
Sistema Inteligente de Manutenção
Preditiva

DIOGO ALEXANDRE VASCONCELOS SANTOS
Outubro de 2021



An Intelligent Predictive
Maintenance System

Diogo Santos

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science,

Specialisation Area of Information and Knowledge Systems

Supervisor: Goreti Marreiros
Organization Supervisor: Regina Correia

Evaluation Committee:
President:

Members:

Porto, October 14, 2021





iii

Abstract

Maintenance Tasks in a shopfloor are one of the most critical tasks regarding the direct
effect on production costs and, consequently, profit. Up until now, maintenance tasks were
based on both Run-To-Failure and Reactive paradigms, fixing a machine only when it breaks
or at a regular time intervals, regardless of the assets needed the maintenance or not.

However, with the Industry 4.0 Paradigm and the Smart Factories concept, machines are
now equipped with sensors that monitor a large number of different and varied variables which
are afterwards stored. This data can be used to predict machine failures, called Predictive
Maintenance, with the aid of the manual registries of asset breakdowns.

This project, carried out in the scope of the subject TMDEI of the Master in Informat-
ics Engineering (MEI), aims to conceive and build a system capable of doing Predictive
Maintenance, by combining sensors and manual inputted data on ERP systems.

PrediMain employs different Machine Learning techniques, with a special emphasis on En-
semble Methods, making the generated machine learning models more robust and accurate,
by not using a single algorithm for the predictions. For sensor predictions, before clas-
sifying them as failure or not, PrediMain uses the auto-ARIMA technique, being an auto-
paremetrized method generating more accurate predictions. In the end, the system correctly
classifies a set of observations with an estimated 90% of accuracy.

This system is also developed to be served as a Software-as-a-Service, allowing multiple
Data Sources, and therefore shopfloors, to use the same software instance, consequently
not compromising the performance of the existing systems.

Keywords: Predictive Maintenance, Industry 4.0, Machine Learning, Ensemble Methods





v

Resumo

As tarefas de manutenção, num contexto de chão de fábrica, são uma das tarefas mais
criticas relativamente ao efeito direto nos custos de produção e consequentes lucros. Tradi-
cionalmente, estas tarefas eram baseadas em tecnicas rudimentares, seja a manutenção
quando a maquina tem uma avariar ou então manutenções regulares no tempo, independen-
temente de a máquina necessitar ou não.

No entanto, com o paradigma da Indústria 4.0 e Smart Factories, as maquinas estão cada vez
mais equipadas com sensores que monitorizam um grande conjunto de variáveis e estatísticas
que posteriormente são guardadas. Estes dados, em conjunto com os dados introduzidos
manualmente nos sistemas ERP e MIS dos chão-de-fábrica, podem ser utilizados para prever
falhas, utilizando técnicas de Machine Learning.

Este projecto, PrediMain, desenvolvido no âmbito da unidade curricular TMDEI, do Mestrado
de Engenharia Informática (MEI), tem como objectivo conceber um sistema capaz de re-
alizar Manutenção Preditiva, dando previsões ao departamento de manutenção de quando
é que uma determinada máquina irá ter algum tipo de falha.

O PrediMain, tem como suporte técnicas de machine learning, com especial ênfase em
técnicas de Ensemble, misturando diferentes algoritmos e técnicas, obtendo assim uma
previsão mais fiável e precisa, contrariamente a utilizando apenas um tipo de algoritmo. Para
a previsão dos valores de sensores, ainda antes de classificar uma determinada observação
como possível falha, é utilizado um método auto-parametrizável e auto-ajustável, auto-
ARIMA, gerando previsões mais fiáveis. No final, o sistema é capaz de classificar um conjunto
de observações com uma taxa de acerto rondando os 90%.

Por fim, este sistema foi concebido para ser servido a partir da Cloud, com as fontes de dados
configuráveis, dando assim uma maior flexibilidade aos potenciais utilizadores e prevenir
falhas ou diminuições de performance nos sistemas existentes.





vii

Acknowledgement

Firstly, I would like to thank my family, especially my parents and grandparents, who sup-
ported and motivated me even in the toughest moments. To them, a big thank you.

To both supervisors, Regina Correia and Goreti Marreiros, for their commitment and support
which contributed in no small part to the project’s success.

Finally, I express my sincere gratitude to who has crossed my path and helped me to become
what I am today. To all, a sincere thanks.





ix

Contents

List of Figures xi

List of Tables xiii

List of Source Code xv

List of Acronyms xvii

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the Art 5
2.1 Maintenance Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Reactive Maintenance . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Preventive Maintenance . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Predictive Maintenance . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Summary and Comparison . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Ensemble Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Algorithms Performance Evaluation . . . . . . . . . . . . . . . . . 17

2.3 Existing Predictive Maintenance Approaches and Systems . . . . . . . . . 19

3 Value Analysis 23
3.1 New Concept Development Model . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Value for the Customer . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Perceived Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Value Proposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Quality Function Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Analysis and Design 29
4.1 Requirements Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . 29



x

4.1.2 Non Functional Requirements . . . . . . . . . . . . . . . . . . . . 30
4.1.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Solution Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Technology Selection . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 36

Data Configurator Module . . . . . . . . . . . . . . . . . . . . . . 38
Prediction Module . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Solution Implementation 41
5.1 Data Configurator Module . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Prediction Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Database Gateways . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.3 Classification Model . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.4 Numerical Prediction Model . . . . . . . . . . . . . . . . . . . . . 48

6 Experimentation and Evaluation 53
6.1 Data Analysis and DataSource Configuration . . . . . . . . . . . . . . . . 53
6.2 Evaluation of the Generated Models . . . . . . . . . . . . . . . . . . . . . 55

7 Conclusions 59
7.1 Work Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography 61

A AHP Calculations 65

B Quantitative Evaluation Framework 67

C Generated ARIMA models for the sensors 69



xi

List of Figures

2.1 Simplified view of the Reactive Maintenance Management approaches. Re-
trieved from [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Simplified view of the Preventive Maintenance Management approaches.
Retrieved from [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Simplified view of the Predictive Maintenance Management approach. Re-
trieved from [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 An outline of the steps of the KDD Process. Retrieved from [14] . . . . . 9
2.5 Clustering output example. Retrieved from [16] . . . . . . . . . . . . . . . 10
2.6 A generic approach with Supervised Learning. Retrieved from [17] . . . . . 11
2.7 A generic representation of a Decision Tree. Retrieved from [19] . . . . . . 11
2.8 A generic representation of the KNN Algorithm. Retrieved from [21] . . . . 12
2.9 Linear Regression. Retrieved from [22] . . . . . . . . . . . . . . . . . . . . 13
2.10 Linear Least Squares method. Retrieved from [22] . . . . . . . . . . . . . 14
2.11 Bagging method using Decision Trees. Retrieved from [23]. . . . . . . . . 15
2.12 Boosting method example. Retrieved from [24]. . . . . . . . . . . . . . . . 15
2.13 Stacking method architecture. Retrieved from [26]. . . . . . . . . . . . . . 16
2.14 Stacking method advantage example. Retrieved from [27]. . . . . . . . . . 17
2.15 A Confusion Matrix. Retrieved from [28]. . . . . . . . . . . . . . . . . . . 17
2.16 Sample ROC Curve. Retrieved from [12]. . . . . . . . . . . . . . . . . . . 19
2.17 Tested Techniques. Retrieved from [29]. . . . . . . . . . . . . . . . . . . . 19
2.18 Results given for each of the applied techniques. Retrieved from [29]. . . . 20
2.19 Generated ARIMA model, and prediction interval, for the vibration feature.

Retrieved from [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 NCD Model. Retrieved from [34] . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Value Proposition Canvas . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Quality Function Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Use Case Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Dataset Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Envisioned System Architecture . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Final System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 System Process View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 PrediMain File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Sample Sensor Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Linear and Polynomial Regression Equations . . . . . . . . . . . . . . . . . 49

6.1 PrediMain datasource configuration . . . . . . . . . . . . . . . . . . . . . 55
6.2 ARIMA Model Forecast for Sensor1 . . . . . . . . . . . . . . . . . . . . . 57
6.3 PrediMain’s loggger output . . . . . . . . . . . . . . . . . . . . . . . . . . 57



xii

B.1 Quantitative Evaluation Framework - Functional . . . . . . . . . . . . . . . 67
B.2 Quantitative Evaluation Framework - Content Quality . . . . . . . . . . . 67
B.3 Quantitative Evaluation Framework - Adaptability . . . . . . . . . . . . . . 68
B.4 Quantitative Evaluation Framework - Efficiency . . . . . . . . . . . . . . . 68

C.1 Generated ARIMA models for the sensors . . . . . . . . . . . . . . . . . . 69



xiii

List of Tables

2.1 Comparison between the maintenance approaches . . . . . . . . . . . . . . 8
2.2 Comparison between Bagging and Boosting methods . . . . . . . . . . . . 16
2.3 Classification Results of the System. Retrived from [30] . . . . . . . . . . 20

4.1 Non Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Dictionary of the dataset columns . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Relative Priorities between criteria using AHP method . . . . . . . . . . . 34
4.4 Normalized Relative Priorities between criteria using AHP method . . . . . 34
4.5 Machine Learning Packages comparison matrix . . . . . . . . . . . . . . . 35
4.6 Integration comparison matrix . . . . . . . . . . . . . . . . . . . . . . . . 35
4.7 Performance comparison matrix . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Original sensor2 values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Label Encoding result example . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 One-Hot Encoding result example . . . . . . . . . . . . . . . . . . . . . . 47

6.1 Statistic on the datasource’s columns (1) . . . . . . . . . . . . . . . . . . 53
6.2 Statistic on the datasource’s columns (2) . . . . . . . . . . . . . . . . . . 54
6.3 Statistic on the datasource’s columns 31) . . . . . . . . . . . . . . . . . . 54
6.4 Statistic on the datasource’s columns (4) . . . . . . . . . . . . . . . . . . 54
6.5 Evaluated Models’ accuracies . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.6 Generated ARIMA Combinations and Scoring . . . . . . . . . . . . . . . . 56





xv

List of Source Code

5.1 Mongoose Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Data Retrieval class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 MSSQL Gateway class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Data Balancing Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Category Encoding Operation . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6 Classification Model Definition . . . . . . . . . . . . . . . . . . . . . . . . 48
5.7 Classification Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8 Auto Arima Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.9 Failure Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51





xvii

List of Acronyms

AES Advanced Encryption Standard.
AHP Analytical Hierarchical Process.
ARIMA AutoRegressive Integrated Moving Average.

ERP Enterprise Resource Planning.

HoQ House of Quality.

IIoT Industrial Internet of Things.
IoT Internet of Things.

KDD Knowledge Discovery in Databases.

MTTF Mean Time to Failure.

NCD New Concept Development Model.

QFD Quality Function Deployment.

ROC Receiver Operating Characteristic.
RUL Remaining Useful Life.





1

Chapter 1

Introduction

In this chapter an analysis to the Context and Problem that originated this project is pre-
sented. Afterwards, the Approach and Methodology is described and finally the document
structure is presented.

1.1 Context

Digitalization has been identified as one of the major trends changing society and business
in the near and long term future [1]. According to the literature, and one of the main defi-
nitions, digitalization (or digital transformation) refers to “the changes associated with the
application of digital technology in all aspects of human society” [1].
With the increasing market competition and the need to be distinctive and innovative, the
idea of the digitalization is now omnipresent in most industries, seeming to be one of the
main forces behind the company’s strategic decisions [2]. The nowadays most prominent ap-
plication of digitalization in industry is the one of smart manufacturing – commonly referred
to as Industry 4.0. This paradigm has brought a large overhaul in the plants’ operational
processes and the technology and connectivity presence to the shopfloors. Among those, are
the increasing machines’ sensorization, mainly to the IoT (Internet of Things) concept (con-
cept further developed in section 2.1.3). This further usage of sensors and the continuous
monitoring of the shopfloor, down to the individual machines attributes, such as tempera-
ture, vibration and energy consumption, has allowed to evolve and develop new maintenance
techniques and processes.

1.2 Problem

The vast generation of data within the shopfloors, and within the Industry 4.0 paradigm, is
causing the organizations and industries to focus on a more datadriven perspective. How-
ever, and as of today, a large number of data acquired, digitally, in the shopfloor is still
mostly ignored. Regarding maintenance operations, the majority of the production industry,
especially small to medium sized companies, still relies on outdated maintenance policies
and focuses on an inefficient approaches [3]. In the particular case of sensorization, while
this data is used, for instance, in dashboards or stored, it never comes to an effective and
efficient use of it in order to improve the machine’s life, as it is the case with most industrial
organizations. In fact, many of these organizations, especially the ones that are only recently
investing in the Industry 4.0 area and evolving digitally, do not have the knowledge or the
understanding of what advantages these, seemingly not useful, data can bring. Nevertheless,



2 Chapter 1. Introduction

with a wider flow of data being generated, this knowledge is gradually becoming a priority
for maintenance-related decision-making processes.

Maintenance Tasks have attained critical importance for industries, being fundamental for a
shopfloor’s profit and the continuously running, without interruptions, of the factories. Since
some of the assets can cost several thousands, and, in some cases, millions of euros, it is
essential to ensure the continuous monitoring of the asset’s health, in order to extend their
lifetime. To do this, analysing and calculating a different number of maintenance-related
variables, such as the time-to-failure and the RUL (Remaining Useful Life) metrics, of the
machine is critical.

1.3 Objectives

Taking into consideration both the analysis on the concepts and existing solutions regarding
Predictive Maintenance, the primary goal of this project is to study, conceive, implement
and test, a Predictive Maintenance system. PrediMain has its its core three main objectives
that should be the key for the project uniqueness and to produce more accuracte results.

The first main objective is to test, and use if it is proven that it helps creating better
predictions, an ensembled based model. Instead of relying on classic Machine Learning
approaches and algorithms, in order to improve the final models’ accuracy, the system should
combine multiple algorithms. A theoretical analysis and context is presented throughout this
document.

The second main objective has to do with the system’s supportability and easness of im-
plementation and usage. It should allow the configuration of the datasources, typically the
datasets that hold the historical data of sensor’s observations, therefore making it easier to
be used and configured by an inexperienced end-user, not being required technical knowledge
of machine learning and data processing.

The third, and final, objective is related to the improvement of the generated models. Instead
of generating a model, with a given data at a given time, the system should continuously
check if the model should be updated having in consideration new data that has been pro-
duced and sent to the system. Consequently, it is ensured that the model is constantly
updated, creating accuratemore accurate results.

1.4 Approach

In order to understand the concepts, challenges and the current state of the art for conduct-
ing this project, the first step was to understand the base concept that underlines PrediMain,
the "Maintenance" concept. The different strategies of maintenance were analysed, includ-
ing the predictive one.

The next step, was to analyse the machine learning concepts and algorithms in general, and
specifically the ensemble techniques, by also searching existent approaches and papers in
this area. Finally, a study was conducted on existing commercial applications for predictive
maintenance.

Finally, and regarding the used dataset, while the proposed system is intended to have con-
figurable data sources, for connections with multiple shopfloors, for the system development
and evaluation a literature data set was used, and explained in section 4.1.3.



1.5. Document Structure 3

1.5 Document Structure

In the first chapter, Introduction, it is explained the overall problem and objectives of the
current project and also the document structure.

Afterwards, in the State of the Art chapter, it is firstly presented an overview on the Predic-
tive Maintenance concept, along with information on its background and existent systems in
this area. In a second part, it is presented an overview of the Machine Learning concept, with
a deeper study and explanation on the concepts that are most important for this context,
namely the Supervised Learning and Ensemble Methods.

In Chapter 3, the Value Analysis, the value analysis process conducted during the project is
described.

As for the Chapter 4, the Requirements Analysis as Design are presented. Regarding the
Design it is also presented the methodology used for the technology selection regarding the
model building and processing module.

In Chapter 5 the System’s Implementation process is described, together will all the design
and implementations decisions that were taken.

Chapter 6 presents a practical scenario where the dataset is used to evaluate the system’s
performance and accuracy, describing all the steps and results in each of the stages.

Finally, in Chapter 7, conclusions are withdrawn from the project, together with an analysis
on the project’s future work.





5

Chapter 2

State of the Art

In this chapter, a state of the art analysis is presented on the main concepts that are
approached in this thesis. It is started by presenting an overview of Maintenance Strategies,
ending with the Predictive Maintenance, and Machine Learning techniques that can be
applied in the system.

2.1 Maintenance Strategies

Within the manufacturing industry, the efficiency, correctness and timeliness of maintenance
decisions is often beyond the skill set of a human operator to perform to a satisfactory
standard. This leads to the requirement of maintenance knowledge as guidelines on how to
complete more informed maintenance tasks [4]. Industrial and process plants typically employ
two types of maintenance management: reactive maintenance (sometimes also referred in
the literature as run-to-failure) or preventive maintenance. However, a somehow recent
approach has emerged with the Industry 4.0 and Smart Manufacturing concepts, called
Predictive Maintenance.

2.1.1 Reactive Maintenance

With the Reactive Maintenance approach, the premise is simple: a plant using run-to-failure
management does not spend any money on maintenance until a machine or system fails to
operate. Therefore, the machine is used to its limit, and repairs are only performed when
a machine actually stops working. This method is also the most expensive method within
maintenance management techniques. This is due to the fact that there is a high risk of
making serious damage to expensive parts of a machine, for instance. However, few plants
use exclusively this approach, performing basic maintenance operations such as lubrication
and machine cleaning, even though the run-to-failure is the premise in the plant environment
[5].
The major expenses associated with this type of maintenance management are, amongst
others, high spare parts, high machine downtime, and low production availability, since
no attempt is made to anticipate maintenance requirements. Figure 2.1 represents this
maintenance approach in a graphical and simplified form.



6 Chapter 2. State of the Art

Figure 2.1: Simplified view of the Reactive Maintenance Management ap-
proaches. Retrieved from [6]

.

2.1.2 Preventive Maintenance

Preventive Maintenance, however, has a different premise: maintenance tasks are based on
elapsed time or hours of operation, therefore being time-based approaches. In preventive
maintenance management, machine repairs or rebuilds are scheduled based on the MTTF
(Mean Time to Failure) statistic, where it is tried to prevent a machine failure by performing
regular checks on their equipment. This type of approach has a few advantages, starting by
a controlled forecast and needs on spare parts, since maintenance is done on a regular basis.
However, when the maintenance operations is scheduled earlier than needed, this wastes
part of the machine lifespan, increasing costs in the long-term. Another downside is that
preventive maintenance actually prevents learning: since the equipment maintenance tasks
are carried out with certain periodicity, they do not allow the depreciation or wear of the
pieces of the equipment to be exactly determined. Figure 2.2 represents this maintenance
approach in a graphical and simplified form.

Figure 2.2: Simplified view of the Preventive Maintenance Management ap-
proaches. Retrieved from [6]

.

2.1.3 Predictive Maintenance

The maintenance has attained critical importance for industries, due to the growth in com-
plexity of the interactions between different production activities in increasingly extended



2.1. Maintenance Strategies 7

manufacturing ecosystems. Two concepts that add value to the improvement of mainte-
nance methods are both the Internet of Things (IoT), more specifically the Industrial Internet
of Things (IIOT), and the Smart Factories [7].
In these scenarios, automated systems and equipment, internal logistics systems as as the
ERP (Enterprise Resource Planning) systems, and operating supplies are consistently inter
meshed with help of cyber technology, such as wireless and wireline communication services,
smart actuators, and, most importantly for the improvement of Maintenance Processes,
sensors. Smart Factories, amongst mass customization, Flexibility, and Optimized Decision-
Making, also comprises the creation of values from the collected data, which can be used
to understand the machine’s behavior through different periods [7, 8]. Data is the key to
this generation of information that is the base for making predictive decisions.

Predictive Maintenance can be seen as an continuous monitoring to avoid system breakdown,
which will lead to maximize the time interval between consecutive maintenance tasks and
reduce the overall production costs [9]. Another possible definition is a set of activities that
detect changes in the physical condition of equipment (signs of failure) in order to carry
out the appropriate maintenance work for maximizing the service life of equipment without
increasing the risk of failure [10]. This can be seen in Figure 2.3.

Figure 2.3: Simplified view of the Predictive Maintenance Management ap-
proach. Retrieved from [6]

.

The main benefit from using predictive maintenance systems to continuously monitor the
shopfloor’s machines is the decrease of maintenance costs. This is a key benefit for any
industry, given that many of the equipments used in a modern shopfloor can cost several
thousand euros, in some cases millions, just the purchase alone. Therefore, it is vital to
ensure that these equipment’s have their lifetime extended as much as it is possible. A
study conducted by the consultant Deloitte, concluded that up that maintenance costs can
be reduced by 5 to 10%, and, at the same time, the equipment up-time increases by 10 to
20%, reducing their breakdowns up to 70%. These values are significant, especially in cases
where the equipments are, as noted, expensive [11].

While typically predictive maintenance is intended to be used solely for a maintenance man-
agement tool, as previously described to prevent downtime or failures, there are two other
fields where this concept can be applied: as a plant optimization tool and as a reliability tool
[5]. The Plant Optimization can be achieved by analysing cause-and-effect relationship of
various modes of operation in producing several different items, establishing insights on the
needs to use different assets for certain operations or even change the internal production
overall procedures. As for the reliability analysis, is intrinsically connected to the benefits



8 Chapter 2. State of the Art

mentioned above in the document: by analysing the deviations of certain variables that
are causing failures, the machine’s reliability can be improved, for instance, by switching
unreliable components instead of just performing the scheduled maintenance task by the
system.

Two main challenges are identified when analysing the Predictive Maintenance concept, one
of them already mentioned in section 1.2. For any prediction problem, and therefore for also
Predictive Maintenance systems, the data quality and quantity is critical for the system’s
capability of providing meaningful and useful outputs for the organization’s management
and key-members in the production and maintenance areas. Two types of data exist when
referring to input data for predictive maintenance: required data and additional/optional
data [11]. Required data, refers to the process failures (with the exact date and time), and
the components variables, such as the temperature and vibration history. Additional data
includes additional sensors, like cameras or laser sensors. The second challenge is directly
related to the organizations itself, where the application of a predictive maintenance system
also requires investment, not only in the system, but also in installing additional sensors and
monitoring tools [11].

2.1.4 Summary and Comparison

The three mentioned approaches have all their space and usage in the industry, as shown.
This also means that the three approaches have their disadvantages and advantages, includ-
ing the Predictive approach which while being the seemingly better option it does have a
few downsides. Table 2.1 makes a summary and comparison of these approaches, according
to a set of common criteria that are common key issues regarding maintenance tasks.

Table 2.1: Comparison between the maintenance approaches

Run-to-Fail Interval Based Forecast
Spare Management Ad-Hoc Planned Semi-Planned
Vision Approach Optimistic Pessimistic Balanced
Machine Breakdown Probability High Low Low

2.2 Machine Learning

Regardless of the task at hand, any machine learning algorithm can be deployed by generally
following a set of steps [12]. The KDD (Knowledge Discovery in Databases) process is one
of the most used and generally accepted practices for applying machine learning to data
[13].
Firstly, there is the data collection and selection phase in which, as the name suggests,
involves the gathering of the data that will be used by the algorithms.
Secondly, there is the data pre-processing and transformation. Independently of the algo-
rithm to be used, there is the need to evaluate and test the quality of the gathered data.
Consequently, the second sub-step of this process is to clean the gathered data, including
the removal of noise or outliers, corrupted information or other adjustments. Strategies for
handling missing data fields, for instance, are also used in this step. The next step, there
is what it is usually called "Model Training" (after the algorithm is selected) which involves
providing the algorithm with training data to learn from. The training data must contain
the correct answer to the problem, known as target. The algorithm shall then find patterns



2.2. Machine Learning 9

in the data that maps the input data to the target, and provides a model that captures and
contains those discovered patterns.
Sub sequentially, the Model Evaluation step takes place. Every future instance will have un-
known target values, therefore there should be a test to the accuracy of the Model for which
the target answer is already known. With this, there can be an estimation and prediction on
the accuracy of the algorithm’s performance on future data.
The final step is an optional but often applied which is the Model Improvement step. Based
on the Model Evaluation results, there may be the need to use more advance strategies and
methods to augment the model’s performance, ranging from supplying more data to the
training process or even switching to a different model completely.
This steps, and specifically the KDD process, are represented in figure 2.4.

Figure 2.4: An outline of the steps of the KDD Process. Retrieved from [14]
.

Since learning involves an interaction between the learner and the environment, the learning
tasks are often divided according to this interaction [15]:Descriptive Tasks (Unsupervised
Learning) and Predictive Tasks (Supervised Learning).

The Unsupervised Learning is briefly introduced and explained in section 2.2.1 while the
Supervised counterpart is explained with more detail in section 2.2.2, since this work is
related with Predictive Tasks instead of Descriptive ones.

2.2.1 Unsupervised Learning

In unsupervised algorithms, all the items in the dataset are equally important having no
distinction between the training and test set. This happens since the target values are
unknown from the beginning. Consequently, the primary function of these type of algorithms
is to discover hidden patterns or data groupings by themselves [12].

Clustering is a typical example of unsupervised learning in which subsets of similar objects
are inferred from the set. The premise of a determined Cluster is that items inside a cluster
should be similar to each other, but significantly different from those outside. The usual
output of a clustering algorithm comprises a scatter plot, identifying the clusters/groups
that are formed, as depicted in Figure 2.5.



10 Chapter 2. State of the Art

Figure 2.5: Clustering output example. Retrieved from [16]
.

The other well-known task in the field on unsupervised learning is pattern discovery/detection
being employed to identify associations within data, using Association Rules, usually written
in the form of:

{A,B, C} → {X}

This states that "if A, B and C is present, then likely X will be also present". The typical
example in the literature is the market basket analysis, on retailer’s transactions. Here, the
goal is to determine items that are often purchased simultaneously [12].

Another example of unsupervised learning has to do with Anomaly Detection techniques.
One of the approaches is using a one-class classification algorithms. These algorithms
attempt to model and identify the normal observations in order to classify new examples
as either normal or abnormal (outliers). Given this, the training data set needs to contain
"normal" observations only, in order to identify if a set of values are outliers or not. One
of the approaches uses SVM (Support Vector Machines) algorithms. In this case, it models
one class, so that the SVM captures the density of the majority class and classifies examples
on the extremes of the density function as outliers.

2.2.2 Supervised Learning

A predictive model is used for tasks that involve, as the name implies, the prediction of one
value using other values in the dataset. Because predictive models are given clear instruction
on what they need to learn and how they are intended to learn it, the process of training
a predictive model is known as supervised learning [12, 17]. Therefore, the training set
contains a full set of the data, including the correct target values, which the test set does
not have. Figure 2.6 represents a generic Supervised Learning approach.



2.2. Machine Learning 11

Figure 2.6: A generic approach with Supervised Learning. Retrieved from
[17]
.

Using a Supervised Learning approach, there are two main areas that can be solved by using
this approach: Classification Problems and Regression Problems.

Classification

Cambridge Dictionary defines "Classification" as "the act or process of dividing things into
groups according to their type" [18]. Classification in Machine Learning is not different: it is
the task of predicting which category an example belongs to. The usual example for classifi-
cation is to predict whether an email is spam or not. There are many different Classification
algorithms, such as Decision Trees, Naive Bayes and KNN (k-Nearest Neighbor).

The Decision Trees method "comprises a series of logical decisions, similar to a flowchart,
with decision nodes that indicate a decision to be made on an attribute" [12]. These split
into branches that indicate the decision’s choices, eventually terminating with leaf nodes
[12]. Figure 2.7 is an abstract representation of a generated decision tree for a particular
problem.

Figure 2.7: A generic representation of a Decision Tree. Retrieved from [19]
.



12 Chapter 2. State of the Art

The tree is constructed using a divide-and-conquer method, top to bottom. The identifi-
cation of which feature to split in a given branch, and the values to be split on, is a key
challenge of decision tree’s algorithms. The C5.0 algorithm, for instance, uses the "En-
tropy" concept, which "indicates how mixed the class values are; the minimum value of
0 indicates that the sample is completely homogeneous, while 1 indicates the maximum
amount of disorder" [12].

Besides the already mentioned C5.0 algorithm, C4.5 (the C5.0 predecessor), and CART are
amongst the most used algorithms for implementing decision trees based classification [12,
20].

Naive Bayes method is, as the name implies, based on the Bayes Theorem. Bayes Theorem
describes the probability of an event, taking into account previous knowledge of conditions
that might affect this event. Mathematically is stated as a conditional probability:

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)
=

Pr(A ∩ B)

Pr(B)
(2.1)

Finally, KNN uses the concepts of distance and closeness to classify new instances, placing
them in a n-axis plot. Since KNN uses distances, and therefore numerical values, a nor-
malization is almost mandatory to make the algorithm’s outputs reliable. Each of the axes
corresponds to each of the dataset’s features. To predict a new instance, the algorithm,
typically calculates the euclidean distance between that instance and every instance already
in the model, choosing the K (a parameter) nearest data point. This can be seen in Figure
2.8.

Figure 2.8: A generic representation of the KNN Algorithm. Retrieved from
[21]
.



2.2. Machine Learning 13

Regression

Unlike Classification, Regression predicts a continuous value. The most simple form of
Regression is the Linear Regression, known as multiple regression when more than two in-
dependent variables are used [12]. The simplest form of Regression, using only one predictor,
uses the following equation, representing a straight line:

y = ax + b (2.2)

Figure 2.9 represents a linear regression (in red) for a set of data points.

Figure 2.9: Linear Regression. Retrieved from [22]
.

In order to estimate the equation to be used, a different estimators and functions are avail-
able, being the most simple the Linear Least Squares method, using the following equation:

Σ(yi −
.
yi)
2 = Σe2i (2.3)

This method, as the name implies, calculates the best approximation, minimizing the error
e that minimizes the sum of squared differences between the data values and their corre-
sponding modeled values, as represented in Figure 2.10.



14 Chapter 2. State of the Art

Figure 2.10: Linear Least Squares method. Retrieved from [22]
.

2.2.3 Ensemble Techniques

Ensemble Techniques (also called Ensemble Methods, or Ensemble Learning) represents the
combination of multiple predictions from several base estimators "built with a given learning
algorithm in order to improve generalizability/robustness over a single estimator". This
way, the prediction made should be of a higher accuracy than the prediction of any of the
constituent algorithms by itself. Ensemble Methods are usually split in three large families:
Bagging Methods, Boosting Methods, and Stacking Methods.

In ensemble algorithms, Bagging Methods form a class of algorithms which build several
instances of an estimator, on random subsets of the original training set, and then aggregate
their individual predictions to form a final prediction. The objective and premise, is that
the combined estimator performs better than any of the single base estimator because its
variance is reduced. An example of this, is the generation of multiple decision trees, each
with a subset of the training data. After each Decision Tree computes its prediction, all
results are aggregated, forming the theoretically most precise prediction. This is represented
in Figure 2.11.



2.2. Machine Learning 15

Figure 2.11: Bagging method using Decision Trees. Retrieved from [23].

A small, but important, difference to this method is used in Random Forests methods.
While in the previous case, all of the Decision Trees had the full set of features for the
given sample, Random Forest models decide where to split based on a random selection of
features. Rather than splitting at similar features at each node throughout, Random Forest
models implement a level of differentiation because each tree will split based on different
features [23], that are assigned to each tree.There is also another variation of this method,
called Extremely Randomized Trees, where the random factor is also present on the splitting
rules in the nodes. In this case, thresholds are drawn at random for each candidate feature
and the best of these randomly-generated thresholds is picked as the splitting rule.

As for the Boosting algorithms, "base estimators are built sequentially and one tries to
reduce the bias of the combined estimator". In this case, the idea is to combine several weak
models to produce a powerful ensemble. Since the models are built sequentially, a given model
depends on the previous one. Once the first model is built, the falsely classified points are
taken in addition to the second bootstrapped sample to train the second model. Afterwards,
the ensemble model is used against the testing dataset, and the process continues [24]. This
is represented in figure 2.12.

Figure 2.12: Boosting method example. Retrieved from [24].



16 Chapter 2. State of the Art

Adaboost, named after "adaptative boosting", implementations follows this methods, in
with the objective is to "fit a sequence of weak learners (i.e., models that are only slightly
better than random guessing, such as small decision trees) on repeatedly modified versions
of the data".
There is another type of boosting implementations, called Gradient Boosting, where the
main difference is in the definition of the sequential optimisation process, in which gradient
boosting casts the problem into a gradient descent one. While the AdaBoost model identifies
the shortcomings by using high weight data points, gradient boosting performs the same by
using gradients in the loss function [24, 25]. This means that "at each iteration we fit a
weak learner to the opposite of the gradient of the current fitting error with respect to the
current ensemble model" [24].

Table 2.2 summarizes the key differences between these two types of Ensemble Learning.

Table 2.2: Comparison between Bagging and Boosting methods

Bagging Boosting
Models Independent Models Dependent Models
Method for making the final
decision

Equally Weighted Average Weighted Average

Deals with over-fitting issues Yes No (can actually increase it)
Reduces Bias No Yes

Finally, Stacking is drastically different from Boosting and Bagging. Unlike bagging, in
stacking, the models are typically different, and unlike boosting, a single model is used
to learn how to best combine the predictions from the contributing models (instead of a
sequence of models that correct the predictions of prior models) [26, 27]. Figure 2.13
represents a typical stacking-based approach model architecture.

Figure 2.13: Stacking method architecture. Retrieved from [26].

The base level, usually called level-0, contains all the base-models that will compose the
stacking model, who will individually classify the training dataset. A second level, called
level-1, will hold the meta-estimator model, which is the model that learns how to best
combine the predictions of the base models.



2.2. Machine Learning 17

Figure 2.14: Stacking method advantage example. Retrieved from [27].

Figure 2.14 is an example that demonstrates the advantages on using a stacking approach
[27]. In this case, for instance, model 1 has a lower training accuracy than model 2 however
in some data points model 1 performs better. Using a Regression meta-model, the best out
of the two algorithms is combined into a single one. Usually Regression problems have an
Linear Regression as its meta-model and Classification problems have a Logistic Regression
meta-model.

2.2.4 Algorithms Performance Evaluation

The Model Evaluation is perhaps one of the most important steps of any Machine Learning
process. If a given model is not evaluated properly, it will likely result in poor predictions
made in the future. An evaluation process, usually comprises of using the Holdout Method:
two thirds of the dataset is used for the Model Training, and the rest is used to validate the
model’s predictions against the known values.

The base evaluation metric, for supervised algorithms, is called a confusion matrix, where
the rows represents the real values and the columns represents the predicted values. This
matrix is represented in Figure 2.15.

Figure 2.15: A Confusion Matrix. Retrieved from [28].



18 Chapter 2. State of the Art

Each predictions is then classified based on four different outputs:

1. True Positive (TP): Predicted True and True in reality.

2. True Negative (TN): Predicted False and False in reality.

3. False Positive (FP): Predicted True and False in reality.

4. False Negative (FN): Predicted False and True in reality.

With this is mind, two types of miss classifications can therefore occur, False Positives and
False Negatives. Along with these four outputs, a large number of rates and statistics can
be inferred from a confusion matrix.

The Accuracy rate, measures the " how often is the classifier correct". This is given by the
following formula:

Accuracy =
(TP + TN)

total
(2.4)

The Precision rate is slightly different, measuring how often the classifier predicts correctly
when it predicts as being positive, being given by the following formula:

P recision =
(TP )

FP + TP
(2.5)

Another rate that can be inferred from the confusion matrix is the Recall statistic, which
indicates the True Positive Rate (TPR):

Recal l =
(TP )

FN + TP
(2.6)

Finally, it is also common to relate the Precision and Recall metrics using the F1-Score,
also called F-Measure:

F1Score = 2×
P recision × Recal l
P recision + Recal l

=
2× TP

2× TP + FP + FN
(2.7)

This metric uses the harmonic mean to combine these two metrics. The harmonic mean
is used rather than the more common arithmetic mean since both precision and recall are
expressed as proportions between zero and one [12]. The main issue with this metric is that
is assumes that "equal weight should be assigned to precision and recall, an assumption that
is not always valid" [12].

A different method, that examine the tradeoff between the detection of true positives, while
avoiding the false positives, is called ROC Curves analysis. Figure 2.16 represents a sample
ROC Curve diagram, where the dashed line represents "random guessing".



2.3. Existing Predictive Maintenance Approaches and Systems 19

Figure 2.16: Sample ROC Curve. Retrieved from [12].

The closer the curve is to the chart axis, the better the prediction value of the model is. This
can be measured using a statistic known as the area under the ROC curve (AUC), where it
ranges from 0.5 (for a classifier with no predictive value, representing the curve overlaying
the dashedline), to 1.0 (for a perfect classifier) [12].

2.3 Existing Predictive Maintenance Approaches and Systems

Currently, there are a significant number of existing machine learning approaches to tackle
the predictive maintenance problem.

Firstly, an approach by IEEE members was taken, using Multiple Classifiers in a semiconduc-
tor manufacturing industry, specifically replacing tungsten filaments used in ion implantation
[29]. In this scenario, approaches using KNN and SVM (Support Vector Machines) were
tested and compared. Instead of only labeling the last iteration of a maintenance cycle as
F (Failure) it labels as F the last m iterations, allowing to provide more conservative main-
tenance recommendations by choosing larger values for the failure horizon m. Figure 2.17
represents the different analysed techniques and Figure 2.18 represents the gotten results.

Figure 2.17: Tested Techniques. Retrieved from [29].



20 Chapter 2. State of the Art

Figure 2.18: Results given for each of the applied techniques. Retrieved from
[29].

A second approach that was found, was conducted by a group of investigators of Sweden
and Italy, mainly by using the Azure Cloud systems, applying predictive maintenance on CNC
machines [30], using features such as the spindle rotation speeds and the speed on all three
(X, Y and Z) axis. In this case, a Random Forest classifier was used, using the Bagging
method. The input data was comprised of drive data (sampled in real time by the CNC,
data related to I/O signals and vibrational data. All the collected data, using the proposed
architecture were evaluated using the 30% of the data set as a training set and the rest
for the results evaluation. The final system had an high accuracy (95%) on a data set of
530731 data readings on 15 different machine features collected in real time from the tested
cutting machine. The results table is presented in Table 2.3.

Table 2.3: Classification Results of the System. Retrived from [30]

Metric Results
Overall Accuracy 0.95
Average Accuracy 0.92
Micro-Averaged Precision 0.94
Macro-Averaged Precision 0.93
Micro-Averaged Recall 0.95
Macro-Averaged Recall 0.94

A third approach was conducted by the GECAD research department, of the Instituto Su-
perior de Engenharia do Porto (ISEP), and the BISITE Research Centre. Data collected
from monitoring four CNC machines in a mechanical metallurgy factory was used, with the
objective of the prediction of faults. In this study, since data concerning problems in the
machines was not available, and therefore the prediction of faults was framed as an anomaly
detection problem (unsupervised learning), using classical time series methods to build fore-
casting models [3]. Specially, autoregressive integrated moving average models (ARIMA)
were used, in order to model the autocorrelations in the data.



2.3. Existing Predictive Maintenance Approaches and Systems 21

Given this, for each feature, it was compared the new data with the respective 95% prediction
interval, calculated by the ARIMA algorithm. If a previously unseen value falls outside the
prediction interval it is considered an anomaly, as represented in figure 2.19. However, since
an anomaly doesn’t have much significance by itself, it’s the accumulation of anomalies over
a given time period that indicated the possibility of a malfunction [3].

Figure 2.19: Generated ARIMA model, and prediction interval, for the vibra-
tion feature. Retrieved from [3]

Regarding the existent predictive maintenance systems in the market, there are still no
developed and established solutions for Predictive Maintenance. Two solutions were found
that are the most complete in the field, amongst the analysed solutions, capable of actively
doing predictive maintenance as the concept is stated in the literature review.

The first potential solution that was found is MindShpere, by Siemens. MindSphere is
stated to be an IIOT as a Service. The MindSphere stores and collects data provided by the
"MindSphere Applications", including data collected from the assets [31]. This collected
can be done independently from the asset’s manufacturer since it includes support for the
OPC Foundation’s OPC Unified Architecture (OPCUA). This solution also contains a root
cause analysis protects asset against permanent damage arising from failures [32].

The second, is SAP Predictive Asset Insights. This solution uses Digital Twins and Machine
Learning to maintain full visibility into current asset health and predict future needs. Amongst
others, the main features of this product are:

• Enrich asset management to remotely monitor assets anywhere

• Detect system malfunctions using real-time fault management

• Improve quality and service by predicting malfunctions before they cause unscheduled
downtime and higher costs

• Offer performance-based service and dispatch proper technical assistance based on
near-real-time monitoring of operations

While this solution is a cloud-based system, it runs integrated with a base SAP environment
only, not being available as a completely stand-alone application.



22 Chapter 2. State of the Art

In conclusion, although the concept has been extensively studied and developed, there are
still no common and publicly disclosed commercial solutions, apart from the mentioned
systems, that employs predictive maintenance throughout its full concept, at an affordable
and with seamless installation for a standard shopfloor that is just entering in the Industry
4.0 concept.



23

Chapter 3

Value Analysis

3.1 New Concept Development Model

"The New Concept Development Model (NCD) provides a common language and definition
of the key components of the Front End of Innovation" [33]. In this Model, the engine, the
central component, represents senior and executive-level management support, and powers
the five other elements of the model. The model is represented in figure 3.1.

Figure 3.1: NCD Model. Retrieved from [34]
.

The following is a characterization of each of the five elements that are present in the NCD
model [33, 35]:

Opportunity Identification - Large or incremental business and technological chances and
opportunities are identified, by design or default, in a more or less structured way.

Opportunity Analysis - Gathering together the additional information required in order to
translate the identified opportunities into specific business and technology opportunities for
the company.



24 Chapter 3. Value Analysis

Idea Generation & Enrichment - Birth, development and maturation of the opportunity into
a concrete idea.

Idea Selection - Choose which ideas to pursue in order to achieve the most business and con-
sumer value. The activity of prioritizing and selecting ideas may be based on an individual’s
choice or a comprehensive portfolio planning approach.

Concept Definition - Business case is developed, based on estimates of the other activities;
market potential, customer needs, investment requirements, competition analysis and project
uncertainty.

Given the referred NCD Model, and its components, the following elements were identified
in the context of the this document:

• Opportunity Identification - Maintenance Management within shopfloors is evolving to-
wards a data and technology oriented paradigms, diverging from the "run-to-failure"
classic approaches. However, the majority of the production industry still relies on
outdated maintenance policies and focuses on an inefficient run to failure approach or
statistical trend driven maintenance intervals [36]. There is now a large flow of data
being generated from the machines and also from the ERP/MIS systems that are now
widely used in Manufacturing Industries. This identification resulted from the aim to
personally explore not only this area, but also the Machine Learning processes, specif-
ically the combination of different algorithms, making the predictions more accurate.

• Opportunity Analysis - Digitalization is now omnipresent in most industries, seeming
to be one of the main forces behind the company’s strategic decisions [2].Some studies
report that up to 30% of the costs within a shopfloor are from Maintenance operations
[37]. Reducing costs is a large priority in any organization, and therefore making the
maintenance operations more efficient and cost-effective is also a priority.

• Idea Generation & Enrichment - Given the Opportunity Identification and Analysis de-
scribed above, the main concepts regarding both Predictive Maintenance and Machine
Learning Techniques (and specifically Ensemble Methods) were studied and analysed,
in which the outcomes of this study are represented in sections 2.1 and 2.2, respec-
tively. Secondly, a research on existing solutions that partially (or are related to) solve
this issue was also conducted.

3.2 Value

3.2.1 Value for the Customer

"Value for the Customer" is usually used in marketing to represent the delivered value,
enclosed in the delivered system, for the client.

In this context, the value is mainly the opportunity to optimize and predict machine failures,
reducing the costs related to maintenance operations.

3.2.2 Perceived Value

Perceived value is often defined as "the customers own perception of a given product, or
service, merit or desirability to them, and its ability to meet their needs and expectations"
[38].



3.3. Value Proposition 25

It is expectable that any predictive maintenance system is used by two main user profiles/-
types: Maintenance Directors/Supervisors and the organization’s high-level management.
For the first, the perceive value will be highly affected by how the system presents the re-
sults. The system should present the results as simple as possible, given concise outputs.
At the same time, it should present the reasons for the generated predictions, without using
any technical terms (such as the underlying machine learning processing). As for the latter,
the perceived value will be affected by the costs reduction regarding maintenance activities.

3.3 Value Proposition

Value propositions should not only express why your products, services, and/or solutions are
better than the competition’s, but also should be simple, clear, easy to absorb, adaptable
to specific clients or segments, and credible [39].

In this context, this project aims to aid the top level management and/or maintenance
management, of industries who are now entering, or in, the Industry 4.0 processes, to save
up on maintenance costs and increasing the machine’s uptime by predicting machine failures.
The fact that the system is generic, providing a seamless integration with existing shopfloor
management systems, also contributes for an increase in the Perceived Value.

Alexander Osterwalder proposed a Value Proposition framework [40]. This framework re-
volves around two larger entities – customer profile and the value map, which are visually
presented in a canvas. The customer profile aims to identify the proposed system gain’s
(benefits which the customer expects and needs), pains (risks that the customer may ex-
perience) and the customer jobs, which represent the tasks that are trying to be done. As
for the value map, it represents the Gain Creators (how the system creates and satisfies
the customer’s gains), pain relievers (how the product or service alleviates customer pains),
and the products and services, representing what functionalities and operations the system
presents [40]. The canvas for this project is represented in Figure 3.2.

Figure 3.2: Value Proposition Canvas



26 Chapter 3. Value Analysis

3.4 Quality Function Deployment

QFD is a structured method that uses the seven management and planning tools to identify
and prioritize customers’ expectations quickly and effectively [41]. This method usually
contains an analysis using an House of Quality (HoQ) template and methodology. This
diagram answers the customer’s wows, wants, and musts. The HoQ diagram for this project
is represented in Figure 3.3.



3.4. Quality Function Deployment 27

Figure 3.3: Quality Function Deployment - House of Quality of the project





29

Chapter 4

Analysis and Design

In this chapter the Requirements Analysis and Design Decisions are presented. The selection
process of the technology for applying the machine learning models is also presented.

4.1 Requirements Analysis

The first critical issue, and requirement, for the project is the system’s integrability with
other systems. The solution is intended to work and integrate with different data sources,
of different types with different connection properties. This is critical for the project’s
maintainability and usage in the long term, since usually each asset manufacturer, and
sometimes even each asset, has its own mechanisms to access its collected digital data.
For instance, some machines provide a connection to an internal Relational Database, while
others send the sensors data to an external repository.

Secondly, the system should also work with its own database, to hold the trained model in
order to only train a new one when a given time has passed since the last training (or if it
is manually triggered). Therefore, the database should be prepared to store and manage
non-structured data.

Finally, the system should provide an interface to check the outputted predictions. This inter-
face, however, should be built with the premise that the users that will use it, have potentially
little technical expertise, and especially regarding machine learning concepts. Therefore, the
interface should be simple, concise yet showing all the information for understanding and to
justify the outputted prediction.

4.1.1 Functional Requirements

After the analysis on the requirements that were gathered above, four use cases were ideal-
ized:

UC1: Manage the available Data Sources
UC2: Train the Machine Learning Model
UC3: Tunning of the Algorithm Input Parameters
UC4: Visualize the Model’s Predictions

The Use Case diagram is represented in Figure 4.1.



30 Chapter 4. Analysis and Design

Figure 4.1: Use Case Diagram
.

UC2 represents the manual trigger of the model training process (further described in sec-
tion 4.2.2). However, this training can also be started automatically. This happens when a
prediction request is made, and the generated model that is stored in the database is sig-
nificantly dated, regarding the data that was used for its training. In this case, the system
firstly trains a new model, and only then the requested prediction is processes and shown to
the user (UC4).

4.1.2 Non Functional Requirements

In order to evaluate and assess the non-functional requirements, the FURPS+ model was
used. This model categorizes the non-functional requirements into 5+ categories: Function-
ality, Usability, Reliability, Performance and Supportability. The "plus" refers to Design Con-
straints, Implementation requirements, Interface requirements and Physical requirements.
Table 4.1 contains the identified Non Functional Requirements, organized by their category.



4.1. Requirements Analysis 31

Table 4.1: Non Functional Requirements

Code Requirement Type
NFF01 HTTPS protocol should be used in the communications be-

tween components
Functionality

NFU01 The User Interface should be simple, yet effective, and
adapted to the User’s needs

Usability

NFU02 The User Interface for showing the predictions that were made
should not show technical data that could not possible be
understood by the maintenance managers

Usability

NFP01 The Data Retrieval from the existent systems shouldn’t affect
their performance

Performance

NFS01 The system should support any SQL database, needing the
specification of all data needed for the connection (such as IP
Address, username, password and port number)

Supportability

NFS02 The system should be prepared to, in the future, accept new
implementations of other types of Databases/sources besides
SQL. Therefore, the code should be highly maintainable and
provide an easy way to implement the new Database handlers

Supportability

4.1.3 Dataset

Usually, predictive maintenance datasets contains a standard set of features that are com-
monly retrieved and measured in the industrial assets, such as vibration and temperature.

As per the requirement NFS01 and NFS02, the system should handle multiple data sources,
and therefore multiple datasets.

Ideally, a real dataset would be used, however it was decided that, during the system’s
development and evaluation stages, a single dataset would be used, retrieved from an online
repository, given that no complete and accurate real datasets were available at the time. For
this decision, considerations regarding security and data protection issues were also taken
into account.

The chosen dataset, found in [42], was retrieved from the Kaggle plaform, and contains
sensor and failure data for the timespan of a year. In total, 7900 observations were made,
containing data on Temperature, Humidity, and another 12 sensors of unknown measure-
ments/units. The observations had an hourly frequency. Each line is classified with a boolean
value for the Failure column, being the target value to use with the supervised algorithms.
Figure 4.2 is a snippet of the dataset’s CSV that will be used:



32 Chapter 4. Analysis and Design

Figure 4.2: Dataset Sample

Table 4.2, represents the columns that are contained in the CSV, together with its base
datatype and inferred meaning.

Column Description Type
ID Sequential observation number nvarchar

Date Observation date datetime
Temperature Machine temperature value int
Humidity Machine humidity value int
Operator Unknown, inferred to be an operator (person) nvarchar
Measure1 A given sensor (unknown) value int
Measure2 A given sensor (unknown) value nvarchar
Measure3 A given sensor (unknown) value nvarchar
Measure4 A given sensor (unknown) value int
Measure5 A given sensor (unknown) value int
Measure6 A given sensor (unknown) value int
Measure7 A given sensor (unknown) value int
Measure8 A given sensor (unknown) value int
Measure9 A given sensor (unknown) value int
Measure10 A given sensor (unknown) value int
Measure11 A given sensor (unknown) value int
Measure12 A given sensor (unknown) value int
Measure13 A given sensor (unknown) value int
Measure14 A given sensor (unknown) value int
Measure15 A given sensor (unknown) value int

HoursSincePreviousFailure Number of hours since the previous failure nvarchar
Failure Bit stating if the observation was of a failure bit

Date_year Year of observation int
Date_month Month of observation nvarchar

Date_day_of_month Day of observation nvarchar
Date_day_of_week Weekday of observation nvarchar

Date_hour Hour of observation nvarchar
Date_minute Minute of observation nvarchar
Date_second Second of observation nvarchar

Table 4.2: Dictionary of the dataset columns



4.2. Solution Design 33

4.2 Solution Design

4.2.1 Technology Selection

In order to choose the technology that would be used to build and process the Machine Learn-
ing models, the Analytic Hierarchy Process (AHP) method was used. AHP is a multi-criteria
decision-making approach, which uses a multi-level hierarchical structure of objectives, cri-
teria, subcriteria, and alternatives [43]. This method is composed by seven phases:

1. Build the decision hierarchical tree

2. Comparison between the hierarchical criteria

3. Define a relative priority for each criteria

4. Evaluate the priorities consistency

5. Build the comparison matrix for each pair combination of criteria

6. Calculate the composite priority

7. Decide the better alternative

In the context of this project, the following alternatives were considered: Python, R, MatLab
and ML.NET. The chosen alternatives were all based, on a first criteria, on the tool’s
popularity index, but the ML.NET, which was selected given the partnership of Sistrade
with Microsoft, allowing the usage of this tool. As for the criteria to be analysed, they were
the following:

• Machine Learning Packages - This criteria is based on the amount, and quality, of the
Machine Learning packages/libraries that each tool provides, or has available for use.

• Integration - The Machine Learning Predictor, after the model building, should be
easily served over a common server, Windows or Linux based.

• Performance - Relates to both the tool’s general performance, for instance in process-
ing the input data, and the performance in building the machine learning model(s),
since they should be re-built in a regular basis, using the continuous flow of shopfloor
data.

The following diagram presents the relative priorities for each criteria and the given alterna-
tives.



34 Chapter 4. Analysis and Design

Technology Selection

Machine Learning PackagesIntegration Performance

Python
R
MatLab
ML.NET

Python
R
MatLab
ML.NET

Python
R
MatLab
ML.NET

The next step was to build a matrix containing the relative priorities by each pair of criteria.
This matrix is represented in table 4.3.

Table 4.3: Relative Priorities between criteria using AHP method

Machine Learning Packages Integration Performance
Machine Learning Packages 1 7 2

Integration 1/7 1 1/5
Performance 1/2 5 1

Sum 23/14 13 16/5

In the next step, step 3 of the AHP methodology, a normalized matrix was built, by diving
each cell value by the sum of the respective column. Afterwards, a new column was added
with the average of each row. This column represents the final relative priority for each
criteria. This matrix is represented in table 4.4.

Table 4.4: Normalized Relative Priorities between criteria using AHP method

Machine
Learning
Packages

Integration Performance Relative Priority

Machine Learning Packages 14/23 7/13 10/16 0,59
Integration 14/161 1/13 5/80 0,08
Performance 14/46 5/13 5/16 0,33

Afterwards, the Consistency Ratio (CR) was calculated, in order to measure how consistent
the judgments have been relative to large samples of purely random judgments. The first
step involved the calculation of the Consistency Index (CI), which can be found in A. In this
case, the calculated CI was 0.02. Since 0.02 < 0.1, the priorities are consistent. Given this,
the next step is to build the comparison matrices, for each of the alternatives, one for each



4.2. Solution Design 35

criteria. This process is the same as the one made for the criteria matrices. The following
tables are the comparison matrices with the extra "relative priority" column.

Machine Learning Packages:

Table 4.5: Machine Learning Packages comparison matrix

Python R MatLab ML.Net Relative Priority
Python 1 5 7 9 0,61

R 1/5 1 7 5 0,26
MatLab 1/7 1/7 1 3 0,09
ML.Net 1/9 1/5 1/3 1 0,05

Integration:

Table 4.6: Integration comparison matrix

Python R MatLab ML.Net Relative Priority
Python 1 3 7 1/3 0,38

R 1/3 1 5 1/5 0,18
MatLab 1/7 1/5 1 3 0,20
ML.Net 3 1/5 1/3 1 0,24

Performance:

Table 4.7: Performance comparison matrix

Python R MatLab ML.Net Relative Priority
Python 1 3 5 5 0,51

R 1/3 1 7 5 0,33
MatLab 1/5 1/7 1 1/3 0,06
ML.Net 1/5 1/5 3 1 0,11

After all these steps, the initial diagram is updated with the calculated values:



36 Chapter 4. Analysis and Design

Technology Selection
1,00

Machine Learning Packages
0,59

Integration
0,08

Performance
0,33

Python
R

MatLab
ML.NET

0,61
0,26
0,09
0,05

Python
R

MatLab
ML.NET

0,38
0,18
0,20
0,24

Python
R

MatLab
ML.NET

0,51
0,33
0,06
0,11

The final step of this process, is to multiply the alternatives matrix by the criteria matrix:
0, 38 0, 61 0, 51

10, 18 0, 26 0, 33

0, 20 0, 09 0, 06

0, 24 0, 05 0, 11

 X

0, 59

0, 08

0, 33

 =


0,56
0, 28

0, 089

0, 085


Therefore, we can conclude that the first alternative should prove the best option for this
set of criteria - Python.

4.2.2 System Architecture

In order to fulfill the requirements described in the previous section, an architectural diagram
was envisioned, represented in Figure 4.3. This system has two main modules: a Data
Configurator module and the actual Prediction model, named PrediMain in the figure 4.4.



4.2. Solution Design 37

Figure 4.3: Envisioned System Architecture
.

However, two issues were identified with this possible approach. The first issue is that no
clear separation of duties regarding the Model Building Data Cleaning and, most important,
data retrieval, from both the ERP and PrediMain Database. With this in mind, a second
approach, represented in Figure 4.4 was envisioned, having a Data Retrieval Modal that
accesses the ERP Database and a Data Manager that would manage the temporarily stored
data, and generated models, from the ERP in the internal database.



38 Chapter 4. Analysis and Design

Figure 4.4: Final System Architecture
.

This internal database, that will serve as a repository for mainly two different entities/-
datasets: the data sources available (as explained below) and the generated models. This
Database should be prepared to hold unstructured information, given that the python object
of the generated module should be directly stored.

Regarding this architecture, there were some design decisions that were made over its own
alternatives. The first, is the usage of the internal database. The alternative was to store
the model information in the same database of where the input data for the system would be
coming from. However, by using an alternative database the Non-Functional Requirement
is better served and fulfilled, and this way the system can be fully independent, with the
exception of the data retrieval, from the systems that it will connect to. This also reduces
the Data Manager sub-component complexity and improves the general system performance,
not having to be dependent from the data source’s database performance, since the data
needed for the model will be stored in this system (as explained below, in the process view).
Finally, this allows the model to be stored in any given format, while using the source’s
database there would be restrictions since the source database is likely to be a relational-
database, and could not hold the generated model and unstructured data.

Data Configurator Module

As for the Data Configuration Module, its main objective is to answer the requirement of
the system being as generic as possible (requirements NFS01 and NFS02). This subsys-
tem allows a dynamic configuration of the different available datasources. Using an SQL
datasource as an example, it provides a configuration of the connection string parame-
ters needed for connecting to an SQL Database. This allows the system to be used as a
Software-as-a-Service (SaaS), besides having the possibility of having it installed on-site.

The data sources information are stored in the PrediMain Internal Database, identified by
a Data Source unique (and auto generated) identification number. Besides holding the



4.2. Solution Design 39

data needed for the connection, it also needs to store information on the database objects
that contain, and should be used, to gather all the necessary data for the machine learning
algorithms. In this case, a list of SQL Columns (and respective tables) should be configured,
along with its datatypes and classification (numerical, categorical or a datetime type).

The Connection Data should be stored using the Advanced Encryption Standard (AES)
cipher standard, in order to protect this sensitive information from being in plain text in
the database. Using AES, being a Symmetric Key algorithm, allows the decryption of the
connection string in order to be used during the system’s runtime.

Prediction Module

As for the prediction module, it was decided to conceive it as a three-layer module. The
bottom layer is responsible for managing the access to the system’s internal database, named
Data Manager component.

The Middle Layer is where the Model Building and Prediction will be made. For that,
a component specialized in data cleaning was created, in order to clearly separate those
critical processes from the model management and building itself.

Finally, the top level is comprised by a Controller, that offers an endpoint so that external
applications can use to trigger all the prediction process: model building and the actual
predictions.

The interaction between all of this components, and the main data flow of the system, is
represented in the Process View Diagram - Figure 4.5. In the end of the process, the model
is stored in the database, together with its creation date.



40 Chapter 4. Analysis and Design

Figure 4.5: System Process View
.

In order to improve the performance of the system, a few constraints can be applied, re-
garding the model generation. Since generating a model it usually one of the most time and
computationally heavy stages, the model should only be generated if one of the following
premises is not true:

• No model exists already

• More than a certain (configurable) number of days have passed

• More than a certain (configurable) percentage of new data is available

This allows a good balance between an up-to-date model and performance concerns when
request a prediction. The updated model, once generated, then replaces the old one stored in
the internal database, to be used in subsequent prediction requests, until it is again classified
as deprecated.



41

Chapter 5

Solution Implementation

This chapter describes both PrediMain modules, regarding its implementation and describing
the decisions that were taken.

5.1 Data Configurator Module

The Data Configuration Module is a two-layer module (as described in section 4.2.2) using
the shared PrediMain No-SQL Database. Since MongoDB uses BSON (Binary JSON)
to store its documents, it was a natural decision to use a javascript-based technology for
managing this data, besides having the possibility to hold unstructured data. For this, using
the mongoose npm package, a model was defined using the following schema:



42 Chapter 5. Solution Implementation

var schema = mongoose.Schema(
{

name: String ,
description: String ,
type: {

type: String ,
enum: [’sql’],
default: ’sql’

},
engine: {

type: String ,
enum: [’mssql ’],
default: ’mssql’

},
serveraddress: {

type: String
},
databasename: {

type: String
},
authmode: {

type: String
},
username: {

type: String
},
password: {

type: String
},
classcolumn:String ,
machineIDcolumn:String ,
features: [{

name: {
type: String ,
required: true

},
type: {

type: String ,
enum: [’numerical ’, ’categorical ’, ’datetime ’, ’text’],
default: ’text’

}
}]

},
{ timestamps: true }

);

Listing 5.1: Mongoose Schema

The fields "name" and "description" are arbitrary and descriptive only. The "type" and
"engine" refers to the database engine that is going to feed the PrediMain for this specific
datasource. While the priority and main focus of this work is the Prediction Module and
for now only SQL is supported, it was already developed having in mind that more engines
might be supported in a near future. In this case, they would be added to the enum array.
As for the "serveraddress" and "databasename" refers to the address of the server that hold
the database, either a name or the ip address, and database name is the database of that
server that will feed PrediMain. Authmode field is SQL Specific, where either a login via
user name and password (configured in those fields respectively) or by using the windows



5.2. Prediction Module 43

account, where the system validates the account name and password using the Windows
principal token in the operating system.

The other important decision was related to how the query to get all the data needed would
be stored. One option was to store it as an actual SQL Query, but it would decrease the
adaptability of the system and it would be more error prone. The option that was taken, was
to store the column names of the fields that are mandatory for the algorithms processing:
the column that hold the class values (failure or not) and the column that identifies the
machine related to that set of sensor values/observations. All the other columns that are
used to predict the class - features - are configured separately and individually, stored in a
feature’s array. Each feature, it characterized by its name (corresponding to the column
name) and by a type, so that the PrediMain knows how the value should be treated (for
instance, as a date or a numerical value).

All of this information is managed by a controller class, containing CRUD methods and other
functions to filter/query the documents. These methods are callable by using HTTP(s)
Requests, to the API, consumed by the frontend webpage, developed in Angular.

5.2 Prediction Module

As decided and described previously, the Prediction Module was developed in Python. Ac-
cording to the Defined Architecture and Responsibility-Separation concerts, the project con-
tains the file structure displayed in Figure 5.1

Figure 5.1: PrediMain File Structure

The file requirements.txt is a python environment specific used to store all the packages
(and versions) used in the project, to make the project easier to deploy when installing in a



44 Chapter 5. Solution Implementation

new system.
Regarding the Python files structure:

• main.py - The project entry point

• logger.py - A set of methods used to customize the project logging messages to console

• controller.py - The main system entity, responsible for initializing all other entities and
to ensure the communication between them

• data_manager.py - Class used to communicate with the PrediMain internal database

• data_retrieval.py - Class used to communicate with external databases (configured as
shown in the previous section, section 5.1)

• data_cleaner.py - Helper functions responsible for pre-processing the input data, such
as removing NULL values and balance the dataset

• model_builder.py - Responsible for building and deciding the models to employ for a
specific dataset

5.2.1 Database Gateways

Although the system as-is only supports SQL, as mentioned there is the possibility of sup-
porting more database engines in the future. Just like in the Data Configurator Module,
there was also a concern to make the connections to the external databases as generic
and dynamic as possible. While Python does not have an abstract class concept, a similar
function was implemented here,using the data_retrieval class.
A generic get_gateway_object method was created that, receiving the datasource config-
uration information, returns the correct instantiated gateway class:

from gateways.mssql_gateway import MSSQL_Gateway
class Data_Retrieval:

def __init__(self):
next

def get_gateway_object(self ,datasource):
gateway = None
if (datasource["engine"]=="mssql"):

gateway = MSSQL_Gateway ()
return gateway

Listing 5.2: Data Retrieval class

Every Gateway class should implement the same set of methods, so that the Controller
doesn’t need to know what type of engine is being used.



5.2. Prediction Module 45

import pyodbc
import pandas as pd
class MSSQL_Gateway:

def __init__(self):
next

def get_conn(self ,serveraddress ,databasename ,authtype ,username=
"",password=""):

conn = None
if (authtype =="windows"):

conn = pyodbc.connect("Driver ={SQL Server Native Client
11.0};"

"Server="+serveraddress+";"
"Database="+databasename+";"
"Trusted_Connection=yes;")

else:
conn = pyodbc.connect("Driver ={SQL Server Native Client

11.0};"
"Server="+serveraddress+";"
"Database="+databasename+";"
"UID="+username+";"
"PWD="+password+";"
"Trusted_Connection=yes;")

return conn

def close_conn(self , conn):
conn.close ()

def execute_query(self ,query ,conn ,parse_dates=None ,index_col=
None):

df = pd.read_sql(query , conn , parse_dates=parse_dates ,
index_col=index_col)

return df

Listing 5.3: MSSQL Gateway class

5.2.2 Data Pre-Processing

Before building the actual models, the data goes through a pre-processing set of steps, in
order to ensure that it is cleaned and in the correct format. The first verification has to do
with data balancing. If the data is highly unbalanced, it can lead to over-fitted and biased
models, who will fail to detect the rare (and helpful) events, being highly inaccurate. The
strategy followed in PrediMain was to OverSample the data, since the number of failures
(the ones we want to predict) is much lower:



46 Chapter 5. Solution Implementation

def balance(self , data , classes):
new_data = data
new_classes = classes
if ((( len(classes[classes == "Yes"])*100)/len(classes)) <

5):
# define oversampling strategy
logger.log("INFO","Balancing Data")
oversample = RandomOverSampler(sampling_strategy=’

minority ’)
new_data , new_classes = oversample.fit_resample(data ,

classes)
return new_data , new_classes

Listing 5.4: Data Balancing Operation

The second stage in the pre-processing step, is the Labelling process. A Machine Learning
model can only process features that are numerical. However, we also have features that
are categorical. In this case, they should be converted to a numerical form, using a Label
Encoding strategy. This approach translates to converting each value in a column to a
number, sequentially every time a new value appears. While this allows the models to be
built without issues, it makes these numeric values possible to be misinterpreted as having
an hierarchy/order, where a higher number represents something hierarchically higher that
a lower number, which is mostly not the case.

To overcome this, a second strategy was applied, called One-Hot Encoder, on top of the
previous one. What One-Hot Encoder does is to convert each category value into a new
column, assigning 0 or 1 (false or true) to the new columns.

This approach does solve the issue with model misinterpretation, but can also quickly expand
the model complexity as it can create a large number of new columns. The full snippet for
the Labelling Process is then the following:

def encode_categories(self ,data ,features ,feature):
labelencoder = LabelEncoder ()
features[feature] = labelencoder.fit_transform(features[

feature ])
enc = OneHotEncoder(handle_unknown=’ignore ’)
enc_df = pd.DataFrame(enc.fit_transform(features [[ feature

]]).toarray ())
features = features.join(enc_df)
return features

Listing 5.5: Category Encoding Operation

As an example, tables 5.2.2, 5.2, and 5.3 shows the original, after Label Encoding and the
sequential One-Hot Encoder process, respectively, using the second sensor which is stated
to be categorical:



5.2. Prediction Module 47

Date Measure2
2016-01-01 9:00 0
2016-01-01 10:00 2
2016-01-01 11:00 3
2016-01-01 12:00 0
2016-01-01 13:00 1
2016-01-01 14:00 3

Table 5.1: Original sen-
sor2 values

Date Measure2
2016-01-01 9:00 0
2016-01-01 10:00 1
2016-01-01 11:00 2
2016-01-01 12:00 0
2016-01-01 13:00 3
2016-01-01 14:00 2

Table 5.2: Label Encoding
result example

Date Measure2_0 Measure2_1 Measure2_2 Measure2_3
2016-01-01 9:00 1 0 0 0
2016-01-01 10:00 0 1 0 0
2016-01-01 11:00 0 0 1 0
2016-01-01 12:00 1 0 0 0
2016-01-01 13:00 0 0 0 1
2016-01-01 14:00 0 0 1 0

Table 5.3: One-Hot Encoding result example

5.2.3 Classification Model

The Classification Models play a big role in PrediMain’s system. They are used to detect
and classify if a set of sensor observations should be considered a failure or not. As per
the project’s objectives, the idea behind PrediMain was to build a different set of models,
including an ensemble one, and automatically decide which one fits best the training set of
a given datasource. This way, every datasource has its own distinct model, suitable for their
data.

The main Class for Classification Model building and selection is the Model Builder class. In
this case, as a starting point for PrediMain, it was chosen to have the following algorithms
available to be chosen:

• Logistic Regression (LR)

• K-Neighbors Classifier

• Decision Tree Classifier

• Support Vector Machines

• Ensemble Algorithm - Combination off all off the above, with an LR as the Meta
Leaner

Since the problem is a classification one, a Logistic Regression was used for the Meta-
Learner, as detailled in the state of the art, section 2.2.3. All of the models are then pushed
into a Python Dictionary in order to be built and assessed, demonstrated by the following
snippet:



48 Chapter 5. Solution Implementation

# get a stacking ensemble of models
def build_classif_models(self):

models = dict()
models[’lr’] = LogisticRegression ()
models[’knn’] = KNeighborsClassifier ()
models[’cart’] = DecisionTreeClassifier ()
models[’svm’] = SVC()
models[’bayes ’] = GaussianNB ()
models[’stack ’] = self.get_stacked_model ()
return models

def get_stacked_model(self):
# define the base models
level0 = list()
level0.append ((’lr’, LogisticRegression ()))
level0.append ((’knn’, KNeighborsClassifier ()))
level0.append ((’svm’, SVC()))
level0.append ((’bayes ’, GaussianNB ()))
# define meta learner model
level1 = LogisticRegression ()
# define the stacking ensemble
model = StackingClassifier(

estimators=level0 , final_estimator=level1 , cv=5)
return model

Listing 5.6: Classification Model Definition

Each of the algorithms goes through a standard training and testing stage. For more accurate
test results, a repeated Stratified K-Fold cross validator was used, with 10 folds with 3
repetitions each. This means that a training set consisting of 90% of the total set, selected
at random, is used with the remaining 10% used as the set for validation.

As for the algorithm scoring, it was initially planned to use the accuracy method. However, it
was decided to use the AUC-ROC (area under the ROC curve, as detailed in section 2.2.4):

def evaluate_model(self , model , X, y):
cv = RepeatedStratifiedKFold(n_splits =10, n_repeats =3,

random_state =1)
scores = cross_val_score(

model , X, y, scoring=’roc_auc ’, cv=cv, n_jobs=-1,
error_score=’raise ’)

return scores

Listing 5.7: Classification Model Evaluation

5.2.4 Numerical Prediction Model

The classification models themselves wouldn’t fulfill the PrediMain’s objective of predicting
machine failures, since they do not predict future values, only classify a set of observations.
In this case, we would only apply the models to a current observation, which wouldn’t be that
helpful to the operators. Therefore, another set of machine learning algorithms is applied,
in order to predict the next set of values for each sensor installed at the machine.

Figure 5.2 represents a plotted set of 100 values from a sample sensor, retrieved from the
data that is going to be used as a test dataset.



5.2. Prediction Module 49

Figure 5.2: Sample Sensor Values

The simplest way to predict the next values would be to use a regression algorithm. However,
the data, as it can be seen from the plot, cannot be represented by a linear equation, since it
is highly dispersed in the y-axis. Figure 5.3 (a) and (b), represent a linear and a polynomial
regression applied to the data, respectively.

(a) Sample Linear
Regression

(b) Sample
Polynomial Regression

Figure 5.3: Linear and Polynomial Regression Equations

Nonetheless the Polynomial approach is slightly better, it is still far from being an adequate
model to use, even with a higher degree applied. Additionally, this data consists in time
series: a sequence of data points recorded at specific times, where the temporal continuity
is the predominant factor to consider [3]. To overcome this, a different approach was used,
called ARIMA Model - AutoRegressive Integrated Moving Average. Autoregressive means
that "it predicts future values based on past values", meaning that represents time-variable
processes with stochastic features. Integrated means that the data values have been replaced
with the difference between their values and the previous ones. As for Moving Average, it
means that the model uses the dependency between an observation and a residual error from
a moving average model applied to lagged observations.

Each of these components are explicitly specified in the model as a parameter, with the
standard notation of ARIMA(p,d,q):

• p: The number of lag observations included in the model



50 Chapter 5. Solution Implementation

• d: The number of times that the raw observations are differenced

• q: The size of the moving average window

While it is possible to try each combination of parameters, it would be an exhausting and
time-consuming task. For this, using the package pmdarima, an auto_arima method was
used, which returns the best set of parameters for the algorithm in a specified range by
testing each possible combination:

auto_arima(data ,
d=1, # non -seasonal difference order
start_p=0, # initial guess for p
start_q=0, # initial guess for q
max_p=2, # max value of p to test
max_q=2, # max value of q to test
seasonal=True , # seasonal time series
m = 24, # the seasonal period
#D=1, # seasonal difference order
start_P=1, # initial guess for P
start_Q=1, # initial guess for Q
max_P=1, # max value of P to test
max_Q=1, # max value of Q to test
information_criterion=’aic’, #score used to select the best
model ,
trace=True ,
error_action=’ignore ’,
suppress_warnings=True ,
stepwise=True)

Listing 5.8: Auto Arima Model

The selection of the best model is set to be using the AIC (Akaike Information Crite-
rion) estimator. AIC estimates the quality of each model, relative to each of the other
model, therefore providing a reliable mean for the model selection task. Since it rewards
a model’s goodness of fit, while penalizing its complexity, the AIC performs a trade-off
between overfitting and underfitting. It was considered to set the ARIMA model as Sea-
sonal (called SARIMA), with a calculated timeframe between the failures (seasons). This
calculation is translated to the average of months between all failures, and it’s set in the
parameter m. In this case, three additional parameters are added to the notation, being a
SARIMA(P,D,Q)(p,d,q)m:

• P: The number of lag observations included in the model (seasonal component)

• D: The number of times that the raw observations are differenced (seasonal compo-
nent)

• Q: The size of the moving average window (seasonal component)

• p: The number of lag observations included in the model

• d: The number of times that the raw observations are differenced

• q: The size of the moving average window

• m: The number of periods in each season

For PrediMain, the m parameter was set as 24, indicating that the data should be treated
as hourly, with a 24-hours configuration.



5.2. Prediction Module 51

After all this process is conducted, the system generates the next values for each sensor,
using the selected ARIMA model, and applies the selected classification algorithm, getting
an array of the predicted classes:

sensor_predictions = self.get_sensor_predictions(
sensor_predictors , datasource_info.get("features")) #

uses the ARIMA model
predictions = (classif_model.predict(sensor_predictions))

def get_sensor_predictions(self , models , features):
df = DataFrame ()
for feature in features:

if feature.get("type")=="numerical":
fitted = models[feature.get("name")]. predict(

n_periods =30, return_conf_int=False)
df[feature.get("name")] = fitted.tolist ()

return df

Listing 5.9: Failure Prediction

It was configured to make the ARIMA model predict 30 periods by default, which means
that the next thirty hours are analysed for possible machine failures. It was chosen thirty
hours, representing a day and a quarter, to achieve a good balance between the variable time
(and usefulness) and predictions accuracy, where predicting further in time wields typically
worse results.





53

Chapter 6

Experimentation and Evaluation

This chapter describes the Experimentation and Evaluation processes that occurred during,
and after, the system development stage. It has a particular emphasis on the algorithm’s
performance evaluation, that is automatically generated and compared during the predictions
and model assessment, as described in the previous chapter.

6.1 Data Analysis and DataSource Configuration

Since PrediMain is based on automatic model building and selection, it becomes even more
important to conduct an analysis on the data that is going to be fed into the system, in order
to properly configure all the fields that are going to be used. Before analysing some common
metrics on the columns, some of them were discarded from the beggining since they would
be already useless for the predictions, which are the columns indicating the day, month, year,
hour, minute and second of the observation. Table 6.1, 6.2, 6.3 and 6.4 represent a set of
metrics on every other column.

Date Measure1 Measure2 Measure3 Measure4
count 7905 7905 7905 7905 7905
unique 4 3
top 2 1
freq 2048 2669
mean 2016-06-13 16:00:00 1093,46 1068,78
min 2016-01-01 00:00:00 155 155
25% 2016-03-23 08:00:00 633 605
50% 2016-06-13 16:00:00 1099 1056
75% 2016-09-04 00:00:00 1556 1530
max 2016-11-25 08:00:00 2011 2011
std 535,52 535,61

Table 6.1: Statistic on the datasource’s columns (1)



54 Chapter 6. Experimentation and Evaluation

Measure5 Measure6 Measure7 Measure8 Measure9 Measure10
count 7905 7905 7905 7905 7905 7905
unique
top
freq
mean 1075,30 1077,78 1089,26 1076,06 1082,00 1082,09
min 155 155 155 155 155 155
25% 604 626 625 609 634 618
50% 1075 1073 1091 1073 1076 1077
75% 1542 1541 1561 1540 1527 1547
max 2011 2011 2011 2011 2011 2011
std 533,72 533,42 537,14 537,24 531,27 538,06

Table 6.2: Statistic on the datasource’s columns (2)

Measure11 Measure12 Measure13 Measure14 Measure15
count 7905 7905 7905 7905 7905
unique
top
freq
mean 1089,27 1089,17 1074,60 1091,16 1083,81
min 155 155 155 155 155
25% 628 630 605 621 616
50% 1093 1081 1064 1090 1078
75% 1548 1551 1537 1564 1552
max 2011 2011 2011 2011 2011
std 533,72 533,42 537,14 537,24 531,27

Table 6.3: Statistic on the datasource’s columns 31)

Operator Temperature Humidity Failure
count 7905 7905 7905 7905
unique 8 2
top Operator2 No
freq 1753 7830
mean 64,03 83,71
min 5 65
25% 62 80
50% 64 84
75% 66 87
max 78 122
std 538,06

Table 6.4: Statistic on the datasource’s columns (4)

From these analysis, a valuable insight can already be detected, which is related to the data
types. While most of the columns should be treated as numeric, since they have a wide range



6.2. Evaluation of the Generated Models 55

and variability, Measures 2 and 3, and the Operator column should be treated as categorical,
even though the first two metrics are of a numeric data type. All of the other Measures
are quite similar, having a close mean and the same minimum and maximum values. The
Failure column is identified to have only two distinct values (yes and no), and therefore will
be the class column.

This has proven to be a valuable step for correctly building prediction models, since if the
configuration would rely on only analysis the actual data types, it would lead to wrong and
useless models, since the categorical variables would be a standard numerical ones.

Using the visual interface for the configuration of the datasource, the PrediMain can now
receive requests for predictions and process the data. Figure 6.1 shows the configuration
that was made in the interface.

Figure 6.1: PrediMain datasource configuration

6.2 Evaluation of the Generated Models

One of the Evaluation Processes of the present system, is related to the Machine Learning
Algorithms performance during the predictions that will be made.
Firstly, the Model Builder, chooses the technique/algorithm that better suits the given data-
source that matches the incoming request. Since every dataset is different, an automated
way of choosing the best technique, among the ones described in section 2.2 was used.
However, an extended analysis was made using the literature dataset, in order to better
describe and assess the system’s performance and quality in deciding the suitable models.



56 Chapter 6. Experimentation and Evaluation

Regarding the classification models, as mentioned in section 5.2.3, the system internally
compares their AUC-ROC - Area Under the ROC Curve. For the dataset used to test
PrediMain, table 6.5 represents the accuracy of each model.

Model Accuracy
Random Forest 0,876

K-Nearest Neighbors 0,543
Decision Tree 0,843

SVM 0,540
Stacked 0,902

Table 6.5: Evaluated Models’ accuracies

As inferred, and as expected, the stacked model performs better than every other model
since it extracts the best features of its base models.

Regarding the numerical predictions, as mentioned previously, the system automatically se-
lected the best ARIMA parameters to generate the ARIMA model, using auto_arima. Table
6.6 represents the generated combinations for each sensor and their AIC value (with a min-
imization strategy), which was the selected scoring metric.

M1 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

ARIMA(0,1,0)(0,0,0)[24] 1136,08 1153,13 1154,36 1142,89 1124,40 1156,99 1142,06 1151,49 1143,94 1155,04 1144,96 1166,74 1130,68

ARIMA(0,1,0)(0,0,1)[24] 1148,56

ARIMA(0,1,0)(1,0,0)[24] 1138,281

ARIMA(0,1,0)(1,0,1)[24] 1138,163 1146,887 1128,333 1150,56 1140,05

ARIMA(0,1,1)(0,0,0)[24] 1106,408 1094,401 1106,047

ARIMA(0,1,1)(0,0,1)[24] 1107,858 1096,094 1107,827

ARIMA(0,1,1)(1,0,0)[24] 1107,898 1096,148 1107,786

ARIMA(0,1,1)(1,0,1)[24] 1109,774

ARIMA(0,1,2)(0,0,0)[24] 1107,411 1108,008

ARIMA(1,1,0)(0,0,0)[24] 1116,884 1119,956 1137,48 1104,019 1110,798 1139,551 1120,469 1140,958 1125,563 1128,758 1125,833 1147,462 1114,729

ARIMA(1,1,0)(0,0,1)[24] 1117,507 1123,675 1139,413 1105,208 1141,546 1139,003 1127,534 1130,454 1123,368 1148,214 1115,68

ARIMA(1,1,0)(1,0,0)[24] 1117,337 1123,653 1139,396 1105,194 1112,797 1141,548 1121,103 1139,1 1127,533 1130,445 1123,128 1148,781 1116,157

ARIMA(1,1,0)(1,0,1)[24] 1125,626 1107,166 1140,995 1132,427 1125,126

ARIMA(1,1,1)(0,0,0)[24] 1106,796 1107,989

ARIMA(1,1,1)(0,0,1)[24] 1108,674

ARIMA(1,1,1)(1,0,0)[24] 1108,685

ARIMA(1,1,1)(1,0,1)[24]

ARIMA(1,1,2)(0,0,0)[24] 1108,467 1097,717

ARIMA(1,1,2)(0,0,1)[24]

ARIMA(2,1,0)(0,0,0)[24] 1114,126 1114,353 1135,662 1100,014 1135,693 1129,679 1115,869 1123,598 1121,334 1127,324 1104,566

ARIMA(2,1,0)(0,0,1)[24] 1114,665 1116,179 1137,601 1101,374 1137,583 1128,543 1117,729 1125,564 1118,327 1122,349 1104,52

ARIMA(2,1,0)(1,0,0)[24] 1114,458 1116,177 1137,584 1101,383 1137,621 1128,486 1117,737 1125,56 1117,3 1125,062 1105,472

ARIMA(2,1,0)(1,0,1)[24] 1118,177 1103,374 1130,482 1119,72 1118,725

ARIMA(2,1,1)(0,0,0)[24] 1117,62

ARIMA(2,1,1)(0,0,1)[24] 1101,805

ARIMA(2,1,1)(1,0,0)[24]

ARIMA(2,1,1)(1,0,1)[24]

ARIMA(2,1,2)(0,0,0)[24]

ARIMA(2,1,2)(0,0,1)[24]

Table 6.6: Generated ARIMA Combinations and Scoring

As an example Figure 6.2 represents the ARIMA model plotted on top of the first sensor’s
values.



6.2. Evaluation of the Generated Models 57

Figure 6.2: ARIMA Model Forecast for Sensor1

It is possible to observe that this SARIMA algorithm captures the trend (upward/downward)
from the spikes pretty well, which is one of the most important factors to have in mind when
using these type of approaches. Appendix C contains all of generated ARIMA Models. Most
of the ARIMA models worked well by correctly capturing the spikes in the data, with an
exception for two of the sensors. This issues are addressed as a future work to be done, in
section 7.2.

Finally, Figure 6.3 presents the full output by PrediMain’s logger, representing the full work-
flow and system’s runtime processes.

Figure 6.3: PrediMain’s loggger output





59

Chapter 7

Conclusions

In this chapter, final remarks on PrediMain are made and an analysis on the PrediMain’s
current limitations is conducted.

7.1 Work Summary

PrediMain was built to meet three objectives: build a platform capable of doing predictive
maintenance (by predicting if a machine will likely fail in the next hours), to evaluate whether
an ensemble technique would perform better than a single type of algorithm, and to build a
system capable of auto improving its models.

All objectives have been accomplished, ending with a system high a high accuracy (around
ninety percent) and without having overfitting issues. Currently, it is capable of actively
doing predictive maintenance, giving alerts on the likelihood of a machine breakdown in the
next few hours, It can, abd should, be used as a basis for an even more developed system,
given the future work mentioned in the next section.

This project had a very positive implication not only on a personal basis but also profession-
ally, both by allowing to gain knowledge on state-of-the-art technologies and techniques and
also to apply them into a real world problem and scenario.

7.2 Limitations and Future Work

While the objectives were accomplished, there is still some key issues that should be up-
dated/added in a near future, in order to improve PrediMain even more. The first issue
is related to the classification models. While they prove to be reliable, they are still used
with, mostly, their default parameters. Since PrediMain is intended to be dynamic and auto-
configurable (model parameterization-wise, as it is with the ARIMA predictions), a way of
also automatically setting these parameters would be needed.

Finally, another key issue is regarding the numerical predictions. While they proved to
be accurate, besides trying to improve the fitting (as noted previously), a new sequence
prediction strategy should be implemented, specifically for the categorical variables. As
of now, they use the ARIMA models which, while functionally working, are not the ideal
models for these scenarios, since they are directly using the numerical output of the One-
Shot Encoding.





61

Bibliography

[1] Päivi Parviainen et al. “Tackling the digitalization challenge: how to benefit from
digitalization in practice”. In: International journal of information systems and project
management 5.1 (2017), pp. 63–77.

[2] Andreas Schumacher, Tanja Nemeth, and Wilfried Sihn. “Roadmapping towards in-
dustrial digitalization based on an Industry 4.0 maturity model for manufacturing en-
terprises”. In: Procedia CIRP 79 (2019). 12th CIRP Conference on Intelligent Compu-
tation in Manufacturing Engineering, 18-20 July 2018, Gulf of Naples, Italy, pp. 409–
414. issn: 2212-8271. doi: https://doi.org/10.1016/j.procir.2019.02.110. url:
http://www.sciencedirect.com/science/article/pii/S2212827119302276.

[3] Marta Fernandes et al. “Fault Detection Mechanism of a Predictive Maintenance
System Based on Autoregressive Integrated Moving Average Models”. In: Distributed
Computing and Artificial Intelligence, 16th International Conference. Ed. by Francisco
Herrera, Kenji Matsui, and Sara Rodríguez-González. Cham: Springer International
Publishing, 2020, pp. 171–180. isbn: 978-3-030-23887-2.

[4] Shan Wan et al. “Knowledge Management for Maintenance, Repair and Service of
Manufacturing System”. In: Sept. 2014.

[5] “Contents”. In: An Introduction to Predictive Maintenance (Second Edition). Ed.
by R. Keith Mobley. Second Edition. Plant Engineering. Burlington: Butterworth-
Heinemann, 2002, pp. v–xii. isbn: 978-0-7506-7531-4. doi: https://doi.org/10.
1016/B978-075067531-4/50000-2.

[6] Predictive Maintenance with MATLAB. 2019. url: https://www.mathworks.com/
campaigns/offers/predictive-maintenance-with-matlab.html.

[7] N. Jazdi. “Cyber physical systems in the context of Industry 4.0”. In: 2014 IEEE
International Conference on Automation, Quality and Testing, Robotics. 2014, pp. 1–
4. doi: 10.1109/AQTR.2014.6857843.

[8] F. Shrouf, J. Ordieres, and G. Miragliotta. “Smart factories in Industry 4.0: A review
of the concept and of energy management approached in production based on the
Internet of Things paradigm”. In: 2014 IEEE International Conference on Industrial
Engineering and Engineering Management. Dec. 2014, pp. 697–701. doi: 10.1109/
IEEM.2014.7058728.

[9] Omkar Motaghare, Anju Pillai, and K.I. Ramachandran. “Predictive Maintenance Ar-
chitecture”. In: Dec. 2018, pp. 1–4. doi: 10.1109/ICCIC.2018.8782406.

[10] K. Wang. “Intelligent Predictive Maintenance ( IPdM ) System – Industry 4.0 Sce-
nario”. In: WIT transactions on engineering sciences 113 (2016), pp. 259–268.

[11] N. Jazdi. “Predictive Maintenance - Taking pro-active measures based on advanced
data analytics to predict and avoid machine failure”. In: Analytics Institute. Vol. 7.
2017.

[12] Brett Lantz. Machine Learning with R. 2nd ed. Packt Publishing, 2015. isbn: 978-1-
78439-390-8.

[13] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. “From Data Mining
to Knowledge Discovery in Databases”. In: AI Magazine 17.3 (Mar. 1996), p. 37.



62 Bibliography

doi: 10.1609/aimag.v17i3.1230. url: https://ojs.aaai.org/index.php/
aimagazine/article/view/1230.

[14] Overview of the KDD Process. http://www2.cs.uregina.ca/~dbd/cs831/notes/
kdd/1_kdd.html. Accessed: 2020-12-26.

[15] Fátima Rodrigues. Data Mining. University Lecture. 2018.
[16] Visitor Segmentation using K-means Clustering. Accessed: 2021-03-06. url: https:

//medium.com/analytics-vidhya/visitor-segmentation-using-k-means-
clustering-c874dcd41785.

[17] NVIDIA. Overview of the KDD Process. https://blogs.nvidia.com/blog/2018/
08/02/supervised-unsupervised-learning/. Accessed: 2021-01-06.

[18] CLASSIFICATION: meaning in the Cambridge English Dictionary. url: https : / /
dictionary.cambridge.org/dictionary/english/classification.

[19] Classifying data with decision trees: elf11.github.io. url: https://elf11.github.
io/2018/07/01/python-decision-trees-acm.html.

[20] Xindong Wu et al. “Top 10 algorithms in data mining”. In: Knowledge and Information
Systems 14 (Dec. 2007). doi: 10.1007/s10115-007-0114-2.

[21] Sarang Anil Gokte. Most Popular Distance Metrics Used in KNN and When to Use
Them. url: https://www.kdnuggets.com/2020/11/most-popular-distance-
metrics-knn.html.

[22] Wikipedia contributors. Least squares —Wikipedia, The Free Encyclopedia. Accessed:
2021-01-11. 2020. url: https://en.wikipedia.org/w/index.php?title=Least_
squares&oldid=996886074.

[23] Evan Lutins. Ensemble Methods in Machine Learning: What are They and Why Use
Them? Aug. 2017. url: https://towardsdatascience.com/ensemble-methods-
in-machine-learning-what-are-they-and-why-use-them-68ec3f9fef5f.

[24] Joseph Rocca. Ensemble Learning, Bagging, and Boosting Explained in 3 Minutes.
2020. url: https://towardsdatascience.com/ensemble- methods- bagging-
boosting-and-stacking-c9214a10a205.

[25] Joseph Rocca. Understanding Gradient Boosting Machines. 2020. url: https : / /
towardsdatascience . com / understanding - gradient - boosting - machines -
9be756fe76ab.

[26] Gaurika Tyagi. Ensemble models for Classification. 2020. url: https://towardsdatascience.
com/ensemble-models-for-classification-d443ebed7efe.

[27] What is Stacking in Machine Learning. 2020. url: https : / / www . kaggle . com /
questions-and-answers/199346.

[28] Model Evaluation Metrics in Machine Learning. url: https://www.kdnuggets.com/
2020/05/model-evaluation-metrics-machine-learning.html.

[29] G. A. Susto et al. “Machine Learning for Predictive Maintenance: A Multiple Classifier
Approach”. In: IEEE Transactions on Industrial Informatics 11.3 (2015), pp. 812–820.
doi: 10.1109/TII.2014.2349359.

[30] M. Paolanti et al. “Machine Learning approach for Predictive Maintenance in Industry
4.0”. In: 2018 14th IEEE/ASME International Conference on Mechatronic and Em-
bedded Systems and Applications (MESA). 2018, pp. 1–6. doi: 10.1109/MESA.2018.
8449150.

[31] MindSphere - MindConnect Documentation. url: https://siemens.mindsphere.
io/en/docs/mindconnect.

[32] MindSphere Predictive Maintenance - Improve your bottom line with operational trans-
parency. url: https://www.plm.automation.siemens.com/global/en/resource/
mindsphere-predictive-maintenance-nurture/88120.



Bibliography 63

[33] Peter Koen et al. “Providing Clarity and Common Language to the Fuzzy Front End”.
In: Research-Technology Management 44 (Mar. 2001), pp. 46–55.

[34] Atte Martikainen. “Front End of Innovation in Industrial Organization”. PhD thesis.
Nov. 2017.

[35] K. Dewulf. Sustainable Product Innovation: The Importance of the Front- End Stage
in the Innovation Process. IntechOpen, 2013. isbn: 978-953-51-1016-3.

[36] Christian Krupitzer et al. A Survey on Predictive Maintenance for Industry 4.0. 2020.
arXiv: 2002.08224 [cs.LG].

[37] Hongxia Wang, Xiaohui Ye, and Ming Yin. “Study on Predictive Maintenance Strat-
egy”. In: July 2016, pp. 52–56. doi: 10.14257/astl.2016.137.10.

[38] Boksberger Philipp E. and Melsen Lisa. “Perceived value: a critical examination of defi-
nitions, concepts and measures for the service industry”. In: Journal of Services Market-
ing 25.3 (Jan. 2011), pp. 229–240. issn: 0887-6045. doi: 10.1108/08876041111129209.
url: https://doi.org/10.1108/08876041111129209.

[39] Anna Whiting. “Six Steps to Crafting Effective Value Propositions”. In: ITSMA (2012).
[40] Alexander Osterwalder et al. Value proposition design. Wiley, 2014.
[41] WHAT IS QUALITY FUNCTION DEPLOYMENT (QFD)? Accessed: 2021-02-13.

url: https://asq.org/quality-resources/qfd-quality-function-deployment.
[42] Machine Failure Prediction. Accessed: 2021-03-05. url: https://www.kaggle.com/

c/machine-failure-prediction/data?select=test.csv.
[43] E. Triantaphyllou and S. Mann. “USING THE ANALYTIC HIERARCHY PROCESS

FOR DECISIONMAKING IN ENGINEERING APPLICATIONS: SOME CHALLENGES”.
In: 1995.





65

Appendix A

AHP Calculations

The priority vector to be used in the CI calculus corresponds to the relative priorities found
in table 4.4: (0.59,0.08,0.33). In order to calculate the needed eigenvalue, the following
formula was used:

Ax = λmaxX

Where A is the comparison matrix in table 4.4 and x is the priority vector.

Therefore: 
1 7 2

1
7 1 1

5

1
2 5 1

 X


0.59

0.08

0.33

 ∼=λmax


0.59

0.08

0.33




1.81

0.23

1.03

 ∼=λmax =


0.59

0.08

0.33


λmax = average{1.81/0.59, 0.23/0.08, 1.03/0.33} ' 3.02

The CI is then given by, where n is the number of criteria:

CI = λmax−n
(n−1) = (3.02−3)

(3−1) = 0.015

Then,

RC = IC/0.58 = 0.015/0.58 = 0.02





67

Appendix B

Quantitative Evaluation Framework

Figure B.1: Quantitative Evaluation Framework - Functional
.

Figure B.2: Quantitative Evaluation Framework - Content Quality
.



68 Appendix B. Quantitative Evaluation Framework

Figure B.3: Quantitative Evaluation Framework - Adaptability
.

Figure B.4: Quantitative Evaluation Framework - Efficiency
.



69

Appendix C

Generated ARIMA models for the
sensors

Figure C.1: Generated ARIMA models for the sensors
.


