

This study was supported by FCT project HMSP-ICT/0016/2013

SVInterpreter: a web-based tool for structural variants inspection and identification of possible disease-causing candidate genes

J. Fino¹, B. Marques¹, Z. Dong^{2,3,4}, D. David¹

https://dgrctools-insa.min-saude.pt/cgi-bin/SVInterpreter.py

¹Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal ²Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, China ³Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China ⁴Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China

Introduction

• Current genomic sequencing technologies revolutionized the identification of balanced, unbalanced and complex structural variants (SV).

• Currently, due to the large number of identified variants per individual and the substantial revision of dispersed data that this entails, ascertainment of the pathogenicity and mechanistic links between SVs and human pathologies is a daunting task .

• Available tools are unable to gather the full information needed for SV evaluation.

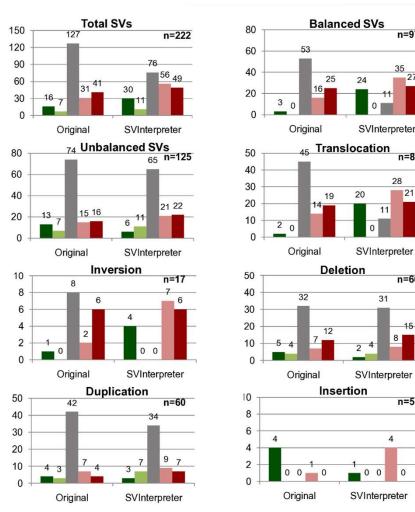
To address the need of a comprehensive application to assist evaluation of clinical outcome of SVs, we present SVInterpreter.

https://dgrctools-insa.min-saude.pt/cgi-bin/SVInterpreter.py

Methods

- Python-CGI developed Web application, that uses local data and several API connections, including Ensembl and MARRVEL.
- Analyze SVs using Topologically Associated Domains as genome units.
- Compiles genomic data, including medically actionable genes, virtual gene panels, gene-associated disorders and respective phenotypic overlap, GeneHancer cluster of interactions, chromatin loops, among other.
- For CNVs, database overlap search and ACMG criteria are also calculated and presented.
- Retrieves an xlsx table with the compiled data, phenotypic overlap results, and the breakpoint location using ISCN 2020 nomenclature.

his tool was developed to support predic	tion of the phenotypic outcome of chromosomal or genomic structural variants (unbalanced and	
alanced translocations, inversion, inserti	on, deletions or duplications).	
	formation about the structural variant to be analysed and respective phenotypic characteristics in for the evaluation of the structural variant will be retrived.	
	Reference Human Genome (version)	
ħ	Select Genome Version	
	Cell line Hi-C data to use as reference	
This data will be used t	o define the Topological Associated domains (TADs) boundaries and chromatin loops. All data was retrived from <u>YUE Lab website</u> .	
	Select Cell-line	
	Phenotypic description using HPO (optional)	
	The terms are separated by commas.	
HP:0000202, HP:0000157, HP:0006483, HP	0001640, HP:0001961,	
	Highlighted Inheritance (optional)	
All phenotypes are analyzed an	d presented, but only the ones with the user-selected inheritance are highlighted on the output.	
	Select Inheritance	


SVInterpreter input form layout.

https://dgrctools-insa.min-saude.pt/cgi-bin/SVInterpreter.py

Results

- We reevaluated 222 published SVs and 20 clinical cases analyzed by chromosomal microarray or genome sequencing.
- Our results corroborated more than half of the original predictions, decreased by 40% the variants of unknown significance, and indicated several potential position effect events.
- Using SVInterpreter data, as gene function, and animal models, we were able to indicate potential candidate genes not identified by any other approach
- For all clinical cases, original clinical outcome prediction was quickly confirmed, without any other data resource.

https://dgrctools-insa.min-saude.pt/cgi-bin/SVInterpreter.py

n=97

n=80

21

n=60

n=5

0

28

🔳 Benign 📲 Likely Benign 🔳 Variant of Unknown Significance 📕 Likely Pathogenic 📕 Pathogenic

Conclusion

- To our knowledge, SVInterpreter is the most comprehensive TAD based tool to assist SV clinical outcome prediction.
- SVInterpreter resources as phenotypic overlap, indication of position effects (loop and GeneHancer interaction disruption), CNV overlap and classification criteria, greatly facilitated the SV evaluation.
- Based on gathered information, identification of possible diseasecausing candidate genes and SVs is easily achievable.

				enes (MAGs)	-	-	1	16 %		
A	В	С	D	E	F	G	Н	I	J	К
VInterprete	er				03-08-2021		1			
ble 1 Ober	k			test and all and	1-10 11 -64/1	21/-42 11 -2	5.0)			
					1q42.11 of t(1					
										g to ClinGen: 0 - No evidence for dosage pathogenicity, 1 - Little evidence for dosage pathogenicity, 2 -Some
			m PanelAPI	P, HI%<10%, tripk	o. score = 3, o/e score ≤	0.3, clustered interactio	ons of GeneHancer are disrupted by the breakpoin	, chromatin Loops are disrupted by the breakp	ooint; OMIM inheritance overlaping th	he inputed inheritance; SNPs with a p-value ≤5.0E-7.
egions with red backgr	round are dele	ed.		1		1	22 50			
enes and interge	enic regions	8							Clustered interactions and	Loops
eneCard	ACMG		OMIM	Dosage Map	GnomAD	Uniprot	OMIM	Gtext expression	GeneHancer	Loops
Pannels from	Actionable Genes	Breakpoint [®] location;Ge nome						Top 3 highest TPM (Total TPM;		
annelApp	(MAGs)	strand	Gene ID	HI% ; Triplo	pLi; o/e	Protein entries	Function	Mean TPM) Cells - EBV-transformed lymphocytes 19.48#	Clustered interactions	Chromatin Loops
IIR320B2	ND	SS	na	nd	nd	MIR320B2 Human	•	Skin - Not Sun Exposed (Suprapubic) 0.39 k		ND
hsa-mir-320b-	ND.	55	i i da	10	10	Milliozobe Human	F	Skin - Sun Exposed (Lower leg) 0.36 (0.90; Cervix - Endocervix 0.15 (0.90; 0.02)		
tergenic - chr1:22425	7141-2243568	58								
NIH4 HSPC163,CNIH4,CN	ND	SS	617483	36.5%; ND	0.085; 0.44 (0.21-1.0)	CNIH4 Human Unipro	• G protein-coupled receptors are a large family	Cells - Cultured fibroblasts 29.39 (638.07; Artery - Aorta 20.58 (638.07; 11.82) Artery - Coronary 19.69 (638.07; 11.82)	chr1:223,704,306-224,608,400	▶ ND
DR26***N,U	ND	Exon 12; AS	617424	10.72%; ND	1.000; 0.0 (0.0-0.09)	WDR26 Human Uniprot entry	WDR26 is a scaffolding protein that interacts with several proteins, including G-beta -gamma proteins, AVIIII, and PLOP2, and requires		chr1:223,696,539-225,429,642 (disrupted)	ND
								Skin - Not Sun Exposed (Suprapuble) 61.77		
reakpoint der(1)	NC_000001.1	1:g.224,398,1	61_qterd	elins[NC_0000	03.12:g.10,670,893	pterinv]				
IR4742	ND	SS	na	nd	nd	MIR4742 Human	•	Skin - Sun Exposed (Lower leg) 0.66 (5.44; #	chr1:224,356,219-224,398,312	¢ ND
153-01-								Vagina 0.63 (5.44; 0.10)		
	2							Cervix - Ectocervix 0.58 (5.44; 0.10)		
tergenic - chr1:22439										
NIH3 SNUH- •	ND	SS	na	35.31% ; ND	0.382; 0.1 (0.03-0.45)	CNIH3 Human Unipro	n	Brah - Frontal Cortex (BA9) 7.09 (85.65;) Brain - Cortex 5.12 (85.65; 1.59) Brah - Anterior cingulate cortex (BA24)	chr1:223,730,023-224,885,401	CINIE3 (ch1224,510,000-224,520,000) & & AL3918111 (ch1224,860,000-224,860,000) CNIE3 (ch1224,510,000-224,500,000) & CNIE3 (ch1224,500,000) & CNIE3 (ch1224,500,000) & CNIE3 (ch1224,500,000-224,500,000) & CNIE3 (ch1224,500,000-224,500,000) & CNIE3 (ch1224,500,000-224,500,000) CNIE3 (ch1224,500,000-224,600,000) & AL ANIE3 (Ch1224,500,000-224,610,000) CNIE3 (ch1224,600,000-204,600,000) & AL ANIE3 (Ch1224,600,000-224,610,000) & CNIE3 (ch1224,500,000-224,610,000) CNIE3 (ch1224,600,000-204,500,000) & AL ANIE3 (ch1224,600,000-24,610,000) & CNIE3 (ch1224,600,000) & CNIE

SVInterpreter example output xlsx file of a t(1;3)

https://dgrctools-insa.min-saude.pt/cgi-bin/SVInterpreter.py