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Abstract

Cyber threat information sharing platforms have become a useful weapon for
dealing with cyberattacks, proactively mitigating them and thus reducing risk
exposure. These allow multiple agencies to connect with each other, forming a
community, and share that same intrusion information regarding cyberattacks
or threats with each other.

The Malware Information Sharing Platform (MISP) is particularly devel-
oped to promote the open dissemination of information such as intrusion in-
dicators within a community. This exchange of information related to threats
or incidents is treated as a data synchronisation procedure between different
MISP instances, which may belong to one or more communities, companies or
organisations. However, this platform presents limitations if its information is
considered as classified or shared only for a certain period of time. This implies
that this information should be treated only in encrypted form. One solution
is to use MISP with searchable encryption techniques to impose greater control
over information sharing.

In this document, it is present a system that guarantees a controlled syn-
chronisation of information between entities through the use of encrypted search
techniques to guarantee the confidentiality of the information present in the
MISP platform and also the use of synchronisation policies to control the way
information is exchanged.

Keywords: Searchable encryption, Classified information, Information shar-
ing.
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Resumo

As plataformas de partilha de informação de ciberameaças tornaram-se uma
arma útil para lidar com os ciberataques, mitigando-os proativamente e, assim,
reduzindo a exposição ao risco. Estas permitem que vários organismos se liguem
entre si, formando uma comunidade, e que partilhem entre si essas mesmas
informações de intrusão relativas a ataques ou ameaças cibernéticas.

A plataforma Malware Information Sharing Platform (MISP) está partic-
ularmente desenvolvido para promover a disseminação aberta de informação
como os indicadores de intrusão no seio de uma comunidade. Esta troca de
informação relacionada com ameaças ou incidentes é tratada como um proced-
imento de sincronização de dados entre diferentes instâncias MISP, que podem
pertencer a uma ou mais comunidades, empresas ou organizações. No entanto,
esta plataforma apresenta limitações se a sua informação for considerada como
classificada ou partilhada apenas por um determinado peŕıodo de tempo. Isto
implica que esta informação deve ser tratada apenas de forma encriptada. Uma
solução é utilizar MISP com técnicas de cifragem pesquisáveis para impor um
maior controlo sobre a partilha de informação.

Neste documento apresentamos um sistema que garante uma sincronização
controlada da informação entre entidades por meio do uso de técnicas de pesquisa
cifrada para garantir a confidencialidade das informações presentes na plataforma
MISP e ainda o uso de poĺıticas de sincronização para controlar o modo como
as informações são trocadas.

Pavaras chave: Encriptação pesquisável, informação classificada, partilha de
informação.
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Chapter 1

Introduction

Cyberthreat information sharing platforms are an important weapon against
cyberattacks, proactively mitigating them and thus, reducing risk exposure of
networks, systems, and data. These platforms allow multiple agencies to form a
community that connects and shares intrusion information concerning attacks
or threats.

The MISP [1] is particularly designed to promote the open dissemination of
threat or incident-related information such as Indicators of Compromise (IoC)
within a community. This information exchange is treated as a data synchro-
nisation procedure between different MISP instances, which may belong to one
or more communities, companies, or organisations.

MISP information sharing can only be controlled to a certain extent1, pre-
senting limitations whenever an organisation wishes to impose stricter control
on this dissemination. The MISP platform includes features to control the dis-
semination of information such as the use of sharing groups or the use of labels,
by using Permissible Actions Protocol (PAP) [2] to manage the access of specific
information. However, it imposes no real control on the dissemination of threat
information, e.g. in case an event information tagged with PAP:RED (a tag
indicating that the information should not be used externally, such as checking
whether if a file hash is present in a malware database) is shared with another
organisation, there is no way to enforce it since the information has already
been exchanged between MISP instances. In essence, MISP assumes that there
is an always present trust relationship between the organisations that exchange
information and this may not always be the case. Particularly, if one considers
classified information exchange between military entities that may cooperate in
an international context for a specific period of time.

In this document a controlled information sharing solution is proposed us-
ing searchable encryption techniques to impose greater control over information
sharing in MISP. An overview of the proposed solution is presented in Fig. 1.1.
It includes a controlled synchronisation process that works as a complement to
the already existing synchronisation between MISP instances. The proposed
solution uses an asynchronous search engine built as a REST Application Pro-
gramming Interface (API) to enable secure communication between entities and
thus, enables the secure sharing and searching of intrusion related information

1https://misp-project.org/taxonomies.html
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between these entities without requiring access to cleartext information.

MISP
ServerA

IoCs

Organization 2

MISP
ServerA

IoCs

Organization 3

MISP
ServerA

IoCs

Organization 1

MISP
ServerA

IoCs

Default synchronization Controlled synchronization

Figure 1.1: Overview of a MISP community

This document is structured as follows. Chapter 2 presents some crypto-
graphic concepts used in this work. Chapter 3 refers to the concept of search-
able encryption. Chapter 4 and Chapter 5 present respectively the specification
of the proposed solution and its implementation. Chapter 6 describes the vali-
dation of a prototype created while Chapter 7 presents the conclusions of this
work.



Chapter 2

Background

Cryptography is the technique used to keep data inaccessible by third parties
in cases where it is necessary to restrict access to the data, for example in
a conversation between two parties or to store sensitive data. The earliest
accounts of cryptography date back to ancient Egyptian times [3]. The most
famous accounts of cryptography point to Julius Caesar in the year 100BC,
where messages exchanged by troops during the conquest of the Roman Empire
were encrypted by shifting each letter of the message three positions down in
the alphabet. Over time this technique became weak as it was enough to do
the reverse shift to discover the message that had been encrypted [4]. In the
16th Century, an improved version of the Caesar cipher was presented called the
Vigenère cipher. The difference was that the number of shifts was no longer a
fixed number but was defined by values defined in a key. This key was composed
of a set of letters representing the number of shifts to be made based on their
position in the alphabet. However, for the same message and the same key,
the encrypted result was always the same and, despite being more reliable than
Caesar’s cipher, the cipher also became impractical because it was easily broken
by analysing the frequency of letters, and due to being a deterministic cipher
[5]. Later, in the 20th Century, technology had great advances that influenced
cryptology, the best-known case being the German Enigma machine [6]. This
mechanism was a key piece for German troops during World War II for secret
messaging. This mechanism was broken by the British, who spent years and
many resources to understand its operation, leading to the victory of the allied
troops in the war and consequently its end.

More recent cryptographic algorithms are based on mathematical theory and
computer science practice and are designed around concepts such as factorisation
and the discrete logarithm problem, because they are easy problems to apply
but very difficult to solve. And as computational power advances over the years,
algorithms continue to evolve, usually by increasing the size of encryption keys
in order to prevent ciphers from being broken in a short time [7].

2.1 Encryption

Encryption [8] is a central concept of cryptography. Considering the following
case: two persons, Alice and Bob, want to speak with each other. In a general

3



4 CHAPTER 2. BACKGROUND

situation, the channels they use to communicate is not secure. A third person,
called Eve, is listening to the channel, so she receives every message m that both
Alice and Bob send to each other. In this case, the use of encryption is a good
solution to guarantee the security of the channel and consequently avoiding
Eve knowing the content of the messages. To do this, firstly, Alice and Bob
should agree on a secret key K in some way that Eve cannot listen to. When,
for example, Bob wants to send a message m to Alice, the message m should
be encrypted with an encryption function E (K,m) resulting in a ciphertext c.
Receiving the ciphertext c, Alice only needs to decrypt it using the secret key
K with a decryption function D(K, c) to get the original message m from Bob.
Eve cannot read the message m because she does not know the secret key K,
so she cannot decrypt the ciphertext c. This basic mechanism of encryption
can be applied to multiple scenarios like e-mail security and data storage with
different approaches.

In the previous scenario, it is mentioned a case of symmetric encryption.
Symmetric encryption requires a single secret key to encrypt and decrypt the
messages. One example of an algorithm for symmetric encryption is Advanced
Encryption Standard (AES).

2.1.1 Block ciphers

A block cipher [9] is an encryption function for fixed-size blocks of data. Nowa-
days, block ciphers have 128 bits of size, encrypt plaintext with 128-bit and
generate the ciphertext with 128 bits of size. These blocks are reversible which
means that there is a function that decrypts a ciphertext to the original plain-
text [10]. Block ciphers encrypt data with a secret key, which consists of a string
of bits like the plaintext and ciphertext. Keys sizes vary, examples being 128 or
256 bits. The common representations for encryption are E (K, p), considering
the key K and plaintext p, and representations for decryption are D(K, c), given
a key K and a ciphertext c. To increase the security of block ciphers the use
of block cipher modes is recommended, when compared to using a block cipher
directly.

AES is a well known block cipher [11] that arose from a National Institute
of Standards and Technology (NIST) request for proposals to the cryptographic
community, where 15 proposals were submitted [12]. From these proposals, five
were finalists [13], and Rijndael became the AES standard in 2001 [14, 15]. In a
single round of AES, the plaintext with 16 bytes (128 bits) is XOR’ed with 16
bytes of the round key. After that, each byte is processed by an index table that
maps 8-bit inputs to 8-bit outputs. When the indexing is completed, these bytes
are rearranged in a specific order and then mixed in 4-byte groups. This last
operation uses a linear mixing function which means that each output bit is the
result of the XOR operation applied to several input bits. The full encryption
can have a different number of rounds. With 128-bit keys, the algorithm uses
10 rounds. For 192-bit keys, 12 rounds are used. For 256-bit keys, 14 rounds
are used. One of the advantages of AES is parallelism. The steps consist of
several operations performed in parallel which enables high-speed implementa-
tions. The rounds used for each key length were defined after the algorithm
presentation, where was shown an attack to AES if the number of rounds de-
fined was 6 [16]. Posteriorly the attacks were improved to handle other numbers
of rounds [17], less than the final rounds chosen, but these attacks covered only
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70% of the cipher. This algorithm was selected based on the assumption that
there will no large improvements on future attacks.

When there is a need to encrypt data with a size other than the fixed block
size, the solution consists on using block cipher modes [9]. Two well known
cipher modes are the Electronic Codebook (ECB) [18] and the Cipher Block
Chaining (CBC) [19]. In ECB, message blocks are encrypted separately, mean-
ing that two identical blocks will result in the same the encrypted blocks. De-
pending on the message structure, the attacker may obtain some information
about the message. In CBC, the encryption of a message block also will also
include the result of the encryption of the previous block, thus avoiding the
problem of the ECB mode. In the case of equal message blocks, these will result
in different blocks, reducing the information available to an attacker.

A known issue of symmetric encryption related to key management. A
secret key K must be shared between all involved parties. One problem relates
to how one should share the key so that it remains known only to relevant
parties. A third person can be listening to the channel used to share the key.
Another problem relates to group size, or specifically how to manage the keys
when we have a group of more than two people that want to communicate
with each other. An option could be the generation of a shared group key
that comprises contributes from all members. In this case, assuming that n
represents the number of members of the group, each member would have to
exchange n−1 messages. The group would have to exchange

∑n−1
i=1 i keys. This

number increases with the number of elements of the group, making the key
management problem worse.

2.1.2 Public-key encryption

The use of public-key encryption [20], also called asymmetric-key encryption,
make use of two different, but related, encryption keys. One to encrypt a
message and the other to decrypt that message. To do this, firstly, Bob needs to
generate a pair of asymmetric keys, one of these is his secret key (SBob), and the
other is his public key (PBob). Then he can share his public key with everyone.
When someone wants to send a message to Bob, the public key (PBob) is used
to encrypt the message m, resulting in the ciphertext c = E(PBob,m), and send
it to Bob. Bob, the only person who knows SBob, can decrypt the received
message.

Public-key encryption algorithms are based on mathematical problems such
as factorisation or discrete algorithm [21]. A very important and obvious re-
quirement of these algorithms is that it should not be possible to generate the
secret key from the public key [22]. The problem of key distribution is simpler
with this type of encryption. Considering the same group with n members,
and each member only need to share his public key, thus the total number of
keys shared is n keys. However, this schema is not so efficient when compared
to symmetric encryption, with regards to CPU usage and storage space. The
usual approach to make use of the advantages of the asymmetry encryption,
while still being efficient as the symmetric encryption, is to use both in a com-
bined manner. Public-key algorithms are used to exchange a symmetric secret
key that is then used to encrypt the data.

Rivest-Shamir-Adleman (RSA) [23] is a well-known asymmetric cipher algo-
rithm, first published in 1978 [24]. This algorithm is based on the factorisation
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of large numbers that are the product between two large prime numbers, in the
order of a thousand bits in length or more. Its architecture works as a one-way
function in which it is easy to compute in one direction but almost impossible to
compute in the reverse direction. The difficulty lies in trying to discover the two
large prime numbers used. The RSA system [25] starts by defining two large
prime numbers p and q and then computing n = pq. The values p and q must be
of similar size, resulting in a modulus n with twice the size of the prime values.
Then two exponents e and d are used and the requirement is ed = 1(mod t)
where t := lcm(p− 1, q − 1) and lcm() means the lowest common multiple, the
lowest number that is evenly divisible by p and q. To ensure ed = 1(mod t),
the Extended Euclidean algorithm [26] is used to compute d as the inverse of e
modulo t. For the encryption of a message m, the ciphertext c := me is com-
puted. For the decryption of a ciphertext c, cd(mod n) is computed. The RSA
public key consists of the pair (n, e), while the RSA private key consists of the
values (p, q, t, d) and must be kept secret by whomever generates the key pair.
RSA keys are typically 2048 or 4096 bits long and, in addition to encryption,
are used in the process of digital signatures.

Digital signatures [27] are used to guarantee the authenticity and integrity
of a message. Consider again the scenario where Bob and Alice are sending
messages to each other, and Eve can hear the communication channel they are
both using to communicate. Even if messages are sent in encrypted form, Eve
can alter the message. In that way, when Bob sends a message m to Alice, Alice
will receive a different message m′, after Eve changes the original message. To
avoid this situation, when Bob is about to send the message, he computes a
signature of the message s := σ(SBob,m) and sends it with the message to
Alice. To verify the message integrity, Alice verifies the message m with the
signature s received v(PBob,m, s) using Bob’s public key. This way, Alice can
be sure that Bob signed the message and that the message was not changed.

2.2 Secure hash functions

Hash functions [28] are functions that, given an arbitrarily input, produce a
fixed-size result. The result of the hash function can vary between 128 and
1024 bits, regardless of the size of the input. A secure hash function is an hash
function that complies with stricter requirements, such as collision resistance.
Secure hash functions can also be called message digest functions, producing a
result called digest or fingerprint. There are many applications in cryptography
for secure hash functions. Many times it is useful to map variable-sized values
into fixed-size values. In other situations, these functions can be used in cryp-
tographic pseudo-random number generators to generate several keys to build
a single shared secret key.

The simplest property that a secure hash function must have is that it should
be a one-way function. In other words, considering a message m as input of
the function and x the digest, it should be simple to compute h(m) = x but
impossible to find m given only the value x. Collision resistance is another key
property of a secure hash function [29]. A collision can be described as given two
different inputs, m1 and m2, the result of applying the same secure hash function
is the same such that h(m1) = h(m2). Each hash function has an infinite number
of collisions because, since these functions have a fixed-size output, the number



2.3. MESSAGE AUTHENTICATION CODES 7

of output values is finite, given the infinite number of possible inputs. However,
this requirement says that collisions should not be found even though they exist.

Secure Hash Algorithm (SHA) [30] is a family of algorithms designed by
the National Security Agency (NSA) and standardised by NIST [31]. The first
algorithm that appeared was SHA-0. SHA-0 had weaknesses, described three
years later by Chabaud and Joux [32], leading to the appearance of a new
version, called SHA-1. The main problem found on this algorithm was the 160-
bit result size. It only requires 280 steps to generate collisions, and this value
is much lower when compared to modern block ciphers with key sizes between
128 and 256 bits. Research efforts lead to the discovery of new attacks with a
complexity lesser than 280 computations [33, 34]. To address the problems of
SHA-1, in 2001, three new hash functions were published by NIST. A fourth
one was added to the specification in 2004 [35], originating the SHA-2 family
of secure hash functions. These functions have outputs with 224, 256, 384, and
512 bits, and they permit the use of AES keys with 128, 192, and 256 bits [36].
Currently, the SHA-2 and SHA-3 family of secure hash functions have no known
feasible attack.

2.3 Message authentication codes

Message Authentication Code (MAC) [37] is a function used to detect changes in
messages. Encryption, by itself, prevents other people from reading the messages
but does not prevent third parties from changing the messages. MAC appears
to deal with this problem. When someone wants to send a message m, the
sender may also compute a MAC value of the message m, using a secret key K.
The other person receives the message m and the MAC value. After receiving
the message, he calculates the MAC of the received message and compares it
to the MAC received in conjunction with the message. MAC functions receive
two arguments: a key K with fixed size and a message m. The result is a fixed-
size MAC value. The MAC expression can be described as MAC (K,m). To
guarantee message integrity, the message m is sent in conjunction with the result
of MAC (K,m), called tag. Considering the other person receives a message
manipulated m′ and a tag T . In the verification process, T is verified as a
correct MAC value for the message received using MAC (K,m’). The message
was manipulated so the result MAC (K,m’) value will not match with T received.

Hash-based Message Authentication Code (HMAC) [38, 39, 40] is a function
with a random mapping with keys and messages as input. This function can be
expressed as h(K⊕a||h(K⊕b||m)), where a and b are constants. The message m
is only hashed once, and the output is hashed again using the key K, as [39, 40]
described in more detail. HMAC can work with many hash functions like SHA
hash functions (SHA-1, SHA-224, SHA-256, and others), and his design prevents
the same collision attacks founded on SHA-1 [41]. In HMAC, the beginning of
the message to hash is based on a secret key, and the attacker does not know
which means that using HMAC with SHA-1 does not have as many problems
as the direct application of SHA-1. However, this approach comes with a huge
risk, considering the evolution of the attacks over time, and is not recommended
to use.

HMAC was designed to resist attacks, with proof given on security bounds
on the resulting construction and avoids key recovery, but is still limited to n/2
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bits of security. HMAC ensures that attackers have to do 2n/2 iterations with
the system under attack, making that more difficult.



Chapter 3

Searchable Encryption

In a common search operation, an entity sends a searchable term to another
entity to retrieve the corresponding data. However, after this search operation,
both the knowledge of the searched term and the possibility that the term is
present at the source entity, becomes known by the queried entity. To achieve
data confidentiality, the most common solution is to encrypt all information.
To search within this information, the trivial approach is to decrypt all the in-
formation, thus allowing search operations to be performed over the clear text.
Although simple, this solution negatively impacts on confidentiality, scalability
and performance. Searchable Encryption (SE) emerges as a technique that pre-
serves the data confidentially while allowing search operations to be performed
[42]. Over the years, various types of constructs have been proposed. In some of
them, researchers have focused on the efficiency of searchable encryption tech-
niques, while others have focused on security and privacy [43]. The efficiency
of an SE scheme is measured by the generated costs associated with the com-
putation produced and the communication performed. Security, on the other
hand, is measured through the information that is exchanged with the system,
more specifically by checking whether the system learns information from the
performed searches, as well as the results obtained from them.

SE solutions either use an encryption algorithm that allows search operations
to be performed on the ciphertext, or use an auxiliary index that is created based
on keywords to be used in searching operations. Using indexes is more efficient
and can increase search performance since they allow queries to be performed
using trapdoors, generated from the keywords to be searched. A trapdoor can
be the result of a cryptographic hash function over the text to be queried.
These functions are simple to calculate when in possession of all the data, but
time-consuming to reverse without knowing the original clear text information.
However, index-based solutions typically require additional calculations, which
are performed at the information storage stage, to extract keywords, encrypt
them, and then add them to the index. To construct a searchable index, there
are two main approaches: forward index and inverted index. Figure 3.1 shows
the two types of index used in SE schemes. A forward index takes the form of
a list of keywords per document [44] and the complexity of the search is O(n),
n being the number of documents. An inverted index takes the form of a list of
documents by keywords, making it easier to identify all documents that contain
a given keyword [45, 46] and its search complexity is O(|D(k)|), |D(k)| being the

9
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number of documents containing a given keyword k.

Forward index

document keyword

d1 k1, k3

Reverse index

keyword document

k1 d1, d4

k2 d2, d3

...

n

...

k

d2 k2

...

k

...

n

Figure 3.1: Forward and reverse index

Figure 3.2 presents the typical SE model which consists of three parts: the
data owner, the data user, and the data storage server [47]. The data owner is
the person responsible for the data on the storage server. Usually, the informa-
tion on the storage server is sensitive data that needs to be stored in a way that
ensures confidentiality and privacy. To do so, the information is encrypted by
the data owner before it is stored on the data server. Along with the encrypted
data, the data owner submits an index to allow searching the information on
the data server. This index is composed of keywords that reference the exist-
ing data on the storage server. These keywords are also encrypted to prevent
the storage server from taking away any knowledge about the searches made by
users and the results of the searches performed. The data user is the person who
performs searches on the data storage server. Searches are performed by creat-
ing a query containing the keywords the user wants to search for. This query is
then encrypted and sent to the storage server to which the server responds with
results in encrypted form, decrypted later by the data user. The storage server
is the element responsible for storing the data, performing the search operations
taking into account the queries submitted by users, and returning the results
obtained.

Searchable ciphers can be divided into two major types depending on the
cryptographic primitives used: Symmetric Searchable Encryption (SSE) and
Public Key Encryption with Keyword Search (PEKS).

SSE uses symmetric key cryptography where only the owner of the secret key
can produce ciphertexts and perform searches. In the first reference to this type
of scheme [48], the search process consisted of a sequential scan through the en-
tire ciphertext and the words were encrypted separately and concatenated using
a special format hash value. During a search process, the server extracted these
stored hash values to make a comparison and check if there was a match with
the search performed. However, this scheme showed low efficiency in the search
process because, as the server scanned the entire ciphertext for the searched
term, the search time increases as the amount of stored data increases due to
the linear relationship between the search time and the amount of data.

Later, new solutions were presented to increase the efficiency of the search
process, as presented in [44]. In this paper, a proposed index implementation
is presented, and the index would be created independently of the plaintext
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Build index

Encrypted data

Server

Retrieve results

Submit query

Build query

Decrypt resultsUser

Owner

Figure 3.2: SE model

encryption algorithm. The implementation of this index is based on the use of
a Bloom Filter (BF) [49] which is a probabilistic data structure to indicate the
probability that an element, in this case, a searched keyword, exists in a given
dataset. This structure, with n bits of length initialised to 0, will receive the
keywords that belong to the index through k independent hash functions that
map each keyword into k positions of the matrix structure. The bits in these
positions are then changed to 1. During the search process, the k positions are
generated by the same k hash functions and if any bit of these positions is 0
then the keyword is not found. In case all the bits of the positions are 1 there
is a high probability that the keyword belongs to the dataset which means that
it is possible to have false positives in the search results. Another solution [50]
proposes a scheme based on an inverted index composed of keywords that map
the identifiers of the stored data to take advantage of the efficiency of the search
process in keyword-based indexes.

Some authors [51] identify problems on using searchable encryption, such
as information leakage, the discovery of the cryptographic hashes of keywords
contained in an updated document, or the inefficiency in terms of searching
and index update times. In their paper [51], the authors introduce the concept
of Dynamic Searchable Symmetric Encryption (DSSE). This allows a client
to encrypt data in such a way that it can later generate lookup keys and send
them as queries to a storage server. Given a token, the server can search over the
encrypted data and return the appropriate encrypted files, ensuring a significant
reduction in information leakage and maintaining efficiency in search and update
operations. Authors in [52] introduce a new solution, called Blind Storage. This
allows clients to store a set of files on remote servers, such as Dropbox, in such
a way that the server cannot know how many files are stored there, nor their
size. The server only knows of the existence of a file when it is obtained by a
client, without ever knowing the name of the file or its content.

PEKS allows anyone to create ciphertexts using a public key, but only the
owner of the corresponding private key can perform searches. This makes PEKS
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easy to use in multi-user scenarios. An example of PEKS can be found in [53]
where a scheme based on the cryptographic primitive Identity Based Encryp-
tion (IBE) [54] is presented where the public key is generated based on the
information of the entity responsible for that key. Private keys are generated by
the Private Key Generator (PKG) which publicly shares a public primary key
but keeps the private primary key secret. It is then from the public primary key
that identities generate their public key by combining their information with
the publicly shared public primary key and the private key is generated through
the private primary key. The transmission of the private key is done through a
secure and confidential channel, requiring an authentication between an identity
and the PKG. However, this scheme uses a deterministic encryption system for
the creation of trapdoors indicating that the junction of the same key with the
same password entered by the identity will always result in the same trapdoor
allowing the server to take knowledge of the searches that are submitted. This
problem is mitigated in a solution presented later [55] where trapdoors are now
generated based on a time interval. In this way, the server is unable to make a
relationship between past and future searches.

The paper [56] presents strong privacy definitions for public key encryp-
tion schemes where the encryption algorithm is deterministic and then in-
troduces the proposed RSA Deterministic Optimal Asymmetric Encryption
Padding (RSA-DOAEP) solution (based on the existing RSA Optimal Asym-
metric Encryption Padding (RSA-OAEP) [57, 58] scheme with the addition of
the deterministic factor) which has the additional feature of length preserva-
tion, where the length of the ciphertext is equal to the length of the plaintext.
Also mentioned in the paper is the use of an SE technique, called Efficiently
searchable encryption (ESE), where the encryption is randomised but makes
use of a deterministic collision-resistant function of the plaintext that can also
be calculated from the ciphertext and produces a searchable tag. It enables fast
comparison-based searching. This schema allows indexing the data appropri-
ately in standard data structures (e.g. tree-based) and search according to the
tags.

Security shortcomings in a PEKS scheme are addressed in [59]. In this case,
keyword guessing attacks are used to endanger the privacy of the user and the
searches they perform, and thus, a new searchable encryption scheme called
Searchable Encryption based on Efficient Privacy-preserving Outsourced calcu-
lation framework with Multiple keys (SE-EPOM) is presented. This scheme
suits distributed environments comprising multiple data writers and readers,
and can implement multiple servers designated to assist the main storage server
in performing keyword searches, while preserving privacy over the encrypted
data. Using multiple parallel servers allows to speed up response and balance
the workload, while effectively resisting a password guessing attack from the
cloud storage server.

The problem of keyword guessing attacks that traditional PEKS models
are subject to is also addressed in the articles [60] and [61]. The first paper
addresses the existence of chosen keyword attacks, ciphertext attacks, and key-
word guessing attacks by a stranger to the system in the PEKS model without
the existence of a secure channel between the receiver and the server when
submitting trapdoors to perform searches. Two important security notions are
then presented: Indistinguishability of secure channel free PEKS against chosen
keyword and ciphertext attack (IND-SCF-CKCA) ensures that the server has
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not obtained the trapdoors of the keywords and therefore does not create any
knowledge about this information; Indistinguishability against keyword guess-
ing attack (IND-KGA) ensures that any outsider who has obtained a trapdoor
for a particular keyword, cannot observe the relationship between the trapdoor
and any keywords. The second paper proposes a new framework, called Dual-
server PEKS (DS-PEKS), which is divided into two independent servers. In this
model, the front-end server receives a search and generates a trapdoor using its
private key, sends internal test states to the second server with the correspond-
ing trapdoor and PEKS ciphertexts. The second server can then decide which
documents are queried by the client using its private key and the internal test
states received from the front server.

All these solutions presented are based on the application of searchable en-
cryption techniques in an increasingly efficient way, not leaving aside the se-
curity regarding the privacy of searches made by users, regardless of the data
source. However, none of these solutions consider its applicability to Military
information exchange and its requirements. Moreover, none of the solutions
considers external sources of data, as is the case of using a MISP platform as
an information repository.
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Chapter 4

Proposed solution

The controlled information sharing functionality herein proposed is to be used
to exchange and query information available at MISP instances. It is designed
to regulate trust issues and enforce fine-graded control, without losing the ca-
pability of using relevant external threat-related information, thus supporting
classified information exchange required by specific organisations, governments
or military forces.

The reference scenario is presented in Fig. 4.1 and the proposed functionality
operates similarly to a communication proxy between MISP instances, which is
implemented as a web-based REST API. Also, it comprises a secure search
functionally by using searchable encryption to impose required confidentiality,
thus forcing all exchanged information to be previously encrypted. The proposal
is designed to comply with specific requirements and features presented in the
following sections.

MISP
ServerB

MISP
ServerA

IoCs

Organization 2

IoCs

Organization 3

Information
Sharing
proxy 

Information
Sharing
proxy 

Controlled Information
Sharing

Figure 4.1: Reference scenario

4.1 Requirements

The proposed solution aims to impose greater control over the sharing of in-
trusion information between organisations that use the MISP platform. The
solution now presented is based on the use of SE techniques to impose greater
control on that sharing. One of the main problems to be solved by our solu-
tion consists in the creation of a mechanism for extracting existing intrusion
information from a MISP server. After such information extraction, a search-
able inverted index must be created with IoCs associated with that information.

15
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This mechanism is essential because it allows confidentiality in the exchange of
information between entities and in carrying out searches. The search results,
when they return information, will then be inserted in the MISP server that
originated the search. The following functional requirements were identified for
this solution proposal:

R1 The existence of a bidirectional data synchronisation mechanism between
the MISP server and the encrypted search service.

R2 The system must guarantee the confidentiality of the searches performed.

R3 The system must allow the specification of the entities with which con-
trolled synchronisation of information will be performed.

R4 The system must allow the definition of synchronisation policies between
the various entities participating in the network.

R5 The existence of a Rest API that supports the operation of the general
system.

4.2 Specification

Fig. 4.2 presents an overview of the proposed solution, consisting of a data
synchronisation module, a REST API, a database, a backend, and a frontend. A
remote index shared between entities is also envisioned to allow for information
searching. Next, the main features that should be included in the proposed
solution are detailed.

Database

MISP
ServerA

MISP
ServerB

API Rest

Backend Frontend

Data
synchronization

Shared index

Figure 4.2: Proposed solution
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The proposed solution comprehends two main components: controlled shar-
ing and secure sharing. Controlled sharing is ensured through the application of
data control policies, indicating which information can be accessed by external
entities. The search functionality will operate in an asynchronous mode, similar
to that used in peer-to-peer networks. Whenever a user issues a query, the query
will be relayed to other systems and will finish without waiting for any response.
After that, the systems that have positive results to answer the query will apply
control policies that have been defined for the query system, though acting as
an information filter. Information that successfully passes through these filters
will then be communicated to the query system. This mode of operation is well
suited for asynchronous programming languages such as JavaScript, improving
the scalability of the system, and minimising user interface blockages.

Secure sharing is guaranteed through the use of a shared search index. This
index should be a reverse index, it will be composed of trapdoors created using
the IoCs associated with the information existing on the MISP platform, and
it will be shared with entities that have formed a trust group. This mechanism
is essential because it enables the confidentiality of the information exchanged
between entities, including the performed queries. The confidentiality of the
searching functionality will operate as follows. When a user of a system in
a given organisation queries systems of other organisations, the query data is
not sent in cleartext. Instead, the system will send trapdoors representing
those queries and, as result, the system will return the set of entities that have
information corresponding to the submitted query. The final step consists of
creating the data request to the entities comprised in the search response. The
secure searching functionality will require a MISP import/export capability to
either export or import results of a query. Having such import/export capability,
controlled information sharing can be enforced. Moreover, greater control can
also be imposed over the exchanged threat information between MISP instances,
acting as a proxy. The proxy will extract existing threat information from a
MISP server. The search results will then be inserted into the MISP server that
originated the search.

The proposed solution also assumes the existence of backend and frontend
components for system administrators and users. However, the API is designed
to work independently of the existence of these modules, i.e. the API is com-
pletely functional for the internal and external modules.

4.2.1 Adopted notation

Table 4.1 presents the notation adopted throughout this work. Letters A, B
and C represent example entities. IDA represents the unique identifier of entity
A. Ts represents a timestamp. NA represents a nonce generated by entity A.
KABC represents a symmetric key shared between entities A, B and C. SEK
represents a session encryption key. PrivKA represents the private key of entity
A. PubKA represents the public key of entity A. {M}K represents the encryption
of message M with the encryption key K. H(M) represents the result of a secure
hash function with input M. HMAC (K,M) represents the result of a secure
HMAC function with input M and the key K. Q represents a query. X; Y
represents value X concatenated with value Y.

The processes for peering configuration and validation, data synchronisation,
and data searching between multiple entities are detailed as follows.
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Table 4.1: Adopted notation

A, B, C Entities
IDA ID of entity A
Ts Timestamp
NA Nonce generated by A

KABC Symmetric shared key between entities
SEK Session encryption key

PrivKA Private key of entity A
PubKA Public key of entity A
{M}K M encrypted with key K
H(M) Hash function of M

HMAC (K,M) HMAC function of M with key K
Q Query

X; Y X concatenated with Y

4.2.2 Peering Configuration and Validation

Before exchanging data between two or more entities, a peering process must
be initialised. The peering configuration between two distinct entities is done
by importing a file with the required data, or through a form within the fron-
tend, similarly to what happens in the MISP platform. The entity (or peer)
description includes information such as its: Uniform Resource Locator (URL),
unique identifier, public key, and symmetric key. The public key will be used to
ensure the integrity of the exchanged messages, and the symmetric key will be
used to ensure confidentiality. The file-based entity description is assumed to
be securely exchange between the entities that wish to establish their peering.

Once the peering configuration is done, the validation process is performed,
according to Fig. 4.3. The validation consists of exchanging encrypted messages
to ensure that the information exchange and the requests validation can be
done correctly. Considering the existence of a peering configuration between
two entities, A and B, the first entity makes a peering validation request using
the following message:

IDA;Ts; {IDA;Ts;NA}PubKB
(4.1)

This message comprises: the unique identifier of the sender entity (IDA), a
timestamp of the moment that this request was made (Ts), and an encrypted
value. This encrypted value is the result of encrypting the previous two values,
concatenated with a fresh nonce, with the public key of the receiving entity
({IDA; Ts; NA}PubKB

).

Upon receiving this message, the receiving entity checks whether the unique
identifier of the sender matches a previously configured peer and decrypts the
cipher value with its private key, to validate the timestamp and the integrity of
the message. The timestamp combined with a fresh nonce will ensure resistance
against replay attacks. After this verification, a message is returned, with the
same structure, to the entity that made the configuration validation request,
changing the sender entity identifier, the timestamp, and the public key used
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for the encryption. Upon reception of this message, the validation of the message
is performed by verifying that the correct nonce was used (NA). If the values
match, it means that there were no problems exchanging the messages and
therefore the status of the peering configuration is updated to valid.

A

A

B

B

Validate the peer connection

IDA;Ts;{IDA;Ts;NA}PubKB

Request validation

IDB;T's;{IDB;T's;NA}PubKA

Response validation

Figure 4.3: Process of peering validation

4.2.3 Data synchronisation

The synchronisation process, shown in Fig. 4.4, consists of exchanging data
between two entities after their peering is configured and validated. This is
done through a REST API and, before any synchronisation, a user must con-
figure its settings (e.g. to synchronise only a specific type of data or enforce
a specific period of time). A session key (SEK) is generated and added to the
request. This session key is used to encrypt the response that will be received
and has a lifetime of one request, i.e. a new session key will be generated
with each request made. The chosen type of data is expressed through a query
(Q), as shown in Listing 4.1, and the data synchronisation request is made
with a message format similar to the format used in the peering validation
(IDA; Ts; {Ts; IDA; Q; SEK}PubKB

).

Upon receiving such a request, the receiving entity validates it, reads the
query, and queries its MISP instance for matching information. After obtain-
ing the matching information, the response is encrypted with the session key
({T′s; IDB; Data}SEK), and sent back to the requesting entity.

1 {

2 "created_by": "afa1c113 -6363 -4960 -bf83 -cd5ae5272dd7",

3 "created_at": "10 -05 -2021 T17 :30:35",

4 "query_groups": [

5 {

6 "condition": "AND",

7 "values": [

8 {
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9 "type": "ip -src",

10 "value": "192.168.5.1"

11 },

12 {

13 "type": "domain",

14 "value": "domain.com"

15 }

16 ]

17 },

18 {

19 "condition": "OR",

20 "values": [

21 {

22 "type": "ip",

23 "value": "192.168.0.33"

24 },

25 {

26 "type": "domain",

27 "value": "host.net"

28 }

29 ]

30 }

31 ]

32 }

Listing 4.1: Example of a data query

4.2.4 Data searching

The data search process between two entities can be performed either directly
to the database of an entity’s MISP instance, or through a shared, centralised
index. In the first case, the search is done using the synchronisation process
mentioned in subsection 4.2.3. The second case, depicted in Fig. 4.7, is targeted
for entities that require the exchange of classified information or that only wish
to share specific information pertaining a joint military operation, for instance.
In this case, a shared encrypted index on a remote server should be used. All
entities belonging to this trusted group can upload indexing information of
the data they consider relevant to share. Searching through the remote and
encrypted index comprises three major steps: (1) Symmetric key construction,
(2) Index update, and (3) Searching. These are described as next.

1. Symmetric key construction - The symmetric key (KABC) consists of the
key that will be used by the entities belonging to a given trust group
for the process of updating the shared index and performing searches on
it. This key is generated with the contribution of all the entities in the
group, as shown in Fig. 4.5. Each entity calculates a secure hash hav-
ing as input a freshly generated nonce value (NA) concatenated with the
current timestamp (H(NA.Ts)). This hash is sent to all entities belong-
ing to the group. When all entities have, in their possession, the hashes
of all entities, each entity will calculate the same final key. To do so,
all entities’ hashes must be sorted alphabetically and concatenated into
one (H(NA.Ts).H(NB .T

′
s).H(NC .T

′
s)), after which the SHA-512-256 hash
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Figure 4.4: Data synchronisation between entities
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function is applied, generating a key with 256 bits. This key will then
be used in trapdoor generations and also to enforce the confidentiality of
all trapdoors shared within the group. The total number of messages re-
quired in this procedure will be of n (n−1), for n entities. This number of
messages may limit the size of the sharing group, however, it was assumed
that this will not pose as a limitation to our solution since the number
of existing military organisations that cooperate is small. It is assumed a
maximum group size of ten.

A

A

B

B

C

C

Generate symmetric key

H(NA.Ts)

IDA;Ts;{Ts;IDA;H(NA.Ts)}PubKB

Request validation

IDA;Ts;{Ts;IDA;H(NA.Ts)}PubKC

Request validation

H(NB.T's)

IDB;T's;{T's;IDB;H(NB.T's)}PubKA

Response validation

IDB;T's;{T's;IDB;H(NB.T's)}PubKC

Request validation

H(NC.T's)

IDB;T's;{T's;IDB;H(NB.T's)}PubKB

Response validation

IDB;T's;{T's;IDB;H(NB.T's)}PubKA

Response validation

KABC = SHA-512-256( H(NA.Ts) . H(NB.T's) . H(NC.T's) )

Figure 4.5: Creation of symmetric key

2. Index update - Updating the shared index, shown in Fig. 4.6, consists of
sharing specific information that the entity decides to share with all re-
maining entities in a trusted group. To do this, the user defines which data
will be indexed. The retrieval of matching data from its MISP instance is
then performed. For each obtained value, a trapdoor is computed using
an HMAC function (HMAC (KABC,Value)) using the shared key of the
group. In addition to the trapdoor, the unique identifier of the entity that
updated the index is sent, as well as a signature of the created trapdoor
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({IDB; {HMAC (KABC,Value)}PrivKB
}KABC

).
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Update
configuration

Data request

Data results

HMAC(KABC, Value)

For each value in data results

HMAC(KABC, Value); {IDB;{HMAC(KABC, Value)}PrivKB}KABC

Figure 4.6: Shared index update

3. Searching - The search process is presented in Fig. 4.7 and it is sim-
ilar to the search made directly to a MISP instance. The user spec-
ifies a value to be searched. Then, the related trapdoor is generated
(HMAC (KABC,Value)) and used to query the shared index for a match.
If the trapdoor exists in the index, the index will reply with a list of entities
that reported the presence of the trapdoor. If the list is not null, a data
request is made to the reported entities. The request includes the query
being made, but also a session key created for encrypting the response
(IDA; Ts; {Ts; IDA; Q; SEK}PubKB

).
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Figure 4.7: Data search through a shared index
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Implementation

This chapter details the implementation of a prototype comprehending the main
functions of the proposed solution. The main functions are assumed to be
the implementation of the initial setup, the peering configuration, the data
synchronisation, and data sharing while using a remote index. Each of these
functions will be detailed in the following sections.

5.1 Initial setup

The initial setup is a process executed only once and is responsible for setting up
the two basic elements of the system: the Universally Unique Identifier (UUID)
and the public-private key pair. The UUID is the unique identifier of the entity
and is crucial for the communication between entities. This value enables an
entity to identify the sender of each message and thus enables the verification
of the integrity of each message. The public-private key pair guarantees that an
entity can send messages to other entities in a confidential way. The asymmetric
encryption schema is used on almost all processes of communication used by
this system except for data exchange where usually the size of the message is
expected to be larger and the symmetric encryption approach is used for its
effectiveness in encrypting larger amounts of bits. Section 5.3.4 details the use
of both symmetric and asymmetric encryption in order to achieve confidentiality
and integrity within the proposed solution.

Both elements are generated and stored in files and the reference saved on
the environment variables of the system. In the case of the public-private key
pair, the environment variable store the file path of the keys. By being stored in
the file system, this information enables system recovery from reboots or other
transient failures. In order to accomplish this, before the generation process,
the system verifies if there are any files with this information and tries to load
the data, keeping the original information. As an additional verification, if
the system detects the existence files with information, it will then verify the
integrity of the information. If any of the previous conditions fails, the system
generates new values to be used.

1 const filePath = BASE_DIR + ’/uuid.txt’

2
3 if (!fs.existsSync(filePath)) {

4 const entity_uuid = uuidv4 ()

25
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5 fs.writeFileSync(filePath , entity_uuid , { encoding: ’utf -8’, flag

: ’w+’ })

6 }

7
8 const uuidFromFile = fs.readFileSync(filePath , ’utf -8’)

9
10 if (! validate(uuidFromFile)) {

11 const entity_uuid = uuidv4 ()

12
13 fs.writeFileSync(filePath , entity_uuid , { encoding: ’utf -8’, flag

: ’w+’ })

14
15 process.env.UUID = entity_uuid

16 } else {

17 process.env.UUID = uuidFromFile

18 }

Listing 5.1: UUID Generation

Listing 5.1 and Listing 5.2 show an excerpt that comprises the initial setup.
Listing 5.1 shows the configuration of the UUID. The first step (lines 1-6)
consists of verifying if there is a file uuid.txt containing the UUID value. If
not, a new value is generated (line 4) and stored within the file. The second
step (lines 8-18) consists of loading of the UUID value into the system. At this
moment, there is a file uuid.txt with one of the two possible values: the UUID
value generated previously by the system or the value given by the administrator
of the system. Therefore, it is necessary to validate the format of the value. If
the value is not valid (lines 10-16), the system generates a new one, stores it
within the file, and then the value is ready to be used. Otherwise, if the value
read from the file is valid, the system will use it.

1 function generateKeyPair () {

2 const nodeRSA = new NodeRSA ({})

3 const keys = nodeRSA.generateKeyPair (2048)

4
5 return {

6 private: keys.exportKey(’private ’),

7 public: keys.exportKey(’public ’)

8 }

9 }

10
11 const pubKeyFile = BASE_DIR + ’/public.pem’

12 const privKeyFile = BASE_DIR + ’/private.pem’

13
14 if (!fs.existsSync(pubKeyFile) || !fs.existsSync(privKeyFile)) {

15 const keys = generateKeyPair ()

16
17 fs.writeFileSync(pubKeyFile , keys.public , { encoding: ’utf -8’,

flag: ’w+’ })

18 fs.writeFileSync(privKeyFile , keys.private , { encoding: ’utf -8’,

flag: ’w+’ })

19 }

20
21 process.env.PRIV_KEY_FILE = privKeyFile

22 process.env.PUB_KEY_FILE = pubKeyFile

Listing 5.2: Key Pair Generation

Listing 5.2 is related to the configuration of the public-private key pair. The
process is very similar to the previous one. The system verifies if both the public
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and the private key exist and, if not, generates a new pair of keys (line 15). The
key generation (lines 1-9) makes use of an RSA module and generates a new key
pair with 2048 bits. If a new key pair needs to be generated, the system will
store them on the file system. Two environment variables are defined comprising
the path to these files.

5.2 Peering validation

The peering validation, described in section 4.2.2, is the process that enables the
secure communication between two entities. This process is performed after the
entity setup. An entity can be described by its UUID, URL, and the public key.
The validation of an entity is made by exchanging a nonce value and verifying
if this value remains the same at the end of the process. To do so, this value is
encrypted along with the UUID of the entity making the validation request and
the timestamp of when this request is made. The Listing 5.3 shows a segment
of the algorithm of a peering validation from the point of view of the entity
making the request for validation.

1 (...)

2
3 const toEncrypt = ‘${process.env.UUID};${currentTime };${nonce}‘
4
5 const publicKeyFileDir = entity.pub_key

6 const publicKeyFile = fs.readFileSync(publicKeyFileDir , ’utf -8’)

7
8 const encryptedContent = encryptMessage(toEncrypt , publicKeyFile)

9
10 const messageToSend = ‘${process.env.UUID};${currentTime };${

encryptedContent}‘

11
12 const response = await postRequest(‘${entity.url}/ entities/${

process.env.UUID}/peer -receiver ‘, { message: messageToSend })

13
14 /**

15 * responseParts [0] : UUID of entity who response the request

16 * responseParts [1] : Timestamp of the response

17 * responseParts [2] : Encrypted content of the response

18 */

19 const responseParts = response.message.trim().split(’;’)

20
21 if (responseParts.length != 3) return res.status (400).send({

22 message: ’Peer validation failed! Encrypted content of the

response does not match the encrypted content of the request ’

23 })

24
25 const myPrivateKeyFile = fs.readFileSync(process.env.PRIV_KEY_FILE ,

’utf -8’)

26
27 const decryptedContent = decryptMessage(responseParts [2],

myPrivateKeyFile)

28
29 // UUID;Ts;Nonce

30 const decryptedContentParts = decryptedContent.trim().split(’;’)

31
32 if (decryptedContentParts.length != 3) return res.status (400).send

({

33 message: ’Peer validation failed! Decrypted content of the

response does not have the correct format: UUID;Ts;Nonce ’
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34 })

35
36 if (responseParts [0] !== decryptedContentParts [0]) return res.

status (400).send({

37 message: ’Peer validation failed! UUID is different from the

UUID encrypted ’

38 })

39
40 const nonceMatch = decryptedContentParts [2] === nonce

41
42 if (! nonceMatch) return res.status (400).send({

43 message: ’Peer validation failed! Nonce value generated does

not match the nonce value from the response ’

44 })

45
46 const okStatus = await Status.findOne ({ where: { value: ’OK’ } })

47
48 if (entity.status_id !== okStatus.id) await Entity.update(

49 { status_id: okStatus.id },

50 { where: { id: uuid } }

51 )

52
53 (...)

Listing 5.3: Peering validation - Request

In the beginning of the process, the system generates a string (line 3) con-
taining the values to be encrypted. The entities use asymmetric encryption to
make requests, so the string is encrypted using the public key of the entity that
will receive the request (lines 5-8). The request is made to a specific route of
the entity and the request body is the message with the encrypted string (lines
10-12). The response message has the same format as the request message.
The message can be divided into three parts (entity UUID, timestamp, and the
encrypted content). After the decryption of the last part of the message (lines
25-34), the system will make two validations. The first one is to verify if the
UUID of the response matches with the UUID within the encrypted content.
Due to the possibility of external interference in the communication between en-
tities, it is necessary to check that the message has not been changed during the
transit (lines 36-38). The last verification consists of verifying if the nonce value
received matches the initial nonce value (lines 40-44). The peering between the
two entities is considered valid if the previous two validations are successful. In
this case, the entity status is updated to success (lines 46-51).

1 (...)

2
3 /**

4 * messageParts [0] : UUID of entity who made the request

5 * messageParts [1] : Timestamp of the request

6 * messageParts [2] : Encrypted content of the request

7 */

8 const messageParts = req.body.message.trim().split(’;’)

9
10 if (messageParts.length != 3) return res.status (400).send({

11 message: ’Bad format message. Expected: UUID;Ts;EncryptedString

’

12 })

13
14 if (req.params.uuid !== messageParts [0]) return res.status (400).

send({
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15 message: ‘Entity UUID do not match with UUID from the message

request!‘

16 })

17
18 const fromEntity = await Entity.findOne ({ where: { id: messageParts

[0] } })

19
20 if (! fromEntity) return res.status (400).send({

21 message: ‘Entity ${messageParts [0]} not found! Peer validation

is invalid!‘

22 })

23
24 const myPrivateKeyFile = fs.readFileSync(process.env.PRIV_KEY_FILE ,

’utf -8’)

25
26 const decryptedContent = decryptMessage(messageParts [2],

myPrivateKeyFile)

27
28 /**

29 * Extract nonce value

30 * Decrypted content format: UUID;Ts;Nonce

31 */

32 const decryptedContentParts = decryptedContent.trim().split(’;’)

33
34 if (decryptedContentParts.length != 3) return res.status (400).send

({

35 message: ’Bad format content decrypted. Expected: UUID;Ts;Nonce’

36 })

37
38 const toEncrypt = ‘${process.env.UUID};${currentTime };${

decryptedContentParts [2]}‘

39
40 const fromEntityPubKeyFileDir = fromEntity.pub_key

41
42 if (!fs.existsSync(fromEntityPubKeyFileDir)) return res.status (500)

.send({

43 message: ‘The entity ${uuid} doesn ’t have any public key

associated!‘

44 })

45
46 const fromEntityPublicKeyFile = fs.readFileSync(

fromEntityPubKeyFileDir , ’utf -8’)

47
48 const encryptedContent = encryptMessage(toEncrypt ,

fromEntityPublicKeyFile)

49
50 return res.send({ message: ‘${process.env.UUID};${currentTime };${

encryptedContent}‘ })

51
52 (...)

Listing 5.4: Peering validation - Response

Listing 5.4 shows the perspective of the entity that receives a new request
for peer validation. The main goal of this entity is to extract the nonce value
from the encrypted content of the message and send it back, encrypted with the
public key of the entity that made the request. To do so, firstly, it is necessary
to verify what entity is making the request. The entity can be found using the
UUID in the first section of the message (lines 14-22). Without the correct
UUID, the system will not be able to find the right public key to encrypt the
response, so the system will verify if the entity that makes the request is already
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configured in its database. The next steps are to decrypt the last section of the
message and extract the nonce value (lines 24-36). The system will encrypt the
nonce value with the UUID of the entity that corresponds to the request and
add a new timestamp (lines 38-48). The process ends with the response to the
request (line 50).

The peer validation process has one particularity: it is a unidirectional pro-
cess, which means that after the validation, the peering will be valid only in
the entity that requests the validation. On the other hand, the opposite peer
needs to request a peering validation if it wants its configuration to be valid. In
case of validation of only one of the two entities, only that one will be able to
make requests (still limited, since some processes require the validation of both
parties to work). However, it guarantees that the communication is carried out
correctly, according to the configurations previously made. Even if the valida-
tion is correct over time, this peer validation can repeated manually at will.
This allows the configuration status to be evaluated over time, enabling admin-
istrators to correct configuration errors that may occur on one of the entities
belonging to the peer.

5.3 Data synchronisation

Data synchronisation enables two entities to exchange data with each other.
This process can be divided into several sub-processes, such as: synchronisation
configuration, data control policies, data queries, and synchronisation requests.
The synchronisation configuration allows for defining the synchronisation peri-
odicity and works together with the data control policies to enable entities with
control over the data that will be exchanged with other entities. The query con-
sists of a structure that indicates the requirements for obtaining data. Finally,
a request must be formulated, including the query, so that the data exchange is
confidential and the data policies defined by both entities are complied with.

5.3.1 Synchronisation configuration

Synchronisation configuration is one of the key elements of the synchronisation
process. This is where one defines when the synchronisation is performed. The
relationship between the synchronisation configurations and entities is defined
as ’0..1:1’, i.e. for each entity only one configuration can be created, although
being optional.

A configuration is created through four properties: time, period, start date,
and end date. The time corresponds to the hour of the day in which the syn-
chronisation will be carried out. The period represents the synchronisation pe-
riodicity (for example, daily, weekly or monthly). Start and end date represent
the time interval during which this synchronisation will be in operation. Once
the configuration has been created, it has a status parameter that indicates
whether the synchronisation is active or not.

This configuration takes advantage of the node-schedule1 module that allows
for task scheduling mimicking the crontab command available on Linux systems.
The Listing 5.5 shows an excerpt of the function used to setup a configuration
and scheduling a synchronisation.

1https://www.npmjs.com/package/node-schedule
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1 (...)

2
3 const newDataInConfiguration = await DataInConfiguration.create ({

4 entity_id: uuid ,

5 configuration_period_id ,

6 configuration_time ,

7 configuration_start ,

8 configuration_end ,

9 is_active: true

10 })

11
12 const cronjobExpression = getCronScheduleExpression(

13 configuration_time ,

14 period.value ,

15 [configuration_start , configuration_end]

16 )

17
18 const jobName = ‘data_in_configuration_${uuid}‘
19
20 if (scheduledJobs[jobName ]) scheduledJobs[jobName ]. cancel ()

21
22 scheduleJob(jobName , cronjobExpression , (fireDate) => {

23 console.log(‘${jobName }: Data synchronization executed at ${
fireDate}‘)

24
25 mispSyncData(entity)

26 })

27
28 (...)

Listing 5.5: Synchronisation configuration

To set the timing of the synchronisation a crontab expression is required.
This expression is generated (lines 12-16) based on the four parameters entered.
An expression consists of a string that has five elements: minute, hour, day
of the month, month, and day of the week, in that order. For example, the
expression ’0 7 * 7-12 *’ indicates that the task will be executed at 07:00 every
day of the month between July and December in every day of the week. Once
the expression has been generated, it is already possible to schedule the syn-
chronisation. To avoid conflicts between schedules, a unique name composed of
the name of the task and the UUID of the entity (line 18) is created and any
existing old task with the same name is deleted (line 20). This configuration
can be updated or eliminated. The list of schedules is always updated according
to the user’s options.

5.3.2 Data control policies

The data control policies include two major groups: input policies and output
policies. Input policies control the data that enters the system and output
policies control the data that a system provides to external systems.

As described at the beginning of Section 5.3, data control policies work in
conjunction with the synchronisation configuration defined for an entity. More
precisely the input policies indicate which data are to be obtained in the syn-
chronisation. On the other side is the entity that receives the synchronisation
request and this is where the data output policies act, as they control the data
that will be shared, regardless of the request made.



32 CHAPTER 5. IMPLEMENTATION

A policy has two parameters to be defined: value and application. The
application parameter indicates the type of policy, in this case, the value IN,
for input policies, or the value OUT, for output policies. The value parameter
corresponds assumes the form of a JavaScript Object Notation (JSON) object
where the key is the IoC type. For example, an input policy with the value
{ ’ip-src’ : ’192.168.1.1’ } indicates that during the synchronisation process a
request will be made for all events mentioning this IoC. On the other hand,
an output policy with this same value indicates that the entity will reject any
search that contains this IoC.

The policies have a 1..*:1..* relationship with the entities since an entity
can have several policies associated and a policy can be associated with several
entities. This way, there are no duplicated policies, making the policy definition
process clearer and more efficient.

1 const uuid = req.params.uuid

2 const { value , in_applied } = req.body

3
4 try {

5
6 const entity = await Entity.findByPk(uuid)

7
8 if (! entity) return res.status (404).send({

9 message: ‘Entity ${uuid} not found!‘

10 })

11
12 const policyKey = Object.keys(value)[0]

13
14 const dataSelector = await DataSelector.findOne ({

15 where: { value: policyKey }

16 })

17
18 if (! dataSelector) return res.status (400).send({

19 message: ‘{${policyKey }} key not recognized!‘

20 })

21
22 const valueStr = JSON.stringify(value)

23 const policy_application = in_applied ? ’IN’ : ’OUT’

24
25 const existingPolicy = await DataPolicy.findOne ({

26 where: {

27 value: valueStr ,

28 policy_application

29 }

30 })

31
32 if (existingPolicy) {

33 const entityHavePolicy = await entity.hasPolicy(existingPolicy)

34
35 if (entityHavePolicy) return res.status (400).send({

36 message: ‘Entity ${uuid} already have this policy ‘,

37 data: existingPolicy

38 })

39
40 await entity.addPolicy(existingPolicy)

41
42 return res.send({

43 message: ‘Policy added to entity ${uuid}‘,
44 data: existingPolicy

45 })

46 }
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47
48 const newPolicy = await DataPolicy.create ({

49 value: valueStr ,

50 policy_application ,

51 is_active: true

52 })

53
54 await entity.addPolicy(newPolicy)

55
56 return res.send({

57 message: ‘Policy added to entity ${uuid}‘,
58 data: newPolicy

59 })

60
61 } catch (error) {

62 return res.status (500).send({ message: error.toString (), error:

error.response ? error.response.data : null })

63 }

Listing 5.6: Policy configuration

Listing 5.6 describes the code responsible for configuring a data policy for
an entity (line 1). After verifying the existence of the entity that will receive
the policy (lines 6-10), the first step consists in verifying that the type of IoC
received is recognised by the MISP platform (lines 12-20). The list of possible
values was previously added to the system database considering the list provided
by the official documentation2 of the MISP platform. After this process, the
policy is converted into a string and receives the value IN or OUT depending on
the application type (lines 22-23). The last step consists in creating the policy.
The system firstly, checks for the existence of a policy with the same application
(lines 25-30). If the policy already exists, it is also necessary to verify if that
policy is already associated with the entity, and in this case, it is only necessary
to create the policy association (lines 32-46). If it does not exist, then it is only
necessary to create the policy and its association with the entity (lines 48-54).
It should also be mentioned that the policy maintains its active status. This
value may be changed according to the system administrator’s preference.

5.3.3 Data query

A query consists of a JSON object that describes the information to be searched
for, as shown in Listing 5.7. Three elements are included in this object: the
entity that creates the query, the timestamp, and the data query groups. This
last element is the one that comprises the values to be searched for. In the case
of a normal query, the user indicates which data will constitute the query in
an immediate search. In the case of data synchronisation, the query’s values
correspond to the policies previously configured for each entity. The synchroni-
sation process is performed by the system periodically according to the existing
configuration, therefore, the system filters the input policies for a specific entity,
builds the query, and sends the request to the entity.

1 function queryBuilder(values) {

2 return {

3 created_by: process.env.UUID ,

4 created_at: ‘${Date.now()}‘,

2https://www.misp-project.org/datamodels/#types
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5 query_groups: [

6 {

7 condition: "OR",

8 values: values.map(v => {

9 return {

10 type: v.type ,

11 value: v.value

12 }

13 })

14 }

15 ]

16 }

17 }

Listing 5.7: The queryBuilder Function

Listing 5.7 shows the function to build the query. This function is used for
any search process performed by the system, either in data synchronisation pro-
cesses or even in data search with the use of a shared index. The query respects
a specific schema. Since the system allows a user to create queries and exe-
cute them (for example, manually or through an external frontend application),
this control must exist. This way, the system can detect irregularities in the
query format before any query execution, avoiding failures during this process.
In the case of data synchronisation, the query is created by the system itself,
already respecting the correct structure, meaning that the schema validation is
not applied.

5.3.4 Synchronisation request

The message format of a data synchronisation request is similarly to a peer
validation request, as mentioned in section 4.2.2. All requests made between
two entities consist of a message that includes the UUID of the entity making
the request, the timestamp of the request, and an encrypted content. The
difference between the types of requests is in the encrypted content. In the case
of a synchronisation request, the encrypted content will comprise the query to
be conducted. The data synchronisation process uses both asymmetric and
symmetric encryption. Since symmetric encryption is more efficient for large
amounts of data, the security and confidentiality of the secret key must be
guaranteed. Therefore, the key is attached to the encrypted content (only known
to the entity making the request and the entity receiving the request) and is
valid for only one request, which means it is not reusable and a new secret key
is created for each data request made.

1 async function getValidPolicies(entity) {

2 const inPolicies = await entity.getPolicies ({

3 where: { policy_application: ’IN’ }

4 })

5
6 return inPolicies.filter(p => p.is_active === true).map(p => {

7 const policy = JSON.parse(p.value)

8 const keyPolicy = Object.keys(policy)[0]

9
10 return {

11 type: keyPolicy ,

12 value: policy[keyPolicy]

13 }
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14 })

15 }

Listing 5.8: Function used for input policy filtering

As mentioned in section 5.3.2, the data that one entity requests from another
entity in a synchronisation process corresponds to the input policies that a user
configures. Listing 5.8 shows the function that, given an entity as input, returns
all valid configured input policies. In this case, a valid input policy has type IN
(lines 2-4) and is active at the time of synchronisation (line 6). The response
of this function consists of a list of objects with two parameters: the IoC type
and the IoC value (lines 10-13). In this way, this structure fits with the query
construction function, presented in listing 5.7.

1 (...)

2
3 const currentTime = Date.now()

4
5 const queryValues = inputQueryValues ? inputQueryValues : await

getValidPolicies(entity)

6 const query = queryBuilder(queryValues)

7
8 const sek = generate256BitKeyLength(‘${process.env.UUID};${

currentTime }‘)

9
10 const toEncrypt = ‘${process.env.UUID};${currentTime };${JSON.

stringify(query)};${sek}‘
11
12 const publicKeyFileDir = entity.pub_key

13 const publicKeyFile = fs.readFileSync(publicKeyFileDir , ’utf -8’)

14
15 const encryptedContent = encryptMessage(toEncrypt , publicKeyFile)

16 const messageToSend = ‘${process.env.UUID};${currentTime };${
encryptedContent}‘

17
18 const response = await postRequest(‘${entity.url}/ entities/${

process.env.UUID}/search -receiver ‘, { message: messageToSend })

19
20 const messageReceived = symmetricDecrypt(sek , response.message)

21
22 /**

23 * messageParts [0] : UUID of entity who made the response

24 * messageParts [1] : Timestamp of the response

25 * messageParts [2] : Data attached to the response

26 */

27 const messageParts = messageReceived.trim().split(’;’)

28
29 const eventData = JSON.parse(messageParts [2])

30
31 if (eventData.query_groups [0]. length === 0) {

32 console.log(‘Entity ${entity.id} did not return any results. The

synchronization is completed !‘)

33 return

34 }

35
36 for (let eventObject of eventData.query_groups [0]. results) {

37
38 console.log(‘Verifying the existence of event: ${eventObject.info

}‘)

39
40 const exists = await getEvent(eventObject.info)
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41
42 if (exists) {

43 console.log(‘> Event: ${eventObject.info} - already exists on $
{process.env.MISP_API}‘)

44
45 await addAttributesToEvent(eventObject.attributes , exists.id)

46
47 } else {

48
49 console.log(‘> Adding event: ${eventObject.info}‘)
50
51 await addEvent(eventObject)

52
53 const eventCreated = await getEvent(eventObject.info)

54
55 await addAttributesToEvent(eventObject.attributes , eventCreated

.id)

56
57 }

58 }

59
60 (...)

Listing 5.9: Data synchronisation request

Listing 5.9 shows the process of data synchronisation by the entity sending
the request. The first step consists in forming the data query based on the
valid policies defined for it (lines 5-6). Next, a session key is created, which will
be used to encrypt the response of the request (line 8). The function receives,
as input, an arbitrary message and, to avoid key repetition, the hash function
receives the UUID of the entity and the timestamp of the moment, since the
timestamp allows greater unpredictability in the result of the final key. From
this moment on, the process is similar to the peer validation process (lines 10-
18), where both the query and the session key are encrypted with the public
key of the target entity resulting in the message:

IDA;Ts; {IDA;Ts;NA;Q;SEK}PubKB
(5.1)

The response to the synchronisation request is encrypted with the session
key embedded in the request. The final step consists of inserting the obtained
information into the MISP platform. After decrypting the response, the system
verifies if the result has search groups with data (lines 31-34). The non-existence
of data in the response has one of two possible causes: (1) the entity that
received the request did not find information in its MISP instance that satisfies
the conditions described in the query, or (2) the entity that receives the request
also applies policies, in this case, data output policies to control the information
that leaves its system. This control process will be described on Listing 5.10
related to the entity that received the synchronisation request.

If there is data in the response, the synchronisation process continues. To
avoid duplication of information, it is necessary to check if there is already
any MISP event similar to the events that are in the results list (lines 36-58).
This is because there may be cases where there is an update of some previously
synchronised event. In this case, it is also verified which IoCs are associated
with that event. A comparison of the existing IoCs with the IoCs present in the
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search results is then made and the system updates the existing event with the
new IoCs found in the response.

On the other side of the synchronisation process is the entity that receives the
request. On this side, three steps are performed: policy enforcement, data search
in the MISP instance, and response to the request. The first step, previously
mentioned, consists of applying the policies that control the entity’s data output,
and Listing 5.10 shows the function that performs this control based on the
received query. This may result in the final search query being different from
the query received, because the system will remove all values that do not exist
in its data output policies from the query. Please note that a data output policy
corresponds to a value that can be searched by other entities.

1 async function queryValidator(entity , query) {

2 const entityPolicies = await entity.getPolicies ({ where: {

policy_application: ’OUT’ } })

3
4 let validatedGroups = []

5
6 for (let group of query.query_groups) {

7
8 const validValues = group.values.filter ((value , index , arr) =>

{

9 const valueStr = ‘{\"${value.type }\":\"${value.value }\"}‘
10
11 const policyMatch = entityPolicies.find(p => p.value ===

valueStr)

12
13 return policyMatch !== undefined

14 })

15
16 group.values = validValues

17
18 validatedGroups.push(group)

19
20 }

21
22 const finalGroups = validatedGroups.filter(g => g.values.length

!== 0)

23
24 query.query_groups = finalGroups

25
26 return query

27 }

Listing 5.10: Output Policy Control Function

This control function receives two parameters: the query received and the
entity that made the synchronisation request. The entity is needed to identify
which policies should be applied (line 2). Having in its possession the policies of
the entity, the system makes a comparison of the policies with the existing values
in the query’s search groups (lines 6-20). For each search group, a filtering of
the values that respect the existing policies is performed (lines 8-14). For each
value of the search group, a string representation is created (line 9). Those
values whose string representation coincides with the string representation of
one of the entity’s policies are considered valid (lines 11-13). At the end of this
filtering process, there may be search groups with fewer values than the initial
amount of values or even empty groups, indicating that the group was blocked
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by the configured policies. In this case, it does not make sense for these groups
to continue in the query and therefore they are removed (lines 22-24).

After the query is validated, it is submitted to the MISP instance for data
searching. The search result will have the format based on the query inserted,
that is, the base structure remains with the addition of the results found. The
number of searches carried out will be equal to the number of search groups
available in the query, which means that for each group a new field, called
”results” will be added and will contain the search results of that group of
values.

1 async function mispSearch(query) {

2
3 query.created_by = process.env.UUID

4
5 for (let group of query.query_groups) {

6
7 const tags = group.values.map(v => v.type)

8 const values = group.values.map(v => v.value)

9
10 const eventAttributes = await getMISPAttributes(tags , values)

11
12 if (! eventAttributes) {

13 group.results = []

14 continue

15 }

16
17 const events = await getMISPEvents(Object.keys(eventAttributes)

)

18
19 events.forEach(event => {

20 event.attributes = eventAttributes[event.id]

21 })

22
23 group.results = events

24
25 }

26
27 query.created_at = Date.now()

28
29 return query

30 }

Listing 5.11: MISP search function

Listing 5.11 shows the search function to query the MISP platform and
is based on the API provided in the official documentation3. The first part
consists of searching for IoCs that match the query values (lines 7-10). The
result of the search will be a list of MISP event IDs that have one of these IoCs
associated. If the list is empty then there are no events in the MISP database
with association to the entered IoCs. Knowing which event IDs satisfy the
query, the system makes a new request to the MISP instance, this time in order
to obtain all the information about these events (line 17). The IoCs found in
the previous request are added to the corresponding MISP event and the final
results are added to the group in the query (lines 19-23). To finish the process,
the timestamp is updated to the time the query was performed (line 27). The

3https://www.misp-project.org/documentation/openapi.html
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search results are then encrypted with the session key of this specific request
and the response will have the following structure:

{IDB ;Ts;Data}SEK (5.2)

Any data request made will be interpreted as a data search and the system
will save each search in a search history. Each entity will have its search history
divided into two types of searches: incoming and outgoing searches. Incoming
searches correspond to data requests made by external entities and are classified
as ”IN”. Outgoing queries are data queries made to external entities, that is, the
sending of a query to another entity, and are classified with the value ”OUT”.
This data set can be interesting for repeating old queries or even for statistical
interests.

5.4 Data sharing through a shared index

The sharing of data using a shared index is the most relevant functionality of
this implementation. Its purpose is to allow multiple entities to have a common
means of sharing information. A shared index is used in situations where mul-
tiple entities agree to form an information sharing group. This means that the
entities will have permission to update and search the shared index. This index
will contain references to the information existing in the MISP instances of each
one of the entities forming the group. When an entity performs a search over
the indexed data, the result of the search will be the identification of the entity
that has relevant information about that search. Consequently, the entity can
make data synchronisation requests to the entities that reported having related
information.

The information sharing functionality with shared index can be divided into
four main processes: the creation of sharing groups, symmetric key construction,
shared index creation and update, and shared index search.

5.4.1 Sharing groups

A sharing group refers to a mutual connection between two or more entities
that decide to share information. However, it is important to mention that one
entity can be part of multiple groups. The creation of a sharing group starts by
defining the name of the group. The name of the group will be used to guarantee
its uniqueness. Subsequently, a relation is made with the entities which will be
part of the group, with all agreeing on a symmetric key to be used by all.

1 (...)

2
3 const existedSharedGroup = await SharedGroup.findOne ({ where: {

name } })

4
5 if (existedSharedGroup) return res.status (400).send({

6 message: ‘Shared group ${name} already exists!‘

7 })

8
9 const initialStatus = await Status.findOne ({ where: { value: ’

PENDING ’ } })

10
11 if (! initialStatus) return res.status (400).json({
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12 message: ‘PENDING status not found! Insert , please insert first.‘

13 })

14
15 const newSharedGroup = await SharedGroup.create ({

16 name ,

17 status_id: initialStatus.id

18 })

19
20 (...)

Listing 5.12: Shared Group Creation

Listing 5.12 shows the partial code for the function to create a new shared
group. The entered group’s name is checked against the existing groups to avoid
conflict (lines 3-7). The name must be unique. If there is no conflict, the new
group is created having an initial status of PENDING (lines 9-18). This status
informs the entity’s users that the sharing group is not fully configured. The
configuration is completed after adding the entities to the group and building
the symmetric key, discussed in Section 5.4.2. At that moment, the status will
be changed to OK or ERROR depending on the result of the configuration of
the new group.

1 (...)

2
3 const sharedGroup = await SharedGroup.findByPk(id)

4
5 if (! sharedGroup) return res.status (404).send({

6 message: ‘Shared group ${id} not found!‘

7 })

8
9 const entity = await Entity.findByPk(uuid)

10
11 if (! entity) return res.status (404).send({

12 message: ‘Entity ${uuid} not found!‘

13 })

14
15 const hasEntity = await sharedGroup.hasEntity(entity)

16
17 if (hasEntity) return res.status (400).send({

18 message: ‘Shared group ${sharedGroup.name} already have entity ${
entity.id} associated!‘

19 })

20
21 await sharedGroup.addEntity(entity)

22
23 (...)

Listing 5.13: Adding Entity to Shared Group

The next step in setting up a sharing group is to add the entities that will
make up that group and Listing 5.13 shows the partial function of this process.
It is important to mention that a prior configuration of the entity in the system
is required, as the system needs to recognise that the entity exists in its database
(lines 9-13). The relationship between sharing groups and entities is many-to-
many, which means that one group can have several entities associated with it
and one entity can be associated with several groups. The last step, described in
the listing (lines 15-21), has the purpose of verifying if the association between
an entity and a group already exists, thus avoiding duplication.



5.4. DATA SHARING THROUGH A SHARED INDEX 41

5.4.2 Symmetric key generation

Each shared group’s symmetric key is generated with contributions from all
entities in the group. The resulting key will be used by all the members of
the group to manipulate the data existing in the shared index. The key has
two main uses: in the creation of the trapdoors (for both index update and
search); and to encrypt of the digital signature of the trapdoor that will be
placed in the index. The symmetric key is built as described in Section 4.2.4.
This implies that the algorithm shall produce the same key in all entities of a
given group. As shown in Figure 4.5, the key construction process produces a
chain reaction, since the entity that decides to create the key first will trigger
a reaction in the other entities in the group, causing them to also perform the
key construction process. Before the final moment of key construction, each
entity must contain a number of contributions equal to the number of entities
present in the group, i.e., its own contribution together with the contribution
of the other group entities. Having all these ingredients, the system sorts the
contributions (hashes) and applies a hash function to obtain the final symmetric
key.

Two preconditions are required for the key construction process to work
properly on all entities in the group. The first condition is that all entities create
the group with the same name since the group name will always be unique. The
second condition is that the associations between groups and entities must be
completed in each member of the group in order to avoid contradictory results in
the different entities that compose the group. The algorithm was also prepared
to verify that the set of UUIDs of the entities are equal in any entity present in
the group.

1 (...)

2
3 const groupEntities = await sharedGroup.getEntities ()

4
5 // The system cannot generate the key without entities associated

to group

6 if (groupEntities.length === 0) return res.status (400).send({

7 message: ‘Keygen failed! Group "${sharedGroup.name}" does not

have any entity associated!‘

8 })

9
10 /**

11 * Get the group hash or generate a new one

12 * This hash is the contribute to generate the symmetric key for

the group

13 */

14 const groupHash = await getEntityCurrentHashGroup(id, currentTime)

15
16 // Array to store the hashes from other entities of the group

17 addHashToGroup(sharedGroup.name , process.env.UUID , groupHash)

18
19 // Request to other group entities their hashes to build the final

key

20 for (entity of groupEntities) {

21
22 // Build the message to send to the entity

23 const messageToSend = buildSecretKeyEndpointMessage(entity ,

currentTime , groupHash , res , sharedGroup.name , groupEntities)

24
25 const response = await postRequest(‘${entity.url}/ entities/${
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process.env.UUID}/keygen -receiver ‘, { message: messageToSend })

26
27 /**

28 * responseParts [0] : UUID of entity who made the request

29 * responseParts [1] : Timestamp of the request

30 * responseParts [2] : Encrypted content of the request

31 */

32 const responseParts = response.message.trim().split(’;’)

33
34 if (responseParts.length != 3) return res.status (400).send({

35 message: ’Bad format message. Expected: UUID;Ts;EncryptedString

’

36 })

37
38
39 // Load my private key to decrypt the content

40 const myPrivateKeyFile = fs.readFileSync(process.env.

PRIV_KEY_FILE , ’utf -8’)

41
42 // Decrypt the request

43 const decryptedContent = decryptMessage(responseParts [2],

myPrivateKeyFile)

44
45 /**

46 * decryptedContentParts [0] : UUID of entity who made the request

47 * decryptedContentParts [1] : Timestamp of the request

48 * decryptedContentParts [2] : Entity hash contribute

49 */

50 const decryptedContentParts = decryptedContent.trim().split(’;’)

51
52 if (decryptedContentParts.length != 3) return res.status (400).

send({

53 message: ’Bad format content decrypted. Expected: UUID;Ts;

GroupName;Entities;Hash’

54 })

55
56 // Checks if the UUID of the response matches with the encrypted

UUID

57 if (responseParts [0] !== decryptedContentParts [0]) return res.

status (500).send({

58 message: ’Decrypt error: UUID of the response does not match

with the encrypted UUID’

59 })

60
61 // Add the hash received to the group

62 addHashToGroup(sharedGroup.name , decryptedContentParts [0],

decryptedContentParts [2])

63
64 }

65
66 // Final key , using all the contributes collected

67 await generateFinalSecretKey(sharedGroup)

68
69 res.send({ message: ’Secret key generated with success!’ })

70
71 (...)

Listing 5.14: Symmetric key Generation - Initial request

Listing 5.14 shows a section of code that processes the initial key generation
request. The first step is to check if there are entities associated with the
group (lines 3-8). If there are no entities in the group, it is not possible to
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send requests and, in this case, the process is cancelled. The next step of the
process is the generation of the contribution hash that will be used in the final
symmetric key (line 14). The function getEntityCurrentHashGroup receives the
group identifier in question and the timestamp of the moment when the request
is made. Before generating a new hash, the function checks whether the system
has previously generated a hash for this group, this is because the generated
hash is saved for reuse, but only for the designated group. Different groups have
different hash contributions. If there is no hash saved, a new hash contribution
is generated. The resulting contribution be stored in a temporary list (line 17).
This temporary list is responsible for storing all contributions of all entities.
After the final key generation, there is no need to store the hashes contributions
received from the other entities, so the list is deleted. From this moment on, it
is already possible to send the hash contribution request for each entity in the
group (lines 20-64). The first step is to build the request (line 23). This request
has the same format as any other request made between entities which consist
of an entity identifier, a timestamp, and an encrypted content. The encrypted
content has some differences compared to the encrypted content used in the
peering validation process described in Section 5.2. In this case, three main
elements are added: the group name, the list of identifiers of the entities that
belong to the group, and the contribution hash. The group name and the list of
entity identifiers will be used to guarantee the integrity of all the entities that
belong to the group. The contribution hash will enable the other entities to
build the final symmetric key as well. The response of the request made to each
entity is decrypted (lines 25-59) where integrity checks are also made. After this
verification, the hash contribution sent by the entity is extracted and added to
the temporary list (line 62). When the requests to all entities are finalised, the
system builds the final symmetric key.

1 (...)

2
3 /**

4 * decryptedContentParts [0] : UUID of entity who made the request

5 * decryptedContentParts [1] : Timestamp of the request

6 * decryptedContentParts [2] : Group name that the entity belongs

7 * decryptedContentParts [3] : List of entities who belongs to the

group

8 * decryptedContentParts [4] : Hash shared by entity to build the

shared key

9 */

10 const decryptedContentParts = decryptedContent.trim().split(’;’)

11
12 if (decryptedContentParts.length != 5) return res.status (400).send

({

13 message: ’Bad format content decrypted. Expected: UUID;Ts;

GroupName;Entities;Hash’

14 })

15
16 // Checks if the UUID of the request matches with the encrypted

UUID

17 if (messageParts [0] !== decryptedContentParts [0]) return res.status

(500).send({

18 message: ’Decrypt error: UUID of the request does not match with

the encrypted UUID’

19 })

20
21 // Checks if the entity have a shared group with the name received
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22 const sharedGroup = await SharedGroup.findOne ({ where: { name:

decryptedContentParts [2] } })

23
24 if (! sharedGroup) return res.status (500).send({

25 message: ‘Entity ${process.env.UUID} does not have the group "${
decryptedContentParts [2]}"‘

26 })

27
28 const groupEntitiesFromDatabase = await sharedGroup.getEntities ()

29 const groupEntitiesFromRequest = JSON.parse(decryptedContentParts

[3])

30
31 // Check if the entity groups matches

32 const groupEntitiesMatch =

groupEntitiesMatchWithGroupEntitiesDatabase(

groupEntitiesFromRequest , groupEntitiesFromDatabase)

33
34 if (! groupEntitiesMatch) return res.status (500).send({

35 message: ‘Error: Group ${sharedGroup.name} does not match on both

entities. The group must have the same configuration on each

entity ‘

36 })

37
38 const myHash = await getEntityCurrentHashGroup(sharedGroup.id ,

currentTime)

39
40 // Add my hash to group and the hash from the request

41 addHashToGroup(sharedGroup.name , process.env.UUID , myHash)

42 addHashToGroup(sharedGroup.name , decryptedContentParts [0],

decryptedContentParts [4])

43
44 // Request the remaining hashes to the other entities of the group

45 for (let entityDB of groupEntitiesFromDatabase) {

46
47 // Checks if already have the have of the current entity

48 // If exists , go to next entity

49 if (entityHashExists(entityDB.id, sharedGroup.name)) continue

50
51 // Build the message to send to the entity

52 const messageToSend = buildSecretKeyEndpointMessage(entityDB ,

currentTime , myHash , res , sharedGroup.name ,

groupEntitiesFromDatabase)

53
54 const response = await postRequest(‘${entity.url}/ entities/${

process.env.UUID}/keygen -receiver ‘, { message: messageToSend })

55
56 /**

57 * responseParts [0] : UUID of entity who made the request

58 * responseParts [1] : Timestamp of the request

59 * responseParts [2] : Encrypted content of the request

60 */

61 const responseParts = response.message.trim().split(’;’)

62
63 if (responseParts.length != 3) return res.status (400).send({

64 message: ’Bad format message. Expected: UUID;Ts;EncryptedString

’

65 })

66
67 // Load my private key to decrypt the content

68 const myPrivateKeyFile = fs.readFileSync(process.env.

PRIV_KEY_FILE , ’utf -8’)

69
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70 // Decrypt the request

71 const decryptedContent = decryptMessage(responseParts [2],

myPrivateKeyFile)

72
73 /**

74 * decryptedContentParts [0] : UUID of entity who made the request

75 * decryptedContentParts [1] : Timestamp of the request

76 * decryptedContentParts [2] : Entity hash contribute

77 */

78 const decryptedContentParts = decryptedContent.trim().split(’;’)

79
80 if (decryptedContentParts.length != 3) return res.status (400).

send({

81 message: ’Bad format content decrypted. Expected: UUID;Ts;

GroupName;Entities;Hash’

82 })

83
84 // Checks if the UUID of the response matches with the encrypted

UUID

85 if (responseParts [0] !== decryptedContentParts [0]) return res.

status (500).send({

86 message: ’Decrypt error: UUID of the response does not match

with the encrypted UUID’

87 })

88
89 // Add the hash received to the group

90 addHashToGroup(sharedGroup.name , decryptedContentParts [0],

decryptedContentParts [2])

91
92 }

93
94 // Response message

95 const entityResponse = buildSecretKeyEndpointMessage(entity ,

currentTime , myHash)

96
97 // Final key , using all the contributes collected

98 await generateFinalSecretKey(sharedGroup)

99
100 return res.send({ message: entityResponse })

101
102 (...)

Listing 5.15: Symmetric key Generation - Receiving a request

Listing 5.15 shows the code section of an entity that receives a request for
the construction of a shared symmetric key. After obtaining the decrypted
content of the request (line 10-14), the system performs some checks to ensure
the integrity of the process. The identifier of the entity that made the request
is checked against the identifier extracted from the encrypted content (lines 17-
19), then existence of a sharing group with the same name is verified (lines
22-26), and, finally, the entity that made the request is checked to against the
list of the entities that form the group. This verification is done by comparing
the list of identifiers of entities extracted from the encrypted content of the
request with the list of identifiers of entities obtained from its own database
(lines 28-36). After these checks, the process is very similar to the one shown
in Listing 5.14. The system starts by getting its contribution hash (line 38),
creates the temporary list with the existing contribution hashes (lines 41-42),
and finally will perform the remaining requests for contribution hashes (lines
45-92). However, there is one difference compared to the process described in
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Listing 5.14. The system will only send requests to those entities for which it
does not yet have the corresponding contribution hash (line 49). This condition
is controlled by its presence in the temporary list. At this point, the entity
represented by Listing 5.15 already has two contribution hashes: it is own and
the one received by the incoming request. Therefore, it will only be necessary
to make requests to the remaining entities of the group. If this entity is the end
of the chain, then there will be no more requests, because the temporary list of
the group’s contribution hashes is already complete, it is only necessary to send
its contribution hash to the requesting entities.

5.4.3 Shared Index Update

The process of updating a shared index was developed so that an entity shares
part of its information with a restricted group of entities that make up a shar-
ing group in a confidential manner and guaranteeing the integrity of all the
information exchanged. The confidentiality of the information existing in the
shared index is guaranteed by the use of the final symmetric key, described in
the previous section. The integrity of this information is guaranteed through
the use of the public-private key pairs of the entities belonging to the group.

The shared index was implemented using a remote Mongo database. This
type of database does not require a fixed structure and works with JSON struc-
tures, which is ideal for allocating the created indexes. The location of the index
also requires agreement between all participating entities. After agreeing on the
index, all entities update their group by creating a configuration. Of note is the
fact that all information stored within this database is fully encrypted.

The configuration of an index is very similar to the existing configuration
of normal data synchronisation, described in Section 5.3.1. The configuration
defines the periodicity of the execution of the index update process and, in
this case, the user defines the period and the moment of its execution. The
relation between sharing groups and index configurations is one-to-one, that is,
for each sharing group only one index can be defined, and therefore only one
configuration exists.

1 (...)

2
3 const sharedGroup = await SharedGroup.findByPk(id)

4
5 if (! sharedGroup) return res.status (400).send({

6 message: ‘Group ${id} not found!‘

7 })

8
9 const existingConfiguration = await sharedGroup.

getIndexConfiguration ()

10
11 if (existingConfiguration) return res.status (400).send({

12 message: ‘There is already a configuration for group ${
sharedGroup.name}!‘

13 })

14
15 const period = await Period.findByPk(update_period_id)

16
17 if (! period) return res.status (400).send({

18 message: ‘Period with ID ${update_period_id} not found!‘

19 })

20
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21 const newIndexConfiguration = await sharedGroup.

createIndexConfiguration ({

22 index_url ,

23 update_period_id ,

24 update_time ,

25 is_active: true

26 })

27
28 const cronjobExpression = getCronScheduleExpression(

29 update_time ,

30 period.value

31 )

32
33 const jobName = ‘index_configuration_${id}‘
34
35 if (scheduledJobs[jobName ]) scheduledJobs[jobName ]. cancel ()

36
37 scheduleJob(jobName , cronjobExpression , (fireDate) => {

38 console.log(‘${jobName }: Index update executed at ${fireDate}‘)
39
40 updateSharedGroupIndex(id)

41 })

42
43 (...)

Listing 5.16: Configuration of the Creation of a Shared Index

Listing 5.16 shows the partial function of creating a new index configuration
for a sharing group. Three parameters are required to create a new configu-
ration: the address of the Mongo database where the index is to be located,
the index update period, and the update time. The system starts by check-
ing whether the indicated share group exists (lines 3-7) and, if so, whether the
group already has an index configuration (lines 9-13). For a new configuration
to be created, the group must be previously created and cannot have any index
configuration associated with it. After this verification, the process is similar
to the creation of a synchronisation configuration. The index update task is
scheduled based on the update period and time specified by the user (lines 15-
41). The name of the scheduled task includes the task type concatenated with
the entity identifier (line 33), thus avoiding name conflicts between the various
tasks scheduled by the system. For the index configuration to work, it is also
necessary to configure which information will be shared on the index. This in-
formation corresponds to the IoCs that the user wants to share with the other
entities in the group.

1 async function updateSharedGroupIndex(sharedGroupId) {

2
3 const sharedGroup = await SharedGroup.findByPk(sharedGroupId)

4 const indexConfiguration = await sharedGroup.

getIndexConfiguration ()

5
6 // Execute the update only if the configuration is enabled

7 if (indexConfiguration.is_active) {

8
9 const mongoClient = await mongoose.connect(indexConfiguration.

index_url)

10
11 // Get the values associated to the configuration and extract

her value
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12 const configurationValues = await indexConfiguration.

getConfigurationValues ()

13 const jsonValues = configurationValues.map(v => v.value)

14
15 console.log(‘${jsonValues.length} values founded ...\n‘)

16
17 // Key used to ensure the data confidentiality

18 const secretKey = sharedGroup.shared_index_key

19
20 for (value of jsonValues) {

21
22 // MISP request to verify if the value exists in our MISP

database

23 const iocExists = await iocExistsInMISP(value)

24
25 console.log(‘${value} ${iocExists ? ’’ : ’does not’} exist in

MISP!‘)

26
27 // If the MISP don’t have the IoC , ignore it

28 if (! iocExists) continue

29
30 // Trapdoor using HMAC function

31 const trapdoor = createHMAC(secretKey , value)

32
33 // Check if the trapdoor already exists in the index. In that

case , the existing index entry will be updated.

34 // Otherwise , it will be created a new index entry

35 const ioc = await IoCReference.exists ({ trapdoor })

36
37 /**

38 * Message and signature associated to the trapdoor

39 * Index will store:

40 * trapdoor: HMAC(ioc) using the group secret key

41 * entities: who entities have the information about this

ioc + signed trapdoor

42 */

43
44 // Load private key to sign the content

45 const myPrivateKeyFile = fs.readFileSync(process.env.

PRIV_KEY_FILE , ’utf -8’)

46
47 // Sign trapdoor to ensure the integrity of the trapdoor

48 const signedTrapdoor = signMessage(trapdoor , myPrivateKeyFile

)

49
50 // Content to store in the index: Entity UUID + signed

trapdoor

51 const trapdoorInformation = symmetricEncrypt(secretKey , ‘${
process.env.UUID};${signedTrapdoor }‘)

52
53 if (ioc) {

54
55 await IoCReference.findOneAndUpdate(

56 { trapdoor },

57 {

58 $addToSet: { entities: trapdoorInformation }

59 }

60 )

61
62 } else {

63
64 const newIoC = new IoCReference ({
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65 _id: new mongoose.Types.ObjectId (),

66 trapdoor: trapdoor ,

67 entities: [trapdoorInformation]

68 })

69
70 await newIoC.save()

71 }

72
73 }

74
75 console.log(’Process complete!’)

76
77 mongoClient.disconnect ()

78 }

79 }

Listing 5.17: Index Update

Listing 5.17 shows the function used for updating the index of a shared index.
The system starts by identifying the group and its index configuration (lines 3-4)
and verifies if the configuration is enabled (line 7). If so, the connection to the
Mongo database is established (line 9). After the connection is established, the
system obtains the information to be uploaded to the index (lines 12-13) and the
group symmetric key, which will be used to guarantee the confidentiality of the
information in the index (line 18). After the system has all the data to perform
the update process, a last check is made on the values that will be introduced
in the index. The system will verify if all values listed in the configuration are
present in their MISP instance (lines 23-28). The user is free to add any IoC
to the configuration of the index, but these IoCs might not be present in the
MISP database.

The structure of the chosen shared index is based on the concept of a re-
verse index. This means that each key of the index has a list of values. The
key corresponds to the trapdoor created over the indexed value and that will
be used to perform the search. The list of values corresponds to the result of
the encryption of the identifier of the entity that performs the update process
concatenated with the signature of the generated trapdoor. This structure indi-
cates that the result of a search process for a value (represented by a trapdoor
in the index) will be a list of entities that have information about that same
value. Initially, the system creates the trapdoor using the symmetric key of the
share group (line 31) and queries the index for any existing reference to this
trapdoor (line 35). The existence of a reference indicates that some entity of
the group has information about the trapdoor. Next, the trapdoor is signed
(lines 45-48) using the private key of the entity that is updating the index. This
signature will allow for the verification of the integrity of the trapdoors, through
the signing with the private key of the entity that performed the signature. The
signature is encrypted together with the identifier of the entity performing the
update (line 51). Finally, this encrypted content is inserted into the index (lines
53-78). If the trapdoor does not exist in the index, a new entry is created with
the trapdoor and the encrypted content. If the trapdoor already exists, the
encrypted content is added to the existing trapdoor.

The shared index does not have any clear text information and therefore
only those who know the symmetric key of the sharing group have access to the
indexed data. In an eventual case where this key is exposed, the solution is to
delete the index entries and generate a new key for the group. The index does
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not hold the information present in the MISP instances only the references to
the information, maintaining the security of this information.

5.4.4 Shared Index Searching

The search function of the shared index completes the process of information
sharing in the system. The purpose of the search is to identify which entities
hold information related to a searched term, and then a direct data synchro-
nisation request is made to each one of the resulting entities. As described in
Section 5.4.3, the index of each sharing group is a reverse index. The following
two listings show the two main moments related to the process of searching over
a shared index: performing the search for a term in the index (Listing 5.18),
and the decryption and verification of the obtained answer (Listing 5.19).

1 async function getIoCFromIndex(ioc , sharedGroupId) {

2 const sharedGroup = await SharedGroup.findByPk(sharedGroupId)

3 const indexConfiguration = await sharedGroup.

getIndexConfiguration ()

4
5 const mongoClient = await mongoose.connect(indexConfiguration.

index_url)

6
7 // Build trapdoor to search it on index

8 const trapdoor = createHMAC(sharedGroup.shared_index_key , JSON.

stringify(ioc))

9
10 // Find a mongo object with the trapdoor information

11 const iocReference = await IoCReference.findOne ({ trapdoor })

12
13 mongoClient.disconnect ()

14
15 return iocReference

16 }

Listing 5.18: Searching a term

1 async function getEntityUUIDFromIndexIoC(trapdoor , sharedGroupKey ,

entityDigest , res) {

2 // Digest generated by entity

3 const decryptedContent = symmetricDecrypt(sharedGroupKey ,

entityDigest)

4
5 /**

6 * decryptedContentParts [0] : entity UUID

7 * decryptedContentParts [1] : trapdoor signature

8 */

9 const decryptedContentParts = decryptedContent.split(’;’)

10
11 // Bad format

12 if (decryptedContentParts.length !== 2) return {

13 entityUUID: decryptedContentParts [0],

14 match: false

15 }

16
17 // If exists , ignore my digest

18 if (decryptedContentParts [0] === process.env.UUID) return {

19 entityUUID: decryptedContentParts [0],

20 match: false

21 }
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22
23 // Check entity from UUID received

24 const entity = await Entity.findByPk(decryptedContentParts [0])

25
26 if (! entity) return res.status (500).send({

27 message: ‘Message digest from trapdoor ${trapdoor }: entity <${
decryptedContentParts [0]}> not found!‘

28 })

29
30 // Public key to verify the signature

31 const publicKeyFile = fs.readFileSync(entity.pub_key , ’utf -8’)

32
33 // Verify trapdoor signature

34 const signatureMatch = verifySignature(trapdoor ,

decryptedContentParts [1], publicKeyFile)

35
36 return {

37 entityUUID: decryptedContentParts [0],

38 match: signatureMatch

39 }

40 }

Listing 5.19: Decryption and verification of a search result

The search for a term in the index is described in Listing 5.18. The system
starts by getting the shared index settings from the group and by making the
connection (lines 2-5). Then, the search is performed over the index. The term
entered by the user is not searched in clear text, instead, a trapdoor is created
over that value and using the symmetric key of the group (line 8). The system
checks whether the created trapdoor exists in the index. Since, in an HMAC
function, the same value and the same key always result in the same trapdoor,
the system performs a comparison of the created trapdoor with the existing
trapdoors in the shared index (line 11). The result of the search will be an
object containing the list of the encrypted contents of the trapdoor entered by
the entities of the group at the time of the update of the shared index.

Listing 5.19 describes the processing of the responses resulting from searching
the shared index. This function is performed for each encrypted content that
comprises the list returned by the search. The first step consists in decrypting
the content (line 3) using the symmetric key of the sharing group. This gives
access to the entity identifier and the trapdoor signature (line 9). These values
appear concatenated and the system performs the first check on the format
of the content (lines 12-15). The next step is to verify the extracted entity
identifier. For a given entity, only the identifiers of other entities that have
information about a search term are of interest. If the identifier of the entity
that performs the search is comprised in encrypted portion of the response, it
means that itself has information and has updated the trapdoor in the index.
In this case, the entity is ignored to avoid the execution of a synchronisation
process with itself (lines 18-21). After this verification, and after obtaining the
information of the entity that made this update, the system then verifies the
integrity of the trapdoor using the signature created by each entity (lines 31-34).
The signature verification is done based on a public key and the function for
this verification receives 3 parameters: the value that was signed, the signature,
and the public key of the entity that created the signature. If the signature is
invalid, the system ignores the entity, otherwise, the entity is considered valid,
and the system can proceed to the data synchronisation request.
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1 (...)

2
3 const sharedGroup = await SharedGroup.findByPk(req.params.id)

4
5 if (! sharedGroup) return res.status (404).send({

6 message: ‘Shared group ${id} not found!‘

7 })

8
9 // Checks the IoC data selector

10 const dataSelector = await DataSelector.findOne ({ where: { value:

Object.keys(ioc)[0] } })

11
12 if (! dataSelector) return res.status (400).send({

13 message: ‘IoC Key <${Object.keys(ioc)[0]}> not found!‘

14 })

15
16 // Find the IoC in the index

17 // Get the list of digests from the entities who have information

about the IoC

18 const iocFromIndex = await getIoCFromIndex(ioc , sharedGroup.id)

19
20 if (! iocFromIndex) return res.status (404).send({

21 message: ‘IoC ${JSON.stringify(ioc)} not found in index!‘

22 })

23
24 let validEntities = []

25
26 // Get the entities UUID from digests

27 for (let entityDigest of iocFromIndex.entities) {

28
29 // Decrypt the entity content

30 const { entityUUID , match } = await getEntityUUIDFromIndexIoC(

iocFromIndex.trapdoor , sharedGroup.shared_index_key ,

entityDigest , res)

31
32 // Get only the valid entities , if the signature match is true

33 if (match) validEntities.push(entityUUID)

34
35 }

36
37 await dataSyncAfterIndexSearch(validEntities , ioc)

38
39 (...)

Listing 5.20: Overall search process on a shared index

Listing 5.20 shows the overall process of a search over a shared index. After
checking that the sharing group exists (lines 3-7), the system checks the validity
of the IoC type to be searched (lines 10-14). Recall that the entered IoC type
must be a valid type according to the the MISP platform. If the searched value
passes this analysis, the index search is performed (line 18) to check if there
are entities in the group that may have information about this search. The list
of encrypted contents of the search result is then analysed by the system (lines
27-25) and for each verified content, the response will be the entity identifier
and the validity of the signature (line 30). Once the search is completed and
the integrity of the results obtained is verified, the system moves on to the data
synchronisation process and therefore the system performs the same steps as
the normal data synchronisation. However, the data output policies are always
applied by the entity that receives the synchronisation request. Thus, although
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an entity is part of a sharing group and makes information available through
the shared index, it still keeps control of the direct sharing of that information
with other entities.
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Chapter 6

Prototype validation

This chapter presents the validation of the functionalities described in Chapter 5
and aims to show the fulfilment of the requirements defined in Section 4.1, by
using two instances of the proposed solution, communicating with each other.
The scenario adopted for the validation of the prototype resembles the reference
scenario described in Figure 4.1 and it simulates the exchange of information
between two distinct organisations. The components used were the following:

• A computer running Windows 10 with an Intel(R) Core(TM) i7-1065G7
CPU@1.30GHz-1.50 GHz and 16GB of RAM;

• Two instances of the MySQL 5.7 database;

• 2 VirtualBox (version 6.1.18) machines, each one running a MISP instance
(version 2.4);

• A VirtualBox machine running a Linux server (Ubuntu 18.04.5 LTS) and
running a Docker environment (version 20.10.7);

• A remotely allocated MongoDB (version 4.4.9) database instance.

The prototype was divided into two instances. In Instance 1, the developed
REST API is running on the computer as localhost. This API (requirement R5)
is connected to two components: a MySQL database used in the general op-
eration of the system and a virtual machine running an instance of the MISP
platform. In Instance 2, there is a virtual machine running a Linux server
running Docker. The developed Rest API and another instance of the MySQL
database are executed within the Docker environment. Finally, as in Instance 1,
the Rest API of Instance 2 is connected to an instance of the MISP platform.
To enable the secure sharing of confidential information through a shared index,
a remote MongoDB database was also used to store the indexes created for each
sharing group.

For the purpose of the demonstration described next, Instance 1 is assumed
to be the key instance (our instance), while Instance 2 is assumed to be the
one that belongs to an external organisation to whom we want to establish
communication. The main features shown are the initial peering configuration
and validation, a data synchronisation request, and finally, the functionalities
related to the use of a sharing group.
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localhost
192.168.1.30:8080

mongodb+srv://<username>:<password>@mycluster.bq5t6.mongodb.net/<collection>?
retryWrites=true&w=majority

192.168.1.20 (mispsrv1) 192.168.1.21 (mispsrv2)

localhost

Instance 1 Instance 2

Figure 6.1: Implemented prototype

6.1 Peering between entities

The first step in establishing communication between two instances is the peer-
ing configuration. This configuration is done by creating a new entity in the
system, which will represent the instance in question. The entity description
comprises three parameters: an identifier, the instance URL, and its public key.
These parameters are configured using to API routes (or endpoints) and are
shown in Figure 6.2 and Figure 6.3.

Figure 6.2: Entity creation route

Figure 6.2 shows the route used to pass the parameters entity identifier and
its URL. In the shown example, the entity identifier is 2e0046f1-8542-40c9-
ad11-b4d67ef12bce, and its URL is http://192.168.1.30:8080. Figure 6.3
shows the route used to upload a file containing the public key of the entity
being configured. The saved file will have the entity identifier as its name.
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Figure 6.3: Public key upload route

Figure 6.4: Peer validation route
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The final step consists in performing a validation of the peering configuration
in order to verify that the communication is performed as expected. Figure 6.4
shows the route used to trigger this validation. This route does not accept any
parameters, it consists of a GET request to the route that will trigger the process
described in Section 5.2. The outcome expected of this route it the update of the
entity status to OK, indicating that the communication happened as expected
(requirement R3). The request had a total duration of 93 ms.

6.2 Data synchronisation

To carry out a synchronisation of data with another entity, it is necessary to
schedule the synchronisation requests to be made. The synchronisation re-
quests can be carry out on a daily basis. Figure 6.5 shows the scheduling of
a synchronisation period of “1”, which means DAILY, the hour at which the
synchronisation should start (13:00), its start date (8-05-2021), and end date
(9-23-2021). After the creation of this configuration, it is expected that the
system will execute the data synchronisation request respecting the defined lim-
its.

Figure 6.5: Synchronisation scheduling route

In the data synchronisation process, policies can be applied in order better
to control the sent/received information. On one hand, Entity 1 (owner of
Instance 1) defines the terms to be requested to Entity 2 (owner of Instance 2)
by synchronisation, thus defining its data input policies. On the other hand,
Entity 2 defines which terms are prohibited from being obtained by the Entity 1,
thus defining its data output policies. Figure 6.6 shows the data input policies
defined on Entity 1 and for Entity 2, whereas Figure 6.7 shows the data output
policies defined on Entity 2 to control Entity 1. Cross analysing both policies,
it is possible to conclude that the only the term permitted in both is the value
{”ip-src”: ”192.168.5.1”}, indicating that the remaining values of the input
data policy will be ignored by Entity 2. Such results in Entity 1 only being able
to synchronise information related to the value {”ip-src”: ”192.168.5.1”}
(requirement R4).

Once the policies have been defined and the configuration created, the data
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Figure 6.6: Sample input policies
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Figure 6.7: Sample output policies



6.3. SHARED INDEX 61

synchronisation process is carried out. Figure 6.8 shows the logs of the execution
of one synchronisation process (requirement R1). It can be observed that the
synchronisation process lasted 626ms and that three events were found. How-
ever, none of the events were added in the MISP instance because the previous
synchronisation process obtained the same results, meaning that the information
was already present.

Figure 6.8: Synchronisation output

6.3 Shared index

The shared index enables secure, policy-based, information exchange within
a sharing group that is formed by two or more entities. For demonstration
purposes, Entities 1 and 2 will constitute a sharing group to verify the operation
of the search and update functionalities when using a shared index.

The first step is to define a name for the new sharing group to ensure that
both entities have the same group created, as described in section 5.4.1. After
the group creation, each entity associates the remaining entities that will be
part of it. Note that these steps must be performed in all entities. In the
adopted scenario, Entity 1 will associate Entity 2, and Entity2 will associate
Entity 1. Figure 6.9 shows the route used for the creation of the sharing group.
Figure 6.10 shows the route used to associate an entity to an existing group,
using its identifier.

Upon completing all associations by all involved entities, a shared symmetric
key is generated for this specific group. Recall that this key comprises contri-
butions from all entities within a sharing group. The route used for the key
generation is shown in Figure 6.11.

The process of updating the index requires, as with the synchronisation
process, the creation of a configuration. This configuration is similar to the
synchronisation scheduling, this time using the shared index. Figure 6.12 shows
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Figure 6.9: Group creation route

Figure 6.10: Association of an entity to the group

Figure 6.11: Symmetric key generation route
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the route used to configure a new shared index and it receives 3 parameters:
the URL of the MongoDB database to store the index, the update scheduling
(which works similarly to the data synchronisation scheduling), and the time at
which the update should be performed.

Figure 6.12: Shared index configuration route

After the configuration of the shared index, the user can then define which
terms will be shared with the index. Figure 6.13 shows an example list of val-
ues allowed to be placed in the index, in the form of trapdoors. The result of
the update is presented in Figure 6.14 that shows the MongoDB database with
the created trapdoors and the encrypted list of entity identifiers. This list is
encrypted and comprises the identifiers of the entities that have information re-
lated to the trapdoor, or searchable term (requirement R2). The values entered
in the configuration are only uploaded to the shared index if these are present
in the MISP platform of the uploading entity, as described in Section 5.4.3.

The search is performed as follows. To search a value through the index it
is only necessary to enter that value in a specific route of the API as shown
in figure 17 searching for the value {”ip-src”: ”192.168.5.1”}. As described
in section 5.4.4, the result of the search in the shared index will be the list
of entities that have information about the searched term. Internally, a data
synchronisation request is made with the entities obtained from the search in
the shared index.

6.4 Discussion

The implemented prototype allowed for the verification that the proposed so-
lution is feasible and satisfies the identified requirements. The peering configu-
ration, an essential element of the proposed system, operated as expected and,
when concluded, can be verified by each entity. This indicates that the con-
figuration of the identifiers and the public-private key pairs of each entity was
done correctly. Data exchange between different MISP instances using the pro-
posed solution was also demonstrated, including the application of data policies
in such data exchange. The adoption of a non-reusable symmetric session key
also proved to be feasible for small groups and, when using a shared index, the
system can guarantee the confidentiality and integrity of all the information
made available in a shared. Confidentiality is assure by the use of a symmetric
encryption algorithm, and integrity is assured by the use of digital signatures.
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Figure 6.13: Index configuration values
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Figure 6.14: Visual representation of the shared index
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Figure 6.15: Route to search in the shared index

The use of the shared index was also demonstrated.



Chapter 7

Conclusions

Using MISP to share threat information among multiple entities presents limi-
tations whenever these entities wish to have tighter control over this disclosure,
either by changing trust groups or by restricting the availability of the informa-
tion for a period of time.

In this document it was proposed a controlled information sharing function-
ality that enables secure sharing of cyber threat classified information stored in
multiple MISP instances. The proposed solution acts as a proxy between MISP
instances and makes use of searchable encryption techniques so that greater con-
trol over the exchanged information can be enforced. This proposed solution
was presented in Chapter 4 which specifies the requirements and the elementary
processes of the system through multiple message sequence tables, such as the
peering validation process that will allow confidential communication between
entities, the synchronisation process used for confidential data exchange between
entities, and also the data search process that makes use of the main element of
our solution which is the shared searchable index ensuring the confidentiality of
searches using searchable encryption techniques and the integrity of the search
terms that compose the index.

Chapter 5 presented the implementation of a prototype of our proposed
solution where the main processes of our system are presented in more detail to
give a better understanding of its operation. The first step of the implementation
consisted of the initial setup of the system, composed of the generation of the
unique identifier and the RSA key pair with 2048 bit size that will be used in
the communication between different entities. As for the peering validation,
this consists in validating the configuration of an external entity in our system
through its unique identifier, its public key for the encryption of the messages
sent, and also its URL to allow communication between both entities.

The data synchronisation process comprises several elements, both on the
part of the entity that makes the synchronisation request and on the part of
the entity that receives the request. On the side of the entity that makes the
synchronisation request, the user schedules the synchronisation that will be
automatically executed by the system and also defines the terms to be searched
through the creation of input policies. These policies will constitute the search
query that will be sent together with a secret key for the encryption of the
results. The entity that receives the synchronisation request can control the
searches made to its system. This control is then done by the output policies

67



68 CHAPTER 7. CONCLUSIONS

defined for the entity that made the synchronisation request and indicate which
terms are allowed to a certain entity to search. Finally, data sharing through
a shared index allows the secure sharing of information between several entities
forming a sharing group. The index is managed by all members of the group
and is formed by the search terms that each entity makes available together with
the unique identifier and the signature of the search term by the entity. The
confidentiality of the index is guaranteed through the symmetric key generated
with the contribution of all the members of the group which is used to generate
the search trapdoors as well as encrypt the remaining information present in
the index, avoiding the existence of any information in cleartext. Integrity is
guaranteed during the search process where the signatures present in the shared
index are verified using the public keys of each entity that updated the index.

However, the developed system presents some limitations that can be im-
proved in future work. One of the limitations is in the shared index. As shown
in Chapter 6, the index update process only takes into account the insertion of
individual search terms and there is no possibility of creating trapdoors based
on two or more search terms. This results in the search process being performed
only by searching the index for individual search terms. On the one hand, the
search process becomes more efficient as the complexity of the search for a single
term is reduced. However, there might be cases where there is a need to search
several terms in a grouped manner. The current solution would be to search for
each term individually and then join all the information together, which would
not be as efficient as expected since the number of requests to be made would
increase according to the number of terms present in the query, leading to an
increase in the computational load in the management of several simultaneous
requests. Therefore, the solution would be to adapt the search and update
processes in the shared index. The system would allow the submission of more
elaborate queries while the index update process would take into account all the
search terms in the query at the time of generating the trapdoor to be stored in
the index.

Another future work to be mentioned is the performance of scalability tests
on the system among them the performance of tests on the algorithm for gener-
ating the symmetric key in the sharing groups. As described in Section 5.4.2, the
final symmetric key is generated with the contribution of all the entities present
in the sharing group, where each entity generates its key after obtaining all the
contributions. Therefore, the test would be important to verify the feasibility
of the current architecture of the algorithm in cases where there are sharing
groups with a high number of entities present, analysing if the total number of
messages exchanged between all entities for the production of the final key has
an impact on the computational load of the implemented prototype.
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