
Micro Frontends para Aplicações Web

DANIEL FILIPE FERNANDES ALMEIDA
Outubro de 2021

Micro Frontends for Web
Applications

Daniel Filipe Fernandes Almeida

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science,

Specialisation Area of Computer Systems

Supervisor: Prof. Ana Madureira

Porto, October 14, 2021

iii

Dedicatory

To everyone that has supported me throughout my life’s journey.

v

Abstract

Over the course of the last ten years, web applications have stood out as the go to when it
comes to software development, replacing the traditional desktop apps. As a result of this,
customer demand has been on the rise, leaving companies with their hands full as they try
to meet expectations.

In the year 2011, the world was introduced to the concept of Microservices, which came
to revolutionize the software development industry by splitting typical backend monolithic
codebases into smaller, more manageable chunks that were able to be developed, deployed
and tested independently. This in turn facilitated customer deliveries as it opened the door to
iterative and incremental developments, preventing customers from having to wait months,
or even sometimes years, to receive a fully functional product since they could now be handed
constant updates in time periods as short as 15 days.

However, even though this expedited today’s backend developments, a web application is not
only composed by a server-side layer, but also a client-side one. Today’s application frontends
still rely on the traditional monolithic architecture which presents the same issues that
backend developments once did and, due to the ever-increasing popularity of the online world,
these types of solutions have been growing massively and escalating those problems. By
having these architectural discrepancies between frontend and backend codebases, iterative
and incremental software developed can never be fully realized as all microservices still depend
on the same monolithic frontend. This is where Micro Frontends come in.

The concept behind this model is to take the teachings microservices provided and expand
them to the client-side. By organizing applications into several components, each with its
respective business sub-domain, vertical teams can then be assembled and take full ownership
of said sub-domain, ultimately implementing the component from end-to-end.

Since a Micro Frontend based architecture is still a somewhat recent concept, information is
lacking and makes the assessment of its viability hard to reach. As such, this dissertation aims
to study its feasibility by studying and comparing possible alternatives, ultimately describing
its advantages and disadvantages, and finally presenting a proof-of-concept application.

Keywords: Web Applications, Micro Frontends, Microservices, Architecture

vii

Resumo

Ao longo dos últimos dez anos, as aplicações web têm-se destacado no que diz respeito ao
desenvolvimento de software, substituindo as aplicações desktop tradicionais. Consequente-
mente, a quantidade de clientes neste mercado tem vindo a aumentar, deixando as empresas
com dificuldades ao tentar atender às expectativas.

Em 2011, o mundo tecnológico foi apresentado ao conceito de Microsserviços, o qual veio
revolucionar a indústria de desenvolvimento de software ao dividir soluções monolíticas em
peças de menor dimensão e mais facilmente geridas que possibilitaram os processos de
desenvolvimento, implantação e teste de forma independente. Deste modo os microserviços
permitiram a adoção de desenvolvimentos iterativos e incrementais, que por sua vez vieram
evitar morosas esperas por parte dos clientes para receber o seu produto desejado em troca
de entregas de, por exemplo, 15 em 15 dias (a duração por defeito de um sprint na maioria
das metodologias de desenvolvimento de software ágeis).

No entanto, embora isso tenha acelerado o desenvolvimento de código relativo ao backend,
uma aplicação web não é composta apenas por uma camada do lado do servidor, mas tam-
bém do lado do cliente. Atualmente, o desenvolvimento de aplicações de frontend tende
a utilizar uma arquitetura monolítica tradicional, a qual apresenta os mesmos problemas
que os desenvolvimentos de backend anteriormente apresentavam. Devido ao aumento de
popularidade das aplicações web, essas mesmas soluções monolíticas têm crescido expo-
nencialmente, agravando os problemas. Com as discrepâncias arquiteturais entre projetos
de frontend e backend, o conceito de desenvolvimento de software iterativo e incremental
nunca pode ser cumprido na totalidade, pois todos os microsserviços implementados de-
pendem do mesmo frontend monolítico. Para solucionar os problemas supramencionados,
surgiu o conceito de Micro Frontends.

O principal propósito da arquitetura de Micro Frontends é aplicar os conceitos providenciados
pelos microsserviços e expandi-los para o lado do cliente. Ao organizar as soluções em
vários componentes, cada um com seu respectivo subdomínio do negócio da aplicação,
torna-se possível a criação de equipas verticais, as quais assumem controlo total do referido
subdomínio, implementando o componente de ponta a ponta.

Visto que uma arquitetura de Micro Frontends ainda é um conceito relativamente recente,
avaliar a sua fiabilidade torna-se uma tarefa difícil. Deste modo, esta dissertação procura
estudar este modelo e comparar as diferentes alternativas de implementação, descrevendo
as suas vantagens e desvantagens e, por fim, apresentando uma prova de conceito.

Palavras-chave: Aplicações Web, Micro Frontends, Microsserviços, Arquitetura, Desen-
volvimento de Software

ix

Acknowledgement

I would like to first thank my supervisor, Professor Ana Madureira, for all her guidance and
patience throughout the development of the present dissertation.

My parents, for making this possible and my sister for egging me on.

All my friends for walking this journey with me.

All the teachers that had an impact on my education.

Everyone at Konkconsulting, that make me wake up and go to work with a smile on my face
everyday.

Finally, my girlfriend, for being my rock.

xi

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Context . 1
1.2 Problem . 1
1.3 Objectives . 2
1.4 Approach . 3
1.5 Document Structure . 3

2 State of The Art 5
2.1 Client Server Architecture . 5
2.2 Backend Architecture . 6

2.2.1 Monolithic Architecture . 6
Advantages . 7
Disadvantages . 7

2.2.2 Microservices . 7
Advantages . 8
Disadvantages . 9

2.2.3 Summary . 9
2.3 Single-Page Applications vs Multiple-Page Applications 9

2.3.1 Single-Page Applications . 10
Advantages . 10
Disadvantages . 10

2.3.2 Multiple-Page Applications . 11
Advantages . 11
Disadvantages . 12

2.3.3 Summary . 12
2.4 Micro Frontends . 12

2.4.1 Advantages . 13
Scalability . 13
Future Proofing . 14
Deployment . 14
Testability . 14
Reusability . 15
Onboarding . 15
Team Composition . 15

2.4.2 Disadvantages . 16
Dependencies and Payload Size 16
User Interface Consistency and User Experience 16

xii

Governance . 17
2.5 Micro Frontend Integration . 17

2.5.1 Build Time Integration . 17
2.5.2 Runtime Integration . 18

Server-Side Composition . 18
Edge-Side Composition . 18
Client-Side Composition . 19
iFrames . 19
JavaScript . 20
Web Components . 20
Routing Distribution . 20

2.5.3 Summary . 21

3 Value Analysis 23
3.1 Innovation Process . 23

3.1.1 New Concept Development Model 24
3.1.2 Opportunity Identification . 25
3.1.3 Opportunity Analysis . 25
3.1.4 Idea Generation & Enrichment . 26
3.1.5 Idea Selection . 26
3.1.6 Concept Definition . 26

3.2 Value . 26
3.2.1 Perceived Value . 27
3.2.2 Value Proposition . 27
3.2.3 Technique for Order of Preference by Similarity to Ideal Solution . 28

3.3 Summary . 32

4 Solution Description 33
4.1 Requirement Analysis . 33

4.1.1 Functional Requirements . 33
4.1.2 Domain Concepts . 34
4.1.3 Non-Functional Requirements . 35

Usability . 35
Reliability . 36
Performance . 36
Supportability . 36
Design Constraints . 36
Implementation Constraints . 36

4.2 Solution Design . 37
4.2.1 Architecture . 37
4.2.2 Use Cases Realizations . 39

Authentication . 39
Create, Read, Update and Delete Product 40
View Order Report . 41

4.3 Summary . 42

5 Solution Implementation 43
5.1 Technology Stack . 43

5.1.1 Microservices . 43

xiii

5.1.2 Monolithic . 43
5.1.3 Micro Frontends . 44

5.2 Monolithic Implementation . 44
5.2.1 Initial Application Setup . 45
5.2.2 Routing . 45
5.2.3 Product List . 46
5.2.4 Billing . 46
5.2.5 Sign In . 47

5.3 Micro Frontends Implementation . 47
5.3.1 Team Organization . 47
5.3.2 App Shell . 48
5.3.3 Product Micro Frontend . 50
5.3.4 Orders Micro Frontend . 52
5.3.5 Authentication Micro Frontend . 52
5.3.6 Error Handling . 53

5.4 Summary . 54

6 Evaluation 57
6.1 Hypothesis . 57
6.2 Evaluation Indicators . 57
6.3 Assessment Methodology . 58
6.4 Results . 58

6.4.1 Development and Deployment Isolation 58
6.4.2 Reliability and Testability . 59
6.4.3 Reusability . 60
6.4.4 User Experience . 60
6.4.5 Performance . 61
6.4.6 Development Cost . 62

6.5 Summmary . 62

7 Conclusion 65
7.1 Achieved Requirements . 65
7.2 Contributions . 66
7.3 Challenges and Limitations . 66
7.4 Future Work . 67

Bibliography 69

xv

List of Figures

2.1 Client Server Architecture . 5
2.2 Monolithic Architecture . 6
2.3 Monolithic Architecture vs Microservices Architecture 8
2.4 SPA Lifecycle . 10
2.5 Traditional Page Lifecycle . 11
2.6 Micro Frontend Team Composition . 13
2.7 Micro Frontend Deployment . 14
2.8 Specialist Teams vs Cross Functional Teams 15
2.9 Micro Frontend Composition . 18

3.1 Innovation Process by P. A. Koen . 23
3.2 New Concept Development Model . 24
3.3 Business Model Canvas . 28

4.1 Use Case Diagram . 34
4.2 Domain Model . 35
4.3 Monolithic Architecture - Component Diagram 37
4.4 Micro Frontend Architecture - Component Diagram 38
4.5 Authentication Sequence Diagram . 40
4.6 Browse Product Catalog Sequence Diagram 41
4.7 View Order Report Sequence Diagram 41

5.1 ng new command . 44
5.2 Dashboard Layout - Sidebar, Navigation bar and Footer 45
5.3 Route Configuration . 46
5.4 Product Catalog . 46
5.5 Order Report . 47
5.6 Routing Configuration - App Shell . 48
5.7 iFrame Preparation - App Shell . 48
5.8 Product Catalog Layout - App Shell . 49
5.9 Environment Configuration . 49
5.10 Setup iFrame source from environment configuration 50
5.11 App Shell displaying Micro Frontend via iFrame 50
5.12 Product Micro Frontend . 51
5.13 Update Product - Product Micro Frontend 51
5.14 Order Micro Frontend . 52
5.15 Authentication Micro Frontend . 53
5.16 Maintenance Warning . 54
5.17 Error Messages - App Shell . 54

6.1 Monolithic Cyclomatic Complexity . 59
6.2 Products Micro Frontend Cyclomatic Complexity 59

xvi

6.3 Monolithic Product Catalog . 61
6.4 Micro Frontend Product Catalog . 61
6.5 Monolithic Lighthouse Performance Report 61
6.6 Micro Frontend Lighthouse Performance Report 61

xvii

List of Tables

3.1 Criteria Weights and Rating . 29
3.2 Criteria Qualitative Rating . 29
3.3 Criteria Rating: Qualitative to Numeric Translation 30
3.4 Normalized Decision Matrix . 30
3.5 Weighted Normalized Decision Matrix . 30
3.6 Separation from the Ideal Solution . 31
3.7 Separation from the Negative Ideal Solution 31
3.8 Relative Closeness to Ideal Solution . 32

5.1 Micro Frontend Technology Stack . 44
5.2 Monolithic Component per Page . 45
5.3 Team Organization . 47

1

Chapter 1

Introduction

This chapter contextualizes the problem being tackled in the current document while also
providing a brief description, the objectives and the approach used for the project’s devel-
opment.

1.1 Context

Traditionally, when referring to Web Applications, it is safe to categorize them into two
parts: back-end (server), that is hidden from the user and in most cases responsible for data
processing and storage, and front-end (client), that provides an interface for the user to
interact with and communicates with the server.

Currently, there are multiple architectural approaches that can be applied to develop back-end
components, one of them being Microservices, which is often referred to as the most suitable
for scalable systems while also being the most versatile. Unlike monolithic architectures,
Microservices structure an application as a collection of services that are loosely coupled,
highly maintainable and testable, independently deployable, and capable of being developed
by a small team (Richardson, 2018). This makes the Microservices architectural style the
go-to approach for large/complex applications.

On the other hand, client-side applications have been suffering from continuous increases to
complexity and overall size. This makes the standard front-end monolith approach less suited
for their development, upping the demand for an alternative architectural style, leading us
to micro frontends. The concept is similar to the one behind Microservices, break up the
application into many smaller, more manageable pieces which aims for increased effectiveness
and efficacy of front-end development teams.

The main goal of this dissertation is to examine the benefits of Micro Frontends when applied
in the development of Web Applications, with a particular interest in single-page applications
(SPA).

1.2 Problem

In recent years, microservices have exploded in popularity, with many organizations using
this architectural style to avoid the limitations of large, monolithic backends. While much
has been written about this style of building server-side software, many companies continue
to struggle with monolithic frontend codebases (Richardson, 2018).

2 Chapter 1. Introduction

To this day, developers are still used to creating fully featured browser applications that tend
to grow over time, making them harder to maintain and work on. Any backend change,
more specifically on one of the services used by the client, propagates directly to said client
since the new feature/update needs to be reflected on it. On top of that, changes to a single
service might sometimes impact multiple components, leading to a more time consuming
and tedious update process.

The concentration of knowledge in a single codebase is also concerning given that the
frontend development team must be able to cope with the entirety of the backend structure.
In a scenario where multiple teams are working on distinct Microservices responsible for
providing new or updated features to the same Web Application, an increase in pressure on
the frontend development team is set to occur since the application has to be deployed in
one go. Having multiple teams working independently on the frontend codebase could not
nullify the issue since the new changes must be integrated into the same project and duly
tested given that they are at a liability to break other features. This leads to the conclusion
that the teams are not actually working independently.

Other issues also rise when dealing with a multi-environment setup (e.g. having a develop-
ment, quality, and production instance) since our client application can become blocked for
a certain environment when the underlying changes to a specific microservice have not gone
live yet. To address these and other issues, we are seeing more and more patterns emerge
for decomposing frontend monoliths into smaller, simpler chunks that can be developed,
tested, and deployed independently, while still appearing to customers as a single cohesive
product (Richardson, 2018).

This technique is called Micro Frontends and is defined as “An architectural style where
independently deliverable frontend applications are composed into a greater whole” (bit.dev,
2021).

1.3 Objectives

This dissertation’s main goal is to assess the value of a Micro Frontend architecture when
developing large web applications. By weighing its benefits and downsides, the idea is to then
decide whether a move from the traditional monolithic frontend is justified and advantageous.

The idea behind Micro Frontends is to think about a website or web app as a composition of
features which are owned by independent teams. Each team has a distinct area of business
or mission it cares about and specializes in. A team is cross functional and develops its
features end-to-end, from database to user interface.

To properly evaluate the applicability and effectiveness of such a model, an initial research
stage will take place to provide added context to current frontend development techniques
and subsequently emphasize and describe Micro Frontends. The analysis itself should also
consider monetary costs since they motivate a great deal of architectural compromises.

It is important to highlight which conditions/situations incentivize the usage of Micro Fron-
tends in addition to the ones where a more traditional approach would be most suited. This is
especially true since design models are almost never a universal fit for specific developments
but instead vary with the project’s context and constraints.

Finally, a proof of concept should be designed and implemented to facilitate the evaluation
of the architecture’s merit and place eventual difficulties/hurdles into perspective. The

1.4. Approach 3

application should be composed by small components that can be developed, tested, and
deployed independently.

1.4 Approach

As mentioned in the objectives section of the current dissertation, a possible solution for the
presented problem revolves around applying a Micro Frontend architecture. This approach
would enable the creation of development teams which would take full ownership of a specific
business sub-domain, becoming subsequently responsible for designing and implementing its
features from end-to-end.

Logically, before ensuing with the actual adoption of such a methodology, one must assess its
viability and effectiveness by analysing its advantages and disadvantages, as well as comparing
it to possible alternatives. To do so, an initial research stage will be performed to fully
understand its architectural drivers while also analysing companies that are currently making
using of Micro Frontends and reading up on their experiences.

Afterwards, in order to apply the knowledge acquired in the research stage, a proof of
concept web application is to be developed, possibly with multiple versions that use several
composition techniques, to finally evaluate them against each other and draw the respective
conclusions.

1.5 Document Structure

This dissertation is composed by 5 chapters.

Chapter 1 (Introduction) provides context on what motivated this dissertation while also
explaining the problem and objectives.

Chapter 2 (State of the Art) presents existing solutions for the problem in addition to a
detailed description of the Micro Frontends architecture.

Chapter 3 (Value Analysis) presents the value a Micro Frontend architecture can offer from
both business and user perspectives.

Chapter 4 (Solution Description) presents the a detailed description of the design for the
proposed solutions regarding the development of web applications through a micro frontend-
based approach.

Chapter 5 (Solution Implementation) details the actual implementation of the proof of
concept application, providing a step by step description of said process.

Chapter 6 (Evaluation) details which evaluation indicators were utilized in conjunction with
the assessment methodologies.

Chapter 7 (Conclusion) delineates this dissertation’s conclusions, providing a brief summary
on the results found and putting forward some future work.

5

Chapter 2

State of The Art

In this chapter, a quick introduction is provided for the main topics of interest for this the-
sis, followed by a detailed description of Micro Frontends and how they can be integrated
with Microservice based architectures. It is important to understand the issues that mi-
croservices are intended to solve and translate them into the current problems with frontend
development.

2.1 Client Server Architecture

As the name indicates, a client-server architecture splits an application into two parts: the
client and the server.

Figure 2.1: Client Server Architecture
(ASIAA et al., 2019)

The server part of this architectural model is responsible for providing the application’s
central functionality, allowing multiple clients to connect to it and request for any supported
task to be executed.

When a request is performed, the client then promptly waits for the server to return a
response which varies according to the executed task and its result. On the other hand, the
client provides an interface that the user can interact with and use to trigger the requests.
The same interface is also used to display the results the server returns.

6 Chapter 2. State of The Art

A good thing to note is that, even though the server is usually responsible for data processing,
this does not mean the client cannot perform some processing for itself.

When developing Web Applications, the two parts of this architecture are often referred to
as frontend (client) and backend (server).

2.2 Backend Architecture

When it comes to backend development, there are two prevalent architectural styles that
tend to be brought up for discussion: monolithic and microservices.

In the following subsections, both these alternatives will be thoroughly detailed in accordance
to their principles, advantages, and disadvantages.

2.2.1 Monolithic Architecture

With the advancements in software architecture and the novelties that arose for developing
applications, the definition of monolithic architecture returned as a major topic of discussion,
mostly with the purpose of being compared with microservices oriented solutions.

According to Google, a monolith is “a geological feature consisting of a single massive stone”
which is why it is used to define an architectural style where the entirety of the application’s
features is built in a single process. Aside from being part of the same codebase, the
application’s functionalities share the same machine’s resources, be it processing assets or
memory.

Usually, a solution that follow these architecture’s guidelines is comprised of a client-side
user interface (e.g. consisting of HTML pages and JavaScript), a server-side application,
and a database (consisting of several tables in a relational database management system),
all of which are unified and served in one place.

Figure 2.2: Monolithic Architecture
(Gnatyk, 2018)

2.2. Backend Architecture 7

Advantages

When compared to other models, it is safe to state that monolithic applications are, most
of times, easier to implement. This is usually the case due to the absence of orchestration
concerns which one faces when following a microservice based architecture.

The existence of a single application, as opposed to several running services, results in a
lot less cross-cutting concerns since tasks such as performance monitoring, caching, and
logging are made easy and more straightforward. Without the concern of different run-time
environments, testing the application also becomes easier as well as debugging it when in
the development stages given that you can run end-to-end tests a lot faster.

Another advantage comes in the form of simpler deployment proceedings that are comprised
of a simple application build and subsequent release of its entirety. Horizontal scaling is
also made easy given the option of running multiple copies of the application under a load
balancer.

Disadvantages

Like all the other models, the monolithic architecture does not come without its weaknesses.
Although its singular codebase/application concept makes it easier to develop, it presents a
major drawback when faced with scaling. A sizeable and complex monolithic solution leads to
tight coupling processes resulting in convoluted code as it grows, becoming harder to isolate
certain areas for independent scaling since you cannot scale components independently.

The high dependency levels that are also a by-product of this model make it so changes
are more time consuming given the extra need for attention in regard to ensuring the new
features do not affect existing ones which might break the application.

Although the simpler deployment process was presented as an advantage, there is an inherent
drawback to releasing the solution as whole that comes in the form of any change, no matter
how small or insignificant, requiring a redeployment of the entire application.

Another disadvantage is made clear when presented with a scenario where one would like to
apply a new technology, say programming language, to the project given that in most cases
this would require the entire application be rewritten.

2.2.2 Microservices

By contrast with monolithic based applications, in a microservice architecture business logic
is broken down into lightweight, interconnected, single purpose services. As such, the
project’s structure is modular and can be compared to a jigsaw puzzle, where each ser-
vice represents a single piece. Service-to-service communication is often ensured by means
of API.

8 Chapter 2. State of The Art

Figure 2.3: Monolithic Architecture vs Microservices Architecture
(Spoonhower, 2020)

Another major difference with this architectural pattern presents itself through the applica-
tion to database relationship. Whereas in a monolithic application one would typically find
a single database instance, with microservices each service has its own database schema
which only contains information relevant to the business logic it respectively handles.

Advantages

Given its origin as a solution to most of the issues faced when applying a monolithic architec-
ture, microservices excel in areas where monoliths would struggle. A good example of this
juxtaposition becomes evident when analysing the application’s complexity. By decompos-
ing the project into smaller, more manageable services, new developments become faster to
implement, understand, and even maintain. Releasing changes is also simpler since there are
fewer dependencies and microservices can be independently deployed, enabling engineering
organizations to use continuous deployment (CD) for their applications.

Unlike the monolithic architecture, microservices present amazing scalability considering the
separation of concerns and the ability to develop, enhance, and deploy a single service as
opposed to being restricted to scale the entire system. Moreover, there is nothing pre-
venting developers from using separate teams and work with different programming lan-
guages/frameworks and storage technologies for the system’s different features.

When compared to monolithic architectures, microservices are often referred to as more
reliable since a fault in one of the services would not affect the remaining ones, eliminating
an application’s susceptibility to a single point of failure. Aside from being autonomous,
they also promote reusability provided each service is properly documented to facilitate
one’s understanding of its purpose, often decreasing the project’s overall technical debt.

2.3. Single-Page Applications vs Multiple-Page Applications 9

Disadvantages

When analysing the drawbacks associated with a microservices based approach, the first
one presents itself at the early stages of a project when the team is faced with the task of
designing a distributed system. This requires thorough planning and a great deal of effort
since a good design is the foundation of a solid project. Connections between every module
and database must be drawn out and set up, resulting in a larger overhead in the beginning
stages of the development process.

Cross-cutting concerns are more prominent when enforcing this architecture given the set of
tasks that need to be performed independently for each component such as logging, caching,
and performance monitoring. There is also a directly proportional relationship between the
complexity of the application and the technical debt that needs to be met to fully test it.

2.2.3 Summary

Although faced with a recent decrease in popularity, it would be ill-advised to discard mono-
liths as a reliable solution to some problems, namely the development of small applications.

On the other hand, a microservice based architecture would be the way to proceed when
dealing with large-scale solutions that are prone to evolve as time passes or are comprised of
multiple workflows. This architecture is also recommended when an organization has many
assets available and wishes to enable the existence of multiple development teams and the
usage of different programming languages.

2.3 Single-Page Applications vs Multiple-Page Applications

As evidenced by the increase in demand, web applications (web apps) have been replacing
desktop applications and continue to do so in current times. This shift mainly comes from
the standard user’s desire to have everything available online to access their applications of
choice across all devices, as opposed to being limited to a single machine (Neoteric, 2016).

Although there are multiple design patterns available that address web app creation, two of
them are often referred to as the main ones: Single-Page Application (SPA) and Multiple-
Page Application (MPA). As with all models, each has its benefits and downsides.

However, before deciding which of these design patterns best suits a specific web application,
an important first step would be to carefully weigh what content is going to be displayed,
what presents the most value to the user and how said content will be presented. This
heavily influences the effectiveness of an application namely because users want an intuitive
experience when using it, on top of easily being able to find interesting and useful content
in a timely manner. This is often referred to as a content-first approach.

As mobile applications thrive, some enterprises are opting for a mobile-first approach when
designing their applications, rather than the one previously noted. Thus, added focus is
given to smaller screen sizes with a limited number of pixels, shaping the web app. This is
then scaled up to desktop size for users on other devices.

Now that we have established the importance of an application’s content, let’s take a closer
look at two main design patterns used in web app creation by briefly analysing them in the
coming sub-sections.

10 Chapter 2. State of The Art

2.3.1 Single-Page Applications

Single-Page Applications, or SPAs for short, are web applications that interact with the
user by rewriting the web page in a dynamic fashion with data fetched from the web server
(Neoteric, 2016).

Figure 2.4: SPA Lifecycle
(Shah, 2020)

By doing so the web app avoids page reloads and, consequentially, extra wait time, providing
an outstanding user experience. These applications rely heavily on JavaScript (JS) which
they use to load data and render the pages in the browser, something made possible through
advanced JS frameworks such as Angular and React (Joseph, 2015).

Advantages

By avoiding page reloads, SPAs are generally fast than traditional web applications. Most
of necessary resources that comprise the web app (HTML, CSS, Scripts) are loaded a single
time throughout the lifespan of the application, only requiring additional requests to attain
or provide data.

Aside from the performance improvements, by steering clear of successive roundtrips to load
additional logic and render views, SPAs provide a much better user experience with fluid
navigation and seamless page transitions.

Debugging is also simplified as the developer can easily monitor network activity, investigate
the page’s elements, and perform checks on the data associated with each component
through natively available tools like Google Chrome’s developer’s console.

Another upside of Single-Page Applications is the ability to cache information through local
storage, increasing performance and even permitting the application to function while offline
after the initial request.

Finally, by maintain server logic isolated, SPAs promote backend reusability in instances
where a company wishes to develop both a web and mobile application that utilize the same
business data.

Disadvantages

When compared to traditional web apps, SPAs are often less secure. A clear example of
this is their increased susceptibility to Cross-Site Scripting (XSS), which consists in injecting
malicious client-scripts into the application, raising safety concerns. Exposure of sensitive

2.3. Single-Page Applications vs Multiple-Page Applications 11

data is another aspect to have in mind since unintended data may be included in the initial
request which should not have been exposed to the user. This does not refer to information
being easily presented to users unintentionally, but instead to more tech-savvy individuals
finding something sensitive in the browser’s storage.

Another downside of Single-Page Applications is applicable to public projects that rely on
having good search engine optimization (SEO) to raise website traffic and grow. This is
due to lack of separate URLs for ever page which prevents most search bots from scanning
said pages, complicating optimization proceedings. In recent years, some strides have been
made to minimize this issue including Google’s support for dynamic page indexing, provided
the developers take the necessary precautions to enable this.

2.3.2 Multiple-Page Applications

Multiple-Page Applications, MPAs for short, are often referred to as the traditional web
applications. Unlike SPAs, with this model pages are entirely reloaded whenever a user
interacts with the web app and triggers a data exchange, both towards the server or back.

Figure 2.5: Traditional Page Lifecycle
(Shah, 2020)

This behavior could negatively impact user experience if not properly managed, however
AJAX introduced the possibility of rendering specific application components instead of the
whole page. Nevertheless, this does complicate application development by adding increased
complexity and can still be mitigated by network traffic/delay.

Advantages

One of the areas where Multiple-Page Applications excel as opposed to Single-Page Applica-
tions is SEO. This design’s architecture is native to typical search engine crawlers, providing
better control with its multiple pages and specific URLs.

MPAs can also easily include any amount of information regarding services or products
with little to no concerns and no built-in page limitations. This in turn makes them better
suited for projects that need to display high volumes of data while SPAs might struggle
performance-wise.

Another benefit of this model revolves around its native support for browser history. Users
are used to a timely response whenever they perform an action such as pressing the back
button in their web browser which is facilitated by its mechanisms that attempt to always

12 Chapter 2. State of The Art

load a cached version of the previous page, preserving its state. Although SPAs can achieve
a similar behaviour, this would require extra developments since it does not take advantage
of any existing mechanism, meaning it needs to be mimicked. To do so, things like storing
pages in memory and client-side databases are required (Pupius, 2013).

Disadvantages

One of biggest downsides of this design pattern given the current emphasis on mobile ap-
plications is the added technical debt to develop them since in most cases this requires the
backend of the application be built from scratch. Even when trying to introduce updates
to the system, developments often take longer and raise additional concerns like indepen-
dently ensuring each page is properly secured. Moreover, this model’s inherent tight coupling
between frontend and backend almost entirely prevent reusability.

As previously stated, performance is another problem faced with MPAs due to the app’s
need to constantly reload upon user interaction and retrieve multiple resources (e.g. HTML,
CSS). AJAX does attempt to lessness the impact of these operations by reducing the scale
at which they are performed but it can very rarely achieve the performance levels one sees
with Single-Page Applications.

2.3.3 Summary

By evaluating both design patterns for web applications we can first and foremost conclude
that neither model is perfect. As most opposing architectural styles in software engineering,
each of them excels when faced with specific conditions and have different trade-offs.

If the goal of a company is to develop a dynamic application that uses small data volumes
and looks to also work as a base for a future mobile application, then an SPA would be the
advisable choice. On the other hand, if a project relies heavily on SEO to thrive and needs
to present data on a broad range of services/products (e.g. an online store), perhaps an
MPA is best suited for it.

This conclusion serves to further illustrate the importance of an application’s content and
why due diligence is required in a project’s early stages to make such impactful decisions, as
it can shape its effectiveness.

2.4 Micro Frontends

Although the debate between monolithic and microservice architectures has become a hot
topic of discussion and major strides have been made to make microservices the norm for
backend development, frontend applications are still lagging architecture-wise. The unprece-
dented speeds companies are currently expected to deliver upon also generate a necessity
for adoption of agile methodologies.

Unlike backend programmers, frontend developers and architects are presented with fewer
options to choose from, mainly relying on single-page applications (SPAs), server-side ren-
dering (SSR) applications or static HTML pages. As a project grows, all these models
inevitably end up becoming monoliths comprised of large codebases, tight coupling, and
countless dependencies.

2.4. Micro Frontends 13

Much like a microservices architecture, micro frontends are looking to apply modularization
to client side solutions in order to address the aforementioned issues as well as others that
triggered the changes to server-side software development by transforming the monolith
into smaller chunks that can be independently run, developed and deployed. By achieving
this goal, development teams would be able to build loosely coupled services on their own
without all the cross-development concerns when working on a single codebase.

Figure 2.6: Micro Frontend Team Composition
(Jackson, 2019a)

As such, the goal would be to divide an application vertically, as demonstrated by Figure 1,
as opposed to the traditional horizontal model that separates developers by their technical
capabilities. With such a level of autonomy, teams can take full ownership of a specific
business sub-domain and manage it from the initial design stage all the way through its
production.

Before presenting the available approaches that could be labelled as micro frontends, let’s
discuss this architecture’s advantages and disadvantages (Jackson, 2019a).

2.4.1 Advantages

As previously stated, the micro frontend architectural pattern is loosely based on the ever
so popular microservices approach for backend development, therefore most of, if not all its
benefits, will be conjoint. Here are the main advantages this model provides:

Scalability

Monolithic frontends often weigh down development teams when attempting to perform
changes or implementing new features. The added technical debt to complete these tasks
when faced with a large and complex codebase ends up being quite costly both resource-
wise and timewise. Some companies are even faced with the decision of rewriting an entire
application due to accumulated developments that have since become obsolete.

14 Chapter 2. State of The Art

Figure 2.7: Micro Frontend Deployment
(Media, 2020)

By splitting the project into smaller independent components, teams can work in different
codebases, release their changes through a separate build pipeline and deliver constant in-
cremental upgrades. They are even able to make case-by-case decisions on each component
that address its specific needs. Using different technological stacks also becomes an option
since everything is now isolated.

Future Proofing

As teams are free to choose their own technology of choice, the appearance of a new coding
standard or framework can be easily analysed, tested, and integrated into a micro frontend
architecture. Abandoning old practices or updating them is also easier in such a smaller scale
contrary to the effort of rewriting an entire monolith. This in turn makes the application
future proof.

Deployment

In agreement with microservices, the ability to independently deploy micro frontends is of
paramount importance. When a given component is finished and ready to release, the team
responsible for it should be permitted to do so with little to no concern regarding parallel
developments.

Each micro frontend must have its own designated continuous delivery pipeline responsible
for building, testing, and deploying it. This reduces the associated risk given the smaller
scopes of deployment per component.

Testability

Performing changes and subsequentially testing them in a monolithic architecture is often
more complex due to the possibility of side effects throughout different parts of the solution.

2.4. Micro Frontends 15

Much like the deployment advantages, the reasoning behind the statement “testing is easier
with micro frontends” mainly surges from the decreased scope one would have to test and
the lack of interdependencies across codebases.

Reusability

Although reusability is an overall benefit that presents itself with micro frontends, it becomes
more indisputable for enterprises that build multiple applications that possess common work-
flows.

Organizations can easily take advantage of single components that address these workflows,
saving valuable time and effort in the meantime, instead of recreating them. An example of
this might be in enterprises that often develop applications that require a checkout/payment
process which trigger multiple business validations.

Onboarding

When discussing the benefits of a micro frontend architecture, an often-overlooked advan-
tage is the facilitation of the onboarding process.

Introducing a developer to a monolithic codebase, from business logic, to the application’s
patterns, logic, and common practices is traditionally a lot more tasking and takes a set
amount of time (depending on the individual’s proficiency). It is safe to assume that the
duration for this sequence of events is directly proportional to the project’s proportions
meaning that, as the solution grows, so does the length of the onboarding procedures.
Bearing that in mind, micro frontends expedite the enrolment of new team members by
minimizing the time and resources required for them to fully understand the application.

Team Composition

The main purpose of a development team is to provide value to the customer as quickly
and effectively as possible while meeting all the quality standards. Figure 2.8 presents two
known types of teams, Specialist Teams and Cross Functional Teams.

Figure 2.8: Specialist Teams vs Cross Functional Teams
(Geers, 2020)

16 Chapter 2. State of The Art

By having vertical teams that address a specific business sub-domain for a given project, their
members can plan and coordinate the necessary work with little to no outside interference.
If a team were to be built by focusing on its members technical capabilities, cross-team
dependencies would rule the overall project and translate into decreased effectiveness and
make the application harder to maintain.

Incentivizing cooperation between the members of an interdisciplinary team can also lead
to increased productivity as different points of view may result in more creative and fruitful
solutions.

2.4.2 Disadvantages

Much like the advantages, micro frontends also share most of microservices’ issues. No
architecture is ever without fault and these are this model’s hurdles:

Dependencies and Payload Size

Having different components that make use of different, or even the same, technological
stacks can severely cripple application performance. For example, if a project is comprised
by multiple micro frontends, some built on Angular and others on React, the size of the
payloads that need to be sent to the browser over network calls for them to function is
much larger. Ensuring the same framework is used across the different components doesn’t
solve this issue either since each individual instance must load the respective dependencies
(e.g. five micro frontends would load a copy of Angular five times).

Consumers have become more demanding and judgemental towards the overall experience
when using a service and research shows user engagement is heavily influenced by page
performance. As an example, in 2016 Pinterest rebuilt its pages with a focus on perfor-
mance and achieved 40% decreases in Pinner wait time which presented a 15% increase in
conversion rate to sign up and SEO traffic (Meder et al., 2017).

These micro frontend performance concerns are not an easy issue to address without go-
ing against some of the architecture’s guidelines. On one hand, teams are intended to be
completely autonomous and should be able to independently develop and deploy their appli-
cations, on the other, common dependencies should be shared between different components
to avoid duplication. However, by sharing dependencies, a coordination effort is introduced
to the project since something like a version update or breaking change could result in a
full-scale upgrade that englobes every component.

Although this sounds like a serious problem, there is still a silver lining to it. Even with
duplicate dependencies, page load times might possess better performance than a monolithic
frontend would. In the latter, the standard use case is to download the source code in its
entirety, along with every dependency, by the first page the user lands on. By splitting this
throughout different components, the browser will only load the specific page’s source code
(in a project with a micro frontend per page), often fulfilling the task at much faster rates.

User Interface Consistency and User Experience

Ensuring a consistent user interface (UI) across an application may prove challenging in the
absence of guidelines since different teams may decide upon the usage of distinct frameworks.
It is important that, even though the application is split into separate micro frontends, the

2.5. Micro Frontend Integration 17

resulting product be a seamless integration of every component and provide a compatible
user experience (UX) throughout.

A somewhat simple approach to this issue would revolve around having a shared CSS
stylesheet which could attempt to maintain a component’s look and feel in accordance
with the rest of the application. However, this does come at a cost performance-wise as
it creates dependencies and redundancy when it comes to loading said stylesheet to the
browser, raising similar concerns to the ones described in the previous sub-section of this
paper.

A universal solution, and one that would avoid the overhead presented by the previous
one, would be to use a style guide (e.g. Bootstrap, Material Design) along with a list
of rules/standards to develop by. Each team would then follow these regulations with an
emphasis on cross-team communication to achieve a consistent UX, while sacrificing some
of its autonomy regarding style choices as a trade-off.

Governance

As with microservices, having a system use a more distributed architecture as opposed to a
single monolith will create increasing governance concerns. While it does avoid other issues,
namely having a single point of failure, it creates more items to manage and monitor (e.g.
repositories, pipelines).

2.5 Micro Frontend Integration

Since the idea behind Micro Frontends is to break down a monolith into several smaller,
more manageable components, orchestrating said components is required to have them
work together as a whole, giving the user the impression of a single application.

Micro Frontend integrations can be divided into two categories: build time integration and
runtime integration. As the names would indicate, approaches vary according to when the
actual integration happens, and while the former does this at build time, the latter executes
it at runtime.

2.5.1 Build Time Integration

A build time integration based approach looks at Micro Frontends as packages that can
published and later on included as a dependency into a single container responsible for their
availability.

Although having a single bundle that contains every dependency may initially look like a
good idea as it prevents code duplication, it reverts the application back to a monolith at its
release stage since every component must be re-compiled to introduce a change in a single
one.

This makes build time integration a less than optimal approach since it, in a way, goes
against the Micro Frontend guidelines by re-introducing tight coupling in one of its integral
stages (release). Given that, it’s advisable to move past this technique and take a deeper
look into runtime integration and its variants.

18 Chapter 2. State of The Art

2.5.2 Runtime Integration

As previously stated, Micro Frontends can also be orchestrated at runtime. This approach
is a lot more versatile than the aforementioned one since it can be divided even further as
either server-sided, edge-sided, client-sided or a combination of each.

Figure 2.9: Micro Frontend Composition
(Mezzalira, 2020)

In the following subsections, some of the most established techniques to employ these types
of integrations will be described, along with their benefits and downsides.

Server-Side Composition

Server side composition is made up of HTML rendering mechanisms that are responsible for
assembling multiple view fragments/templates into the requested page, posteriorly returning
it to the browser when finished. As the name would indicate, this type of processing occurs in
the server-side and only provides the finalized product to the client, allowing for faster page
loading times and avoiding the excessive use of JavaScript to handle component rendering
(Jackson, 2019b).

Server side composition allows for full control over the web app. It enables developers to
attach data directly on the server as opposed to having the frontend rendering and network
requests that retrieve said information be separate actions, improving performance in the
meantime. Highly cacheable content can also be delegated to a Content Delivery Network
(CDN) to avoid roundtrips to the application’s server, once again improving performance
and overall user experience.

Edge-Side Composition

Unlike with server-side composition, edge-side composition assembles and renders view frag-
ments at the CDN level by obtaining each micro frontend for their respective source and
delivering the final assembled page to the client (Mezzalira, 2020).

Edge Side Includes (ESI) is a markup language developed by Akamai and Oracle whose main
purpose is to enable edge level dynamic content assembly (Tsimelzon et al., 2001) in order
to promote scalability. By inserting ESI element tags into HTML (e.g. esi:include), also

2.5. Micro Frontend Integration 19

known as directives, a set of instructions are being provided to the processor to later on
execute. With the aforementioned example tag, a request would be carried out to retrieve
the include tag’s content and then insert it in the page.

Although it might seem like a good approach, there are some inherent disadvantages with,
starting from the lack support for ESI by multiple CDNs or even different implementations
that can lead to refactors. Moreover, CDNs are most adequate for web applications that
are comprised of a lot of static content since they can take full advantage of their caching
mechanisms.

When developing an application that’s constantly retrieving up to date information, the
introduction of a CDN as it acting as a simple reverse proxy, creating unnecessary middlemen
and, consequentially, adding latency to network requests. Another aspect to bear in mind
is, given this approach’s nature, it makes it more fitting for horizontal teams that handle
different aspects of a specific page simultaneously, going against one of Micro Frontend’s
principles of having vertical teams specialized in a specific business sub-domain.

An example of properly enforcing Edge Side Composition would be an e-commerce website
that needs to display a large product catalog, as is the case with IKEA which uses this
technique to great effect.

Client-Side Composition

The two available variants of runtime integration are often divided according to the applica-
tion’s setting and its priorities based on predominant usage. Client-side orchestration excels
in web apps that need to promptly react to user input due to faster response times since a
roundtrip to the server is avoided.

The idea behind this type of composition is to have a container application load the required
Micro Frontend according to necessity by updating the HTML structure of the web app
dynamically (Miller & Osmani, 2020).

iFrames

An HTML Inline Frame Element, or iFrame for short, constitutes a nested browsing context
by means of embedding a separate HTML document inside the current one (Mozilla, 2020).

This element enables the approach most would deem as the simplest one since its purpose
is already to include smaller components into a page. Another positive with iFrames is the
built in isolation capabilities since each embedded context has its own DOM, preventing
mix-ups with stylesheets, variables or even namespaces, promoting low coupling across the
application.

Managing an iFrame layout does present some caveats, namely when it comes to its height
since an explicit value is required. However, there are existing workarounds through some
additional scripting that emulate dynamic behavior.

Moreover, cross-container communication requires dedicated mechanisms since the built in
isolation capabilities prevent direct information flow.

20 Chapter 2. State of The Art

JavaScript

A JavaScript based approach leans on a very common technique in current web developments
which is to update by means of replacement or appendage of script tags to the Document
Object Model (DOM).

Each tag represents a separate Micro Frontend which exposes an entry level function re-
sponsible for rendering it upon being called by the top-level container application that also
decides where the component is rendered (Jackson, 2019b).

As opposed to the deployment dependencies that surface with build time integration, each
JavaScript file can be independently released, avoiding the need for a conjoint re-compilation
before doing so. Another benefit, this time in regard to the iFrame approach, is the ability
to have data flow into or out of the JavaScript functions, facilitating integration and ridding
the project of a dedicated communication mechanism unless of course, the team decides it
would be advantageous.

Angular and React are a couple of examples frameworks that take advantage of this proce-
dure and have since popularized it in the web application development industry.

Web Components

The term Web Components refers to “a set of web platform APIs that allow you to create
new custom, reusable, encapsulated HTML tags to use in web pages and web apps” (“What
are web components?”, 2019). These same custom components can then be used across
any framework, as they are globally supported, irrespective of the environment.

There are four main concepts attach to Web Components:

• Custom Elements – allow the development of custom components, including their
behavior, that can posteriorly be used through their respective HTML tag.

• Shadow DOM – attaches an isolated DOM tree to an element to prevent cross-element
concerns (e.g. stylesheets) and keeps its features private.

• ES Modules - defines the inclusion and reuse of JS documents in a standard based,
modular, performant way (WHATWG, 2021).

• HTML Templates – allow the specification of markup templates than can be instan-
tiated at runtime at will. Web Components provide full freedom to create proprietary
components while maintaining interoperability. Although this presents an initial de-
velopment overhead when compared to the usage of proprietary component libraries,
it promotes reusability which will in turn compensate the added technical debt. The
absence of technology barriers, enables the development of components with different
stacks, consequently falling in line with one of the guidelines for Micro Frontends.

A drawback to take note is that some older browsers do not support the usage of a Shadow
DOM.

Routing Distribution

Routing distribution based solutions are comprised of several distinct applications (Micro
Frontends), each with their respective routes, that depend on navigation to become inte-
grated. This implicates the existence of a component per page which requires a full refresh

2.5. Micro Frontend Integration 21

to render, and a tool that handles the actual routing distribution, Nginx being one of the
most popular ones.

This methodology suffers from recurring code duplication, from stylesheets to actual business
logic, since the components are often not granular enough given their proportions (a full
page). The inability to share a framework’s source code may also result in a user having to
constantly download dependencies whenever a page navigation occurs.

Additional management and orchestration issues also surface given that cross-team com-
munication is required when performing actions like a user interface style update.

2.5.3 Summary

In a very similar fashion to the microservices vs monolithic debate, when faced with the
advantages and disadvantages provided by Micro Frontends and their monolithic codebase
counterpart, the former appears to come out on top. However, a somewhat identical con-
clusion applies as there is no ideal solution when it comes to frontend architecture.

Enterprises should consider whether Micro Frontends is the best approach to use on a given
project by carefully analysing important variables like the following:

• Do you possess the required resources to successfully manage this kind of application?

• Does the project justify taking a micro frontend-based approach or would a monolithic
architecture suffice?

• If the decision has been made to proceed with micro frontends, which parts of the
application will be promoted to one as opposed to being a generic frontend component?

• Do you have guidelines to ensure UX consistency across the application?

A lot more examples of important questions such as the previous ones could be presented but
the main point to get across is that, before diving head first into a new type of architectural
style, each organization should perform their due diligence and arrive to a decision. There’s
no universal “one size fits all” approach in software architecture and each project should be
looked at objectively.

23

Chapter 3

Value Analysis

By definition, a Value Analysis (VA) is “a systematic and function-based approach to im-
proving the value of products, projects, or processes” (Rich & Holweg, 2000). It uses a
combination of analytical techniques with the sole purpose of identifying possible ways to
achieve specific objectives.

This section aims to assess the value of this dissertation by initially analyzing the front-end
of innovation using the New Concept Development Model (NCD). Secondly, the solution’s
value and perceived value are presented, followed by a value proposition. The business model
canvas is then introduced, finalizing the chapter with the application of the Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS).

3.1 Innovation Process

Due to the growth of the software development industry, enterprises are often placed under
severe pressure to finalize projects in a swift manner while still maintaining a certain degree
of quality. The ability to keep up with customer requests becomes imperative, as they can
often easily transition to another company to meet their demands. The keyword for success
in such an industry is innovation, as it is regularly used to gain the upper hand on other
contenders, which is the main reason behind many companies betting on improving their
practices to attain a competitive edge.

To facilitate this endeavor and attempt to guarantee the development of a valuable product,
a model was designed, demonstrated in Figure 8. The model itself presents the innova-
tion process as three separate stages: Fuzzy Front End (FFE), New Product Development
(NPD), and Commercialization.

Figure 3.1: Innovation Process by P. A. Koen
(Koen et al., 2002)

24 Chapter 3. Value Analysis

As shown in the illustration, the starting point of the innovation process is the Fuzzy Front
End stage, which looks to originate a concept based upon an idea, opportunity, or actual
business. This first step is often regarded as “one of the greatest opportunities for improve-
ment of the overall innovation process” (Koen et al., 2002).

The New Product Development stage addresses the implementation of the conceptualized
ideas that originated from the preceding step by transforming them into actual products.
NPD requires an understanding of the targeted market, including its nature and customer
demand.

When comparing both stages, one could state they are intrinsically different as the FFE
requires thorough understanding and disparate reasoning, being often categorized by its
unpredictability and uncertainty, as opposed to the sequential, well-practiced routine which
the NPD thrives upon, making it a more disciplined stage. The final stage in the innovation
process is Commercialization whose main purpose is to sell the finalized product to the
studied market segments.

3.1.1 New Concept Development Model

To account for the lack of coinciding terms when comparing FFE practices and mitigate
interpretation/understanding complications, a theoretical construct was created whose des-
ignation is New Concept Development (NCD) model.

Figure 3.2: New Concept Development Model
(Koen et al., 2002)

The NCD provides a more holistic perspective of the front end and divides it into three
distinct areas:

• The engine (or center of the model) which accounts for the primary business aspects
that include culture, vision, leadership, and strategy while also being responsible for
driving the five activities of the front end.

3.1. Innovation Process 25

• The Fuzzy Front End elements, comprised of five activities: opportunity identifica-
tion, opportunity analysis, idea genesis, idea selection and concept and technology
development.

• The influencing factors which are mostly of external nature, often unpredictable, and
can vary from competitor and customer constraints to political, economic, social,
technological, environmental, or legal concerns.

3.1.2 Opportunity Identification

Opportunities can present themselves in multiple ways and are often driven by an enterprise’s
business goals. Examples of opportunities can include new product features, improvements
to development processes (e.g. increased speed and reduced costs) or even advancements
that allow the organization to attain a competitive edge.(Koen et al., 2002)

As described in a more detailed fashion on section 1.2, current frontend development prac-
tices still rely on the traditional monolithic architecture which is widely known for its limita-
tions (e.g. scalability, tight coupling, among others). By transitioning to a Micro Frontend
based approach, one could go about fixing these issues.

The adoption of this architectural model also falls inline with current emphasis on agile
methodologies and incremental upgrades which make the development and deployment pro-
cess more efficient and faster, something very important in today’s high demand technolog-
ical world.

3.1.3 Opportunity Analysis

After introducing the opportunity, the current stage of the NCD model looks to assess its
potential and viability. Typical analysis is based upon market assessments, research, and
statistical reports to detail the opportunity’s value further and place it into perspective.

As the genesis of the Micro Frontend is still somewhat recent, thorough information that
provides conclusive evidence on its value is difficult to find. A survey performed by the
Software House saw 4500 developers give their opinion on the concept and confirmed that
only approximately 24.4% had any previous experience with it (Mamczur et al., 2020). Nev-
ertheless, only 20% of respondents agreed with a statement that dictated Micro Frontends
would disappear in three years’ time, showing promise for the concept.

Several large organizations have also come forward and confirmed their adoption of this
architecture, among which are IKEA, DAZN, Spotify and Soundcloud to name a few. Having
an enterprise’s public backup helps promote the idea, which usually results in increased
adoption and over-time improvements as different companies use different approaches and
share their insights. This is something we saw with the rise of microservices when companies
like Netflix and Amazon adopted the concept and raised the tech community’s confidence
in it. Moreover, the intrinsic connection between Micro Frontends and microservices can
subsequently lead to conjecture that the adoption of one implicates the other.

According to a study performed by Camunda in 2018, nearly 63% of surveyed enterprises
(which totaled 354) are building applications using microservices, 60% of which justified
doing so “to achieve a faster time to market for new products and services”. The provided
justification falls in line with the mainstream adoption of DevOps throughout the software
development industry, as its main purpose is to streamline software development processes by

26 Chapter 3. Value Analysis

shortening their life cycle and enable continuous integration, testing, and delivery pipelines.
This makes Micro Frontends the next logical step in application development as by adopting
them, enterprises can be rid of the clunky frontend monolith and all dependencies that come
with it, taking another step towards decentralization.

3.1.4 Idea Generation & Enrichment

When discussing an idea, one often correlates the term to the actual aim or purpose of a
specific course of action. The existing issues originating from frontend monoliths seem to
prevent some of the advancements offered by microservices since it becomes nearly impos-
sible to prevent the inherent dependency of having a single client-side application for every
service. A problem of this nature then triggered the question: How can we avoid this? Can
we replicate what was done with microservices to the frontend of the application?

3.1.5 Idea Selection

It is uncommon for businesses to suffer from a shortage of new ideas, even in the face of
adversity. The problem usually lies in the selection process when a decision must be made
regarding which idea to pursue (Koen et al., 2002). Hence, the presented idea was analyzed
based on its merit and what kind of value it could provide.

The intent with Micro Frontends is to look past the typical frontend monolith and move
towards developing modular components that pertain to a designated business sub-domain in
a similar fashion to microservices. By doing so, components present scalability, independency
(from implementation to deployment) and can be developed by vertical teams to enable
full ownership of its respective sub-domain leading (end to end implementation) while also
incentivizing the usage of agile methodologies.

3.1.6 Concept Definition

The goal is to integrate the microservices and Micro Frontend architectural patterns to
exploit the viability of such a solution in web app development. As such, research will
initially be conducted to analyze current integration strategies, followed by a decision on
which one to pursue for the proof of concept application.

The application itself will target the Human Resources Management thematic since it is
the main area of interest for the company co-orientating the dissertation and whose nature
engulfs multiple sub-domains (e.g. recruitment, compensation, talent management), making
it a solid candidate for modularization.

3.2 Value

The term value can be defined in a plethora of ways since its definition may vary according
to the context it is used upon. Contrary to popular belief, value is not always a matter of
cost but instead ways of conveying utility.

Given that this dissertation tackles the adoption of Micro Frontends as a means to modernize
web applications, there is no specific product or service being listed to outside customers.
With that in mind, this chapter instead focuses what kind of value is offered to potential
users of this architectural approach.

3.2. Value 27

3.2.1 Perceived Value

The perceived value can be defined as the relationship between perceived benefits and sacri-
fices. For a customer to deem the solution has value or not, the overall benefits must have
more weight than the sacrifices. It is important to note that each customer segment may
possess different value perceptions regarding the same product or service (Ulaga & Eggert,
2006).

As discussed in section 2.4.1 of the current document, there are several advantages asso-
ciated with a Micro Frontends architecture. Although the benefits were presented from a
technological perspective, they inherently provide value to development teams and managers
alike as they often simplify existing or future processes.

By isolating the application into separate components that target a specific business sub-
domain and have their respective team, tasks such as monitoring, and error handling become
intrinsically faster. This type of improvement can then be translated to better customer
support as speed is one of the most important metrics in problem-solving evaluation, while
also reducing the allocated resources to perform such chores which impacts maintenance
costs.

Moreover, a Micro Frontend architecture paves the way for continuous integration and
continuous delivery pipelines that make delivering code changes a more frequent and reliable
process, achieving faster time to market for the organization’s new products and services.
However, having these automated pipelines does come at an increased development cost.
The same can be said infrastructure wise, as having several independent components with
their respective foundations will increase costs.

3.2.2 Value Proposition

The Business Model Canvas, proposed by Alexander Osterwalder, is a strategic management
tool which uses nine pillars to visualize a business idea or concept. By examining the canvas,
one should be able to describe how an organization creates, delivers, and obtains value to
and from the market (Osterwalder & Pigneur, 2006).

It defines who is the customer, what is the customer’s problem, how is the business going
to address that problem, and how is it going to attain revenue.

Following is a description of each of the nine pillars that comprise the Business Model Canvas:

• Customer Segments - Identify the groups of customers that the business aims to serve.

• Value Proposition - The products/services that generate value for the identified cus-
tomer segments and what is compelling/unique about them.

• Channels - The channels used to communicate and deliver value to the customer.

• Customer Relationships - How the organization interacts with its customers.

• Revenue Streams - The possibilities of revenue from its value proposition.

• Key Resources - The main strategic assets needed for the business model to succeed.

• Key Activities - The main strategic things needed for the business model to succeed.

• Key Partners - The partners and suppliers needed for the business model to succeed.

• Cost Structure - The main cost drivers.

28 Chapter 3. Value Analysis

Figure 3.3: Business Model Canvas

As initially stated in section 3.2, given that this dissertation discusses the viability of an
architectural approach in the web application development field, the business model canvas
may deviate slightly from usual examples as there’s not an exact product being proposed.

Bearing this in mind, the canvas in Figure 11 illustrates that the value proposition for this
idea revolves around the advantages it provides for software development enterprises, which
are the targeted customer segments, and displays the activities and resources required to
implement it. The same applies to the cost structure and key partners represented.

Lastly, in regard to revenue streams, the focus is to show the monetary avenues that an
architectural change can pave for a company, mainly from a point of reusability, faster time
to market, and lower maintenance costs.

3.2.3 Technique for Order of Preference by Similarity to Ideal Solution

The process of decision making holds paramount importance both in a business and personal
setting. In order to aid companies through this process several multi-criteria decision analysis
methods have been developed, one of each is the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS). TOPSIS has a company indicate which attributes
will be considered when performing a comparative analysis, each of which must have a
weight associated to it. Two important concepts in this decision making method are:

• Positive ideal solution - the sum of all the best value that can be achieved for each
attribute.

• Negative ideal solution - all the worst value achieved for each attribute.

The distance between alternatives and the two hypothetical solutions is then measured to
attain a rank for each given that selected solutions should be the ones closer to the positive
ideal solution while also being the farthest from the negative ideal solution (Rahim et al.,
2018).

The first step one must take to apply the TOPSIS decision making method is to determine
which evaluation criteria will be used and their respective weights.

3.2. Value 29

Table 3.1: Criteria Weights and Rating

Criteria Weight Rating
Independent Development and Deployment 20% 5 (very good) - 1 (very bad)
Technical Support 10% 5 (very good) - 1 (very bad)
Performance 15% 5 (very good) - 1 (very bad)
Technical Complexity 10% 5 (very good) - 1 (very bad)
Development Costs 25% 5 (very good) - 1 (very bad)
UX Impact 20% 5 (very good) - 1 (very bad)

After taking into consideration all of the defined ratings and weights, it is expected that the
decision maker rates all the criteria topics in accordance with the performed research and
brief explanation presented on section 2.5.2.

As it can be concluded by observing the table 3.2, all the previously mentioned alternatives
are classified in a qualitative scale regarding each of the considered criteria.

Table 3.2: Criteria Qualitative Rating

iFrame JavaScript Web Components Routing Distribution
Independent Develop-
ment and Deployment

Very Good Very Good Very Good Good

Technical Support Very Good Very Good Good Very Good
Technical Complexity Good Very Good Good Good
Development Costs Good Very Good Average Very Good
UX Impact Very Good Good Good Bad
Performance Very Good Good Good Bad

After classifying each attribute and defining its weight, the decision maker rates each alter-
native. A 5 to 1 conversion table was applied over the qualitative ratings with the following
values:

• 5 - Very Good.

• 4 - Good.

• 3 - Average.

• 2 - Bad.

• 1 - Very Bad.

The post conversion decision matrix is then as follows:

30 Chapter 3. Value Analysis

Table 3.3: Criteria Rating: Qualitative to Numeric Translation

iFrame JavaScript Web Components Routing Distribution
Independent Develop-
ment and Deployment

5 5 5 4

Technical Support 5 5 4 5
Performance 4 5 4 4
Technical Complexity 4 5 3 5
Development Costs 5 4 4 2
UX Impact 5 4 4 2

The qualitative to numeric translation enables the execution of all the TOPSIS steps to then
attain a conclusion in regard to which of the considered alternatives would be best suited
for the current problem.

The next step is to normalize the decision matrix by applying the following formula:

ri j =
xi j√

Σmi=0(xi j)
2)

(3.1)

Table 3.4: Normalized Decision Matrix

iFrame JavaScript Web Components Routing Distribution
Independent Develop-
ment and Deployment

0.52 0.52 0.52 0.42

Technical Support 0.52 0.52 0.42 0.52
Performance 0.47 0.59 0.47 0.47
Technical Complexity 0.46 0.58 0.35 0.58
Development Costs 0.64 0.51 0.51 0.26
UX Impact 0.64 0.51 0.51 0.26

Post-normalization, the weighted normalized matrix is calculated by multiplying each rating
element by the weight of its respective criteria:

Table 3.5: Weighted Normalized Decision Matrix

iFrame JavaScript Web Components Routing Distribution
Independent Develop-
ment and Deployment

1.04 1.04 1.04 0.84

Technical Support 0.52 0.52 0.42 0.52
Technical Isolation 0.71 0.89 0.71 0.71
Technical Complexity 0.46 0.58 0.35 0.58
Development Costs 1.6 1.28 1.28 0.65
UX Impact 1.28 1.02 1.02 0.52

In order to obtain the distance between alternatives, the next logical course of action it
to determine the positive ideal and the negative ideal solutions. The ideal solution set is
comprised of the maximum values for each criteria, while the negative ideal solution consists
of the minimum values.

3.2. Value 31

• Ideal Solution = 1.04, 0.52, 0.89, 0.58, 1.6, 1.28

• Negative Ideal Solution = 0.84, 0.42, 0.71, 0.35, 0.65, 0.52

For the fourth step, the goal is to define the separation from the ideal solution S+i .

The result of the following formula application is present at the table 3.6.

S+i = Σj=1n(vi j − v2i j+)1/2 (3.2)

Table 3.6: Separation from the Ideal Solution

iFrame JavaScript Web Components Routing Distribution
Independent Develop-
ment and Deployment

0.00 0.00 0.00 0.19

Technical Support 0.00 0.0 0.01 0.00
Technical Isolation 0.00 0.03 0.00 0.00
Technical Complexity 0.01 0.00 0.05 0.00
Development Costs 0.00 0.10 0.10 0.90
UX Impact 0.00 0.07 0.07 0.58

The next step regards the separation from the negative ideal solution. The following formula
produces the result that can be observed on table 3.7.

S−i = Σj=1n(vi j − v2i j−)1/2 (3.3)

Table 3.7: Separation from the Negative Ideal Solution

iFrame JavaScript Web Components Routing Distribution
Independent Develop-
ment and Deployment

0.04 0.04 0.04 0.00

Technical Support 0.01 0.01 0.00 0.01
Technical Isolation 0.00 0.03 0.00 0.00
Technical Complexity 0.01 0.05 0.00 0.05
Development Costs 0.90 0.40 0.40 0.00
UX Impact 0.58 0.25 0.25 0.00

Next step is the calculation of the relative closeness to the positive ideal solution. This
process involves the application of the following formula:

Ci =
S−i

(S+i + S−i)
(3.4)

Upon application, this is the resulting table (3.8):

32 Chapter 3. Value Analysis

Table 3.8: Relative Closeness to Ideal Solution

iFrame JavaScript Web Components Routing Distribution
S+i 0.01 0.20 0.23 1.67

S−i 1.54 0.78 0.69 0.06

S+i + S−i 1.55 0.98 0.92 1.73

S−i
(S+i + S−i)

0.99 0.80 0.75 0.03

In accordance to the relative closeness, one can conclude that the two best alternatives
based on the proposed criteria are the iFrame (0.99) and JavaScript (0.80) as their results
are the ones closest to the positive ideal solution, with Web Components following as close
third contender.

3.3 Summary

Upon an initial presentation of the proposed solution through the application of the inno-
vation process model, the opportunity’s genesis was judged and its motivations explained,
subsequently contextualizing it against current development practices.

Afterwards, although in a somewhat unorthodox fashion given the nature of the idea (no
specific product or service listed to outside customers), the value and value proposition were
properly detailed to synthesize its merit and lay out the means through which the user can
capitalize on it.

With the range of alternative solutions that can be achieved with a Micro Frontend ar-
chitecture, a selection was required to determine which approach was deemed the best to
follow. As such, after conducting research on the various integration options, a multi-criteria
decision model was applied over them to facilitate the choice in question.

The resulting conclusion fell in accordance to the advantages and disadvantages evidenced
when researching the approaches, as it highlighted iFrame and JavaScript as the ideal so-
lutions, setting the scene for which type of integration will be developed in the proof of
concept application.

33

Chapter 4

Solution Description

This chapter presents a detailed description of the design for the proposed solutions in this
dissertation regarding the development of web applications through a micro frontend-based
approach.

Since the main goal is to assess the validity and worth of aforementioned architecture, an
arbitrary web application subject matter was selected to contextualize the proof-of-concept
applications and their functionalities. For this sole purpose, an administration dashboard
was chosen for a hypothetical ecommerce application.

Initially, an analysis of the solution’s requirement artifacts and its domain concepts is pre-
sented. Soon after, both the monolithic and Micro Frontend-based architectures are shown,
finally followed by the use cases realizations.

4.1 Requirement Analysis

This section focuses on the solution’s functional requirements, domain concepts and non-
functional requirements.

4.1.1 Functional Requirements

Functional requirements define the system’s basic functions which can vary when faced with
a specific set of inputs or outputs. (Fulton & Vandermolen, 2014)

Each functional requirement is depicted as a Use Case (UC) and can be viewed in Figure
4.1 which consists of a use case diagram:

34 Chapter 4. Solution Description

UC1: Authentication

UC2: Browse Product Catalog

UC3: Add ProductUC4: Update Product

UC5: Delete Product

UC6: View Order Report

Administrator

Visual Paradigm Standard(Instituto Superior de Engenharia do Porto)

Figure 4.1: Use Case Diagram

Use Case 1: Authentication

As an Administrator, I want to be able to sign in by using my credentials to access the
system’s features.

Use Case 2: Browse Product Catalog

As an Administrator, I want to be able to browse the product catalog.

Use Case 3: Add Product

As an Administrator, I want to be able to add a product to the catalog.

Use Case 4: Update Product

As an Administrator, I want to be able to update an existing product.

Use Case 5: Delete Product

As an Administrator, I want to be able to delete a product from the catalog.

Use Case 6: View Billing Report

As an Administrator, I want to be able to view a billing report of the product sales made.

To allow a fair comparison between solutions, every proof-of-concept application will support
the same set of functional requirements.

4.1.2 Domain Concepts

To provide a better understanding of the functional requirements previously enumerated in
section 4.1.1, Figure 4.2 describes what concepts make up the system and how they interact
through a Domain Model.

4.1. Requirement Analysis 35

Administrator

Order Report
Order Product

Customer Product
Category

Product
Catalog

1

1

1

1..*

1

1..*

1..*1

1..*

1

1

1..*

1

1..*

Has v

Of >

Performs ^ Has v

Is related to >

Consults v

Manages >
Visual Paradigm Standard(Instituto Superior de Engenharia do Porto)

Figure 4.2: Domain Model

As formerly stated, the application’s functionalities will revolve around a couple of admin-
istration features for a hypothetical ecommerce application. As such, some of the entities
that make up the domain model, namely Customer and Order, will be pre-populated to
mimic the usage of said ecommerce application.

Regarding the remaining concepts displayed, the main actor of the system will be an Admin-
istrator who is able to manage the catalog, which is in turn made up of products and their
respective categories. The Administrator can also view the billing reports that provide an
overview of the system’s orders.

4.1.3 Non-Functional Requirements

Besides the functions a system should perform, oftentimes there are other constraints it
must abide to. These are referred to as non-functional requirements.

The system’s non-functional requirements are analyzed by means of the FURPS+ model
which extends its predecessor, the FURPS model. The latter is composed by the following
quality factors: functionality, usability, reliability, performance, supportability. The plus vari-
ant builds upon these factors by also bringing the specification of design, implementation,
interface, and physical constraints. (Eeles, 2005)

Usability

The usability factor focuses on user interface requirements, concerning itself with charac-
teristics such as aesthetics and consistency (Eeles, 2005).

Since a micro frontends-based architecture is composed by independent components with the
possibility of each being developed with its specific technological stack, ensuring a consistent
user interface can prove challenging. As such, the proof-of-concept applications should
provide a seamless integration between their respective components to deliver an experience
similar to a frontend monolith.

36 Chapter 4. Solution Description

Reliability

The reliability factor tackles concerns surrounding the system’s availability, accuracy and
ability to recover from failure (Eeles, 2005).

The reliability requirements for this project fall in line with standard software development
guidelines as the system should keep itself available and functional even when faced with an
error by way of handling said error. In the event of a catastrophic failure, the system should
be capable of creating new instances to ensure utter availability.

Performance

The performance factor focuses on characteristics like response and recovery time, through-
put and startup and shutdown time (Eeles, 2005).

As detailed in section 2.4.2, one of the disadvantages Micro Frontends present revolves
around the web application’s dependencies and the size of the payloads requested by the
browser when using them. This inherently affects the system’s performance when considering
what response times would be acceptable for its every-day users. As such, the system should
mitigate this issue and achieve similar or better load times to what a frontend monolith
provides.

Supportability

The supportability factor concerns itself with testability, adaptability, maintainability, com-
patibility, configurability, and scalability (Eeles, 2005).

For the proposed micro frontends architecture, it should be feasible for each of the system’s
components to be independently tested and maintained. Moreover, one should be able to
replace a micro frontend without affecting the remaining components.

Design Constraints

As its name would indicate, a design constraint addresses restrictions surrounding the avail-
able options when designing a system (Eeles, 2005). For this project, the design constraints
are as follows:

1. The system should be composed by multiple micro frontends, each with its dedicated
business sub-domain.

2. Each of the system’s micro frontends should have its respective microservice to address
its needs.

Implementation Constraints

Implementation constraints limit the system’s coding or construction (Eeles, 2005). This
system’s implementation constraints are mainly consequences of its developer’s experience
as well as the technology stack used by the company in which it was developed. They are
as follows:

1. The micro frontends should be developed using Angular and React.

2. The micro services should be developed using .NET Core.

4.2. Solution Design 37

3. The applications should run in containers, more specifically, Docker containers.

4.2 Solution Design

This section details the solution design for both the monolithic and Micro Frontends-based
approach.

4.2.1 Architecture

To better understand what changes between the proposed approach and the standard mono-
lithic one, it is best to first introduce the latter by providing an overview of its design.

Client

<<component>>
Ecommerce Administration

Server

<<component>>
API Gateway

<<component>>
Orders Microservice

<<component>>
Products Microservice

<<component>>
Authentication Microservice

Storage

<<component>>
Authentication Database

<<component>>
Products Database

<<component>>
Orders Database

DbClientDbClientDbClient

HTTP

HTTP HTTP

HTTP

Powered ByVisual Paradigm Community Edition

Figure 4.3: Monolithic Architecture - Component Diagram

As seen in Figure 4.3, only a single frontend component exists which consumes all the
system’s microservices through an API Gateway. This means the solution benefits from the
advantages brought by a microservice-based backend but is unable to transpose them to its
frontend, raising issues surrounding its scalability, deployment, among others which will be
detailed later in one of the document’s sections.

Now shifting the focus towards the alternative, Figure 4.4 presents the architectural proposal
based on micro frontends.

38 Chapter 4. Solution Description

Client

<<component>>
App Shell

Server

<<component>>
API Gateway

<<component>>
Orders Microservice

<<component>>
Products Microservice

<<component>>
Authentication Microservice

Storage

<<component>>
Authentication Database

<<component>>
Products Database

<<component>>
Orders Database

<<component>>
Authentication Micro Frontend

<<component>>
Products Micro Frontend

<<component>>
Orders Micro Frontend

DbClientDbClientDbClient

HTTP

HTTP HTTP

HTTP

Powered ByVisual Paradigm Community Edition

Figure 4.4: Micro Frontend Architecture - Component Diagram

As a result of the Value Analysis performed in section 3.2, the proof-of-concept application
will be built by leveraging iFrames as components, orchestrating said components at runtime
by using client-side composition.

The App Shell component is used as a container, being void of any responsibility aside
from routing and displaying a navigation menu. This will reduce dependencies and ensure
each micro frontend’s independence while also mounting/unmounting them according to
the user’s needs to keep browser memory usage at a minimum. By making the App Shell
devoid of business logic, the risk of a critical failure occurring is mitigated, which is of great
importance given its job as the system’s orchestrator.

Since all system calls must be properly authenticated, the Authentication micro frontend
will make a sign-in screen readily available, allowing administrators to start a new session
and access the solution’s features. It is then possible to check and maintain the product
list through the Product micro frontend and visualize reports through the Orders micro
frontend which will be made available whenever the user navigates to the specific pages they
are displayed in via the routing capabilities of the App Shell.

To access server data, each micro frontend will communicate with an API Gateway that
is responsible for redirecting requests to their intended microservice, while also ensuring
they are properly authenticated. The microservices will then make use of their respective
databases to fetch whatever data is necessary.

4.2. Solution Design 39

By designing the system this way, we can ensure that a micro frontend focuses on its
specific business sub-domain and does not conflict with any of the other existing ones.
This aspect when combined with a microservice-based backend allows for each feature to
be completely independent, providing better scalability. This independence results in also
not having restrictions regarding which programming language or framework to use when
developing.

Each micro frontend can also have their own continuous delivery pipeline, responsible for
building, testing and deploying it.

4.2.2 Use Cases Realizations

This section presents the use cases depicted in section 4.1.1 by way of use cases realiza-
tions. Each use case will have a sequence diagram that displays its participating objects and
respective interactions (Jacobson et al., 2011).

Authentication

For an administrator to have access to the system’s features, he must first sign in into
the application to become authenticated. Figure 4.5 represents the sequence diagram that
describes this process.

The unauthenticated administrator begins by navigating to the Authentication Micro Fron-
tend and filling out the sign in form with his respective credentials. From there, an au-
thentication request is sent to the API Gateway which will forward it to the respective
Authentication microservice instance. The user’s credentials are validated and an access
token is generated.

The bottom half of the sequence diagram displays how a resource request is handled when
a token is present. The API Gateway will initially redirect the request towards the Authen-
tication microservice to have the token verified and confirm whether the user is authorized
to access the requested resource. Lack of authorization will result in an error message while
a successful scenario will have the API Gateway continue the request by contacting the
intended resource.

40 Chapter 4. Solution Description

alt

[if 200 reponse]

[if 401/403 response]

Authentication Micro Frontend
App Shell

Authentication Microservice

Resource UsersRepositoryAuthenticationServiceAuthenticationControllerAPIGatewayAutheticationServiceAutheticationComponent

Administrator

3.3: Unauthorized or Forbidden

3.1.3.2:
Resource
Response

3.1.3.1: Process Request

3.1.3:
Resource
Request

3.1.1.1.1.2: result

3.1.1.1.1.1: Verify(<basic>)

3.1.1.1.2: Principal
+ Scope + Policy

3.1.1.1.1: Verify
token and make policy

3.1.1.2: authorization response

3.1.1.1: GET
/authentication/authorize

3.1.2: 401 or 403 reponse

3.1.1: Resource Request

3.2: Unauthorized
or Forbidden

3.1: Resource Request

3.1.4: Resource Request Response

3: Asks to access Resource

2.1.1.1.1.2: validation result

2.1.1.1.1.1:
ValidateCredentials

(credentials)

2.1.1.1.2:
authentication

result

2.1.1.1.1:
Authenticate(credentials)

2.1.1.2: authentication result

2.1.2: Authentication Response

2.1.1.1: GET /authentication/token

2.1.1: Auhentication
request

2.2: Authentication
Response

2.1:
Login(username:

password)

2.3: Authentication Response

2: Inserts credentials on page

1.2: Login Page
1.3: Shows login page and

asks for credentials

1.1: Login()
1: Wants to login

Visual Paradigm Standard(Instituto Superior de Engenharia do Porto)

Figure 4.5: Authentication Sequence Diagram

Create, Read, Update and Delete Product

After successfully signing in, the authenticated administrator can now browse and manage
the system’s product catalog by means of the Products micro frontend.

Considering that use cases number 2 through 5 consist in the four basic operations of
persistent storage (create, read, update and delete or CRUD for short) and utilize the same
Micro Frontend and microservice as a result of the business sub-domain they share, only a
single sequence diagram will be presented.

As such, Figure 4.6 illustrates how the system’s components interact to retrieve the product
catalog and display it to the user.

4.2. Solution Design 41

Product Micro Frontend

AppShell
Product Microservice

:
ProductRepository

: ProductService:
ProductController

: APIGateway: ProductService:
ProductList
Component

Administrator

1.1.1.2: products
1.1.2: Returns list of

products

1.1.1.1.1.2: products

1.1.1.1.1.1: FindAll()

1.1.1.1.2: products

1.1.1.1.1: GetProducts()1.1.1.1: GET /products

1.1.1: Get Products

1.2: products

1.1: GetProducts()

1.3: Presents list of
products

1: Asks to browse the
catalog

Visual Paradigm Standard(Instituto Superior de Engenharia do Porto)

Figure 4.6: Browse Product Catalog Sequence Diagram

The use case is set off when the administrator first chooses to navigate towards the product
catalog, which in turn causes the application shell to load the Products micro frontend.

From there, the component communicates with its dedicated service that triggers a request
to the API Gateway. The gateway is then responsible for redirecting the request to its
respective microservice while ensuring it is properly authenticated.

After making its way through the backend pipeline, a response is generated and falls all the
way back to the original frontend component that finally displays it to the user.

View Order Report

The final use case consists in the visualization of a report of the system’s orders.

Order Microservice
AppShell

Order Micro Frontend
OrderRepositoryOrderServiceOrderControllerAPIGatewayOrderServi

ce
OrderComponent

Administrator

1.1.2: Returns list of
orders for the

requested period of
time

1.1.1.1.1.2: orders

1.1.1.1.1.1:
GetOrdersByDate

(startDate,
endDate)

1.1.1.1.2: orders

1.1.1.1.1:
GetOrdersByDate

(startDate,
endDate)

1.1.1.2: orders

1.1.1.1: GET
/orders?startDate=7Set
2020&endDate=7Oct2

020

1.2: orders
1.3: Presents list of orders for the

requested period of time

1.1.1: Get Orders
By Date

1.1:
GetOrders(startDate,

endDate)

1: Asks for orders report
from stratDate to endDate

Visual Paradigm Standard(Instituto Superior de Engenharia do Porto)

Figure 4.7: View Order Report Sequence Diagram

As presented in Figure 4.7, the authenticated administrator starts by triggering the loading
process for the Orders Micro Frontend by navigating to the reports page through the App
Shell.

42 Chapter 4. Solution Description

After loading, the component launches a request to the API Gateway that then redirects it
to its intended destination, the Orders microservice. The information is then retrieved from
the service’s proprietary database and returned to the Micro Frontend that triggered the
request which finally displays it.

4.3 Summary

In summary, the Solution Description chapter presents the Design for both systems that are
up for comparison, monolithic and Micro Frontends.

An initial decision regarding the proof of concept’s subject matter was made, resulting in
the design of an ecommerce administration dashboard. Afterwards, an enumeration of the
functional and non-functional requirements can be found in section 4.1.1 and section 4.1.3,
respectively.

Regarding system architecture, component diagrams were presented for each solution in
Figure 4.3 for the monolithic approach, and Figure 4.4 for the Micro Frontends.

Finally, section 4.2.2 presents the use cases realizations, providing a textual description and
a sequence diagram for each existing one.

43

Chapter 5

Solution Implementation

This chapter details the actual implementation of both the proof of concept application and
its monolithic counterpart. As a result of the Value Analysis performed in chapter 3.2, the
Micro Frontend-based system leverages iframes as components to provide a clear separation
of each business sub-domain.

5.1 Technology Stack

This section presents what technologies were used to build both the Monolithic solution
and the Micro Frontends one. Since the goal of this dissertation is to assess the value of
Micro Frontends while accepting microservices as a baseline for backend development, both
solutions will make use of the same microservices, which will be initially presented.

5.1.1 Microservices

There are three separate microservices in the designed system to accommodate the use cases
described in section 4.2.2, namely the Authentication, Products and Orders microservices.

Each was built using .NET Core by no specific reason other than the author’s experience
with said framework. It’s a very capable framework that provides a fast and easy way of
creating RESTful services which are very lightweight and commonly chosen to create APIs
for standard web applications (Pautasso et al., 2008).

The Authentication microservice, as the name would indicate, is responsible for managing
authentication requests and generating the access tokens that enable the administrator to
use the system’s resources.

Up next is the Products microservice which specializes in its homonymous business sub-
domain, allowing authenticated administrators to view or manage the system’s entries.

Last but not least, the Orders microservice is responsible for providing all attainable infor-
mation surrounding the system’s orders to the administrator.

5.1.2 Monolithic

The monolithic solution was built as a standard Single-Page Application (SPA), using Angular
as its foundation.

Given that this dissertation focuses more on the architectural standpoint rather than what
programming language is best for the development of web applications, the decision was
solely based on the author’s experience and proficiency with the Angular framework.

44 Chapter 5. Solution Implementation

To ensure user interface consistency, an Angular user interface component library was used,
more specifically, PrimeNG.

5.1.3 Micro Frontends

Even though all the Micro Frontends could be developed using the same frontend technology
stack, a decision was made to diversify which frameworks were used to display one of the
advantages this architectural approach provides, the ability to make case by case decisions
per component.

In a real-world scenarios, companies might choose to have their teams work with one or
multiple frameworks, but this decision proves that if a any of the technologies used becomes
obsolete or a better, more viable one shows up, components can be individually replaced
without affecting the overall solution.

Bearing this in mind, the following table 5.1 presents what framework was used for each
Micro Frontend:

Table 5.1: Micro Frontend Technology Stack

Micro Frontend Framework
Authentication Angular
Products Angular
Orders React

To try and address one of the concerns surrounding the usage of Micro Frontends in web
applications, more specifically user interface consistency, the same user interface component
library supplier was used in every component, Prime. It provides a broad collection of user
interface elements for both Angular (PrimeNG) and React (PrimeReact) applications that
are visually identical.

Finally, the App Shell component, which is responsible for orchestrating and loading/unload-
ing the Micro Frontends was also built with Angular.

5.2 Monolithic Implementation

For the monolithic web application, firstly a new Angular project was created by means of
the ng new command made available by its dedicated command-line interface (CLI):

Figure 5.1: ng new command

As displayed in Figure 5.1, some of the supported parameters for this command consist in
whether or not the application will use angular routing and what stylesheet format will be
used. By choosing to use angular routing, a dedicated NgModule is created where one can
configure the application’s routes.

Modules are often used to help organize the app and keep things compartmentalized, in this
case ensuring all routing information is kept in the same place.

5.2. Monolithic Implementation 45

For the stylesheet format, SCSS was chosen as it encourages the use of proper nesting rules
and has a clearer syntax (Lorraine, 2011).

5.2.1 Initial Application Setup

After creating the project, a basic dashboard layout was created by initially generating cross-
app components that represent its sidebar, navigation bar, and footer, displayed in Figure
5.2 and tagged with number 1, 2 and 3 respectively.

Figure 5.2: Dashboard Layout - Sidebar, Navigation bar and Footer

Now that the application’s general layout is set up, it is time to create the necessary com-
ponents to carry out its functionalities.

Since the application only supports simplistic functionalities, it’s unnecessary to have small
components to promote re-usability as they would serve no purpose. Instead, the component
per page approach was chosen which, as the name indicates, consists in having a single
Angular component that is responsible for the entirety of the page’s layout/functionalities.

The following table 5.2 presents what components were created, each accompanied by a
brief description of their respective use:

Table 5.2: Monolithic Component per Page

Component Description
Dashboard Act as a home page and display navigation cards for other pages
Product List Display product catalog and allow an administrator to manage it
Billing Display the system’s orders and their contents
Sign In Allow the administrator to sign in and access the system

5.2.2 Routing

With the components created, the next step is to configure the application’s routing module
so that each matches with a specific route when using the website:

46 Chapter 5. Solution Implementation

Figure 5.3: Route Configuration

By setting up the configuration illustrated in Figure 5.3, the application is now functional
from a navigation standpoint, only requiring the implementation of the components men-
tioned in Table 5.2 to be considered complete.

Given that the dashboard page only presents a couple of cards that facilitate user navigation,
no additional detail will be provided on that component.

5.2.3 Product List

As stated in Table 5.2, the Product List component should allow the administrator to
visualize and maintain the application’s product catalog.

As such, Figure 5.4 displays the resulting layout whenever the user lands on this page.

Figure 5.4: Product Catalog

The products are presented through a table which also contains action buttons that make
it possible for the administrator to add, edit and remove entries.

5.2.4 Billing

In order for the Billing component to display the orders made in the system, it also leverages
a table, in this case with the option to expand each order to get more details surrounding
what products were ordered.

Figure 5.5 displays the final layout attained.

5.3. Micro Frontends Implementation 47

Figure 5.5: Order Report

5.2.5 Sign In

The final page is the one responsible for letting the administrator sign in and access the
system’s features, the Sign In component.

It displays a small form that requests the user’s username and password to then generate an
access token. Since token storage is not a main point of concern given this dissertation’s
subject matter, it was opted to save the token using the browser’s local storage. That same
token is then used in posterior requests to system resources and will be validated by the
Authentication Microservice.

5.3 Micro Frontends Implementation

Although the Micro Frontends developed for the solution that is presented in this dissertation
were all developed by the author, an initial distribution of tasks into hypothetical teams was
made to simulate a real world environment where this architectural approach is meant to be
applied.

5.3.1 Team Organization

Table 5.3 presents the proposed team organization for the system’s features:

Table 5.3: Team Organization

Team Task Description
Core Develop the App Shell component and the API Gateway
Product Develop the Product Micro Frontend, Product Microservice and

Product Database
Billing Develop the Order Micro Frontend, Order Microservice and Or-

der Database
Authentication Develop the Authentication Micro Frontend, Authentication Mi-

croservice and Authentication Database

48 Chapter 5. Solution Implementation

The reasoning behind the aforementioned task separation is to have vertical teams that
address a specific business sub-domain. This provides a very independent development
environment and minimizes outside interference.

5.3.2 App Shell

Starting off with the App Shell Micro Frontend, as stated in section 5.1.3, this component
was built with Angular. As such, in similar fashion to the monolithic web application, a new
Angular project was created through its CLI by using the ng new command.

With the new and empty project now available, empty pages were created for each Micro
Frontend through the ng generate component command, more specifically, a component
for the Product Catalog, Order Report and Authentication.

A Dashboard component was also created simply to provide a landing page after logging in
but its simplicity does not justify turning it into a separate Micro Frontend.

Now with the necessary pages created, the appropriate routing was put in place to allow the
user to navigate inside the application.

Figure 5.6: Routing Configuration - App Shell

The next step is to prepare the Angular components to display the Micro Frontends through
iframes.

This process is almost identical for every page as each only requires a single iframe for the
current solution. For demonstration purposes, the Product List will be used as an example.

Figure 5.7: iFrame Preparation - App Shell

Figure 5.7 displays the HTML template for the Product List component. The initial div
element is of little to no importance as it is a simple header for the page that displays its
title. Below it lies the iframe that is used to embed the Micro Frontend and its encompassing
div.

One of the concerns with the usage of iframes is their sizing, more specifically, their height.
In past instances this would bring about issues but, thankfully, that is not longer the case
as one can circumvent said issues with carefully placed CSS that make the iframe adjust to
the rendered content.

5.3. Micro Frontends Implementation 49

Figure 5.8: Product Catalog Layout - App Shell

The resulting page from the template implemented is illustrated in Figure 5.8 where the
Product Catalog component is delimited by the yellow lines, while the iframe section is
represented in blue.

This only leaves a single step to be performed in the App Shell to display the Micro Frontend’s
content, designate the iframe source.

This is easily achieved through Angular’s environment configuration as it allows one to define
different named build configurations per environment (e.g. development, production).

For this instance, two separate environment configurations were made, one for local testing
and another to mimic a production stage. Figure 5.9 shows the local configuration:

Figure 5.9: Environment Configuration

The production property indicates whether or not the given configuration is meant for the
production environment. When set to true, said configuration is used when running the
application with the –prod flag or with the –configuration production option.

With our configuration put in place and dynamically changing according to the application’s
environment, it is now possible to use the Micro Frontend addresses it possesses as the
iframe sources. To do so, one simply needs to import the default environment configuration
and make use of its properties, as displayed in Figure 5.10:

50 Chapter 5. Solution Implementation

Figure 5.10: Setup iFrame source from environment configuration

For testing purposes, one can create an empty angular project and locally run it in the port
specified by the environment configuration (port 4500).

If both apps (App Shell and newly created Angular App) are up and running, it is possible
to see the iframe content being displayed inside the App Shell, as demonstrated in Figure
5.11:

Figure 5.11: App Shell displaying Micro Frontend via iFrame

Now that the App Shell is functional and ready to display the iframes, changes to the actual
Micro Frontend will be immediately reflected here without the need to make any changes
to the App Shell.

5.3.3 Product Micro Frontend

As stated in table 5.1, the Products Micro Frontend will be built using the Angular framework.
Therefore, much like the App Shell and the monolithic web application, the starting point is
to create a new Angular project.

After the initial setup, it’s time to tackle the actual implementation of the Product Catalog
and its features.

Since Micro Frontends are not meant to be identifiable to the user, the goal is to achieve an
exact match to the layout presented in sub section 5.2.3 for the monolithic web application.

By using the same user interface component library, it’s quite simple to replicate the exact
same layout since the components both use are one and the same.

5.3. Micro Frontends Implementation 51

Figure 5.12: Product Micro Frontend

Figure 5.12 shows the final layout for viewing the Product Catalog.

Every action one can execute surrounding the Product entity is carried out through the
action buttons presented in the table which trigger the following window to show up:

Figure 5.13: Update Product - Product Micro Frontend

All of the Micro Frontends features were implemented as described in section 4.2.2, requiring
no outside interventions from other modules of the system.

52 Chapter 5. Solution Implementation

5.3.4 Orders Micro Frontend

As previously stated in section 5.1.3, the Orders Micro Frontend will be built with the React
framework to demonstrate one the architecture’s strengths, having a system made up of
components implemented with different technology stacks.

With that in mind, to start off the development of our React Micro Frontend, a new project
was created. To do so, the Create React App (CRA) tool was used since it is an officially
supported way to create a React single-page application (McCurdy, 2020), only requiring a
Node installation to do so.

To create the app, the tool’s npx create-react-app command was used. This command
also supports starting a new app from a template by means of the –template parameter.
This option was used since the desired outcome was a TypeScript app. With the app now
created, it’s time to develop its features.

As with the Product Micro Frontend, the goal is to achieve an indistinguishable look from the
monolithic app which, given the circumstances regarding the usage of a different framework
(React instead of Angular), could become troublesome. Thankfully, by using the React
counterpart (PrimeReact) of the user interface component library used in the Angular Micro
Frontend (PrimeNg) the task becomes significantly simpler.

Figure 5.14: Order Micro Frontend

Figure 5.14 shows the Micro Frontend as a standalone app which ended up identical to
the monolithic Orders page. As was the case with the Products Micro Frontend, this
component and its respective microservice was independently developed from start to finish,
totally lacking of interference from any of the hypothetical teams.

5.3.5 Authentication Micro Frontend

The last of the Micro Frontends for the proof of concept application is the Authentication
component. The decision for this item was to create a new Angular project, with an identical
setup to the Products Micro Frontend.

5.3. Micro Frontends Implementation 53

Layout-wise, this is the most straightforward component of the system since it consists of
simple sign-in form made up of a username and password field.

The following figure 5.15 displays the Micro Frontend after implementation:

Figure 5.15: Authentication Micro Frontend

Given the nature of iframes and their isolation DOM wise, the token generated after a user
sign in needs to be propagated to the App Shell component for use in future requests. To do
so, the application makes use of the Window object, more specifically, its postMessage()
method. It dispatches a MessageEvent from the Authentication Micro Frontend to the
App Shell application, allowing posterior storage by the latter.

5.3.6 Error Handling

Considering that the solution is no longer a traditional frontend monolith, but instead a
system made up by several pieces (the Micro Frontends), what happens when one of the
system’s components can’t be loaded? After all, connectivity issues may cause the iframe
request to falter or the respective Micro Frontend could be down for maintenance.

To address this issue, the App Shell possesses a validation request that is triggered whenever
one of the Micro Frontends is requested to load. It consists of a simple Ajax request which
enables one to bind success and error handlers, allowing for proper management of the
situation per the response given.

As stated before, there are two instances where an iframe may fail to load, one of which is
expected and caused by the development team, maintenance. In this scenario, the application
must display a warning for the end user.

54 Chapter 5. Solution Implementation

Figure 5.16: Maintenance Warning

Figure 5.16 presents one example for a warning message, triggered by leveraging the afore-
mentioned Ajax request, more specifically when it fails.

Aside from availability issues, bugs are always a possibility in any system. Application’s often
display the appropriate error messages in the same fashion for the entirety of their systems,
be it through a small notification center, a message toast in one of the screen’s corners,
among others.

Since every iframe has its own DOM, one can either have each Micro Frontend display their
own errors their own way or, have a messaging mechanism that enables cross component
communication, more specifically between the App Shell and its Micro Frontends in this
instance. For the proof of concept, the latter was chosen as it keeps the user experience
consistent all the way through the system by showing eventual errors in a similar fashion.

Figure 5.17: Error Messages - App Shell

Figure 5.17 displays the message toast component that will be used to convey the error
messages to the user, which will appear at the top-right corner of the web browser when
triggered.

5.4 Summary

The first section of the Solution Implementation chapter focuses on the technology stack
used while implementing the solution for both its backend (section 5.1.1) and frontend
components (section 5.1.2 for the monolithic approach and section 5.1.3 for the Micro
Frontends one).

5.4. Summary 55

Afterwards, a step by step description surrounding the setup and implementation of the
monolithic solution is presented which can be used as a comparison reference for the proof
of concept application regarding the final product attained.

Section 5.3 then follows the same explanatory process for the Micro Frontends solution,
albeit with more detail, as it also describes how orchestration by the App Shell was managed,
along with each component’s implementation.

Finally, section 5.3.6 presents how error handling was carried out.

57

Chapter 6

Evaluation

As the name would indicate, the evaluation chapter concerns the description of the process
through which the solution is to be evaluated and analyzed. Firstly, research hypothesis
should be identified, followed by a description of the evaluation methodology and its indica-
tors.

6.1 Hypothesis

A research hypothesis is a clear, quantifiable, and testable predictive statement in regard to
the possible outcome of a scientific research study that’s based on a specific property of a
population (e.g. differences between groups assumed from a particular variable or association
between multiple variables). Research hypotheses specification is one of the most important
steps when planning a scientific quantitative research study (Kalaian & Kasim, 2008).

The main goal of this project is to assess the validity and applicability of a Micro Frontend
architecture in conjunction with the standardized microservices backend in the context of
web application development, as opposed to the traditional monolithic frontend. Moreover,
the project’s final architectural structure should align with the adoption of agile development
methodologies to permit incremental and iterative software design.

6.2 Evaluation Indicators

One of the basic principles of scientific research is that results must be replicable (Castillo,
2013). In order for a hypothesis to be accepted, one must be able to test it. As means of
either corroborating or refuting the proposed hypothesis, evaluation indicators are required,
each of which functions as a pre-defined metric that will be examined in the solution.

In the presented context, the evaluation indicators are as follows:

• Development and Deployment Isolation – evaluate the architectures isolation when
it comes to component development and deployment pipeline. Can teams function
independently?

• Reliability and Testability – evaluate how error prone the architecture is and whether
it mitigates the existence of a single point of failure. Moreover, ease of testability
should also be considered.

• Reusability – assess whether or not each micro frontend is reusable in a timely manner
with a small to none added technical debt.

58 Chapter 6. Evaluation

• User Experience – determine whether user experience is consistent throughout the
multiple micro frontends that compose the web application.

• Performance – evaluate the proof of concept’s performance based on response times
to user input, initial loads, and overall application requests.

• Development Cost – assess the development costs of a web application from design
and orchestration all the way through actual implementation.

6.3 Assessment Methodology

To finalize the evaluation process of a solution, it is important to determine what set of
activities will be carried out to reach a conclusion of the aforementioned indicators towards
the proposition, assessing its validity.

Simulation-based evaluations rely on high level implementations of some or all of the com-
ponents in the software architecture which are then used to evaluate desired indicators
(Mårtensson, 2006). Prototype applications can be executed in the intended context of the
completed system, providing a great comparison to “real-life” web apps.

As such, a proof of concept web application was developed enabling an end-to-end assess-
ment from the design process, all the way through to the actual implementation. Moreover,
this evaluation method will also serve as an indicator on whether the architecture is suited
for agile development methodologies.

6.4 Results

This section presents the results attained through the analysis of the proof of concept
application in regards to the evaluation indicators enumerated in section 6.2.

6.4.1 Development and Deployment Isolation

By utilizing the Micro Frontends proof of concept application developed and its monolithic
counterpart, it is now possible to check how both architectures compare regarding their
development and deployment processes.

The Micro Frontends-based system is, by definition, composed by several separate code-
bases, albeit much smaller than the single codebase for the monolithic solution. This allowed
for careful separation of each component according to a specific business sub-domain, more
specifically, Authentication, Products and Orders.

As a result, the development process for a Micro Frontend was completely independent,
as each hypothetical team focused solely on its application without worrying about the
remaining ones. This enabled a case by case decision making process, illustrated by the
freedom of choice regarding what technology stack to use.

This independence continues over from app development to its deployment, where each
Micro Frontend has its own pipeline, responsible for testing and deploying it.

On the other hand, the monolithic solution aggregates the entirety of the solution’s frontend
in a single codebase which has to be deployed as a whole. This limits the system from a con-
tinuous deployment standpoint, as every single change requires building and deploying the

6.4. Results 59

entire thing. The Micro Frontends proof of concept contemplates per-component deploy-
ments and employs a maintenance check that warns the user in case one of its components
is down for any particular reason. This way, the system can remain available while one of
its parts is updated.

It should be mentioned that cross-team communication is still encouraged and necessary in
the project’s genesis as the App Shell component requires some basic information, namely
hosting data, to orchestrate and setup the solution.

6.4.2 Reliability and Testability

System reliability is a common goal for most solutions, typically measured by assessing how
error prone it is, where said errors can occur and what impact they have in the overall system.

Given the nature of a monolithic application, a critical error that failed to be considered and
dealt with is bound to affect the entire application. This makes the frontend application a
single point of failure, as the aforementioned scenarios make the system unusable.

On the other hand, the Micro Frontend proof of concept reduces this risk, although it is
not able to completely extinguish it. Since each component is its own application that is
then displayed through an iframe and, given an iframe’s innate isolation capabilities, critical
failures are not propagated to the App Shell. This means that when an uncontrolled error
occurs in one of the Micro Frontends, only said element will fail, keeping the rest of system
still operational.

The reason why it was previously mentioned that this does not completely remove the single
point of failure issue, is due to the App Shell. As the solution’s orchestrator, responsible for
loading/unloading each component, critical failures in the App Shell will still cause the entire
system to go down. The risk is, however, somewhat reduced, as the App Shell is devoid of
any responsibility other than routing and displaying system messages (e.g. errors).

As far as testability goes, the metric used to evaluate this indicator was the cyclomatic com-
plexity of the applications. It is a quantitative measure of the number of linearly independent
paths through a program’s source code (Watson & McCabe, 1996), often associated with
the number of tests cases required for full test coverage.

To obtain these values for both the monolithic codebase and the Micro Frontends, Sonar-
Qube was used.

Figure 6.1: Monolithic Cy-
clomatic Complexity

Figure 6.2: Products Mi-
cro Frontend Cyclomatic

Complexity

60 Chapter 6. Evaluation

Figure 6.1 and Figure 6.2 present the cyclomatic complexity values for the monolithic (163)
and Product Micro Frontend (49). The remaining Micro Frontends for Authentication and
Orders scored 52 and 38, respectively.

These results show that, by splitting the solution into smaller components, the resulting
components become easier to test as each focuses on their specific business sub-domain
and supports fewer features. Although this leads to the expected conclusion that Micro
Frontends are easier to test than a monolithic application given since each can be tested in
isolation, one issue arises.

Now that the application dynamically loads content, trying to test the system as whole and
simulate real-world usage can become more complicated, especially when considering an
iframe’s isolation properties. To circumvent this problem, tools like Cypress or Selenium can
be used, as they are agnostic to the project’s implementation details.

6.4.3 Reusability

When assessing the reusability aspect of both developed solutions (monolithic and micro
frontends), one focuses on whether any of the developments could be used for other systems
without the need to pick and choose specific blocks of code or any given feature, but instead,
have a given component exported to a separate solution and becoming fully functional with
minimal configuration changes.

While the monolithic solution presents no value in this matter as it is composed by a single
codebase, the same cannot be said for the Micro Frontends proof of concept.

A valid example for a component that could easily be reused in other applications is the
Authentication one, as it is a standard feature most systems require. By cloning both
projects that make up the Micro Frontend and microservice and then performing any required
configuration changes (e.g. what authentication provider is used), one can have a fully
functional authentication flow in a timely manner.

This indicator would be most valuable for companies that specialize in the development of
a given type of application (e.g. ecommerce apps), as the chances of having reusable Micro
Frontends would inherently be higher.

6.4.4 User Experience

Although a Micro Frontends architectural approach splits the application into smaller pieces,
the resulting product should still have the look and feel of a traditional web application to
the end user.

By having teams tackle separate components and using different technology stacks, it’s
always a concern that the final integration between them is not seamless, making them
identifiable when using the system.

To mitigate this issue and provide a compatible user experience throughout the entirety of
the system, the same user interface component library was used as it supported both React
and Angular projects. The same result could be achieved by having styling guidelines put in
place for all teams to follow before starting the development stage.

By comparing the monolithic and Micro Frontends applications, it is possible to visualize
how identical the final products are.

6.4. Results 61

Figure 6.3: Monolithic
Product Catalog

Figure 6.4: Micro Fron-
tend Product Catalog

Figure 6.3 and Figure 6.4 display the product catalog when viewed in the monolithic and
Micro Frontend solutions, respectively. The final products are nearly identical and the actual
usage of the page does not require any additional actions by the user, being completely the
same flow-wise.

By implementing an event-based messaging mechanism between the iframes and the App
Shell, both solutions also present user messages/notifications in the same fashion.

6.4.5 Performance

In respects to performance, Google Lighthouse was used to measure both the solutions’
quality. It is an open-source tool that can be run against any web page, auditing performance
and optimization (Developers, 2021).

It is important to note that reports generated with the tool made no use of the browser’s
cache in order to simulate a user’s initial landing on one of the pages, albeit already authen-
ticated.

Figure 6.5: Monolithic
Lighthouse Performance

Report

Figure 6.6: Micro Fron-
tend Lighthouse Perfor-

mance Report

Figure 6.5 and Figure 6.6 respectively show the performance scores for the monolithic and
Micro Frontend solutions. As the results show, there is a slight drop-off in the overall score
for the Micro Frontend proof of concept, mostly caused by Time to Interactive metric
which, as per the official documentation, dictates the amount of time it takes for the page
to become fully interactive (Developers, 2021).

This difference in results is easily explained by the additional requests required to load the
respective Micro Frontends when landing on a page, as opposed to having everything a
singular application, as is the case with the monolithic solution.

62 Chapter 6. Evaluation

Regarding payload size, the monolithic solution did a total of 22 requests with a combined
transfer size of 945.7 kilobytes (kB), while the Micro Frontends proof of concept app had
30 total requests with a transfer size of 1129.0 kB. This equates to a 19.38% increase.

By having each component be a standalone application that has their own dependencies, it
was expected for the modular approach to have larger payloads requested by the browser,
some of which may even be duplicates, as is the case for the styling sheets used. While
projects get bigger, dependencies must be carefully managed to avoid performance issues
with each Micro Frontend introduced.

It is important to note that employing an external user interface component library brought
about a lot of unwanted style sheets, most ending up being unused in the application. The
usage of proprietary styles would have been more appropriate for this dissertation’s project.

6.4.6 Development Cost

When evaluating development costs associated with a given project, it is important to con-
sider both its design and implementation, as well as future maintenance and developments.

Starting off with the design and implementation, this is a stage where development costs
were higher for the Micro Frontends proof of concept when compared to the monolithic one.
This is a direct consequence of the architectural approach, as the existence of n amount
of components means there are n amount of frontends to design, setup and implement.
There are also more orchestration and governance concerns given the need for a container
application, namely the App Shell in this instance, to put together the entire system as a
whole.

While this seems to declare a clear win for the monolithic solution as far as development
costs go, there is still the matter of future maintenance and developments. In this aspect,
the tables turn in favor of the Micro Frontends architectural approach, as tasks such as bug
fixing become simpler when executed over a smaller, more granular codebases.

Futures additions to the solution can now also become new Micro Frontends to be de-
signed and implemented, as opposed to having an ever-increasing codebase that increases
in complexity as time goes by and the solution grows.

These conclusions show that, development costs-wise, the decision to go with Micro Fron-
tends or a standard frontend monolith will vary according to future prospects and how far
the project is expected to grow.

6.5 Summmary

To properly evaluate the research hypotheses proposed in the beginning of the current chap-
ter, a case study was developed and assessed according to the evaluation indicators listed in
section 6.2.

The first hypothesis regarded the validity and applicability of Micro Frontend-based architec-
tures, when composed with their corresponding microservices, as an alternative to monolithic
frontend development practices.

Upon evaluation, it is possible to conclude that, in regards to the aforementioned hypothesis,
all the evaluation indicators were either partially or completely fulfilled. The solution was
able to provide a similar and consistent user experience to the one provided by its monolithic

6.5. Summmary 63

counterpart while exceeding it in other matters, namely reliability, reusability and testability
(with a small caveat regarding real-world testing). However, it did slightly lag behind it in
terms of performance even though their testing scores were similar.

Finally, the development costs evaluation revealed that both approaches have their pros
and cons, making them a better fit for different scenarios: monolithic frontend for smaller
solutions with fewer growth prospects and Micro Frontends for highly scalable systems.

The second hypothesis assessed the architecture’s merit when it comes to adopting agile
development methodologies. The development and deployment isolation evaluation indica-
tor successfully tests this hypothesis as it revealed that, by having a system decomposed
into smaller, more manageable pieces that can be independently developed and deployed,
it becomes easier to manage an incremental process to develop, deliver and test specific
features.

65

Chapter 7

Conclusion

While architectural styles like microservices have revolutionized the way backend development
is perceived, frontend developers appear to still have a proclivity towards building their apps
through a singular codebase, a monolithic application. This approach to web application
development has several flaws which are described in section 2.2.1.

The main objective of this dissertation was to assess the validity and worth of Micro Fron-
tends as an alternative to the traditional frontend monolith. The concept was simple, take
what was learned with the usage of microservices and apply it to frontend development.
Section 2.4 introduces the concept of Micro Frontends while also presenting its theoretical
advantages and disadvantages.

With a better understanding of the concept and what it provides, research was performed
to evaluate how to employ this architectural style. The research conducted illustrated that
multiple approaches, both technology and composition wise, can be perceived as applicable
and provide respective advantages and disadvantages (section 2.5).

By means of a value analysis and, with the aid of a decision analysis method (namely
TOPSIS), the alternatives were compared in order to arrive at a conclusion on what approach
would be best suited for the proof of concept application (section 3). The resulting decision
was to leverage iframes with client-side composition to build the solution.

Afterwards the Micro Frontends system was designed alongside an equivalent monolithic
application, both tackling the same use cases and utilizing the same microservices. Chap-
ter 4 thoroughly details this process by presenting the requirements, both functional and
non-functional, detailing how the components interact and how the respective system archi-
tectures were plotted out. A Micro Frontend was created per business sub-domain, resulting
in three separate components: Authentication, Products and Orders.

After that, the solutions were implemented according to their design to try and meet all
their requirements.

7.1 Achieved Requirements

As far as what requirements were actually achieved by the final solution, starting off with the
functional ones, all of them were fulfilled. This was the expected outcome since simple fea-
tures were chosen due to the higher degree of importance of the non-functional requirements
that better illustrate how the architecture betters the system.

66 Chapter 7. Conclusion

In that regard and kicking off the with the usability factor, it is safe to conclude that said
requirement was fulfilled as the system provides a nigh identical experience to the monolithic
application, even though it used separate components with different technology stacks.

Now moving towards reliability, this requirement was partially fulfilled given that the system
does handle errors in a compartmentalized way, making it so an untreated error in one of
the Micro Frontends does not cause the entire solution to crash. There is, however, an
issue with catastrophic failures in the App Shell component, as they would cause the whole
system to become unavailable.

Performance-wise, the proof of concept did meet the requirement, partially due to the size of
the application. Like the evaluation performed in section 6.4.5 entails, the Micro Frontends
solution scored similar results to the monolithic one in the performance analysis, while also
illustrating that the former did utilize more network calls to attain its required dependencies,
hence why the requirement can be considered to have been met in this specific scenario
while raising some concerns for bigger, more complex projects.

The proposed design constraints were fulfilled, as the system was composed by multiple
Micro Frontend/microservice combinations, each tackling a specific business sub-domain.
This also made it possible to fulfill the supportability requirement and individually test and
maintain said components.

Lastly, the implementation constraints were respected, given that the microservices were
developed using the suggested technology and then ran in Docker containers, while the
Micro Frontends varied from using Angular and React as their frameworks.

7.2 Contributions

The developed system and its analysis act as a contribution towards the Micro Frontend
architecture subject matter, while focusing primarily on runtime integration (more specifi-
cally, client-side composition) from an orchestration standpoint and leveraging iframes to
dynamically load components.

The Micro Frontends proof of concept solution developed demonstrates how a system like
this can be built while resorting to the usage of Angular and React frontend applications,
providing a step by step description of the process.

A monolithic counterpart of the aforementioned solution was also implemented to help facil-
itate any required comparisons between the design (section 4) and implementation (section
5) processes, as well as evaluating the final products (section 6).

7.3 Challenges and Limitations

Despite being able to meet its requirements, some challenges and limitations still presented
themselves during this case study.

As Micro Frontends are a relatively new concept in the grand scheme of things, the scarce
amount of scientific articles that analyse this topic definitely cripples the research aspect of
this dissertation. While there is an abundance of information surrounding the topic when
resorting to popular search engines, it is mostly a mere introduction to the subject matter
accompanied by some of the assumptions that it entails.

7.4. Future Work 67

Another limitation that presented itself came from the inability to develop the proof of
concept application in a real-world scenario with multiple development teams, having to
have the author emulate this environment by himself. This, in addition to the complexity of
the developed applications, does impair the results obtained in its evaluation.

7.4 Future Work

Given the vast array of possible solutions one could follow to successfully implement a Micro
Frontends architecture, it would be ideal to develop other proof of concept applications using
different methods for a better comparison between the different techniques.

As the concept matures, new alternatives are surely to follow, which would make this ar-
chitecture more robust, easier to achieve and maintain. These should also be targeted for
future work.

To tackle one of the limitations encountered while developing, it would also be a great
addition to the architecture’s merit to have a proof of concept designed and implement in a
real-world environment, with multiple teams working on it.

69

Bibliography

ASIAA, IDIA, & NRAO. (2019). Client-server architecture. https://carta.readthedocs.io/
en/1.0/introduction.html

bit.dev. (2021). Micro-frontends architecture is defined into smaller and simpler units.
https ://docs .bit . dev/docs/workflows/microfrontends#:~ : text=Micro%5C%
2Dfrontends%5C%20architecture%5C%20is%5C%20defined,into%5C%20smaller%
5C%20and%5C%20simpler%5C%20units.

Castillo, M. (2013). The scientific method: A need for something better? American Journal
of Neuroradiology September 2013. http://www.ajnr.org/content/34/9/1669

Developers, G. (2021). Tools for web developers - lighthouse. https://developers.google.
com/web/tools/lighthouse

Eeles, P. (2005). Capturing architectural requirements. https ://web .archive .org/web/
20201112020231/http://www.ibm.com/developerworks/rational/library/4706.
html#N100A7

Fulton, R., & Vandermolen, R. (2014). Airborne electronic hardware design assurance: A
practitioner’s guide to rtca/do-254. https://books.google.pt/books?id=ZQMvDwAAQBAJ&
pg=PA89&redir_esc=y#v=onepage&q&f=false

Geers, M. (2020). Micro frontends in action. https://livebook.manning.com/book/micro-
frontends-in-action/meap-version-3/v-3/

Gnatyk, R. (2018). Should you use a monolithic architecture? Microservices vs Monolith:
which architecture is the best choice for your business? https://overcoded.dev/
posts/Arch-7

Jackson, C. (2019a). Micro frontends. https://martinfowler.com/. https://martinfowler.
com/articles/micro-frontends.html?utm_source=arador.com

Jackson, C. (2019b). Micro frontends. martinfowler.com/. https : / /martinfowler . com/
articles/micro-frontends.html?utm_source=arador.comIntegrationApproaches

Jacobson, I., Spence, I., & Bittner, K. (2011). Use-case 2.0 - the guide to succeeding with
use cases. https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/
use-case_2_0_jan11.pdf

Joseph, R. (2015). Single page application and canvas drawing. https://www.researchgate.
net/publication/272194242_Single_Page_Application_and_Canvas_Drawing

Kalaian, S. A., & Kasim, R. M. (2008). Research hypothesis. in p. j. lavrakas (ed.) Ency-
clopedia of survey research methods (pp. 732-733). SAGE Publications, Inc. http:
//sk.sagepub.com/reference/survey/n472.xml

Koen, P. A., M.Ajamian, G., Boyce, S., Clamen, A., Fisher, E., Fountoulakis, S., Johnson,
A., Puri, P., & Seibert, R. (2002). 1 fuzzy front end: Effective methods, tools, and
techniques. The PDMA ToolBook for New Product Development. https://media.
wiley.com/product_data/excerpt/13/04712061/0471206113.pdf

Lorraine. (2011). Sass vs. scss: Which syntax is better? https://thesassway.com/sass-vs-
scss-which-syntax-is-better/

70 Bibliography

Mamczur, P., Gajda, M., Kajtoch, T., Toporek, W., Wysoczański, A., Swoboda, J., Habarta,
M., & Głowiński, K. (2020). State of frontend 2020. The Software House. https:
//tsh.io/state-of-frontend/

Mårtensson, F. (2006). Software architecture quality evaluation. https://www.diva-portal.
org/smash/get/diva2:838153/FULLTEXT01.pdf

McCurdy, N. (2020). Create react app. https://create-react-app.dev/docs/getting-started/
Meder, S., Antonov, V., & Chang, J. (2017). Driving user growth with performance improve-

ments. Pinterest Engineering Blog. https://medium.com/pinterest- engineering/
driving-user-growth-with-performance-improvements-cfc50dafadd7

Media, C. (2020). Micro front-ends is the latest web development trend. https://www.
cygnismedia.com/blog/micro-frontends-development

Mezzalira, L. (2020). Micro-frontends in context. https://increment.com/. https://increment.
com/frontend/micro-frontends-in-context/

Miller, J., & Osmani, A. (2020). Rendering on the web. Web Fundamentals. https : / /
developers.google.com/web/updates/2019/02/rendering-on-the-web

Mozilla. (2020). <iframe>: The inline frame element. MDN Web Docs. https://developer.
mozilla.org/en-US/docs/Web/HTML/Element/iframe

Neoteric. (2016). Single-page application vs. multiple-page application. NeotericEU. https:
//medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-
2591588efe58

Osterwalder, A., & Pigneur, Y. (2006). Business model generation. Business Model Gen-
eration: A handbook for visionaries, game changers, and challengers, 2010. https:
//books.google.pt/books?hl=en&lr=&id=UzuTAwAAQBAJ&oi=fnd&pg=PA9&
dq=A.+Osterwalder+e+Y.+Pigneur,+Business+Model+Generation:+A+handbook+
for+visionaries,+game+changers,+and+challengers,+2010.&ots=yYCRxeK6Xx&
sig=X0fS6EbetcDxqreQYn18PmqSoVQ&redir_esc=y#v=onepage&q&f=false

Pautasso, C., Zimmermann, O., & Leymann, F. (2008). Restful web services vs. big web
services: Making the right architectural decision. http://www.jopera.org/docs/
publications/2008/restws

Pupius, D. (2013). Beyond pushstate — building single page applications. Writing by Dan
Pupius. https ://writing .pupius . co .uk/beyond- pushstate - building - single - page -
applications-4353246f4480

Rahim, R., Supiyandi, S., Siahaan, A. P. U., Listyorini, T., Utomo, A. P., Triyanto, W. A.,
Irawan, Y., Aisyah, S., Khairani, M., Sundari, S., & Khairunnisa, K. (2018). Topsis
method application for decision support system in internal control for selecting best
employees. https :// iopscience . iop .org/article/10 .1088/1742- 6596/1028/1/
012052/pdf

Rich, N., & Holweg, M. (2000). Value analysis, value engineering. INNOREGIO project.
https://www.urenio.org/tools/en/value_analysis.pdf

Richardson, C. (2018). Pattern: Microservice architecture. Microservice Architecture. https:
//microservices.io/patterns/microservices.html

Shah, K. (2020). Speed and responsiveness. Blog thirdrocktechkno.com. https ://www.
thirdrocktechkno.com/blog/single-page-apps-vs-multi-page-apps-what-to-choose-
for-web-development/

Spoonhower, D. (2020). Microservices architecture. Microservices Architecture: When and
How To Move To Microservices. https : / / lightstep . com / blog /microservices -
architecture-when-and-how-to-move-to-microservices/

Bibliography 71

Tsimelzon, M., Weihl, B., Chung, J., Frantz, D., Basso, J., Newton, C., Hale, M., Jacobs,
L., & O’Connell, C. (2001). Esi language specification 1.0. W3C Note 04 August
2001. https://www.w3.org/TR/esi-lang/

Ulaga, W., & Eggert, A. (2006). Relationship value and relationship quality: Broaden-
ing the nomological network of business-to-business relationships. European Jour-
nal of Marketing. https : //www. emerald . com/ insight/ content/doi /10 . 1108/
03090560610648075/full/html

Watson, A. H., & McCabe, T. J. (1996). Structured testing: A testing methodology using
the cyclomatic complexity metric. http://www.mccabe.com/pdf/mccabe-nist235r.
pdf

What are web components? (2019). webcomponents.org. https://www.webcomponents.
org/introduction

WHATWG. (2021). Integration with the javascript agent formalism. HTML Living Standard.
https://html.spec.whatwg.org/multipage/webappapis.htmlintegration-with-the-
javascript-module-system

