

Zegre M. (1,2), Henriques M. (1), Ribeiro I.A.C. (1), Caetano L. (1,2), Gonçalves L. (1) and Bettencourt A. (1)

 (1) Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal (2) H&TRC
- Centro de Investigação em Saúde e Tecnologia, ESTeSL - Escola Superior de Tecnologia da Saúde de Lisboa, IPL - Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096, Lisboa, Portugal

miguel.zegre@estesl.ipl.pt

•	Introduction	

Co-encapsulating of drugs as an advantageous means for administration [1]

★ Co-delivery of two antimicrobials at the infection site

					Re	esul	ts						
				1– Re	elease	e kine	etic m	odel					
			4	c 11	4	1 C	1 1 1						
Table 1 - T	he p	arame	eters c	of adju	steme	ent of	kinetic	: mod	els of o	drug r	elease	•	
Table 1 - T	he p	arame	eters c	of adju	steme	ent of	kinetic	; mod	els of	drug r	elease)	
Table 1 - T	he p	arame	eters c Zero-	of adju order	steme First-	ent of order	kinetic Higu	: mod uchi	els of Hixson-	drug r Crowell	elease Korsn) neyer-P	eppas
Table 1 - T	he p	arame -	eters c Zero- K ₀	of adju order R ²	Steme First- K1	ent of order R ²	kinetic Higu K _H	: mod uchi R ²	els of (Hixson- K _{HC}	drug re Crowell R ²	elease Korsn	neyer-Po	eppas R ²
Table 1 - T Da	hер ta	arame -	eters c Zero- K ₀ 5,788	of adju order R ² 0,537	Steme First- K ₁ 0,147	ent of order R ² 0,394	kinetic Higu K _H 11,869	: mod 	els of Hixson- K _{HC} 1,143	drug ro Crowell R ² 0,465	elease Korsn K 24,132	neyer-P n 0,374	eppas R ² 0,738
Table 1 - T Da ^r Single delivery	he p ta / MH / Vor	arame -	eters c Zero- K ₀ 5,788 5,788	of adju order R ² 0,537 0,915	Steme First- K ₁ 0,147 0,151	ent of order R ² 0,394 0,816	kinetic Higu K _H 11,869 17,911	uchi 0,625 0,982	els of (Hixson- K _{HC} 1,143 1,929	drug ro Crowell R ² 0,465 0,915	elease Korsn K 24,132 33,297	n 0,374 0,309	eppas R ² 0,738 0,992
Table 1 - T Da Single deliver	he p ta MH Vor	arame	eters c Zero- K ₀ 5,788 5,788	of adju order R ² 0,537 0,915	Steme First- K ₁ 0,147 0,151	ent of order R ² 0,394 0,816	kinetic Higu K _H 11,869 17,911	uchi R ² 0,625 0,982	els of (Hixson- K _{HC} 1,143 1,929	drug ro Crowell R ² 0,465 0,915	elease Korsn K 24,132 33,297	n 0,374 0,309	eppas R ² 0,738 0,992
Table 1 - T Da Single delivery	he p ta MH Vor	arame	eters c Zero- K ₀ 5,788 5,788 1,405	of adju order R ² 0,537 0,915	Steme First- K ₁ 0,147 0,151	ent of order R ² 0,394 0,816	kinetic Higu K _H 11,869 17,911 4,567	mod Ichi R ² 0,625 0,982	els of (Hixson- K _{HC} 1,143 1,929 0,468	drug ro Crowell R ² 0,465 0,915	elease Korsn K 24,132 33,297 43,291	n 0,374 0,309	eppas R ² 0,738 0,992

- ★ Minocycline and voriconazole were the assayed drugs
- ★ Osteomyelitis treatment

Aim & Strategy

Development of a new local drug-delivery
system aiming bone infection and the modula tion of the polimicrobial activity

★ Simultaneous delivery of minocycline and voriconazole, antibacterial and antifungal agents, respectively ★ The Korsmeyer-Peppas kinetic model presents the best fitted of the release assays

- * All the drug releases appear to be driven by diffusion mechanisms (n values lower than 0.5)
- ★ A Fickian behavior is suggested

Results highlight a release mechanism driven by diffusion, over dissolution of the polymeric system and even over transport through the polymer

2– Antimicrobial activity of scaffolds

Table 2 - Results of drug inhibition of growth of *S. aureus* and *C. albicans* assays. Average ± SD

Polylactide (PDLLA) scaffolds functionalized
with collagen and bioglass, osteogenic enhan cers

Methodology

- Polylactide (PDLLA) scaffolds prepared by methodology previously optimized [2]
- In vitro release assays used HEPES buffer, at 37°C
- Aliquots of the supernatant collected and analyzed in triplicate
- Minocycline quantified by UV spectroscopy
- ★ Voriconazole quantified by HPLC
- ★ Antimicrobial activity against S. aureus

MH - minocycline, Vor- voriconazole, FCZ—fluconazole

Inhibition zone diameter (mm) FCZ disk Organisms MH-Vor scaffold MH-Vor disk MH disk Vor disk 27.5 ± 2.8 33.1 ± 1.5 S. aureus 24 h 34.6 ± 0.7 27.1 ± 1.6 24 h 21.3 ± 2.1 32.6 ± 1.9 15.4 ± 1.5 25.0 ± 4.1 C. albicans 17.0 ± 2.6 29.4 ± 3.7 48 h

The scaffold combining minocycline and voriconazole has activity against *C. albicans* for 48h, in comparison with the controls of minocycline disk and voriconazole disk (activity for 24h)

★ In the assays to both microorganisms, the scaffold studied and the disk combining the two thera-

(ATCC 25923) and *C. albicans* (ATCC 10231) evaluated using the agar diffusion method

Acknowledgements

Research Institute for Medicines (iMed.Ulisboa)

H&TRC - Health & Technology Research Center

This research was also funded by FCT (Fundação para a Ciência e a Tecnologia) through iMed.ULisboa UID/DTP/04138/2019 and UIDB/04138/2020), principal investigator grants CEECIND/03143/2017 (L. M. Gonçalves).

References

Vitorino, C.; Almeida, J.; Gonçalves, L.; Ameida, A.; Sousa, J.; Pais, A. *J Control Release* 2013, 167(3), 301-314

Martin, V.; Anjos, I.; Saraiva, A.; Zuza, E.; Gonçalves, L.; Alves, M.; Santos, C.; Ribeiro, I.; Bettencourt, A.; 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG) 2019, pp. 1-4 and PDLLA scaffold for rabbit femur defect regeneration. *Biomed Mater*. 2019;14, :65007.

Fig. 1. Results of drug inhibition of growth of *S. aureus* and *C. albicans* for 48h peutic agents, presented antimicrobial activity

Results suggest that the scaffold combining both antimicrobials has

activity against C. albicans and S. aureus

Conclusions

The release kinetic model and microbiological results propose this structure as a promising co-delivery

system for local antimicrobial therapy in osteomyelitis.