥2  +  … +  𝑐𝑚𝑛𝑥𝑛 {≤, =, ≥}  𝑏𝑚 
(2b) 

                                                𝑥1, 𝑥2, … 𝑥𝑛 ≥ 0 
(2c) 

Equation (2a) is entitled as the objective function 𝑍. Moreover, there are constraints 

associated with the objective function. They consist of either equality or an inequality related 

with some linear combination of the decision variables, as shown in (2b). It is also necessary 

to establish that all the decision variables are nonnegative, as in (2c). 

The solution of the problem (𝑥1, 𝑥2, … 𝑥𝑛 ) consists of a proposal of specific values for the 

decision values. A solution is considered optimal if it achieves the desired maximum or 

minimum value [43].  
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Mixed-Integer Linear Programming (MILP) is a mathematical approach that includes integer 

variables and, although non-linear, it allows discontinuities in modeling for additional 

flexibility, such as binary variables [42].  

MILP problems consist of one linear objective function and linear constraints. The decision 

variables can either be defined as continuous or integer variables. It can be formulated as in 

Equations (3a)-(3d), considering the objective function  𝑔(𝑥, 𝑦) [44]. 

min 𝑔(𝑥, 𝑦) 
(3a) 

                      subject to 
 

𝐴𝑥 + 𝐸𝑦 = 𝑏 
(3b) 

                0 ≤ 𝑥 
(3c) 

      𝛼 ≤ 𝑦 ≤ 𝛽 
(3d) 

Continuous variables are considered 𝑥𝑖, whereas 𝑦𝑖 are the integer variables. The bounds 

over 𝑦 must be finite, either positive or negative. An optimal integer solution is an integer 

solution maximizing or minimizing 𝑔(𝑥, 𝑦) [45]. 

In the buildings’ energy management systems domain, MILP is often used. MILP models 

describe the building energy systems quite well and solve the optimization problems at an 

appropriate time [44].   

A Mixed Binary Linear Program (MBLP) can be expressed as in Equations (4a)-(4c).  

min 𝑍 = 𝑐𝑇 𝑥 
(4a) 

                  subject to 
 

𝐴𝑥 ≥ 𝑏 
(4b) 

                𝑥𝑖  ∈ {0,1}, 𝑖 ∈ 𝐼  
(4c) 

The set 𝐼 indicates the set of indices of variables in the optimization problem which are 

required to be binary, typically represent so-called either/or decisions. The concept of MBLP 

derives from the fact that relaxing the binary requirements (4c) results in an LP, which 

denotes an optimization problem with affine constraints and a linear objective function [41]. 

This thesis adopts this approach.   
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In [46], an MBLP is proposed to optimize the charge and discharge scheduling of EVs, in 

which the binary decision variables represent the charging and discharging of EVs in each 

period. The methodology of this work is intended to manage the energy resources of the 

residential building, such as PV generation, battery energy storage system (BESS), EVs, 

external electricity supply, and information about the consumption load profile. Regarding 

the mathematical formulation, the objective is to minimize the peak load power demand of 

a residential building with intensive EV usage. The results show that the energy management 

resources could be profitable for residential buildings, providing a decrease in electricity 

consumption peaks and optimizing the charging/discharging of EVs with interesting 

financial results. Reference [47] presents an EMS capable of forecasting PV power 

generation and optimizing power flows between PV systems, EV battery, and grid. A MILP 

framework was developed to minimize charging costs while increasing PV self-consumption 

and, consequently, enhance the sustainability of the vehicle fleet and reduce grid constraints. 

The results show that the EMS significantly reduced total cost while reducing energy 

exchange with the grid and increasing self-consumption. Also, energy demand was assured, 

and the consumers’ comfort level was maintained.   

3.2. OPTIMIZATION UNDER UNCERTAINTY 

The uncertainty modelling techniques to deal with uncertainty in optimization problems are 

presented in this chapter. Also, the limitations of Stochastic Programming and the benefits 

of implementing Robust Optimization to handle uncertainty are provided.  

3.2.1. UNCERTAINTY MODELLING TECHNIQUES 

Power system scheduling can be performed for short, medium, and long-term horizons and 

the need for accurate decision-making for these periods is crucial. Among all power system 

challenges, the rise of total installed RES with intermittent nature causes the complex 

planning of power systems [48]. The majority of decisions taken by decision-makers in the 

energy sector are based on a considerable amount of data uncertainty [49].  

In power systems, the uncertain parameters can be classified into two categories [49]:   

• Technical parameters: can be divided into two classes, namely: (1) topological 

parameters (line and generator outage); and (2) operational parameters (demand or 

generation); 
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• Economical parameters: can be divided into two classes, namely: (1) macroeconomic 

parameters (concentrates on the entire power system industry); and 

(2) microeconomic parameters (aggregators, domestic or industrial consumers’ 

decisions).  

The intermittent nature of RES causes the complex planning of power systems, and it is 

associated with uncertainties because it depends on climate conditions. However, as 

renewable energy penetration rises, there will also be an increase in the uncertainty 

associated with power systems. Hence, uncertainty modeling is essential [48].  

In decision-making, different techniques have been developed to deal with uncertainties. As 

shown in Figure 14, the existing uncertainty modeling techniques cover an extensive range 

such as probabilistic approaches, possibilistic approaches, hybrid possibilistic-probabilistic 

approach, information gap decision theory (IGDT), and robust optimization [50].  

 

Figure 14 Uncertainty modeling methods.   

The main objective of these modeling techniques is to evaluate the impact of certain input 

parameters on the system output parameters. The main difference between these methods, 
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though, is the use of multiple approaches applied to describe the uncertainty of input 

parameters [51].  

3.2.2. COMPARISON BETWEEN STOCHASTIC OPTIMIZATION AND ROBUST 

OPTIMIZATION  

In optimization problems, uncertainty has aroused researchers’ interest since the beginning 

of mathematical programming. In an optimization problem, uncertainty refers to the fact that 

some or all of the problem’s parameters are unknown at the time it must be solved [52].  

There are two techniques used to deal with data uncertainty: (1) Stochastic Optimization 

(SO); and (2) Robust Optimization (RO) [53].  

One of the key modeling characteristics of SO is representing uncertainty, in which 

Stochastic Programming (SP) will represent future events as scenarios, and RO models, 

uncertainty in terms of uncertainty sets [54].  Optimization under uncertainty depends on 

information accessible on the uncertain problem components. There are worst-case 

approaches, such as RO, based on the assumption that only the ranges of the uncertain 

parameters are known, without distributional information. On the other hand, SO is 

associated with models where uncertainty can be captured by a probability distribution [55].  

Stochastic Programming is the first method developed to deal with uncertainty in 

mathematical programming-based optimization and it is a probabilistic approach [52]. SP 

emerged in the 1950s intending to introduce uncertainty into linear programs. [56] The 

probability distribution of uncertain data has to be known or estimated. [53]  

Due to some limitations of SO and several advantages of RO, its popularity in optimization 

has increased [57]. Robust Optimization also incorporates an uncertainty model into a 

mathematical program and it was established in the 1990s [52]. It is a very popular 

uncertainty modeling method due to its computation tractability for many classes of 

uncertainty sets, consisting of a very recent and active research field that has been mainly 

developed in the last years [53]. It is a novel approach to solving optimization problems 

involving uncertainty, especially where there is a lack of information about the nature of 

uncertainty [49]. Since the additional difficulty of including uncertainty can be limited in 

many situations, robust optimization is practical for implementing in home energy 

management systems [42].  
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RO problems are formulated with an uncertainty set 𝑈 as in (5a)-(5b). It is possible to 

consider the constraint functions individually and they must be satisfied for all 𝑢. The 

objective function is fixed and not subject to uncertainty [58].  

Minimize 𝑓(𝑥) (5a) 

Subject to 

 𝑚𝑎𝑥 𝑓𝑖(𝑥, 𝑢)  ≤  0 

(5b) 

The need in engineering to design for a “worst-case” scenario prompted the development of 

RO, defined by the uncertainty set 𝑈. It then developed into a method for performing SO 

without specifying the underlying probability distribution [54].  

The uncertainty set is an important part of RO and it consists of a set of values for the 

uncertain parameters that are considered in the robust problem, denoted by 𝑈 [53]. In other 

words, they are used to describe the uncertainty of input parameters. Using the RO technique, 

the obtained decisions continue optimal for the worst-case realization of the uncertain 

parameter within a given set [51]. So, RO focuses on minimizing the impact of the 

worst-case scenario [42]. 

The RO concept is based on the following three statements [53]:  

I. All decision variables 𝑥 represent “here and now” decisions: they should get specific 

numerical values as a result of solving the problem before the actual data “reveals 

itself”. 

II. The decision-maker is responsible for the consequences of the decisions to be made 

when, and only when, the actual data is within the prespecified uncertainty set 𝑈.  

III. The constraints of the uncertain problem in question cannot be violated when the 

data is in a prespecified uncertainty set 𝑈. 

Figure 15 presents the differences between the SO and RO approaches. It shows that RO just 

requires information about the upper and lower bounds of uncertainty while SO needs to 

generate scenarios to guarantee a solution [57].   
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Figure 15 Uncertainty representation in (a) Stochastic Optimization and (b) Robust 

Optimization [57].   

Based on [57], the advantages of RO and limitations of SO can be summarized in Table 3. 

Table 3 Limitations of Stochastic Optimization and benefits of Robust Optimization. 

Stochastic Optimization Robust Optimization 

Provides probabilistic guarantee to the 

feasibility of the solution.  

Immunizes a solution against all possible 

realizations of the uncertain parameters 

within a deterministic uncertainty set. 

To assure the quality of the solution, 

many scenarios are required, resulting in 

a computational burden.  

Puts the problem parameters in a 

deterministic uncertainty set that includes 

the worst-case scenario and the model 

remains computationally tractable.  

Requires information about uncertainties 

to construct accurate Probability Density 

Functions (PDF). 

Do not assume probability distributions 

and describes uncertainties by sets (upper 

and lower bounds). 

The approach adopted for scenario 

generation affects the accuracy of the 

solution.   

Only needs information about the upper 

and lower bounds.  
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According to the previous information, the Robust Optimization technique is chosen to deal 

with the uncertainty of PV power generation output in this thesis. 

Several studies, about the RO problem under uncertainty, have been stated in the recent 

literature. Reference [59] proposes an adjustable robust optimization model to participate in 

day-ahead energy markets, considering uncertainty in energy prices, PV generation, and 

load. The results show that the robust formulation achieves a cost reduction of 5.7% in 

comparison with the deterministic solution. A robust approach is developed in [60] to deal 

with the uncertainty of PV power output regarding the load scheduling of a smart home. 

Further, the robust formulation is transformed into an equivalent quadratic programming 

problem. The simulation results confirm the validity and advantage of the proposed 

technique. [61] suggests a robust optimization model considering the randomness of electric 

and thermal loads and solar power generation, as also the coordination of several energy 

sources, such as electric grid, battery, and combined heat and power (CHP). The results 

demonstrate the effectiveness of the CHP unit and battery in mitigating the influence of 

uncertainties in the scheduling operation of the building's energy resources.  

3.3. PROBLEM DESCRIPTION 

The problem consists in optimizing the energy scheduling and energy costs in a residential 

building using an energy resource management system, considering the uncertainty of PV 

generation.  

Each consumer’s total power cost is determined by the amount of energy consumed from 

the load demand of the apartment, the charging consumption of the EV and the injected 

power from the PV generation system.  

There is an electricity tariff associated to the every building’s consumer and there are three 

types: (1) simple; (2) bi-hourly; and (3) tri-hourly tariffs. In this case, the consumers have a 

bi-hourly tariff, where the energy price is lower in normal off-peak hours (night and 

weekends) and is higher in periods of greater consumption (peak hours).  

Commonly, each apartment has its own contracted power and electric vehicles are plugged 

in and charged as soon as they arrive in the building, without any charging schedule. As a 

result of these scenarios, customers’ electricity bills are increased. For that reason, 
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scheduling the charging time of EVs would lower the energy bill. This thesis’ approach 

considers the following conditions to decrease the electricity bill: 

• Centralize the EVs’ charging/discharging schedule; 

• Centralize the EVs battery discharge process during peak hours; 

• Use of a Battery Energy Storage System. 

To solve the energy resources management of the residential building, a new player emerges: 

the energy building manager entity, which is an aggregator. The aggregator is responsible 

for managing all the building’s energy resources to minimize total electricity costs. It is also 

considered that all the building’s occupants agree to participate in the new player’s 

management. Thus, the building is seen as a whole, rather than as a group of autonomous 

electricity units.  

3.4. RESIDENTIAL BUILDING DESCRIPTION 

The residential building considered in this thesis is composed of six (6) apartments, with a 

contracted power of 6.9 kVA. 

Each apartment is connected to a PV panel, and it is considered that the PV generation is the 

same for all the apartments. The maximum installed PV power for each apartment is 0.5 kW.  

Electricity has different prices depending on the time at which it is consumed. The hourly 

periods are how electricity consumption is distributed throughout the twenty-four (24) hours 

of each day and the seven (7) days of the week. So, in addition to the hourly periods, the 

energy tariff can correspond to a weekly or daily cycle. In the daily cycle, the hourly periods 

are the same every day of the year and in the weekly cycle, the hourly periods differ between 

weekdays and weekends [62]. For this study, the Portuguese bi-hourly tariff and daily cycle 

were used. 

The dataset of PV power generation, energy consumption of each apartment, and common 

services used in this thesis correspond to a complete year (2019) and are measured in fifteen 

(15) minute intervals for all the twenty-four (24) hours of the day, resulting in ninety-six 

(96) periods. However, in this thesis, only two days were considered: March 5, 2019, and 

September 1, 2019. 
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For this case study, the EV used is a BMW. The residential building is also equipped with a 

BESS. The initial State of Charge (SoC) of EVs, at the arrival time, and the minimal 

allowable SoC, at departure time, are set randomly. The initial SoC of the BESS is zero (0).  

Table 4 lists the values of the parameters related to the model, EVs, and BESS.  

Table 4 Values of optimization model parameters. 

Parameter Value Unit 

𝑫 1 days 

𝝉 15 minutes 

𝑻 96 periods 

𝑱 6 apartments 

𝑷𝑬𝑽
𝒄  3.7 kW 

𝑷𝑬𝑽
𝒅  3.33 kW 

𝑺𝑶𝑪̅̅ ̅̅ ̅̅  27.2 kW/h 

𝑷𝑩
𝒄  6.3 kW 

𝑷𝑩
𝒅  5.67 kW 

𝑺𝑶𝑪̅̅ ̅̅ ̅̅
𝑩 50 kW/h 

3.5. CONFIGURATION AND ASSUMPTIONS 

The proposed methodology intends to apply energy resource management in a residential 

building context. This residential building contains six apartments, and it is equipped with a 

PV generation system, a BESS, EVs, home appliances, and an external electricity grid 

supply. The load consumption of each apartment and the common services demand are also 

part of the building. Note that each apartment connects to a PV solar panel which is installed 

on the buildings’ rooftop and to an EV.  
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An overview of the building’s configuration is visualized in Figure 16, which illustrates the 

energy flow among the energy resources of the building. The green arrows represent the 

energy supply and the red the energy demand.  

 

Figure 16 Building’s power flow.  

The building electricity demand is supplied by the on-site generation system – PV 

generation. The grid power provides energy to the building when the on-site generation is 

not sufficient to meet the demand. On the other hand, it receives electricity when surplus 

energy is produced.  

To define the model of the building energy resource management, some assumptions are 

made: 

✓ The building is connected to an external supplier, the electricity grid; 

✓ Each EV has a singular daily use, i.e., it only charges once a day. Once parked inside 

the building, it is plugged into the building’s power infrastructure; 

✓ EV batteries can be charged or discharged through their bidirectional embedded 

chargers; 
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✓ A BESS is used to optimize the energy resource management of the building; 

✓ The power generated from PV panels is used to supply load demand from the 

apartments, charge EV batteries and BESS, and, eventually, inject surplus energy 

into the external electricity grid.  

3.6. CONCLUSIONS 

In this chapter, the problem description was outlined. First, a theoretical overview, of the 

optimization models and the uncertainty modeling techniques, was made. Various 

techniques and models have been developed to deal with uncertainties. Robust Optimization 

is very recent and has achieved huge popularity among optimization techniques due to its 

several advantages. Thus, RO was the chosen technique to be further explored and developed 

in this thesis.  

Then, the problem is explained and described. The main purpose of this problem was to 

minimize the total electricity costs of the building and optimize the scheduling of the energy 

management system considering the solar generation uncertainty.  

The details about the residential building were specified as well as the specifications of each 

energy resource. The building is composed of six apartments, and they all have the same 

contracted power, own an EV, and are connected to a PV generation system. Additionally, 

the building is also equipped with a BESS to guarantee more efficient energy resource 

management. All of these energy resources are managed by an aggregator, which is 

responsible for their control and minimizing the costs.  
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4. INTELLIGENT EMS FOR 

SMART BUILDING 

CONSIDERING PV 

UNCERTAINTY 

This chapter approaches the optimization model developed to implement the smart 

management system of the building taking into consideration the uncertainty of solar 

generation. To deal with the uncertainty, a robust optimization formulation based on a mixed 

binary linear problem is created. The proposed model is developed for a twenty-four-hour 

(24 hr.) scheduling horizon considering a time interval of fifteen (15) minutes.  

In this chapter, the mathematical formulation, of the deterministic model as well as the 

notation, is outlined. The method for the PV generation forecast is presented and the obtained 

values are used in the formulation of the Robust Optimization technique.  

4.1. DETERMINISTIC MODEL 

In this thesis, the optimal operation of the energy resources management of a building is 

investigated. In this subsection, the deterministic formulation of the optimization problem is 
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developed, along with the parameters notations and also including the description of the 

objective function and the constraints regarding each energy resource of the building.  

4.1.1. NOTATION 

To develop and implement the proposed deterministic model, the required sets, parameters, 

and decision variables regarding the energy resources are presented in Table 5 to Table 11.  

In this case, the period under consideration contains 𝐷 days, and each day is divided into 

step-times with 𝜏 duration.  𝑇 designates the number of all time-steps and 𝐽 the number of 

EVs/apartments.  

Table 5 Sets. 

Symbol Set Index Description 

𝕋 {1, …, T} 𝑡 Set of time-step numbers 

𝕁 {1, …, J} 𝑗 Set of EV numbers 

𝔻 {1, …, D} 𝑑 Set of day numbers 
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Table 6 Building’s parameters. 

Parameter Description Index 

𝑫 Number of days per time-study  

𝑻 Number of time-steps per time-study  

𝝉 Time-step duration   

𝑱 Number of apartments/EVs of the building  

𝑷𝑨(𝒕, 𝒋) Active power demand of apartment 𝑗 in time-step 𝑡 𝑡 ∈ 𝕋, 𝑗 ∈  𝕁 

𝑷𝑪𝑺(𝒕) Active power demand of common services in time-step 

𝑡 

𝑡 ∈ 𝕋 

𝑷𝑷𝑽(𝒕, 𝒋) Active power of PV generations in time-step 𝑡 𝑡 ∈ 𝕋, 𝑗 ∈  𝕁 

𝑷𝑮 (𝒕) Maximum power purchased from the grid in time-step 𝑡 𝑡 ∈ 𝕋 

𝑪𝑮
𝒃  (𝒕, 𝑪𝑷) Cost of electricity purchased from the grid in time-step 

t−𝑡ℎ 

𝑡 ∈ 𝕋 

𝑪𝑮
𝒔  (𝒕) Cost of electricity sold to the grid in time-step t−𝑡ℎ 𝑡 ∈ 𝕋 

 

Table 7 Building’s decision variables. 

Variable Description Domain Index 

𝑷𝑨→𝑮 (𝒕) Power from aggregator to the grid in time-step 𝑡 ℝ0
+ 𝑡 ∈ 𝕋 

𝑷𝑮→𝑨 (𝒕) Power from the grid to the aggregator in time-step 𝑡 ℝ0
+ 𝑡 ∈ 𝕋 
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Table 8 EVs parameters. 

Parameter Description Index 

𝑻𝑬𝑽
𝒊𝒏  (𝒕, 𝒋) Time that EV 𝑗 arrives at parking in day 𝑑 𝑗 ∈  𝕁, 𝑑 ∈ {0} ∪ 𝔻  

𝑻𝑬𝑽
𝒐𝒖𝒕 (𝒅, 𝒋) Time that EV 𝑗 leaves the parking in day 𝑑 𝑗 ∈  𝕁, 𝑑 ∈ 𝔻 ∪ {𝐷 + 1} 

𝑺𝑶𝑪̅̅ ̅̅ ̅̅  (𝒋) Maximum State of Charge (SoC) of EV 𝑗  𝑗 ∈  𝕁 

𝑺𝑶𝑪𝒊𝒏(𝒅, 𝒋) Initial SoC of EV 𝑗 at the beginning of the departure of 

each day 𝑑 

𝑗 ∈  𝕁, 𝑑 ∈ {0} ∪ 𝔻 

𝑺𝑶𝑪𝒐𝒖𝒕(𝒅, 𝒋) Minimum allowable SoC of EV 𝑗 at departure time of 

each day 𝑑 

𝑗 ∈  𝕁, 𝑑 ∈ 𝔻 

𝑷𝑬𝑽
𝒄  (𝒋) Charging power of EV 𝑗 𝑗 ∈  𝕁 

𝑷𝑬𝑽
𝒅  (𝒋) Discharging power of EV 𝑗 𝑗 ∈  𝕁 

𝜼𝒄 (𝒋) Efficiency charge of EV 𝑗 𝑗 ∈  𝕁 

𝜼𝒅 (𝒋) Efficiency discharge of EV 𝑗 𝑗 ∈  𝕁 

 

Table 9 EVs decision variables. 

Variable Description Domain Index 

𝜶𝑬𝑽 (𝒕, 𝒋) Binary variable representing charging state of EV 𝑗 in 

time-step 𝑡 

{0,1} 𝑡 ∈ 𝕋, 𝑗 ∈  𝕁 

𝜷𝑬𝑽 (𝒕, 𝒋) Binary variable representing discharging state of EV 𝑗 

in time-step 𝑡 

{0,1} 𝑡 ∈ 𝕋, 𝑗 ∈  𝕁 

𝑺𝑶𝑪𝑬𝑽(𝒕, 𝒋) SoC of EV 𝑗 in time-step 𝑡 ℝ0
+ 𝑡 ∈ 𝕋, 𝑗 ∈  𝕁 

𝑷𝑨→𝑬𝑽 (𝒕, 𝒋) Power from aggregator to EV 𝑗 in time-step 𝑡  ℝ0
+ 𝑡 ∈ 𝕋, 𝑗 ∈  𝕁 

𝑷𝑬𝑽→𝑨 (𝒕, 𝒋) Power from EV 𝑗 to aggregator in time-step 𝑡 ℝ0
+ 𝑡 ∈ 𝕋, 𝑗 ∈  𝕁 
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Table 10 BESS parameters. 

Parameter Description Index 

𝑺𝑶𝑪̅̅ ̅̅ ̅̅
𝑩  Maximum State of Charge (SoC) of BESS  

𝑺𝑶𝑪𝑩
𝒊𝒏𝒊𝒕𝒊𝒂𝒍 Initial SoC of BESS at the beginning of period 𝑡  

𝑺𝑶𝑪𝑩 Minimum SoC of BESS  

𝑷𝑩
𝒄  (𝒕) Charging power of BESS in period 𝑡  𝑡 ∈ 𝕋 

𝑷𝑩
𝒅  (𝒕) Discharging power of BESS in period 𝑡 𝑡 ∈ 𝕋 

𝜼𝑩
𝒄  Efficiency charge of BESS  

𝜼𝑩
𝒅  Efficiency discharge of BESS  

 

Table 11 BESS decision variables. 

Variable Description Domain Index 

𝜶𝑩 (𝒕) Binary variable representing charging state of BESS in 

time-step 𝑡 

{0,1} 𝑡 ∈ 𝕋 

𝜷𝑩 (𝒕) Binary variable representing discharging state of 

BESS in time-step 𝑡 

{0,1} 𝑡 ∈ 𝕋 

𝑺𝑶𝑪𝑩(𝒕) SoC of BESS in time-step 𝑡 ℝ0
+ 𝑡 ∈ 𝕋 

𝑷𝑨→𝑩 (𝒕) Power from aggregator to BESS in time-step 𝑡  ℝ0
+ 𝑡 ∈ 𝕋 

𝑷𝑩→𝑨 (𝒕) Power from BESS to aggregator in time-step 𝑡 ℝ0
+ 𝑡 ∈ 𝕋 
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4.1.2. OBJECTIVE FUNCTION 

The main objective of this thesis is to minimize the electricity costs of the whole building. 

The total energy cost is based on the difference between the cost of the energy purchased 

from the grid and the cost of the energy sold to the grid. The overall cost from the power 

grid is calculated based on the energy cost that is transferred from the grid to the building 

(through the aggregator). It is calculated based on the surplus energy that can be injected on 

the grid (managed by the aggregator), with a certain tariff rate. According to this, the 

objective function is formulated:  

min 𝑍 =  ∑ 𝐶𝐺
𝑏

𝑖 ∈ 𝕀

(𝑡, 𝐶𝑃)𝑃𝐺→𝐴(𝑡) −  ∑ 𝐶𝐺
𝑠

𝑖 ∈ 𝕀

(𝑡)𝑃𝐴→𝐺(𝑡) (6) 

4.1.3. CONSTRAINTS   

The constraints used in the MBLP model are presented and they ensure that the physical 

limits of the building’s energy resources are not violated.  

4.1.3.1. Electric Vehicles 

The maximum SoC of the EV battery capacity is described in (7). 

𝑆𝑂𝐶𝐸𝑉  (𝑡, 𝑗) ≤  𝑆𝑂𝐶̅̅ ̅̅ ̅̅  (𝑗) (7) 

In (8), the initial SoC of the EV 𝑗 at the arrival time on each day 𝑑 is presented.  

 𝑆𝑂𝐶𝐸𝑉 (𝑇𝐸𝑉
𝑖𝑛 ((𝑑, 𝑗) − 1), 𝑗) =  𝑆𝑂𝐶𝑖𝑛(𝑑, 𝑗)     (8) 

At the departure time, the minimum allowable SoC of the EV 𝑗 is 𝑆𝑂𝐶𝑜𝑢𝑡 (𝑗) and constraint 

(9) is considered at the departure time-steps.  

𝑆𝑂𝐶𝐸𝑉  (𝑇𝐸𝑉
𝑜𝑢𝑡(𝑑, 𝑗) − 1, 𝑗) ≥  𝑆𝑂𝐶𝑜𝑢𝑡 (𝑗) (9) 

The consumed electricity power from the grid to charge the EVs is satisfied in constraint 

(10), while the obtained power through the discharging process is satisfied in (11). If 

𝛼𝐸𝑉 (𝑖, 𝑗) = 1, the EV 𝑗 can be charged at the maximum charge power.  

𝑃𝐴→𝐸𝑉  (𝑡, 𝑗) ≤  𝛼𝐸𝑉 (𝑡, 𝑗)  ⋅ 𝑃𝐸𝑉
𝑐  (𝑗)  ⋅ 𝜏 (10) 
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𝑃𝐸𝑉→𝐴 (𝑡, 𝑗) ≤  𝛽𝐸𝑉 (𝑡, 𝑗)  ⋅ 𝑃𝐸𝑉
𝑑  (𝑗)  ⋅ 𝜏 (11) 

The SoC of the EVs may incur some changes due to the charging/discharging process, which 

are represented in constraint (12).  

𝑆𝑂𝐶𝐸𝑉 (𝑡 + 1, 𝑗) = 𝑆𝑂𝐶𝐸𝑉 (𝑡, 𝑗) + [𝑃𝐴→𝐸𝑉 (𝑡, 𝑗) ⋅ 𝜂
𝑐
 (𝑗)  −  𝑃𝐸𝑉→𝐴 (𝑡, 𝑗)/𝜂

𝑑
 (𝑗)]     (12) 

When the EV is not parked in the building, the charge/discharge process should not occur, 

as considered in (13). 

𝑆𝑂𝐶𝐸𝑉 (𝑡, 𝑗) = 0     (13) 

Lastly, constraint (14) assures that the EVs charging and discharging processes do not 

happen simultaneously.  

𝛼𝐸𝑉 (𝑡, 𝑗)  + 𝛽𝐸𝑉 (𝑡, 𝑗)  ≤ 1     (14) 

4.1.3.2. Battery Energy Storage System 

The BESS capacity constraint is described in (15). 

𝑆𝑂𝐶𝐵 ≤  𝑆𝑂𝐶𝐵(𝑡)  ≤ 𝑆𝑂𝐶̅̅ ̅̅ ̅̅
𝐵    (15) 

The initial value of BESS (𝑡 = 0) is presented in (16). 

 𝑆𝑂𝐶𝐵(0) = 𝑆𝑂𝐶𝐵
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (16) 

The consumed electricity power from the grid to charge the BESS is satisfied in constraint 

(17), while the obtained power through the discharging process is satisfied in (18). If 

𝛼𝐵 (𝑖, 𝑗) = 1, the BESS can be charged at the maximum charge power by the aggregator. 

𝑃𝐴→𝐵  (𝑡) ≤  𝛼𝐵 (𝑡)  ⋅ 𝑃𝐵
𝑐 ⋅ 𝜏 (17) 

𝑃𝐵→𝐴 (𝑡) ≤  𝛽𝐵 (𝑡)  ⋅ 𝑃𝐸𝑉
𝑑 ⋅ 𝜏 (18) 

The SoC of the BESS may incur some changes due to the charging/discharging process, 

which are represented in constraint (19).  

𝑆𝑂𝐶𝐵 (𝑡 + 1) = 𝑆𝑂𝐶𝐵 (𝑡) + [𝑃𝐴→𝐵 (𝑡) ⋅ 𝜂
𝐵
𝑐  −  𝑃𝐵→𝐴 (𝑡)/𝜂

𝐵
𝑑]     (19) 
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Lastly, constraint (20) assures that the BESS charging and discharging processes do not 

happen simultaneously.  

𝛼𝐵 (𝑡)  + 𝛽𝐵 (𝑡)  ≤ 1     (20) 

4.1.3.3. Power balance 

The power balance constraint (21) is used to guarantee all the power supply sourced from 

the PV power system, the EV batteries, the BESS, and from the grid in each time-step 𝑖, is 

equal to the total power demand of the building.  

𝑃𝐺→𝐴 (𝑡) + 𝑃𝐵→𝐴 (𝑡) +  ∑ 𝑃𝐸𝑉→𝐴 (𝑡, 𝑗)

𝑗∈ 𝕁

+ ∑ 𝑃𝑃𝑉 (𝑡, 𝑗

𝑗∈ 𝕁

)  

=  𝑃𝐴→𝐺(𝑡) + 𝑃𝐴→𝐵 (𝑡) +  ∑ 𝑃𝐴 (𝑡, 𝑗) + ∑ 𝑃𝐴→𝐸𝑉 (𝑡, 𝑗) +  𝑃𝐶𝑆 (𝑡),

𝑗∈ 𝕁𝑗∈ 𝕁

 

    

(21) 

4.1.3.4. Grid power 

The building is connected to the external grid and constraint (22) represents the maximum 

power that the aggregator can receive from the grid in time-step 𝑡. 

𝑃𝐺→𝐴 (𝑡) ≤  𝑃𝐺  (𝑡)      (22) 

4.2. PV GENERATION FORECAST 

To optimize and manage the building energy management system, it is necessary to predict 

the PV power generation output. In this thesis, a multilayer feed-forward artificial neural 

network (ANN) is implemented.  

In this ANN topology, the information moves in only one direction (forward) from the input 

nodes, through the hidden nodes, and to the output nodes, lastly. This way, there are no 

cycles or loops in the network [63]. A hidden layer is added to the neural network to amplify 

its strength and increase its efficiency. It is located between the input and output layers. 

Figure 17 presents the multilayer feed-forward ANN architecture.  
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Figure 17 Multilayer feed-forward Artificial Neural Network architecture.  

 

The main parameters of the ANN used to forecast the PV power generation for scenarios 1 

and 2 are selected as shown in Table 12.  

Table 12 ANN parameters for scenarios 1 and 2. 

ANN parameters Scenario 1 Scenario 2 

Number of layers 3 

Number of hidden layer neurons 2 10 

Number of output neurons 1 

Number of input variables 31 

Training data set 
January and February 

2019 

June, July, and August of 

2019 

Testing data set March 5, 2019 September 1, 2019 
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A training set is used to ensure that the weights are not over or under adjusted, and a test set 

is used to evaluate network performance. It used training data sets with similar 

characteristics (such as air temperature and solar irradiation) of the testing data set for better 

results. Also, several simulations were made with a different number of hidden layer 

neurons, 2 for scenario 1 and 10 for scenario 2, to obtain the greatest results.  

The input vector is composed of four components: (1) the time-step (t) of the prediction; 

(2) historical PV power generation data (kW); (3) air temperature (°C); and (4) solar 

irradiation (W/m2). To predict the PV generation for the next day, the model uses the 

generation, air temperature, and solar irradiation during the previous day. The time-step 

duration of the dataset is 15 minutes.  

All the simulations of the ANN method were performed using the R language in the RStudio 

program. The used system has 16GB RAM and a Ryzen 5 3500U 2.10 GHz processor 

running Windows 10.  

Figure 18 presents the PV power generation forecast simulation results of each apartment 

for scenario 1, regarding March 5, 2019.  

 

Figure 18 PV power generation forecast of March 5, 2019.  
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Figure 19 shows the PV power generation forecast simulation results of each apartment for 

scenario 2, regarding September 1, 2019.  

 

Figure 19 PV power generation forecast of September 1, 2019.  

 

Analyzing both Figures 18 and 19, it is possible to observe that the actual values curve is 

very similar to the forecasted values curve, resulting in a good accuracy of the forecasting 

technique. 

To assess this forecasting method's accuracy, the most common error indexes have been 

calculated: Absolute Error (AE) and Mean Absolute Error (MAE), defined in Equation (23) 

and (24).  

𝐴𝐸 =  |𝑃𝑃𝑉  − 𝑃̂𝑃𝑉 | (23) 

𝑀𝐴𝐸 =  
1

𝑁
 ∑|𝑃𝑃𝑉  − 𝑃̂𝑃𝑉 |

𝑁

𝑡=1

 (24) 

Table 13 presents the maximum and minimum values of AE and MAE values for the two 

scenarios. 
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Table 13 AE and MAE values for the two scenarios. 

 Scenario 1 Scenario 2 

Maximum AE 0.04830 0.08402 

Minimum AE 0.00002 0.00005 

MAE 0.0041 0.0080 

Comparing both scenarios, scenario 1 has a lower absolute error and MAE than scenario 2. 

However, both scenarios present results with low absolute errors which means that this 

technique is very accurate.  

4.3. ROBUST OPTIMIZATION  

The robust optimization approach applied in this thesis is based on [57] and [64] and it is 

formulated to deal with the uncertainty of PV power generation outputs.  

Initially, the MBLP model, described in Section 4.1., is formulated to optimize the energy 

resources management of the building. Then, it is transformed into a robust counterpart 

whose main objective is to minimize the total costs of electricity of the residential building 

under the given uncertainty bounds.  

Figure 20 describes the essential stages in a Robust Optimization formulation.  
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Figure 20 Steps of Robust Optimization formulation.  

First, it is necessary to identify which is the uncertainty parameter to be considered and, in 

this case, it is the PV power generation. Then, the uncertainty set is built and with the values 

of the PV production forecast, the upper and lower bounds are estimated. The deterministic 

model was already formulated, so the next step is to transform it into the worst-case model. 

The worst-case model contains a sub-problem that can be solved applying the linear duality 
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theory. Then, a trackable Robust counterpart is formulated to overcome the obstacles of 

uncertainties, and lastly, it is included in the MBLP model.  

4.3.1. NOTATION 

Table 14 presents the parameters used to model the PV power output uncertainty. 

Table 14 Uncertainty parameters.  

Parameter Description 

𝑷̂𝑷𝑽 (𝒕, 𝒋) Forecasted PV output of apartment 𝑗 in time-step 𝑡 

𝜟𝑷𝑽 (𝒕, 𝒋) Deviation from the forecasted values of PV output 

of apartment 𝑗 in time-step 𝑡 

𝜞𝑷𝑽 (𝒕) Budget of uncertainty for the PV in time-step 𝑡 

𝑷𝑷𝑽
̅̅ ̅̅ ̅ Upper bound of PV power forecast 

𝑷𝑷𝑽 Lower bound of PV power forecast 

𝝀𝑷, 𝝀𝑷 Dual variables  

The budget of uncertainty 𝛤𝑃𝑉 (𝑡) is a parameter used to adjust the robustness of the method 

against the level of conservatism of the solution and it does not have to take an integer value. 

The maximum value of 𝛤𝑃𝑉 depends on the number of uncertain random variables. In this 

case, 𝛤𝑃𝑉 = 1 because there is only one uncertainty source considered (PV power 

generation). When the budget of uncertainty reaches its maximum value, it is considered the 

worst-case realization and each PV has a chance to reach its upper or lower bounds. This 

scenario might be over-conservative and lead to unnecessary costs. On the contrary, if 𝛤𝑃𝑉 =

0, no uncertainty is considered in the PV output prediction [64], [65].  

4.3.2. ROBUST FORMULATION 

In this subsection it has formulated the robust optimization model to deal with the PV power 

generation forecast uncertainty, considering the deterministic model previously formulated.  
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4.3.2.1. Estimation of upper and lower bounds of PV uncertainty 

Once the predicted solar power output is obtained (Section 4.2.), it is necessary to estimate 

the uncertainty deviations (𝛥𝑃𝑉). Based on several literature, it was considered that 𝛥𝑃𝑉  =

20%.   

To obtain the upper and lower bounds, it is necessary to multiply the prediction values by 

their respective uncertainty deviation as shown in Equations (25)-(26), respectively.   

𝑃𝑃𝑉
̅̅ ̅̅ ̅  =  𝑃̂𝑃𝑉  +  𝛥𝑃𝑉 ∙ 𝑃̂𝑃𝑉 (25) 

𝑃𝑃𝑉  =  𝑃̂𝑃𝑉  −  𝛥𝑃𝑉 ∙ 𝑃̂𝑃𝑉 (26) 

Therefore, the upper and lower bounds will deviate about 20% from the forecasted values, 

as shown in Figures 21 and 22 that correspond to scenarios 1 and 2, respectively. 

 

Figure 21 Upper and lower bounds of PV forecasted values – Scenario 1. 



 80 

 

Figure 22 Upper and lower bounds of PV forecasted values – Scenario 2.  

 

In the robust optimization model, instead of relying on a single PV power output, which is 

often different from the real values, the decision-maker can rely on the upper and lower 

bounds of the PV power forecasts [66].  

4.3.2.2. Uncertainty set 

First, it is necessary to build an uncertainty set (denoted as 𝑼), which is used to describe the 

uncertainties of PV power generation outputs, as shown in Equation (27). 

𝑈 =  {

𝑃̂𝑃𝑉 (𝑡, 𝑗) − 𝛥𝑃𝑉 (𝑡, 𝑗)  ≤  𝑃𝑃𝑣 (𝑡, 𝑗)  ≤ 𝑃̂𝑃𝑉 (𝑡, 𝑗) +  𝛥𝑃𝑉  (𝑡, 𝑗),    ∀𝑡, 𝑗 

∑
|𝑃𝑃𝑣 (𝑡, 𝑗) −  𝑃̂𝑃𝑉 (𝑡, 𝑗)|

𝛥𝑃𝑉 (𝑡, 𝑗)
𝑖

 ≤ 𝛤𝑃𝑉 (𝑗), ∀𝑗
}     (27) 

4.3.2.3. Load balance 

According to the deterministic model presented in Section 4.1., the objective function is not 

subject to uncertainty, so the objective function of the robust model is the same as Equation 

(6). 

The load balance constraint is the only one subject to uncertainty due to the 𝑃𝑃𝑉 (𝑡, 𝑗) 

parameter. Hence, this constraint of the deterministic model should be met when the 
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worst-case of uncertainties occur. In this case, the worst-case scenario occurs at the 

maximum decrease in the PV power generation.  

According to this, the worst-case load balance is given by Equation (28), corresponding to 

the function 𝑓(𝑥). 

𝑓(𝑥)  =  𝑃𝐺→𝐴 (𝑡) + 𝑃𝐵→𝐴 (𝑡) +  ∑ 𝑃𝐸𝑉→𝐴 (𝑡, 𝑗)

𝑗∈ 𝕁

+ ∑ 𝑃𝑃𝑉 (𝑡, 𝑗

𝑗∈ 𝕁

)  −  𝑃𝐴→𝐺(𝑡)

− 𝑃𝐴→𝐵 (𝑡) − ∑ 𝑃𝐴 (𝑡, 𝑗) − ∑ 𝑃𝐴→𝐸𝑉 (𝑡, 𝑗) −  𝑃𝐶𝑆 (𝑡) 

𝑗∈ 𝕁𝑗∈ 𝕁

 

    

(28) 

4.3.2.4. Sub-problem and Dual  

After transforming the deterministic model into the worst-case model, the next step in the 

robust optimization formulation is to formulate the sub-problem and find the dual of the sub-

problem. 

The sub-problem creates the worst scenario, which is the maximum decrease of PV 

generation and then minimizes its impact, converting the sub-problem into a dual problem. 

Consequently, it consists in maximizing for the worse and then minimizing to find the 

optimal solution among the worse. Briefly, the sub-problem is solved to find the worst-case 

PV scenario.  

The first objective is the maximization of the uncertainty factor (𝑃𝑃𝑉) contained in the load 

balance equation. To formulate the sub-problem, it is required to transform Equation (26) to 

the objective function and define the uncertainty bounds as constraints as 𝑃𝑃𝑉 ∈ [𝑃𝑃𝑉  , 𝑃𝑃𝑉
̅̅ ̅̅ ̅].  

The formulation of the sub-problem is characterized in Equations (29a) - (29c).  

𝑚𝑎𝑥  𝑓(𝑥)  (29a) 

s. t. 

𝑃𝑃𝑉
̅̅ ̅̅ ̅   − 𝑃𝑃𝑉   ≥  0  

 

 

(29b) 

𝑃𝑃𝑉  −  𝑃𝑃𝑉  ≤  0 (29c) 
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The sub-problem needs to be converted into a dual problem to make the robust counterpart 

tractable 1.  When the sub-problem is linear, it is possible to apply the linear duality theory 

on the sub-problem and dual variables are required.  

The formulation of the dual of the sub-problem is characterized in Equation (30a) which is 

the dual objective function of the sub-problem and in Equation (30b) which is the dual 

constraint subjected to the dual objective function.  

𝑚𝑖𝑛  𝜆𝑃  ⋅ (𝑃𝑃𝑉  − 𝑃𝑃𝑉)  +  𝜆𝑃 ⋅ (𝑃𝑃𝑉
̅̅ ̅̅ ̅   − 𝑃𝑃𝑉 )  (30a) 

s. t. 

𝜆𝑃,   𝜆𝑃 ≥  0  

 

 

(30b) 

4.3.2.5. MBLP Tractable Robust Counterpart 

The formulation of the robust counterpart of the deterministic model is given in Equations 

(31a) - (31r), using the dual problem developed previously. The objective function is the 

same as the deterministic model, as well as the constraints. The main difference is that the 

MBLP robust counterpart problem includes two new constraints, associated with the 

sub-problem.  

𝑚𝑖𝑛 𝑍 =  ∑ 𝐶𝐺
𝑏

𝑖 ∈ 𝕀

(𝑡, 𝐶𝑃)𝑃𝐺→𝐴(𝑡) −  ∑ 𝐶𝐺
𝑠

𝑖 ∈ 𝕀

(𝑡)𝑃𝐴→𝐺(𝑡) (31a) 

s.t. 

𝑆𝑂𝐶𝐸𝑉 (𝑡, 𝑗) ≤  𝑆𝑂𝐶̅̅ ̅̅ ̅̅  (𝑗) 

 

 

(31b) 

𝑆𝑂𝐶𝐸𝑉 (𝑇𝐸𝑉
𝑖𝑛 ((𝑑, 𝑗) − 1), 𝑗) =  𝑆𝑂𝐶𝑖𝑛(𝑑, 𝑗) (31c) 

𝑆𝑂𝐶𝐸𝑉 (𝑇𝐸𝑉
𝑜𝑢𝑡(𝑑, 𝑗) − 1, 𝑗) ≥  𝑆𝑂𝐶𝑜𝑢𝑡 (𝑗) (31d) 

 

 

1
 Tractable: Word used to refer to problems that can be reformulated into equivalent problems for which there are known 

solution algorithms; Ease of obtaining a mathematical solution [68].  
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𝑃𝐴→𝐸𝑉  (𝑡, 𝑗) ≤  𝛼𝐸𝑉 (𝑡, 𝑗)  ⋅ 𝑃𝐸𝑉
𝑐  (𝑗)  ⋅ 𝜏 (31e) 

𝑃𝐸𝑉→𝐴 (𝑡, 𝑗) ≤  𝛽𝐸𝑉 (𝑡, 𝑗)  ⋅ 𝑃𝐸𝑉
𝑑  (𝑗)  ⋅ 𝜏 (31f) 

𝑆𝑂𝐶𝐸𝑉  (𝑡 + 1, 𝑗) = 𝑆𝑂𝐶𝐸𝑉 (𝑡, 𝑗) + [𝑃𝐴→𝐸𝑉  (𝑡, 𝑗) ⋅ 𝜂
𝑐
 (𝑗)  −  𝑃𝐸𝑉→𝐴 (𝑡, 𝑗)/𝜂

𝑑
 (𝑗)] (31g) 

𝑆𝑂𝐶𝐸𝑉 (𝑡, 𝑗) = 0 (31h) 

𝛼𝐸𝑉 (𝑡, 𝑗)  + 𝛽𝐸𝑉 (𝑡, 𝑗)  ≤ 1 (31i) 

𝑆𝑂𝐶𝐵 ≤  𝑆𝑂𝐶𝐵(𝑡)  ≤ 𝑆𝑂𝐶̅̅ ̅̅ ̅̅
𝐵    (31j) 

𝑆𝑂𝐶𝐵(0) = 𝑆𝑂𝐶𝐵
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (31k) 

𝑃𝐴→𝐵  (𝑡) ≤  𝛼𝐵 (𝑡)  ⋅ 𝑃𝐵
𝑐 ⋅ 𝜏 (31l) 

𝑃𝐵→𝐴 (𝑡) ≤  𝛽𝐵 (𝑡)  ⋅ 𝑃𝐸𝑉
𝑑 ⋅ 𝜏 (31m) 

𝑆𝑂𝐶𝐵 (𝑡 + 1) = 𝑆𝑂𝐶𝐵 (𝑡) + [𝑃𝐴→𝐵 (𝑡) ⋅ 𝜂
𝐵
𝑐  −  𝑃𝐵→𝐴 (𝑡)/𝜂

𝐵
𝑑] (31n) 

𝛼𝐵 (𝑡)  + 𝛽𝐵 (𝑡)  ≤ 1 (31o) 

𝑃𝐺→𝐴 (𝑡) ≤  𝑃𝐺  (𝑡) (31p) 

Min max(Ppv)  ( 𝑃𝐺→𝐴 (𝑡) + 𝑃𝐵→𝐴 (𝑡) + ∑ 𝑃𝐸𝑉→𝐴 (𝑡, 𝑗)𝑗∈ 𝕁 + ∑ 𝑃𝑃𝑉 (𝑡, 𝑗𝑗∈ 𝕁 ) −

 𝑃𝐴→𝐺(𝑡) − 𝑃𝐴→𝐵 (𝑡) − ∑ 𝑃𝐴 (𝑡, 𝑗) − ∑ 𝑃𝐴→𝐸𝑉 (𝑡, 𝑗) − 𝑃𝐶𝑆 (𝑡)𝑗∈ 𝕁𝑗∈ 𝕁 ) 

(31q) 

𝑃𝑃𝑉 ∈ [𝑃𝑃𝑉 (𝑖, 𝑗) , 𝑃𝑃𝑉  ̅̅ ̅̅ ̅(𝑖, 𝑗)] (31r) 

 

4.4. CONCLUSIONS 

The mathematical formulation of the robust optimization based on an MBLP model has been 

presented in this chapter. The first sub-section concerned the mathematical formulation of 

the mixed binary linear problem and included the description of all the parameters along 

with the objective function and constraints regarding all energy resources of the building. 
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To control the building energy management system, it was necessary to forecast the PV 

generation output using an Artificial Neural Network technique. After obtaining the 

forecasted values, the upper and lower bounds of the forecast PV generation were calculated 

to build the uncertainty set of the robust formulation.  

The cost minimization MBLP was transformed into a robust counterpart with the main 

purpose of providing immunity against PV uncertainty within the determined bounds.  First, 

the deterministic model is converted into a sub-problem that consists in the maximization of 

the uncertainty factor (creates the worst scenario) and then minimizes it to find the best 

solution. Then, a traceable robust counterpart was formulated, which consisted in adding the 

constraints associated with the sub-problem to the deterministic model.  
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5. CASE STUDY AND 

RESULTS 

In this chapter, the methodology proposed in Chapter 4 is implemented and evaluated. A 

brief review of the case study is made. Then, the two scenarios of this thesis case study are 

described, and the results of the simulations are presented and briefly discussed.   

5.1. CASE STUDY: ENERGY SMART MANAGEMENT CONSIDERING PV 

UNCERTAINTY 

A case study for the energy resources management of a residential building is used to assess 

the proposed mathematical formulation, with the objective of minimizing the energy costs 

of the building considering the uncertainty of solar generation.  

Besides the EVs, the energy smart management of the building also involves the use of a 

BESS to satisfy the demand during energy consumption peaks. 

The main objective of this case study is to compare the electricity costs considering PV 

uncertainty on a cloudy day with a sunny day. Also, it investigated the effect of the usage of 

energy storage systems such as EVs and a BESS in the scheduling of the energy management 

system. 
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The historic data used in this case study include the energy demand of common services, the 

energy consumption, and the photovoltaic power generation of each apartment. This data 

can be found at “Arxiv”.  

5.2. SCENARIOS DESCRIPTION 

To visualize the impact of PV uncertainty, two scenarios with three case studies each have 

been simulated in this study. It is considered a short-term scheduling horizon (twenty-four 

(24) hours) with a 15-minute time interval. 

Cloudy days are distinguished by a mean solar irradiation value in the range [5-150 W/m2] 

and sunny days by a mean value of the solar irradiance higher than 150 W/m2 [67]. For 

scenario 1: March 5, 2019, was chosen due to its very low medium solar irradiation, which 

was 97.5 W/m2. Regarding scenario 2: September 1, 2019, was chosen because it was a 

summer day with high medium solar irradiation values (437.7 W/m2). 

Table 15 summarizes the main characteristics of each scenario, in which “ ” indicates that 

resource is integrated into the building.  

Table 15 Scenario’s characterization.  

 Scenario 1 Scenario 2 

 1.a 1.b 1.c 2.a 2.b 2.c 

Day March 5, 2019 September 1, 2019 

Aggregator  ✓  ✓   ✓  ✓  

PV generation 

system 
✓  ✓  ✓  ✓  ✓  ✓  

EVs ✓  ✓  ✓  ✓  ✓  ✓  

BESS   ✓    ✓  

In both scenarios, it was assumed that the PV generation values, and the common services 

demand were the same for all the consumers.  

The scenarios are divided into three sub-scenarios each, as follows. 
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Scenario a: Reference scenario 

In this reference scenario, smart management is not considered. Each apartment is provided 

with an individual PV generation system and uses an EV but there is no energy smart 

management system applied in these resources. The EV starts charging when it enters the 

building and stops when it is fully charged. In this case, there is no charging schedule. 

To calculate the electricity costs of the building, it was assumed that all consumers have an 

energy contract with a bi-hourly tariff and a contracted power of 6.9 kVA. The energy prices 

of this tariff for each period are annually fixed by Entidade Reguladora dos Serviços 

Energéticos (ERSE) and Table 16 presents the prices of 2019 considered in this scenario.  

Table 16 Energy tariffs for sale to low voltage consumers by ERSE in 2019.  

Power Prices 

Contracted power 6.9 kVA 0.2935 €/day 

Bi-hourly tariff (≤6.9 

kVA) 

Off-peak hours 0.1014 (€/kWh) 

Peak hours 0.2008 (€/kWh) 

The bi-hourly tariff can follow a weekly or daily cycle. In this case, a weekly cycle was 

chosen. The off-peak and peak periods also vary depending on the time of the year, i.e., if it 

is summer or winter.  

Table 17 exhibits the duration of off-peak and peak periods for each day of the week.  
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Table 17 The weekly cycle of bi-hourly tariff.  

Weekdays 

Winter Summer 

Off-peak hours Peak hours Off-peak hours Peak hours 

Monday 

to Friday 
0h00-7h00 7h00-24h00 00h00-7h00 7h00-24h00 

Saturday 

00h00-9h30 

13h00-18h30 

22h00-24h00 

9h30-13h00 

18h30-22h00 

00h00-9h00 

14h00-20h00 

22h00-24h00 

9h00-14h00 

20h00-22h00 

Sunday 00h00-24h00  00h00-24h00  

 

Scenario b: Smart management considering EVs  

In scenario b, the developed robust scheduling in Section 4.4. is tested on the building energy 

system proposed in Figure 16. 

The following assumptions are made: 

• An aggregator is responsible for controlling all building energy resources and for the 

energy trade-off between the building and the grid; 

• Each apartment has its own PV generation system; 

• Each apartment uses one EV and its charging and discharging processes are managed 

and controlled. 

Scenario c: Smart management considering EVs and BESS 

This scenario is very similar to the previous one and the following assumptions are made: 

• An aggregator is responsible for controlling all building energy resources and for the 

energy trade-off between the building and the grid; 

• Each apartment has its own PV generation system; 
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• Each apartment uses one EV and its charging and discharging processes are managed 

and controlled. 

• A BESS is used as an energy resource of the building. 

5.3. DISCUSSION OF RESULTS 

In this section, the robust scheduling results of each scenario are presented, and observations 

are made.  

5.3.1. SCENARIO 1 

5.3.1.1. Scenario a 

The reference case of scenario 1 consists in calculating the energy costs of each consumer 

for a specific day, without optimizing the energy scheduling of the resources. According to 

the RO, the worst-case scenario is contemplated, which consists of considering the lower 

bounds of the forecasted PV generation.  

First, the total energy consumption of each apartment is calculated. This scenario 

corresponds to a winter Tuesday, so the duration of off-peak and peak periods for this day 

provided by Table 17 are used. Table 18 exhibits the total energy consumption for each 

consumer.  
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Table 18  Energy consumption of each consumer.  

Consumer 

Off-peak hours 

consumption 

(kWh) 

Peak hours 

consumption 

(kWh) 

Total 

consumption 

(kWh) 

1 3.699 23.212 +26.911 

2 1.303 18.340 +19.644 

3 2.405 13.550 +15.956 

4 2.856 49.592 +52.449 

5 2.775 21.407 +24.183 

6 4.938 27.306 +32.245 

Total 17.979 153.410 +171.389 

Table 19 presents the total electricity costs for the reference case of scenario 1. 

Table 19 Total electricity cost of each consumer regarding scenario 1.a.  

Consumer 

Common services 

consumption 

(kWh) 

EV  

demand 

(kWh) 

PV 

generation 

(kWh) 

Total 

consumption 

(kWh) 

Total 

price 

(€) 

1 +5.371 + 26.414 -1.337 57.360 6.897 

2 +5.371 +25.258 -1.337 48.936 5.727 

3 +5.371 +17.327 -1.337 37.318 4.365 

4 +5.371 +21.905 -1.337 78.389 10.361 

5 +5.371 +26.537 -1.337 54.755 6.583 

6 +5.371 +22.259 -1.337 58.539 7.128 

Total +32.231 +139.702 -8.024 335.299 41.064 
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Equation 32 demonstrates how the total electricity cost of each consumer is calculated. It 

consists of adding the energy demanded from apartments, common services, and EVs and 

subtracting the PV generation that is listed in Tables 18 and 19. Then, it is multiplied by the 

energy price presented in Table 16, according to the period when the energy is consumed 

(off-peak or peak periods). 

[𝐴𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 +  𝐶𝑜𝑚𝑚𝑜𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

+  𝐸𝑉 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 −  𝑃𝑉 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛] (𝑘𝑊ℎ) 

×  𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒 (€/𝑘𝑊ℎ) 

(32) 

5.3.1.2. Scenario b 

The optimal robust optimization scheduling results were obtained for the worst-case 

scenario. In this scenario, the worst-case occurs when there is a maximum decrease of the 

PV power production, based on the condition that 𝛤𝑃𝑉 (𝑡) = 1.  

Figure 23 present the robust scheduling simulation results of all the building’s energy 

resources, regarding scenario 1.b. Through the worst possible solution, RO found the best 

solution for the worst-case scenario of PV generation, which is presented in this figure.  

 

Figure 23 Robust Optimization optimal scheduling results for scenario 1.b.  

This optimization technique operates within the uncertainty set bounds. This means that the 

obtained results for the PV generation values (symbolized in blue) represent the robust 
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values obtained between the considered upper and lower bounds of the forecasted 

generation. In comparison with the real solar generation values, these values suffer a huge 

decrease when the RO model is implemented.  

The EVs are scheduled to charge during the night (0h00 – 06h30) when the energy 

consumption from apartments and common services is low. Also, since these are considered 

off-peak periods in the bi-hourly tariff, the EVs charge when the energy price is cheaper. 

Therefore, the energy purchasing price from the grid is low.  

Since the charging power of the EVs is 3.7 kW and their charged power was higher than this 

value during periods 0-27, they are scheduled to discharge some of that power in the 

following periods.  

In the early morning (7h15-9h15), the energy demand slowly begins to rise and the EVs are 

scheduled to discharge while they are still in the building. During some of these periods, it 

was not necessary to buy energy from the grid because the power from the EVs discharge 

was able to fulfill the demand.  

Despite near null power values, PV panels start generating around period 36 and gradually 

increase throughout the morning. The peak of energy consumption from the apartments is 

reached at 12h30 (period 51), as also the peak of energy received from the grid because the 

energy from PV generation is not enough to meet the high demand.  

In the majority of the afternoon periods, the PV generation is not sufficient to satisfy the 

required consumption from the apartments and common services. Also, during the rest of 

the day, the energy price is the highest, which leads to an increase in the electricity bill. The 

EVs start the discharging process, again, during some of the afternoon and night periods.  

The PV forecast line represents the best solution for PV generation obtained by the RO 

technique between the upper and lower bounds of the forecasted values.  

5.3.1.3. Scenario c 

Similarly, to scenario 1.b, the robust scheduling results were obtained for the worst-case and 

more conservative scenario, which consists of the maximum decrease of PV generation. The 

main difference concerning the last scenario is the inclusion of a new energy resource, a 

BESS.  



 95 

Figure 24 shows the robust optimization scheduling results regarding scenario 1.c. 

 

Figure 24 Robust Optimization optimal scheduling results for scenario 1.c.  

The energy consumption of the apartments and common services, as also the robust and 

forecast PV generation values, remain the same as in scenario 1.b. The scheduling charge 

and discharge of EVs and BESS and the power from the grid are the resources that are 

adjusted.  

The charging process of the EVs and BESS starts during periods 0 to 27, like scenario 1.c. 

Consequently, the power from the grid is higher because there is no generation source to 

fulfill the charging consumption. In these periods, the energy consumption from the 

apartments and common services is low, as is the energy price. The grid line follows the 

demand pattern there is no other source of supply.  

During periods 28 to 35, the BESS continues to charge to reach the targeted SOC values and 

the EVs start discharging to supply their load demand. After these periods, the energy 

consumption of the apartments begins to increase as well as the PV generation, but it is not 

enough to satisfy it. Therefore, the BESS discharge feature is used in these periods where 

the external prices are higher and there are peak loads.  

Between periods 63 and 77, there are a few periods where the aggregator does not have to 

request more energy from the grid due to PV generation and BESS and EVs discharge. From 
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period 81 forward, the demand is assured through the EVs and BESS discharging process 

and the power from the grid.  

Comparing both scenarios, in scenario 1.c it is possible to note a slight decrease in the energy 

purchased from the grid in the periods where the BESS starts to discharge.  

5.3.2. SCENARIO 2 

5.3.2.1. Scenario a 

The main purpose of the reference case of scenario 2 is the same as scenario 1. In this case, 

this scenario corresponds to a summer Sunday and, according to Table 17, every period of 

this day corresponds to off-peak hours. Therefore, there is no need to segregate the off-peak 

and peak periods to calculate the total energy consumption of each consumer on this day.  

Table 20 presents the total electricity costs for the reference case of scenario 2. 

Table 20 Total electricity cost of each consumer regarding scenario 2.a.  

Consumer 

Apartment 

consumption 

(kWh) 

Common 

services 

consumption 

(kWh) 

EV 

demand 

(kWh) 

PV 

generation 

(kWh) 

Total 

consumption 

(kWh) 

Total 

price 

(€) 

1 +7.451 +4.242 + 22.247 -8.169 25.771 3.971 

2 +8.130 +4.242 +27.235 -8.169 31.437 4.848 

3 +17.472 +4.242 +22.489 -8.169 36.034 5.553 

4 +40.426 +4.242 +7.787 -8.169 44.286 6.827 

5 +18.950 +4.242 +28.262 -8.169 43.285 6.671 

6 +36.914 +4.242 +3.496 -8.169 36.482 5.612 

Total +129.345 +25.453 +111.516 -49.017 217.297 33.485 
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Equation 33 demonstrates how the total electricity cost of each consumer is calculated. It 

consists of adding the energy demanded from apartments, common services and EVs and 

subtracting the PV generation that is listed in Table 20. Then, it is multiplied by the energy 

price of the off-peak periods presented on Table 16 because, as already stated, the off-peak 

consumption corresponds to the total energy consumption on Sundays. 

[𝐴𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 +  𝐶𝑜𝑚𝑚𝑜𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

+  𝐸𝑉 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 −  𝑃𝑉 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛] (𝑘𝑊ℎ) 

×  𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒 (€/𝑘𝑊ℎ) 

(33) 

5.3.2.2. Scenario b 

The robust optimization scheduling results were obtained for the worst-case scenario. In this 

situation, the worst-case occurs when there is a maximum decrease of the PV power 

production, based on the condition that 𝛤𝑃𝑉 (𝑡) = 1. 

The simulation results of the building energy management system for scenario 2.b are shown 

in Figure 25. 

 

Figure 25 Robust Optimization scheduling results for scenario 2.b.  
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As in scenario 1.b, the robust technique finds the optimal PV generation values within the 

upper and lower bounds of forecasted values, and it represents the best value among the 

worst. These represent the lowest values of the solar production because it corresponds to 

the worst scenario.  

During the night period (periods 0-30), the EVs are charging with power from the grid. Also, 

in these periods, the energy consumption of the apartments and common services is low in 

comparison with the rest of the day. So, the EVs charge during periods with low energy price 

and low energy demand. As known, there are no PV power outputs during these periods. It 

is possible to note in the figure that when there is no source of renewable generation (during 

the night and early morning), the aggregator needs to purchase all the energy from the grid, 

increasing the electricity bill. 

In periods 40-75 it is possible to visualize some periods with energy demand peaks and that 

the PV generation cannot meet its load demand. Consequently, in these peak periods, the 

energy from the grid is higher to meet the demand. But the opposite also happens. There are 

periods that the aggregator does not have to buy energy from the grid because the PV 

generation can meet the load demand from the apartments and common services.  

In periods 75-95, the energy demand is consistently higher compared to the other periods. It 

is supposed that the EV owners return home at the end of the afternoon and the EVs start to 

discharge when they are plugged in. Since the PV generation considerably decreases, the 

power discharged from the EVs is used to satisfy the energy demand and, as a result, the 

energy requested from the grid diminishes. 

The charge and discharge of the EVs at low and high demand times, respectively, allows 

optimal scheduling of the building energy resources and also a decrease in the electricity 

costs.  

5.3.2.3. Scenario c 

Like the previous scenario, the RO scheduling results were obtained for the worst-case 

situation, considering that 𝛤𝑃𝑉 (𝑡) = 1. 

The simulation results of the building energy management system for scenario 2.c are shown 

in Figure 26. 
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Figure 26 Robust Optimization scheduling results for scenario 2.c.  

In the night periods (0-30), there is no generation from the PV panels, and the energy demand 

from the apartments and common services is very low. Thus, in some periods, the BESS and 

EVs are scheduled to discharge for demand-supply. In the majority of the time intervals of 

night-time, the aggregator purchases power from the grid to charge the EV batteries, to 

achieve the respective SOC values when they leave the building in the morning. 

In the morning periods (33-40), it can be observed that the BESS discharges to satisfy the 

energy needs from the EVs charging, apartments, and common services since there is no PV 

generation yet. 

During the day, in some periods between 51-66, it is possible to observe that the energy 

demand is low, and the PV power generation is high which means that the energy from PV 

panels is not being totally consumed by the apartments. As a result, the BESS stores the 

surplus energy mostly at periods with low energy demand.  

During periods 74-95 (night-time), there is a high energy demand from the apartments and 

common services and very low PV generation to satisfy the needs. To smooth the energy 
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consumption from the grid, the EVs and BESS start their discharging process to fulfill the 

energy demands.  

5.3.3. COMPARISON OF SCENARIOS 

Scenario 1 presented higher consumption values than scenario 2, which is expected because 

energy consumption in winter tends to be higher than in summer. On the other hand, the PV 

generation reaches higher values in scenario 2. The load profiles of the six consumers 

regarding scenarios 1 and 2 are described in Figures 27 and 28, respectively. 

 

Figure 27 Load profile of each consumer regarding scenario 1.  
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Figure 28 Load profile of each consumer regarding scenario 2.  

Weather conditions have a significant impact on the power generated by the PV system. 

Figure 29 presents the real and forecasted values of PV power generation of each apartment, 

regarding both scenarios to analyze the impact of the weather, more specifically the solar 

irradiation.  

 

Figure 29 Real and forecasted values of PV power generation of each apartment for both 

scenarios.  
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For a cloudy day (scenario 1), the power profile shows highly unpredictable fluctuations, 

which increases the inherent uncertainty related to the PV generation. On a clear sunny day, 

the PV power output is the highest and follows a bell-shaped curve as shown in the figure 

above.  

Figure 30 indicates the total electricity costs (€) for all six case studies of the two scenarios.  

 

Figure 30 Total electricity costs for scenarios 1 and 2.  

As expected, the chosen cloudy day has higher total electricity costs than the sunny day. On 

a cloudy day, the PV generation reaches low values, and the energy consumption is very 

high, in contrast with the sunny day. As a consequence, more energy is required from the 

grid because the PV power generation is very low, which leads to a scheduling cost increase. 

When the uncertainty is bigger, the system adopts more conservative scheduling, resulting 

in higher costs.  

Comparing the three case studies of each scenario, it can be observed that the electricity cost 

suffers a decrease from one to another case study. As expected, the scenarios with no smart 

management represent higher costs. The use of both EVs and BESS exemplifies that smart 

management and scheduling of these energy resources can lead to an electricity bill 

reduction. 
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5.3.4. ANALYSIS OF BUDGET OF UNCERTAINTY 

For this analysis, it only considered scenario 2 because it presented better scheduling costs 

than in scenario 1. Also, the reference case study of scenario 2 is not contemplated because 

it does not implement smart management. 

It is considered five different values for the budget of uncertainty (𝛤𝑃𝑉), in a range from 0 to 

1. Table 21 presents the energy management system scheduling costs under five different 

budgets of uncertainty, regarding scenarios b and c.  

Table 21 EMS scheduling costs under different 𝜞𝑷𝑽 (𝒕).  

𝜞𝑷𝑽 (𝒕) 
Total cost for scenario 

2.b (€) 

Total cost for scenario 

2.c (€) 

0 19.12 17.80 

0.25 19.41 18.17 

0.50 19.73 18.57 

0.75 20.09 18.98 

1 20.47 19.40 

For both scenarios, as the value of the budget of uncertainty increases, the total energy costs 

also increase. With the increase of  𝛤𝑃𝑉 (𝑡), the uncertainty level of the PV power forecast 

increases as well. Consequently, there is a big probability of a decrease in the PV power 

output. 

When 𝛤𝑃𝑉 (𝑡)  = 0, no uncertainty is considered and as a result, the real values of PV power 

outputs are equal to the forecasted PV values. This way, no immunity is taken against 

uncertainties in solar power generation and the influence of PV uncertainty in the constraint 

is ignored. This budget of uncertainty value corresponds to the lower robustness level. 

Moreover, when the budget of uncertainty is null, the model can be considered deterministic, 

and the uncertain PV output is not considered in the scheduling problem.  

 Besides, when 𝛤𝑃𝑉 (𝑡) = 1, the energy costs are higher due to the consideration of the 

worst-case scenario because, when there is a maximum decrease of PV generation, the 
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aggregator needs to buy energy from the grid to satisfy the load demand. As a result, the 

EMS is scheduled to purchase more electricity from the grid, increasing the total cost. 

Besides the fact that a higher value of 𝛤𝑃𝑉 (𝑡) leads to higher conservatism solutions and, 

consequently, higher economic costs, it provides a better risk performance. Also, it is 

guaranteed full protection against PV uncertainties.  

When analysing the results of both scenarios, it is noted that scenario 2.c has lower energy 

costs than scenario 2.b for each value of the budget of uncertainty. This way, it is possible 

to conclude that the use of a BESS leads to a decrease in the total costs for every 𝛤𝑃𝑉, in 

comparison with scenario 2.b, in which only EVs are used.  

Figure 31 shows the scheduling results of the energy management system for scenario 2.c, 

considering different values for the budget of uncertainty.  
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Figure 31 Robust scheduling results of scenario 2.c for (a) 𝜞𝑷𝑽 = 𝟏, (b) 𝜞𝑷𝑽 =  𝟎. 𝟕𝟓, (c) 𝜞𝑷𝑽 =

𝟎. 𝟓, (d) 𝜞𝑷𝑽 (𝒕) = 𝟎. 𝟐𝟓, (e) 𝜞𝑷𝑽 =  𝟎. 
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The PV generation uncertainty can be modeled by the budget of uncertainty. Consequently, 

the robust parameter selection will have an impact on the scheduling results. For every 

simulation of the selected 𝛤𝑃𝑉 value, the upper and lower bounds are used in a proposed 

RO-based energy scheduling technique.  

When analyzing this figure, it is possible to observe that there is no uncertainty gap when 

𝛤𝑃𝑉 (𝑡)  = 0, because the real values are the same as the forecasted values. Also, the 

uncertainty gap gets wider as the value of 𝛤𝑃𝑉 increases. A higher value of 𝛤𝑃𝑉 turns the EMS 

scheduling more conservative.  

Observing Figure 31 (a)-(e), as the value of 𝛤𝑃𝑉 increases, the uncertainty level of PV 

generation also increases, which can reflect a decrease in PV power output because the 

worst-case scenario occurs when the budget of uncertainty is the highest and it represents a 

maximum decrease of PV generation. The PV generation forecast reaches lower values than 

the actual values when the budget of uncertainty is the maximum because it corresponds to 

the worst situation. A decrease in the PV generation results in more power purchased from 

the grid, increasing the costs.  

 Comparing the five graphs, the schedule charging and discharging processes of the EVs and 

BESS differ for each 𝛤𝑃𝑉 value. In all situations, the EVs charge during night and early 

morning periods (0h00-9h00) and discharge during the first peak intervals (20h00-0h00) 

after they are plugged in. Generally, the batteries charge during the periods with cheaper 

energy prices and discharge when it is more expensive. Nevertheless, it is possible to observe 

that the EVs and BESS discharge during few periods between the periods that the EVs are 

charging to supply the demand.  

The aggregator does not need to require energy from the grid when the PV generation is 

equal to or higher than the energy demand from the building. When it is higher, it is possible 

to see in the graph that the BESS starts its charging process. On the contrary, when the PV 

generation is not able to meet the demand or when there is no PV generation (night-time), 

the BESS starts its discharging process to reduce the energy consumed from the grid.  

Comparing the five scenarios (a)-(e), the optimization technique adjusts the energy resources 

scheduling to the selected conservatism/robustness level. The load demand from the 

apartments and common services remains the same for the five situations. The 

charge/discharge process of EVs and BESS suffer some alterations due to the variation of 
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the PV generation values according to the level of conservatism defined by the budget of 

uncertainty.  

The aggregator can choose a suitable value of the budget of uncertainty to control the 

conservatism level of the solution and, consequently, to adjust the robust energy scheduling. 

It is known that a higher 𝛤𝑃𝑉 (𝑡) leads to over-conservative solutions and unnecessary costs. 

With a null value of 𝛤𝑃𝑉 (𝑡), no PV uncertainty is considered. Accordingly, the aggregator 

must choose a suitable value between the considered range of the budget of uncertainty, 

which in this case is 𝛤𝑃𝑉 (𝑡) =  0.5. This way, a compromise between the optimality and the 

robustness of the solution is achieved.  

5.4. CONCLUSIONS 

This chapter presented the description of a case study and scenarios. Two scenarios have 

been simulated to compare the PV uncertainty in a cloudy and a sunny day through the 

implementation of the RO approach. Three different scheduling scenarios are discussed: 

uncoordinated EV charging scenario (no smart management), coordinated EV 

charging/discharging scenario, and coordinated EV and BESS charging/discharging 

scenario. The simulations made for the three scenarios were based on the worst-case 

scenario, that is the maximum decrease of the PV generation.  

 According to the results, scenario 1 obtained higher total electricity costs than scenario 2. 

On the chosen cloudy day, the PV generation profile shows unpredictable fluctuations and, 

consequently, the uncertainty is bigger than on a sunny day. Also, the aggregator needs to 

purchase more energy from the grid on a cloudy day, increasing the electricity cost.  

The simulation results of scenario 1 illustrate that the coordinate charging/discharging of 

EVs can reduce the total cost by about 30% compared to the uncoordinated charging mode. 

Also, the total electricity costs can be further reduced by about 5,5% by using BESS and 

EVs. The results of scenario 2 present a significant reduction of about 40% from the 

reference scenario to the scenario of the coordinated charge of EVs. The scenario with the 

smart management of EVs and BESS present a cost decrease of about 5,2% in comparison 

to the scenario with only the EVs scheduling. Accordingly, the use of EVs and BESS results 

in the lowest values of electricity costs, comparing all the scenarios. 



 108 

Also, the impact of the parameters of a budget of uncertainty on the energy management 

system scheduling of scenario 2 is analysed. As the value of the budget of uncertainty 

increases, the total energy costs also increase. When the budget of uncertainty is null, the 

PV uncertainty is not considered and the model can be considered deterministic, so the 

scheduling costs are the lowest. When the budget of uncertainty is one, it represents the 

worst-case scenario (lowest PV generation), which corresponds to the most conservative 

solution and, consequently, the most expensive. The RO technique adjusts the energy 

scheduling according to the selected robustness level.  
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6. CONCLUSIONS 

This chapter presents a final summary of this thesis and states the main conclusions about 

the implemented methodology. The main contributions accomplished with this work are 

summarized. Also, some limitations found along the developed work and a few suggestions 

for future research work, aligned with the results obtained in this thesis are identified. 

6.1. FINAL CONCLUSIONS 

The penetration of renewable energy sources in energy grids has significantly increased, 

leading to a transformation in the energy system paradigm. Therefore, it is necessary to 

develop new coordination mechanisms to assure affordable energy, such as building energy 

management systems. Smart buildings manage and control their energy system intending to 

reduce energy costs and improve efficiency, through energy scheduling. 

 Even though the integration of renewable generation can result in significant cost savings 

and environmental benefits, it introduces uncertainty to the scheduling problem because 

photovoltaic generation follows an unpredictable pattern. For this reason, in recent years, 

uncertainty management has become a research issue in energy scheduling problems and 

uncertainty modelling techniques have been developed.  
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This thesis focused on Robust Optimization, a very recent and effective approach to deal 

with uncertainty. The main purpose of this method is to find the worst-case scenario that the 

building energy management system might face, focusing on minimizing its impact by 

obtaining the best solutions among the worst. It guarantees immunity against all possible 

realizations of the uncertain parameter within the uncertainty bounds. In this case, the worst-

case scenario consists of the maximum decrease of the photovoltaic power generation.  

The main approach of this work was the development of a day-ahead robust scheduling 

strategy for the optimal control of building energy management system with solar generation 

system, electric vehicles, battery energy storage system, and load demand. The robust 

optimization has been used for energy resources scheduling considering uncertainty in solar 

power generation.  

To deal with the energy scheduling problem, a mathematical model based on a deterministic 

model (Mixed Binary Linear Programming) was formulated. Then, it was transformed to a 

robust counterpart, to minimize the daily energy cost but also conferring immunity against 

the worst-case scenario under the given uncertainty set (upper and lower bounds). The 

conservatism of the solution can be adjusted by selecting an appropriate value of the budget 

of uncertainty.  

To evaluate the effectiveness and the performance of the proposed method, the robust model 

was implemented on a practical residential building energy system and two scenarios with 

three case studies each have been simulated. The scenarios corresponded to the energy 

scheduling on a cloudy day and on a sunny day, considering the non-smart management of 

the electric vehicles charging process and the smart management of the electric vehicles and 

battery energy storage system scheduling charging and discharging.  

Simulation results prove that the use of energy storage systems (electric vehicles and a 

battery) can achieve the lowest electricity costs for both scenarios. In comparison with sunny 

days, cloudy days present highly unpredictable fluctuations, which increases the inherent 

uncertainty regarding the photovoltaic generation and, consequently, the energy costs.  

The results have demonstrated that the robust model can guarantee immunity against the 

worst-case scenario, which is the maximum uncertainty of solar power generation. The 

highest protection against uncertainty is also the most conservative, which leads to higher 

energy costs but a better risk performance.  
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The developed robust model in this thesis can be used to address the issue of day-ahead 

energy resource management, enabling the aggregator to solve the problem with a more 

conservative perspective about the photovoltaic uncertainty. The results indicate that this 

technique minimizes the increase of the energy costs caused by uncertainty and also allows 

a trade-off between the conservatism and robustness of the optimal solution.  

6.2. CONTRIBUTIONS 

In this thesis, it is proposed a robust day-ahead energy scheduling of a residential building 

energy management system considering the uncertainty of photovoltaic power generation. 

The work developed and presented in this dissertation has led to the publication of the 

following scientific publications: 

• Inês Tavares, Ricardo Manfredini, José Almeida, João Soares, Sérgio Ramos, Zahra 

Foroozandeh, Zita Vale (2021). Comparison of PV Power Generation Forecasting in 

a Residential Building using ANN and DNN. 11th IFAC Symposium on Control of 

Power and Energy Systems (CPES 2022) Conference (under review); 

• Inês Tavares, Zahra Foroozandeh, João Soares, Sérgio Ramos, Zita Vale (2021). 

Robust energy scheduling for smart buildings considering uncertainty in PV 

generation. IEEE PES Innovative Smart Grid Technologies Asia (ISGT-Asia 2021) 

Conference (under review); 

• Inês Tavares, José Almeida, João Soares, Sérgio Ramos, Zita Vale, Zahra 

Foroozandeh, (2021). Optimizing Energy Consumption of Household Appliances 

using PSO and GWO. Progress in Artificial Intelligence. EPIA 2021. Lecture Notes 

in Computer Science, vol 12981. Springer, Cham. https://doi.org/10.1007/978-3-030-

86230-5_11  

• Sérgio Ramos, João Soares, Zahra Foroozandeh, Inês Tavares, António Gomes 

(2021). Intelligent resource management in the context of a microgrid of smart 

buildings. Renewable Energy and Power Quality Journal, 19, 465-470. 

DOI: 10.24084/repqj19.320 

• Sérgio Ramos, João Soares, Samuel Cembranel, Inês Tavares, Zahra Foroozandeh, 

Zita Vale, Rubipiara Fernandes (2021). Data mining techniques for electricity 
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customer characterization. Procedia Computer Science, 186, 475-488. 

https://doi.org/10.1016/j.procs.2021.04.168 

• Sérgio Ramos, Zahra Foroozandeh, João Soares, Inês Tavares, Pedro Faria, Zita Vale 

(2021). Shared PV production in energy communities and buildings context. 

Renewable Energy and Power Quality Journal, 19, 459-464. 

DOI: 10.24084/repqj19.318 

6.3. LIMITATIONS AND FUTURE WORK 

During the development of this work, some limitations were found. Since Robust 

Optimization is a very recent technique, there is not much research literature about this topic, 

especially about its application on buildings' energy management system.  

Also, there are some issues that can be further studied and improved in future work: 

• Consider the several uncertain factors related to the building energy management 

system that can influence the energy scheduling and shall be considered, such as the 

uncertainty in energy consumption and market prices; 

• Modification of some building’s parameters, for example, consider a bigger number 

of apartments and electric vehicles and a different battery capacity value; 

• Explore other uncertainty modelling techniques and compare to the Robust 

Optimization; 

• Implement the Robust Optimization model using another mathematics programming 

instead of Mixed Binary Linear Programming, such as Goal Programming or Multi-

Objective Optimization.  
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