

ASSESSMENT OF AZOLE RESISTANCE IN CLINICAL SETTINGS BY PASSIVE SAMPLING

L. A. Caetano^{1,2}, B. Almeida¹, <u>C. Viegas^{1,3}</u>

¹ H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa; ² Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal;
³ Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa

liliana.caetano@estesl.ipl.pt

INTRODUCTION

Clinical settings (hospitals, primary health care centers - PHCC), with high occupation rates, microbiologic agents in present their environment. Exposure to mycobiota in indoor environments is related to several adverse human health effects, such as respiratory symptoms.¹

Azole resistance in fungal species and consequent failure of antifungal therapy are a major concern health.² Portuguese for public legislation recommends active air sampling for bioburden assessment indoor. Passive sampling can be used in complement to determine bioburden levels from longer periods.³

AIM: To assess the fungal burden and prevalence of azole resistance in clinical settings in Portugal using passive sampling methods.

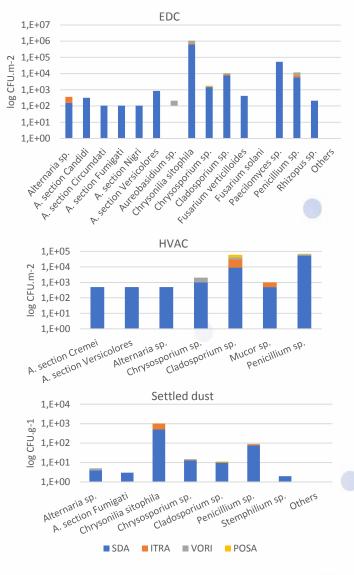
MATERIALS AND METHODS

I. Ten Portuguese Primary Health Care Centers (PHCC) were sampled between June and September 2018 by passive sampling:

- Electrostatic dust cloths (EDC) in place for 15 days
- Heating Ventilation and Air Conditioning (HVAC) - equipment filters
- Settled dust 10 minutes vacuumed

II. Samples seeded onto azole- supplemented Sabouraud dextrose agar (SDA) supplemented with 4mg/L (ITRA), itraconazole 1mg/L voriconazole (VORI), or 0.5 mg/L posaconazole (POSA).

III. Fungal count and identification after 5 days incubation at 27ºC.


RESULTS

TOTAL FUNGAL BURDEN PER PHCC PER SAMPLING Fungal load (SDA):

- EDC 348 to 424628 CFU.m⁻² •
- HVAC 0 to 56500 CFU.m⁻²
- Settled dust - 2 to 514 CFU.g⁻¹

FUNGAL GROWTH IN THREE AZOLES

- EDC-4 PHCC
- HVAC 2 PHCC
- . Settled dust - 1 PHCC

Fungal growth in >1 azole in 9/10 PHCC for:

- Penicillium sp.
- C. sitophila
- Cladosporium sp.

No azole resistance found for Aspergillus sp.

CONCLUSIONS

- Passive sampling enables accurate an characterization both quantitative and qualitative of total and azole-resistant fungal burden.³
- Passive sampling should be included in sampling protocols in the assessment of total and azoleresistant bioburden in clinical settings.

Acknowledgements to FCT -Fundação para Ciência e Tecnologia for funding the project EXPOsE -**Establishing protocols to assess** occupational exposure to microbiota in clinical settings (02/SAICT/2016 - Project nº 23222).

References: 1. Loupa G et al. (2016) Indoor/outdoor PM 2.5 elemental composition and organic fraction medications, in a Greek hospital, Sci. Total Environ. 550, 727–735; **2.** Fisher MC et al. (2018) Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science May 360(6390), 739-742; 3. Viegas C et al. (2017) Electrostatic dust cloth – A new sampling method for occupational exposure to bioaerosols. In: Arezes P, et al (Eds.) SHO-2017 - International Symposium on Occupational Safety and Hygiene. Guimarães: SPOSHO, pp. 39-41