

ExPOSE - Avaliação da exposição a micobiota resistente a antifúngicos

Liliana Aranha Caetano, Carla Viegas

MYCOBIOTA IN CLINICAL ENVIRONMENTS

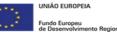
Poor hospital indoor air quality (IAQ) may lead to hospital-acquired infections, sick hospital syndrome and various occupational hazards.

Cabo-Verde et al. Res. Microbiol. 2015

• Microbiological IAQ monitoring and control in hospitals is currently a necessary and integral part of prevention strategies against hospital-acquired infections.

Zahar et al. J Mycol Med. 2017

Implementation of sampling and analysis methods should be adapted to hospital environment.


Baurès et al. Sci Total Environ. 2018

MYCOBIOTA IN CLINICAL ENVIRONMENTS

 Bacterial, viral and fungal infections are frequently acquired via inhalation, among them pulmonary aspergillosis and pneumocystosis still represent high disease burden.

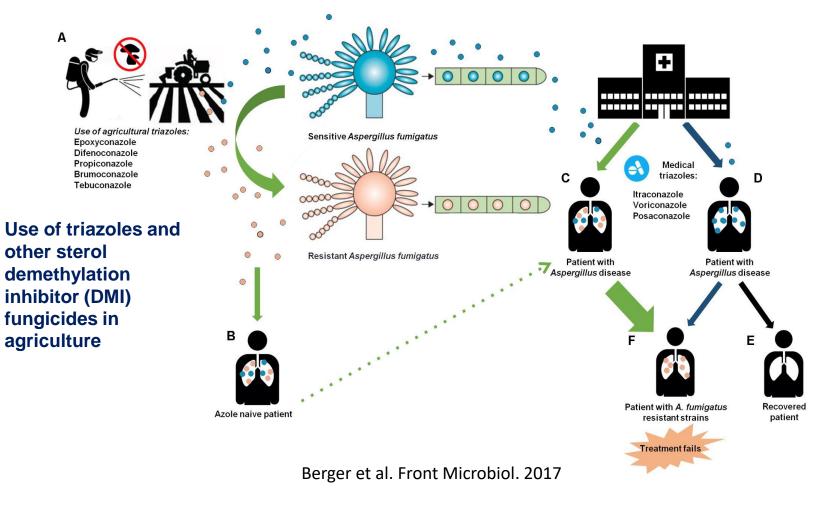
Gangneux et al. J Mycol Med. 2016

 A large number of fungal species can cause severe infections, specially among immunocompromised individuals.

Springer et al. 2016

 Most important fungi related with fungal exposure: Cladosporium, Alternaria, Stachybotris, Penicillium, Aspergillus.

Sabino et al. 2018



EMERGENCE OF AZOLE RESISTANCE

Lisb@2C

AZOLE RESISTANCE AS A PUBLIC HEALTH THREAT

- Resistant isolates of Aspergillus fumigatus strains found in environmental and clinical samples from several countries. (Bader et al. 2015)
- Exposure to fungal isolates with less susceptibility to antifungals. Intrinsic vs. Secondary (azoleinduced) resistance. (Meis et al. 2016)
- Azole resistance could become a global public health threat with fungal spores able to disperse great distances on air currents. (Verweij et al. 2015)

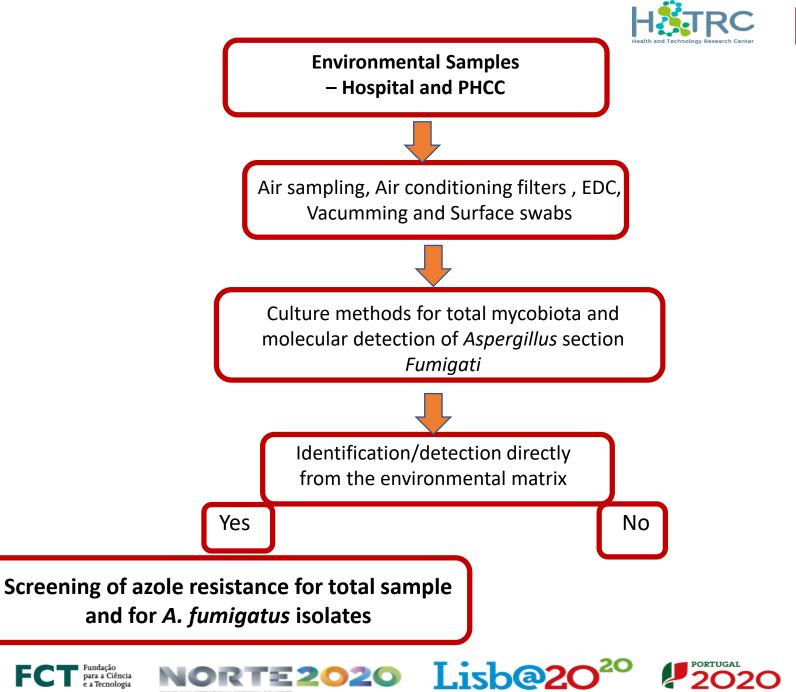
MONITORING MYCOBIOTA IN CLINICAL ENVIRONMENTS Multi-approach sampling strategy

Active air sampling methods

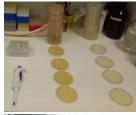
- Air samples of 100 liters (impaction)
- 600 liters (impinger)

Passive sampling methods

- Surface and vaccumed dust samples
- Electrostatic dust cloths (EDC)
- Air-conditioning filters



ESCOLA SUPERIOR DE TECNOLOGIA DA SAÚI DE LISBOA



SCREENING FOR AZOLE RESISTANCE


- I. 150 μL of sample wash suspension on Saboraud agar supplemented with:
 - 4 mg/L itraconazole (ITC)
 - 1 mg/L voriconazole (VCZ)
 - 0.5 mg/L posaconazole (PSC) (EUCAST, 2017).
- II. Incubation at 27 °C for 3 to 5 days
- III. Fungal densities (colony-forming units (CFU) per 1 m² of filter/EDC area, or per 1 gram of settled dust/HVAC filter)
- IV. Fungal species identified microscopically using lactophenol cotton blue mount procedures (Caetano et al., 2017).

Lisb@20

TOTAL FUNGAL BURDEN IN PRIMARY HEALTH CARE CENTERS (PHCC) – Passive sampling methods

	SDA			ITRA			VORI			POSA		
РНСС	EDC	Filter	Dust	EDC	Filter	Dust	EDC	Filter	Dust	EDC	Filter	Dust
1	53715	0	10	0	0	1	318	0	1	0	0	1
2	267196	500	5	0	0	1	212	500	1	0	0	0
3	424628	1500	2	212	500	0	159554	1000	1	212	0	0
4	165496	56500	7	955	21500	0	107643	15500	0	0	19500	0
5	107219	0	3	53503	0	0	53185	0	0	0	0	0
6	1004	1000	514	954	0	0	212	0	3	0	0	0
7	1166	3000	10	53715	500	0	106	1500	1	106	0	0
8	2120	1000	30	318	1000	1	318	3500	2	0	4500	1
9	348	1500	17	107	0	502	2	0	5	1	0	0
10	3077	n.d.	13	531	n.d.	6	2547	n.d.	0	212	n.d.	0

EDC (CFU.m-2), HVAC filters (CFU.m-2), and settled dust (CFU.g-1). n.d. - not determined

Caetano et al. 2019 Proceedings of the Healthcare Ergonomics and Patient Safety, HEPS, 3-5 July, Lisbon, Portugal

FUNGAL SPECIES/GENERA BY SAMPLING METHOD

Sample	Fungi	SDA	ITRA	VORI	POSA	
		n %	n %	n %	n %	
EDC (CFU/m2)	Alternaria sp.	156 0.02	212 0.19			
	Aspergillus section Candidi	318 0.04				
	Aspergillus section Circumdati	106 0.01				
	Aspergillus section Fumigati	106 0.01				
	Aspergillus section Nigri	106 0.01				
	Aspergillus section Versicolores	849 0.12				
	Aureobasidium sp.		106 0.10	106 0.03		
	Chrysonilia sitophila	636944 90.05	106476 96.45	318579 98.30		
	Chrysosporium sp.	1485 0.21		106 0.03	212 40.00	
	Cladosporium sp.	7742 1.09	1167 1.06	1484 0.46	106 20.00	
	Fusarium verticilloides	424 0.06				
	Fusarium solan		212 0.19			
	Paecilomyces sp.	53079 7.50				
	Penicillium sp.	5834 0.82	2015 1.83	3821 1.18	212 40.00	
	Rhizopus sp.	212 0.03				
	Others	500 0 77	212 0.19			
HVAC filter (CFU/m2)	Aspergillus section Cremei	500 0.77				
	Aspergillus section Versicolores	500 0.77				
	Alternaria sp.	500 0.77				
	Chrysosporium sp.	1000 1.54		1000 4.55		
	Cladosporium sp.	9000 13.85	21500 91.49	11000 50.00	19500 81.25	
	Mucor sp	500 0.77	500 2.13			
	Penicillium sp.	53000 81.54	1500 6.38	10000 45.45	4500 18.75	
Settled dust (CFU/g)	Alternaria sp.	4 0.65		1 7.14		
	Aspergillus section Fumigati	3 0.49	500 07 05			
	Chrysonilia sitophila	503 82.32	500 97.85			
	Chrysosporium sp.	13 2.13	1 0.20	1 7.14		
	Cladosporium sp.	10 1.64			1 100.00	
	Penicillium sp.	76 12.44	10 1.96	6 42.86		
	Stemphilium sp.	2 0.33				
	Others			6 42.86		
Vacuu m bag (CFU/m 2)	Chrysosporium sp.		500 7.14			
	Penicillium sp.	1000 100.00	6500 92.86	1500 33.33		
	Rhizopus sp.			3000 66.67		

Caetano et al. HEPS 2019

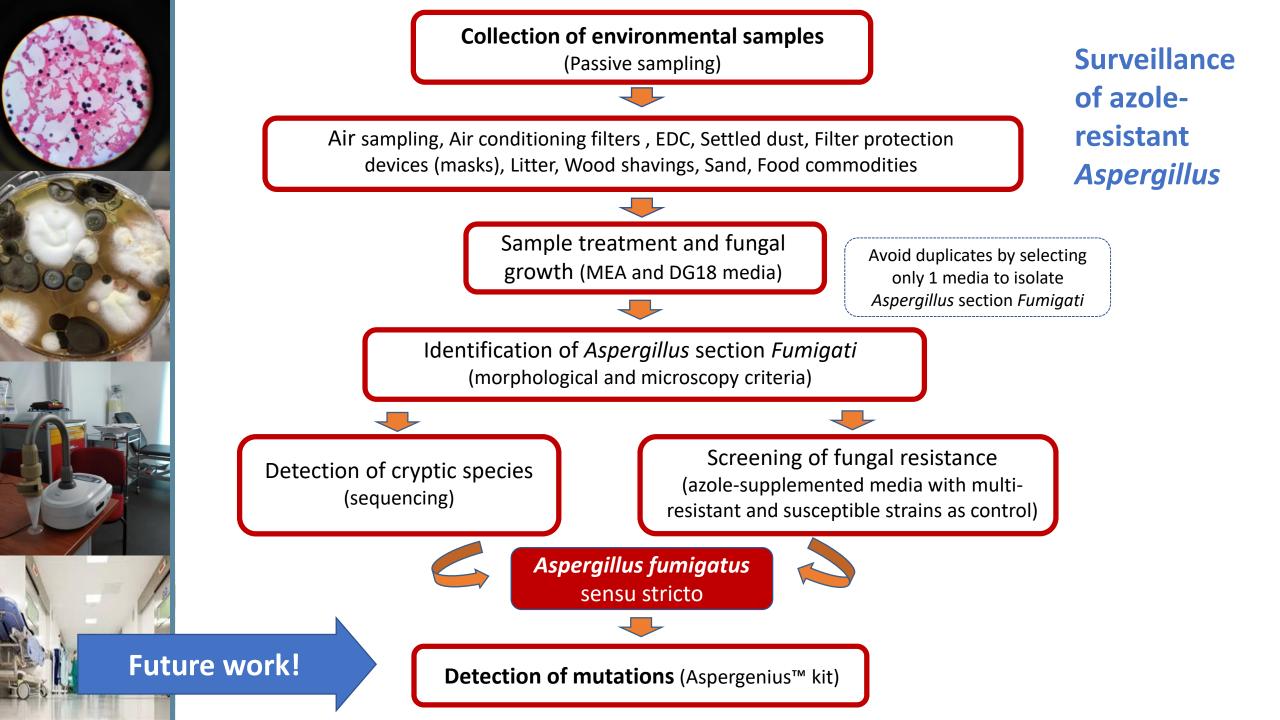
AZOLE RESISTANCE FINDINGS IN 10 PHCC

- Mycobiota able to grow on azole-media observed in 10/10 PHCC
- Most common scenario: fungal growth in 1 azole only
 - Chrysosporium sp. in ITRA, VORI or POSA
 - C. sitophila in ITRA or VORI
- Multi-azole resistance (fungal growth in >1 azole) in 9/10 PHCC
 - Penicillium sp. (PHCC 2, 3, 4, 6, 7, 8 and 10)
 - C. sitophila (PHCC 5 and 9)
 - Cladosporium sp. (PHCC 4, 6, 7 and 8)
- No azole resistance observed for *Aspergillus* sp.

LIMITATIONS/OPPORTUNITIES

- Lack of standardized protocols for the screening of azole-resistance in environmental samples (heterogeneous environments and matrices)
 - Further research in this field is necessary
- Mycobiota able to grow in azole screening media might be underestimated as there is competition for nutrientes among fungal species in culture
 - Target specific fungal species or genera by molecular identification
- Lack of breakpoint values for azoles for species other than Aspergillus
 - Susceptibility testing guidelines should evolve to outreach microbial resistance Characterization in the environment

TAKE HOME MESSAGES


- The presence of azole-resistant fungal species in clinical settings may potentially place patients and healthcare staff at high health risk
 - Exposure to resistant fungi may reach infectious levels within a confined space more readily
- Passive sampling methods are suitable to characterize the mycobiota in clinical settings (Viegas et al. 2015b; Viegas et al. 2017)
 - Allow to collect contamination from a longer period compared with the active methods
- A multi-approach in sampling methods and fungal identification are recommended for a proper screening of azole-resistance in clinical settings

2020 Lisb@20

 To enable a better risk characterization and more suitable risk control measures to reduce patients and workers health outcomes

ACKNOWLEDGEMENTS

The authors are grateful to FCT – Fundação para Ciência e Tecnologia for funding the project EXPOsE – Establishing protocols to assess occupational exposure to microbiota in clinical settings (02/SAICT/2016 – Project nº 23222).

THANK YOU FOR YOUR ATTENTION

