
Sistema de informação laboratorial para o
COVID-19

BRUNO DANIEL ALVES ROCHA
Outubro de 2021

Laboratory Information System for
COVID-19

Bruno Daniel Alves Rocha

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science,

Specialisation Area of Software Engineering

Supervisor: Dr. António Constantino Lopes Martins
Co-Supervisor: Dr. Luís Miguel Pinho

Evaluation Committee:
President:
Dr. , Professor, DEI/ISEP

Members:
Dr. , Professor, DEI/ISEP
Dr. , Professor, DEI/ISEP
Dr. , Professor, DEI/ISEP

Porto, October 15, 2021

iii

Dedicatory

To my parents, sister and girlfriend who are always there for me

To my family, friends and everyone that believes in me

Special thank you to my grandfather

v

Abstract

COVID-19, a respiratory disease caused by SARS-CoV-2, first appeared in Wuhan, China, on
31 December 2019. It has since spread worldwide and developed into an ongoing pandemic.
Currently, COVID-19 does not have a cure, and prevention is the only way to fight against
it.

During waves of higher infection cases, tracking the infected population becomes a difficult
but crucial task. Only a COVID-19 test can diagnose a person, and RT-PCR tests are the
most effective.

PORTIC, the research centre for P.Porto, started using its laboratory for RT-PCR tests
to diagnose COVID-19 for the P.Porto community and some health centres that belong to
ARSN. During this process, the laboratory needs to manage all of the sample and testing
information and report the test results. This information management became a burden,
and the staff would lose most of the time with administrative tasks.

This dissertation’s main objective is to develop a laboratory information system for PORTIC.
This system must satisfy the elicited and specified requirements. For that purpose, multiple
architectures were analysed, concluding that the clean architecture is the best option for
this system.

The system supports data importation from multiple external sources, report generation
and exportation and the entire sample flow. Its development followed a scrum methodology
where each requirement was validated through user acceptance tests at the end of each
iteration.

To evaluate the system’s success, the laboratory answered a questionnaire to determine the
perceived usefulness and ease of use. This concluded that the system was successful since
the questionnaire determined that it was extremely useful and easy to use. The developed
system is an innovation on COVID-19 testing since there are no real options in the market,
and different laboratories can reuse the system to tackle COVID-19 testing.

Keywords: COVID-19, healthcare, laboratory, LIS, LIMS, information system, software
architecture, Clean Architecture

vii

Resumo

A COVID-19, uma doença respiratória causada pelo SARS-CoV-2, apareceu pela primeira
vez emWuhan, China no dia 31 de dezembro de 2019. Desde então, esta doença espalhou-se
por todo o mundo, devenvolvendo-se numa pandemia em curso. Atualmente, não existe cura
para a COVID-19, sendo que a única maneira de resistir à doença é através da prevenção.

Durante as ondas de grandes números de infeções, rastrear a população infetada transforma-
se numa tarefa árdua mas fundamental. A única maneira de diagnósticar a doença é através
de um teste de COVID-19, sendo que os testes de RT-PCR são os mais eficazes.

O PORTIC, centro de pesquisa do P.Porto, começou a realizar testes de RT-PCR, no seu
laboratório, para diagnosticar COVID-19 à comunidade do P.Porto e para alguns centros de
saúde que pertencem à ARSN. Durante este processo, o laboratório precisa de gerir toda
a informação sobre as amostras e os testes, assim como reportar os resultados dos testes.
Esta gestão de informação tornou-se num incómodo e os funcionários passaram a perder a
maior parte do seu tempo com tarefas administrativas.

O objetivo principal desta dissertação é o desenvolvimento de um sistema de informação
de laboratório para o PORTIC. Este sistema deverá cumprir os requisitos elicitados e es-
pecificados. Para esse propósito, foram analisadas diferentes arquiteturas, chegando-se à
conclusão de que a clean architecture é a opção mais viável para este sistema.

O sistema suporta importação de dados de múltiplas fontes externas, geração e expor-
tação de relatórios e todo o fluxo de amostras. O desenvolvimento do sistema seguiu uma
metodologia scrum onde cada requisito foi validado através de testes de aceitação do uti-
lizador no final de cada iteração.

Para avaliar o sucesso do sistema, o laboratório respondeu a um questionário para determinar
a utilidade e facilidade de utilização percecionada. Isto concluiu que o sistema foi bem
sucedido dado que o questionário determinou que foi extremamente útil e fácil de utilizar.
O sistema desenvolvido é uma inovação em testes de COVID-19 pois não existem opções
no mercado e outros laboratórios podem reutilizar o sistema para endereçar os testes de
COVID-19.

Palavras-chave: COVID-19, cuidados de saúde, laboratório, LIS, LIMS, sistema de infor-
mação, arquitetura de software, Clean Architecture

ix

Acknowledgement

I want to thank everyone that contributed to this dissertation; you made it possible.

To Professor Pilar Baylina and Professor Rúben Fernandes, from the PORTIC laboratory,
for their invaluable help during the project.

To Dr. António Constantino Martins and Dr. Luís Miguel Pinho for their supervisory and
guidance with the project and this dissertation.

Finally, a big thank you to my family, my girlfriend and my friends, without them I would
not be able to do this.

xi

Contents

List of Figures xv

List of Tables xvii

List of Acronyms xix

1 Introduction 1
1.1 Context . 1
1.2 Problem . 2
1.3 Objectives . 2
1.4 Expected Results . 3
1.5 Document Organisation . 3

2 Context and State of the Art 5
2.1 Medical Informatics . 5

2.1.1 History . 5
2.1.2 Information Systems . 6

2.2 Health Information Systems . 7
2.2.1 Failure and success . 7
2.2.2 The design-reality gap . 8

2.3 Laboratory Information Systems . 9
2.3.1 History . 9

2.4 Information System Solutions for COVID-19 10
2.4.1 Belgian LIMS for COVID-19 . 10
2.4.2 Thermo Scientific SampleManager LIMS Software 11
2.4.3 LabWare LIMS . 12
2.4.4 CrelioHealth . 12
2.4.5 Solution comparison . 13

2.5 Conclusion . 13

3 Value Analysis 15
3.1 The New Concept Development Model 15

3.1.1 Opportunity Identification . 16
3.1.2 Opportunity Analysis . 16
3.1.3 Idea Genesis . 16
3.1.4 Idea Selection . 17
3.1.5 Concept and Technology Development 17

3.2 Value, Value for the Customer and Perceived Value 17
3.2.1 Value . 17
3.2.2 Value for the Customer . 17
3.2.3 Perceived Value . 17

xii

3.3 Value Proposition . 18
3.4 Value Proposition Canvas . 18
3.5 Quality Function Deployment . 19

4 Analysis and Design 21
4.1 Requirements Engineering . 21

4.1.1 Actors . 21
4.1.2 Domain Model . 22
4.1.3 Functional Requirements . 23

REQ-01: Import samples from health centres 25
REQ-05a: Generate test reports by a health centre 26

4.1.4 Non-functional Requirements . 27
4.2 Relevant Technologies . 28
4.3 Architectural Design . 29

4.3.1 Candidate Architectures . 29
N-Layer architecture . 29
Clean Architecture . 30

4.3.2 Web Application . 31
4.3.3 Deployment View . 32
4.3.4 Database Model . 33

5 Implementation 35
5.1 Code Structure . 35

5.1.1 Domain Module . 35
5.1.2 Application Module . 36
5.1.3 Infrastructure Module . 37
5.1.4 Presentation Module . 38

5.2 Design Patterns . 38
5.2.1 Command Query Responsibility Segregation 39
5.2.2 Mediator . 41
5.2.3 Pipeline . 41
5.2.4 Repository . 42
5.2.5 Model-View-Controller . 43

5.3 Cryptography . 44
5.4 Functional Requirements . 45

5.4.1 REQ-01: Import samples from health centres 45
5.4.2 REQ-05: Search samples . 46

5.5 Tests . 49
5.5.1 Unit tests . 49
5.5.2 User Acceptance tests . 50

6 Evaluation 51
6.1 Perceived Usefulness and Perceived Ease of Use 51
6.2 The Ideal Laboratory Information System 54

7 Conclusions 57
7.1 Summary . 57
7.2 Objectives Accomplished . 58
7.3 Limitations and Future Work . 59
7.4 Final Assessment . 59

xiii

References 61

xv

List of Figures

2.1 ITPOSMO . 8
2.2 Ideal LIS Modules . 10
2.3 Bottlenecks in sample flow . 11

3.1 NCD model . 15
3.2 Value Proposition Canvas . 19
3.3 House of quality . 20

4.1 Domain Model . 23
4.2 REQ-01: System Sequence Diagram . 26
4.3 REQ-05a: System Sequence Diagram . 27
4.4 3-Layer architecture . 29
4.5 Clean architecture . 31
4.6 Component Diagram . 32
4.7 Deployment Diagram . 32
4.8 Database Model . 33
4.9 Database Identity Model . 34

5.1 Application Modules . 35
5.2 Domain Module . 36
5.3 Application Module . 37
5.4 Infrastructure Module . 38
5.5 Presentation Module . 38
5.6 Command and command handler example 40
5.7 Query and query handler example . 40
5.8 Mediator Example . 41
5.9 Filter example . 41
5.10 Pipes and Filters with Mediator . 42
5.11 Validator example . 42
5.12 Repository example . 43
5.13 Example from a call to a repository . 43
5.14 Example from a Controller . 44
5.15 Data Encryption . 45
5.16 Data Decryption . 45
5.17 REQ-01: Sequence Diagram . 47
5.18 REQ-05: Sequence Diagram . 48
5.19 GetSampleQueryHandler Unit Test . 49
5.20 Code Coverage of Unit Tests . 50

6.1 Perceived Usefulness Questionnaire . 52
6.2 Perceived Ease of Use Questionnaire . 53

xvii

List of Tables

2.1 Comparison of the identified solutions. 13

3.1 Benefits and sacrifices. 18

4.1 Actors . 22
4.2 Initial Functional Requirements . 24
4.3 Final Functional Requirements . 25
4.4 Non-functional requirements . 28

5.1 Accepted Functional Requirements . 50

6.1 Ideal LIS Comparison . 54

7.1 Objectives Accomplished . 58

xix

List of Acronyms

ARSN Administração Regional De Saúde Do Norte.

CQRS Command Query Responsibility Segregation.
CQS Command Query Separation.

FFE Fuzzy Front End.

HIS Healthcare Information System.

IMIA International Medical Informatics Association.
IT Information Technology.

LIMS Laboratory Information Management System.
LIS Laboratory Information System.

MVC Model-View-Controller.

NCD New Concept Development.

P.Porto Politécnico do Porto.
PORTIC Porto Research, Technology & Innovation Cen-

ter.

QFD Quality Function Deployment.

RT-PCR Reverse transcriptase-polymerase chain reac-
tion.

SARS severe acute respiratory syndrome.
SARS-CoV-2 severe acute respiratory syndrome coronavirus

2.
SUT System Under Test.

UAT User acceptance test.
UI User Interface.

WHO World Health Organization.

1

Chapter 1

Introduction

This chapter describes the context of the dissertation, the problem presented, the objectives
to complete and the expected results, as well as the structure of this document.

1.1 Context

On 31 December 2019, in Wuhan, China, the new coronavirus disease, named COVID-
19, was identified. It is a respiratory disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), and it has, since, spread worldwide, developing into an ongoing
pandemic.

The most common symptoms are fever, dry cough and fatigue (World Health Organization
2020). However, at least one-third of the infected population is asymptomatic, does not
develop any symptoms (Wang et al. 2020). Among those who develop symptoms, 81% have
mild symptoms and recover without hospital treatment. 14% have severe symptoms and
require oxygen. And 5% are classified as critical, needing intensive care (Wu and McGoogan
2020) (World Health Organization 2020). The virus spreads mainly through respiratory
droplets when an infected person coughs, sneezes or even talks or sings. It can also spread
via contaminated surfaces.

COVID-19 does not have a cure, and the only way to fight it is through prevention. The
Centers for Disease Control and Prevention (CDC) (2021) has a set of guidelines for the
prevention, and those include wearing a mask, maintaining social distancing, avoiding crowds,
washing hands frequently, among others. The most recent prevention method is the vaccine.
According to the CDC (2021a), there are two vaccines authorised and recommended to
prevent COVID-19, the Pfizer-BioNTech COVID-19 vaccine and the Moderna COVID-19
vaccine. "The Pfizer-BionNTech COVID-19 vaccine was 95% effective (...) in preventing
symptomatic laboratory-confirmed COVID-19 in persons without evidence of previous SARS-
CoV-2 infection" (Oliver et al. 2020), while the Moderna COVID-19 vaccine was 94.1%
(Oliver et al. 2021).

Reverse transcriptase-polymerase chain reaction (RT-PCR) is the test used to diagnose a
person with COVID-19 (WHO 2020). Although this test effectively identifies positive cases,
it is less accurate on negative ones, leading to multiple false-negatives (Zitek 2020).

Another test used for the COVID-19 diagnose is the antigen test. It is less expensive than
the RT-PCR and returns results in approximately 15 minutes. This test’s best usage is
on a high incidence of infection in the community, where it can detect COVID-19 faster.
However, the antigen test is less accurate than the RT-PCR, and an RT-PCR might be
necessary to confirm COVID-19 (CDC 2021b).

2 Chapter 1. Introduction

1.2 Problem

Porto Research, Technology & Innovation Center (PORTIC), the research centre for Politéc-
nico do Porto (P.Porto), started doing RT-PCR COVID-19 tests for the P.Porto community
and a few health centres that belong to Administração Regional De Saúde Do Norte (ARSN).
Only samples from the P.Porto community are collected, since health centres collect their
own, sending them to the PORTIC laboratory. PORTIC is responsible for determining the
test result, reporting them to ARSN for the health centres samples. As for the P.Porto
community samples, PORTIC directly notifies the person tested about the outcome.

The P.Porto community applies for the COVID-19 test through an online form where they
insert the required information. Latter, the person is informed of the date for the sample
collection. Upon the sample collection, the laboratory identifies the sample with a COVID
code and a laboratory code. The COVID code represents the sample at a national level and
is mandatory. While the laboratory code exists because it is smaller than the COVID code,
fitting the sample and making it easier to manage for the laboratory. The sample goes to
the laboratory and is analysed to determine the test result, taking up to 48 hours.

The health centres send a list of the samples to be analysed, which already contains a COVID
code. The laboratory receives the collected samples, where they assign a laboratory code
and analyse it.

During the process of analysis, the laboratory only knows the laboratory code of the sample.
After the test result, they have to map the laboratory code back to the COVID code and
produce the report to ARSN or notify the person from the P.Porto community.

This process became difficult to manage, especially during waves of higher COVID-19 infec-
tions in the community. One significant problem is the constant mapping of the laboratory
code to the COVID code and vice-versa. The laboratory manages all of the data through
multiple files, affecting the data consistency. Another problem for the laboratory is the
production of reports for ARSN and to notify the P.Porto community.

1.3 Objectives

This dissertation’s main objective is to build a system that allows the PORTIC laboratory
to manage all the information of the COVID-19 tests.

The system must support data importation from different external sources. The data arrives
from various health centres and the P.Porto community online forms, in different files, and
needs to be normalised.

The system must support the importation of the results that the RT-PCR supplies. It must
be able to identify the samples by COVID code or laboratory code. And it must support
report generation about the COVID-19 test results.

The objective described will be achieved through the following tasks:

• Requirements elicitation and specification: application of elicitation techniques and
requirement specification with the stakeholders;

• Investigation and analysis of existing solutions to similar problems: market re-
search and comparison of existing solutions for similar problems;

1.4. Expected Results 3

• Investigation and analysis of different architectural designs: analysis and compar-
ison of multiple alternatives to the architectural design of the solution;

• Identify and justify the most viable alternative: determine the most viable alterna-
tive according to the functional and non-functional requirements specified;

• Develop a solution that supports:

– Data importation from different external sources: users must be able to im-
port data from multiple health centres and from the P.Porto community form;

– Importation of RT-PCR test results: users must be able to import the test
results from the RT-PCR;

– Report generation: users must be able to generate reports for ARSN and
P.Porto community;

– Authentication and authorisation: the solution must support different roles in
the system;

– Management of users authorisations: the solution must support authorisation
management to users of a specific role.

• Implement tests:

– Unit: validates the behaviour of the smallest units of functionality;

– Integration: validates the behaviour of multiple combinations of code units and
how they work together;

– Acceptance: validates the behaviour of the entire system and guarantees that
the requirements are satisfied.

1.4 Expected Results

By the end of this dissertation, the following results should be achieved:

• Data importation from different external sources: users should be able to import
data from multiple health centres and from the P.Porto community form;

• Importation of RT-PCR test results: users should be able to import the test results
from the RT-PCR;

• Report generation: users should be able to generate reports for ARSN and P.Porto
community;

• Users management: specific users should be able to manage users authorisation;

• Tests implementation and realisation: the system should have automated tests to
guarantee the system’s correct functionality.

1.5 Document Organisation

This document is organised into the following chapters:

• Introduction: presents the context, problem, objectives and expected results of this
dissertation, as well as the document organisation;

4 Chapter 1. Introduction

• Context and State of the Art: describes in detail the context of this dissertation,
analyses the state of the art and compares market solutions for the current problem;

• Value Analysis: analyses the value of the current dissertation, applying the New
Concept Development (NCD) model, the value proposition canvas and the Quality
Function Deployment (QFD);

• Analysis and Design: details the requirements for the system to develop, relevant
technologies for its development and the architectural design of the solution.

• Implementation: explains the code structure, analyses the design patterns used, de-
scribes functional and non-functional requirements and demonstrates the tests done;

• Evaluation: evaluates the system’s perceived usefulness and ease of use and compares
the system with the ideal Laboratory Information System (LIS);

• Conclusions: resumes this dissertation and presents the objectives accomplished,
along with its limitations, future work and a final assessment.

5

Chapter 2

Context and State of the Art

This chapter presents the current state of the art in medical informatics, information systems,
medical information systems and Healthcare Information Systems (HISs). It also analyses
multiple market solutions for the current problem and how they compare with each other.

For the research, the author used Google Scholar, PubMed and ResearchGate as research
engines. He selected multiple keywords as "information systems", "healthcare", "medical",
"laboratory" and "COVID-19" and made search terms with each keyword or even combina-
tions of them.

For the first search, the author read the summary, keywords and conclusion/results of the
papers found. This fast-reading allowed the author to narrow the number of articles. Next,
the author read the article to understand its contributions, taking notes on them. If the
article was a literature review, the author would research for its references. This process was
reiterated with new keywords, new combinations of search terms and more refined search
terms.

2.1 Medical Informatics

Medical informatics or healthcare informatics is the study, development and implementation
of computer applications to improve medical care (Sami 2019). Bemmel (1984) defines
it as a comprise of "the theoretical and practical aspects of information processing and
communication, based on knowledge and experience derived from processes in medicine and
health care".

2.1.1 History

In 1959, Ledley and Lusted (1959) published an article analysing reasoning processes inherent
in medical diagnosis. They explore the idea of computer usage as an aid to medical diagnos-
tic. The idea is not to use the computer to determine the value of the treatments involved,
as they must be evaluated and judged by a physician. But to use it for decision-support,
enabling a more precise diagnosis.

In 1985, Willems, Arnaud, et al. (1985) established a reference library for evaluating com-
puter electrocardiogram measurement programs. This paper significantly contributed to the
standardisation of computer-derived electrocardiogram measurements. In 1991, Willems,
Abreu-Lima, et al. (1991) published a systematic assessment of multiple computer pro-
grams for the interpretation of electrocardiograms. They concluded the median percentage
of correct classifications was 6.6 per cent lower for the computer programs than for the

6 Chapter 2. Context and State of the Art

cardiologists. However, some programs "performed almost as well as the cardiologists in
identifying seven major cardiac disorders".

In 2000, Arokiasamy et al. (2000) published, on behalf of International Medical Informatics
Association (IMIA), the first international recommendations on education in health and
medical informatics. They point out a gap in the knowledge of healthcare professionals
about medical informatics. And only improved education of healthcare professionals can fill
this gap. The paper also clarifies the importance of health and medical informatics education,
claiming that:

• progress in information processing and technology is changing society;

• the amount of health and medical knowledge is increasing at a fast rate, and only
information technologies can keep up with it;

• there are significant economic benefits from the use of information technologies;

• medical informatics enhance the quality of healthcare;

• the developments of medical informatics will at least continue at the same pace as
could be observed;

• healthcare professionals that are well-educated in medical informatics are needed to
process information;

• provision of high-quality education on medical informatics will raise the quality and
efficiency of healthcare.

This publication "is a clear sign of the international presence and maturity of medical infor-
matics as a discipline" (Haux 2010).

Medical informatics became a common topic and is utilised in multiple ways. According
to Prokosch and Ganslandt (2009), most university hospitals have implemented hospital
information systems. These systems were collecting big amounts of medical records. He
identified an opportunity to explore this data for research purposes, making use of data
warehousing and data mining techniques.

2.1.2 Information Systems

An information system is a system capable of collecting, processing and storing data for
providing information to the users (Zwass 2020). It splits into five components:

• hardware: the physical components of the system;

• software: the application or set of instructions that run on and tell the hardware what
to do;

• data: a collection of facts used by the system to produce information;

• people: an essential component often overlooked. Includes users, administrators,
programmers and every person that interacts with the system;

• process: a series of steps necessary to achieve an outcome (D. T. Bourgeois, Ph.D.,
and Bourgeois 2014).

Information systems enhance organisational capabilities. They support business operations,
decision making and relationships with customers, suppliers and partners. These systems

2.2. Health Information Systems 7

can lower the costs of communication inside an organisation and improve supply chain co-
ordination (Zwass 2020). The implementation of an information system, however, is not a
guarantee of competitive advantage. Carr (2007) says that, for a brief period, information
technology "opened opportunities for forward-looking companies to gain real advantages.
But, as their availability increased and their cost decreased - as they became ubiquitous -
they became commodity inputs".

The use of information systems enables new organisational structures. Virtual organisations
where employees can work from anywhere, and not just the office, are now possible (Zwass
2020). During the ongoing pandemic, these organisational structures have been proving to
be valuable. Organisations that fit into these structures quickly adapted to the new reality
of working at home without a significant impact on the profit. Some organisations even
managed to increase the profit and value of the company. While other organisations, who
were not ready for this structural change, got at risk of losing the entire business.

2.2 Health Information Systems

"Information systems have great potential to reduce healthcare costs and improve out-
comes" (Fichman, Kohli, and Krishnan 2011). These systems can improve the coordination
of healthcare and support decision-making. They can be a great tool when dealing with out-
breaks of infectious diseases, such as severe acute respiratory syndrome (SARS) or SARS-
CoV-2. These diseases threaten many lives, and coordinating health resources becomes a
race against time since controlling the spread is as important as treating it (Fichman, Kohli,
and Krishnan 2011).

Fichman, Kohli, and Krishnan (2011) researched the role of information systems in health-
care. They explain that healthcare information is highly personal, and the digitisation of
health information has several benefits. HIS enable the providers to share electronic health
records leading to higher administrative efficiency, lower healthcare costs by eliminating un-
necessary medical tests, and fewer medical errors.

They also point out some barriers to healthcare technology adoption. One of them is that
powerful actors in healthcare often resist technology since they associate other activities
besides patient treatment as administrative inconveniences. Another barrier detected is the
multidisciplinary nature of healthcare. Different professionals involved in healthcare have
different perceptions and usage of technology, which adds another layer of complexity to the
implementation of a HIS.

2.2.1 Failure and success

A HIS that succeeds in one setting may fail in another. Learning and adapting are the keys
to a new information system. They are necessary to determine the best adaptation of the
technology and the organisation to achieve a good fit. Ultimately, these adaptations must
incorporate into the organisational routines and ensure continuous improvement (Fichman,
Kohli, and Krishnan 2011).

Dissatisfied with the analysis of HIS failures, Heeks (2006) developed a new model to un-
derstand its failures and, therefore, its successes. He categorises the HIS failures in three:

• the total failure: an initiative that was never implemented or immediately abandoned;

8 Chapter 2. Context and State of the Art

• the partial failure: an initiative where major goals are unattained or where there are
undesirable outcomes;

• the success: an initiative that attains most stakeholders goals, and there are no
undesirable outcomes.

He correlates the failure of a HIS with a gap between the design and the reality. That is,
"the amount of change between "where we are now" and "where the HIS wants to get us"".
He refers to this as the design-reality gap.

2.2.2 The design-reality gap

The design-reality gap has two stakeholders: the designers who design the HIS and the users
who populate the local reality. It consists of seven dimensions, which are entitled ITPOSMO:
Information, Technology, Processes, Objectives and values, Staffing and skills, Management
systems and structures and Other resources (Heeks, Mundy, and Salazar 1999). Figure 2.1
illustrates these dimensions.

Figure 2.1: The ITPOSMO dimensions of the design-reality gap model
(Heeks, Mundy, and Salazar 1999)

Large gaps increase the likelihood of HIS failure. Heeks (2006) highlights some archetypes
of those large gaps: the hard-soft gap; and the design-implementation context gap.

A hard-soft gap happens when there is a collision between hard rationalities1. It also happens
when hard rationalities conflict with the softer realities of the user group. While a hard-soft
gap happens on an intra-organisational level, a design-implementation context gap happens
on an inter-organisational one. Heeks (2006) gives examples like the public-private sector
gap, where the public and private sectors have significant differences. An information system
designed for one of them is highly likely to fail if introduced to the other. Another example is
the country gap, where developing countries and industrialised countries also have significant
differences.

1A hard rationality is the rationality of an entity that plays a central role in a HIS design (Heeks 2006).

2.3. Laboratory Information Systems 9

To summarise, the design-reality gap model is useful as an evaluation tool, determining the
failure or success of a HIS and as a risk management tool, identifying major sources of risks
in a HIS project.

2.3 Laboratory Information Systems

A Laboratory Information System (LIS), also referred to as Laboratory Information Man-
agement System (LIMS), is an information system with features to support laboratory op-
erations. According to Sepulveda and D. S. Young (2013), LISs are essential to manage
the flow of information between health care providers, patients and laboratories. He decom-
poses the ideal LIS in multiple modules (Figure 2.2). He also describes the ideal LIS from
the functional point of view, discussing desirable functionalities. Those are the following:

• Information Security: the LIS must secure information from unauthorised internal
and external access. Different user roles should be available with multiple levels of
security and information access;

• Test ordering: the LIS should handle the ordering provider information, patient in-
formation and order information, including real-time feedback on the order. This is
an important feature since test ordering systems have the potential to reduce test
turnaround time (Westbrook, Georgiou, and Lam 2009);

• Specimen collection, accessioning and processing: fundamental to the quality of
laboratory results;

• Analytic phase: support to the analytic phase lowers the frequency of errors in the
clinical laboratory;

• Result entry and validation: the LIS should support result entry and validation,
helping the laboratory to provide accurate, reproducible and appropriate results;

• Result reporting: provides automated result reporting to the laboratory;

• Notification management: notifications enable faster responses from the laboratory.
The LIS should have multiple tiers of urgency for result notifications;

• Data mining and cross-sectional reports: an advanced LIS should explore the col-
lected data by applying data warehousing and data mining techniques improving re-
search processes;

• Method validation: it is an important step in the implementation of new assays
in clinical laboratories, ensuring the stability of assay systems and compliance with
regulatory and accrediting agencies;

• Quality management: quality control improves the accuracy and reliability of labora-
tory results;

• Administrative and financial issues: the LIS should support the laboratory manage-
ment, where administrative and financial issues occur.

2.3.1 History

In the early development of laboratory systems, the terms LIS and LIMS had different ap-
plicabilities and functionalities. LISs were installed in hospital laboratories and commercial

10 Chapter 2. Context and State of the Art

Figure 2.2: Ideal LIS decomposed in modules (Sepulveda and D. S. Young
2013)

reference laboratories, while LIMSs where installed in an industry laboratory or pharmaceu-
tical research laboratories. LISs were designed to report test results for individual patients
and satisfy the criteria of hospital accreditation agencies. While LIMSs were designed to
report results for batches of samples and satisfy good manufacturing practices (Friedman
2008).

This distinction between a LIS and a LIMS faded over the years as companies started to
build single solutions with both systems functionalities. Section 2.4 discusses some examples
of these solutions.

2.4 Information System Solutions for COVID-19

The following sections analyse a set of possible market solutions to the problem. In the end,
the solutions are compared and conclusions are taken on how they apply to the required
functionalities of the current problem.

2.4.1 Belgian LIMS for COVID-19

Weemaes et al. (2020a) developed and implemented a LIMS to manage test ordering, regis-
tration, sample flow and result reporting during the COVID-19 pandemic. This LIMS was a
response to the increased demand for laboratory testing during the pandemic. Such increase
created a strain in the laboratory staff that had to deal with large numbers of samples every
day.

They detected that most of the laboratory workforce was doing administrative tasks instead
of helping with analytical ones Figure 2.3. The LIMS implementation was able to reduce
this administrative burden by streamlining data flows. They implemented the following
functionalities to tackle this problem:

2.4. Information System Solutions for COVID-19 11

• Digital notifications;

• Sample registration;

• Automated scripted triaging;

• Real-time sample tracking;

• Automated validation;

• Automated reporting;

• Daily summary statistics;

• Statistical flagging of outliers.

Figure 2.3: Graphical representation of key bottlenecks in the laboratory
COVID-19 sample flow (Weemaes et al. 2020a)

Apart from the administrative burden reduction, the LIMS solution also facilitates scientific
research. Weemaes et al. (2020a) developed a separate database that recorded all the result
parameters in the COVID-19 RT-PCR tests. Along with a standalone data mining applica-
tion that allowed researchers to visualise the data and identify possible correlations. This
tool alleviated the burden on Information Technology (IT) staff and accelerated research.

2.4.2 Thermo Scientific SampleManager LIMS Software

Thermo Fisher Scientific provides, among other products, software solutions in the health-
care area (SampleManager LIMS Software n.d.). One of the solutions that they provide
is the SampleManager LIMS Software. This LIMS, also known as LIS, manages laboratory
data, procedural workflows and integrations with enterprise systems and instruments. Some
of the capabilities of this solution are:

• Configurable workflows;

12 Chapter 2. Context and State of the Art

• Mobile application;

• Dashboards and data visualisation;

• Reporting and data analytics;

• Electronic lab notebook support;

• Sample management, accessioning and tracking;

• Instrument management;

• Inventory management.

The SampleManager LIMS can be deployed on the cloud or be self-hosted. Thermo Fisher
Scientific has not provided the pricing information since it varies for each client and has to
be negotiated.

2.4.3 LabWare LIMS

The LabWare LIMS is a solution for laboratory information management developed by Lab-
Ware (Automate Your Laboratory with the Global Leader for LIMS and ELN n.d.). This
solution has the following functionalities:

• Configurable workflows;

• Mobile application;

• Dashboards and data visualisation;

• Reporting and data analytics;

• Electronic lab notebook support;

• Sample management and tracking;

• Instrument management;

• Inventory management;

• Document management;

• Billing management.

The LabWare LIMS can be deployed on the cloud or on-premises. LabWare does not provide
information about the pricing of this solution since it differs for each client.

2.4.4 CrelioHealth

CrelioHealth, formerly know as LiveHealth, is a LIMS solution (Lab Software for Medical
Diagnostics | CrelioHealth LIMS n.d.). This solution provides the following functionalities:

• Configurable workflows;

• Mobile application;

• Dashboards and data visualisation;

• Reporting and data analytics;

• Electronic lab notebook support;

2.5. Conclusion 13

• Sample management and tracking;

• Instrument management;

• Inventory management;

• Document management;

• Billing management.

CrelioHealth also supports laboratories in COVID-19 testing (COVID Response n.d.). The
LIMS offers a preconfigured COVID-19 testing workflow. This workflow supports automated
and instant reporting, sample registration and automated sample result registration.

CrelioHealth is a paid cloud solution whose price starts at 150$ per month but can go up to
2 200$ per month or 1.5% of the client revenue depending on the selected package.

2.4.5 Solution comparison

Table 2.1 compares the solutions analysed and how they apply to the required functionalities
of the current problem.

Table 2.1: Comparison of the identified solutions.

Functionality Belgian
LIMS

Sample
Manager
LIMS

LabWare
LIMS

CrelioHealth

Data importation Yes No No No
RT-PCR COVID-19 test
results importation

Yes No No Yes

Report generation Yes Yes Yes Yes
Authentication and authori-
sation

Yes Yes Yes Yes

User management Yes Yes Yes Yes
Sample flow Yes Yes Yes Yes

Based on the table, it is possible to observe that both Thermo Scientific SampleManager
LIMS and LabWare LIMS do not fully support the required functionalities. They lack RT-
PCR COVID-19 test results importation and data importation for samples and custom forms.

CrelioHealth, on the other hand, meets almost every criteria since only the data importation
for samples and custom forms is missing. However, this is a paid product.

The only solution that supports all the required functionalities is the Belgian LIMS for
COVID-19. Only a minor adjustment would have to be made so that the system could
support custom forms importation. However, this solution is not open-source and it is not
available on the market.

2.5 Conclusion

Healthcare and informatics have a long history together. The idea of computer usage as
an aid to medical diagnosis and decision-support has existed for a long time. Information

14 Chapter 2. Context and State of the Art

systems have become crucial to improve medical processes. They can collect, process and
store data, lower communication costs inside an organisation and improve supply chain
coordination. During the ongoing pandemic, these systems enabled organisations to work
from anywhere without significantly impacting the profit.

When it comes to healthcare, information systems lead to higher administrative efficiency,
reduce medical errors and improve coordination. However, not every information system is
successful, and some are abandoned or do not fulfil the desirable outcomes. The design-
reality gap identifies the hard-soft and design-implementation gaps as major archetypes for
an information system’s failure.

As for the LISs, they are essential to manage the flow of information in laboratories. From
a functional point of view, they should support information security, test ordering, specimen
collection, accessioning and processing, result entry, validation and reporting, among others.
During market research for possible solutions to the current problem, it was concluded that
most of the systems support most of the functionalities of an ideal LIS but fail to meet the
new requirements of COVID-19 testing. Only the Belgian LIMS supports all the required
functionalities; however, the solution is not open-source and is not available on the market.
Based on that, it is possible to conclude that a new LIS is necessary, and it would be a
market innovation.

15

Chapter 3

Value Analysis

This chapter analyses the value of the current dissertation. It applies the NCD model, the
value proposition canvas and the QFD to this dissertation.

3.1 The New Concept Development Model

The NCD model is a theoretical construct for innovation’s Fuzzy Front End (FFE). NCD
provides a common framework and language for the front end activities. Figure 3.1 demon-
strates that the NCD model consists of three essential parts:

• Five key elements represented in the inner area;

• The engine that drives the five elements through leadership and culture of the organ-
isation;

• Influencing factors that can affect the innovation process (Koen et al. 2001).

The NCD model fits the current project and helps in understanding its value better. In the
following subsections, each key element is applied to the project.

Figure 3.1: NCD model (Koen et al. 2001)

16 Chapter 3. Value Analysis

3.1.1 Opportunity Identification

The COVID-19 pandemic hit the world by surprise. Given the nature of the virus, it was
highly contagious and difficult to track. The only way to diagnose COVID-19 was through
a test, and the RT-PCR tests proved to be the most precise.

According to Dowdy and D’Souza (2020), a high positive percentage of tests indicates
high infection rates. Following the World Health Organization (WHO) recommendations,
Dowdy and D’Souza (2020) say that a 5% positive percentage is the threshold, and countries
should aim to be below it. The positive percentage should decrease by reducing the amount
of COVID-19 transmission or increasing the number of tests. The two are related and more
tests leads to lower amounts of transmission.

On the first 26 days of January 2021, Portugal reached an average of 52 thousand daily
tests (Diário de Notícias 2021). During that period, 240 200 of the tests were positive
(Direção-Geral da Saúde 2021), leading to an average of 9 238 new infections per day. This
results in 17.8% positive tests indicating that Portugal should be testing more.

PORTIC is responsible for testing the P.Porto community and various health centres of the
north. They deal with a significant amount of tests per day and reached maximum capacity.
The biggest problem is the amount of information to be handled. The staff wastes a lot of
their time managing information between health centres, the P.Porto community and ARSN.
If the staff could manage the information faster and consistently, PORTIC would be able
to increase the number of daily tests. This problem results in an opportunity to build an
information system for PORTIC.

3.1.2 Opportunity Analysis

Even though the COVID-19 pandemic is recent, there are advances in the state of the art
for information systems. Reeves et al. (2020) published an article about an information
system focused on the outbreak management of COVID-19. Among other functionalities,
this system supports reporting and analytics for tests. However, the system does not support
data importation from external sources. One other information system to consider is from an
article published by Weemaes et al. (2020b). This system manages test registration, sample
flow and result reporting. It also supports data importation from external sources. However,
due to the specific external data sources that PORTIC requires, it would be necessary
to implement them. This system also lacks authentication and authorisation, which is an
important requirement for PORTIC.

After the opportunity analysis, it is possible to conclude that building a new information
system is worth it. There are few information systems for COVID-19 testing, and the ones
that exist do not support important requirements for PORTIC.

3.1.3 Idea Genesis

After some discussion about the new information system, some ideas about possible func-
tionalities arose. Those are the following:

• Data importation from different external sources;

• Importation of the RT-PCR test results;

• Report Generation;

3.2. Value, Value for the Customer and Perceived Value 17

• Authentication and authorisation;

• Users management;

• Stock management;

• Application of data mining techniques to the collected data.

3.1.4 Idea Selection

Due to time concerns and value retrieved to PORTIC, some functionalities were not selected
to be implemented. The list of chosen functionalities to implement is the following:

• Data importation from different external sources;

• Importation of the RT-PCR test results;

• Report Generation;

• Authentication and authorisation;

• Users management.

3.1.5 Concept and Technology Development

With the development of an information system, the PORTIC laboratory staff will manage
the information faster and with data consistency. This system will help the staff focus on
sample analysis and test result determination. It will also enable the laboratory to increase
the number of daily tests made.

3.2 Value, Value for the Customer and Perceived Value

This section defines the concepts of value, value for the customer and perceived value. It
also applies these concepts in the context of this dissertation.

3.2.1 Value

According to Nicola, E. P. Ferreira, and J. J. Ferreira (2012), "Value has been defined in
different theoretical contexts as need, desire, interest, standard/criteria, beliefs, attitudes,
and preferences". Value varies according to different perceptions. A customer and a supplier
have different perceptions of the value of a product. As such, value is subjective, and the
perceived value of a product can differ from the value for the customer.

3.2.2 Value for the Customer

Value for the customer is often used in the marketing literature to represent what the
customer perceives or receives from the product. It can be represented through multiple
perspectives and varies between different customers (Woodall 2003).

3.2.3 Perceived Value

Zeithaml (1988) defined perceived value has "the consumer’s overall assessment of the utility
of a product based on perceptions of what is received and what is given". What a consumer

18 Chapter 3. Value Analysis

receives and gives varies across multiple consumers, indicating that value is a trade-off of
benefits and sacrifices.

Table 3.1 applies these definitions of value, value for the customer and perceived value by
comparing the benefits and sacrifices of a consumer to the current dissertation’s product.

Table 3.1: Benefits and sacrifices.

Benefits Sacrifices

Easier information management Added infrastructure costs
Faster data treatment The dependency of internet connection
Data security and consistency The learning curve of the software usage
Allow more staff to manage part of the information
Faster test results

3.3 Value Proposition

A value proposition is an overall view of the value that a company’s products or services
offer to the customers. This statement is part of the marketing strategy of a company.
Targets customers who will benefit from the product and states the reason why it is unique.
A value proposition answers questions as: "What is your product?"; "Who is your target
customer?"; "What value do you provide?"; "Why is your product unique?". As such, the
current dissertation’s product’s value propositions is the following:

Test better, test faster

Developed to help in the fight against a global pandemic, this information system
will allow your laboratory faster test results.

3.4 Value Proposition Canvas

Osterwalder et al. (2014) created the value proposition Canvas, a framework for product or
service positioning to meet customer needs. The application of this Canvas should target
a single customer segment. Consists of two blocks, customer profile and value map. The
customer profile divides into three sections: gains, expected benefits for the customers;
pains, risks and negative experiences; customer jobs: functional, emotional and social tasks
that the customers are trying to execute. The value map also divides into three sections:
gain creators, how the product or service creates customer gains; pain relievers, how the
product or service eliminates or reduces customer pains; products and services: the products
and services that create value for the customer. The value map and customer profile aim
to reach fit. A value proposition must create essential gains, alleviate extreme pains and
address important jobs, to achieve fit.

Figure 3.2 applies this Canvas to the current project.

3.5. Quality Function Deployment 19

Figure 3.2: Value Proposition Canvas

3.5 Quality Function Deployment

QFD is a concept that "ensures that customer requirements are integrated into new products
as early as the design stage" (Zairi and Youssef 1995). The house of quality, part of QFD,
serves to translate the customer requirements to engineering characteristics (Hauser and
Clausing 1988).

Figure 3.3 applies the house of quality to the current project.

20 Chapter 3. Value Analysis

Figure 3.3: House of quality

21

Chapter 4

Analysis and Design

This chapter describes the functional and non-functional requirements for the system to de-
velop. It considers relevant technologies for its development, identifying the technologies to
use. Lastly, it details the architectural design of the solution, reviewing possible alternatives.

4.1 Requirements Engineering

This section defines and documents the requirements for the system to develop. During the
process of requirements elicitation, the author applied various elicitation techniques, namely:

• Interviews: used several times to understand what each user needs;

• Workshops: used to define requirements with multiple stakeholders when their vision
of the product collided;

• Observations: used once to understand the entire process of the laboratory and how
the users perform their tasks;

• Document analysis: required when possible to uncover new information;

• System interface analysis: used once to understand how the RT-PCR works and
how it provides the test results.

A QFD is useful to translate the needs of the customers into technical requirements for the
software. Section 3.5 applies this concept.

4.1.1 Actors

An actor is a role played by an external user or system that interacts with the system, usually
through a use case. Table 4.1 specifies and describes the actors of the current system.

22 Chapter 4. Analysis and Design

Table 4.1: Actors

Actor Description

Laboratory administrator Responsible for the management and administration of the lab-
oratory. This actor must have access to all the functionalities,
including user management, where he manages users authorisa-
tions.

Sample collector Responsible for the sample collection. This actor must register
the samples collected.

Tester Responsible for analysing the RT-PCR test results. This actor
must import the COVID-19 test results.

4.1.2 Domain Model

Evans (2015) defines a domain as "a sphere of knowledge, influence, or activity. The subject
area to which the user applies a program is the domain of the software." and model as "a
system of abstractions that describes selected aspects of a domain and can be used to solve
problems related to that domain.". Figure 4.1 demonstrates the domain model defined for
this problem.

The following concept definitions help to understand the domain model defined:

• Sample: represents the sample to analyse and test. It can be collected by the labora-
tory or sent by health centres, and both a COVID code and a laboratory code identify
it;

• COVID code: identifies a sample. It is composed of an organisation identifier and an
incremental number;

• Laboratory code: identifies a sample. It is composed of a letter that represents the
day of the week and an incremental number;

• Sample type: represents the sample type, which can be Health centre, if sent by a
health centre or P.Porto, if collected from the P.Porto community;

• Test: represents a COVID-19 test made to a sample;

• Result: represents the result of the COVID-19 test, which can be negative, positive
or inconclusive;

• Submission: represents a form submission from the P.Porto community. It includes
the information required on the form;

• Person: represents the person that submitted the form submission;

• Gender: represents the gender of the person, which can be male, female or other;

• Location: represents the location address of the person. It is consists of the city and
the address;

• Symptom: represents the symptom that the person had;

• Symptom type: represents the type of symptom, which can be respiratory, gastroin-
testinal or other.

4.1. Requirements Engineering 23

Figure 4.1: Domain Model

4.1.3 Functional Requirements

Functional requirements "describe what the system or software must do. (...) Functional
requirements are sometimes called behavioural or operational requirements because they
specify the inputs (stimuli) to the system, the outputs (responses) from the system, and
behavioural relationships between them." (R. R. Young 2004).

At the start of the project, the functional requirements presented in Table 4.2 were identified.
However, during the project development, new requirements emerged, and others changed.
REQ-05a and REQ-06a ceased to exist. Instead of generating reports by health centre
and for each P.Porto submission, REQ-07 and REQ-08 fill those requirements. The search
samples functionality allows the user to filter by date and by health centre. At the same
time, the export samples enables the user to export that filtered data and select what data
to export. The rest of the initial functional requirements remain unchanged, and only new
ones were added. Table 4.3 shows the final functional requirements list.

24 Chapter 4. Analysis and Design

Table 4.2: Initial Functional Requirements

Identifier Description Actors

REQ-01a Import Samples from health centres Laboratory Administrator
REQ-02a Import P.Porto submissions Laboratory Administrator
REQ-03a Register a new sample Laboratory Administrator;

Sample Collector
REQ-04a Import COVID-19 test results Laboratory Administrator;

Tester
REQ-05a Generate test reports by health centre Laboratory Administrator
REQ-06a Generate individual test reports for P.Porto

submissions
Laboratory Administrator

REQ-07a Search samples Laboratory Administrator;
Sample Collector

REQ-08a Export samples Laboratory Administrator;
Sample Collector

4.1. Requirements Engineering 25

Table 4.3: Final Functional Requirements

Identifier Description Actors

REQ-01 Import Samples from health centres Laboratory Administrator
REQ-02 Import P.Porto submissions Laboratory Administrator
REQ-03 Register a new sample Laboratory Administrator;

Sample Collector
REQ-04 Import COVID-19 test results Laboratory Administrator;

Tester
REQ-05 Search samples Laboratory Administrator;

Sample Collector
REQ-06 Export samples Laboratory Administrator;

Sample Collector
REQ-07 Update sample Laboratory Administrator;

Sample Collector
REQ-08 Delete sample Laboratory Administrator;

Sample Collector
REQ-09 Get sample details Laboratory Administrator;

Sample Collector
REQ-10 Register a new P.Porto submission Laboratory Administrator
REQ-11 Update P.Porto submission Laboratory Administrator
REQ-12 Delete P.Porto submission Laboratory Administrator
REQ-13 Associate sample to P.Porto submission Laboratory Administrator;

Sample Collector
REQ-14 Decouple sample from P.Porto submission Laboratory Administrator;

Sample Collector
REQ-15 Search submissions Laboratory Administrator;

Sample Collector
REQ-16 Get submission details Laboratory Administrator;

Sample Collector

REQ-01: Import samples from health centres

Description

The Laboratory Administrator is responsible for the importation of samples from the health
centres. The information is imported through an excel file that the health centres send to
the laboratory. The file represents the samples that the health centre collected and sent for
the laboratory to test. It contains the COVID code, the patient number and the collection
date of the sample. The Laboratory Administrator indicates the header of the file and the
columns of each information since different health centres send different files.

Preconditions

• the user is authenticated;

• the user has the Laboratory Administrator role;

• the samples must have been received by the laboratory.

26 Chapter 4. Analysis and Design

Successful event flow

1. The Laboratory Administrator initiates the health centre samples import.

2. The system asks for the file, the file header and the columns of the COVID code,
collection date and patient number.

3. The Laboratory Administrator chooses the file to import and indicates the respective
header and columns.

4. The system validates the format of the file and imports the samples successfully with
a generated laboratory code.

Alternative event flows

4a. The system detects an error on a line and alerts the user that the importation stopped
on that line, importing the previous ones.

4b. The system detects a not supported format and alerts the user.

System Sequence Diagram

Figure 4.2: REQ-01: System Sequence Diagram

Postconditions

• the samples are recorded in the system;

• the samples have a laboratory code generated by the system.

Validations

• the COVID code, the patient number and the collection date are mandatory.

REQ-05a: Generate test reports by a health centre

Description

The Laboratory Administrator is responsible for the generation of test reports by a health
centre. The reports are exported in an excel file. They represent the samples sent by the
health centre, along with the COVID-19 test results. And they must have the collection
date, the COVID code, the patient number and the test result of each sample.

Preconditions

• the user is authenticated;

• the user has the Laboratory Administrator role;

4.1. Requirements Engineering 27

• the samples must have a test result registered.

Successful event flow

1. The Laboratory Administrator initiates the test report generation of a health centre.

2. The system asks for a health centre identifier and a day.

3. The Laboratory Administrator indicates the health centre and the day.

4. The system generates and exports the report for all the samples of the selected day
and health centre.

Alternative event flows

4a. The system detects that there are no samples to generate a report and alerts the user.

System Sequence Diagram

Figure 4.3: REQ-05a: System Sequence Diagram

Postconditions

• the report is exported in an excel file.

Validations

• the day and the health centre are mandatory.

4.1.4 Non-functional Requirements

Non-functional requirements are attributes of or constraints on a system (Glinz 2007).
Table 4.4 classifies the non-functional requirements according to the FURPS+ classification
model developed at Hewlett-Packard.

28 Chapter 4. Analysis and Design

Table 4.4: Non-functional requirements

Identifier Description Classification

RNF01 The system must have an authentication
mechanism

Functional

RNF02 The system must have an authorisation mech-
anism

Functional

RNF03 The technologies used must be open-source or
from Microsoft

Implementation

RNF04 The personal data stored must be encrypted Security
RNF05 The application must support access from

Chrome and Firefox
Design

RNF06 The system must be easily maintained by other
P.Porto personnel

Supportability

RNF07 The system must be extensible Supportability
RNF08 The User Interface (UI) must be intuitive Usability
RNF09 The UI must be responsive Usability
RNF10 The system must be easily tested Supportability
RNF11 The database must be SQL Server Design

4.2 Relevant Technologies

RNF05 indicates that the solution must be a web application since it has to be accessed
by a web browser. On the other hand, RNF03 declares that the used technologies must
be open-source or from Microsoft. As such, this section explores relevant technologies that
satisfy these requirements for the web application and the database.

For the web application, the following solutions satisfy RNF05 and RNF03:

• Node.js;

• Ruby on Rails;

• ASP.NET Core.

All of these technologies are open-source and support web development. They execute
on Windows and Linux servers and can are deployable on the cloud or on-premises. They
all satisfy RNF01 and RNF02 since they all support authentication and authorisation. As
such, all of them are suitable options for the development of this solution. Considering the
urgency of this solution (Section 1.1 and 1.2) and the author experience, ASP.NET Core
is the technology chosen.

ASP.NET Core offers ASP.NET Core MVC for web development (Microsoft 2020b). It
utilises Razor Pages for the user interface and ASP.NET Identity to handle authentication
and authorisation (Microsoft 2019).

For the database, RNF11 imposes the use of SQL Server as the database for the web
application.

4.3. Architectural Design 29

4.3 Architectural Design

Software architecture is "the process of defining a structured solution that meets all of
the technical and operational requirements, while optimising common quality attributes"
(Microsoft 2009). It comprises a set of significant decisions about the organisation of a
software system and has a high impact on the solution’s success.

4.3.1 Candidate Architectures

This section describes possible architectural solutions for the problem in question. Each
alternative is analysed on how it responds to the non-functional requirements, concluding
on a solution.

N-Layer architecture

This architectural style divides the application logic into layers. When the application logic
is distributed across separate deployment targets, these deployment targets are called tiers.
The number of tiers does not have to correspond to the number of layers in an application
(Microsoft 2020a).

A layered architecture has advantages in the code organisation. The reusability of common
functionalities across the application is one of them. This architecture style also enforces
restrictions on layer communication, promoting encapsulation and loose coupling. For in-
stance, a change should only take place in a single layer, and only layers that communicate
with it should be affected. This makes the replacement of a functionality implementation
easier, both for requirement changes and testing purposes.

A common organisation of the application layers is the 3-layer architecture. It consists
of a UI, or presentation, layer, a business logic layer and a data access layer. Figure 4.4
demonstrates this architecture.

Figure 4.4: 3-Layer architecture (Microsoft 2020a)

30 Chapter 4. Analysis and Design

In this architecture, the user interacts with the application through the UI layer, which only
interacts with the business logic layer. On the other hand, the business logic layer only
interacts with the data access layer. This communication cannot be reversed, and it cannot
skip layers. In other words, the UI layer cannot directly call the data access layer, nor the
business logic layer can directly communicate with the presentation layer.

A problem with this architecture is that each layer depends on the layer below. This makes
the business logic layer depend on the data access layer. As such, the business rules cannot
be tested without the data access layer or a fake implementation of it. This affects the
extensibility and testability of the system, going against the RNF07 and RNF10. For that
reason, this architecture style is rejected.

Clean Architecture

Clean architecture’s main objective is the separation of concerns. It achieves this objective
by splitting the application into multiple layers, similar to the n-layer architecture (Martin
2012). The idea of clean architecture is to make a system:

• Independent of frameworks: allows the system to use frameworks as tools and not
depend on them. This way, the system is not limited by a framework’s constraints.

• Testable: the business rules can be tested in isolation and without the dependency of
another layer.

• Independent of UI: the UI is easily replaced without affecting the rest of the system.

• Independent of the database: the database can be replaced without affecting the
rest of the system. This includes the business rules which are not coupled to the
database.

• Independent of any external agency: the business rules are not affected by external
agencies.

Figure 4.5 demonstrates an example of clean architecture where the application has the
following layers (Microsoft 2020a):

• UI: responsible for the implementation of the presentation logic.

• Infrastructure: responsible for the implementation of the persistence logic, external
systems and frameworks.

• Application Core: responsible for the implementation of the business rules and appli-
cation model.

Clean architecture enforces a dependency rule where dependencies can only point inwards.
Since the business rules and application model are the core of the application, the UI and
infrastructure depend on it. This dependency inversion is possible through abstractions
or interfaces in the application core that are implemented by the infrastructure layer. As
such, this architectural style achieves the RNF06, RNF07 and RNF10, since it provides an
extensible application, easily tested and maintained. For these reasons, clean architecture is
the chosen architectural style for the solution.

4.3. Architectural Design 31

Figure 4.5: Clean architecture (Microsoft 2020a)

4.3.2 Web Application

According to RNF05, the application must be accessed by a web browser, namely Chrome
and Firefox. As such, the solution must be a web application. Figure 4.6 demonstrates the
component diagram of the solution. It is composed of the following components:

• Presentation: represents the UI layer of clean architecture. It is responsible for the
UI logic.

• Core: represents the application core layer of clean architecture. It is responsible for
the business rules of the application.

– Application: represents the domain services of the application. It is a part of
the core layer.

– Domain: represents the domain model of the application. It is a part of the core
layer.

• Infrastructure: represents the infrastructure of clean architecture. It is responsible
for the data access logic, external systems logic, authentication, authorisation and
frameworks.

• Database: represents the database of the application.

32 Chapter 4. Analysis and Design

Figure 4.6: Component Diagram

4.3.3 Deployment View

The deployment view illustrates the physical distribution of the system nodes. For this
solution, the web application and the database remain on the same server since P.Porto
only provides a single server for the application. This server’s operating system is Ubuntu
18.04.5 LTS, and the web application runs in Nginx, an open-source HTTP server that
satisfies RNF03. The web application connects to the SQL server database directly, and the
user communicates with the application through a web browser. Figure 4.7 demonstrates
the deployment view of the solution.

Figure 4.7: Deployment Diagram

4.3. Architectural Design 33

4.3.4 Database Model

The database model for this solution splits into two. One model to answer the functional
requirements and another to answer RNF01 and RNF02. The model to answer the au-
thentication and authorisation requirements is based on the ASP.NET Identity since it is the
Microsoft solution to handle authentication and authorisation. Figures 4.8 and 4.9 illustrate
the database models.

Figure 4.8: Database Model

34 Chapter 4. Analysis and Design

Figure 4.9: Database Identity Model

35

Chapter 5

Implementation

The focus of this chapter is on the implementation details of the application. It explains
how the code was structured, relating it to the layered architecture used. It describes the
design patterns adopted and shows examples of their usage. The chapter also describes how
the application tackles some functional and non-functional requirements. Finally, it explains
how this application was tested.

5.1 Code Structure

Clean architecture is the chosen architecture for this application. Section 4.3.1 shows that
the clean architecture splits the application into the Web, Infrastructure and Application Core
layers, and Section 4.3.2 relates those layers with the Presentation, Application, Domain and
Infrastructure components. This section concentrates on how those layers and components
are structured in the source code, using module diagrams (Figure 5.1).

Figure 5.1: Application Modules

5.1.1 Domain Module

The Domain module composes the core layer of the application and represents the business
rules and core logic. Figure 5.2 displays the module view of the Domain module, along with
the following submodules:

• Entities: contains all the entities of the domain model. This is where the core logic
of the domain exists in the form of mutable objects;

• Enums: contains all the enumerators of the domain model;

36 Chapter 5. Implementation

• ValueObjects: contains the value objects of the domain model. This is where the
core logic of the domain exists in the form of immutable objects.

Figure 5.2: Domain Module

5.1.2 Application Module

The Application module completes the core layer of the application alongside the Domain
module. This module contains logic that does not fit the domain model, typically translating
directly to a functional requirement. The Submissions and Samples modules are submodules
of the application module and represent entities of the domain model. Both of these smaller
modules have:

• Commands: contains all the commands of the application. It represents the command
part of the Command Query Responsibility Segregation (CQRS) pattern, in detail in
Section 5.2.1;

• Queries: contains all the queries of the application. It represents the query part of
the CQRS pattern.

The Application module also includes a Common module; which splits into the following
modules:

• Behaviours: has all the behaviours of the commands and queries. These are part of
the Mediator pattern, in detail in Section 5.2.2;

• Exceptions: has the custom exceptions used in the commands and queries;

• Interfaces: has the interfaces required for the commands and queries. These inter-
faces serve as an abstraction to the actual implementation, following the Inversion of
Control principle. They are implemented in the Infrastructure module;

• Models: has generic models for the commands and queries.

Figure 5.3 represents the Application module.

5.1. Code Structure 37

Figure 5.3: Application Module

5.1.3 Infrastructure Module

The Infrastructure module represents the infrastructure layer of the application, and this
module implements all the interfaces of the Application module. It contains integration
logic for used frameworks, external systems and data access. Figure 5.4 represents the
module, along with the following submodules:

• Cryptography: contains the logic of the application related to cryptography. It is
responsible for encrypting and decrypting data, responding to the non-functional re-
quirement RNF04;

• Emails: contains the logic of the application related to emails. It is used for user
sign-up and to recover user passwords;

• Files: contains the logic of the application related to file importation and exportation,
responding to the functional requirements REQ-01, REQ-02, REQ-04 and REQ-06;

• Identity: contains the logic related to the Identity. Identity is a .Net API that man-
ages user data for authentication and authorisation purposes, responding to the non-
functional requirements RNF01 and RNF02;

• Persistence: contains the logic related the database access. It mainly consists of
database objects and repositories since the application uses the Repository pattern, in
detail in Section 1.2.

38 Chapter 5. Implementation

Figure 5.4: Infrastructure Module

5.1.4 Presentation Module

The Presentation module represents the presentation layer of the application. It contains the
UI logic of the application and divides into the following modules, as displayed in Figure 5.5:

• Controllers: contains all the controllers of the application. It represents the controllers
of the Model-View-Controller (MVC) pattern, in detail in Section 1.2;

• Models: contains all the view models of the application. It represents the view models
of the MVC pattern;

• Views: contains all the views of the application. It represents the views of the MVC
pattern.

Figure 5.5: Presentation Module

5.2 Design Patterns

Design patterns are generic solutions to recurring problems in software design. Since they
are tested and proven solutions, design patterns are considered best practices of software
design. They improve the code maintainability and readability due to being well known
by the community. However, when poorly applied, design patterns increase the application
complexity and can deteriorate its performance. The following sections describe the adopted
design patterns and show examples of their usage.

5.2. Design Patterns 39

5.2.1 Command Query Responsibility Segregation

Command Query Responsibility Segregation (CQRS) is a design pattern that separates the
model into a write model and a read model (Fowler 2011). The most fundamental idea
comes from Command Query Separation (CQS), where an object’s method should have
two types, queries and commands. A query is a method that returns a value and does not
change the state of the system. In contrast, a command changes the state of the system
and does not return a value (Fowler 2005).

By separating the commands from queries, CQS increases the confidence in the use of
queries and increases the awareness of the commands. CQRS takes this a step further.
By separating the models into two, it is possible to scale reads and writes independently.
With this design pattern, it is also possible to physically split the application and even the
database. This separation can cause consistency problems, forcing the change to an event-
based application, taking advantage of Event Sourcing.

CQRS taken to the extreme adds significant complexity to an application. This application
uses CQRS by separating the reads and writes but keeping a single database and a shared
model, reducing the added complexity of maintaining two different models.

Figure 5.6 displays the ImportTestsCommand and ImportTestsCommandHandler as an ex-
ample of a command and command handler. And Figure 5.7 shows the GetSampleQuery and
GetSampleQueryHandler as a contrast for a query and query handler. As the images show,
the query handler returns a SampleDto while the command handler has no return value.
Since the application also uses the mediator pattern (Section 5.2.2), it is only necessary to
initialise the command/query, and the mediator will know which handler to use.

40 Chapter 5. Implementation

Figure 5.6: Command and command handler example

Figure 5.7: Query and query handler example

5.2. Design Patterns 41

5.2.2 Mediator

A Mediator serves as an abstraction between different objects. Instead of an object commu-
nicating with the other directly, it only needs to communicate with the Mediator, providing
loose coupling. It simplifies the way objects work since they only need to know the Mediator
instead of being directly coupled with many other objects (Gamma et al. 1994).

The Mediator centralises the control. Instead of implementing new behaviour across multiple
objects, it is possible to implement those behaviours in the Mediator.

Figure 5.8: Mediator example

Figure 5.8 is an example of the Mediator pattern applied in the application. In the example,
the Mediator abstracts the query from the responsible handler. It also abstracts a collection
of behaviours that execute before the handler in the form of a Pipeline (Section 5.2.3).

5.2.3 Pipeline

The Pipes and Filters or Pipeline pattern decomposes a complex process into simpler tasks
that can be reused. Each task, or filter, needs to follow a standardised data format and
together, they combine into a pipeline. This pattern improves the code reusability, perfor-
mance and scalability since each filter can be deployed and scaled independently (Microsoft
2017).

With the Mediator pattern, it is possible to add a pipeline to every request made to the
Mediator. Instead of adding the pipeline or a complex process to each object, the Mediator
can run the pipeline for them, further improving the loosed coupling and code reusability.

Figure 5.9: Filter example

Figure 5.9 shows an example of a filter used in the application, the ValidationBehaviour. This
class is responsible for validating the command and queries before they reach the handler.

42 Chapter 5. Implementation

Figure 5.10: Pipes and Filters with Mediator

Figure 5.11: Validator example

This class only needs to be registered on the Mediator, and the Mediator is responsible for
running it before any command or query (Figure 5.10). Each command and query needs to
have a validator defined to use the ValidationBehaviour. The validator only needs to have
the validation rules leaving the error handling to the ValidationBehaviour class (Figure 5.11).

5.2.4 Repository

According to Fowler et al. (2002) the Repository pattern serves as an abstraction between
the domain and the data access layer. It acts as an in-memory domain object collection,
where objects can be added, updated or deleted from the Repository, and the Repository
is responsible for the proper database operations. This pattern provides an object-oriented
view of the persistence layer, creating a clear separation between the domain and the data
access layer.

Using the Repository pattern further improves the code testability since it is possible to mock
the Repository. Because it is an abstraction of the data access layer, it is easy to replace
the used object-relational mapping providing a loose coupling between the domain and the
data access layer.

In Figure 5.12, it is possible to see the SampleRepository implemented in the application.
Since the Repository only receives and returns domain objects, the CreateSampleCommand
can treat the Repository as a collection and call the AddAsync method directly (Figure 5.13).

5.2. Design Patterns 43

Figure 5.12: Repository example

Figure 5.13: Example from a call to a repository

5.2.5 Model-View-Controller

According to Microsoft (2020c), the Model-View-Controller (MVC) is a design pattern
that "separates an application into three main groups of components: Models, Views, and
Controllers". Each request made to the application routes to a Controller, which sends
commands or queries to the model. The Controller is also responsible for the View to return
and display to the user, feeding the View with the Model data required.

In this pattern, the model represents the business logic, and the View represents the user
interface content. Both the View and the Controller depend on the model; however, the
model depends on neither. The separation between the model and the user interface logic
allows the model to be built and tested independently. Since the user interface changes more
frequently than the model, this separation is a key benefit of the MVC pattern.

An application can use ViewModels to further extend the separation between the View and
the model. Instead of having the View depend on the model, the View can depend on a
ViewModel, which represents the data displayed on the View. In this case, the Controller is
responsible for populating the ViewModel data with the domain data.

Figure 5.14 shows the SampleController’s action GetSampleWithPagination. The Controller
makes a query to the Mediator and uses the data returned to populate the GetSamplesWith-
PaginationViewModel. Then, it returns the correspondent View with the GetSamplesWith-
PaginationViewModel.

44 Chapter 5. Implementation

Figure 5.14: Example from a Controller

5.3 Cryptography

RNF04 states that the application must encrypt the personal data stored. The cryptography
module situated in the infrastructure layer addresses this non-functional requirement, and
it contains encryption and decryption methods using the Advanced Encryption Standard
algorithm, also known as Rijndael (Daemen and Rijmen 1999).

The National Institute of Standards and Technology established the AES as the standard
encryption algorithm. It is a symmetrical block cypher algorithm "capable of using crypto-
graphic keys of 128, 192 and 256 bits to encrypt and decrypt data in blocks of 128 bits"
(Dworkin et al. 2001). Since this is a symmetric-key algorithm, the key used to encrypt and
decrypt the data must be the same. Only using this key is not enough because if the same
data is encrypted twice, it will result in the same cyphertext. The initialisation vector solves
this issue since it is a unique value generated for every new message that is being encrypted.
The IV is usually stored together with the encrypted data.

Figure 5.15 shows how the application encrypts the data. The key used is the same for each
encryption, and the application concatenates the IV with the data. As for the decryption,
the application gets the IV from the encrypted data. Then, it uses the IV and the key to
decrypt the rest of the encrypted data (Figure 5.16).

5.4. Functional Requirements 45

Figure 5.15: Data Encryption

Figure 5.16: Data Decryption

5.4 Functional Requirements

This section describes REQ-01 and REQ-05 from a system perspective. It presents, for
each requirement, a sequence diagram and specifies how each part of the system interacts.
This section further compliments the rest of the chapter, giving a detailed perspective of
the system implementation.

5.4.1 REQ-01: Import samples from health centres

REQ-01: Import samples from health centres is an essential functional requirement for the
P.Porto laboratory. It enables the actor to import samples from several sources, even if each

46 Chapter 5. Implementation

source has a different format.

The Laboratory Administrator initialises this requirement by sending an HTTP POST request
to the system. The request contains the file content and the columns responsible for the
COVID code, collection date and patient number. The SamplesController receives the
request and verifies if the authenticated user is authorised to make this request. Then,
the SamplesController creates the command to import the samples and sends it to the
Mediator. Before sending the command to the respective handler, the Mediator runs the
pipeline of behaviours configured. In this pipeline, there is only a single behaviour, the
ValidationBehaviour. This behaviour asks the respective Validator to validate the command,
throwing an exception if the Validator returns any error.

The command handler sends the command information to the file reader, whose job is to
read the file content, translate it into domain objects and return them. In this case, the
file reader returns samples to the handler. Then, for each sample, the handler gets the
last laboratory code number of the day from the SampleRepository, generates the following
laboratory code (Section 4.1.2 explains the laboratory code concept) and adds the sample
to the SampleRepository.

Figure 5.17 displays the sequence diagram for this functional requirement.

5.4.2 REQ-05: Search samples

REQ-05: Search samples is another crucial functional requirement for the application. This
requirement allows the actor to search the samples using multiple filters. The actor can
select a temporal interval and can search by text. The search by text accepts COVID codes
and Laboratory Codes. Since the organisation identifier composes the COVID code, it is
possible to search by organisation as well. The system response can contain several samples,
and because of that, the system returns a paginated response.

The Laboratory Administrator, or the Sample Collector, initialises this requirement by sending
an HTTP GET request to the system (Figure 5.18). The request sends the search text,
the page index of the paginated table, the number of items for each page and the start and
end date to filter the samples. The SamplesController receives the request and verifies if
the user is authorised to make this request. Then, the SamplesController creates the query
and sends it to the Mediator. The Mediator runs the pipeline of behaviours, similar to the
REQ-01 described previously.

After the ValidationBehaviour step, the Mediator sends the query to the respective handler.
The handler asks the SampleRepository for the total count of samples that exist and match
the filters passed. Then, the handler gets the samples from the SampleRepository. Here,
the handler passes, to the SampleRepository, the page index and the size of each page so
that the SampleRepository only gets the necessary amount of data from the database. The
handler creates the paginated list to return. Since the handler will return this paginated
list to the Presentation layer, it uses the SampleDto instead of the Domain object. The
SampleDto contains information about the sample and the latest test result. As such, the
handler gets the latest of each sample from the TestRepository. Finally, the handler returns
the paginated list to the SamplesController, which passes the same list to the View and
returns the View to the user.

5.4. Functional Requirements 47

Figure 5.17: REQ-01: Sequence Diagram

48 Chapter 5. Implementation

Figure 5.18: REQ-05: Sequence Diagram

5.5. Tests 49

5.5 Tests

Software testing is a crucial part of software development since it ensures that the software
meets the defined requirements and helps to identify possible flaws. This section explains
the different types of software testing done and their value to this system’s development.

5.5.1 Unit tests

A unit test is an automated test that verifies a small piece of code, in other words, a unit.
Most authors agree with this definition; however, they diverge in whether the unit tests
should run in an isolated manner. The mockist approach isolates the System Under Test
(SUT) from its dependencies, using test doubles (add a note with definition). In contrast, the
classical approach only isolates the unit tests from each other and utilises the dependencies
of the SUT in the unit tests, with a few exceptions (Khorikov 2020).

This application’s unit tests follow the mockist approach since it provides better granularity
and, in case of a test failure, it is easier to detect which functionality has failed. The unit
tests rely on mocks to replace the SUT’s dependencies and their interactions. The mock
framework used is the Moq, and the unit tests framework is the Xunit. The AutoFixture
framework is also used to create random values for the unit tests.

The unit tests follow the Arrange, Act, Assert (AAA) pattern:

• The Arrange section of the unit test is where the objects and values used are initialised;

• The Act section invokes the SUT;

• The Assert verifies that the SUT behaves as expected (Microsoft 2021).

Figure 5.19 shows a unit test to the GetSampleQueryHandler as an example. This test in-
tends to validate the behaviour of the GetSampleQueryHandler if the sample to return does
not exist, and it utilises a mock object to replace the SampleRepository implementation.
In the Arrange section, the unit test initialises the GetSampleQuery, the GetSampleQuery-
Handler, which is the SUT, and it setups the mock behaviour to return a null Sample on
GetAsync. The Act section invokes the SUT, and the Assert section verifies that the ex-
pected behaviour is to throw a ValidationException. During the Assert, the unit test also
validates if the set up mock behaviour was invoked.

Figure 5.19: GetSampleQueryHandler Unit Test

50 Chapter 5. Implementation

The unit tests cover all the application layers except the Presentation layer due to only having
the user interface logic. The code coverage of the unit tests reached 73.04% (Figure 5.20).

Figure 5.20: Code Coverage of Unit Tests

5.5.2 User Acceptance tests

User acceptance tests (HISs) primary objective is to ensure that a system meets the business
requirements. The end-user usually does these tests and determines if the system satisfies
the acceptance criteria. UATs are relevant tests for a new information system since they help
identify missing requirements or miss interpretation of the existent requirements (Hambling
and Goethem 2013).

The development of this system followed a scrum methodology. This methodology relies
on incremental development where each iteration, also known as a sprint, has a predefined
duration of time. Each sprint consists of a planing, to define what is being done, a devel-
opment phase and a delivery. In the delivery phase of the sprint, the end-users would test
the system’s new functionalities and either accept the functionality or ask for changes. This
step identified flaws and missing requirements that led to a final functional requirement list
quite different from the initial one (Section 4.1.3).

Each functional requirement directly translates to a UAT. Table 5.1 shows the functional
requirements and if they were accepted or not by the end of the development.

Table 5.1: Accepted Functional Requirements

Identifier Description Accepted

REQ-01 Import Samples from health centres Yes
REQ-02 Import P.Porto submissions Yes
REQ-03 Register a new sample Yes
REQ-04 Import COVID-19 test results Yes
REQ-05 Search samples Yes
REQ-06 Export samples Yes
REQ-07 Update sample Yes
REQ-08 Delete sample Yes
REQ-09 Get sample details Yes
REQ-10 Register a new P.Porto submission Yes
REQ-11 Update P.Porto submission Yes
REQ-12 Delete P.Porto submission Yes
REQ-13 Associate sample to P.Porto submission Yes
REQ-14 Decouple sample from P.Porto submission Yes
REQ-15 Search submissions Yes
REQ-16 Get submission details Yes

51

Chapter 6

Evaluation

This chapter’s objective is to evaluate the developed system. The P.Porto laboratory an-
swered a questionnaire to determine the perceived usefulness and ease of use. Afterwards,
the system is compared with what would an ideal LIS be like from a functional point of view.

6.1 Perceived Usefulness and Perceived Ease of Use

Davis (1989) published an article validating perceived usefulness and ease of use as possible
determinants of computer usage. According to him, perceived usefulness is "the degree
to which a person believes that using a particular system would enhance his or her job
performance.". On the other hand, perceived ease of use is "the degree to which a person
believes that using a particular system would be free of effort.".

During his research, Fred Davids developed perceived usefulness and ease of use measures
and validated them in two empirical studies. He generated initial scale items and pretested
them in a pilot study. Then, he refined the scale items, tested them on the first study, and
repeated the process for the second study. Perceived usefulness correlated .63 with self-
reported system use for the first study and .85 for the second, while perceived ease of use
correlated .45 and .69, correspondingly. These numbers show that both perceived usefulness
and ease of use correlated significantly with self-reported use, but perceived usefulness had a
stronger link. Fred Davids solidifies this statement by examining the combined direct effect
of the two variables in a regression analysis. The regression results confirmed the statement
and suggested that ease of use could be an antecedent to usefulness, which, in turn, would
lead to usage, causing a chain of causality.

Section 3.1.1 identifies the opportunity to build a new information system for PORTIC. That
opportunity arose from the administrative burden suffered by the laboratory. They deal with
a significant amount of data and spend most of their time managing that information. Using
the scale measures for perceived usefulness and ease of use makes it possible to evaluate
the user acceptance and correlate to possible application usage. For this evaluation, a
questionnaire with the scale measures was made to the laboratory. The questionnaire has
two sections with six questions each, one for perceived usefulness and another for ease of
use. The answers go from a scale of one to seven, where one is extremely unlikely, and
seven is extremely likely.

Figure 6.1 displays the laboratory answers for the perceived usefulness. They answered six
for all questions but one, where they answered seven. Given that perceived usefulness highly
correlates to self-reported use, it is possible to conclude that the system would be extremely
useful and frequently used by the laboratory.

52 Chapter 6. Evaluation

Figure 6.1: Perceived Usefulness Questionnaire

6.1. Perceived Usefulness and Perceived Ease of Use 53

Figure 6.2: Perceived Ease of Use Questionnaire

54 Chapter 6. Evaluation

As for the perceived ease of use, the laboratory answers were spread between fives and
sevens (Figure 6.2). This result is very similar to the perceived usefulness, and it confirms
the previous conclusion.

The laboratory answered this questionnaire after all the functional requirements were deliv-
ered and accepted by the user acceptance tests. The laboratory also had a last session to
ask questions and solve doubts about the system before answering the questionnaire.

6.2 The Ideal Laboratory Information System

Section 2.3 presents the ideal LIS from a functional point of view, according to Sepulveda
and D. S. Young (2013). This section compares the system developed with the ideal LIS.
Table 6.1 presents the functionalities that an ideal LIS should have and the state of those
functionalities in the developed system.

Table 6.1: Ideal LIS Comparison

Functionality State

Information security Incomplete
Test ordering Completed
Specimen collection, accessioning and processing Completed
Analytic phase Not implemented
Result entry and validation Incomplete
Result reporting Incomplete
Notification management Not implemented
Data mining and cross-sectional reports Not implemented
Method validation Not implemented
Quality management Not implemented
Administrative and financial issues Not implemented

Test ordering and specimen collection, accessioning and processing is fully implemented
and follows the ideal LIS description. On the other hand, there are some functionalities
that incomplete. Information security is present but lacking functionalities, namely the lack
of user roles. Initially, the system required multiple user roles (Section 4.1.1); however,
the requirements changed over time, and due to time constraints, only one user role was
configured. Even though there is only one user role, the system is prepared to have more.

Result entry and validation is another incomplete functionality of an ideal LIS. The system
allows the user to create, edit and delete samples and P.Porto submissions data; however,
it does not have a step to validate the data upon file importing. This functionality was not
a part of the system requirements, but it would improve its ease of use.

The system supports result reporting through REQ-06: Export Samples. The downside is
that the user still needs to submit those reports to or directly to the person. For this
functionality to be completed, the system would have to send the reports for the user. This
was considered as a functional requirement, but it was discarded due to time constraints.

As for the not implemented functionalities:

6.2. The Ideal Laboratory Information System 55

• Analytic phase: was not implemented because it was not a part of the functional
requirements;

• Notification management: was not implemented because it was not a part of the
functional requirements. However, notification management would improve the use-
fulness of the system and increase the overall performance of the laboratory;

• Data mining and cross-sectional reports: was not implemented because it was
not a part of the functional requirements. Now that the data is normalised and in
the system’s database, there is an opportunity to explore that data for research on
COVID-19;

• Method validation: was not implemented because it does not fit the system’s pur-
pose; the laboratory does not make clinical assays;

• Quality management: was not implemented because it was not a part of the func-
tional requirements;

• Administrative and financial issues: the financial issues support was not implemented
because it was not a part of the functional requirements. As for the administrative
issues, initially, it was considered a functional requirement to manage user permissions;
however, due to time constraints, this was descoped, and the system would only
function with one user role.

The system still has a long way to go to be considered an ideal LIS. There are incomplete
functionalities that would improve the system’s usefulness and ease of use. Some of the
not implemented functionalities, like the data mining and cross-sectional reports, represent
missed opportunities. Nevertheless, the system responds to most of the laboratory require-
ments, and the missing functionalities of an ideal LIS are justified by time constraints. The
laboratory was under pressure due to the high amount of testing for COVID-19, and the in-
formation management was the biggest bottleneck. The system was necessary to solve this
bottleneck quickly. As such, the system’s functionalities represent the essential to manage
the information and mitigate the bottleneck.

57

Chapter 7

Conclusions

This chapter summarises each chapter of this dissertation and what they concluded. Dis-
cusses the objectives accomplished and not accomplished, and it also describes the limitations
and future work of this dissertation.

7.1 Summary

This dissertation’s main objective is a LIS development that allows the PORTIC laboratory
to manage all the information of the COVID-19 tests. This includes the entire sample flow,
from the test application, passing through sample collection and analysis, to the diagnose
and test reporting.

Chapter 1 contextualises this dissertation and defines the problem, objectives and expected
results. Afterwards, chapter 2 analyses the current state of health information systems, LIS
and medical informatics. This chapter also analyses market solutions for the problem, such
as the Belgian LIMS for COVID-19 or the CrelioHealth. It was possible to conclude that
most of these LIS satisfy essential features for the laboratories, but only a small portion
of them have an answer for particular COVID-19 requirements. Furthermore, the PORTIC
laboratory needs specific requirements, such as the importation of custom forms and the
generation of custom laboratory codes, that none of the solutions analysed satisfy.

Chapter 3 analyses the value of the current dissertation. By applying the NCD model, it was
possible to understand and analyse the opportunity of this dissertation. This value analysis
concludes that there is a lack of information systems that support COVID-19 testing. The
value proposition canvas demonstrated how the system would relieve the pains and create
gains for the users. And the QFD translated the customer needs into technical requirements
for the software.

Chapter 4 describes the functional and non-functional requirements for the system. It ex-
plains the process of requirements elicitation and details the domain model and the system
actors. This entire process of requirements elicitation and requirements specification is cru-
cial to the architectural design and technology definition. This chapter analysed relevant
technologies, concluding that the best technology to use is ASP.NET Core. It also analysed
possible architectural styles to adopt, concluding that clean architecture was the best option.
This chapter also defined the deployment view based on the single server that the P.Porto
provided. Lastly, the database model was also determined, taking into consideration the
functional and non-functional requirements.

Chapter 5 explains how the system was implemented. It describes the code structure,
detailing each module and relating them to the layers of the clean architecture. It explains the

58 Chapter 7. Conclusions

adopted design patterns, the added value of using them and demonstrates evidence from the
code. This chapter also describes how the non-functional requirement of data encryption was
tackled. It analyses two functional requirements and how they were implemented, utilising
sequence diagrams to illustrate the implementation. Finally, it gives an overview of the unit
tests and how they were implemented while explaining how the user acceptance tests were
done.

Chapter 6 evaluates the developed system by determining the perceived usefulness and ease
of use through a questionnaire. This allowed to conclude that the system would be extremely
useful and easy to use, with some space for improvements. This chapter also compares the
system with an ideal LIS from a functional point of view. It concludes that the system
still missing some functionalities of an ideal LIS but accomplishes its primary objective of
mitigating the bottleneck of the laboratory.

7.2 Objectives Accomplished

Table 7.1 presents the objectives proposed in Section 1.3 and their state of accomplishment.

Table 7.1: Objectives Accomplished

Objectives State

Requirements elicitation and specification Accomplished
Investigation and analysis of existing solutions to similar
problems

Accomplished

Investigation and analysis of different architectural de-
signs

Accomplished

Identify and justify the most viable alternative Accomplished
Data importation from different external sources Accomplished
Importation of RT-PCR test results Accomplished
Report generation Accomplished
Authentication and authorisation Partially Accomplished
Management of users authorisations Not Accomplished
Unit tests Accomplished
Integration tests Not Accomplished
Acceptance tests Accomplished

The system did not accomplish two of the main objectives proposed, management of users
authorisations and integration tests. They are both justified by requirements change, time
constraints and urgency. During the development, the laboratory identified new functional
requirements that surpassed these objectives on priority. Given the increasing amount of
COVID-19 testing, the laboratory needed the system as soon as possible. As such, this
objective was descoped. As for the integration tests, they are an essential part of soft-
ware testing. However, for the same reasons as previously explained, the objective was not
accomplished.

Authentication and authorisation is only objective that is partially accomplished. The system
supports authentication and authorisation; however, the objective comprised multiple user

7.3. Limitations and Future Work 59

roles, and the system only supports one user role, the Laboratory Administrator. Neverthe-
less, the system is prepared to accommodate new user roles with a few quick changes to
the code.

The rest of the objectives were fully accomplished.

7.3 Limitations and Future Work

Even though the developed system accomplished most objectives, there are still objectives to
complete and opportunities for improvement. The system is still missing more user roles to
match the actors defined in Section 4.1.1. The Laboratory Administrators cannot manage
user authorisations on the system, but they will need this functionality with the addition
of new user roles. Integration tests are also missing, and they are essential to ensure the
system works as expected in an automated way.

Section 6.2 compares the developed system with the ideal LIS from a functional point of
view. That comparison uncovered multiple opportunities to improve the system. Automated
reporting would remove manual work and improve the laboratory performance, as well as
notification management. Data mining and cross-sectional reports is a significant opportu-
nity that this system brought since it collects data about the tests and patient symptoms.
By exploring this data, it would be possible to use this system for COVID-19 research.

7.4 Final Assessment

This dissertation’s main objective was to develop a LIS for the PORTIC laboratory to manage
the information on COVID-19 testing. That meant that the system would have to support
data importation, report generation and exportation and manage the entire sample flow.

Chapter 2 showed that information systems and computer applications have been applied to
healthcare for a long time, given the potential to improve medical processes. Information
systems play an important part in medical informatics since they can collect, process, and
store data. They can reduce costs, improve the outcomes, and enable new organisational
structures, such as virtual organisations where employees can work from anywhere. Infor-
mation systems can also be a great tool when dealing with outbreaks of infectious diseases,
such as COVID-19. One of the biggest challenges in these outbreaks is controlling the
spread, and time is crucial for it. Chapter 2 then explained that an ideal LIS should have
functionalities such as information security, test ordering, specimen collection, accessioning
and processing, result entry, validation and reporting, among others. Finally, it compared
possible market solutions that corresponded to the required functionalities of PORTIC’s
laboratory. Most existing solutions did not have essential functionalities for COVID-19 test-
ing. Only one of them had the necessary functionalities, which was the Belgian LIMS. This
system was designed and developed specifically to deal with COVID-19 testing. However,
the system is not open-source, and it is not available on the market.

To conclude, the developed system answers PORTIC’s laboratory needs, but it can also
be reused by other laboratories that do COVID-19 testing. Therefore, the system is an
innovation on COVID-19 testing since it tackles a new reality that generated new constraints
to laboratories.

61

References

Arokiasamy, J. et al. (Feb. 2000). “Recommendations of the International Medical Informat-
ics Association (IMIA) on education in health and medical informatics”. In: Methods of
Information in Medicine 39 (3). (Accessed on 21/02/2021), pp. 267–277. issn: 00261270.
doi: 10.1055/s-0038-1634340. url: http://www.thieme-connect.de/DOI/DOI?10.
1055/s-0038-1634340.

Automate Your Laboratory with the Global Leader for LIMS and ELN (n.d.). (Accessed on
25/02/2021). url: https://www.labware.com/.

Bemmel, J. H. Van (July 1984). “The structure of medical informatics”. In: Informatics for
Health and Social Care 9 (3-4). (Accessed on 21/02/2021), pp. 175–180. issn: 17538157.
doi: 10.3109/14639238409015187.

Bourgeois, David T., Ph.D., and Bourgeois (Feb. 2014). Information Systems for Business
and Beyond. (Accessed on 20/02/2021).

Carr, Nicholas (Jan. 2007). IT doesn’t matter. (Accessed on 20/02/2021). url: http :
//www.roughtype.com/?p=644.

Centers for Disease Control and Prevention (2021a). Different COVID-19 Vaccines. (Ac-
cessed on 03/02/2021). url: https : / / www . cdc . gov / coronavirus / 2019 - ncov /
vaccines/different-vaccines.html.

– (2021). How to Protect Yourself Others. (Accessed on 03/02/2021). url: https://
www.cdc.gov/coronavirus/2019- ncov/prevent- getting- sick/prevention.
html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-
ncov%2Fprepare%2Fprevention.html.

– (2021b). Interim Guidance for Antigen Testing for SARS-CoV-2. (Accessed on 04/02/2021).
url: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antigen-
tests-guidelines.html.

COVID Response (n.d.). (Accessed on 25/02/2021). url: https : / / livehealth . in /
covidResponse/.

Daemen, Joan and Vincent Rijmen (Sept. 1999). “AES Proposal: Rijndael”. In: (Accessed
on 29/09/2021).

Davis, Fred D. (1989). “Perceived usefulness, perceived ease of use, and user acceptance
of information technology”. In: MIS Quarterly: Management Information Systems 13 (3).
(Accessed on 21/09/2021), pp. 319–339. doi: 10.2307/249008.

Diário de Notícias (Jan. 2021). Portugal está a realizar uma média de 52 mil testes diários à
covid-19. (Accessed on 16/02/2021). url: https://www.dn.pt/sociedade/portugal-
esta - a - realizar - uma - media - de - 52 - mil - testes - diarios - a - covid - 19 -
13295199.html.

Direção-Geral da Saúde (2021). COVID-19. (Accessed on 16/02/2021). url: https://
covid19.min-saude.pt/.

Dowdy, David and Gypsyamber D’Souza (2020). COVID-19 Testing: Understanding the
“Percent Positive” - COVID-19 - Johns Hopkins Bloomberg School of Public Health.
(Accessed on 16/02/2021). url: https://www.jhsph.edu/covid- 19/articles/
covid-19-testing-understanding-the-percent-positive.html.

62 References

Dworkin, Morris et al. (2001-11-26 2001). “Advanced Encryption Standard (AES)”. In: (Ac-
cessed on 29/09/2021). doi: https://doi.org/10.6028/NIST.FIPS.197.

Evans, Eric (Mar. 2015). Domain--Driven Design Reference Definitions and Pattern Sum-
maries. (Accessed on 28/02/2021). url: http://creativecommons.org/licenses/by/
4.0/.ii.

Fichman, Robert G., Rajiv Kohli, and Ranjani Krishnan (Sept. 2011). The role of information
systems in healthcare: Current research and future trends. (Accessed on 23/02/2021).
doi: 10.1287/isre.1110.0382.

Fowler, Martin (Dec. 2005). CommandQuerySeparation. (Accessed on 25/09/2021). url:
https://martinfowler.com/bliki/CommandQuerySeparation.html.

– (July 2011). CQRS. (Accessed on 25/09/2021). url: https://martinfowler.com/
bliki/CQRS.html.

Fowler, Martin et al. (Nov. 2002). Patterns of Enterprise Application Architecture. (Accessed
on 26/09/2021). Addison-Wesley Professional. isbn: 9780321127426.

Friedman, Bruce (Nov. 2008). LIS vs. LIMS: It’s Time to Blend the Two Types of Lab
Information Systems. (Accessed on 27/02/2021). url: https://labsoftnews.typepad.
com/lab_soft_news/2008/11/liss-vs-limss-its-time-to-consider-merging-
the-two-types-of-systems.html.

Gamma, Erich et al. (Oct. 1994). Design Patterns: Elements of Reusable Object-Oriented
Software. (Accessed on 25/09/2021). USA: Addison-Wesley Longman Publishing Co.,
Inc. isbn: 0201633612.

Glinz, Martin (2007). “On Non-Functional Requirements”. In: 15th IEEE International Re-
quirements Engineering Conference. (Accessed on 02/03/2021). doi: 10.1109/RE.2007.
45.

Hambling, Brian and Pauline van Goethem (May 2013). User Acceptance Testing - A step-
by-step guide. (Accessed on 10/10/2021). BCS Learning Development Limited. isbn:
9781306283915.

Hauser, John R. and Don Clausing (May 1988). The House of Quality. (Accessed on
18/02/2021). url: https://hbr.org/1988/05/the-house-of-quality.

Haux, Reinhold (2010). “Medical informatics: Past, present, future”. In: International Journal
of Medical Informatics 79.9. (Accessed on 21/02/2021), pp. 599–610. issn: 1386-5056.
doi: https://doi.org/10.1016/j.ijmedinf.2010.06.003. url: https://www.
sciencedirect.com/science/article/pii/S1386505610001140.

Heeks, Richard (Feb. 2006). “Health information systems: Failure, success and improvisa-
tion”. In: International Journal of Medical Informatics 75 (2). (Accessed on 23/02/2021),
pp. 125–137. issn: 13865056. doi: 10.1016/j.ijmedinf.2005.07.024. url: https:
//linkinghub.elsevier.com/retrieve/pii/S1386505605001255.

Heeks, Richard, David Mundy, and Angel Salazar (Jan. 1999). “Why Health Care Information
Systems Succeed or Fail”. In: SSRN Electronic Journal. (Accessed on 23/02/2021). issn:
1556-5068. doi: 10.2139/ssrn.3540062.

Khorikov, Vladimir (Jan. 2020). Unit Testing Principles, Practices, and Patterns. (Accessed
on 09/10/2021). Manning Publications. isbn: 9781638350293.

Koen, P. et al. (2001). “Providing clarity and a common language to the "fuzzy front
end"”. In: Research Technology Management 44 (2). (Accessed on 08/02/2021), pp. 46–
55. issn: 08956308. doi: 10.1080/08956308.2001.11671418. url: https://www.
tandfonline.com/doi/abs/10.1080/08956308.2001.11671418.

Lab Software for Medical Diagnostics | CrelioHealth LIMS (n.d.). (Accessed on 25/02/2021).
url: https://livehealth.in/.

References 63

Ledley, Robert S. and Lee B. Lusted (July 1959). “Reasoning foundations of medical diagno-
sis”. In: Science 130 (3366). (Accessed on 21/02/2021), pp. 9–21. issn: 00368075. doi:
10.1126/science.130.3366.9. url: https://pubmed.ncbi.nlm.nih.gov/13668531/.

Martin, Robert C. (Aug. 2012). The Clean Architecture. (Accessed on 05/03/2021). url:
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.
html.

Microsoft (Nov. 2009). Microsoft® Application Architecture Guide, 2nd Edition (Pat-
terns Practices). Second. (Accessed on 05/03/2021). url: https://www.amazon.
com/Microsoft%C2%AE- Application- Architecture- Patterns- Practices/dp/
073562710X.

– (June 2017). Pipes and Filters pattern - Cloud Design Patterns. (Accessed on 25/09/2021).
url: https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-
and-filters.

– (Jan. 2019). Introduction to ASP.NET Identity. (Accessed on 06/03/2021). url: https:
//docs.microsoft.com/en-us/aspnet/identity/overview/getting-started/
introduction-to-aspnet-identity.

– (Jan. 2020a). Common web application architectures. (Accessed on 05/03/2021). url:
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-
azure/common-web-application-architectures.

– (Feb. 2020b). Overview of ASP.NET Core MVC. (Accessed on 06/03/2021). url: https:
//docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-5.0.

– (Feb. 2020c). Overview of ASP.NET Core MVC. (Accessed on 27/09/2021). url: https:
//docs.microsoft.com/pt-pt/aspnet/core/mvc/overview?WT.mc_id=dotnet-
35129-website&view=aspnetcore-5.0.

– (July 2021). Unit testing fundamentals. (Accessed on 09/10/2021). url: https://docs.
microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2019.

Nicola, Susana, Eduarda Pinto Ferreira, and J. J.Pinto Ferreira (July 2012). “A novel frame-
work for modeling value for the customer, an essay on negotiation”. In: International Jour-
nal of Information Technology and Decision Making 11 (3). (Accessed on 08/02/2021),
pp. 661–703. issn: 02196220. doi: 10.1142/S0219622012500162.

Oliver, Sara E. et al. (Dec. 2020). “The Advisory Committee on Immunization Practices’ In-
terim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine — United States,
December 2020”. In: MMWR. Morbidity and Mortality Weekly Report 69 (50). (Accessed
on 03/02/2021), pp. 1922–1924. issn: 0149-2195. doi: 10.15585/mmwr.mm6950e2. url:
http://www.cdc.gov/mmwr/volumes/69/wr/mm6950e2.htm?s_cid=mm6950e2_w.

– (Jan. 2021). “The Advisory Committee on Immunization Practices’ Interim Recommen-
dation for Use of Moderna COVID-19 Vaccine — United States, December 2020”. In:
MMWR. Morbidity and Mortality Weekly Report 69 (5152). (Accessed on 03/02/2021),
pp. 1653–1656. issn: 0149-2195. doi: 10.15585/mmwr.mm695152e1. url: http://www.
cdc.gov/mmwr/volumes/69/wr/mm695152e1.htm?s_cid=mm695152e1_w.

Osterwalder, A. et al. (2014). Value Proposition Design: How to Create Products and Ser-
vices Customers Want. The Strategyzer Series. (Accessed on 16/02/2021). Wiley. isbn:
9781118968055. url: https://books.google.pt/books?id=LCmtBAAAQBAJ.

Prokosch, Hans Ulrich and T. Ganslandt (Jan. 2009). “Perspectives for medical informatics”.
In: Methods of Information in Medicine 48 (1). (Accessed on 21/02/2021), pp. 38–44.
issn: 00261270. doi: 10.3414/ME9132. url: http://www.thieme-connect.de/DOI/
DOI?10.3414/ME9132.

Reeves, J. Jeffery et al. (June 2020). “Rapid response to COVID-19: Health informatics
support for outbreak management in an academic health system”. In: Journal of the

64 References

American Medical Informatics Association 27 (6). (Accessed on 16/02/2021), pp. 853–
859. issn: 1527974X. doi: 10.1093/jamia/ocaa037. url: https://pubmed.ncbi.nlm.
nih.gov/32208481/.

Sami, Hamid R. (Jan. 2019). Medical Informatics in Neurology. (Accessed on 21/02/2021).
url: https://emedicine.medscape.com/article/1136989-overview.

SampleManager LIMS Software (n.d.). (Accessed on 25/02/2021). url: https://www.
thermofisher.com/pt/en/home/digital-solutions/lab-informatics/samplemanager-
lims.html#.

Sepulveda, Jorge L. and Donald S. Young (Aug. 2013). The ideal laboratory information
system. (Accessed on 27/02/2021). doi: 10.5858/arpa.2012-0362-RA.

Wang, Yanrong et al. (May 2020). “Clinical Outcomes in 55 Patients With Severe Acute
Respiratory Syndrome Coronavirus 2 Who Were Asymptomatic at Hospital Admission
in Shenzhen, China”. In: The Journal of Infectious Diseases 221 (11). (Accessed on
03/02/2021), pp. 1770–1774. issn: 0022-1899. doi: 10.1093/infdis/jiaa119. url:
https://academic.oup.com/jid/article/221/11/1770/5807958.

Weemaes, Matthias et al. (Aug. 2020a). “Laboratory information system requirements to
manage the COVID-19 pandemic: A report from the Belgian national reference testing
center”. In: Journal of the American Medical Informatics Association 27 (8). (Accessed
on 25/02/2021), pp. 1293–1299. issn: 1527-974X. doi: 10.1093/jamia/ocaa081. url:
https://academic.oup.com/jamia/article/27/8/1293/5827002.

– (Aug. 2020b). “Laboratory information system requirements to manage the COVID-19
pandemic: A report from the Belgian national reference testing center”. In: Journal of the
American Medical Informatics Association 27 (8). (Accessed on 16/02/2021), pp. 1293–
1299. issn: 1527-974X. doi: 10.1093/jamia/ocaa081. url: https://academic.oup.
com/jamia/article/27/8/1293/5827002.

Westbrook, Johanna I., Andrew Georgiou, and Mary Lam (2009). “Does computerised
provider order entry reduce test turnaround times? A before-and-after study at four hospi-
tals”. In: vol. 150. (Accessed on 27/02/2021). IOS Press, pp. 527–531. isbn: 9781607500445.
doi: 10.3233/978-1-60750-044-5-527. url: https://researchers.mq.edu.au/
en/publications/does- computerised- provider- order- entry- reduce- test-
turnaround-tim.

Willems, Jos L., Cassiano Abreu-Lima, et al. (Dec. 1991). “The Diagnostic Performance
of Computer Programs for the Interpretation of Electrocardiograms”. In: New England
Journal of Medicine 325 (25). (Accessed on 21/02/2021), pp. 1767–1773. issn: 0028-
4793. doi: 10.1056/NEJM199112193252503. url: http://www.nejm.org/doi/abs/10.
1056/NEJM199112193252503.

Willems, Jos L., Pierre Arnaud, et al. (1985). “Establishment of a reference library for
evaluating computer ECG measurement programs”. In: Computers and Biomedical Re-
search 18.5. (Accessed on 21/02/2021), pp. 439–457. issn: 0010-4809. doi: https:
//doi.org/10.1016/0010-4809(85)90021-7. url: https://www.sciencedirect.
com/science/article/pii/0010480985900217.

Woodall, Tony (Jan. 2003). “Conceptualising ’Value for the Customer’: An Attributional,
Structural and Dispositional Analysis”. In: Academy of Marketing Science Review 12.
(Accessed on 09/02/2021).

World Health Organization (Oct. 2020). Coronavirus disease (COVID-19). (Accessed on
03/02/2021). url: https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19.

– (Mar. 2020). Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected
human cases: interim guidance, 2 March 2020. (Accessed on 03/02/2021). url: https:

References 65

/ / apps . who . int / iris / bitstream / handle / 10665 / 331329 / WHO - COVID - 19 -
laboratory-2020.4-eng.pdf?sequence=1&isAllowed=y.

Wu, Zunyou and Jennifer M. McGoogan (Apr. 2020). Characteristics of and Important
Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of
a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. (Ac-
cessed on 03/02/2021). doi: 10.1001/jama.2020.2648. url: https://jamanetwork.
com/.

Young, Ralph R. (2004). The Requirements Engineering Handbook. (Accessed on 01/03/2021).
Zairi, Mohamed and Mohamed A. Youssef (1995). “Quality function deployment: A main
pillar for successful total quality management and product development”. In: International
Journal of Quality Reliability Management 12 (6). (Accessed on 18/02/2021), pp. 9–23.
issn: 0265671X. doi: 10.1108/02656719510089894.

Zeithaml, Valarie (July 1988). “Consumer Perceptions of Price, Quality and Value: A Means-
End Model and Synthesis of Evidence”. In: Journal of Marketing 52. (Accessed on 09/02/2021),
pp. 2–22. doi: 10.1177/002224298805200302.

Zitek, Tony (2020). The appropriate use of testing for Covid-19. (Accessed on 03/02/2021).
doi: 10.5811/westjem.2020.4.47370. url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC7234686/.

Zwass, Vladimir (Nov. 2020). information system. (Accessed on 20/02/2021). url: https:
//www.britannica.com/topic/information-system.

