
Developing a New Simulation and Visualization
Platform for Researching Aspects of Mobile

Network Performance
C. Amaro1 and T. Saraiva2

1Instituto Superior Técnico,
University of Lisbon

Lisbon, Portugal
catarina.p.amaro@tecnico.ulisboa.pt

thaina.saraiva@celfinet.com

D. Duarte2,4 and P. Vieira3,4

2CELFINET,
Consultoria em Telecomunicações, Lda.

3Instituto Superior de Engenharia de Lisboa
Lisbon, Portugal

david.duarte@celfinet.com
pedro.vieira@isel.pt

M. P. Queluz1,4 and A. Rodrigues1,4

4Instituto de Telecomunicações
Lisbon, Portugal

[paula.queluz, ar]@lx.it.pt

Abstract—Nowadays, mobile networks represent one of the
most innovative and challenging technological and research-
oriented fields of work. The growth on user subscriptions and the
advances introduced by Artificial Intelligence (AI) and Internet
of Things (IoT), greatly enhanced the complexity and potential of
communication networks. The increase on variety of devices and
exchanged mobile data traffic resulted in demanding require-
ments for the network providers. As networks tend to scale and
data to increase, some problems start to arise. Traffic congestion,
packet loss and high latency being some examples. Therefore, it is
important to introduce powerful tools and methods to tackle these
challenges. On this perspective, several studies have highlighted
AI systems, mainly Machine Learning (ML) algorithms, as the
most promising methods, in the context of wireless networks,
by improving the overall performance and efficiency. This work
proposes to integrate several network optimization algorithms,
already developed, in a common and unified visualization plat-
form. These algorithms were developed in C# and Python and
some of them use supervised and unsupervised ML techniques.
The proposed solution includes multi-threading processes to deal
with concurrent simulations, a proxy to communicate between
platforms and a dynamic visual interface.

Index Terms—Mobile networks, machine learning, visualiza-
tion platform, multi-threading, proxy.

I. INTRODUCTION

In recent years, communication networks have grown in
number of subscriptions, diversity of devices and amount
of mobile data traffic. This pressure on the networks led
network providers to step away from traditional methods and
create innovative solutions to deal with these challenges. This
growth was motivated by a series of new technologies, IoT
based solutions being one of them. Nowadays, essentially any
electrical device can be connected to the network, from mobile
devices, to drones, fire detection systems, smart lights and
autonomous cars. Each of these devices has very different
network requirements, increasing network complexity. AI is
another area of expertise that boosted this growth. More
complex algorithms tend to consume more resources, which
means the network must be able to handle very intensive

tasks, without losing performance. Other technologies, that
similarly to AI, consume a lot of resources are Virtual Reality
(VR) and Augmented Reality (AR). Also, they are starting
to appear in mobile applications along with other devices that
connect with the network and they use massive data streaming
[1]. The solutions to this demand can be categorized into
two groups. The first is the integration of 5G infrastructures,
technology designed to handle this new increase on data rates.
The second is to introduce AI systems, mainly ML algorithms,
to optimize and monitor the network data. Most of this data
can be processed into Quality of Service (QoS) and Quality
of Experience (QoE) metrics. Moreover, these metrics can
be provided by the analysis of Performance Management
(PM) data, using Key Performance Indicator (KPI) and Drive-
Test (DT) information. It may also be provided by exploring
network recording Traces, and also considering Configuration
Management (CM) parameters and Energy Management (EM)
measurements. The processing and analysis of these parame-
ters can help to enhance network management, configuration
and monitoring procedures. This work is integrated in the
study of the second solution, the use of ML techniques to
optimize the network. The proposed work is to create a
unified visualization platform, that integrates several network
optimization algorithms, previously developed. Concretely, it
intends to create a solution that allows external tools to use
and test the developed algorithms. Furthermore, it will allow
a long-term study on the impact of both the algorithms and
the developed tool, within the regular tasks performed by
RAN engineers. Simultaneously, it will create an interface
where new algorithms can be developed, tested, deployed and
efficiently used.

This paper is organized as follows: in Section II the existing
structures are briefly described, mainly the used platforms and
some of the algorithms; in Section III the development of the
new platform, architecture and implemented structures are pre-
sented; Section IV introduces some performance studies and
respective results. Finally, conclusions are drawn in Section V.

978-1-6654-2760-9/21/$31.00 ©2021 European Union

20
21

 2
4t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

W
ire

le
ss

 P
er

so
na

l M
ul

tim
ed

ia
 C

om
m

un
ic

at
io

ns
 (W

PM
C

) |
 9

78
-1

-6
65

4-
27

60
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

W
PM

C
52

69
4.

20
21

.9
70

04
08

Authorized licensed use limited to: b-on: Instituto Politecnico de Lisboa. Downloaded on February 16,2022 at 10:59:22 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND

This work was conducted within the scope of Celfinet’s
research team. Which concentrates its main findings over a
simulation platform called Research Innovation Studio (RIN-
NOS). This work uses and enhances the RINNOS platform
and the algorithms within, to create an improved and unified
visualization platform. The resultant software destined to be
used by Celfinet’s operational teams and will support different
engineering projects considering mobile network operator’s.
Moreover, the Automation Portal is the platform used by
the operational team to support their work requirements. To
create the unified solution, RINNOS (the platform oriented
to research and innovation) will be linked to the Automation
Portal. Because of the importance of RINNOS within this
study, a brief introduction is provided.

RINNOS is a prototyping platform driven by the same moti-
vation as this research, to study and create innovative solutions
that deal with the growth and complexity of communication
networks. It is used to support a group of diagnosis and
optimisation algorithms aiming to guarantee an adequate QoS
and QoE for end users. It is based on a modular structure,
ensuring an easy integration of new algorithms and function-
alities, through package installation or integration of micro
services, via Hypertext Transfer Protocol (HTTP). Python was
greatly used in the platform and its algorithms, since it is one
of the most used programming languages in ML.

The developed algorithms were a result of multiple research
studies that created models to analyse, predict and optimize
parameters of the mobile network. Some of these algorithms
are the Traffic Network Generator, Backhaul Open RAN
Planner and Clutter Classification and will be described briefly
in the sections below. To create these methods, data was
collected from real mobile operator’s networks.

There are currently some solutions that explore the use of
ML algorithms and their impact in optimizing mobile networks
such as Mapinfo, InfoVista and Metric. However, the objective
of this research is to design a system capable of providing
an easy interface for both research and corporate purposes.
In this case, instead of having a standardized platform with
well defined algorithms and capabilities, we have a flexible
platform that supports research and takes advantage of the
insight of the teams using it, with the additional advantage of
continuous growth.

A. Traffic Network Generator Algorithm

The methodology to inject the traffic on the network was
based in a random function, where the routing algorithm was
used in order to fill the network nodes and the connections
between them [2] [3]. This random function can be stage in
four phases that are presented as:

• Charging Stage: This phase involves an analogy from
different nodes with related characteristics in terms of
propagation environment. Having only traffic data for
some access nodes in an analysing area, there is the
need to extrapolate the information to access nodes that

do not have traffic associated. For this situation and
considering the classification of each access node, there
is an attribution from the nodes with data to others of the
same type with no traffic. By this, the result is a network
with all access nodes charged with some levels of data
traffic, according with the node classification.

• Aggregate Load Stage: This phase is introduced in order
to get over the lack of data traffic information in the
aggregation and backbone networks. The idea consists of
analysing mostly terminal nodes (access nodes). There
are connections in which the data flows directions can be
determined, meaning that flows can only take one way
when leaving a node. In order to illustrate, in Figure 1a,
taking the connection 1-7, the traffic data injected in node
1 can only go to node 7, so node 7 aggregates the traffic
from node 1. In a second stage node 7 and node 9 are in
the same state as the terminal nodes were initially, so the
same happens to those nodes, being this phase stopped
at node 8, because the information can statistically flow
through two different connections from it. In the end one
should get Dispersion Points (DPs), from which the data
could flow to another ones with the same characteristic
through more than one path. Nodes 2, 8, 10 and 11 are
considered as DP nodes since their traffic data can flow
to more than one connection.

• DP Random Interaction Stage: In the random inter-
action phase, is considered the action of sending data
between DP nodes. Considering the routing algorithm
developed in [2], the idea is to iterate over the aggregated
data previously split into services present in DPs, and rout
it randomly to any other DP node.

• Network Integrity Check Stage: Finally, this phase
is pretended to check whether the network had some
traffic balancing inconsistencies once its generation was
effectively random. Some non-redundant connections,
meaning that were not protected, may be empty and the
solution was to generate random traffic in the connection
using the traffic in the correspondent nodes.

The presented algorithm was used to create a traffic busy-
hour scenario, shown in Figure 2. The load calculation in each
connection and node, considered the demand throughput of the
several services flows in it. This was rather a random genera-
tion of a demand and traffic matrix, having into consideration
a real network topology.

B. Backhaul Open RAN Planner

The Open-RAN (O-RAN) approach enables a new ecosys-
tem of vendors to participate in the Radio Access Network
(RAN) industry while leveraging the benefits of cloud-based
architecture, including web-scale hardware and systems. Such
degree of flexibility and vendor choice can greatly improve a
service provider’s supply chain posture, allowing for faster
time to market and accelerated innovation cycles. The O-
RAN concept is about disaggregating the RAN functionality
by building networks using a fully programmable software-
defined mobile network solution, based on open interfaces that

Authorized licensed use limited to: b-on: Instituto Politecnico de Lisboa. Downloaded on February 16,2022 at 10:59:22 UTC from IEEE Xplore. Restrictions apply.

(a) Traffic aggregation from
terminal nodes.

(b) Traffic being sent from 8.

Fig. 1: Network terminal nodes and connections.

Fig. 2: Network busy-hour simulation.

runs on RAN hardware. O-RAN leverages on 2 key concepts:
Virtual Radio Access Network (V-RAN), and Cloud Radio Ac-
cess Network (C-RAN). V-RAN enables the disaggregation of
hardware and software by abstracting the software application
through the application of Network Function Virtualization
(NFV) principles, allowing agile, and flexible RANs. C-RAN
works like a V-RAN that coordinates Base Station (BS)
functions, from a data center, using NFV and Software Defined
Network (SDN) technologies, supporting dynamic capacity
allocation within the RAN.

A O-RAN backhaul network algorithm developed in [5] is
based on digraph theory to plan backhaul networks. In context
of this work, the goal is to plan the locations for Core Clouds
(CCs), Regional Clouds (RCs), and Edge Clouds (ECs), con-
sidering the a real network infrastructure and a star topology,
in order to comply with the latency requirements associated
to the 5th Generation (5G) services slices. Additionally, a real
mobile network topology was considered, including all access,
aggregation and core nodes with their respective connections,
but also a sample of the access nodes’ main traffic KPIs. In this
case, the backhaul planning algorithm considers the digraph
nodes as corresponding to the full network topology while
the edges coincide with the network links. Furthermore, the
access nodes KPIs are used to measure each node latency,
under distinct load levels. With these real network latencies,
the O-RAN backhaul planning algorithm can evaluate if the O-
RAN CCs, RCs, and the ECs can meet the associated latency

requirements without requiring network latency simulations.
Initially, the O-RAN backhaul network planning algorithm

was applied to an urban area, before being applied to the full
network. The tested urban area, for the network busy hour
load, is presented in Figure 3, alongside with the planned CCs,
RCs, and ECs pictured as purple, red and dark green circles,
respectively.

Fig. 3: O-RAN Planner in an urban area for busy hour.

The big blue symbol is the live core node containing data
centers that provide services to the nodes in this urban area. As
latency requirements were not so tight in (legacy) generations
before 5G, the need for processing capacity close to the access
nodes was less and, consequently, it was possible to centralize
it in fewer locations. The algorithm’s results provide a full
picture of the cloud node density required to fulfil the high
latency requirements in 5G. With that, Mobile Network Oper-
ators (MNOs) can evaluate which nodes should be prioritized
for being upgraded using a cost-effective network investment
strategy. Moreover, connections and congestion zones can be
identified where an upgrade may be required in order to
meet latency requirements. As an example, considering an
aggregation node that connects five access nodes and one of
them is set both as RC and EC, it can be concluded that
from that access node to its aggregation node, the latency
is higher than 1 and 4 ms but lower than 15 ms. In case
a connection upgrade is performed, the latency requirements
can be fulfilled, and that access node will no longer be set as
both RC and EC.

C. Clutter Classification Algorithm

Nodes are basically element units being capable to deal
with data that traverses it. It can be a router, a switch a
base station, a data centre, etc. Regarding the access nodes,
there is a second classification in terms of its environmental
propagation conditions. In general, it is possible to classify
the correspondent area of the node as: rural, sub-urban, urban,
and even dense urban.

Therefore, a geographical characterisation reflects the broad
range of radio environments and data traffic requirements and
taking into consideration collected data from the Portuguese
population density statistics of 2011, the parish granularity is
classified into four geotypes: dense urban, urban, suburban
and rural. Also, the model uses granularity at the level of
parishes, being the areas classified into the geotypes above
mentioned. In order to get the correct information about each

Authorized licensed use limited to: b-on: Instituto Politecnico de Lisboa. Downloaded on February 16,2022 at 10:59:22 UTC from IEEE Xplore. Restrictions apply.

node location it was used the python package for geocoding
denominated as Nominatim complemented with a json file
from Correios de Portugal (CTT). Thus, having all access
nodes the characteristic of the density of population that itself
serves, it was possible to classify each one of the access
nodes accordingly to the geotype scale. In Figure 4, node
classification made by the algorithm is presented.

Fig. 4: Access nodes considered geotype classification.

III. PLATFORM DEVELOPMENT

The proposed solution aims to create a visualization plat-
form that integrates a series of ML algorithms (as the ones
previously shown) to help to optimize and detect network
errors, as already stated. For this reason, the existent platforms
should be improved, and new structures should be created in
order to fulfil the operational team needs. The implementation
of this new approach will be mainly split in two sections:
improve the current structures used in RINNOS, allowing
an efficient, parallel execution of the simulations, and to
create a visual interface in the Automation Portal, to interact
with the RINNOS backend. More specifically, the steps and
requirements can be described as:

• Interface Automation Portal: The user must be able
to perform simulations through a graphical interface in
the Automation Portal. Additionally, the output of the
simulations should be visualized as maps, tables and
graphs.

• Backend Automation Portal: It should be able to handle
simulation requests by redirecting them to the Proxy,
connecting both platforms, and receive status updates,
until they are completed.

• Backend RINNOS: It should be able to receive sim-
ulation requests through an Application Programming
Interface (API), perform the simulation and send back
the result to the proxy.

• Simulations: The performed simulations must run simul-
taneously with the backend server of RINNOS without
blocking it. In addition, there should be periodical com-
munication between RINNOS and the server executing
the simulations to give user updates on their status.

• Proxy: It should be able to implement tools like caching
to enhance performance, introduce a layer of abstraction

between platforms and allow automatic integration of new
algorithms.

A. Architecture

To achieve the proposed objectives and requirements an
architectural pattern was developed and can be seen in Figure
5. The new structures, represented in the figure, are the Fron-
tend Automation Portal, the Web API .NET Core (integrated
in the Automation Portal) and the Task Control. The new
frontend will follow the scheme of the already developed
RINNOS frontend, with some user friendly improvements
and additional features, such as a user simulation history
and a simulation progress bar. The Task Control module
is responsible for the communication between the Backend
Server and the Algorithms. With this module, the platform can
efficiently perform simulations (a simulation corresponds to
the execution of a given algorithm applied to a specific input)
in parallel, i.e multiple simulation requests, performed by the
users, are executed concurrently and handled independently.
In addition, the task module allows a periodic update of the
simulation status, which was not yet possible.

In this schema, the data flow works as such: the user has
access to an interactive User Interface (UI) where it is possible
to select a certain geographic area, cell technology and even
specific cells, through a maps and graphs; from this selection
a request to the Web API .NET Core, in the Automation
Portal Backend, is made; this request is redirected to the
RINNOS backend and processed by the RINNOS Simulator;
if the request is for a new simulation, the Task Control will
be notified and will send a new task to an asynchronous task
queue, the communication between the RINNOS backend and
the queue is made through a message-oriented middleware; the
task will be executed concurrently on one or more workers,
given the resources available; and finally, on completion, the
output is stored in .json format and presented to the user in the
UI. Furthermore, the proxy component acts as a middleman
between the communication of the two platforms and will
be introduce in later phase. It can bring advantages such as
abstraction between platforms, performance enhancements and
automatic integration of new algorithms.

In the previous architecture, RINNOS was taking advan-
tage of Django packages that allowed multi-threading pro-
cesses. However, when performing long simulations, some-
times longer than one hour, keeping the server waiting for the
response is not efficient. To solve this problem, the integration
of an external Task Controller, in the current architecture, is
necessary.

B. Implementation

In order to implement a system that represents the de-
signed architecture and follows all the proposed objectives
and requirements, a few technologies and components are
needed. The main platforms use two different languages and
frameworks, Django and Python for RINNOS and .NET Core
and C# for the Automation Portal. Also, in both UI the
React framework is used. Regarding the Task Control, two

Authorized licensed use limited to: b-on: Instituto Politecnico de Lisboa. Downloaded on February 16,2022 at 10:59:22 UTC from IEEE Xplore. Restrictions apply.

Frontend Server (IIS)

Simulation
Table

Backend Server (Docker Compose)

Save in JSON
format

Rinnos
Simulator

Task Control

isCompleted

Docker RUN

Algorithms (Docker Images)

Python Algorithm

1. Clutter Classification
2. Automatic Node

Insertion
3. OpenRANPlanner
4. QoEOptimization
5. DisasterRecovery
6. TrafficGenerator

.NET Algorithms

1. Capacity
2. Antenna Tilt

Optimization
3. Coverage Hole
4. Crossed Sector
5. Energy Consumption
6. Handover
7. Overshooting
8. Pilot Pollution
9. RF Algorithm

Simulation
Table

Frontend Automation
Portal

Frontend RINNOS

Po
st

G
et

Web API
Django

Web API
dotNET Core

Fig. 5: Architectural pattern of the implemented solution.

technologies were used, Celery as the asynchronous task
queue and RabbitMQ as the message-oriented middleware.
By definition, Celery is a distributed system used to process
messages that are referred as tasks, i.e a task queue with
real-time processing, used to distribute work across threads.
It also supports multiple queues and workers, responsible
for executing the tasks. The combination of these features
increases the tool performance. The results regarding the tool
performance and robustness are explained in further detail in
the section below. In addition, Celery only fully supports two
message brokers Redis and RabbitMQ. Accordingly, Redis
can handle bigger rates of small messages, while RabbitMQ
works best for larger messages, but struggles with scaling
up to bigger data rates [4]. Since the specifications for the
performance of both brokers regarding the message size is not
quantitative, both brokers were tested and their performance
assessed (results shown in the section below). Lastly, it is
possible to see the dynamic between the technologies used,
in Figure 6.

Fig. 6: Django, Message Broker and Celery message flow.

In order to solve problems of cross-platform portability and
versioning, docker was used. Docker is essentially a container
visualization technology. It is similar to a Virtual Machine
(VM) but much light-weighted, because it does not have
an OS layer, instead it uses the machine OS and adds a
visualisation layer on top. Further research and information
regarding docker solutions and the problems it tries to solve
are described by C. Boettiger [6]. In this implementation,
the docker technology was used for two different purposes.
The first for the RINNOS Backend Server itself, combining
three different services, Django, Celery and Redis, in one

docker container. This approach was used for two reasons:
it was easier to configure the interactions between services
and, natively, Celery uses multi-threading when running in a
Linux Operating System (OS). Since the project will run in
a Windows machine it was useful to use Linux containers,
through Windows Subsystem for Linux (WSL). The second
usage of docker was in the algorithms itself. For each al-
gorithm a Dockerfile was produced and an image created.
This way, each one of them can be configured with their
own requirements and running environment, without affecting
the tool or the other algorithms. Other advantages are less
space usage, the tool only needs to have access to the docker
image, not the code itself, and being able to run in multiple
OS. For the tested python algorithms it was also created a
Conda environment inside the Docker container. With this
method, all the packages and configurations were installed
within Conda environment. With this setup it was detected
a 20% to 50% improvement on the overall execution time of
the algorithms. The interaction between the Docker images
of the algorithms and the Docker container with the three
services running is as such: in the Django application the
tasks, regarding each algorithm available, are registered in
Celery; the task’s code contains a subprocess function that
creates and executes the corresponding docker container; the
task communicates the inputs, given by the user, and receives
the output; this output is stored in the local machine by means
of two docker volumes (one regarding .net algorithms and the
other the python algorithms); finally, the container is removed
and the output is displayed to the user. Through docker run
is possible to create more than one instance of a given image
and run it in parallel if the resources allow it.

IV. RESULTS

The previously mentioned algorithms were used as use
cases to test the efficiency of this new architecture. Mainly,
in terms of the simulation execution time and latency in
the communication between the RINNOS backend and the
other structures. The latency of the algorithms is primarily
determined by the communication delay in the backend server
and the Celery server, executing the tasks. This delay is
examined in further detail in the section below.

A. Brokers Performance

To test the efficiency of the available brokers, RabbitMQ
and Redis, a simple experiment was performed, to send 100
continuous tasks (i.e messages) to Celery, through the broker.
The purpose of this experiment is to analyse the behaviour of
both brokers, in conditions of high message rates and different
message sizes. From the available documentation, RabbitMQ
has an upper bound of 128 MB, for messages size, and Redis
has an upper bound of 512 MiB. Each test was performed with
a specific combination of broker, message size and message
rate. Furthermore, the obtained results, refer to the brokers
running on a local machine and configured as a service in
the Docker container. This layout was chosen since it is the
closest to the real deployment condition.

Authorized licensed use limited to: b-on: Instituto Politecnico de Lisboa. Downloaded on February 16,2022 at 10:59:22 UTC from IEEE Xplore. Restrictions apply.

From the Celery documentation [4] two hypothesis were
identified regarding the behaviour of the two brokers. The
first is that Redis has a better performance for high rates
and small messages. The second is that RabbitMQ deals
better with lower rates and larger messages. The brokers were
tested in the resource intensive situation i.e a larger flow
of messages. The results, in Table I, show that RabbitMQ
has a better performance in all of the tests, contrary to the
proposed hypothesis. However, these experiments do verify
that RabbitMQ handles better large sized messages, when
comparing to Redis. It also corroborates that Redis works best
for small messages, when comparing to larger ones. The Ratio
column, in table I, represents how much quicker one broker is,
in comparison with the other, e.g for 50 bytes Redis RabbitMQ
is 27.29% faster than Redis. With this metric, we can conclude
that the difference in performance between the two brokers
increases with the size of the file. The last entry on the result
Table, i.e for 50 MB, was performed with only 10 messages,
instead of the proposed 100, hence the small execution time
for Redis. For RabbitMQ, no value was obtained since the
maximum message size was reached. This result is expected
since Redis has an upper bound bigger than RabbitMQ.

This experiment was used to simulate the message exchange
between Django and Celery and, therefore, the content of this
messages will be mainly composed by the information of each
algorithm. This data ranges from 1 KB to 1 MB, so it would
be adequate to use each one of the brokers. However, in terms
of efficiency, RabbitMQ is a better choice.

TABLE I: Performance tests between available brokers.

File Size RabbitMQ [s] Redis [s] Ratio [%]
50 Bytes 0.16 0.22 27.29
5 KB 0.18 0.25 28.28
500 KB 1.97 4.14 52.32
5 MB 15.85 43.02 63.16
50 MB* - 43.99* -

B. Algorithms Performance

To make an assessment in the impact of the new architecture
performance, three algorithms were selected to be analysed.
More specifically, they were executed in two different environ-
ments: the new architecture, using Docker Images, RabbitMQ
and Celery, and the previous (old) architecture, using the
Django packages and the algorithms code. The execution time
for each situation was measured and is presented in Table II.
The Clutter Classification was tested with very few nodes, so
the execution time was very small and showed some overhead
in the case of the Docker architecture, when the communica-
tion time is higher than the algorithm execution time. The other
algorithms have similar results in both architectures, which is
expected, since the execution is being optimized but, at the
same time, a communication delay is introduced. However,
preliminary tests demonstrate a clear efficiency improvement
when the architecture is dealing with multiple simulation
requests.

TABLE II: Execution time in different architectures.

Clutter Classification Open RAN Planner QoE Optimization
Docker [s] RINNOS [s] Docker [s] RINNOS [s] Docker [s] RINNOS [s]

2.194 0.017 5.014 7.398 69.96 69.24

V. CONCLUSION

In order to improve a legacy backend (RINNOS), some
architectural design changes were proposed. From the already
implemented changes some conclusions can be extracted:
more extensive and long simulations can be executed; the
progress of the simulations is more easily tracked, due to
the Celery infrastructure; Docker allows a fluid integration of
new algorithms and they can be executed independently from
their source code, which solves problems of portability and
versioning. Furthermore, a proxy is being developed, creating a
gateway to access RINNOS backend and introducing a layer of
abstraction to the platform. Parallel to the developed structures,
a performance analysis was conducted to the available message
brokers, with RabbitMQ showing the best results.

During this work, the Docker performance was tested with
the referred use cases, showing inconclusive results comparing
to the previous architecture. This indicates more extensive
testing most be performed. Moreover, one of the improvements
in the new approach is the execution of concurrent simulations,
that is expected to show better performance execution times.
Further testing also needs to be performed under these condi-
tions. Using more resource intensive algorithms, other Celery
configurations and tuning the docker resource configurations,
may also lead to better results.

ACKNOWLEDGMENT

This work was funded by COMPETE/FEDER, un-
der the project Artificial Intelligence for Green Networks
(AI4GREEN) 16/SI/2019 - I&DT Empresarial (Projetos
Copromoção), through the international project CELTIC-
NEXT/EUREKA (C2018/1-5). Moreover, an acknowledgment
is due to CELFINET and Instituto de Telecomunicações (IT)
for the support to this work.

REFERENCES

[1] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of machine
learning in wireless networks: Key techniques and open issues, ”IEEE
Communications Surveys Tutorials, vol. 21,no. 4, pp. 3072–3108, 2019

[2] F. Dias, “Access and Core Transmission Joint Planning Including Inter-
connection Disaster Recovery,” Master’s thesis, Instituto Superior Técnico
(IST), Portugal, 2019.

[3] F. Dias, D. Parracho, P. Vieira, M. P. Queluz, and A. Rodrigues, “A
Method for Wireless Network Backhaul Re-planning in a Disaster Re-
covery Context”, 13.º Congresso do Comité Português da URSI ”Espaço:
Desafios e Oportunidades”, December 2019.

[4] Celery User Manual, Ask Solem, 2016, accessed 24 Oct 2021. [Online].
Available: https://docs.celeryproject.org/en/stable/

[5] R. Matos, P. Vieira, D. Parracho and M. Sousa, “Backhaul Planning Open
RAN based on Real Network Data”, 14.º Congresso do Comité Português
da URSI ”As telecomunicações na crise pandémica: caminhos para a
virtualização”, December 2020.

[6] C. Boettiger. 2015. ”An introduction to Docker for reproducible re-
search.” SIGOPS Oper. Syst. Rev. 49, 1 (January 2015), 71–79. DOI:
https://doi.org/10.1145/2723872.2723882

Authorized licensed use limited to: b-on: Instituto Politecnico de Lisboa. Downloaded on February 16,2022 at 10:59:22 UTC from IEEE Xplore. Restrictions apply.

