
Open Source Robotics-Research Article

Real-time GNSS precise positioning:
RTKLIB for ROS

António Ferreira1 , Bruno Matias1, José Almeida1,2

and Eduardo Silva1,2

Abstract
The global navigation satellite system (GNSS) constitutes an effective and affordable solution to the outdoor positioning
problem. When combined with precise positioning techniques, such as the real time kinematic (RTK), centimeter-level
positioning accuracy becomes a reality. Such performance is suitable for a whole new range of demanding applications,
including high-accuracy field robotics operations. The RTKRCV, part of the RTKLIB package, is one of the most popular
open-source solutions for real-time GNSS precise positioning. Yet the lack of integration with the robot operating system
(ROS), constitutes a limitation on its adoption by the robotics community. This article addresses this limitation, reporting
a new implementation which brings the RTKRCV capabilities into ROS. New features, including ROS publishing and
control over a ROS service, were introduced seamlessly, to ensure full compatibility with all original options. Additionally,
a new observation synchronization scheme improves solution consistency, particularly relevant for the moving-baseline
positioning mode. Real application examples are presented to demonstrate the advantages of our rtkrcv_ros package. For
community benefit, the software was released as an open-source package.

Keywords
RTKLIB, ROS, RTKRCV, robotics, real-time precise positioning, GNSS, GPS, open source, rtkrcv_ros

Date received: 31 March 2019; accepted: 29 November 2019

Topic Area: Field Robotics
Topic Editor: Yangquan Chen
Associate Editor: Francisco Rico

Introduction

For a mobile robot to be effective, accurate knowledge

about its localization is mandatory. Autonomous localiza-

tion is a perception-driven process, usually addressed

through probabilistic data fusion techniques, which com-

bine information from several sensors, to derive an updated

estimate of the robot’s position and orientation. In this

context, outdoor solutions benefit from an important

resource, denied to indoor applications, which is the global

navigation satellite system (GNSS).

GNSS is a ubiquitous resource, enabling any platform,

equipped with a receiver, and under clear sky view, to

access periodic global position references. This informa-

tion is crucial to the localization process, as global updates

are essential to bound estimation errors associated with

dead reckoning strategies. Nowadays, budget multi-fre-

quency/multi-constellation receivers are accessible, allow-

ing the application of differential processing methods,

namely the real time kinematic (RTK) technique, to

achieve positioning with centimeter-level accuracy.

1 Institute for Systems and Computer Engineering, Technology and

Science (INESC TEC), Porto, Portugal
2 Department of Electrical Engineering, ISEP–School of Engineering,

Polytechnic Institute of Porto, Porto, Portugal

Corresponding author:

António Ferreira, Institute for Systems and Computer Engineering,

Technology and Science (INESC TEC), Rua Dr. António Bernardino de

Almeida 431, 4249-015 Porto, Portugal.

Email: ajbf@inesctec.pt

International Journal of Advanced
Robotic Systems

May-June 2020: 1–8
ª The Author(s) 2020

DOI: 10.1177/1729881420904526
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://orcid.org/0000-0002-6091-1549
https://orcid.org/0000-0002-6091-1549
mailto:ajbf@inesctec.pt
https://doi.org/10.1177/1729881420904526
http://journals.sagepub.com/home/arx
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881420904526&domain=pdf&date_stamp=2020-05-11

Despite most receiver’s ability to perform RTK intern-

ally, transferring differential GNSS processing to an exter-

nal computational unit is most times advantageous,

offering the user more control and monitoring capabilities,

while opening the possibility for more complex positioning

networks to be developed.

The RTKLIB1 is one of the most popular and versatile

software packages for differential GNSS processing. It con-

sists of an open-source portable library, written in the C

programming language, plus a set of standalone programs

for real-time and post-processing precise positioning. In the

field robotics context, the RTKRCV application assumes

particular relevance, offering several real-time precise

position modalities, while supporting the most common

raw data formats, for wide-range compatibility with most

receivers on the market.

Unfortunately, out-of-the-box integration with the robot

operating system (ROS)2 is not available. Nowadays, the

ROS middleware is broadly disseminated, serving as devel-

opment base in the robotics community, hence a ROS

translation of the RTKRCV code makes perfect sense.

This article presents the new rtkrcv_ros package, a ROS

integration of the RTKRCV program, with clear improve-

ments over previous implementations,3,4 including

� the capability to publish all output stream formats

into ROS;

� the possibility to use all previous output devices

alongside the ROS publishing functionality;

� the full compatibility with the original configuration

file;

� the inclusion of a new velocity output format;

� the possibility of controlling the precise positioning

process, by means of a dedicated ROS service; and

� the implementation of a new observation synchroni-

zation scheme, to enhance the solution consistency

of the moving-baseline positioning mode.

The rtkrcv_ros package maintains the configuration

flexibility of the original RTKRCV program, essential to

the development of complex GNSS positioning systems.

Some practical applications, involving single and multiple

antenna systems are demonstrated here. Considering the

potential interest for the robotics community, the

rtkrcv_ros package was made freely available.5

This article is organized as follows. The next section

provides an overview of the RTKRCV and analyses the

limitations of previous packages developed for its integra-

tion in ROS. The third section presents the new rtkrcv_ros

package and details the most important features. A demon-

stration of the rtkrcv_ros package capabilities is given in

the fourth section, with several examples of single and

multiple antenna GNSS systems that can developed based

on the rtkrcv_ros package. A conclusion is provided in the

last section.

Related work

The RTKRCV is a stand-alone command line application,

included in the RTKLIB package,1 for real-time GNSS

precise positioning. Regardless of the selected positioning

method, the RTKRCV program follows the processing

pipeline illustrated in Figure 1, where raw input observa-

tions are processed to retrieve a positioning solution.

In the current stable release (RTKLIB 2.4.2), two out-

put streams are available to communicate positioning

solutions, each one following one of the four supported

output formats: geodetic position (LLH), Earth-Centered

Earth-Fixed (XYZ) position, local East-North-Up (ENU)

baseline position, and NMEA 0183 sentences (see Fig-

ure 1). Output solution streams are configured indepen-

dently and forwarded through one of the following

devices: serial port, TCP socket, NTRIP server or stored

in a local file.

Figure 1. Illustration of the RTKRCV data flow, where raw observations are processed to compute a positioning solution. Results are
accessible through two output streams. Highlighted are some of the newly developed features, such as a ROS service to control the
RTK server, the new output device to publish output streams over ROS, the velocity solution format (vel_ENU) and the new input
observation synchronization method (illustrated by the Sync block).

2 International Journal of Advanced Robotic Systems

All parameters, related with processing options and

input/output streams, are stored in a configuration file and

loaded at program start.

During execution, the RTKRCV offers a command line

console, also reachable over a telnet connection, for process

monitoring and control. The monitoring commands display

status information on the screen, which are useful for human

supervision of the precise positioning process. On the other

hand, a small set of commands (start, stop, restart, shutdown,

load) allow basic control over the execution of the position-

ing algorithm—the RTK server thread.

Previous ROS integrations

To our knowledge, two open-source RTKLIB wrappers are

available in the form of ROS packages: the rtklibros pack-

age4 and the gnss package.3

The rtklibros4,6 is based on an older RTKRCV version

(RTKLIB 2.4.1). It expects raw GNSS observations to be

received over a TCP socket, providing positioning solu-

tions in the ENU and LLH output formats exclusively.

Configurations can either be loaded from the standard con-

figuration file or from an YAML file. This last option

makes use of the ROS parameter server, to store and man-

age the configuration options, however no substantial ben-

efit is achieved, as on the fly configuration changes still

require the RTK server to be restarted. Nonetheless, a ROS

service dedicated to the RTK server restart operation, facil-

itates this procedure.

On the other hand, the gnss package3 implements a

bridge between a running RTKRCV instance and the ROS

environment. This package serves the unique purpose of

translating the ENU output stream, received over a specific

TCP socket, into a ROS message.

Both packages offer incomplete integration of the

RTKRCV features, particularly regarding the supported

output solution formats and input devices. Also, simulta-

neous execution of several RTKRCV instances is not

straightforward, as both packages define specific device

configurations for the input data, which conflict if several

nodes are executed. Also, conflicting hard-coded ROS

identifiers, such as ROS node and ROS topic names, forbid

the simultaneous execution of the same node within the

global ROS namespace.

Moreover, the use of outdated RTKLIB code, as in the

rtklibros package, should be avoided, mainly due to hard-

coded definitions which require regular revision. Hence,

keeping the source code updated is an essential condition

to achieve consistent solutions. For that, the latest stable

release must be used, while keeping track of all subsequent

patches.

The new rtkrcv_ros package

We share the major objective behind previous integration

packages—transpose the RTKRCV’s positioning solutions

into the ROS environment. This is accomplished by adopt-

ing the ROS publish/subscribe mechanism. However, our

rtkrcv_ros package not only supports all four original out-

put formats but also offers a new stream (vel_ENU), to

communicate velocity information (see Figure 1).

Additionally, the rtkrcv_ros package does not compro-

mise on the versatility offered by the original RTKRCV

program. In fact, from the user perspective, this package

behaves as the RTKRCV, with all options set through the

configuration file and no restrictions in terms of output

combinations. This allows previous RTKLIB users to eas-

ily adapt to this new package. Moreover, effort has been

taken to ensure that newly introduced features remain com-

patible with all previous options.

Some extra features were added, such as a new observa-

tion synchronization method to improve the consistency of

the moving-baseline solutions. Finally, a new ROS service

offers an alternative to the command line console, for easy

control over the RTK server.

ROS publishing

The original RTKRCV offers two configurable output solu-

tion streams, as illustrated in Figure 1. In our implementa-

tion, the ROS publishing functionality was seamlessly

integrated, behaving as any other device in the original

RTKRCV. Therefore, all output formats are eligible to be

published into ROS, with all necessary settings made

through a configuration file.

Setting a ROS output stream. Our package adopts the same

configuration file structure used by the original RTKRCV

program, with the exception of some additional arguments

related with the new developed features. In the configura-

tion file, a ROS output stream is set by assigning the

keyword ros to variables outstr1-type and/or outstr2-type.

ROS topic names can also be changed, by modifying

variables outstr1-path and/or outstr2-path, as shown in

Figure 2. The ability to specify ROS topic names constitu-

tes a key differentiating aspect of our implementation,

since, as opposed to enforcing hard-coded identifiers, as

other available implementations do,3,4 the assignment of

custom topic names opens the possibility for publishing

multiple topics and running several RTKRCV instances,

without resorting to the remap functionality.

ROS messages. In the ROS environment, nodes communi-

cate with each other using ROS topics, which exchange

ROS messages. A ROS message defines the structure of

the transmitted data package, composed of a set of typed

data fields, established at the programming phase. Hence,

several ROS messages were necessary to accommodate the

data of the different output formats conveniently.

Table 1 presents the association between each output

format and the corresponding ROS message. For the posi-

tion and velocity output streams, since they all share the

Ferreira et al. 3

same field structure, only two ROS messages were defined.

They differ on the timestamp format selected for the output

streams – variable out-timeform in the configuration file.

Accordingly, message states_hms is used for timestamps in

the form of hours–minutes–seconds. Otherwise, for time-

stamps expressed in terms of seconds of the week, message

states_tow is automatically selected.

Outputs following the NMEA 0183 specification are

composed of several sentences (GPGGA, GPGSA,

GPGSV, and GPRMC), each one with unique field struc-

ture. Therefore, custom ROS messages were defined for

each case. All individual NMEA sentences are clustered

together inside the nmea ROS message (see Table 1).

ROS service control commands

Our implementation provides an additional interface, based

on the ROS service mechanism, for receiving control com-

mands. This provides an additional interface for other ROS

applications to easily interact with the RTK server. At exe-

cution time, each rtkrcv_ros node advertises a service,

labeled after the node’s name plus the suffix _cmd. The

ROS service accepts string commands from Table 2,

answering back with the feedback text message generated

by the RTKRCV plus a Boolean flag, which becomes true

if the operation succeeds.

New velocity output format

In the current stable RTKRCV release (2.4.2), besides

NMEA sentences, there are three output formats to com-

municate position information. The provided output

formats do not reflect the evolution of the RTKRCV,

which by now supports the estimation of receiver

dynamics, by extending the internal Kalman Filter’s state

vector, to include velocity and acceleration states. Acces-

sing this information becomes desirable, especially for the

velocity states, since a direct observation, derived from

the Doppler frequency measurement, ensures an accurate

estimate.

The most recent 2.4.3 beta release introduces a new

output format, based on the solution status stream, logged

to file in previous releases. Despite making velocity and

acceleration states accessible in real time, the stream lacks

uncertainty information, relevant to the development of

downstream data fusion processes.

Our implementation fills this gap by establishing a

dedicated output format to communicate velocity esti-

mates, together with the corresponding uncertainty,

extracted from the covariance matrix of the RTKRCV’s

Kalman Filter.

Similarly to the original streams, additional status infor-

mation complements states and uncertainty data, as defined

in Table 3. Velocity is given in the local ENU reference

frame. The uncertainty is represented by 6 standard devia-

tion (SD) values (sve, svn, svu, sven, svnu, sveu), through

which the 3� 3 covariance submatrix Pv, related to the

velocity states, is reconstructed as follows:

Pv ¼
sve

2 sven
2 sveu

2

sven
2 svn

2 svnu
2

sveu
2 svnu

2 svu
2

2
64

3
75 ð1Þ

The new velocity stream is selected, in the configuration

file (Figure 2), by setting variables outstr1-format and/or

outstr2-format equal to vel_enu. The user must also enable

the estimation of rover dynamics, by setting variable pos1-

dynamics to on, otherwise velocity states will not be esti-

mated by the Kalman Filter and the velocity output will not

Table 1. ROS messages used to communicate each output
format.

Output format ROS message

Geodetic position
ECEF position
ENU position
Velocity

states_hms.msg
or
states_tow.msg

NMEA 0183 nmea.msg
nmeaGPGGA.msg
nmeaGPGSA.msg
nmeaGPGSV.msg
nmeaGPRMC.msg

Table 2. Commands accepted by the ROS service.

Command Description

start Starts the RTK server
stop Stops the RTK server execution
restart Restarts the RTK server
load file_path Loads a configuration file located at file_path

Figure 2. Partial screenshot of the RTKRCV’s configuration file, demonstrating how two output solution streams are configured. Both
are set to output the new velocity format. The first output is assigned to a ROS topic publisher, with topic name defined by variable
outstr1-path. The second is assigned to a TCP socket server, already available in the original RTKRCV implementation.

4 International Journal of Advanced Robotic Systems

be generated. This stream can be forwarded to all existing

output devices, including the new ROS topic publishers.

Observation synchronization

In the RTKRCV, the misc-svrcycle configuration option

defines the time period at which incoming messages are

checked. In that loop, rover messages assume high priority

over the base station stream, triggering the positioning

computation as soon as rover message arrive. If the base

observation is delayed with respect to the rover’s, rover

messages are associated with older base measurements,

as the algorithm does not wait for the arrival of the corre-

sponding base message. While this approach is perfectly

acceptable for fixed base stations, it can deeply impact

performance in the moving-baseline processing mode.

The moving-baseline RTK mode is a differential GNSS

positioning technique, suitable for applications where the

base station is allowed to move. Instead of relying on a

fixed position, broadcast by the reference station, the algo-

rithm applies the single-point positioning to the base station

observations to track its position. This solution is then used

in the RTK calculation. Despite the poor global positioning

performance, the moving-baseline method provides an

accurate relative position measurement between the rover

and the base station.

To ensure consistency of the measured baseline, the

computed base position should reflect its current state,

which implies that base messages must be combined with

rover observations from the same epoch. Instead of enfor-

cing this, the original RTKRCV compensates for the base

station delay, computing a correction to the base station

position, by integrating the measured base velocity over

the delay interval. This operation does not guarantee a

consistent solution, especially for long observation delays

and platforms subjected to fast varying dynamics.

We address this issue by implementing two routines,

associated with previously existing options in the config-

uration file, namely the pos2-maxage and pos2-syncsol

options.

The pos2-maxage option establishes a maximum admis-

sible delay between the last base station observation and the

most recent rover observation. However, this functionality

had not been previously developed for the moving-baseline

mode. Our implementation fills this gap, skipping the posi-

tioning routine whenever the defined threshold is exceeded.

This delay threshold should be adjusted according to accu-

racy requirements, robot dynamics, and observation data

rates. Lower values contribute to increase the solution’s

accuracy but may force some epochs to be rejected due

to lack of recent base station observations.

For high-accuracy applications, with rover and base

streams at the same data rate, enforcing exact observation

synchronization would be possible and preferable. In the

reported implementation, the user may now force the algo-

rithm to establish synchronized observation pairs, by wait-

ing for the corresponding base observation. This feature is

associated with option pos2-syncsol, which despite being

available in the configuration file, had not been implemen-

ted for the original RTKRCV. This option is now effective

for all positioning modes.

Applications

The new rtkrcv_ros package was developed to maintain the

same configuration flexibility offered by the original

RTKRCV method. This opens the possibility to develop

complex GNSS systems, composed of multiple GNSS

receivers, running several rtkrcv_ros instances, publishing

various output solutions, and making use of all available

devices.

This section presents three application examples, which

make use of the rtkrcv_ros package. The first example

demonstrates the RTK technique applied to a mobile robot

equipped with a single antenna. The second example con-

sists on a dual antenna GNSS system, assembled onboard

an autonomous underwater vehicle (AUV), for position,

velocity, heading, and pitch determination. Finally, a triple

antenna GNSS system for position and full attitude deter-

mination is introduced. The configuration files for the three

cases are supplied within the rtkrcv_ros package.5

Single antenna application

From all the positioning algorithms offered by the

RTKRCV, the RTK technique is the most advantageous,

both in terms of convergence time and in terms of position-

ing accuracy, capable of reaching centimeter accuracy

almost instantaneously, when using multi-frequency recei-

vers. Such performance is achieved by tracking the carrier

wave of GNSS signals, a process that requires the combi-

nation of observations from a close range base station. To

Table 3. Message format adopted for the new velocity output
stream.

Content Description

1–Time Epoch time of the solution.
2–Velocity Three decimal values corresponding to the

velocity in the local ENU reference frame.
3–Quality Flag indicating the solution quality:

1 Fixed, 2 Float, 4 DGPS, 5 Single
4–Number of

satellites
Number of valid satellites used to compute the

current solution
5–Standard

deviations
Six decimal standard deviations values (sve, svn,
svu, sven, svnu, sveu), through which the
3 � 3 covariance matrix, related with
velocity states, can be reconstructed

6–Age Time difference between the receiver and the
base station observations

7–Ratio Current ratio factor used for ambiguity
validation

Ferreira et al. 5

perform RTK positioning of a moving target, the RTKRCV

must be configured in the kinematic processing mode

and receive the raw data streams from the GNSS

receiver onboard (the rover) and the base station, as

illustrated in Figure 3.

In the rtkrcv_ros, output streams remain independent of

each other. This allows the combination of different

devices to communicate information simultaneously. For

the case illustrated in Figure 3, the first output stream pub-

lishes, in the pos_enu topic, the robot’s position in the ENU

reference frame. The second output is fully independent of

the first one so, for the sake of this demonstration, the

NMEA output format is forwarded through a TCP socket.

Dual antenna setup

Carrying a dual antenna GNSS system onboard provides a

practical way to instantly measure the pose in five degrees

of freedom, including the heading angle.7 This arrangement

is most valuable in situations where heading is hard to

measure, particularly in marine applications, where visual

references are scarce and North-seeking techniques are not

effective due to continuous motion. Therefore, for the dual

antenna example, let’s consider the case of an autonomous

underwater vehicle (AUV) whose GNSS system is repre-

sented in Figure 4.

The possibility of changing ROS node and topic names,

allows the user to choose unique identifiers to avoid

resource name conflicts. By doing so, as depicted in Fig-

ure 4, several rtkrcv_ros nodes and various ROS topics can

run simultaneously in the same machine and under the

global ROS namespace.

For redundancy reasons, and to increase the chance of

obtaining an accurate positioning solution, the streams of

both antennas are processed in Kinematic mode. This pro-

vides a pair of position and velocity measurements from

each antenna, which are published in ROS to be fused by

the localization algorithm. Additionally, a third rtkrcv_ros

node, configured in moving-baseline mode, measures the

relative position between antennas onboard. The result in

the form of a 3-D vector, decomposed along directions

East-North-Up ð~vb ¼ ½vbE; vbN ; vbU �Þ, is published into

ROS using the ENU output format.

Assuming that the antenna baseline is aligned with the

AUV’s x axis, the calculation of heading and pitch q

angles can be executed through simple trigonometric

expressions, following the direct method from,8 giving:

 ¼ tan�1 vbN

vbE

� �
ð2Þ

q ¼ tan�1 vbUffi
vb2

E þ vb2
N

q
0
B@

1
CA ð3Þ

The ENU output format contains 6-SD parameters,

which allow the reconstruction of the covariance matrix

associated with the 3-D baseline measurement. The SD,

s , associated with the computed heading angle is obtained

by projecting the relative position SDs as follows:

s ¼ r :
svbE

svbN

� �
:r T ð4Þ

where r indicates the Jacobian of equation (2) with

respect to vbE and vbN .

Similarly, the SD associated with the pitch angle (sq) is

obtained as follows:

sq ¼ rq:
svbE

svbN

svbU

2
64

3
75:rqT ð5Þ

where rq indicates the Jacobian of equation (3) with

respect to vbE, vbN , and vbU .

Observation synchronization. In the moving-baseline mode,

the activation of the new observation synchronization

method, by setting option pos2-syncsol¼on, is recom-

mended to ensure consistent baseline measurements. The

Figure 3. Application of the rtkrcv_ros package to compute an
RTK positioning solution.

Figure 4. Architecture of the dual antenna GNSS system devel-
oped for the AUV. Two rtkrcv_ros instances compute global
positioning solutions, by combining observations from each
antenna with the fixed base station. Another rtkrcv_ros process
combines both antennas, in moving-baseline mode, to obtain a
relative position measurement.

6 International Journal of Advanced Robotic Systems

effects of combining observations from different epochs is

evaluated here for the AUV’s case.

The configuration on the AUV is particularly challen-

ging due to the short baseline of 70 cm between antennas

onboard. For the moving-baseline process, with the new

synchronization mechanism inactive, base station observa-

tions are often combined with no delay (age ¼ 0 s) or

delayed by one epoch (age ¼ 0.2 s; 200 ms at 5 Hz data

rate). Despite the AUV’s slow cruising speed of around 1

m/s, the combination of delayed base station observations

causes considerable positioning error, with noticeable

degradation on the computed heading angle, as illustrated

in Figure 5.

A notorious degradation is visible when outdated base

measurements are considered. The impact on the com-

puted heading angle exceeds 5�, which surpasses by far

the admissible error for this particular application. Fig-

ure 5 also demonstrates the benefit of the new synchroni-

zation mechanism, on enforcing perfect synchronization

between the two observation streams, to achieve consis-

tent solutions.

ROS service control commands. The new ROS service, built

into the rtkrcv_ros package, allows external ROS applica-

tions to control the execution of the positioning algorithm.

This feature comes in handy to mitigate inconsistent solu-

tions and false fixes, which usually occur when the vehicle

returns to the surface after long dive periods. As demon-

strated in Figure 6, the RTK algorithm takes some time to

converge after reacquiring GNSS observations, producing

several outliers in the meanwhile. Outliers, and especially

false fixes, are difficult to identify in real time, causing

significant impact on the localization estimate.

This behavior is not restricted to underwater vehicles

only. All applications, where GNSS signals can be lost for

some time, are susceptible. It may be the case of a robot

traveling through a tunnel, or entering an indoor

environment.

The most effective way found to avoid false fixes, improve

positioning precision, and decrease convergence time alto-

gether consists on stopping the positioning process when

the vehicle dives, restarting the execution as soon as the plat-

form reaches the surface. Resorting to the ROS service, this

task was automated by an external application that controls

the RTK_server based on the estimated vehicle depth.

Triple antenna example

This last example demonstrates how several rtkrcv_ros

nodes can be combined to measure position, velocity, and

Figure 5. Impact of the base station measurement delay on the
computed heading angle. Solutions resulting from delayed base
station observations (age¼0.2) do not agree with results obtained
when rover and base observations are synchronized.

Figure 6. Typical output of the RTKRCV in kinematic mode
when the AUV returns to the surface. The RTK process can take
several minutes to converge, with false fixes occurring frequently.
After convergence, either fix and float solutions remain
consistent.

Figure 7. Triple antenna GNSS system for position velocity and
attitude determination. One kinematic RTK process is used to
compute a global positioning solution, by combining one antenna
onboard with the fixed base station. Two relative baseline mea-
surements are obtained between antennas onboard. Several
outputs are used to communicate the solutions, including the new
velocity format.

Ferreira et al. 7

orientation, for a platform equipped with a triple antenna

GNSS system. As depicted in Figure 7, a single rtkrcv_ros

node, performing RTK between one onboard antenna and a

fixed base station, is sufficient to simultaneously provide a

global positioning solution and a relative velocity measure-

ment with respect to the base station. When requesting the

new velocity output format, as in Figure 7, the estimation of

rover dynamics must be activated by setting configuration

option pos1-dynamics¼on. Similarly to the AUV’s case,

redundant solutions could be computed by repeating the

same process for the other antennas.

The two additional rtkrcv_ros nodes represented in Fig-

ure 7, run in the moving-baseline RTK mode, to implement

two relative baselines between the three antennas onboard.

If the three antennas are carefully placed with respect to the

body reference frame, such that the two established base-

lines form an orthogonal configuration, the three Euler

angles defining the platform’s attitude can be computed

trough the direct method, as previously demonstrated in.9

For other geometric arrangements, the least square method

can be applied.8,10

Conclusion

In the context of mobile robotics, the ability to self-localize

constitutes an essential competence. For outdoor agents,

periodic global positioning references, obtained from the

GNSS system, reveal extremely advantageous, especially

when coupled with precise positioning techniques for

improved accuracy. The reported implementation facili-

tates the integration of real-time precise positioning rou-

tines, by translating the RTKRCV application to the ROS

environment. The new rtkrcv_ros package expands the

information retrieved from the internal estimation algo-

rithm and offers slight improvements to enhance accuracy.

The rtkrcv_ros package’s main features include the pos-

sibility to publish all output solutions, including the new

velocity output format, through ROS topics. The control

over the core positioning algorithm via a ROS service, as

an alternative to the original command line console. A new

observation synchronization strategy was also developed to

ensure the consistency of the moving-baseline positioning

mode.

The package offers full configuration flexibility, main-

taining all original options. This enables the design of com-

plex positioning networks to target demanding robotic

applications. In the quest to increase robustness, attain

long-term operations and improve accuracy and autonomy

of outdoor robots, multiple antenna GNSS systems can be

easily implemented to retrieve additional localization refer-

ences, such as full attitude and 3-D relative velocity.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

work is financed by National Funds through the Portuguese fund-

ing agency, FCT - Fundação para a Ciência e a Tecnologia, within

project UIDB/50014/2020.

ORCID iD

António Ferreira https://orcid.org/0000-0002-6091-1549

References

1. Takasu T and Yasuda A. Development of the low-cost RTK-

GPS receiver with an open source program package RTKLIB.

In: International Symposium on GPS/GNSS, Jeju, Korea, 4–6

November 2009.

2. Quigley M, Gerkey BP, Conley K, et al. ROS: an open-source

robot operating system. In: ICRA Workshop on Open Source

Software, Kobe, Japan, 17 May 2009.

3. Fraunhofer’s GNSS package. http://wiki.ros.org/gnss

(accessed 31 March 2019).

4. ETHZ’s rtklibros package. https://github.com/ethz-asl/rtkli

bros (accessed 31 March 2019).

5. The rtkrcv_ros package. https://github.com/ajbfinesc/rtkrcv_

ros (accessed 31 March 2019).

6. Grieneisen D. Real time kinematic GPS for micro aerial vehi-

cles. Master Thesis, Eidgenössische Technische Hochschule

Zürich (ETHz), 2012.

7. Gade K. The seven ways to find heading. J Navig 2016;

69(5): 955–970.

8. Dai Z, Knedlik S, and Loffeld O. A MATLAB toolbox for

attitude determination with GPS multi-antenna systems. GPS

Solut 2008; 13: 241–248.

9. Almeida J, Ferreira A, Matias B, et al. ¡VAMOS! underwater

mining machine navigation system. In: IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS),

Madrid, Spain, 1–5 October 2018, pp. 1520–1526.

10. Lu G. Development of a GPS multi-antenna system for atti-

tude determination. PhD Thesis, University of Calgary, 1995.

8 International Journal of Advanced Robotic Systems

https://orcid.org/0000-0002-6091-1549
https://orcid.org/0000-0002-6091-1549
https://orcid.org/0000-0002-6091-1549
http://wiki.ros.org/gnss
https://github.com/ethz-asl/rtklibros
https://github.com/ethz-asl/rtklibros
https://github.com/ajbfinesc/rtkrcv_ros
https://github.com/ajbfinesc/rtkrcv_ros

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

