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Machine learning modelling 
of blood lipid biomarkers 
in familial hypercholesterolaemia 
versus polygenic/environmental 
dyslipidaemia
Marta Correia1,3, Eva Kagenaar2, Daniël Bernardus van Schalkwijk2, Mafalda Bourbon1,3,4 & 
Margarida Gama‑Carvalho1,4*

Familial hypercholesterolaemia increases circulating LDL‑C levels and leads to premature 
cardiovascular disease when undiagnosed or untreated. Current guidelines support genetic testing 
in patients complying with clinical diagnostic criteria and cascade screening of their family members. 
However, most of hyperlipidaemic subjects do not present pathogenic variants in the known 
disease genes, and most likely suffer from polygenic hypercholesterolaemia, which translates into 
a relatively low yield of genetic screening programs. This study aims to identify new biomarkers and 
develop new approaches to improve the identification of individuals carrying monogenic causative 
variants. Using a machine‑learning approach in a paediatric dataset of individuals, tested for disease 
causative genes and with an extended lipid profile, we developed new models able to classify 
familial hypercholesterolaemia patients with a much higher specificity than currently used methods. 
The best performing models incorporated parameters absent from the most common FH clinical 
criteria, namely apoB/apoA‑I, TG/apoB and LDL1. These parameters were found to contribute to an 
improved identification of monogenic individuals. Furthermore, models using only TC and LDL‑C levels 
presented a higher specificity of classification when compared to simple cut‑offs. Our results can be 
applied towards the improvement of the yield of genetic screening programs and corresponding costs.

Dyslipidaemia is one of the major cardiovascular risk factors and it is commonly associated with increased levels 
of serum low-density lipoprotein cholesterol (LDL-C) and/or reduced levels of high-density lipoprotein choles-
terol (HDL-C), as well as high levels of  triglycerides1,2. Once serum LDL particles exceed a threshold concentra-
tion, atherogenesis—an inflammatory process that precedes atherosclerosis—is stimulated, eventually leading to 
the development of fatty lesions (i.e. atheromatous plaques) on the lumen surface of large- and intermediate-sized 
 arteries1,3. As a silent condition, dyslipidaemia usually produces no symptoms until the unexpected occurrence 
of an acute cardiovascular  event1.

In addition to being secondary to other disorders or having nutritional causes, dyslipidaemia can occur as a 
consequence of specific genetic  defects4. Familial hypercholesterolaemia (FH), an autosomal dominant disorder, 
is the most common monogenic dyslipidaemia, with an estimated heterozygous prevalence of 1/250  worldwide4,5. 
FH increases circulating LDL-C mainly by affecting LDL receptor function, with undiagnosed and untreated 
subjects being at extremely high risk of premature cardiovascular disease (CVD)3,6. These dyslipidaemic subjects 
present the most severe phenotype and prompt and accurate diagnosis is essential for CVD prevention, allow-
ing earlier and/or more aggressive therapeutic measures, which have been shown to be effective at reducing 
cardiovascular morbidity and mortality in both adults and  children6–8.

Given the silent nature and prevalence of FH, current guidelines support the testing of genes encoding the 
low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin 9 

OPEN

1University of Lisboa, Faculty of Sciences, BioISI—Biosystems & Integrative Sciences Institute, Campo Grande, 
1749-016  Lisboa,  Portugal.  2Amsterdam  University  College,  Science  Park  113,  1098  XG  Amsterdam,  The 
Netherlands. 3National Institute of Health Doutor Ricardo Jorge, Padre Cruz Av., 1649-016 Lisboa, Portugal. 4These 
authors  jointly  supervised  this  work:  Mafalda  Bourbon  and  Margarida  Gama-Carvalho. *email: mhcarvalho@
fc.ul.pt



2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3801  | https://doi.org/10.1038/s41598-021-83392-w

www.nature.com/scientificreports/

(PCSK9) in patients that comply with clinical diagnostic criteria, and cascade screening of their family  members9. 
However, most hyperlipidaemic subjects do not have a monogenic  defect4,10. Rather, their disease is most likely 
established through a polygenic genetic background, with a variable environmental contribution modulating the 
phenotypic  expression4,10. Although the lipid profile of polygenic subjects is usually less severe than that of FH 
subjects regarding total cholesterol (TC) and LDL-C levels, the differences are often subtle enough to prevent an 
accurate distinction between the two  conditions3. As a consequence, the yield of FH genetic screening programs 
is relatively low, assuming significant costs for patients and/or national health systems.

The Portuguese FH study (PFHS) has been performing a systematic characterisation of FH cases in Portugal 
since 1999 and includes extended lipid profiles for a large number of index  patients11. Previous work using data 
from this study revealed that the approximately 60% of children that complied with the Simon Broome (SB) 
clinical criteria for FH were negative for mutations in the hallmark genes, most likely corresponding to cases of 
polygenic  hypercholesterolaemia12. FH-positive subjects (FH+, carrying a pathogenic/likely pathogenic variant) 
showed higher concentration of atherogenic (i.e. LDL-C) and lower concentration of anti-atherogenic particles 
(i.e. HDL-C)12. In contrast, most of FH-negative subjects (FH−, no causative variant found) presented higher 
levels of triglycerides (TG), apolipoprotein C-II (apoC-II), apolipoprotein C-III (apoC-III), apolipoprotein E 
(ApoE), as well as higher frequency of overweight/obesity12. This suggests that the integrated analysis of multiple 
biomarkers could be used to create a model that can effectively discriminate between these two populations, 
improving the selection of patients for genetic screening. Furthermore, a better understanding of the lipid profiles 
of FH+ and FH− patients may shed further light on the molecular and genetic basis of polygenic hypercholes-
terolaemia, eventually leading to the identification of novel biomarkers and/or therapeutic targets.

In this work we used a machine learning approach to explore the paediatric subset of the PFHS 2018 dataset 
update (PFHS-ped) to develop novel models that can integrate data from multiple biomarkers and achieve a reli-
able discrimination between individuals. Our systematic exploration of available lipid parameters resulted in the 
development of several models that can robustly classify subjects into FH+ or FH− classes. Some of the models 
have parameters not routinely used in clinical practice but that are commercially available. Notwithstanding, 
models comprising only the standard lipid parameters used in the clinic also achieved a relatively good perfor-
mance. Our results provide an approach for improving the yield of genetic screening programs while showing 
distinct biochemical backgrounds in monogenic and polygenic hypercholesterolaemia.

Subjects and methods
Patient selection, biochemical and clinical data. The work dataset—PFHS-ped—comprises a subset 
of 211 unrelated children (from 2 to 17 years old) from PFHS 11 that were not undergoing statin treatment at the 
time of referral and for which BMI and a basic set of lipid parameters were available (Supplementary Data S1). 
PFHS was approved by the National Institute of Health Ethic Committee and National Data Protection Com-
mission. The study protocol conforms with the ethical guidelines of the 1964 Declaration of Helsinki and its later 
amendments. Written informed consent was obtained from parents or legal tutors. For this study, all data were 
fully anonymised before analysis.

The clinical criteria to be referred to the PFHS is the SB criteria. Between 2006 and 2011, patients with LDL-C 
or TC levels below the cut-offs established by SB criteria were admitted to the PFHS as long as TC was above the 
 95th percentile for age and sex of the Portuguese population and a family history of hypercholesterolaemia was 
present, aiming at a better definition of the clinical criteria for FH in  Portugal11,13. For the purposes of this study, 
we decided to include these individuals in the PFHS-ped dataset to increase the number of available cases. Thus, 
68% of the 211 individuals in PFHS-ped fulfil the SB clinical criteria for  FH14, while the rest present TC above 
the 95th percentile for their age and sex and a family history of  hypercholesterolaemia13. All the individuals were 
subjected to molecular study, resulting in the classification of 88 individuals as FH+ and 123 as FH−, defined 
respectively by presence or absence of known FH causal variants in LDLR, APOB or PCSK9  genes13.

Individuals presenting genetic variants of unknown significance according to the American College of Medi-
cal Genetics and Genomics  guidelines15 were excluded from this study.

The PFHS-ped includes BMI, age and an extended characterization of lipid profiles, including quantifica-
tion of small dense LDL (sdLDL), apolipoproteins (apo) A-I, A-II, B, C-II, C-III and E and a ‘Lipoprint’ profile 
measuring different subfractions of LDL-C (Table 1). The blood lipid profile was divided in three different levels: 
‘Basic’, ‘Advanced’ and ‘Lipoprint’, for commonly determined, specialized and Lipoprint test lipid parameters, 
respectively (Table 1). Biochemical characterization of ‘Basic’ and ‘Advanced’ lipid profiles was performed as 
described  before12. Briefly, fasting blood samples were collected from individuals and TC, direct LDL-C, HDL-C, 
TG, apoA-I, apoB, and lipoprotein (a) [Lp(a)] were determined for all individuals in a Cobas Integra 400 plus 
system (Roche) by enzymatic colorimetric and immunoturbidimetric methods. Serum levels of apoA-II, apoC-II, 
apoC-III, apoE, and sdLDL (sLDL-EX “SEIKEN” kit) were measured by direct quantification in an RX Daytona 
analyser (Randox Laboratories). The ‘Lipoprint’ profile was obtained using the ‘Lipoprint LDL subfractions 
test’ (Quantimetrix)16. This is a semiquantitative method that separates by polyacrylamide gel electrophoresis 
the different lipoprotein fractions as VLDL, IDL, LDL 1–7 subfractions (LDL subfractions 3–7 considered the 
sdLDL) and  HDL16–18. For the purpose of this study, ratios that relate lipid parameters were calculated and 
included as additional variables to explore previous observations suggesting a differential contribution of TG and 
LDL metabolism and anti-atherogenic/pro-atherogenic factors to FH+ and FH− dyslipidaemic states (Table 1).

Modelling and data analysis. The full description of modelling and data analysis methods is available as 
supplementary methods. Briefly, the caret package for machine  learning19 was used to train classification models 
based on logistic regression, and a resampling scheme of three times cross validation was applied to estimate 
model accuracy. Accordingly, data was randomly divided in two sets of 60% and 40% of the subjects defining the 
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training and the testing sets, respectively. The training set was used for model generation and the testing set was 
used for posterior validation. Models were ranked according to a set of statistical criteria (see supplementary 
methods) and the top 10 models are discussed in more detail in the context of the biology of hypercholesterol-
aemia.

Results
Definition of PFHS‑ped data subsets for exploratory modelling of extended lipid pro‑
files. Given that the available information on lipid parameters varied between individuals and considering 
the three lipid profiles defined for this study—‘Basic’, ‘Advanced’, and ‘Lipoprint’, we began by establishing dis-
tinct data subsets regarding all the possible combinations of these profiles (Fig. 1). A detailed description of the 
seven data subsets is available as supplementary data (Supplementary Tables S1 and S2). As depicted in Fig. 1, 
the number of individuals across subsets varies between 78 and 211. Although relatively small, these numbers 
have been previously used in conjugation with machine learning approaches to derive valuable insights into 
complex biological  problems20–23. We therefore set out to systematically search for the best model to discriminate 
between FH+ and FH− individuals using these different combinations of lipid parameters.

Systematic training of models to distinguish FH+ and FH− subjects using extended lipid pro‑
files. We began by training models using all available parameters in each subset. These ‘pilot models’ provided 
a rough overview of the behaviour of the different parameters in our data subsets but presented a very low 
performance as assessed by their sensitivity and specificity values (Supplementary Data S2). This suggested an 
overfitting problem, which we attempted to correct through the use of three common methods to reduce the 
number of parameters considered for model training (see supplementary methods). This systematic approach 
resulted in a total of 35 models belonging to one of three categories: ‘cor models’, ‘Imp models’, and ‘RFE models’ 
(see Supplementary Fig. S1). Interestingly, a trend towards the selection of parameters from the ‘Advanced’ and 
‘Lipoprint’ profiles as the most relevant for distinguishing FH+ from FH− subjects (Supplementary Data S2) 
was observed. Considering the relatively small size of the corresponding data subsets, we decided to investigate 
whether it could be influencing the perceived contribution of ‘Advanced’ and ‘Lipoprint’ parameters in our 
models.

Table 1.  Description of the biochemical parameters and ratios in each lipid profile—‘Basic’, ‘Advanced’ and 
‘Lipoprint’. N/A not applicable.

Profile Parameters Units Description

Basic

Biochemical

TC

mg/dl

Total cholesterol

LDL-C Low-density lipoprotein cholesterol

HDL-C High-density lipoprotein cholesterol

TG Triglycerides

Lpa Lipoprotein (a)

ApoB Apolipoprotein B

ApoA-I Apolipoprotein A-I

Ratios

ApoB/ApoA-I

N/A

Anti-atherogenic vs pro-atherogenic ratio

TG/ApoB TG metabolism vs LDL metabolism ratio

TC/HDL-C Anti-atherogenic vs pro-atherogenic ratio

Advanced

Biochemical

ApoA-II

mg/dl

Apolipoprotein A-II

ApoC-II Apolipoprotein C-II

ApoC-III Apolipoprotein C-III

ApoE Apolipoprotein E

sdLDL.Day Small dense LDL

Ratios
ApoC-II/ApoC-III

N/A
Anti-atherogenic vs pro-atherogenic ratio

sdLDL/LDL-C Most atherogenic LDL in total LDL-C

Lipoprint

Biochemical

VLDL

mg/dl

Very low-density lipoprotein

MIDA IDL fraction A

MIDB IDL fraction B

MIDC IDL fraction C

LDL1 Buoyant (large) LDL fraction 1

LDL2 Buoyant (large) LDL fraction 2

HDL.Lipo High-density lipoprotein

sdLDL.Lipo Small dense LDL (fractions 3 to 7)

IDL Intermediate-density lipoprotein

Ratios
VLDL/IDL

N/A
TG metabolism vs LDL metabolism ratio

VLDL/LDL-C TG metabolism vs LDL metabolism ratio
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For this purpose, we repeated our analysis (Supplementary Fig. S1) using the biochemical parameters available 
for each data subset restricting the number of individuals to 78. This number corresponds to the smaller sized 
subset used in this study (the ‘All’ subset), which comprises the subjects that present measures for all biochemical 
parameters. Two different approaches were followed: train all the models with the same 78 subjects from the ‘All’ 
subset; or use a random selection of 78 subjects. This analysis confirmed that parameters from the ‘Advanced’ 
and ‘Lipoprint’ profiles contribute to a better discrimination between FH+ and FH− status independently of the 
training set (Supplementary Data S2).

Through careful inspection of all models regarding variable importance and correlation, we noticed that a 
group of four parameters (LDL1, apoC-III, TC/HDL-C and sdLDL.Day) consistently appeared as highly rel-
evant for the discrimination between FH+ and FH− individuals. However, none of the trained models used 
this small group of parameters as the only predictors. Such models could be relevant for clinical purposes given 
their comparative simplicity. Therefore, we decided to train two additional models including only these selected 
parameters (Sel1 and Sel2, Supplementary Table S3). Given that BMI and age are likely to influence the lipid 
profile of  subjects12,24, we further conjugated these parameters with them (models Sel3 and Sel4, Supplementary 
Table S3). Given the fact that these ‘selected models’ comprise parameters from different lipid profiles, they were 
trained on the ‘All’ subset.

Altogether, a total of 67 models were generated during this analysis (Supplementary Data S2). Given that 
the presence of models with highly correlated parameters does not contribute substantially to new insights into 
the biological background of dyslipidaemia, we identified all models containing any pair of parameters whose 
correlation was equal to or higher than |0.6|. For this purpose, we generated a correlation plot for all parameters 
used during modelling analysis (Fig. 2). A total of 14 pairs of highly correlated parameters were identified, 12 
of which belong to the ‘Basic’ profile. These pairs were found in 32 out of 67 trained models and were thus dis-
carded from further analysis.

Extended lipid profiles contribute to an improved distinction between FH+ and FH− sub‑
jects. Following model training, testing datasets were used to assess model performance and corresponding 
descriptive statistics were determined. We established a set of ranking criteria to apply to the 35 final models, 
with cut-off values defined considering the properties and observed range for each statistic (see supplementary 
methods). We used this approach to retain only the top 10 models (Table 2).

The two best ranked models were the Imp_B and RFEct_BL models, trained with the ‘Basic’ and the ‘Basic 
& Lipoprint’ subsets, respectively. Among the top 10, these models presented the highest AUC values combined 
with the best k metrics (Table 2), revealing a substantial agreement between observed and predicted classification 
of  subjects25. These models further displayed the best association between sensitivity and specificity, with Imp_B 
performing better for sensitivity and RFEct_BL for specificity. Of note, eight of the top 10 models were trained 
using at least one parameter of the ‘Advanced’ and/or ‘Lipoprint’ profiles. The Lipoprint measurement for LDL1 
is present in six of these models. The other models (RFE78t_Ad and RFE78ct_Ad) include sdLDL.Day, ApoA-II, 
ApoC-II and ApoC-III values from the ‘Advanced’ profile. The models that were trained using only parameters 
from the ‘Basic’ profile include the ApoB/ApoA-I ratio in addition to LDL-C (Imp_B and RFE78t_B). The Imp_B 
model further includes the TG/ApoB ratio.

In summary, the comparative analysis of model performance revealed that the integration of lipid param-
eters from different profiles through machine learning can support a robust discrimination between FH+ and 
FH− subjects (Table 2). Moreover, our results suggest that biochemical parameters not commonly used in clini-
cal practice, but available commercially, may provide important information towards this distinction, namely 
contributing to a higher specificity.

Figure 1.  Data subsets used for model training. Figure shows how PFHS-ped was divided into smaller subsets, 
identified by a color-coded size (number of individuals) and name, according to the available biochemical 
parameters for each individual.
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Figure 2.  Correlation plot for the dataset parameters. Negative and positive correlations are presented in red 
and blue, with darker colours corresponding to higher absolute values, according to the scale.

Table 2.  Top ranking models and performance. N number of individuals, Np number of parameters, Acc 
accuracy, k Cohen’s kappa coefficient, Sens sensitivity, Spec specificity, TP number of true positives, FN number 
of false negatives, FP number of false positives, TN number of true negatives, AUC  area under the ROC curve.

Model Subset N Np Parameters Acc k Sens Spec TP FN FP TN AUC 

Imp_B Basic 211 3 LDL-C + ApoB/ApoA-I + TG/ApoB 0.84 0.67 0.91 0.86 32 3 7 42 0.92

RFEct_BL Basic & Lipoprint 95 4 TG/ApoB + TC/HDL-C + TC + LDL1 0.84 0.64 0.83 0.92 10 2 2 23 0.91

Sel3 All 78 5 LDL1 + ApoC-III + TC/HDL-C + BMI + Age 0.77 0.49 0.82 0.90 9 2 2 18 0.89

RFEct_A All 78 5 LDL1 + TC + ApoA-II + MIDC + TC/HDL-C 0.77 0.46 0.82 0.80 9 2 4 16 0.88

RFE78ct_BL Basic & Lipoprint 78 5 TC + TC/HDL-C + MIDB + MIDC + LDL1 0.74 0.41 0.82 0.85 9 2 3 17 0.88

RFE78t_B Basic 78 2 LDL-C + ApoB/ApoA-I 0.81 0.59 0.82 0.85 9 2 3 17 0.87

Sel1 All 78 3 LDL1 + ApoC-III + TC/HDL-C 0.77 0.47 0.82 0.90 9 2 2 18 0.87

Imp_AdL Advance & Lipoprint 78 3 ApoA-II + ApoC-III + LDL1 0.77 0.47 0.73 0.75 8 3 5 15 0.76

RFE78t_Ad Advanced 78 5 ApoA-II + ApoC-II + ApoC-III + sdLDL.
Day + BMI 0.77 0.49 0.91 0.60 10 1 8 12 0.75

RFE78ct_Ad Advanced 78 5 Age + ApoA-II + ApoC-II + ApoC-
III + sdLDL.Day 0.85 0.66 0.73 0.65 8 3 7 13 0.75
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Modelling of TC and LDL‑C levels improves identification of FH+ individuals in comparison 
to clinical cut‑offs. The biochemical parameters and cut-offs of the SB criteria—defined as blood TC val-
ues ≥ 260 mg/ml or LDL-C values ≥ 155 mg/ml for children—are widely used to identify candidate FH indi-
viduals and refer them for therapy and genetic  testing12. Of note, only ~ 60% of the PFHS-ped individuals that 
fulfilled these criteria were actually FH+, whereas 3 FH+ individuals were found among the 67 that had TC or 
LDL-C values below these cut-offs.

Given that the SB criteria are based on two simple biochemical parameters, we decided to train two models 
exclusively using TC and LDL-C and assess their ability to correctly distinguish between FH+ and FH− indi-
viduals (‘SB models’, Table 3). These models were trained using all the PFHS-ped subjects or just the ‘Basic & 
Lipoprint’ subset (Table 2). The resulting models had a weaker performance when compared to top 10 models 
trained on the same subsets (cf Tables 2 and 3). To explore the differences between SB models and the two best 
ranked models, we used them to classify 50 individuals randomly selected from the ‘Basic & Lipoprint’ subset 
(Supplementary Table S4). Specificity, sensitivity and the positive and negative predictive values (PPV and NPV, 
respectively) were calculated for the predictions made by these models, as well as for the FH+/FH− classification 
according to SB criteria cut-offs (Supplementary Table S4). As expected, SB criteria have a very high sensitivity 
and NPV. However, they are extremely unspecific, with a high likelihood of selection of FH− patients for genetic 
testing. SB models can considerably improve on this, although they present a lower sensitivity in comparison to 
SB cut-offs. However, in contrast with SB cut-offs, these models present a very good balance between sensitivity 
and specificity (Supplementary Table S4). The two top-ranked models trained with the extended lipid profile 
can achieve very good PPVs while keeping acceptable values for sensitivity and NPV.

These results emphasize how modelling approaches can improve patient classification compared to the use 
of strict cut-off values. The reduced performance of SB models in comparison to top 10 models supports our 
suggestion that extended lipid parameters contain relevant biological information for an improved classification 
of FH+ and FH− individuals.

Implementing the best‑ranking models in a clinical setting. Our top 10 models can be easily used 
in clinical practice to prioritize patients for genetic testing. Clinicians can access the different models and select 
the one that better suits their practice, in the following link: https ://githu b.com/GamaP intoL ab/FH-Model s-.git. 
Models can be grouped into three different categories, depending on the availability of parameters required to 
run them. A first set of models, including the best ranked model, require biochemical parameters that can be 
provided by most clinical laboratories. Other models include additional values for ApoA-II, ApoC-II, ApoC-III, 
sdLDL.Day, which are only available in more specialized clinical laboratories, while the final set of models relies 
on ‘Lipoprint’ parameters LDL1, MIDC or MIDB, a method that is currently for research use only. We provide 
an Excel file for simple implementation of the two best ranked models (Table 2) and the SB_B model, which clas-
sifies patients as FH+ or FH− upon introduction of the required parameter values. In addition, all top 10 models 
can be downloaded and applied to a new dataset using R software.

Discussion
Given the high risk for severe CVD at an early age and the benefits of early therapeutic intervention, the iden-
tification of children carrying monogenic FH mutations is of extreme importance. Biochemical identification 
of dyslipidaemic subjects in clinical practice usually relies on the analysis of serum levels for total cholesterol, 
HDL-C, TG, LDL-C and eventually apoA-I and  apoB11,26. Although these biochemical markers allow for a 
relatively sensitive screening of individuals at risk for CVD, including FH candidates, their specificity in dis-
tinguishing monogenic individuals is very  low27. In addition, several studies show that many children do not 
comply with multiple parameters of clinical diagnostic criteria, including the presence of family history of 
hypercholesterolaemia/CVD or LDL-C levels above the defined cut-offs9,11. Screening for genetic mutations was 
therefore recommended as standard of care for patients with definite or probable FH by an international Expert 
Consensus  Panel9. However, the diagnostic yield of these screening programs is  low28, ranging between 20 and 
80%29, as a high number of suspected patients suffer from polygenic  conditions9. Thus, the development of robust 
approaches that can contribute to increase this yield is critical to support a widespread use of FH genetic testing, 
with a considerable reduction of the resulting burden on health systems.

In this study, we have applied machine learning-based methods to perform a thorough analysis of the 
extended lipid profiles of the PFHS-ped dataset. We hypothesized that using an extended lipid profile would 
confer an additional layer of information, supporting a more accurate identification of FH+ subjects, leading to 
the identification of novel clinically relevant biomarkers. Multiple ‘training’ sets comprising different combina-
tions of biochemical parameters were used to train classification models to distinguish FH+ and FH− individuals, 
followed by an assessment of performance on independent ‘testing’ sets. For comparison purposes, similar models 
using only TC and LDL-C were trained. Predictions of FH+ and FH− status for the same group of patients were 

Table 3.  Performance of models trained with SB criteria parameters. Column names as defined in Table 2 
legend.

Model Subset N Np Parameters Acc k Sens Spec TP FN FP TN AUC 

SB_B Basic 211 2 TC + LDL-C 0.80 0.57 0.77 0.82 27 8 9 40 0.89

SB_BL Basic & Lipoprint 95 2 TC + LDL-C 0.81 0.56 0.67 0.84 8 4 4 21 0.84
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performed using the two best models, SB models and standard SB criteria cut-offs (Supplementary Table S4). 
Results show that modelling can considerably improve the specific identification of FH+ individuals and the 
PPV, with a limited impact on the high sensitivity afforded by SB cut-off criteria. Furthermore, the inclusion of 
extended lipid parameters contributes to an improved patient identification.

The best ranking model Imp_B uses ApoB/ApoA-I and TG/ApoB ratios, in addition to LDL-C levels, to 
generate predictions with the highest sensitivity values. Of note, LDL-C levels used in this study were directly 
determined and thus their accuracy is not affected by TG levels. The current guidelines for dyslipidaemia already 
recommend the determination of LDL-C, TG and apoB in all dyslipidaemic  individuals26. Like the TC/HDL-C, 
the ApoB/ApoA-I ratio has been linked to cardiovascular  risk30. Indeed, a previous study identified the ApoB/
ApoA-I ratio as a potential biomarker for  FH12. The TG/ApoB ratio was selected both in the first and second 
ranked models, the later delivering the highest specificity and PPV. This model further includes two ‘Basic’ 
biochemical parameters (TC and TC/HDL-C) and LDL1 from Lipoprint analysis (see methods). Of note, LDL1 
is the most commonly selected biochemical parameter across all top 10 models, suggesting it holds relevant 
information for the specific identification of FH+ individuals.

The parameters used by the best two models are in agreement with the biology behind FH. Supplementary 
Fig. 2 shows data for these parameters. TC and LDL-C have higher values for FH+ compared to FH− subjects. 
This is unsurprising, because FH+ subjects present single-gene mutations that disrupt the clearance of LDL 
particles by the  liver31. The TG/ApoB ratio is lower for FH+ compared to FH− subjects. This is understand-
able, given both the lower clearance of ApoB in FH+ subjects as well as a higher expected TG in FH− subjects. 
Hypercholesterolaemia in FH− subjects is likely to have environmental influence, such as cholesterol and TG-rich 
diets. This should lead to a production of more and ‘bigger’ VLDL particles, containing more  TG32. It has been 
shown that fatty acids can also modulate lipoprotein lipolysis and  clearance33. Therefore, the observed TG/ApoB 
ratio difference is biologically understandable. The TC/HDL-C and ApoB/ApoA-I ratios are higher for FH+ 
compared to FH− subjects. Higher TG availability in FH− subjects leads to more lipolysis of VLDL through LPL. 
The cholesterol released is transported back to the liver as HDL, raising HDL-C and ApoA-I concentrations. This 
mechanism is plausible because LPL gain-of-function and loss-of-function polymorphisms lead to higher and 
lower HDL-C  respectively34. We consistently find higher LDL1 concentration for FH+ versus FH− subjects. This 
is in accordance with the findings of Teng et al.35. Explaining the observed high LDL1 requires distinguishing 
between lipolysis through lipoprotein lipase (LPL) and hepatic lipase (HL). The mechanistic modelling study 
by van Schalkwijk et al.36 suggests that lipolysis outside the liver by LPL mostly affects larger ApoB-containing 
lipoproteins such as VLDL, while HL mostly targets smaller IDL through LDL particles. Given the impaired 
binding of ApoB-containing particles to LDLR on the liver, FH+ subjects can be expected to have a lower HL 
lipolysis and liver clearance than FH− subjects. The lower HL lipolysis explains the accumulation of LDL1 parti-
cles. Therefore, even though other LDL subfractions will increase due to a longer circulation time, accumulation 
of the larger LDL1 particles is especially marked. In addition, several studies have associated altered HL activity 
or expression, namely in association to genetic polymorphisms, to more severe FH  phenotypes37,38. All param-
eters identified in this study to discriminate between FH+ and FH− subjects are therefore biologically plausible.

Overall, our results suggest that modelling, together with the inclusion of novel lipid parameters, can sup-
port an improved classification of FH+ and FH− individuals, with a significant impact on the yield of genetic 
screening programs and corresponding costs.

Our top models can already be used by clinicians to obtain more precise estimates of the likelihood that 
their patients are FH+ in comparison to SB criteria. The PPVs and NPVs described in Supplementary Table S4 
should be taken into consideration when interpreting results. All the required information for their application 
is provided in GitHub (see link in Results). The availability of larger patient datasets will be crucial to identify 
which of the new, non-standard parameters used by our models will be worth incorporating into clinical practice.
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