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Abstract: The fractional-order proportional–integral–derivative (FOPID) controller has two more parameters than the integer-
order proportional–integral–derivative (PID). Such characteristic makes the controller design more flexible and leads to superior
performance. This study proposes a variable coefficient FOPID (VCFOPID) with optimal single step parameters, combining
discrete synthesis and variable control parameters. The new algorithm is compared with previous FOPID discrete methods via
several examples. Since the energy losses of the single-ended primary-inductor converter (SEPIC) cannot be ignored, the
standard models are insufficient and a new model is derived using quantum-behaved particle swarm optimisation. The
VCFOPID is applied to the SEPIC and both the effectiveness of the controller and the model are verified experimentally.

1 Introduction
The fractional-order proportional–integral–derivative (FOPID)
controller has been proved to have better performance than the
standard integer-order proportional–integral–derivative (IOPID) in
many engineering applications [1–4]. The development of the
FOPID is closely related to the definition, approximation, and
discretisation of fractional-order (FO) operators [5, 6]. The
continuous fractional expansion or the frequency-based methods
proposed by Oustaloup and Carlson are possible alternatives for
approximating such operators [7, 8]. The Oustaloup approximation
is often used and several researchers introduced improvements on
the original method [9–11]. Since the analogue circuit-based
realisation of FO operators is not straightforward and its accuracy
is difficult to guarantee [12, 13], the digital implementation is often
chosen, thus requiring the use of discretising methods. The most
used approach in industrial applications is the direct discrete
method [14, 15]. However, this procedure needs to use the short-
term memory rule to ensure the storage space needed for the
controller. Moreover, the number of loop points affects the
performance of the control algorithm. Therefore, some researchers
proposed simpler discrete schemes by means of approximate
techniques [16–20].

In spite of these advantages, a broader perspective reveals that,
in the presence of complex dynamical effects, the FOPID can still
have difficulties in achieving satisfactory results. In those cases, it
is necessary to improve the FOPID to enhance control
performance. For this purpose, several researchers combined
fractional calculus (FC) with different methods to design new
controllers, such as the FO terminal sliding mode [21], fuzzy
fractional integral sliding mode [22], and other algorithms [23]. On
the other hand, it was shown that one reason for the good
performance of the model reference adaptive controller is that its
parameters are constantly adapting to the operating conditions [24,
25]. Motivated by this idea, a new controller, viz. the variable
coefficient FOPID (VCFOPID) is proposed by combining the
direct discrete implementation of the FO operator with the method
of variable control parameters.

Some papers introduced high performance intelligent
optimisation algorithms to adjust the parameters of the FOPID and

the results revealed some success [26–28]. For example, the
quantum-behaved particle swarm optimisation (QPSO) algorithm,
a recent variant of the standard particle swarm optimisation (PSO)
with high randomicity and global convergence was adopted [29,
30], demonstrating relevant results.

In this study, we propose an improved version of the FOPID,
namely the VCFOPID, to control a single-ended primary-inductor
converter (SEPIC). Since the loss factor is not considered, the
standard SEPIC mathematical models are not sufficiently accurate.
Therefore, we adopt a QPSO algorithm to fit the open loop
response curve of the SEPIC and we derive a new SEPIC model.
The superior performance of the VCFOPID is verified
experimentally.

The rest of this paper is organised as follows. Section 2
introduces the FOPID (PIλDμ) and the QPSO algorithm. Section 3
overviews several FOPID schemes proposed in the literature,
introduces the VCFOPID, and compares the performance of the
controllers by means of several examples. Section 4 addresses the
modelling and control of a SEPIC. Section 5 analyses the
maximum sensitivity of several examples and the SEPIC. Finally,
Section 6 outlines the main conclusions.

2 Preliminary concepts
In this subsection, the fundamental aspects of the PIλDμ controller
and the QPSO algorithm are introduced.

2.1 PIλDμ controller

The FC is essentially an arbitrary order calculus, where the order
can be any real or complex number. The fractional derivative is
expressed as
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aDt
q =

dq

dtq , R(q) > 0,

1, R(q) = 0,

∫
a

t
(dτ)−q, R(q) < 0,

(1)

where q ∈ ℂ represents the order, a and t denote the upper and
lower bounds of the FO operation, respectively, and R(q) is the real
part of q.

Two frequently used definitions of fractional derivatives are the
Riemann–Liouville and Grünwald–Letnikov formulations given by

aDt
q f (t) = 1

Γ(n − q)
dn

dtn∫
a

t f (τ)
(t − τ)q − n + 1 dτ,

aDt
q f (t) = lim

h → 0
1
hq ∑

j = 0

[(t − q)/h]
( − 1) j q

j
f (t − jh),

where n − 1 < q < n, n ∈ ℕ, Γ( ⋅ ) denotes the Gamma function so
that Γ(s) = ∫0

∞ts − 1e−tdt, and

q
j

= Γ(q + 1)
Γ( j + 1)Γ(q − j + 1) .

For the PIλDμ controller, the control signal u(t) in the time
domain can be expressed as

u(t) = Kpe(t) + KiD−λe(t) + KdDμe(t), (2)

where λ, μ ∈ ℝ+ are the orders of the integral and derivative
actions, and Kp, Ki, and Kd stand for the proportional, integral, and
derivative gains, respectively.

Applying the Laplace transform to formula (2), the FO transfer
function can be obtained as follows:

Gc(s) = Kp + Ki
sλ + Kdsμ . (3)

As shown in (3), the FOPID has five control parameters that
provide higher freedom in the design process, but, on the other
hand, make the parameters tuning a more laborious task.

2.2 Quantum-behaved particle swarm optimisation

Sun et al. [31] first proposed the QPSO, combining the quantum
mechanism and swarm intelligence. In terms of algorithm flow,
there is no significant difference between the QPSO and the classic
PSO. The QPSO generates new solutions through the following
probability model of the wave function:

X = p ± L
2 ln(1/u), (4a)

p = c1r1pbest + c2r2gbest
c1r1 + c2r2

, (4b)

where u, r1, r2 ∼ U(0, 1), pbest is the individual optimum, and gbest is
the global optimum positions, respectively. The parameter L is
controlled by

Li, j(t) = 2α C j(t) − Xi, j(t) ,

α = (1 − 0.5)(maxiter − iter)/(maxiter + 0.5),

where maxiter is the maximum number of iterations and iter is the
number of current iterations. Therefore, the updating rule of the
particle position can be written as

Xi, j(t + 1) = pi, j(t) ± α C j(t) − Xi, j(t) ln[1/ui, j(t)],

where α denotes the contraction–expansion coefficient that
diminishes with the increasing of the number of iterations, and
C(t) = (1/M)∑i = 1

M Pi(t).
The fitness function is a key point of the algorithm that often

represents the main goal of the optimisation. For the controller
parameter optimisation problem, a common fitness function is the
integral of time multiplied by the absolute value of the error
(ITAE) as follows:

J = ∫ t e(t) dt . (5)

In this study, the QPSO algorithm is used not only for the
optimisation of controller parameters but also for the SEPIC
modelling. The parameters adopted in the QPSO algorithm are
shown in Table 1. 

3 Design and analysis of the controller
In this subsection, the VCFOPID algorithm is presented. When
implemented in digital signal processors (DSPs), the computational
load is reduced by changing the discrete format. The VCFOPID is
compared with existing FOPID controllers through several
examples to illustrate its effectiveness.

3.1 Discrete schemes

The implementation of a digital controller requires the
discretisation of the continuous control signal in the time domain.
Using the GL FO operator, the signal u(t) of formula (2) is
discretised as [14, 15]

u(k) = Kpe(k) + Kihλ ∑
j = 0

m
d je(k − j)

+Kdh−μ ∑
j = 0

m
qje(k − j),

(6)

where

d0 = 1; d j = 1 − 1 − λ
j d j − 1, j = 1, 2, 3, …

q0 = 1; qj = 1 − 1 + μ
j qj − 1, j = 1, 2, 3, …

and m is the number of circulant points in the storage space of a
digital controller.

As shown in (6), the integral and differential terms include
memory, i.e. related to the error at previous time instants. Since the
memory space of a DSP is limited, the short-term memory rule is
used to determine the number of samples. The output waveforms
obtained in the absence or in the presence of the short-term
memory rule are shown in Figs. 1 and 2, respectively, where the
inputs are pulse waveforms with different duty cycles and the
outputs are voltage signals. 

The absence of the short-term memory rule can cause erroneous
control signals and lead to an oscillatory output. These problems
may burn the controlled circuit. Therefore, it is necessary to set up
the number of loop points in the short-term memory rule when
using the discrete scheme. Hereafter, the controller designed in
discrete form (6) is named as DFOPID.

The number of loop points affects the performance of the
DFOPID, making its design more complex. In order to simplify the

Table 1 Parameter values adopted with the QPSO
algorithm
number of particles Maxiter c1 c2

100 100 2 2.1
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process, a different discrete method is proposed. In this case, the
Laplace variable s in (3) is substituted by some function of z and
then the power series expansion (PSE) of the resulting expression
is obtained in terms of z.

Let us assume that the sampling time is T and the pre-warped
Tustin method is applied to the derivative item of (3). Then, we
have

su = ωc
tan(ωcT /2) ⋅ 1 − z−1

1 + z−1

μ
= αμ 1 − z−1

1 + z−1

μ
, (7)

where α = ωc/tan(ωcT /2) and ωc is the gain crossover frequency.
Assuming that ω = z−1 and z > 1, the PSE on the right-hand-

side of expression (7) can be written as follows:

αμ 1 − ω
1 + ω

μ
= αμ ∑

k = 0

∞
f k(μ)ωk, ω < 1,

sμ = αμ ∑
k = 0

∞
f k(μ)z−k, z < 1,

(8)

where

f k(μ) = 1
k! ⋅ dk

dωk
1 − ω
1 + ω ω = 0

. (9)

In order to find a series approximation for s−λ in terms of z−1,
we write s−λ as (1/s) ⋅ s1 − λ and apply the pre-warped Tustin method
obtaining

s−λ = α−λ 1 + z−1

1 − z−1 ∑
k = 0

∞
f k(1 − λ)z−k, z > 1, (10)

where f k(1 − λ) is calculated from formula (9).

Substituting (8) and (10) into (3), yields

Cd(z) = Kp + Kdαμ ∑
k = 0

∞
f k(μ)z−k

+Kiα−λ 1 + z−1

1 − z−1 ∑
k = 0

∞
f k(1 − λ)z−k .

Limiting the number of memory units to M, the difference
equation relating e(k) to u(k) is as follows:

u(k) = u(k − 1) + up(k) + ud(k) + ui(k), (11)

where

up(k) = Kp[e(k) − e(k − 1)],

ud(k) = ∑
n = 0

M
Kdαμ f n(μ)[e(k − n) − e(k − n − 1)],

ui(k) = ∑
n = 0

M
Kiα−λ f n(1 − λ)[e(k − n) − e(k − n − 1)] .

Often the value M = 5 is adopted.
The controller designed by means of discrete form (11) will be

called IFOPID1 [5]. proposed other discrete schemes, such as in
the control of the DC motor [20].

The control input is

u(k) = up(k) + ud(k) + ui(k), (12)

where

up(k) = Kpe(k),
ud(k) = Kdαμ[e(k) − f 1(u)e(k − 1)]

+ ∑
n = 2

6
f n(u)e(k − n),

ui(k) = Kiα−λ[e(k) − e(k − 1)]
−[ f 1(1 − λ) − 1]ui(k − 1)

+ ∑
n = 2

6
− [ f n(1 − λ) − f n − 1(1 − λ)]ui(k − n)

+ f 6(1 − λ)ui(k − 7) .

The controller based on discrete form (12) will be called
IFOPID2.

If we compare the discrete schemes of DFOPID, IFOPID1, and
IFOPID2, we find that the computational complexity of IFOPID1
and IFOPID2 is smaller than the one obtained for the DFOPID.
However, the structure of the DFOPID is more intuitive, and its
accuracy can be adjusted by the number of loop points. Therefore,
the three controllers have their own pros and cons. In order to
determine the discrete form of the FOPID, the performance of the
three algorithms is analysed in the follow-up with various
examples.

3.2 Design of the VCFOPID controller

Here, we present the new VCFOPID algorithm. The control
parameters are placed in the storage space of the DSP. The error
signal is sampled and m points are stored using the stack storage
mechanism, i.e. following the first-in first-out mode. In the initial
transient, the VCFOPID parameters adapt quickly, producing a
good system performance. When the system approaches the steady-
state, the control parameters tend to be constant, and the controller
can be seen as the standard FOPID.

The VCFOPID is obtained by combining discrete form (6) with
the variable control parameters. The discrete scheme is given by

Fig. 1  Output waveform in the absence of short-term memory rule
 

Fig. 2  Output waveform in the presence of short-term memory rule
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u(k) = Kp(k)e(k) + Ki(k)hλ(k) ∑
j = 0

m
d je(k − j)

+Kd(k)h−μ(k) ∑
j = 0

m
qje(k − j),

(13)

so that

d0 = 1; d j = 1 − 1 − λ
j d j − 1, j = 1, 2, 3, …

q0 = 1; qj = 1 − 1 + μ
j qj − 1, j = 1, 2, 3, …

where Kp, Ki, Kd, λ, and μ are arrays of length m1.
Since the FO parameters λ and μ change for every time sample,

the values of arrays d and q need to be re-calculated. The larger the
value of m1, the higher the load of the calculation. Therefore, the
value of m1 should not be too large and, in general, we have
m1 < m. The VCFOPID plays only an important role in the start-up
process of the system. When the value of the counter is i > m1, the
controller is switched to the DFOPID. The control parameters of
the DFOPID are written into the arrays Kp, Ki, Kd, λ, and μ,
respectively. In other words, the element Kp[m1 + 1] is the control
parameter of the DFOPID. The control flow is as follows:

• Step 1. Determine the value i of the counter.
If i < m1, turn to the step 2;
otherwise, turn to the step 3.

• Step 2. Let i = i + 1 and u(k) is updated by formula (13).
• Step 3. Let i = i + 1 and u(k) is updated by formula (6).

If all elements in the arrays Kp, Ki, Kd, λ, and μ are identical,
then the VCFOPID can be regarded as a DFOPID controller.
Therefore, formula (13) can be interpreted as the general form of
expression (6). Since the control parameters of VCFOPID are
variable, the variation range of the controlled quantity u increases,
leading to a VCFOPID control performance superior to the one
exhibited by the DFOPID.

3.3 Comparative analysis

In this subsection, we present three examples for illustrating the
performance of VCFOPID.
 

Example 1: Viola et al. [16] used the least square method to fit
the motion trajectory of a pendulum and to obtain its dynamic
model, given by the transfer function

G(s) = 0.49
0.496s2 + 1.3s + 1 . (14)

For this system, it is assumed that the control parameters are
constant, namely Kp = 10, Ki = 1, Kd = 1, λ = 0.3, and μ = 0.7.
Fig. 3 shows the simulation results obtained with Simulink and by
the digital formulation (13). 

The curves obtained by the two simulation methods are
basically consistent and the subtle differences may be caused by
the number of sampling points in the digital simulation. The results
show the effectiveness of control algorithm (13).

For the system shown in formula (14), the QPSO algorithm is
used to find the controller parameters. The optimisation intervals
for setting the parameters are Kp ∈ [0, 20], Ki, Kd ∈ [0, 5],
λ, μ ∈ [0, 1] and m1 = 20. Table 2 summarises the parameters
values of the three controllers. Figs. 4 and 5 depict the output and
control signals, respectively, for the IOPID, DFOPID and
VCFOPID algorithms. 

We verify that the curves for the FOPID have better initial
performance than those achieved by the IOPID. The VCFOPID
exhibits the best performance, yielding the smallest setting time.

 
Example 2: Here the parameters of the FOPID are adjusted in

the frequency domain for the second-order system [18]

Fig. 3  Simulation results obtained with Simulink and digital formulation
(13)

 

Table 2 Parameter values of the VCFOPID, FOPID and
IOPID controllers in Example 1

Kp [0 0 20 0 0 20 0 0 2.9336 0
20 0 0 20 20 20 20 20 20 20 20]

Ki [5 0 5 0 5 0 0 5 5 0
0 0 0 0.0017 0 0 5 5 5 5 5]

VCFOPID Kd [5 0 5 0 4.9463 5 5 0 5 0
0 0 5 0 0 5 0 5 0 5 5]

λ [ 1 1 1 1 1 1 1 1 0 0
0 0 1 0 0.2579 1 0 0 1 0 1]

μ [0 0 1 1 0 0 0 1 0 0
0 1 1 1 0 0 1 0 0.3069 1 0.9623]

FOPID Kp = 5.8206 Ki = 5 Kd = 2.0772 λ = 1 μ = 0.8994
IOPID Kp = 6.3295 Ki = 5 Kd = 2.1864 λ = 1 μ = 1

 

Fig. 4  Output responses of the closed-loop system in Example 1 for the
IOPID, DFOPID, and VCFOPID algorithms

 

Fig. 5  The control signals in Example 1 for the IOPID, DFOPID and
VCFOPID algorithms
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G(s) = 2
s2 + 1.66s + 0.666 .

The VCFOPID and IFOPID1 are designed using the QPSO
algorithm. For the IFOPID1, we consider α as a variable. The
sampling time is set to 0.1 s and the values of the control
parameters are listed in Table 3. 

As shown in Fig. 6, the IFOPID1 produces a large overshoot
and high oscillations, while the VCFOPID exhibits the shortest
settling time and no overshoot. The control signals are shown in
Fig. 7. 

 
Example 3: The following time delay transfer function, adopted

in the DC motor model [20], is considered:

G(s) = 0.63606
(42.77s + 1)(7.45s + 1)e−0.61s .

For this system, the performance of the IFOPID2 is analysed.
The optimisation ranges for setting the parameters are Kp ∈ [0, 20],
Ki, Kd, λ, μ ∈ [0, 1], and α ∈ [0, 10, 000]. It is assumed that the
sampling time is 0.5 s, and the optimisation is accomplished by
means of a QPSO algorithm, yielding the parameters values listed
in Table 4. 

In Fig. 8 we verify that the overshoot of the step response is
about 150% for the IFOPID2 and that the system starts to shock
after 70 s. In fact, the parameters can be adjusted for stabilising the
step response, but the overshoot amplitude and the settling time of
the response are increased by 160% and 100 s, respectively.

Therefore, the performance of the IFOPID2 is inferior to those
exhibited by DFOPID and VCFOPID. Fig. 9 shows the control
signals. 

To sum up, IFOPID1 and IFOPID2 simplify the algorithm
structure, making the design and implementation of the controller
less demanding, but their performance is inferior to the one
revealed by the DFOPID. Formula (6) is chosen for the discrete
form of the FOPID, and the VCFOPID is obtained by improving
the FOPID. In fact, the design of the VCFOPID is slight more
complex, but the control performance is the best. The purpose of
the VCFOPID design is to achieve a smaller overshoot and to
shorten the adjustment time at the system starting phase.

From the analysis of the system transient in the above three
examples, one can observe that the overshoot and adjustment time
for the VCFOPID are inferior to those of the FOPID.

4 Modelling and testing
In this section, the QPSO algorithm is adopted in two distinct
applications: (i) to obtain a fit between the experimental open-loop
response of the SEPIC and its mathematical model and (ii) to
optimise the parameters of the VCFOPID for controlling the
SEPIC.

4.1 Modelling of SEPIC

The SEPIC is an electronic system for rising or dropping the
voltage. The converter input and output currents are continuous,
and the polarity of the input and output voltages is identical. The
circuit diagram of the SEPIC is shown in Fig. 10. 

Table 3 Parameter values of the FOPID and IFOPID1
controllers in Example 2

Kp Ki Kd λ μ α
FOPID 0.415 1.743 1.50 0.758 0.682 −
IFOPID1 12.476 5 5 0.6627 0.3375 1000

 

Fig. 6  Unit step responses of the closed-loop system in Example 2 for the
IFOPID1, DFOPID and VCFOPID algorithms

 

Fig. 7  Control signals in Example 2 for the IFOPID1, DFOPID and
VCFOPID algorithms

 

Table 4 Parameter values of the DFOPID and IFOPID2
controllers in Example 3

Kp Ki Kd λ μ α
DFOPID 8.343 0.178 1 1 0.374 −
IFOPID2 20 0.9998 1 0.334 0.3128 10,000

 

Fig. 8  Unit step responses of the closed-loop system in Example 3 for the
IFOPID2, DFOPID and VCFOPID algorithms

 

Fig. 9  Control signals in Example 3 for the IFOPID2, DFOPID, and
VCFOPID algorithms
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The values adopted for the components in the circuit are
Vin = 12 V, L1 = 330 μH, L2 = 470 μH, C1 = 1 mF, C2 = 330 μF,
and R = 10 Ω. Let us consider that Vref = 7 V, so that D = 0.37 and
D′ = 1 − D = 0.63. The standard analysis of the SEPIC includes
the transfer function modelling and the Simulink simulation. The
transfer function can be obtained by using the following formula:

G(s) = D′(D + C1L2s2)
M1s4 + M2s3 + M3s2 + M4s + D′2 , (15)

where M1 = L1L2C1C2, M2 = L1L2C1/R,
M3 = D′2(L1C1 + L1C2 + L2C1 + L2C2), and M4 = (D2L1 + D′2L2)/R.
However, experiments with model (15) reveal that it is far from
adequate and that its step response presents irregular oscillations.
The step response obtained by Simulink is presented in Fig. 11, and
the actual response of the SEPIC is shown in Fig. 12. We verify
that the step response obtained by Simulink is quite different from
the actual one. The reason for the discrepancy is that both the
inductance and the capacitance have internal resistances that
produce heat losses during operation. Moreover, the losses on the
switch tube are proportional to the frequency and cannot be
ignored. In addition, the welding process also increases the total
resistance.

In order to establish an effective model of the SEPIC, the data
of the step response in the experiment are fitted numerically to a
third-order transfer function.

The QPSO algorithm is used to optimise the coefficients of the
transfer function. The flowchart is shown in Fig. 13. In each
iteration, the step response of the model is compared with the
experimental data, and the difference is taken as the fitness value of
the QPSO. After several iterations, a mathematical model of the
SEPIC consistent with the experimental data is obtained. The
optimised model is given by

G(s) = 645.8265s2 + 0.1353s + 10.0344
4.5902s3 + 945.4176s2 + 1000s + 657.9755 . (16)

The reliability of the model is calculated by using the following
formula:

r = 1 − ∑(tn) − ∑(sn)
∑(tn)

,

where tn and sn denote arrays of experimental and model data.
The results show that the reliability of the model is r = 91.13%.

The step response of model (16) is shown in Fig. 14. 

4.2 Experiment

An experimental set-up is built to verify the performance of
DFOPID and VCFOPID (Fig. 15). The control chip is
TMS320F28335 and the switch tube drive chip is IR2125.

The switching frequency of the SEPIC circuit is 20 kHz, and the
optimisation ranges of the control parameters are Kp ∈ [0, 20],
Ki, Kd ∈ [0, 5] and λ, μ ∈ [0, 1]. The control parameters of the
DFOPID, obtained by using the QPSO, are Kp = 20, Ki = 5,
Kd = 5, λ = 0.67, and μ = 0.2458. The simulation and control
inputs for the DFOPID and VCFOPID algorithms are depicted in
Figs. 16 and 17, respectively. 

Fig. 10  Circuit diagram of the SEPIC
 

Fig. 11  Step response of model (15)
 

Fig. 12  Actual step response of the SEPIC
 

Fig. 13  Flowchart of the model fit by means of the QPSO
 

Fig. 14  Step response of model (16)
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For the DFOPID, the overshoot is 7.3% and the settling time is
1.8 ms, while for the VCFOPID the system response has no
overshoot and the settling time is 0.2 ms. We conclude that the
performance of the VCFOPID is much superior to the one
exhibited by the DFOPID.

The control parameters obtained by the simulation are stored in
the DSP, and the test responses of the two controllers are shown in
Figs. 18 and 19, respectively. 

In the experiment, it is observed that the overshoot of the
DFOPID is 8.57% and the settling time is 3.5 ms. On the other
hand, the settling time of the VCFOPID is about 1.3 ms. We verify
that there are still some minor differences between the
experimental and simulation results. One possible reason is the
clamping action of the capacitance at both ends of the load resistor.
The capacitor not only plays the role of filtering but also ensures
that the voltage does not change suddenly. This is the main reason
for the increase in settling time.

In synthesis, the experiment and simulation results in the SEPIC
prove that the VCFOPID leads to better performance than the
DFOPID.

5 Sensitivity analysis
The sensitivity analysis can make use of open loop control systems,
closed loop control systems, and disturbances of control systems.
As pointed out in [32], optimisation is a powerful tool for the
design of controllers that can solve whatever criterion is
formulated. Particularly, for proportional–integral–derivative (PID)
or (FOPID) control, it is of key importance to introduce robustness
constraints. This is often overlooked when using optimisation for
PID or (FOPID) control. Indeed, making the closed-loop system
stable is the minimal requirement for the controllers. However, in
practice, it is not enough to require that the system is stable. There
must also be some margins of stability to accommodate
disturbances. In general, the maximum sensitivity can serve as a
stability margin, telling the worst-case amplification of the
disturbances [32], which is defined as

Ms = max
ω ∈ [0, + ∞)

1
GC(jω) , (17)

where GC(jω) is the loop transfer function.
In the following, the maximum sensitivity of the above

examples and SEPIC will be calculated. The relation between the
maximum sensitivity, Ms, and phase and gain margins, φm and gm,
is given by

gm ≥ Ms
Ms − 1,

φm ≥ 2arcsin 1
2Ms

.
(18)

Table 5 shows the maximum sensitivity, phase margin (φm), and
gain margin (gm) of the above examples and SEPIC. One can find

Fig. 15  Experimental set-up
 

Fig. 16  Step responses of model (16) for the VCFOPID and DFOPID
controllers

 

Fig. 17  Control input signals for the DFOPID and VCFOPID algorithms
of system (16)

 

Fig. 18  Test response of the SEPIC with the DFOPID controller
 

Fig. 19  Test response of the SEPIC with the VCFOPID controller
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that the control system with the proposed controller has better
stability and robustness.

 
Remark 1: The ITAE (5) is used in fractional-order (FO)

controller design due to the good relation between absolute error
and settling time. For the IOPID, arbitrarily small values of the cost
function (5) can also be achieved by increasing the gain of the
controller. However, this will result in poor interference rejection
capability.

In fact, the comparison between the IOPID and FOPID should
consider not only the optimisation index between input–output for
a given (fixed) operating condition but also other aspects, such as
robustness against parameter variations or external interference,
after tuning to a given set point. To prevent the occurrence of
controller parameters with an excessive value, the parameters of
the (FO) PID controllers should be set to an acceptable interval
beforehand in the optimisation process. To illustrate this issue, let
us take Example 1. To be fair, the controller parameters
optimisation range of the IOPID and FOPID are the same. The
system response to a disturbance excitation (a pulse) at 5 s is
simulated and the result is shown in Fig. 20. We verify that the
disturbance attenuation achieved with the FOPID is superior to the
one of the IOPIDs.

6 Conclusion
An improved VCFOPID was proposed in the study. In the first
phase, the VCFOPID was compared with three known FO
controllers under the light of several examples. The simulations
showed that VCFOPID produces the best control results. In the
second phase, a laboratory SEPIC was adopted. A QPSO algorithm
performed a numerical fit between the experimental results and a
new model of the SEPIC. The third-order transfer function
revealed to be much more accurate than the standard mathematical
model. Then, the VCFOPID was applied to the SEPIC. Both the
simulation and experimental results confirm the good performance
of the proposed controller.
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