
Injecting Faults in

Byzantine Fault

Tolerant Protocols
Ricardo Fernandez
Mestrado em Segurança Informática
Departamento de Ciências de Computadores

2021

Orientador
Rolando Martins, Professor Auxiliar, Faculdade de Ciências

Coorientador
João Soares, Professor Auxiliar Convidado, Faculdade de Ciências

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

Universidade do Porto

Masters Thesis

Injecting Faults in Byzantine Fault Tolerance
Protocols

Author:
Ricardo Fernandez

Supervisor:
Rolando Martins

Co-supervisor:
João Soares

A thesis submitted in fulfilment of the requirements
for the degree of MSc. Informatic Security

at the

Faculdade de Ciências da Universidade do Porto
Departamento de Ciências de Computadores

December 7, 2021

“ Do not go where the path may lead, go instead where there is no path and leave a

trail. ”

Ralph Waldo Emerson

Acknowledgements

I want to express my gratitude to the following who never stopped helping me until my

dissertation was complete :

Professor João Soares, the dissertation Co-advisor, helped me whenever I had doubts

about anything related to the subject with his experience in the field and aided me in

solving problems in the structure of the thesis.

Professor Rolando Martins, the dissertation Advisor, assisted me on how to construct

the base of Zermia and overall work with his field expertise and former experience in the

subject.

I also want to thank my family and friends that supported me through this work

emotionally.

UNIVERSIDADE DO PORTO

Abstract
Faculdade de Ciências da Universidade do Porto

Departamento de Ciências de Computadores

MSc. Informatic Security

Injecting Faults in Byzantine Fault Tolerance Protocols

by Ricardo Fernandez

With the ever-growing complexity of computational systems, the ability to sustain faults

is a crucial requirement in any system that needs to be available continuously to provide

its services. As such, fault tolerance protocols are needed to mitigate the issues caused

by faults, being that byzantine faults are the trickier ones to tolerate. Several Byzantine

fault tolerance protocols were introduced in the last two decades to deal with this issue

in specific environments. However, the development of tools that can test these protocols,

notably fault injectors, were rather precarious due to them either not being available to

the public or kept under the control of researchers who built those protocols. Moreover,

most of the available fault injectors do not work with various BFT protocols, and some of

them do not interact or inject failures into clients to explore their impact on these types

of systems. As such, the main focus of this document is to introduce Zermia, a new fault

injector that uses gRPC as means of communication between server and client, that tries

to keep its level of intrusiveness low through the employment of aspect-based functions.

The base focus of this work is to facilitate the integration of several protocols with Zermia

through gRPC. For the first phase of development of this application, BFT-SMaRt was

picked in order to assess what kind of performance it could maintain under the attack of

different faults.

UNIVERSIDADE DO PORTO

Resumo
Faculdade de Ciências da Universidade do Porto

Departamento de Ciências de Computadores

Mestrado em Segurança Informática

Injetando faltas em protocolos tolerantes a faltas Bizantinas

por Ricardo Fernandez

Com a complexidade cada vez maior dos sistemas computacionais, a capacidade de

sustentar falhas é um requisito crucial em qualquer sistema que precise estar disponível

continuamente para fornecer seus serviços. Como tal, os protocolos de tolerância a falhas

são necessários para mitigar os problemas causados por falhas, sendo que as falhas bizanti-

nas são as mais difíceis de tolerar. Vários protocolos de tolerância a falhas bizantinos foram

introduzidos nas últimas duas décadas para lidar com esse problema em ambientes espe-

cíficos. No entanto, o desenvolvimento de ferramentas que possam testar esses protocolos,

notadamente os injetores de falhas, foram bastante precários por não estarem disponíveis

ao público e ficarem sob o controle dos pesquisadores que construíram esses protocolos. A

maioria dos injetores de falha disponíveis não funciona com vários protocolos BFT e alguns

deles não interagem ou injetam falhas nos clientes para explorar o impacto dos mesmos

neste tipo de sistemas. Como tal, o foco principal deste documento é apresentar o Zermia,

um novo injetor de falhas que usa gRPC como meio de comunicação entre o servidor e

o cliente, que tenta manter seu nível de intrusão baixo por meio do emprego de funções

baseadas em aspectos. O foco básico deste trabalho é facilitar a integração de diversos pro-

tocolos com o Zermia por meio do gRPC. Para a primeira fase de desenvolvimento desta

aplicação, o BFT-SMaRt foi escolhido para avaliar que tipo de desempenho ele poderia

manter sob o ataque de diferentes falhas.

Acronyms

BFT Byzantine Fault Tolerant

MAC Message Authentication Code

SMR State Machine Replication

PBFT Practical Byzantine Fault Tolerant

RBFT Redundant Byzantine Fault Tolerant

OBFT Obfuscated Byzantine Fault Tolerant

FLP Fischer Lynch Paterson impossibility proof

API Application Program Interface

POM Proof-of-Misbehaviour

ACS Asynchronous Common Subset

ABA Asynchronous Binary Agreement

BA Binary Agreement

RBC Reliable Broadcast

gRPC Remote Procedure Call

G-PBFT Geographic-Practical Byzantine Fault Tolerant

AVID Asynchronous Verifiable Information Dispersal

xi

Contents

Acknowledgements v

Abstract vii

Resumo ix

Glossary xi

Contents xiii

List of Figures xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Proposed solution . 3
1.3 Contribution . 4
1.4 Document Structure . 5

2 Related Work and State of the Art 7
2.1 BFT overview . 7

2.1.1 Fault models . 8
2.1.2 Byzantine fault tolerance concepts 9
2.1.3 Synchrony in BFT . 10
2.1.4 fault handling and recovering techniques 12
2.1.5 Byzantine Generals’ Problem and the 3f+1 solution 13

2.2 Practical Byzantine Fault Tolerance . 17
2.2.1 Protocol overview . 17
2.2.2 Fault free execution . 17
2.2.3 Checkpoint system . 19
2.2.4 Fault handling while having a faulty primary 20
2.2.5 Fault recovery model . 21

2.3 Zyzzyva . 22
2.3.1 Protocol overview . 22
2.3.2 Fault free execution . 23
2.3.3 Fault handling when having a faulty primary 24
2.3.4 Fault handling when there is one faulty replicas 26

xiii

xiv Injecting Faults in Byzantine Fault Tolerance Protocols

2.3.5 Fault recovery model . 27
2.4 BFT-SMaRt . 27

2.4.1 Protocol overview . 27
2.4.2 Fault Free execution . 27
2.4.3 Fault handling with a faulty primary 29
2.4.4 Fault handling with a faulty client 30
2.4.5 Fault recovery models . 30

2.5 Prime . 32
2.5.1 Protocol overview . 32
2.5.2 Fault free execution . 33
2.5.3 Fault handling when having a faulty primary 35
2.5.4 Fault recovery model . 37

2.6 RBFT . 37
2.6.1 Protocol overview . 37
2.6.2 Fault free execution . 38
2.6.3 Fault handling when having a faulty primary 40

2.7 Fault injection . 40
2.7.1 BFT fault injectors . 42
2.7.2 Summary of the BFT fault injectors 43

3 Analysis of protocols under attack 45
3.1 PBFT . 45

3.1.1 Protocol fault analysis . 45
3.1.2 Network and other faults . 49

3.2 Zyzzyva . 50
3.2.1 Protocol fault analysis . 50
3.2.2 Network and other faults . 54

3.3 BFT-SMaRt . 55
3.3.1 Protocol fault analysis . 55
3.3.2 Network and other faults . 57

3.4 Prime . 58
3.4.1 Protocol fault analysis . 58
3.4.2 Network and other faults . 60

3.5 RBFT . 60
3.5.1 Protocol fault analysis . 61
3.5.2 Network and other faults . 62

3.6 Summary . 63

4 Zermia: A fault injector for BFT systems 65
4.1 Zermia’s architecture . 65

4.1.1 Coordinator . 66
4.1.2 Agent . 66
4.1.3 Faults . 66
4.1.4 Fault schedules . 66

4.2 Zermia’s model and test cycle . 67
4.2.1 Initial configurations . 67
4.2.2 Booting process . 68

Contents xv

4.2.3 Execution process . 69
4.3 Zermia’s Implementation details . 71

4.3.1 Coordinator . 71
4.3.2 Agent . 74
4.3.3 Predefined faults in Zermia . 75
4.3.4 Schedule conflicts . 76

5 Experimental Evaluation 79
5.1 Experimental Setup . 79
5.2 Baseline results . 80
5.3 Communication-based faults . 80

5.3.1 Crashing Replicas . 80
5.3.2 Delaying Replicas . 81
5.3.3 Message dropper . 82
5.3.4 Flood attacks . 83

5.4 Protocol specific faults . 87
5.4.1 Agreement phase - REQUEST . 88
5.4.2 Agreement phase - PROPOSE . 90
5.4.3 Agreement phase - WRITE . 90
5.4.4 Agreement phase - ACCEPT . 91
5.4.5 View change phase - STOP . 92
5.4.6 View change phase - STOPDATA 93
5.4.7 View change phase - SYNC . 94

6 Conclusion and Future Work 97

Bibliography 99

List of Figures

2.1 Scenario in which the siege fails because a conspirator general confuses a
loyal general. 13

2.2 Lieutenant 2 is a conspirator. [30] . 14
2.3 Commander is a conspirator. [30] . 14
2.4 Impostor lieutenant can not compromise plan. 15
2.5 Traitor commander can not compromise plan.[30] 15
2.6 Conspirator can not compromise plan. [30] 16
2.7 Conspirator compromises plan. 16
2.8 PBFT Normal Execution. [9] . 18
2.9 PBFT view change. [9] . 18
2.10 Zyzzyva best-case scenario execution [2] . 23
2.11 Zyzzyva execution with a faulty primary. 25
2.12 Zyzzyva execution with a faulty primary. 25
2.13 Zyzzyva execution when there is a faulty replica. [2] 26
2.14 BFT-SMaRt normal execution. [24] . 28
2.15 Execution with a faulty client.[24] . 30
2.16 Sequential checkpointing. [33] . 31
2.17 State transfer view of the protocol.[33] . 31
2.18 Prime normal execution. [14] . 33
2.19 Prime execution under Leader suspect and view changing protocols. 35
2.20 RBFT normal execution. [15] . 38
2.21 Instance change of RBFT. [15] . 39
2.22 Comparison of the characteristics between some of the existent BFT fault

injectors. 43

3.1 PBFT fail scenario 1. 48

4.1 Overview of the Zermia Architecture . 65
4.2 Example of a fault schedule through command line 71
4.3 Coordinator service interface (gRPC methods) 72
4.4 Agent status requisition service details . 72
4.5 Fault schedule requesting service . 73
4.6 Update metrics service details . 73
4.7 Test results demonstrated in the Coordinator. 73
4.8 Advice function which is called whenever a replica’s main function is started

in BFT-SMaRt. 74
4.9 General idea of the fault injection advice. 75

xvii

xviii Injecting Faults in Byzantine Fault Tolerance Protocols

5.1 Results from a fault-free experiment . 80
5.2 Results for a crash fault schedule . 81
5.3 Results from a delay fault schedule . 82
5.4 Results for a message dropper schedule . 83
5.5 Results from a flood fault schedule that targeted all system 84
5.6 Results from a flood fault schedule that targeted all system 85
5.7 Results from a flood fault schedule that targeted all system 86
5.8 Experimental results for REQUEST message modification 88
5.9 Results for F = 3 for when faulty clients send REQUESTS with different

operation ids to different replicas. 89
5.10 Results for F = 3 for when faulty clients collude with a faulty-primary to

delay the system. 90
5.11 Experimental results for PROPOSE message modification. 90
5.12 Experimental results for WRITE message modification. 91
5.13 Experimental results for WRITE message modification. 91
5.14 Experimental results for STOP message modification. 92
5.15 Results for F = 3 for when a correct primary gets replaced via a flood of

STOP messages. 93
5.16 Experimental results for STOPDATA message modification. 94
5.17 Experimental results for SYNC message modification. 94

Chapter 1

Introduction

With the ever-increasing power and processing in computation, high-performance systems

are composed gradually of more components that can be vulnerable to failures. Many

infrastructures, such as telecommunications, industrial control, and stock exchanges, have

evolved to the point where a simple failure in one of their components can cost exorbitant

sums of money and time. As we become more reliant on those systems, these must remain

operational and provide their services even in the presence of faults.

The presence of faults can cause systems to stop responding or deviate from expected

behavior, with the former typically corresponding to fail stops and the latter to byzantine

faults. These two types of faults are pretty distinct, both in terms of how detectable they

are and how consistent/predictable they can be. Byzantine faults are strictly inconsistent

and unrestricted, meaning they output unpredictably at irregular times with potential

collusion capabilities, making them difficult to detect. Fail stops occur when a component

stops to function and, as a result, ceases to send and receive messages, making them easier

to detect than their counterpart.

In order to mitigate both types of faults, tolerance techniques have been researched

and proposed, allowing systems to remain operational in the presence of faults, preventing

malfunctioning components from compromising the entire system. These methods are typ-

ically employed in distributed systems. After all, they contain a large number of elements

that communicate with one another, whereas in non-distributed, the use of these methods

is less common because they are less complex. Furthermore, the usage of fault-tolerance

in distributed systems allows for a reduction in the likelihood of component and commu-

nication failure, which, for example, messages lost during communication could result in

a deviation from the system’s original purpose. In distributed systems, error propagation

1

2 Injecting Faults in Byzantine Fault Tolerance Protocols

is one of the potential risks [1], considering that a faulty component can spread its issues

across non-faulty elements in the system. Another issue that arises is that communication

between components needs to be reliable, which means that each correct message must

be sent according to the stipulated time-bounds and received accordingly. Lastly, there is

another issue to consider which is the hardware. Hardware suffers from being physically

related to its wear and time, and as such, it can become defective and potentially flaw the

software that runs with it.

Due to the nature of byzantine faults being hard to be detected and eliminated, byzan-

tine fault-tolerant protocols have emerged with the help of state machine replication. Over

the years, several protocols have been conceived to solve these sorts of issues, each with its

own set of advantages and disadvantages (trade-offs) based on their working environment.

The array of protocols is quite diverse, being that the following solutions have been pro-

posed: a) speculation [2–4], b) client reliant [5], c) quorum [4, 6, 7], d) trusted component

reliant [8], e) agreement phase focused [9, 10], f) adaptative [11], g)primary focused [12–15]

,and h) randomization [16–19].

Each one of these protocols has its strengths and weaknesses (which we will discuss

throughout this document), but certain ones did not explore the entirety of what they can

achieve under different types of attacks. As a result, there is a necessity to develop tools

that could help both new and existing protocols, as they add a degree of security when

being deployed to authentic systems.

1.1 Motivation

Existing BFT protocols attempt to solve a particularity set of problems based on the en-

vironment they are set in, whether to improve throughput, latency, robustness, safety, or

other purposes. In order to reach such objectives, these protocols focused on character-

istics that model them differently than others, such as the employment of primaries, the

cryptographic algorithms used (for example, Message Authentication Codes and public-key

cryptography), the synchrony model employed (weak, partial synchrony, or asynchrony),

the contention level they can accommodate and other properties.

Each solution can be susceptible to specific faults/attacks, either as a result of incor-

rect implementations(for instance, harmful code) or vulnerabilities in the solutions used(for

example, faults/attacks more effective against some solutions than others). Some theoret-

ical models are not straightforward to implement, leading to complex solutions that may

1. Introduction 3

introduce weaknesses or incomplete implementations. One such example is Zyzzyva [2],

which had difficulty enforcing the entire protocol in practice due to the second phase of

the protocol being very complex, resulting an incomplete implementation.

These reasons suggest that existing BFT protocols were not thoroughly tested in their

comfort and discomfort zones. Some of the existing BFT protocols could have achieved bet-

ter design implementations (due to fewer minor flaws) and mitigated more faults with more

extensive and diverse testing. Unfortunately, many of these designs also tend to discredit

the client’s role in the protocol, making barely any mitigation aspects towards possible

malfunctioned clients or malicious ones that could collude with replicas to undermine a

system further.

The solution to these predicaments relies on tools capable of testing these protocols

in diverse scenarios, such as fault injectors. However, another problem arises: there is a

lack of these tools to test BFT protocols in general, specifically ones that give freedom to

researchers/users to employ diverse and unique scenarios to identify possible design flaws

in their implementations.

1.2 Proposed solution

Fault injection can be used as one of the tools for assessing the reliability, consistency,

performance, availability, and security of distributed systems. The injection of faults allows

studying the behavior, performance impact, and effectiveness of fault tolerance mechanisms

in a system that employs such techniques. BFT Fault injectors are something that is lacking

in this specific field, as the existing tools are restricted to use in specific protocols[20, 21] or

are not available to the public [22], or they are incapable of injecting faults into clients of a

protocol. Having an adaptative tool capable of injecting faults in both clients and replicas

on old and possibly new distributed type protocols is something on-demand in this field.

Hence, in this paper, we introduce Zermia, a modular Java-based fault injector designed

to allow users to inject faults into BFT systems for testing purposes. It employs a clien-

t/server model, where the server acts as a coordinator for the Agents(runtime clients) that

run alongside the clients/replicas of a targeted protocol. Additionally, it employs gRPC to

reduce communication complexity between the Coordinator and Agents. Fault injection

happens through the use of aspects(Aspect-Oriented Programming) based classes in the

targeted protocols, which allows us to keep the level of intrusiveness to a minimum.

4 Injecting Faults in Byzantine Fault Tolerance Protocols

The approach used in this fault injector allows users to build their fault schedules for

each faulty client/replica, where different faults can be applied in the same interval of time.

Additionally, when more than one fault is scheduled in the same interval of time, users can

enable a priority fault system, in which some faults are run before others to maximize

potential system damage. Furthermore, users can also focus the injection of the faults into

specific messages and target them against, for instance, the primary, non-primaries, or even

the entire system. Through these methods, the need to study multiple BFT protocols is

required, as it will provide insight on which faults are more prone to disrupting protocols

and add those same faults to this injector.

For the evaluation of how this fault injector affects a BFT protocol, BFT-SMaRt [10]

was selected to be tested. Through this work, we check how different types of faults affect

the performance of the chosen BFT protocol.

1.3 Contribution

In this document, we make several contributions, being those the following :

• We examine the design of several known BFT protocols and verify their weaknesses

in order to identify which faults are more likely to influence the overall performance

of BFT protocols.

• We describe the architecture, design, and process of a fault injector that allows users

to build their own fault schedule for each faulty client and replica, given that multiple

different faults can be applied in the same period of time. The primary capability of

this BFT fault injector is the proper injection of multiple faults through the use of

aspects (Aspect-Oriented Programming). We can keep intrusiveness low through this

approach since there is no need to modify how the targeted protocols interact with

the fault injector internally. Furthermore, it employs gRPC[23] as the foundation

to exchanging information between server and clients in Byzantine Fault Tolerant

protocols, considering that this decreases the communication complexity between

them. With the use of gRPC, this fault injector will also be able to work easier with

different types of protocols, but that is not the case for now, due to how some of

these protocols do not have their code online or because they are buggy.

• We have implemented the fault injector described in this paper into a well-known

BFT protocol, BFT-SMaRt [10, 24].

1. Introduction 5

• We exhibit the testing results of the performance impact that network and commu-

nication faults can have when injected in BFT-SMaRt.

• We present the testing results for experiments that involved targeting specific mes-

sages and functions, such as the agreement and view change phase and the usage of

faulty clients to compromise the protocol.

• Paper publication - ”ZERMIA - A Fault Injector framework for testing Byzantine

Fault Tolerance protocols” in the NSS2021, 15th International Conference on Network

and System Security, held on the 22nd - 24th of October 2021, in Tianjin, China.

1.4 Document Structure

This dissertation is divided into six chapters, one of which we are at the moment. In

Chapter 2, we examine how various BFT protocols work. Chapter 3 discusses some attacks

that, in theory, should be possible (and have been proven) against the protocols discussed

in Chapter 2. In chapter 4, we present Zermia, a fault injector, and how it is structured.

In chapter 5, we investigate which faults were more effective in disrupting BFT-SMaRt

through Zermia. Lastly, in chapter 6, we summarise the work done in this document and

possible improvements in the future.

Chapter 2

Related Work and State of the Art

In this chapter, we will discuss the principles behind Byzantine fault-tolerant protocols.

We start by introducing the fundamental theoretical concepts of BFT systems. Following

that, we investigate the different approaches taken by various BFT protocols in order to

determine what characteristics distinguish them from one another. The explanation of each

protocol will also provide insight into what types of faults have an effect on the performance

of these systems.

2.1 BFT overview

In the context of distributed systems, replication has been used to improve service avail-

ability. This technique improves the system’s resilience by allowing it to forward operations

to active replicas in the event that one is absent or fails. Through this method, we get more

performance, availability, and the ability to tolerate faults. Maintaining multiple active or

backup copies of a service’s logic and data allows systems to cope with faults by replacing

crash copies with active ones.

There are two principal types of replication in distributed systems, active and passive.

In active replication, replicas execute all operations in the same order. One example that

falls into this category is state machine replication [25]. In SMR, each replica is handled

as a finite state machine. Each operation executed by a replica changes its state from an

initial one to a final one, where both have to be valid. Since replicas execute all operations

in the same order, it requires them to be deterministic, meaning that replicas state must

update to the same predetermined state with each operation execution, given that any

unexpected deviation would imply that a replica is malfunctioning.

7

8 Injecting Faults in Byzantine Fault Tolerance Protocols

In the case of passive replication, also known as primary-backup, only one of the replicas

performs all operations, and this replica is referred to as the system’s primary. Whenever

a client sends a request to the system, the primary is the one who receives and processes it,

sending the result back to the client. Additionally, the primary also sends the client’s result

to non-primaries replicas (backups) to update their state. If the primary crashes, one of the

non-primaries replaces it, takes control, and becomes the new primary. One of the issues

about this type of replication is that faulty primaries and non-primaries can compromise

the system’s state by not behaving according to their original specifications. To mitigate

these issues, all replicas in the system must execute the same operations requested by the

clients and send the same results to them.

2.1.1 Fault models

Faults are the most common cause of systems deviating from their normal behavior, as

they can cause, for example, a replica to stop working. There are several types of faults

that can cause such deviations, including the following:

• Crash faults: They manifest whenever a component in a system fails to function. This

behavior is detectable since it is unusual for a component to stop sending messages

or receiving them. In other cases, there are support systems that can detect such

problems and send alerts when a component fails. Crash faults are classified into

two types: fail-stop and fail-recover. Where in the former, failed components never

automatically recover but can be manually restarted, and as for the latter, crashed

components are recoverable through an automatic mechanism after a set period of

time.

• Timing faults: They occur whenever a component in a system fails to produce results

within an established time frame. That is, if a component sends a message earlier

or later than the established time interval, the system may ignore potentially vital

messages or deviate from its normal behavior.

• Omission faults: These occur whenever a component fails to produce results that were

intended to be executed. Examples of this fault include a component attempting to

send or receive a message but failing to do so because the messages never made it to

their respective I/O buffers, which could be due to a buffer overflow.

2. Related Work and State of the Art 9

• Responsiveness faults: These happen whenever a component fails to produce ex-

pected results. Examples of such are when a faulty component sends a message with

the wrong values attached to it.

• Arbitrary/Byzantine faults: These faults are highly unpredictable and inconsistent,

which means that anything can happen at any time, as malicious actors who ex-

ploit vulnerabilities to impact a component or a system are also included in this fault

model. This inconsistency is due to Byzantine faults encompassing every single other

fault in its class, making it the most widespread fault model of them all. In addi-

tion, byzantine faults can also cause collusions between faulty components, further

destabilizing a system and making mitigation more challenging to accomplish.

Another consideration with faults is that their persistence in components can make

them more difficult or easier to detect. There are three fault persistency classifications,

which are as follows:

• Transient faults: These faults trigger once and then vanish after.

• Intermittent faults: This type of fault appears and disappears at either random or

timed intervals of time. Because of such, they are the most challenging faults to

detect and identify.

• Permanent faults: These faults regularly activate until the process of recovery/miti-

gation occurs.

2.1.2 Byzantine fault tolerance concepts

Byzantine faults tend to be the most problematic of these fault types for being capable of

anything and everything, making them troublesome to eradicate. As a result, dedicated

fault-tolerant techniques have been proposed and used in conjunction with SMR to mitigate

byzantine faults, where they aim to reach consensus and secure availability.

BFT-SMR protocols ensure two properties under faulty and fault-free environments,

safety and liveness. According to Cachin et al. [26], these two properties satisfy and

accomplish the following :

• Safety, which ensures that replicas that execute the same set of operations in the

same order reach the same final state and produce the same result.

10 Injecting Faults in Byzantine Fault Tolerance Protocols

• Liveness, which guarantees that all requests from non-faulty clients are eventually

executed and decided on a value by the consensus group.

As explained by Cachin et al. [26], a correct consensus protocol, when achieved, must

guarantee the following four properties :

• Termination: Every non-faulty replica eventually learns about some decided value.

• Agreement: All non-faulty replicas must agree on the same value.

• Validity: If non-faulty replicas propose a value, then all non-faulty replicas eventually

decide on the same value.

• Integrity: Each non-faulty replica can only decide on one value. If it decides on a

value, then all other non-faulty replicas must have proposed the same value.

The properties here described are achievable based on the concepts of safety and live-

ness, where the first property is attainable in the presence of liveness and the remaining

in the presence of safety. However, these attributes can be violated when deterministic

replicas are unable to accurately participate in the consensus group due to, for example,

executions that are out of place/time.

2.1.3 Synchrony in BFT

BFT protocols differentiate themselves into two major groups, deterministic and non-

deterministic. The existence of these two classes is due to the FLP impossibility [27]

result, which states that consensus is not achievable deterministically in an asynchronous

environment if a single process can crash, meaning that any deterministic algorithm cannot

reach a decision when combined with asynchrony and the possibility of a failure. Another

important aspect of this proof is that it is impossible to distinguish between a crashed

replica and a slow-moving one in an asynchronous setting.

To overcome the problem posed by the FLP impossibility, several techniques were

developed and combined in order to achieve consensus. One of these methods proposed

that protocols adopt different communication models, such as the following:

• Synchronous models are the inverse of asynchronous models, being that there are time

assumptions regarding communication and processing. As such, in a BFT system,

each replica must to send and receive messages within a known and fixed time-bound.

2. Related Work and State of the Art 11

• Weak synchronous models have an upper time-bound that varies. It increases the

time-bound in order to satisfy liveness. The predicament with this is that if the

time-bound is large enough, faulty primaries can abuse this flaw.

• Partial synchronous models are systems that, depending on the situation, are both

synchronous and asynchronous. It can behave asynchronously for periods of time,

primarily due to message delaying/processing, but will try to stabilize and act syn-

chronously. The upper time-bound in these models is unknown, but it must be

satisfied in some way.

• Random Synchrony models are systems that deliver messages with random time

delays. This delay has an associated upper bound in terms of time. The dilemma

with this model is determining whether a replica has crashed or is delaying the

transmission of a message.

• Asynchronous models are systems that do not make assumptions about timing prop-

erties, this type of system does not establish an upper bound for message processing

and transmission delays. When delivering messages in a BFT system, each replica

has no concept of time, but they are still required to send messages to other replicas.

Models like these are effective against malicious actors attempting to stall communi-

cations.

According to Correia et al. [28], other strategies used to bypass FLP involved sacrificing

determinism (randomization) and the use of oracles (failure detectors).

Through these techniques, non-deterministic protocols were introduced in practice.

These protocols typically solve consensus by combining a probabilistic and asynchrony

approach with a dependable broadcast protocol (for example, Bracha’s broadcast protocol

[29]) for communication. In this type of system, the probability that a correct replica is

undecided after k rounds approaches 0 as k approaches infinity.

On the other hand, deterministic protocols rely on reaching consensus at each round

before moving on to the next. This allows them to establish a point of reference before

proceeding and ensure safety. As for synchrony models, this type of protocol primarily

employs partial and weak synchrony.

12 Injecting Faults in Byzantine Fault Tolerance Protocols

2.1.4 fault handling and recovering techniques

Fault tolerance techniques are classified as dynamic or static redundancy. In dynamic

redundancy, the system can be reconfigured to respond to new faults. New replicas, for

example, can join a consensus group to replace a faulty replica without reconfiguring the

entire system. As for static redundancy, the system employs techniques that can correct

faults or isolate faulty replicas but cannot be reconfigured without restarting the entire

system with the new configurations.

Most BFT protocols, predominantly deterministic, use a primary that receives requests

and distributes them with the non-primaries. The major problem is that the primary can

be faulty. When such situations happen, the primary must be replaced, so to prevent a

faulty primary from compromising a system’s liveness, view change protocols are used.

These protocols’ main goal is to elect a new primary to resume request processing. The

standard process relies on changing the view to a new one. A view is a set of configurations

for the system to work with, consisting of the primary and non-primaries. A single view

is used in several instances of the protocol until a faulty primary is noticed. When that

happens, a new view is created with a new set of primaries and non-primaries. The election

of a new primary is usually through a round-robin scheme [2, 9, 13]. In some protocols

[13, 14], the former faulty primary can enter into a blacklist and be unable to become the

primary for a given time. Non-deterministic protocols do not require such replacement

protocols because since they are asynchronous, they do not rely on timers and progress

whenever messages are delivered. The former does not apply to deterministic protocols

since once a primary fails to deliver a message in a specific time interval, it gets replaced

via view change.

Recovery protocols are the mechanisms used by replicas to restore their own state

to a fault-free state. These protocols are made of use when a replica is added to the

system(which it will need to update its state to be on par with the other replicas) or for

recovering a faulty replica. Some tools involve the usage of logs of the actions performed

by replicas. These are created at each k-interval and called checkpoints once verified by

other replicas. A replica that needs to update its own state can then query other replicas

for the most recent stable checkpoint and build its own log from there. Through this, we

are bringing this replica to a state prior to the occurrence of the fault. State transfers are

another tool used, in which replicas transfer their states to a recovering replica in order to

bring its state up to date.

2. Related Work and State of the Art 13

In order to minimize the occurrence of faults, a proactive replica recovery protocol[9]

was proposed, which periodically reboots replicas and installs a clean image every k-period

of time.

2.1.5 Byzantine Generals’ Problem and the 3f+1 solution

The Byzantine general’s problem[30] is a fictional plot in which a dispersed Byzantine

army attempts to engage an enemy city. This scenario attempts to answer how several

distributed entities can reach an agreement before taking action, as well as how many

correct entities are required for each malicious/faulty actor in order for an agreement to

be still reachable.

The Byzantine army is divided into divisions, each led by a different general. The

generals use a messenger to communicate with one another in order to reach an agreement

on a strategy (attack or retreat). The issue here is the possibility of traitors among the

generals. The conspirators may mislead the loyal generals and cause the joint strategy to

fail, resulting in some generals attacking the city while others retreat, resulting in a siege

failure against the enemy city.

Figure 2.1: Scenario in which the siege fails because a conspirator general confuses a loyal
general.

As illustrated in Figure 2.1, if a conspirator decides to send a different order to a

different loyal general, the order will be conflicted, resulting in a failed siege because there

was no complete agreement among all generals.

14 Injecting Faults in Byzantine Fault Tolerance Protocols

The solution to this problem entails using a single commanding general who issues

orders to all of his n− 1 lieutenants, provided that the following two interactive consistency

[30] conditions are met:

• IC1. All loyal lieutenants obey the same order.

• IC2. If the commanding general is loyal, then every loyal lieutenant obeys the order

he sends.

Based on the conditions stated above, we can conclude that condition 1 is verified by

condition 2 if the commanding general is loyal. The solution used replicates the general’s

orders in each lieutenant, which serves as the basis for reaching an agreement.

As stated by Lamport et al. [30], this problem cannot be solved with only three generals

in total. The following figures 2.2 and 2.3 demonstrate why it is not viable:

Figure 2.2: Lieutenant 2 is a conspirator.
[30]

Figure 2.3: Commander is a conspirator.
[30]

As shown in the illustrations 2.2 and 2.3, it is impossible to have a clear case of consensus

when one of the generals is a conspirator because it will consistently deliver the wrong order

to one of the loyal lieutenants, causing conflict. Through these examples, Lamport et al.

[30] state that no solution with less than 3 f + 1 generals can withstand f conspirators, but

it is possible to circumvent with the addition of signatures.

One solution to this problem, according to Lamport et al. [30], is to use 3 f + 1 or more

generals, denoted as ”solution with oral messages.” In order for this solution to work, the

following assumptions must be made:

• A1. Every message that is sent is delivered correctly.

• A2. The receiver of a message knows who sent it.

• A3. The absence of a message can be detected.

2. Related Work and State of the Art 15

These assumptions prevent conspirators from interfering with message transmission (A1

and A2) and from not communicating with the other parties (A3). The following figures

2.4 and 2.5 show instances where the impostor is unable to compromise the consensus,

where ”X”, ”Y” and ”Z” represent different messages. It is worth noting that lieutenants

save every message they receive in a set M, and if a type of message appears the most, it

is used as an order; otherwise, all lieutenants retreat as there was no agreement.

Figure 2.4: Impostor lieutenant can not
compromise plan.

Figure 2.5: Traitor commander can not
compromise plan.[30]

The illustration in figure 2.4 shows how the lieutenant conspirator cannot deceive any of

the lieutenants with a misleading order. In this example, after the loyal commander sends

the ”X” order to all lieutenants, the lieutenants consequently exchange messages between

themselves and try to reach and agreement. The issue here is that there is a conspirator

lieutenant who tries to mislead the other lieutenants by sending ”Y” orders that differ

from those issued by the commander. This attempt by the conspirator fails because both

lieutenants 1 and 2 received M = (X, X, Y) orders, where the ”X” order was agreed to be

executed as it was in the majority. It is important to note that both interactive consistency

IC1 and IC2 are respected, since all loyal lieutenants obey the same order and the order

issued by the loyal commander.

A conspirator commander can also try to mislead loyal lieutenants in following wrong

orders, but this attempt also fails as shown in figure 2.5. In this example, the conspirator

commander relays different orders to all lieutenants, which then they exchange messages

between themselves. The lieutenants perceive that the commander is malicious as they

received M = (X, Y, Z) different orders after exchanging messages between themselves,

resulting in no agreement because all orders had the same magnitude of the majority

value.

16 Injecting Faults in Byzantine Fault Tolerance Protocols

The other solution to this problem revolves around the use of signatures to ensure non-

repudiation in behalf of all lieutenants and commander involved. According to Lamport

et al. [30], this solution uses less generals than the first solution and employs the previous

three assumptions A1, A2 and A3, as well as two new assumptions:

• A4. A loyal commander’s or lieutenants signature cannot be forged, and any alter-

ation of the contents of their signed messages can be detected.

• A5. Anyone can verify the authenticity of a commander’s or lieutenant’s signature.

For this solution to work, it is assumed that if each lieutenant’s set M (messages)

contains only one element, that element will be used as an order; otherwise, if that M set

is empty, the lieutenants will consequently retreat.

The following figure 2.6 shows how adding signatures can prevent a conspirator from

compromising the operation because the loyal lieutenants verify for order inconsistencies

in the messages passed between them. In this case we have a malicious commander that

sends two messages signed with its own identifier ”0” to each lieutenant. The lieutenants

then exchange messages by signing them with their own identifier (”1” or ”2”) on top of

the commander’s signature, which they received from the malicious commander. Finally,

the lieutenants conclude that the commander is malicious because he signed two different

types of messages that could not be forged, resulting in the lieutenants M sets containing

M = (Retreat, Attack) orders.

Figure 2.6: Conspirator can not compro-
mise plan. [30]

Figure 2.7: Conspirator compromises
plan.

Knowing how to do the commander’s signature is the unique way for conspirators to

jeopardize the plan. Figure 2.7 illustrates how, on the very rare occasion that the conspira-

tor knows how to redo the commander’s signature, it can then send contradictory messages

2. Related Work and State of the Art 17

to the loyal lieutenant. In this case, the conspirator lieutenant’s ”Retreat:0:2” message is a

contradictory message signed with the conspirator’s signature on top of the commander’s

forged signature. In this case, the lieutenant 1 M set contains M = (Attack, Retreat) and

may suspect the commander of malice.

Lamport et al. [30] claims that these solutions are only applicable in synchronous sys-

tems that have a time-bound interval to generate and transmit a message. A malicious

actor can compromise a system by delaying the processing of a replica or delaying com-

munication between other replicas until the time-bound is exceeded, putting the system’s

safety at risk. As a result, these systems must be somewhat synchronous.

2.2 Practical Byzantine Fault Tolerance

2.2.1 Protocol overview

PBFT [9][31] is a primary-based SMR Byzantine Fault Tolerant protocol that has a re-

quirement of 3 f + 1 replicas for guaranteeing liveness and safety in the presence of up to

f faults. It uses partial synchrony as the communication model. It employs either MACs

or digital signatures for message authentication, provided that authentication happens in

every protocol step. Clients are not excluded from the authentication process since they

share a secret key with each replica to authenticate client’s requests and vice versa.

This protocol was among the first practical BFT solutions designed to work in asyn-

chronous environments(for instance, the Internet). The solution itself was later used as

a baseline to several other protocol implementations, such as [2, 7, 10, 12, 14, 32] due

to how well it performed. It uses a primary to order requests from clients so that all

replicas(primary and non-primaries) execute all operations deterministically.

2.2.2 Fault free execution

According to Figure 2.8, when using MACs as a form of authentication, the normal exe-

cution of this protocol consists of the following steps:

1. A client sends a REQUEST message to all replicas, including the operation, a times-

tamp for once-time semantics, and the client’s identifier. Meanwhile, it starts a

retransmission timer. This retransmission timer is used if the client does not receive

responses before the timer expires. When this happens, the client re-sends the same

18 Injecting Faults in Byzantine Fault Tolerance Protocols

Client

Primary

Replica 1

Replica 2

Replica 3

1 2 3 4 5 6

Viewer does not support full SVG 1.1

Figure 2.8: PBFT Normal Execution. [9]

Client

Primary

Replica 1

Replica 2

Replica 3

1 2 3 4

Viewer does not support full SVG 1.1

Figure 2.9: PBFT view change. [9]

request to all replicas. Replicas that receive the request, authenticate, save it in the

log, start a timer and send it to the primary.

2. When a primary receives a REQUEST message, it authenticates it. If valid, a PRE-

PREPARE message is sent to non-primaries, and the primary adds this information

to its log. The message includes the view and sequence number(assigned by the

primary) and a digest of the client’s message.

3. When replicas receive a PRE-PREPARE message, they check to see if the corre-

sponding MAC, view, and sequence number are valid. Following this, a PREPARE

message is sent to the other replicas in the consensus group. The message contains

the primary’s view and sequence number, as well as a digest of the client’s request.

Both messages are also stored in the non-primaries logs.

4. In this phase, replicas wait for PREPARE messages. When receiving them, they

authenticate and review their contents. Once replicas accept at least 2 f + 1 match-

ing PREPARE messages, they multicast a COMMIT message. This type of message

includes the same view and sequence number as in the PRE-PREPARE and PRE-

PARE message, providing also that they are keen on executing this request since

they have received at least 2 f + 1 matching PREPARE messages. Replicas save the

COMMIT message information into their log.

5. Once replicas start receiving COMMIT messages, they validate the associated MACs

and their contents. If replicas receive 2 f + 1 matching COMMITs, they can then send

a REPLY message to the client. A REPLY message is made up of a view number, the

client’s request timestamp, the replica’s and client’s identifier, and the operation’s

result. Replicas store this information in their log in case they have to retransmit

this REPLY to the same client.

2. Related Work and State of the Art 19

6. The client waits until it receives at least f + 1 matching REPLY messages from

different replicas, in which their MAC is valid, and the contents, more specifically

the result and timestamp, match. If the client does not receive a reply within its

retransmission timer, it will retransmit its request until it receives enough replies. In

case the request had been already executed, and the client keeps retransmitting the

request, the replicas retransmit the corresponding REPLY to the client.

2.2.3 Checkpoint system

To prevent replicas from storing an infinitely growing log, PBFT employs a checkpoint

system. As such, they discard information on previously executed requests. However,

since there is a chance that a replica might require some information related to it (for

example, a client requiring a retransmission reply), replicas only discard when they receive

a proof that the state on which those requests are based is correct.

Replicas generate checkpoints at fixed intervals of k-requests (for instance, at every 1000

requests). Checkpoints that are created require a certificate proving that they are stable

from other replicas. The following list summarizes how to retrieve or create a checkpoint,

as previously explained:

1. To retrieve or create a checkpoint, a replica must multicast a CHECKPOINT message

to all replicas, which contains the last sequence number used for a request’s execution

in its state as well as a digest of the state.

2. Replicas wait till they receive 2 f + 1 matching CHECKPOINT messages. Once

replicas have collected 2 f + 1 CHECKPOINT messages, they authenticate and verify

if the contents have the same sequence number and digest. If everything matches,

this checkpoint becomes a certified stable checkpoint.

3. Replicas can then discard former checkpoints and information with a lower sequence

number than the one received since the current checkpoint is stable.

During the execution of the protocol, each message that replicas save on the log must

contain a sequence number that falls between a specific interval. This number goes from the

sequence number of the last stable checkpoint to the sum of it with the log’s size (constant

number), limiting the information in each replica’s log limited. Replicas preserve copies of

its current state and last stable checkpoint to prove that it has a stable checkpoint.

20 Injecting Faults in Byzantine Fault Tolerance Protocols

2.2.4 Fault handling while having a faulty primary

For the purpose of preventing a faulty primary from compromising the system’s liveness,

PBFT defines a view change protocol in which replicas agree to a new primary. Non-

primaries initiate a view change whenever they accept a request from a client, but they do

not receive an ordered request for execution from the primary of the said request within

an interval of time. View changes can also start in case a faulty primary sends requests

that non-primaries were not expecting to execute. The list that follows goes step by step

on how a view change is executed with the assistance Figure 2.9 as well.

1. When non-primaries wait too long to execute a request that they initially received

from the client but did not receive a PRE-PREPARE message for that request from

the primary, they trigger a view change (Each replica has a timer associated with

each request it gets from a client, if it expires, replicas begin a view change). In these

situations, non-primaries discard any messages associated with the current view and

proceed to multicast VIEW-CHANGE messages. This message holds the next view

number (view+1), the sequence number of the last stable checkpoint(h), a set of

2 f + 1 signed CHECKPOINT messages that validate the sequence number and the

digest of the checkpoint (both of which belong to C), and two sets of information’s

related to the requests that had been prepared(P) and pre-prepared(Q) in former

views. This phase is one of the few that requires the use of a public key to sign the

message.

2. Upon receiving VIEW-CHANGE messages, replicas verify the signature and if the

contents, specifically the two sets of information, are from view numbers less than

or equal to the actual view. After validating the contents, replicas send VIEW-

CHANGE-ACK messages for each VIEW-CHANGE message accepted to the new

primary. This message contains the next view, the replica identifier that sent the

message, the replica identifier that sent the VIEW-CHANGE message, and a digest

of the VIEW-CHANGE message.

3. The new primary agrees on a VIEW-CHANGE from a replica only if it receives

2 f − 1 VIEW-CHANGE-ACK for this replica from other replicas. The new primary

uses the gathered information to choose a checkpoint that is going to be selected for

request processing on the new view and selects requests to be pre-prepared for each

sequence number (between an interval, ranging from the sequence number of the last

2. Related Work and State of the Art 21

stable checkpoint to the sum of it, plus the log size) in the new view. If there is

a formerly prepared request by 2 f + 1 replicas that did not get fully committed or

did get committed in the previous view, the new primary chooses this request to be

ordered. If some requests were not prepared before with a specific sequence number,

the new primary assigns it a ”null” to fill gaps. After all sequence numbers have been

filled, the new primary multicasts a NEW-VIEW message with its selection. This

message consists of a set of identifiers of the replicas who sent the VIEW-CHANGE

message plus the digest of their VIEW-CHANGE messages and the checkpoint and

the sequence numbers for the requests. It is also signed with a digital signature.

4. With the NEW-VIEW message, replicas can verify if there is any incorrect assign-

ment, and if so, a new View Change for view+2 is initiated. Otherwise, because the

NEW-VIEW phase performs a similar function to the PRE-PREPARE phase, the

replicas can proceed to the PREPARE phase.

2.2.5 Fault recovery model

In terms of recovery, PBFT has several mechanisms in place to protect the system from

malicious actors and recover replicas back to their current state. One of these mechanisms

is the employment of a cryptographic co-processor that stores private keys and encrypt and

decrypt messages. It also utilizes a ROM (Read-Only-Memory) to save public keys from

other replicas safely. Additionally, the ROM stores a copy of the service code and Operative

System used to restore when rebooting. MAC keys are changed during recoveries using

NEW-KEY messages frequently, and if a client does not change its key, replicas discard

their current keys and force the client to refresh its key. Replicas and clients discard any

message that uses old keys.

This recovery protocol employs a ”watchdog” timer, which causes replicas to proactively

recover on a regular basis when the timer expires. This design principle is critical because

a replica may appear to be correct when it is not. Also, for this watchdog mechanism to

work correctly, a malicious actor cannot have physical access to it since it could change the

replica’s timer to keep making recoveries above a certain threshold which other replicas

would not notice.

Recovery begins at a replica when its ”watchdog” timer expires, and it passes the

control to a recovery monitor, which stores the replica’s checkpoints, state, and logs to

a disk. It then proceeds to reboot the system with a clean operating system and restore

22 Injecting Faults in Byzantine Fault Tolerance Protocols

its state, both of which are stored in a Read-only-memory (so it cannot be changed by

a malicious actor). Every time a recovery is made, the recovery monitor verifies a digest

associated with the correct operative system and state. If it does not match, it requests

other replicas for a copy of the correct code in order to perform the recovery. After this

process, the replica has to preserve its state and execute requests while making a recovery

if necessary. The replica also replaces the MAC keys with new ones with the other replicas.

After this initial step, the recovering replica must run an estimation protocol in order

to assess an upper bound (for the log) through the help of the other replicas (checkpoints

and log information that have a higher sequence number than the estimated upper bound

are promptly deleted). The recovering replica multicasts a QUERY-STABLE message, to

which the other replicas respond with a REPLY-STABLE message containing the most

recently prepared request and the sequence numbers from the last stable checkpoint. With

this information, the recovering replica can establish an upper bound and a minimum

bound and proceed to participate in the protocol, but will not be part of any execution

that is above the upper bound established until it settles with a new stable checkpoint

with a sequence number that is equal or higher to the upper bound.

Finally, the replica’s cryptographic co-processor builds a RECOVERY request message

that is multicasted. Replicas only receive the message if it is not a replay or if that replica

has not recovered in a long time. This message is treated similarly to a client’s request, in

which it is assigned a sequence number, and as such, it goes through the same three phases

of its regular operation. MAC keys are refreshed via a NEW-KEY message when replicas

execute the recovery request. Lastly, the recovering replica waits for 2 f + 1 replies before

calculating its recovery point and view.

2.3 Zyzzyva

2.3.1 Protocol overview

Zyzzyva[2] is a primary-based Byzantine Fault Tolerant protocol that has a requirement

of 3 f + 1 replicas in order to secure liveness and safety in the presence of up to f faults.

Zyzzyva’s communication model is partial synchrony. It uses MACs or digital signatures for

message authentication, provided that authentication occurs at every step of the protocol,

with two exceptions. The first occurs when a client re-transmits a message, and the second

occurs during a view change, considering digital signatures are required at those times.

2. Related Work and State of the Art 23

Zyzzyva improves on PBFT[9, 31] by providing a speculative execution model. Under

the speculative execution, replicas are assumed without faults, and since replicas do not

establish a consensus between them, they must rely upon clients to certify whether the

replies and history received from the quorum are stable or not. In the event that they

are not stable, the client waits until there is a convergence. If the reply and history are

stable, the client proceeds to accept the reply provided. When clients or replicas detect

that the primary is faulty, they can initiate a view change, which results in the primary

being replaced.

2.3.2 Fault free execution

Client

Primary

Replica 1

Replica 2

Replica 3

1 2 3 4

Viewer does not support full SVG 1.1

Figure 2.10: Zyzzyva best-case scenario execution [2]

This protocol’s standard execution consists of only two steps: an ordering phase per-

formed by the primary and a speculative phase performed by all replicas. Messages are

authenticated by replicas and clients at each stage. In order to understand the normal

execution of this protocol, while using digital signatures as a form of authentication, we

follow the steps shown in Figure 2.10 :

1. A client sends a REQUEST message that consists of the operation requested, a

timestamp, and the client’s identifier, to the primary. If the client does not receive

any reply, it then transmits the request to all replicas. In this situation, replicas

forward the client request to the primary. A timer is also started by the client.

2. When the primary receives a REQUEST from a client, it assigns a view and sequence

number, a digest of its history to an ORDER-REQ message, a digest of the client’s

message, and a collection of variables. The message is appended to the original

client’s message and sent to non-primaries.

24 Injecting Faults in Byzantine Fault Tolerance Protocols

3. When replicas receive ORDER-REQ messages, they verify the message’s contents,

specifically the request digest and sequence number. This message is then saved in

their local history. Following that, replicas speculatively execute the request and

forward it to the client in the form of a SPEQ-RESPONSE appended with the

ORDER-REQ and result. The view and sequence number, a digest of its history, a

digest of the result, a timestamp, and the client’s identifier are all included in the

SPEQ-RESPONSE message.

4. Client waits for a 3 f + 1 matching replies. If it receives before the timeout, and

everything matches up, the client commits to the reply.

2.3.3 Fault handling when having a faulty primary

Like any other protocol that utilizes a primary, a view change protocol is necessary when

the primary acts faulty. Replicas only carry out a view change if they know that at least

f + 1 replicas will appoint a new primary. During this period, the process halts, and

replicas only accept CHECKPOINT, VIEW-CHANGE, and NEW-VIEW messages.

Initially, when a replica detects that there is an inconsistency with the primary, it

sends an ”I-HATE-THE-PRIMARY” message for the current view. The replica continues

to process requests while it does not receive at least f + 1 ”I-HATE-THE-PRIMARY”

messages. Once it collects the required number of messages, it stops what it is doing in the

current view and sends a VIEW-CHANGE message to all replicas. This message contains

the next view number, a set of commit certificates, and the ordered request history. The

set of commit certificates can contain the most recent commit certificate available, or f + 1

VIEW-CONFIRM messages if there is no commit certificate, or lastly, a NEW-VIEW

message if the other options are nonexistent. All of this information is crucial for when

there are requests that end get committed at the replicas, but these do not know if the

client received the amount needed of replies.

Upon gathering 2 f + 1 VIEW-CHANGE messages, non-primaries set up a timer until

they receive a NEW-VIEW message from the primary of the following view. If it expires,

the process restarts, and replicas start a VIEW-CHANGE for the next view (v+2). After

collecting VIEW-CHANGE messages, the new primary empties its base history. It proceeds

to adopt either the most lengthened history validated by a commit certificate or f + 1

matching histories, given that the former takes priority over the latter. It then transmits

a NEW-VIEW message to all replicas. This message consists of the next view, a set of the

2. Related Work and State of the Art 25

VIEW-CHANGE messages collected, and its own history(the copied history). In this set

of VIEW-CHANGE messages sent in the NEW-VIEW, any request that shows that it got

committed for at least 2 f + 1 is known to be fully completed at the client. The former

requisite is needed to have a safe history for the new view.

After replicas receive NEW-VIEW messages, they adopt the history provided by the

new primary if valid. Finally, replicas multicast a VIEW-CONFIRM message acknowl-

edging that they received a NEW-VIEW message. When the new primary receives 2 f + 1

CONFIRM-VIEW, it can then start the new view and process requests.

Client

Primary

Replica 1

Replica 2

Replica 3

1 2 3 4 5 6

New primary

is elected

Viewer does not support full SVG 1.1

Figure 2.11: Zyzzyva execution with a
faulty primary.

Client

Primary

Replica 1

Replica 2

Replica 3

1 2 3 4 5 6 7

New primary

is elected

Viewer does not support full SVG 1.1

Figure 2.12: Zyzzyva execution with a
faulty primary.

In the event that we have a faulty primary, and a client notices discrepancies in its

responses, Figure 2.11 provide us the steps necessary to solve this issue:

2. A faulty primary sends different ORDER-REQ for the same request to all replicas.

3. Replicas speculatively execute the request and send a SPEQ-RESPONSE to the

client.

4. Client receives diverse replies, triggering a Proof-of-Misbehaviour (POM) that is sent

to all replicas. This proof essentially consists of ORDER-REQ messages that were

dissimilar (for example, different sequence numbers or different histories).

5. As Replicas receive the POM, they verify that either the histories are different or the

sequence number was different across the ORDER-REQ messages inside the POM.

As such, they start a view change in order to elect a new primary.

6. The Client receives matching replies after the process has been restarted with a new

primary.

In another scenario where client receives less than 2 f + 1 replies, Figure 2.12 shows

how the protocol mitigates the situation:

2. A faulty primary does not send ORDER-REQ message to all replicas.

26 Injecting Faults in Byzantine Fault Tolerance Protocols

3. Replicas that received ORDER-REQ progress to execute the request and send a

SPEQ-RESPONSE to client speculatively.

4. The client’s timer expires since it received less than 2 f + 1. It proceeds to resend its

request to all replicas.

5. All non-primaries send a CONFIRM-REQ, which has the request to be ordered by

the primary, and the replicas itself start a timer.

6. There are two situations that can occur here, where in the first if the primary decides

to delay the subsequent messages, it might trigger the timeouts on the non-primaries,

which will then initiate a View Change and pick a new primary. As for the second,

if the primary sends a CONFIRM-REQ, in which assigns a sequence number as well,

to the replicas, these can then execute and reply to the client finishing the process.

7. Client receives matching replies after the process has been restarted with a new

primary.

2.3.4 Fault handling when there is one faulty replicas

Client

Primary

Replica 1

Replica 2

Replica 3

1 2 3 4 5 6

Viewer does not support full SVG 1.1

Figure 2.13: Zyzzyva execution when there is a faulty replica. [2]

In case the client’s timer expires, and it only receives between 2 f + 1 and 3f matching

replies (Figure 2.13, from step 4 and on) :

4. The client progresses to create a COMMIT certificate that possesses SPEC-RESPONSE

messages from replicas who replied and dispatches COMMIT messages to all replicas.

5. Replicas that receive COMMIT messages verify if their local history matches the his-

tory present on the message. If equivalent, replicas answer with a LOCAL-COMMIT

to the client.

6. Upon receiving 2 f + 1 replies, the client commits.

2. Related Work and State of the Art 27

2.3.5 Fault recovery model

Replicas in Zyzzyva have a local log where they store the ordered requests they receive from

the primary, called the ”history” log. They also store a copy of a max commit certificate,

which is the commit certificate seen by the replicas with the highest sequence number.

Zyzzyva uses checkpoints that are built at each k-interval of requests. Each replica pre-

serves a stable checkpoint and a tentative checkpoint. When a replica wants to generate

a checkpoint, it starts by building a tentative version of it. It then multicasts a CHECK-

POINT message. This message consists of the highest sequence number involved in the

checkpoint, a snapshot, and a digest of the generated tentative checkpoint. To acknowledge

that a checkpoint is stable, replicas must receive at least f + 1 matching CHECKPOINT

messages and snapshots.

2.4 BFT-SMaRt

2.4.1 Protocol overview

BFT-SMaRt[10] [24] is a primary-based Byzantine Fault Tolerance Protocol which has a

requirement of 3 f + 1 replicas in order to secure liveness and safety in presence of up

to f faults. The communication model employed is partial synchrony. It uses MACs or

digital signatures for message authentication, considering that authentication occurs in

every protocol step.

This protocol has similarities with PBFT[9, 31] in that it employs a three-phase agree-

ment. It uses a variety approaches that improve upon its predecessor, such as dynamic

reconfiguration, which allows it to add/remove replicas on run-time and the usage of a

different approach to state transfer, which enables replicas to reintegrate on a system

without restarting the service. Most importantly, it implements a technique, denoted as

VP-Consensus, to reduce the amount of communication steps between replicas through

the use of abstractions that enable modular SMR implementations without the usage of

reliable broadcast.

2.4.2 Fault Free execution

Figure 2.14 exhibits the usual pattern for fault-free execution. As for authentication, we

are going to use MACs. This protocol consists of the following steps outlined below:

28 Injecting Faults in Byzantine Fault Tolerance Protocols

Client

Primary

Replica 1

Replica 2

Replica 3

1 2 3 4 5

Viewer does not support full SVG 1.1

Figure 2.14: BFT-SMaRt normal execution. [24]

1. Client sends a REQUEST message to all replicas. This message consists of a sequence

number used for once time semantics, the client’s operation, the operation’s type, and

the client’s identifier. It then proceeds to wait for matching replies with the same

sequence number.

2. After receiving a REQUEST message, all replicas check to see if it contains a valid

operation, sequence number, and MAC. The request is then stored in each replica’s

TO-ORDER set, and non-primaries start a timer. If this timer expires, it means that

the primary did not propose anything. At this stage, the primary’s role is to propose

a batch of requests. As such, it sends a PROPOSE message to all non-primaries

containing the sequence and view number and the batch of requests to be executed.

3. Upon receiving PROPOSE messages from the primary, replicas verify whether the

sender is indeed the primary. If this is the case, non-primaries register the batch of

requests that were proposed, and then send a WRITE message to all replicas, along

with a digest of the proposed batch of requests. The WRITE message consists of the

same information relegated by the primary, such as the sequence and view number

and the batch of requests.

4. Upon receiving 2 f + 1 WRITE messages with the same digest, replicas are decided

and consequently produce a proof (certificate). This proof, as well as the batch of

operations, are then recorded in the replica’s log. The replicas then send an ACCEPT

message to all replicas, which includes the decided-upon requests, the proof, and the

view and sequence number.

5. Replicas who receive 2 f + 1 matching ACCEPT messages proceed to execute the

requests and send their results to the client via a REPLY message. This message

2. Related Work and State of the Art 29

consists of the client’s sequence number for once time semantics and the operation

result.

6. The service is concluded when the client receives at least (2f+1) matching REPLY

messages.

2.4.3 Fault handling with a faulty primary

BFT-SMaRt, like other protocols, possesses a View Change protocol. This protocol is

known as ”regency-change”, so a view corresponds to a regency. For clarification, we will

use the view change denomination. For instance, if we have a faulty primary that tries to

starve the protocol by denying any REQUEST being proposed, a view change is started

by the non-primaries if their timers expire twice:

1. A faulty primary after receiving a REQUEST from a client decides to not multicast

a PROPOSE message to non-primaries present in the group. Non-primaries start the

first timer after receiving the REQUEST message from the client.

2. When the first timer on non-primaries is triggered, they take action and multicast

the request again to all replicas. Following that, non-primaries also start a second

timer.

3. The faulty primary decides to ignore the retransmitted REQUEST messages. Non-

primaries second timer is triggered, and a view change protocol starts. Replicas are

forced to synchronize their states and appoint a new primary.

4. Replicas timers related to the other pending requests are aborted, and they multicast

a STOP message (which includes the next view number and the set of requests that

were time-outed) to elect a new primary.

5. Upon receiving more than f STOP messages, replicas start to change their view

to a new one. Upon receiving more than 2 f messages, the decision processing is

interrupted, and the view is updated. Afterward, all replicas must be in the same

state, so to achieve this, replicas send a STOPDATA message containing their history

logs and the new view to the new primary.

6. After receiving STOPDATA messages, the new primary checks if there is no instance

of the consensus missing. After collecting n − f matching messages, it sends a SYNC

30 Injecting Faults in Byzantine Fault Tolerance Protocols

message to the non-primaries. This message contains information about the agreed-

upon consensus instances to be followed.

7. To ensure that the primary sent correct information, non-primaries execute the exact

computations performed by the primary after receiving the SYNC message from

the primary. If the computations match, the replicas proceed to pick the same log

(highest one). After these operations, they can return to resuming the previously

paused decision processing and sync at the same state.

2.4.4 Fault handling with a faulty client

In case a faulty client decides to send a REQUEST message to all non-primaries but to

the primary, the following steps (Figure 2.15) are taken by the system:

1. A client sends REQUEST messages to all non-primaries, but not to the primary.

2. Non-primaries receive the REQUEST and start a timer.

3. When the timer on non-primaries expire, they retransmit the REQUEST to the

primary and start a second timer. In case this timer expires, a View Change (syn-

chronization) phase begins.

4. The primary receives the REQUEST and begins proposing PROPOSE messages to

non-primaries.

Client

Primary

Replica 1

Replica 2

Replica 3

1 2 3 4

the non-

leaders

expire

Timers in

Viewer does not support full SVG 1.1

Figure 2.15: Execution with a faulty client.[24]

2.4.5 Fault recovery models

In regards to the recovery protocol, BFT-SMaRt uses a sequential checkpointing (Figure

2.16) protocol, where only a subset of replicas perform a checkpoint at any given time,

2. Related Work and State of the Art 31

thus allowing the remaining replicas to process client requests without disrupting system

availability. This protocol also improves the performance when the replicas take a snapshot

of their state. The main advantage here is to have n − f replicas continue processing

requests while replicas take snapshots of their states at different times as each other. In

parallel checkpointing (For instance, PBFT, Zyzyvva, and et cetera), there is performance

degradation since all the replicas create a checkpoint simultaneously, halting the system

from performing any actions during that time. So, in the end, replicas generate a checkpoint

at their k-interval period, being that they do not construct a checkpoint at the same time

as other replicas, avoiding the case that happens in parallel checkpointing.

T
im

e

Primary Replica 1 Replica 2 Replica 3

Checkpoint

Checkpoint

Checkpoint

Checkpoint

Checkpoint

Checkpoint

Viewer does not support full SVG 1.1

Figure 2.16: Sequential checkpointing.
[33]

Primary replica 1 replica 2 replica 3

T
im

e

Checkpoint 4

Checkpoint 3

Checkpoint 2

Checkpoint 1

Log 4

Log 3Log 3

Log 2Log 2

Log 1 Log 1Log 1

Log 2

Log 1

Viewer does not support full SVG 1.1

Figure 2.17: State transfer view of the
protocol.[33]

Regarding state transfers, [33], this protocol is used to update states in replicas during

recovery, using checkpoints and logs from replicas. There are several occasions that a state

transfer can be triggered. For instance, if a replica is added during run-time, the replica

will have to resort to this protocol to have its state updated to catch up to the other

replicas states. Another example is when, after a view change phase, some replicas might

have gaps in their decision log (its latest decision log does not match with another decision

log). Furthermore, if a crashed replica is restarted and needs to update its state, the state

transfer protocol is also started.

The state transfer protocol follows through several steps, where initially, a replica(or

a leech) that needs to recover/update its state, checks its checkpoint, its local log, and

dictates its agreement id(sequence number and last logged request). Then, the leecher

proceeds to request the most recent agreement id from the seeders(the other replicas).

32 Injecting Faults in Byzantine Fault Tolerance Protocols

The seeders, after receiving a request, forward their agreement id’s. Upon receiving n − f

agreement id replies from the seeders, the leecher obtains the state’s id and the validation

of these from the other seeders. Figure 2.17 shows how the segmentation of checkpoints

and logs are distributed.

In this case, we will assume that the primary has the most recent checkpoint and the

replica 3 has the oldest. Each log in the figure represents a partition of a replica’s entire

log. Each log partition is used as a validation to move a checkpoint’s state to a more recent

one. In order to validate, the leecher retrieves the states from the seeders, which contain

the checkpoint and log partitions associated with it, as well as the corresponding hashes

of log partitions and the most recent checkpoints from other seeders. The leecher has to

replay the partitioned logs sent from the seeders so it can validate through the hashes and

update its state. It then generates an intermediate checkpoint and computes the hash

associated with it. Following that, it determines whether the hash of the intermediate

checkpoint corresponds to the checkpoint provided by the replica. If they match up, it

can safely stay in this state and proceed to the next checkpoint and use the partitioned

logs associated with it. It terminates the state transfer protocol when it reaches the most

recent state after several operations.

2.5 Prime

2.5.1 Protocol overview

Prime [14] is a primary-based Byzantine Fault-Tolerant Protocol which has a requirement

of 3 f + 1 replicas to ensure liveness and safety in the presence of up to f faults. The commu-

nication model used is partial synchrony. As concerns message authentication, it employs

digital signatures(public-key cryptography) and uses a threshold signature protocol during

a view change.

This protocol attempts to reduce the amount of degradation (time delay) that can

occur with faulty replicas and, more importantly, the primary. In addition, it ensures that

a primary will have to propose an ordering on all operations at some point without being

unfair to non-primaries. It also attempts to adapt to network conditions and can determine

an ideal time for replicas to timeout based on the latency between correct replicas.

Prime employs a novel ordering protocol in which non-primaries periodically multicast

a summary message containing all the requests ordered that they know and force the

2. Related Work and State of the Art 33

primary to send an ordering message containing the summary messages gathered to ensure

undeniability and integrity. Non-primaries verify the performance of the primary regularly

(for example, time taken by the primary to order requests to non-primaries), and in case

the primary is slower than a certain threshold imposed, non-primaries vote to elect a new

primary.

Non-primaries also frequently perform calculations to determine when they should ex-

pect an ordering message from the primary. This calculation is based on the primary’s

frequency of sending ordering requests, the latency between replicas, and a network-specific

constant variable. To help with the monitorization of the primary, Prime allocates a fixed

amount of work to be ordered. This method is used because the load that the system

can handle is dynamic, which means that a primary could perform worse if there was a

significant load of requests (similar to a denial of service), and non-primaries could believe

that the primary was acting faulty, which would translate the system’s state to a view

change. If the load were static, there would be no need to allocate a fixed amount of work

to the primary.

2.5.2 Fault free execution

As illustrated in Figure 2.18, this protocol has more steps than the previously discussed

protocols. The following list illustrates how the system’s normal execution is handled:

Client

Primary

Replica 1

Replica 2

Replica 3

1 2 3 4 5 6 7 8 9

Viewer does not support full SVG 1.1

Figure 2.18: Prime normal execution. [14]

1. A Client sends a REQUEST message to one of the replicas at random. This message

consists of the client’s operation and a sequence number specific to that specific

client, which increments each time that client makes a request. It starts a timer until

it receives at least f + 1 matching responses from different replicas.

34 Injecting Faults in Byzantine Fault Tolerance Protocols

2. The replica that receives the REQUEST message validates the client’s signature. It

then assigns a preorder sequence number and sends a PO-REQUEST message to all

replicas with the REQUEST details.

3. Once replicas receive PO-REQUEST messages, they verify the signature and the con-

tents, specifically if this PO-REQUEST is new (they verify according to the preorder

sequence number). If new, they multicast a PO-ACK message that includes a list

of the replicas that sent a PO-REQUEST, a digest of the request, and the preorder

sequence number.

4. Upon receiving at least 2 f PO-ACK matching messages and verifying the signatures,

replicas propagate a PO-SUMMARY message containing a preorder certificate, which

proves that replicas have agreed on preordered requests and operations, as well as a

list of replicas that sent a PO-REQUEST.

5. When the primary collects at least 2 f PO-SUMMARY matching messages, it verifies

the signatures and, knowing that replicas have requests preordered and are expecting

ordering messages, it multicasts a PRE-PREPARE message. This message builds on

the view and sequence number and a summary matrix. The matrix contains all of the

entries from each replica’s preorder summary. All replicas store the most recent PO-

SUMMARY messages that they received from each other. If there is an inconsistent

PO-SUMMARY message, it may indicate a faulty replica, which is then added to a

blacklist.

6. Replicas upon receiving PRE-PREPARE messages, verify several elements. First,

they check the signature, then if their preordered summaries match the primary’s

matrix preordered summary, if the view number is the current one, and whether it

has processed that specific PRE-PREPARE message before. Following these checks,

it multicasts a PREPARE message with a view and sequence number, as well as a

digest of the preorder matrix summary from the primary. If replicas receive PRE-

PREPARE messages from the primary with the same view number but different

summary preorders, they blacklist the primary and call for a new primary election.

7. Upon receiving at least 2 f matching PREPARE messages, replicas validate the sig-

nature. Then they execute the request and multicast a COMMIT message built on

the PREPARE messages’ information.

2. Related Work and State of the Art 35

8. After receiving at least 2 f + 1 COMMIT messages, replicas send a REPLY to the

client. This message contains the client’s sequence number as well as the operation’s

result.

9. The client commits to the request after receiving at least (f+1) matching REPLY

messages. In case the timer expires before the client receives at least f + 1 matching

replies, the client proceeds to send the REQUEST to another replica or to at least

f + 1 replicas to ensure the request reaches a non-faulty replica.

2.5.3 Fault handling when having a faulty primary

In order to detect a possible faulty primary, Prime has a sub-protocol that verifies if a

primary is acting suspicious called Suspect-Leader. According to Amir et al. [14], it

employs three methods to achieve that goal. The first is that non-primaries are aware of

what to expect when the primary sends PRE-PREPARE messages, primarily due to the

former PO-SUMMARY messages that need to be included in the PRE-PREPARE message.

The second is that non-primaries regularly evaluate how much time it usually takes the

primary to send PRE-PREPARE messages (with their preorder summaries) after them

sending their PO-SUMMARY message. Lastly, non-primaries can determine the speed at

which the primary should be sending PREP-PREPARE messages. Through the use of

the mentioned methods, replicas can measure the performance of the primary and detect

whether the primary is faulty.

Client

Replica 0

Replica 1

Replica 2

Primary

1 2 3 4 5 6 7 8 9

Leader Supected...

Jumped to...

10 11 12 13

View Change Protocol

Viewer does not support full SVG 1.1

Figure 2.19: Prime execution under Leader suspect and view changing protocols.

If a replica detects that the primary of the current view is faulty, it takes action and

sends a NEW-LEADER message to all replicas (containing the following view to which the

replicas should jump) to change the primary.

The replica that sent the NEW-LEADER message continues to partake in the protocol

until it collects 2 f + 1 NEW-LEADER messages for a later view. Upon receiving 2 f + 1

36 Injecting Faults in Byzantine Fault Tolerance Protocols

NEW-LEADER messages for the same later view, the replica that initially sent the message

progresses to transmit a NEW-LEADER-PROOF message to all replicas and jumps to the

following view. Replicas that received NEW-LEADER-PROOF messages jump to the next

view, leave their current view and initiate a view change protocol.

The view change protocol attempts to address issues that PBFT [9] had with its view

change protocol, most notably timeouts being doubled with each view change. So, they

used a different approach where instead of the primary being the one coordinating every-

thing, it only sends a REPLAY message with the information required for progressing the

view change. Non-primaries can maintain a steady hand on the primary by checking if

the received REPLAY messages are valid. This protocol uses a reliable broadcast protocol

to guarantee that each replica is in the same state through dissemination. At the end of

this protocol, a threshold signature protocol is used, so replicas can verify that the new

primary is not misleading non-primaries.

Once a replica jumps to the next view, it initiates the view change protocol and mul-

ticasts a REPORT message (Starting from step 6). This message consists of the new view

value, the last sequence number that a request was executed, and the size of its PC-SET(a

set of prepared certificates for requests that the replicas sent a commit but did not get

fully ordered). The prepared certificates in PC-SET are also sent afterward.

Any REPORT messages received by replicas are verified and logged. Replicas also

prepare themselves to receive all the prepare certificates in the PC-SET of that replica.

These are all logged after being received. After replicas collect 2 f + 1 REPORT messages

and the prepared certificates in each PC-SET, they send a VC-LIST. This message consists

of the view number and the replicas who sent the information. In the next step, after

receiving VC-LIST messages, replicas progress to send a VC-PARTIAL-SIG message. This

message builds on the information from VC-LIST, the sequence order that the primary

will begin at, and a computed partial signature (threshold encryption) calculated into a

tuple that includes the view, the list of replicas ids, and the sequence order of the primary.

Replicas that receive 2 f + 1 PC-PARTIAL-SIG can then combine the partial signatures

and generate a proof (VC-Proof) for the tuple of variables mentioned before. They then

send a VC-PROOF message to all replicas containing the tuple’s information and proof.

Following this, replicas begin monitoring the time it will take the primary to send a

REPLAY message. As a result, the primary must send the message within a specific time

frame before being suspected as faulty. After receiving VC-Proof messages, the primary

2. Related Work and State of the Art 37

must send a REPLAY message (Step 10) containing all of the information gathered in the

previous messages and define an ordering based on VC-PROOF (sequence order) and the

most recent sequence numbered request that was executed (Found in REPORT). Following

the previous step, it can then commit to using the state that the replicas sent to him.

Finally, replicas that receive the REPLAY message attempt to agree via a REPLAY-

PREPARE and REPLAY-COMMIT (similar to the standard execution protocol, so steps

11 and forward), once committed, they execute all agreed-upon requests in a batch.

2.5.4 Fault recovery model

In terms of the reconciliation protocol, replicas that have fallen behind with their PO-

SUMMARY can be recovered. This process involves the need for 2 f + 1 replicas to assist

those who did not acknowledge some request preordering. This protocol employs MDS era-

sure coding, so each replica (up to the current state) sends a portion of the PO-REQUEST

that is missing to the recovering replica. In this case, the PO-REQUEST is encoded in

2 f + 1 parts, with only f + 1 parts being required to decode it. After the decode, the

recovering replica can update itself to the most recent state.

2.6 RBFT

2.6.1 Protocol overview

RBFT [15] is a primary-based Byzantine Fault Tolerance protocol that has a requirement

of 3 f + 1 replicas to ensure secure liveness and safety in the presence of up to f faults.

It employs partial synchrony for its communication model. Message authentication is

accomplished through a combination of digital signatures encapsulated in a MAC.

RBFT’s approach attempts to mitigate issues related to primaries and what they are

capable of when faulty, as it attempts to solve problems that previous robust protocols

such as [12–14] had. This protocol uses multiple instances of the same execution running

in parallel to compare the throughput of each other’s instances, where each instance receives

the same request from the client. There is one master instance that executes and replies

to the client, while the other instances are referred backups (which monitor the master

instance). Each instance contains one different primary in order to check if the master

instance’s throughput has degraded. If, by any chance, the master instance has a lower

38 Injecting Faults in Byzantine Fault Tolerance Protocols

throughput than one or more backup replicas, the primary in the master instance is likely

to be faulty. When this occurs, a new primary is elected.

One of the most critical aspects of this protocol is the monitorization protocol in place

in each node, as it monitors if the master instance has problems. It also measures the

average latency for each request to be ordered. As for the clients, the primary in the

master instance must be fair to all of them, or else an instance change would initiate

due to backup instances monitorization. Each node contains a counter for each protocol

instance. This counter has the number of requests ordered by each protocol instance. This

counter is then used to compute the throughput of each instance replica on a regular basis

before being reset. With this, it can compare its throughput with the master instance. In

case the throughput is lower than a certain threshold, the backup instances will consider

the primary of the master instance to be faulty and initiate an instance change.

2.6.2 Fault free execution

Client

Primary

Replica 1

Replica 2

Replica 3

1 2 3 4 5 6 7

Viewer does not support full SVG 1.1

Figure 2.20: RBFT normal execution. [15]

Figure 2.20 shows the normal pattern of execution. This protocol works as the follow:

1. Initially, a client sends a REQUEST message to all replicas. This message is based

on the operation requested as well as the clients and request identifier. This portion

of the message is signed with the client’s private key. A MAC is used to authenticate

the entire REQUEST message.

2. Upon receiving a REQUEST message from the client, replicas check whether the

MAC is valid or not. If valid, they validate the signature. If the signature is not

valid, that client is added to a blacklist, meaning that any requests sent by that client

will be ignored. If the signature is valid, replicas check if the request has already been

executed. If this is the case, replicas resend the correspondent reply to the client. In

case it is a new request, replicas send a PROPAGATE message that is multicasted.

2. Related Work and State of the Art 39

This message contains the client’s original request as well as a MAC. It is worth

nothing that replicas will not send a PROPAGATE message if the other instance

nodes did not receive the same request.

3. When at least f + 1 PROPOGATE messages are accepted for the same request,

it indicates that the replicas are ready to begin processing the request. Following

that, the primary sends a PRE-PREPARE message to all replicas, which includes a

sequence and view number, as well as a digest and a MAC.

4. After receiving a PRE-PREPARE message from the primary, non-primaries proceed

to verify the MAC. If valid, replicas store this message in their log. Next, non-

primaries send a PREPARE message to all replicas only if their node has received

at least f + 1 copies of the request, implying that the message will only be sent if

the other instances receive it as well. This prevents a faulty primary and a faulty

client from collaborating, in which the client would send valid requests to it, and that

instance’s performance would skyrocket in comparison to the others, which could lead

to an instance change.

5. Upon obtaining at least 2 f matching PREPARE messages, replicas verify if that

the other replicas are consistent and prepare for commitment. This results in them

sending a COMMIT message (consisting of the view and sequence number, digest,

and the result) alongside a MAC to all replicas.

6. When replicas receive 2 f + 1 matching COMMIT messages, they can then reply to

the client. Replicas subsequently send a REPLY message to the client. The message

includes the result of the request execution done by the replicas alongside a MAC.

7. After receiving at least f + 1 matching REPLY messages from replicas, the client

verifies the MAC and accepts the result of the protocol’s request execution. The

reply is only sent by the master instance.

Replica Replica Replica

Replica Replica Replica

Primary

Primary

ReplicaReplica Replica

Replica Replica Replica

Primary

PrimaryInstance...

Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3

Master i...

Backup i...

Viewer does not support full SVG 1.1

Figure 2.21: Instance change of RBFT. [15]

40 Injecting Faults in Byzantine Fault Tolerance Protocols

2.6.3 Fault handling when having a faulty primary

Because RBFT employs instances, changing the primary requires two protocols, the first of

which is an instance change and the second of which is a view change. The instance change

protocol, Figure 2.21, is used as a preparation to, later on, change the faulty primary in

the master instance via a view change protocol. Each replica maintains a counter in order

to identify each instance change message. When a node confirms that there is a significant

contrast between its performance and that of the master instance, it can then assume

that the primary in the master instance is faulty. With that, this node proceeds to send

an INSTANCE CHANGE message (it sends its counter) alongside a MAC to the other

nodes. Upon receiving that message, the nodes verify the MAC and if this message was

for an older instance change. A comparison is performed to check if the counter received is

smaller or greater than its own. If greater, then the message is discarded because it belongs

to an older instance change. On the other hand, if the counter is smaller or equal, the

nodes send an INSTANCE CHANGE message to all other nodes. Upon receiving 2 f + 1

matching messages, they initiate a view change in each protocol instance, meaning that

each protocol instance gets a new primary and the faulty primary no longer is the primary

on the master instance. They also increment the counter for each instance change.

2.7 Fault injection

One of the methods to test the systems described in this chapter, in real-world scenarios,

is through the use of fault injection tools [34–36]. Fault injection attempts to determine

whether the system’s response meets its specifications and implementation, in presence of a

defined range of different faults. Through the deliberate introduction of faults, fault injec-

tion tools enable both software and hardware developers to test and evaluate their system’s

reliability, consistency, performance availability, and security. In addition, these tools can

also be used to perceive the effectiveness of fault tolerance mechanisms employed, such as

recovery mechanisms, error detection, masking, and dynamic reconfiguration techniques.

The usage of fault injection tools has a number of advantages, according to Ziade et

al.[37], including the following:

• The ability to study the behavior of systems in the presence of faults and their effects

on the performance and functionality;

• The potential to find flaws in the design/implementation of systems;

2. Related Work and State of the Art 41

• The ability to assess the effectiveness of fault tolerance mechanisms employed in

systems such as recovery mechanisms, error detection, masking, and dynamic recon-

figuration techniques;

• The prediction of the target system’s faulty behavior, including a measurement of

the efficiency provided by the fault tolerance mechanisms;

• The estimation of the failure coverage and latency of fault tolerant mechanisms.

• The ability to explore the effects that different workloads have on the effectiveness

of fault tolerant techniques.

Several aspects categorize fault injectors based on the goal they want to accomplish.

Such as how intrusive they are when injecting, how much control we have over them, the

cost of assembly, the number of systems that can be used with them, the range of faults

they have, whether they are used to test hardware, and so on. All of these characteristics

are important in order for someone to choose and assess their system, considering that

some of the aspects are more important as a factor of choice than others, such as, for

instance, the types of faults to be used against the targeted system.

Fault injection encompasses a wide range of techniques, comprising typically into

three categories, including software-based fault injectors, hardware-based fault injectors,

and hybrid fault injector. Hardware injectors use gadgets to inject faults into hard-

ware, being that these are capable of employing techniques like changing the temperature

of the hardware[38], modifying voltages and electromagnetic interference’s[39–41], port

testing[42], pin-level testing[43, 44] and even the use of radiation[45]. Software injectors

use programs/applications to introduce faults into software code during runtime or pre-

runtime. Software-based injectors that rely upon runtime injection employ techniques that

interrupt the execution of tasks while the system is running and inject faults during those

periods[46–49]. As for pre-runtime injection (compile-time injection), faults are injected

into the source code before the system is started.

Even though the approach of using software-based injectors is excellent and flexible, it

has some limitations. One of these limitations is the inability to inject code into unreachable

areas of software. Another flaw is that the injection of code may transform the original

system’s structure into a distinctive one that runs differently[37]. This possible outcome

is primarily related to the level of intrusiveness, so software-based injectors must have a

42 Injecting Faults in Byzantine Fault Tolerance Protocols

relatively low level of intrusiveness in order not to disrupt/modify much of the original

source of code.

2.7.1 BFT fault injectors

Fault injection can also be applied against systems that have been designed to tolerate

Byzantine faults, as the ones that exist are software-based, such as Hermes[20], BFT-

BENCH[22] and TWINS[21].

Hermes[20] is a fault injector that can inject faults in BFT-SMaRt[10, 24]. This fault

injector allows users to assess the performance of BFT-SMaRt by injecting faults and ob-

serving the resulting behaviors. It uses an orchestrator to coordinate the various runtimes

that are built into the replicas and client. The fault injection occurs through its runtime

which is aggregated with either the replicas or clients of the protocol. It uses aspect oriented

programming, specifically AspectJ, to make it easier to inject faults without changing the

protocol’s code. Hermes is also capable of injecting different faults in different replicas/-

clients at the same time, meaning that each replica/client only runs one specific type of

fault during each experiment. Lastly, this fault injector allows for the injection of a variety

of faults, including network, crash, CPU load, and corrupted payload/headers.

BFT-BENCH[22], is a BFT fault injector capable of setting various environments and

injecting faults in various deterministic BFT systems. BFT-Bench allows to define various

execution scenarios and fault loads, as well as automatically deploy them in an online sys-

tem and generate various metrics related to the monitorization. This allows for the analysis

and comparison of the protocol’s effectiveness in various situations. This fault injector has

two useful features: a) BFT protocol selector, which launches a specific BFT implementa-

tion (PBFT, Chain and RBFT) with a specified number of replicas, and b) cluster setup,

which allows clusters to be prepared to launch BFT protocols. BFT-BENCH employs

an orchestrator that communicates directly with its ”benchmark users” to prepare target

replicas for evaluations and comparisons, and it employs some communication primitives

to send commands to inject faults based on what was defined and collect metrics. To

inject the faults, a daemon is run in the replicas to trigger the faults. This fault injector

is capable of using a few faults such as, crash, delay, message flood, and increasing the

number of clients that make requests in the protocol in a way to overload the system. It is

worth noting that this injector can inject more than one fault at a time on each replica, but

there’s no way to specify how many rounds those faults run for, so they run indefinitely.

2. Related Work and State of the Art 43

TWINS[21], is a recent fault injector which emulates byzantine behaviours by running

two instances of the same replica/node with the exact specification and identity. Both

replicated replicas/nodes are seen as one entity to the rest of the system, allowing to

deploy different combinations of faults simultaneously. These replicated instances, for ex-

ample, can send messages in the same consensus round, but they will contain contradictory

information. Twins is made up of two critical components: the test executor and the test

generator. The test executor is in charge of controlling message scheduling in accordance

with a predefined scenario and ensuring that the system views each pair of replicas in each

faulty node as one. The test generator, on the other hand, is responsible for creating test

scenarios that are then sent to the test executor. Twins can generate various Byzantine

behaviors such as, double voting, losing internal state, invalid messages and equivocation.

2.7.2 Summary of the BFT fault injectors

To summarize, all of these injectors take different approaches to fault injection, but some

lack capabilities that a fault injector would benefit from, such as the use of faulty clients.

The following table 2.22 shows a simple summary comparing the injectors briefly discussed

with the fault injector developed throughout this dissertation, Zermia, which is further

explained in this document’s chapter 4.

Figure 2.22: Comparison of the characteristics between some of the existent BFT fault
injectors.

The summary table 2.22 shows that many of these injectors lack some capabilities that

could be used to develop more specific and edge case type scenarios, with Zermia being

the exception. It is worth noting that both Hermes and Zermia have the potential to be

adaptable to more protocols but lack the results to demonstrate it, particularly Zermia,

which is a brand new fault injector that we did not have time to test with more than one

protocol due to time constraints.

Chapter 3

Analysis of protocols under attack

In the previous chapter, we described some of the most relevant work in BFT and verified

the trade-offs that each protocol faces. Unfortunately, these trade-offs may open up new

attack vectors for a malicious actor to exploit in order to compromise the system.

As such, in this chapter, we discuss how a malicious actor can compromise the various

protocols and how each protocol responds to different types of faults, as this will provide

insight into what kind of faults to implement in tools that can assess these protocols,

specifically fault injectors. Additionally, this will helps us to verify and prove that some

theoretical attacks are feasible in practice against BFT-SMaRt[10, 24] later on.

3.1 PBFT

In this section, we explore what sort of fault environments PBFT[9, 31] fails to mitigate.

For such, we investigate which sub-protocols fail to withstand fault scenarios not thought

of, such as the agreement phase. We also look into what kind of faults can cause the system

to slow down or even disrupt its state.

3.1.1 Protocol fault analysis

a) Agreement phase

As we learned from the previous chapter, PBFT clients send requests to all replicas in

the form of <REQUEST, o, t, c>αc . These requests are authenticated and logged on non-

primaries, which causes a timer to start. When used maliciously by a client, some of the

arguments in the REQUEST message can disrupt the system into starting a view change

phase. Faulty clients may also choose not to send the REQUEST message to the primary

45

46 Injecting Faults in Byzantine Fault Tolerance Protocols

and instead send it only to the non-primaries, resulting in a view change. The following

scenarios are identified in the following list:

1. A faulty client sends a REQUEST message to all non-primaries but the primary;

2. A faulty client sends a REQUEST message with the correct MAC to all non-primaries

except the primary, which receives a REQUEST with a corrupted authenticator;

3. A faulty client sends a REQUEST message to all non-primaries except the primary,

which receives a REQUEST with any or all of the arguments incorrect;

4. A faulty client sends a REQUEST message to each replica with different operations.

5. A faulty client sends a REQUEST message to each replica with a different timestamp;

6. A faulty client sends a REQUEST message to all non-primaries except for the pri-

mary, which receives a REQUEST with a timestamp inferior to a REQUEST previ-

ously executed for the same client;

7. The faulty client performs the same actions as in 4 and 5, but it only sends the

REQUEST message to non-primaries.

The scenarios described above all have one thing in common, start a view change and

replace the current primary.

In the first and last case, the primary cannot order requests since it does not receive

them from the client (which also does not retransmit either). This situation eventually

leads to non-primaries start a view change since they did not receive the request ordered

by the primary before their timer associated with that request expired. Furthermore,

because non-primaries in PBFT do not have request retransmission methods, the primary

cannot do anything to avoid being replaced when the non-primaries timers expire.

In the second case, once the primary receives the REQUEST message, it attempts but

fails to authenticate it. As a result, the primary discards the request. The non-primaries

timer associated with that request expires, and a view change is initiated.

In the third, fourth, and fifth scenarios, the primary authenticates the REQUEST and

sends a PRE-PREPARE message to all replicas. Once non-primaries receive the PRE-

PREPARE, they compute the digest for the client request they have and compare them

to the one sent in the PRE-PREPARE message, but they fail to do so. As a result, they

initiate a view change.

3. Analysis of protocols under attack 47

In the sixth case, the primary discards the REQUEST since the timestamp for that

message is inferior to one REQUEST previously executed for the same client. Once their

timers go off, the non-primaries begin a view change.

We now investigate what happens in the remaining phases of the agreement protocol,

where a faulty primary acting alone or colluding with a faulty non-primary can compro-

mise consensus from the PRE-PREPARE phase to the COMMIT phase. As discussed in

chapter 2, PBFT <PRE − PREPARE, v, n, D(m)>αp as well as <PREPARE, v, n, D(m)>αi

messages have a similar arrangement, which includes the view and sequence number and

the client’s request digest. Both of these message’s arguments can be altered to provoke

a failure in the consensus during the COMMIT phase. As we know, the primary does

not send PREPARE messages in the protocol, as this phase solely belongs to the non-

primaries. However, a malicious primary can have the ability to send PREPARE messages

if it so desires, and a non-primary may accept them. We assume that this case is possible

since there is no indication to the contrary in the PBFT paper [9, 31]. The following list

describes the possible scenarios in which consensus cannot be reached:

1. A faulty primary sends two separate PRE-PREPARE messages, each with a differ-

ent sequence number. These messages are delivered to two different halves of the

consensus group;

2. A faulty primary sends two separate PRE-PREPARE messages, each with a different

view number. These messages are transmitted to two different halves of the consensus

group;

3. A faulty primary sends two different PRE-PREPARE messages, one of which has the

correct client request digest and the other does not. These messages are delivered to

two different halves of the consensus group;

4. A faulty primary sends a correct PRE-PREPARE message to half of the group while

transmitting a PRE-PREPARE with an incorrect MAC to the other half.

5. A faulty primary sends PRE-PREPARE messages to only 2 f replicas and then stops

participating in the protocol’s later stages;

The scenarios portrayed share a common objective: to prevent consensus from occurring

during the protocol’s COMMIT phase.

48 Injecting Faults in Byzantine Fault Tolerance Protocols

In the first scenario, which can be accompanied through Figure 3.1, the faulty pri-

mary sends two PRE-PREPARE messages with different sequence numbers to various

replicas. Those messages are sent so that only 2 f replicas have the same sequence num-

ber. As a result, the faulty primary sends a PREPARE message with the same sequence

number to replica 1, allowing it to generate a prepared certificate since it will have 2 f

matching(including its own) messages. Likewise, replicas 2 and 3 also produce a prepared

certificate since they have 2 f matching PREPARES, but for a different sequence number.

Since the replicas are prepared, they send COMMIT messages, but the group cannot reach

an agreement because the replicas have not received at least 2 f + 1 matching COMMIT

messages.

Client

Primary

Replica 1

Replica 2

Replica 3

Request Pre-Prepare Prepare Commit Reply

v, n = 0, D(m)

m

v, n = 0, D(m)

v, n = 0, D(m)

v, n = 1, D(m)

v, n = 1, D(m) v, n = 1, D(m)

v, n = 1, D(m)

since there isn't at

least 2f+1 matching

sequence number for

the same prepare

Commit phase fails

v, n = 0, D(m)

Figure 3.1: PBFT fail scenario 1.

In the second scenario, we repeat the steps from the first, but this time the view

number is changed rather than the sequence number. This situation should result in the

same outcome at the end, where an agreement is not reachable in the COMMIT phase.

In the third and fourth cases, one of the non-primaries receives a defective PRE-

PREPARE message from the faulty primary and consequently discards it. The remaining

non-primaries create a prepared certificate and enter the COMMIT phase. The faulty

primary stops participating in this phase, and an agreement is never reached between the

remaining two replicas. The other non-primary did nothing because it did not partake in

the PREPARE phase as it discarded the defective PRE-PREPARE message sent by the

primary.

The fifth case follows the same steps as the previous case, but with one minor difference.

In this case, the faulty primary fails to send a PRE-PREPARE message to one of the

non-primaries and stops participating in the protocol. This setup should also result in a

non-agreement in the COMMIT phase.

3. Analysis of protocols under attack 49

b) View change phase

The view change protocol, on the other hand, cannot be exploited in any way known.

We make this statement because of how the protocol is built, given that it leaves no room

for a faulty non-primary to compromise the state since the minimum number of correct

replicas to progress with the view change is well defined.

Since the consensus group needs 2 f + 1 messages to initiate a view change, non-

primaries are not capable of using the message <VIEW − CHANGE, v + 1, h, C, P, Q, i>αi

for evil means. The same applies to <VIEW −CHANGE− ACK, v+ 1, i, j, d>µip messages,

as faulty non-primaries cannot compromise the new primary with maliciously crafted mes-

sages considering the correct primary requires 2 f matching VIEW-CHANGE-ACKS. Fur-

thermore, during the NEW-VIEW phase, a faulty primary cannot compromise the state for

non-primaries using crafted <NEW − VIEW, v + 1, V, X>αp messages since non-primaries

verify if the NEW-VIEW message received contains the former VIEW-CHANGE messages

received by the replica in the V set.

3.1.2 Network and other faults

In PBFT, several faults can contribute to slow the system and thus decreasing performance.

One example is delaying-based faults, which affect the majority of primary-based protocols.

For instance, it is possible for a faulty primary delay the request ordering before replicas

timer expires as stated by Y. Amir et al. [14]. Another exploitable scenario related to delays

occurs during the view change phase. View changes in PBFT have a unique particularity

in that they double the timeout on replicas every time a view change happens, but the

protocol itself does not have a way to reset/reduce the timeouts. As a result, if a system

experiences from multiple view changes across its lifetime, a faulty replica that becomes

the primary can then further increase the delay to order requests.

This protocol is vulnerable to flood-based attacks, which involve faulty replicas flood-

ing the system with messages (fake or correct), causing the correct replicas to waste time

processing/filtering those. Additionally, due to the massive amount of illegitimate traffic

passing by, replicas would struggle to progress with request processing in this scenario.

These attacks could be amplified further by sending requests/messages of the largest pos-

sible size. On the client’s side, there is a situation where misconfigured timers(related to

them receiving replies) are set up to fire off almost instantly, forcing the clients resend their

50 Injecting Faults in Byzantine Fault Tolerance Protocols

requests every time that timer expires. This misconfiguration causes clients to flood the

system and slowing it down since replicas need to verify/process any message they receive.

In the recovery aspect of PBFT, there are some issues with the proactive recovery

protocol, which P. Sousa et al. [50] exposes. For example, the watchdog timer can be tam-

pered with and reprogrammed to either delay or never have a chance to trigger. Another

issue is that the recovery monitor can take significant time to finish its functions since it

operates asynchronously. This mechanism, as P. Sousa et al. [50] points out, can be slowed

down by delaying recovery messages in a hostile environment. The author also mentions

the possibility of postponing recovery by slowing down local internal clocks.

3.2 Zyzzyva

For this segment, we examine at which fault scenarios Zyzzyva [2] fails to alleviate. As

such, we investigate which sub-protocols have exploitable flaws as well as which faults can

cause the system to slow down.

3.2.1 Protocol fault analysis

a) Agreement phase

As we can recall from the previous chapter, the agreement phase protocol in Zyzzyva

does not appear to be vulnerable. For starters, we examine at what a faulty client can

do in this protocol. Clients in Zyzzyva send requests in the form of <REQUEST, o, t, c>σp

to one or more replicas. Faulty clients may attempt to induce a view change through

crafted requests sent to different non-primaries. To understand how it is possible, we will

go through the example below, where we will use two faulty clients, c1 and c2, to cause a

view change.

1. Faulty client c1 sends three REQUESTS to all non-primaries with the same times-

tamp but different operations;

2. All non-primaries retransmit the REQUEST to the primary and start a timer asso-

ciated with it.

3. The primary accepts the first REQUEST retransmitted from replica 3, orders it, and

discards the remaining requests since they had the same timestamp.

3. Analysis of protocols under attack 51

4. Replica 1 and 2 timers expire and send an ”I-HATE-THE-PRIMARY” message to

all replicas in the group, provided that this is insufficient to initiate a view change.

5. The request from c1 is speculatively executed and concluded.

6. Client c2 sends three REQUESTS to all non-primaries with the same timestamp but

different operations.

7. All non-primaries retransmit the REQUEST to the primary and start a timer asso-

ciated with it;

8. The primary accepts the first REQUEST with that timestamp and discards the

remaining; however, in this case, it accepts the REQUEST from replica 1.

9. Replicas 2 and 3 timers expire and send an ”I-HATE-THE-PRIMARY” message to

the entire group. This situation triggers a view change since all non-primaries have

at least 2 f + 1 ”I-HATE-THE-PRIMARY” messages to initiate a view change.

As we can observe, a view change occurs as a result of exploiting the ability of replicas

timer expiring whenever the primary did not order their retransmitted requests and sending

an ”I-HATE-THE-PRIMARY” message to all. Once replicas acquire 2 f + 1 equal messages

during the same view, they start a view change.

In the speculative phase, faulty primaries and non-primaries can only delay the protocol

into a two-phase protocol by not replying to the client or sending a wrongful reply. If the

faulty primary tries to send ORDER-REQ messages differently to each non-primary, the

client, upon receiving the speculative SPEQ-RESPONSE, would verify the inconsistencies

and send proof of misbehavior to initiate a view change.

b) View change phase

In recent work from I. Abraham et al. [51], the authors demonstrate that the view

change protocol has some flaws that can of lead to the system jeopardizing safety through

the collusion of faulty primary and faulty clients. The authors identify two instance in

which Zyzzyva fails to guarantee safety. In the first fault scenario, the authors demonstrate

that prioritizing COMMIT certificates over f + 1 matching histories in the View change

protocol might lead to situations not expected. The first scenario goes through three views

at F = 1, which are as follows:

52 Injecting Faults in Byzantine Fault Tolerance Protocols

1. In the first view, two faulty clients(c1 and c2) send their requests(Rc1 and Rc2) to

the primary. The faulty primary sends ORDER-REQ messages for Rc1 to the non-

primaries 2 and 3 and transmits an incorrect ORDER-REQ to non-primary 4, which

contains Rc2. Following that, both the faulty primary and non-primaries 2 and 3

speculatively execute Rc1 and send a SPEQ-RESPONSE to c1. Since c1 only collects

2 f + 1 matching SPEQ-RESPONSE’s, it generates a commit certificate and proceeds

to transmit a COMMIT message for Rc1 to only the faulty primary due to the client

either being faulty or because there is a significant network delay. The certificate is

saved by the faulty primary.

2. The system enters a view change (view 2) caused by either network delay or the faulty

primary provoking it. In this view, the new primary(replica 2) gathers <VIEW −

CHANGE, v + 1, CC, O, i>σi messages from itself, replicas 1(faulty) and 4. The

VIEW-CHANGE message from itself contains its history execution for Rc1, whereas

the other two VIEW-CHANGE messages contain the history execution for Rc2 from

replica 4 and faulty replica 1 (which sends for Rc2 rather than Rc1). The new primary

then adopts a new history consisting of Rc2, since there were at least f + 1 matching

histories in the 2 f + 1 VIEW-CHANGE messages received. The primary broadcasts

<NEW − VIEW, v + 1, P>σp messages and all replicas adopt the primary’s history

and clear their own. Considering that the history of the primary and other replicas

contains Rc2, they all speculatively execute it and send a SPEQ-RESPONSE to c2).

The client receives 3 f + 1 responses, and all replicas store the committed Rc2 in the

first position in their history.

3. The system goes through another view change (view 3) caused by a network delay.

The new primary (replica 3) collects VIEW-CHANGE messages of itself and non-

primaries 1 and 4. The new primary uses its history, and replica 4 sends its history,

given that both should have the same committed request (Rc2) saved. However,

the faulty non-primary sends a commit certificate for Rc1 in the VIEW-CHANGE

message. The new primary opts for the commit certificate for Rc1 rather than the

f + 1 histories, builds its history based on it, and sends NEW-VIEW messages to

other replicas. The non-primaries adopt the primary’s new history, which clears their

own history. They then execute Rc1 speculatively, send SPEQ-RESPONSE to c1,

and replicas save the committed Rc1 in the first position in their history.

3. Analysis of protocols under attack 53

The second fault scenario focuses on how the View change protocol’s prioritization of

the most extensive commit certificate does not always work as intended. Like the previous

case, it starts with a faulty primary, goes through three views, but uses two-phase protocols

and four clients to break safety. The explanation for this scenario is the following:

1. In the first view, client c1 through client c4 send different requests, where Ac1 and

Ac2 matches the first two clients and Bc3 and Bc4 correspond to the remaining

clients. The faulty primary sends two ORDER-REQ messages for Ac1 and Ac2 to

non-primaries 2 and 3, where the first request is posted in the first place in their

histories and the second request is placed sequentially after the first. The non-

primary 4 receives two incorrect requests from the faulty primary that contain Bc3

and Bc4 and places them in the correct order in its history. Both the primary and

non-primaries execute their requests speculatively and send them to their respective

clients. Client c2 only receives 2 f + 1 and progresses to create a commit certificate

with replicas histories which contain Ac1 and Ac2. Due to network delays, the client

sends a COMMIT message with the commit certificate imbued to only replica 3.

2. The system enters a view change (view 2), caused by either network delay or a faulty

primary provoking it. In this view, the new primary (replica 2) gathers VIEW-

CHANGE messages from itself and non-primaries 1 (faulty) and 4. The VIEW-

CHANGE message from itself consists of its execution history for Ac1 and Ac2,

whereas the other two VIEW-CHANGE messages contain execution histories for Bc3

and Bc4, which are from replica 4 and faulty replica 1(sends for Bc3 and Bc4 instead

of Ac1 and Ac2). The new primary then adopts a new history consisting of Bc3 and

Bc4, since there were at least f + 1 matching histories in the 2 f + 1 VIEW-CHANGE

messages received. The primary broadcasts NEW-VIEW messages, and all replicas

adopt the primary’s history by clearing their own. Both the primary and non-primary

speculatively execute Bc3 and send a SPEQ-RESPONSE to client c3. Since the client

does not receive 2 f + 1 matching replies, it generates a commit-certificate for Bc3

(only for this request since Bc4 is yet to be executed). The client then sends a

COMMIT message to all replicas containing the newly created commit certificate.

Once replicas receive the COMMIT message, they send a LOCAL-COMMIT message

to the client. The client receives 2 f + 1 replies, and all replicas save the committed

Bc3 in the first position in their history.

54 Injecting Faults in Byzantine Fault Tolerance Protocols

3. The system goes through another view change (view 3) caused by a network delay.

The new primary (replica 3) collects VIEW-CHANGE messages of itself and from

non-primaries 1 and 4. The primary uses its commit certificate that was stored

in the first view for Ac1 and Ac2. Replica 4 transmits the commit certificate for

Bc3 and its history consisting of Ac1 and Ac2. As for the faulty replica 1, it can

either match what the primary or replica 4 are sending or send an empty history.

Since the protocol dictates that the primary must choose the most extended commit

certificate, it proceeds to pick its own commit certificate as it has two requests (Ac1

and Ac2) versus the commit certificate replica 4 (or the faulty replica) sent, which

had only one(Bc3). The primary builds its history based on the commit certificate

picked and sends NEW-VIEW messages to other replicas. The non-primaries adopt

the new history from the primary, which clears their own history. Replicas then

speculatively execute (Ac1 and send a SPEQ-RESPONSE to the client c1. This

committed request((Ac1) is then stored in the first place at each replica’s history.

In more recent work, I. Abraham et al. [52] solves the problems mentioned above by

changing how primaries and non-primaries select safe histories from the primary during

view change.

3.2.2 Network and other faults

The implementation of Zyzzyva dictates that for a speculative execution (one-phase pro-

tocol) occur correctly, 3 f + 1 matching replies are needed to be received at a client. In the

event that several replicas fail, the system may be forced to operate with 2 f + 1 replicas.

This scenario implies that the protocol would have to constantly go through a two-phase

protocol in which the client accepts 2 f + 1 matching replies during the second phase.

A faulty primary can amplify the previous scenario by initially ignoring a client’s re-

quest. This client will then have to retransmit the request since it did not receive replies

to all replicas. The non-primaries retransmit the request to the primary and begin a

timer. The faulty primary takes advantage of that and delays the transmission of ORDER-

REQ and sends to only 2 f replicas. The faulty primary and the 2 f replicas that received

ORDER-REQ send a SPEQ-RESPONSE to the client. Because the client only received

2 f + 1 matching replies, the protocol goes into two phases. Because of this setup, the

system takes a significant time to process requests.

3. Analysis of protocols under attack 55

In Zyzzyva, there are some ways to flood the system with messages and therefore

slow down the system. For instance, a faulty non-primary can flood the primary with

FILL-HOLE requests. This situation can occur if a faulty replica when receiving ORDER-

REQ from the primary reports that the sequence number of this request is greater than

expected. As a result, the primary will have to keep sending ORDER-REQ messages

to fill alleged ”holes” in the faulty replica history. The previous scenario can be further

amplified to the point that a faulty non-primary continues sending FILL-HOLE messages

to all replicas, which then they have to send ORDER-REQ for every received FILL-HOLE

message, slowing down the system further. Faulty clients can also cause similar floods if

their retransmission timers are set up to go off immediately, which leads them to transmit

their requests to all replicas endlessly. A Faulty primary can also delay ORDER-REQ’s

from FILL-HOLE requests from a non-primary because non-primaries start a timer related

to the reception of that message.

3.3 BFT-SMaRt

Through this section, we examine BFT-SMaRt[10, 24] and its sub-protocols by verifying

which are and are not compromisable. We begin by inspecting the agreement and view

change protocol, and afterward, we analyze some attacks that are proficient in delaying

the system by abusing the primary.

3.3.1 Protocol fault analysis

a) Agreement phase

Clients in BFT-SMaRt send requests to replicas in the consensus group in the form of

a <REQUEST, nextSeq, op, readOnly> αc . Since we know how the request is built, we can

now ascertain what a faulty client can do or not and what measures the protocol has to

mitigate potential attacks.

We begin by verifying what happens when a faulty client sends requests to different

replicas, where each request has different operations but the same sequence numbers. Two

possible scenarios can emerge from this setup.

In the first case, the primary proposes its request, starts its timer, and waits to receive

messages for the next phase while discarding retransmitted requests from non-primaries

56 Injecting Faults in Byzantine Fault Tolerance Protocols

(with the same sequence number from the same client but different operation). The pri-

mary’s timer expires and disseminates the request, so other replicas have it in the ToOrder

set. After this step, it can safely propose, and consensus may progress since there are at

least 2 f + 1 replicas with knowledge of that request.

As for the second scenario, once non-primaries receive the request, they save it in the

ToOrder set and start a timer. Meanwhile, once the primary gathers the request from the

client, it orders it. The non-primaries receive the proposal but discard it, as they do not

have it in their ToOrder set. After some time, all replicas timers expire for the first time

and consequently disseminate their request in the ToOrder set to all other replicas. There

are two possible outcomes: the primary adopts one of the retransmitted requests or ignores

all of them because it already has a request in its ToOrder set with that sequence number.

In either case, the replica’s timer would expire again because they had not received the

pending request in their ToOrder set, resulting in a view change.

If a faulty client sends a request to multiple replicas, each with a unique sequence num-

ber, each of these requests will be retransmitted across all replicas in the consensus group

once the timers associated with that request expire. Because each request is considered

unique based on the sequence number, the primary ends up ordering the requests received

from the non-primaries, and consensus can progress if there are conditions, such as (2f+1)

replicas having the request in the ToOrder set.

During the <PROPOSE, Cid, Ep, i, val>αi phase, it is the responsibility of the primary

to propose requests for execution in the group, given that those requests must be already

in the ToOrder set in the non-primaries for them to accept. A faulty primary may attempt

to modify the PROPOSE message in order to change the consensus id (sequence number),

the Epoch (view number), or even the batch of requests to propose (val) and send to

different non-primaries. These setups would be rejected once non-primaries received the

malicious PROPOSE’s, because if the sequence or view number differed from what was

expected, non-primaries will suspect the primary and initiate a view change. Suppose the

faulty primary sends a different batch of requests, and the non-primaries do not have some

of them in the ToOrder set. In that case, they discard the message and proceed to a view

change if the timers associated with the requests yet to be ordered expire twice (the first

timer is related to the request retransmission).

Both <WRITE, Cid, Ep, i, v>αi and <ACCEPT, Cid, Ep, i, v>αi phases are not compro-

misable by a faulty replica since the consensus group requires 2 f + 1 correct replicas to

3. Analysis of protocols under attack 57

progress. As a result, faulty replicas are incapable of crafting malicious messages or failing

to send them in order to disrupt the consensus.

b) View change phase

In terms of the view change protocol, faulty replicas cannot initiate a view change on

their own because the protocol requires replicas to receive a minimum of 2 f + 1 <STOP, reg, M>αi

messages in order to begin the primary replacement. Therefore, changing the view (reg) or

requests that were not ordered in the STOP message provides nothing significant to confuse

correct replicas and start a view change. The phase afterward, <STOPDATA, reg, DecLog>αi ,

follows the same principle, given that faulty replicas are incapable of compromising the

state by changing the view or the history log in the message since the primary requires to

gather 2 f + 1 matching STOPDATA’s to progress. Finally, in the <SYNC, creg, Proo f >αp

phase, a faulty primary can try to send different SYNC messages, but will result in a new

view change because non-primaries verify the contents of the SYNC message and perform

the exact computations as the primary. As a result, any discrepancy would result in those

replicas sending STOP messages to initiate a view change.

3.3.2 Network and other faults

Like many primary-based focused protocols, BFT-SMaRt suffers from faulty primaries

that delay request ordering. A faulty primary can delay PROPOSE messages right before

the timer on the non-primaries expire, preventing a view change in the process. Faulty

primaries can delay the request process of ordering further by ignoring the client’s request

initially and wait for the retransmission of that request from the non-primaries. It then

progresses to delay the PROPOSE message before the timers on the non-primaries expire

and with that prevent a possible view change.

One of the many benefits of BFT-SMaRt is the ability to add/remove and recover

replicas in real-time. The ability of this protocol allows for the possibility of an attack

based on repeatedly crashing a faulty replica and initiating a state transfer out of it.

Correct replicas that attempt to restore the state of the faulty replica to the current one

may be slowed while this process takes place. Another scenario involving state transfers

is when a faulty replica (a leecher) reduces system throughput by indefinitely requesting

state transfers from the other replicas (seeders). For example, suppose a faulty replica is

constantly ”trying” to get to the same state as other replicas. In that case, it may reduce

58 Injecting Faults in Byzantine Fault Tolerance Protocols

performance because one replica is always recovering, and the others are attempting to

support the leecher.

By default, the authentication of client’s requests is performed by using MACs [53].

This definition may lead us to employ a strategy similar to that used in PBFT. The client

can send a MAC vector that gets authenticated at the non-primaries with the exception of

the primary. This situation can cause a view change since the primary will not propose a

request that it cannot authenticate, leading the non-primaries to distrust the primary since

it is not proposing. To avoid this, BFT-SMaRt can opt to use digital signatures rather

than MACs.

3.4 Prime

As discussed in the previous chapter, Prime[14] tries to solve problems associated with

faulty primaries through the use of multiple mitigation techniques. Through this segment,

we examine what sub-protocols are compromisable and which are not, while also explaining

why they are exploitable. We begin by examining its agreement and view change protocols,

and then we verify some attacks that are capable of delaying the system by exploiting the

monitorization aspect of each replica.

3.4.1 Protocol fault analysis

a) Agreement phase

We begin by determining what a faulty client can do to destabilize the protocol. Re-

quests sent by clients are in the form of <CLIENT −OP, o, seq, c> sigmac , which are trans-

mitted to one or more replicas. A faulty client lacks the means to disrupt the protocol

by sending malformed or differently crafted messages to different replicas. The reason is

that if the faulty client decides to send, for instance, two requests with varying identifiers,

both of them would be ordered since replicas would treat them as separate requests due

to the unique identifier. The faulty client could also try sending requests with different

operations, but only the first request received by replicas would be ordered since the other

requests have the same unique identifier.

During the preordering phase, the replica that receives the request from the client has

the function to distribute it amongst its peers. It sends a <PO− REQUEST, seqi, o, i >σj to

3. Analysis of protocols under attack 59

inform other replicas about the client’s requests. A faulty replica can attempt to send dif-

ferent PO-REQUEST messages to distinct replicas with either different sequence numbers

or operations, but that would result in nothing. This assertion is based on the assumption

that once other replicas receive it, they would send < PO − ACK, i, seqi, D(o), j>σj , and af-

ter receiving PO-ACK’s from other replicas, they would notice that the PO-REQUEST and

at least 2 f PO-ACK messages cannot be compared or do not match between themselves in

order to build a preorder certificate. Afterward, during the <PO − SUMMARY, vec, i>σj

phase, a faulty replica can try to send a crafted message with different vector values; how-

ever, after sending two inconsistent messages, other replicas would detect the discrepancy

and blacklist that replica. Furthermore, replicas in this phase must receive 2 f + 1 match-

ing PO-SUMMARY messages to progress, meaning that faulty replicas cannot disrupt this

phase.

As for the global ordering phase, a faulty primary might try to send invalid, or even

<PRE − PREPARE, v, seq, sm, l >σl with different matrix summaries. This setup would

not work because the non-primaries perceive and compare the summaries they have (along

with those received from other replicas), which would mean that the primary could be

subject to a replacement. Both the PREPARE and COMMIT phases are not disruptable

by faulty replicas as the protocol has a well-defined number of replicas to tolerate both

phases.

b) View change phase

In relation to the suspect leader protocol, faulty replicas are incapable of provoking

view changes since replicas in the consensus group only start transitioning to a new view

when they receive 2 f + 1 <NEW − LEADER, v + 1, i>σi . The same applies to <NEW −

LEADER− PROOF, v+ 1, S, i>σi messages, as the faulty replica is ineffective at disturbing

the group, as they need as well 2 f + 1 messages to preinstall the new view correctly. After

this step, the actual view change protocol starts.

After the suspect leader protocol finishes and replicas preinstall the new view, the view

change protocol starts. Afterward, replicas send a <REPORT, v, execARU, numSeq, i>σi to

all its peers. A faulty replica could try to modify some of the arguments in their REPORT

message, such as the number of prepare certificates it has(for example), and match them

with fake prepare certificates sent after in various <PC-SET, v, pc, i>σi messages. This

setup would be impossible since the correct replica would verify that those certificates are

inconsistent with what it has in its log. Also, this plan would end up not affecting the

60 Injecting Faults in Byzantine Fault Tolerance Protocols

system since replicas need to collect 2 f + 1 REPORT messages, meaning that the messages

sent from the faulty replica, when compared, would have an irregular state in relation to

the other REPORT’s received from correct replicas.

The remaining phases, such as VC-LIST, VC-PARTIAL-SIG, and VC-PROOF, can-

not be disrupted as they always require 2 f + 1 correct replicas. Once replicas send the

<VC − PROOF, v, ids, startSeq, p, i>σi , they expect a REPLAY message to be received by

them based on a timer started by the replicas based on the turnaround time. A faulty pri-

mary is capable of delaying the <REPLAY, v, ids, startSeq, p, l>σp message by tiny amounts

based on what should be the turnaround time for correct replicas to receive that message.

A faulty primary can also try and modify the REPLAY message and send it to different

replicas. However, this would be later confirmed as inconsistent since non-primaries broad-

cast a REPLAY-PREPARE to all their peers and compare messages REPLAY-PREPARES

between them. This situation would eventually lead up to a new view change.

3.4.2 Network and other faults

According to Aublin et al.[15], Prime has flaws despite its mitigation techniques for faulty

primaries. The first flaw detected by the authors is the ability of non-primaries to fail their

monitoring and produce imprecise reports that anticipate requests arriving later than usual.

A faulty primary can take advantage of this weakness and cause message ordering to be

delayed for longer than usual.

Prime is capable of being exploited in another way, according to Aublin et al.[15], where

a faulty client colludes with a faulty primary to increase the round-trip time. In order to

trigger this flaw, a faulty client needs to send a request of the maximum size possible

while requests of smaller sizes are being either sent or executed. Through this approach,

the round-trip increases, and non-primaries doing the monitoring are tricked. The faulty

primary can then delay ordering requests further based on the maximum round-trip time

values.

3.5 RBFT

As we have seen in the previous chapter, RBFT [15] employs a robust architecture that

tries to mitigate every kind of fault scenario possible. In this section, we investigate if it is

possible to compromise the protocol, and if not, explain why it should not be achievable.

We begin by reviewing its agreement protocol and view/instance change. In the later part

3. Analysis of protocols under attack 61

of the section, we check what faults do not compromise the system state but can, for

instance, slow down the agreement protocol.

3.5.1 Protocol fault analysis

a) Agreement phase

A client in RBFT sends requests in the form of <REQUEST, o, rid, c>σc , c>µc to replicas

to process it. From a faulty client’s perspective, it does not possess means of attacking

the protocol through request forging, corrupting requests, or even flooding. We can make

this claim because RBFT has several mitigation techniques for dealing with such attacks.

The following list verifies some of the possible scenarios for faulty client attacks and the

protocol’s countermeasures.

• If a faulty client sends a request with an incorrect/corrupted MAC or signature,

correct nodes will verify that the client is untrustworthy and stop receiving requests

from that client while adding the client to a blacklist.

• Flood attacks from faulty clients are insignificant because each node has a NIC (Net-

work Interface Controllers) to guard against those initiatives.

• A faulty client may attempt to confuse nodes by sending different requests with

different parameters. This attack fails because a node only sends the client request

to its f + 1 replicas if it receives 2 f + 1 matching requests.

During the PROPAGATE phase, since we recognize that the nodes receive at least

2 f + 1 matching client requests before sending them to their respective replicas, we know

that it should be difficult for any faulty replica/node to disrupt the system with fake

requests attached to the <PROPAGATE, <REQUEST, o, s, c>σc , i>µi message. We make

this assertion because replicas receive at least 2 f + 1 matching PROPAGATE messages

independently of what the faulty node/replica does.

In terms of the PRE-PREPARE phase, a faulty primary cannot confuse the system by

sending conflicting <PRE − PREPARE, v, n, c, rid, d>µp messages with altered arguments

such as the sequence, view number or even its MAC. The reason for this is that the primary

is correct in the backup instance (F = 1), which would always order the exact requests

correctly as in the main instance. On the other hand, the faulty primary would end up

suspected because once replicas received the PRE-PREPARE, the nodes corresponding to

62 Injecting Faults in Byzantine Fault Tolerance Protocols

those replicas would compare and verify it had the same PRE-PREPARE in both f + 1

instances. If this does not happen, the nodes would not be able to send PREPARE

messages, resulting in a view change. Furthermore, because of the monitorization and

comparison between instances, a faulty primary cannot significantly delay any ordering of

requests.

The remaining phases, PREPARE, COMMIT, and REPLY, can withstand the attempts

from a faulty replica (whether primary or not) to disrupt the group since they would have

enough correct replicas to reach a consensus and reply to the client.

b) View change phase

As for the view change, faulty nodes cannot provoke a view change by themselves when

sending <INSTANCEC HANGE, cpii, i>µi messages. Faulty nodes may attempt to send

an incorrect number for the counter or even try to start the instance change. Of course,

these efforts will be futile since replicas requires to receive 2 f + 1 matching INSTANCE-

CHANGE messages.

3.5.2 Network and other faults

According to Gupta et al. [22], in RBFT, when the primary in the main instance crashes,

the process for changing the primary does not get invoked. When an event of this nature

occurs, clients in this protocol rebroadcast requests to all replicas. This situation triggers

a continuous flood-based attack from a portion of the clients. The authors claim that this

error is caused by clients lacking crash handling mechanisms.

As stated by the authors of RBFT [15], some of the worst attacks are capable of deteri-

orating the protocol’s performance, albeit insignificantly. The first attack goes as follows:

a) A client sends REQUEST messages to all replicas with the exception of the primary

replica in the master instance. B) Following that, faulty replicas flood the primary with

invalid PROPAGATE messages of the maximum size. C) Afterward, the faulty replicas of

the master instance overwhelm the correct replicas with invalid messages of the maximum

possible size. D) Finally, faulty replicas of the master instance do not participate in the

rest of the protocol. With all of this in place, the system barely suffers any repercussions,

which can be observed in the results in the paper of P.-L. Aublin et al. [15].

Another attack involving a faulty replica in the master instance is also mentioned by the

authors. Where initially, a faulty client sends invalid REQUEST messages to the correct

3. Analysis of protocols under attack 63

replicas. Subsequently, faulty replicas flood the correct replicas with invalid messages of

the maximum possible size and proceed to not partake in the PROPAGATE phase. Finally,

the faulty replicas in all backup instances flood the correct replicas with invalid messages

of the maximum possible size, and they, like before, do not participate in the rest of the

protocol.

3.6 Summary

Message
Delaying

Message
Manipulation

Replica
Crashing

Flood
Attacks

PBFT X X X X
Zyzzyva X X X X

BFT-SMaRt X X X X
Prime X X X
RBFT X X

Table 3.1: General summary of the vulnerabilities found in each protocol.

Table 3.1 summarizes the vulnerabilities discovered during the analysis of each protocol

in this chapter. Most of the protocols depicted here show weaknesses regarding delaying-

based faults, as this is essentially due to a faulty primary’s ability to slow request ordering.

RBFT is the only protocol that mitigates this issue with efficacy, as it was built with

this issue in mind. Prime can also mitigate this attack effectively, except in some instances

where faulty clients collude with faulty primaries or when non-primaries fail the monitoring.

Message manipulation, such as altering the inner contents of messages, changing the MAC

(for some protocols only), altering the message transmission target, applies to all protocols

in some of the cases. As concerns replica crashing, all protocols are in some way affected,

purely on the fact that a faulty primary can purposely crash to initiate a view change and

that can be somewhat costly in terms of performance. Another aspect about this fault is

that through a faulty primary crash it is possible to enable attacks against messages in the

view change protocol that would not be accessible under normal circumstances. Lastly,

PBFT, Zyzzyva, and BFT-SMaRt protocols are prone to flood attacks from faulty clients,

primaries, and potentially non-primaries, as they do not have the means of mitigation that

Prime and RBFT have regarding this type of attack.

It is worthy to note that while some protocols here are capable of mitigating more

faults than others, these were designed specifically to mitigate those types of issues while

sacrificing performance, latency or throughput to achieve those goals.

Chapter 4

Zermia: A fault injector for BFT systems

In the course of this chapter, we introduce Zermia, a new fault injector capable of injecting

faults in BFT systems. First, in section 4.1, we present Zermia’s primary architecture.

Then, in section 4.2, we present how Zermia’s main components work through their lifecy-

cle. Finally, throughout section 4.3, we describe Zermia’s implementation details, as well

as some other features.

4.1 Zermia’s architecture

Zermia is a fault injector based on a client-server model, where a server acts as a coordi-

nator for the runtime Agents (clients) who run alongside the replicas/clients of a targeted

protocol, as presented in Figure 4.1.

Figure 4.1: Overview of the Zermia Architecture

65

66 Injecting Faults in Byzantine Fault Tolerance Protocols

4.1.1 Coordinator

The Coordinator is responsible for ensuring that Agents comply with the fault schedule

defined by the user. It is also in charge of distributing fault schedules to Agents, collecting

metrics and essential data, and displaying it at the conclusion of each experiment (if the

option is enabled).

4.1.2 Agent

The Agent executes in the same execution environment as the target application and is

responsible for requesting information from the Coordinator and injecting faults in the

correct order according to the fault schedule provided by the Coordinator.

Agents attach to specific points of the target program and alter the target’s execution

state and flow, by accessing method calls, arguments, and return values. In addition,

Agents maintain additional states, independent of the application, such as the number of

iterations of the application’s main loop or, in our case, the number of consensus rounds.

This solution expands Zermia’s flexibility by allowing it to use this knowledge to trigger

faults at predetermined intervals.

4.1.3 Faults

Several factors characterize faults in Zermia, including what the fault is and what it does,

where to inject the fault (for instance, inject into specific messages), when to inject the

fault (the starting point of injection), how many times the fault triggers, and lastly, which

parameters the fault has and which are customizable.

By design, Zermia provides a set of predefined faults that can be parameterized and

scheduled. These involve communication and network-related faults typical in the BFT

context, such as, for instance, message delay, message modification, and message drop.

Later in this chapter, we go over the general faults that this fault injector can use.

4.1.4 Fault schedules

In Zermia, fault schedules are a sequence of one or more faults that will be injected into

replicas and clients during a test run. These schedules are created by users based on a

variety of factors, including:

• Which replicas or clients that will be faulty;

4. Zermia: A fault injector for BFT systems 67

• How many faults are declared in each schedule;

• Which faults and their parameters to be used in each schedule phase;

• The initial triggering point for each fault;

• The number of times to trigger each fault;

• Which types of messages to inject the fault;

• Who should faulty clients/replicas target their attack against (for example, attack

only the primary).

4.2 Zermia’s model and test cycle

As previously stated, in Zermia, the system’s key components are the coordination server

it hosts and the runtime Agents aggregated to the replicas/clients of the protocol. Both of

these components go through three phases during their test cycle: initial configurations,

booting sequence, and execution procedure.

4.2.1 Initial configurations

a) Coordinator Side

In order for the Coordination server to function correctly, some configurations related to

the targeted protocol system must be made ahead of time. At a minimum, the coordinator

must be aware of the following:

• How many clients and replicas are available in total;

• How many replicas partake in the consensus;

• How many clients partake in the experiment;

• Which are the ID’s (identification) of each replica and client.

For the purpose of building fault schedules, the Coordinator also needs to know which

parameters were introduced by the user when starting the server, as these are the following:

• Which replicas are faulty (if any);

• Which clients are faulty (if any);

68 Injecting Faults in Byzantine Fault Tolerance Protocols

• Which faults were assigned;

• What are the parameters chosen for each fault;

• What is the starting point of injection of each fault;

• How many iterations each fault is going to trigger for;

• Which type of messages are to be targeted with the injection;

• Who should faulty clients or replicas target their attacks against, for instance, the

entire consensus group or only the primary.

In addition, the Coordinator must configure two essential elements that concern itself:

the port that will be open for communication and the length of time it will be online for.

b) Agent Side

On the Agent side, very few configurations need to be reviewed, which primarily con-

cerns establishing a communication channel with the Coordinator and metric purposes. As

such, each Agent must know the following:

• The Coordinator IP address;

• The Coordinator port number open for the service;

• The number of consensus rounds at which the process of gathering metrics stops;

4.2.2 Booting process

a) Coordinator Side

Once the configuration is completed, the Coordinator can be initiated. Initially, the

Coordinator starts by acquiring information on the properties of the clients and replicas

involved in the experiment, such as their IDs and the number of participants for each

entity. This data is then used to lay the groundwork for the database of the clients and

replicas.

Afterward, the Coordinator retrieves the parameters from the fault schedule introduced

by the user and reviews it for possible typos, errors, or if the starting rounds for each fault

are ordered correctly from the lowest to the highest. This information is then used to

populate the remaining fields on the replicas and client databases.

4. Zermia: A fault injector for BFT systems 69

Lastly, the Coordinator configures and starts its services to receive and transmit mes-

sages to any Agent. The services start on the port that the user has previously set in the

configurations.

b) Agent Side

After the Agents setup are complete, and the Coordinator is up and running, the

target protocol replicas and clients can be initiated. Once clients/replicas boot, the Agents

associated with them are started shortly after. The Agents then collect information from

their host, such as their ID, and gather information required to establish a communication

channel later with the Coordinator.

4.2.3 Execution process

a) Coordinator Side

Once the Coordinator starts its services, it is ready to receive messages from the Agents

and respond accordingly. The general services provided by the Coordinator are the follow-

ing:

1. AgentStatus - The Agent queries the Coordinator to know if the client or replica it

is associated with is to be faulty or correct;

2. RequestScheduler - The Agent queries the Coordinator for the corresponding fault

schedule associated with that client or replica;

3. UpdateMetrics - The Agent sends the Coordinator the metrics it gathered throughout

the experiment for the client or replica is associated with.

Whenever the Coordinator receives a request concerning the Agent’s status (AgentSta-

tus), it checks the database using the information provided in the request to see if the

client/replica with whom the Agent is associated is to be faulty or correct. If the client

or replica is to be faulty, the Coordinator replies to the Agent with that status and initial

information regarding the fault schedule it will execute. If the client or replica status is

non-faulty, the Coordinator replies to the Agent with that status only.

When the Coordinator is queried with a scheduling request (RequestScheduler) from

an Agent that has its status as faulty, the Coordinator verifies the corresponding database

(client or replica) to see if that Agent has faults to run. If there are faults to run, the

70 Injecting Faults in Byzantine Fault Tolerance Protocols

Coordinator sends the corresponding fault schedule over one or more messages, which

depends on the size of the schedule itself. The message contains which faults to run, their

parameters, and the period of time they are to be triggered.

Whenever the Coordinator receives a message containing test metrics (UpdateMetrics)

from an Agent, the Coordinator performs simple calculations to determine the average

throughput and latency of the replica to which the Agent is associated. Once the Coor-

dinator receives all replica’s end-of-test results, it outputs all information, including the

elapsed test time, the total number of messages, and average throughput/latency for each

replica. It is worth noting that in this service, the Coordinator does not reply to the Agent.

b) Agent side

After a successful boot sequence, the Agents use the previously gathered information on

the replica or client associated (such as the ID) and transmit it to the Coordinator (through

an AgentStatus request). Once the Agents receive the Coordinator’s reply, they update

their status (correct or faulty) based on the message’s content and store the remaining

information related to their fault scheduling on them. If the Agent’s state is to be correct,

all future instructions are skipped with the exception of metric-related functions.

In the event that the Agent’s state becomes faulty, the Agent sends one or more fault

scheduling requests (FaultScheduler messages) to determine which faults to execute, with

the number of requests sent determined by the size of the fault schedule. As soon the Agent

receives the Coordinator’s replies, it stores the message’s contents, including which faults

to run, the fault parameters, the starting trigger point for each fault, and the number of

times to trigger each fault.

After knowing its fault schedule, the Agents halt their execution till specific functions

are invoked on the replica’s or client’s side. These are interrupted by Agents to either

gather information about arguments, alter them or run faults.

Once replicas or clients reach a starting trigger point for one or more faults (at a certain

consensus round), the Agents wait until a specific function is called to interrupt and then

inject the faults according to schedule. The faults are then triggered for one or more rounds

depending on the schedule. It is worth noting that the Agent passes the control to its host

once faults are finished triggering at each instance of consensus round.

As soon the Agent concludes triggering all faults in one of the intervals of time, it

verifies if there are more faults to trigger at later time intervals. If so, it waits till the client

4. Zermia: A fault injector for BFT systems 71

or replica hits the next starting point of injection. This process continues until there are

no more faults to be injected in other time intervals.

When the test is finished, the Agent transmits all of the experiment’s information

(UpdateMetrics message), such as the total number of messages and elapsed time to the

Coordinator. It should be noted that the Agent does not receive a reply from the Coordi-

nator.

4.3 Zermia’s Implementation details

Zermia’s implementation is currently written in Java and integrates Agents with repli-

cas and clients using AspectJ (Aspect-Oriented programming). Communication between

Coordinator and Agent is accomplished through the use of remote procedure calls, specifi-

cally gRPC [23]. Zermia’s current implementation is at present time only integrated with

BFT-SMaRt [10, 24].

4.3.1 Coordinator

a) Fault schedule gathering

We used the command line to receive data from the user in order for the Coordinator

to be able to acquire information about the fault schedule. The commands entered adhere

to a set of rules, where we first must digit which replicas will be faulty, then which faults

to inject, their starting trigger point, and finally the number of times they are triggered.

As for clients, these have an exception where we only need to specify the number of faulty

clients once, and all of the clients will follow the same fault schedule. Figure 4.2 presents

an example of a fault schedule for two different replicas and five faulty clients:

java -jar Zermia.jar Replica 0 TdelayAll 100 5000 10000 Replica 2 TdelayAll 100 5000 10000
Crash 1 20000 1 Clients 5 PNRS 500 100

Figure 4.2: Example of a fault schedule through command line

In this example, replica 0 injects a fault that delays processing for 100 milliseconds

whenever it intends to send a message where the starting trigger point is at the consensus

round 5000, and the fault is then triggered for 10000 rounds, ending at round 15000. As

for replica 2, a similar scenario happens in the first interval of time, where the same fault

runs at the same starting round and for the same length. Once replica 2 reaches the

consensus round 20000, a crash fault is injected within the same round, disabling that

72 Injecting Faults in Byzantine Fault Tolerance Protocols

replica afterward. As seen with replica 2, the starting round needs to be in ascending

order, or else the application won’t boot it and show an error. Concerning the five faulty

clients, once they reach the sequence number of 500 (starting round), they stop sending

messages to the primary but continue to send to the non-primaries for 100 rounds.

b) gRPC services

service ZermiaCoordinatorServices{
rpc AgentStatus {..}
rpc RequestScheduler {..}
rpc UpdateMetrics {..}

}

Figure 4.3: Coordinator service interface (gRPC methods)

The Coordinator uses gRPC as means to communicate with each Agent and distribute

their corresponding fault schedules. This technique serves as a groundwork to later expand

and adapt the injector to other languages. Figure 4.3 reviews the general services previously

explained in the former section.

message AgentStatusRequest{
string replicaID {..}

}

message AgentStatusReply{
bool replicaStatus {..}
int32 faultScheduleSize {..}
int32 groupSize {..}
repeated string faultyReplicaList {..}
repeated bool messageTypes {..}

}

Figure 4.4: Agent status requisition service details

As previously explained, the Agent’s status service, Figure 4.4, is the first request

an Agent makes to the Coordinator. The Coordinator after verifying for the status of

associated host through its ID in the database, it replies to the Agent with the status

(faulty or correct), the system’s group size, the list of faulty replicas (for faulty clients,

this last section is excluded), and finally, the list of message types that are a target of the

injection for that Agent. We send all this information only if the host is supposed to be

faulty, by contrast, if non-faulty the reply is sent only with the status. It is worth noting

that the list of faulty replicas provides means of faulty replicas not attacking each other

and, the size of the fault schedule is used as an iterator in the service of FaultScheduler.

Figure 4.5 presents the service for fault requesting, where the Coordinator replies to

the Agent with the arguments of their fault schedule if existent. The Coordinator uses

the schedule iterator on the Agent’s request to look through the fault schedule database

4. Zermia: A fault injector for BFT systems 73

message FaultSchedulerRequest{
string replicaID {..}
int32 faultScheduleIterator {..}

}

message FaultSchedulerReply{
repeated string faultParameters {..}
repeated string faultTriggerParameters {..}

}

Figure 4.5: Fault schedule requesting service

associated with that host and consequently sends a reply containing that part of the fault

schedule. The faultParameters field contains a list of the fault and its parameter. The

faultTriggerParameters field contains the starting trigger point and the number of times

to trigger the faults.

message UpdateMetricsRequest{
string replicaID {..}
double testFinalTime {..}
int32 testTotalMessages {..}

}

Figure 4.6: Update metrics service details

As for the last service, UpdateMetrics, Figure 4.6, the Coordinator stores all metrics

received from the Agents, such as the elapsed test time and the total number of messages,

and calculates the latency and throughput for each replica.

Figure 4.7: Test results demonstrated in the Coordinator.

Once all replicas finish the experiment and transmit their metrics, the Coordinator

displays all data in the terminal, as presented in Figure 4.7. Additionally, all the displayed

information is also saved in an excel file. This service only applies to replicas and not

clients, as there was no metrics from faulty clients relevant to end results.

74 Injecting Faults in Byzantine Fault Tolerance Protocols

4.3.2 Agent

Through the use of advices, agents interact with replicas and clients. Advices are code

blocks that are inserted into the target application’s code at runtime via join-points. Join-

points are the areas of code in the target application where advices are inserted. These have

semantics for specifying whether an advice executes before, after, or around the respective

join-point, which is referred to as pointcuts. The around semantics can also prevent the

corresponding join-point from being executed. When a client or replica starts its main

function, an agent is initiated via an advice that is associated to that method.

Figure 4.8 presents the initial advice that is used to start the Agent whenever a replica’s

main function is started in BFT-SMaRt. Within this aspect class, an Agent thread is

instantiated and associated with the replica’s runtime where it remains active as long the

replica does not crash or ends its functions. As for clients, Agents are initiated before

they send their first request message to replicas, as their main function does not provide

information relevant to initiate communication with the Coordinator.

@Aspect
public class ZermiaInstanceStart {

(...)
@Before("execution method_main")
public void advice(JoinPoint jp) {

String[] HostArgs = (String[]) joinPoint.getArgs()[0]; //get host arguments
String HostID = HostArgs[0]; //get replica/client id
ZermiaAgent.getInstance().setID(HostID); //save host id in the agent
try {

ZermiaAgent.getInstance().InstanceStart(); //Agent boot & status gRPC request
ZermiaAgent.getInstance().faultScheduler(); //fault schedule gRPC request

} catch (Exception e) {
e.printStackTrace();

}
}

(...)
}

Figure 4.8: Advice function which is called whenever a replica’s main function is started
in BFT-SMaRt.

When a replica or client reaches the code blocks that manage message sending, one

or more different advices are called for the management of fault injection. The current

implementation that we have with BFT-SMaRt contains several advices that are used for

the injection of faults. Figure 4.9 presents the general idea of the main fault injection

advice that is called whenever a replica or client tries to send a message. The idea here is

that if an Agent is faulty and the current consensus round lies between the starting and

ending trigger point for a fault in the schedule, that fault is then triggered. Once that

fault ends triggering completely, the iterator for the fault schedule moves forward for the

subsequent fault with its associated starting and ending trigger points.

4. Zermia: A fault injector for BFT systems 75

public class ZermiaFaultManagement {
int faultStartingTriggerPoint; //starting point for a part of the schedule
int faultEndingTriggerPoint; //ending point for a part of the schedule
int currentConsensusRound;
int scheduleIterator;
string faultName;
(...)
@Around ("execution method_send")
public void execute(JointPoint jp) {

(...)
if(AgentStatus.equals(true)){ //if faulty

if(faultStartingTriggerPoint <= currentConsensusRound &&
faultEndingTriggerPoint > currentConsensusRound){

switch(faultName){
case"fault1":{
(...) //fault method
break;}
(...)
case"faultN":{
(...) //fault method
break;}

}
if(faultEndingTriggerPoint == currentConsensusRound){

scheduleIterator=+1;
//remaining code here updates the variables associated to the schedule
(...)
}
(...)

}
} jp.proceed();

}
(...)

}

Figure 4.9: General idea of the fault injection advice.

Agents use additional advices to keep track of the state of its host, such as the view

they are at, the current round of consensus, who is the primary of the group, and so on.

This gives some flexibility to decide how to trigger the faults.

As for the client, the Agent follows a similar path to inject faults as for the replicas.

Once clients reach their send function, an interruption is forced by the aspect class to

follow the fault schedule sent from the Coordinator. In this advice, the Agent performs

two jobs: one is the fault injection and the other the capability of changing targets to send

messages at will (either the primary, non-primaries or the entire system).

Is worth noting that due to limitations to what we can do with aspects, very few

functions that we interrupt can not be used to entirely alter arguments, create messages

and inject faults without changing that same interrupted function. As such, we changed

some functions while maintaining the normal functioning to include the faults inside of it.

4.3.3 Predefined faults in Zermia

Zermia’s current implementation includes a standard set of network, communication, and

protocol-specific faults for testing BFT systems. Each fault can be configured to increase

76 Injecting Faults in Byzantine Fault Tolerance Protocols

or decrease its strength based on the needs of the user. The following list provides an

overview as well as specifics about the faults that Zermia is capable of injecting:

• Crash - Crashes the client or replica by executing a System.exit() method.

• Delay Thread - Delays processing time through the use of Thread.sleep() method.

The user can configure the delay in milliseconds. This fault occurs several times per

consensus round based on the number of function calls invoked to send messages.

• Message Dropping - Prevents messages from being sent to other replicas/clients by

preventing the target method call. This fault can be executed based on a probability

(0 - 100%) defined beforehand by the user of the fault to occur.

• Message Flood - Sends a variable number of messages by encompassing the target

method in a loop. The number of loop iterations, which translates into the number

of additional messages sent, can be configured by the user. It can also be combined

with the fault described below, message modification, to increase fault flexibility.

• Message modification - Replaces message contents by modifying argument values

passed to the target join-point. The message’s contents can be defined by the user

and can be fully empty or even fully randomized.

• Resource exhaustion - Exhausts the application’s resources by employing algorithms

that can increase CPU usage, decrease available memory RAM, or even cause a crash

due to memory RAM depletion. The user can specify the number of threads for the

CPU load and the amount of memory that should be leaked.

4.3.4 Schedule conflicts

In the case that multiple faults occur within the same interval of time, the user can set

or disable a priority system in advance based on their preferences. If enabled, some faults

will be triggered before others during the injection, maximizing the fault’s impact on the

system. If this option is disabled, the system will run the faults in the user’s order and

specifications. Through this method, the user is granted more options to produce more

effective fault schedules if desired.

For instance, if the priority system is enabled and a delay thread and a crash fault

occur within the same time interval, the delay thread fault will be triggered first, followed

4. Zermia: A fault injector for BFT systems 77

by the crash after the specified delay. This example shows how to prevent a crash without

first exploiting another fault.

Chapter 5

Experimental Evaluation

In this chapter, we present the evaluation of Zermia by displaying its versatility and ca-

pability. To this end, we designed different fault schedules that target BFT-SMaRt[10]

protocol which was reviewed in chapter 2. To assess the system in question, we used the

YCSB[54, 55] client/server already implemented in the BFT-SMaRt library, as it presents

metrics that allow us to view the influence in performance each fault schedule has on the

target library.

5.1 Experimental Setup

Each test branches into two setups based on the number of replicas present on the system,

which were for four replicas(F = 1) and ten replicas(F = 3). All experiments consisted in

running YCSB with 50 clients for a total of 2.5 million operations (approximately 300000

consensus rounds). Experiments were measured based on the system’s throughput in op-

erations per second.

Fault triggering started in consensus round number 50000 for F = 1, and rounds 100000

and 150000 for F = 3. Each fault was triggered for a variable number of rounds based on

its type. The presented results in the following sections are the average from the results of

5 consecutive runs.

Regarding BFT-SMaRt configurations, we enabled the following cipher suite ”TLS_

ECDHE_ECDSA_WITH_AES_128_GCM_SHA256” as it was needed in order for the

protocol to work. The number of replicas and faulty replicas is also adjusted based on the

test cases. The remaining configurations stayed as the default.

79

80 Injecting Faults in Byzantine Fault Tolerance Protocols

For test evaluation, we used a total of twelve virtual machines from Google Cloud

services where we used: 3-10 for the YCSB BFT-SMaRt replicas, 1 for the YCSB BFT-

SMaRt client, and 1 for the Zermia Coordinator. Each virtual machine ran Ubuntu 18.04.5

LTS operative system, with 16 gigabytes of RAM, 4-core AMD EPYC 7B12 clocked at 2250

MHz, and 10 gigabytes of HDD.

5.2 Baseline results

The following illustrations, 5.1a and 5.1b, show us the results obtained from systems where

no faults were injected. The outcomes display a similar performance to each other despite

the increase in the number of replicas. These results serve as a way to compare with

experiments where we injected faults.

(a) Baseline results for F = 1 (b) Baseline results for F = 3

Figure 5.1: Results from a fault-free experiment

5.3 Communication-based faults

5.3.1 Crashing Replicas

This experiment consisted in injecting and executing a fault schedule that crashes faulty

primaries and non-primaries. Faults were triggered at the consensus round number 50000

for F = 1, and 100000 and 150000 for the F = 3 configuration. In each of these starting

points, the fault was triggered for a total of 50000 consensus rounds.

Figure 5.2 presents the results when injecting a crash fault against the primary replica

for F = 1 (Figure 5.2a) and F = 3 (Figure 5.2b) configurations, and for non-primaries at

a F = 3 (Figure 5.2c) configuration.

From what we can gather from the outcomes in Figures5.2a and 5.2b, we can verify

that a drop in performance always occurs whenever a crash occurs in a primary, which

5. Experimental Evaluation 81

(a) Target primary at F = 1 (b) Target primaries at F = 3

(c) Target three non-primaries at F = 3

Figure 5.2: Results for a crash fault schedule

is indicative of the time non-primaries did not receive any ordered requests plus the view

change process.

All results show similarity in the aspect that once the system is down to 2 f + 1, a drop

in performance is followed along. The former statement also denotes that, between 3 f + 1

and 2 f + 1, the number of operations executed per second does not decrease, indicating

that the system works as intended. This late decrease in performance can be attributed to

either one or more of the correct replicas being slower than their peers or due to an internal

change in the protocol to guarantee support for safety since it reached the minimum number

of replicas for such.

5.3.2 Delaying Replicas

This experiment consisted of injecting and executing a fault schedule that delayed replicas

(primaries and non-primaries) before sending messages independent of its type. Faults

were triggered for 10000 consecutive consensus rounds, starting at consensus round 50000,

100000, and 150000, with delay intervals of 20 milliseconds, 50 milliseconds, and 100 mil-

liseconds respectively.

Figure 5.3 illustrates the results obtained when targeting replicas in different config-

urations with this fault schedule: the primary (Figure 5.3a), the primary and two non-

primaries (Figure 5.3b), and three non-primaries (Figure 5.3c).

82 Injecting Faults in Byzantine Fault Tolerance Protocols

(a) Target primary at F = 1 (b) Target primary and 2 non-primaries at F = 3

(c) Target three non-primaries at F = 3

Figure 5.3: Results from a delay fault schedule

The outcomes observed in Figures 5.3a and 5.3b display that the systems were strongly

affected by the faulty primary during the fault scheduling. It is to note that for F = 3, the

collusion of faulty non-primaries and the primary did not yield a more substantial decline,

as the system performance is directly related to the rate of PRE-PROPOSE messages sent

by the primary. Lastly, we can recognize that the performance tends to drop even more

due to increments in the delay that the primary takes to send messages.

In the third test, Figure 5.3c, we perceived that during the fault triggering done by the

non-primaries, the performance deteriorated a little. This drop might be related to one or

more correct replicas being a tad slower than their other correct peers.

5.3.3 Message dropper

This experiment consisted in injecting and executing a fault schedule that forced repli-

cas (primaries and non-primaries) to drop messages bypassing message sending methods.

Faults started triggering from the beginning of consensus round number 50000 and ran for

a duration of 50000 rounds.

Figure 5.4 presents the results gathered when targeting: the non-primaries at a F = 1

(Figure 5.4a) and F = 3 (Figure 5.4b) configuration, and the non-primaries at a F = 1

(Figure 5.4c) and F = 3 (Figure 5.4d) configuration.

5. Experimental Evaluation 83

(a) Target non-primary at F = 1 (b) Target non-primaries at F = 3)

(c) Target primary F = 1 (d) Target primaries F = 3

Figure 5.4: Results for a message dropper schedule

According to the outcomes obtained for faulty non-primaries, Figures 5.4a and 5.4b,

we can verify a slight decrease in the system’s performance during the fault scheduling.

As for the results for faulty primaries, Figures 5.4c and 5.4d, a performance drop is

seen whenever a primary stops transmitting messages, as this is referent to the period non-

primaries did not receive any PRE-PROPOSE message from the primary plus the view

change instance that occurred to replace that primary. We can also observe that for F = 3,

after each successive view change, the former three primaries continued to trigger the fault

as non-primaries, which can be seen in the performance drop period and correlated to the

results from tests made with only faulty non-primaries.

In all elapsed tests, a slight performance drop is seen to happen during the fault schedul-

ing. This reduction in performance is comparable to previous results where the number of

non-faulty replicas reaches the minimum required for the system to guarantee safety.

5.3.4 Flood attacks

This experiment consisted in injecting and executing a fault schedule that forces replicas to

flood the system or a particular target with additional messages for each legitimate message

sent. Faults were triggered at consensus round number 50000 and ran for 50000 rounds

unless stated contrarily. The number of additional messages sent fluctuated between 5000

and 50000 messages.

84 Injecting Faults in Byzantine Fault Tolerance Protocols

We conducted three different tests for this experiment: a) a system flood produced by

faulty non-primaries, b) a system flood carried by a faulty primary, and c) a targeted flood

attack against the primary arranged by faulty non-primaries.

a) System Flood by non-primaries

We ran two different fault schedules for this experiment, where one relied on faulty

non-primaries transmitting 5000 additional messages per valid message and another where

they sent an additional 50000 messages per correct message.

(a) Target non-primary at F = 1, 5000 messages (b) Target 3 non-primaries at F = 3, 5000 messages

(c) Target non-primary at F = 1, 50000 messages (d) Target 3 non-primaries at F = 3, 50000 messages

Figure 5.5: Results from a flood fault schedule that targeted all system

Figure 5.5 presents the outcomes from this experiment where faulty non-primaries flood

all replicas in the system. Figures 5.5a and 5.5b exhibit the results for F = 1 and F = 3,

where 5000 additional messages were sent per legitimate message. As for figures 5.5c and

5.5d, these depict the results for F = 1 and F = 3 where 50000 additional messages were

transmitted for each valid message.

According to the outcomes above, a flood-based attack from faulty non-primaries

against all correct replicas decreases the system’s performance. It is to note that the

attack does get stronger based on the number of replicas present on the consensus group.

After all, the flood drove the system into a more extended deteriorated state for F = 3,

while for F = 1, that period was shorter.

When comparing both the 5000 and 50000 experiments, we can see that there is barely

any variation in the total number of operations executed per second during the execution

5. Experimental Evaluation 85

of the flood. As such, we can assume that BFT-SMaRt can mitigate these sorts of attempts

at a certain threshold.

b) System flood by a faulty primary

We conducted two different fault schedules for this experiment, where one relied on

a faulty primary transmitting 5000 additional messages and another where it sent an

additional 50000 messages. However, due to time constraints (tests being quite long),

we reduced the number of triggered rounds for the 5000 flood to 10000 rounds and 50000

flood to 2000 rounds.

(a) Target primary at F = 1, 5000 messages (b) Target primary at F = 3, 5000 messages

(c) Target primary at F = 1, 50000 messages (d) Target 3primary at F = 3, 50000 messages

Figure 5.6: Results from a flood fault schedule that targeted all system

Figure 5.6 displays the results for this experiment where a faulty primary floods all

non-primaries in the group. Figures 5.6a and 5.6b exhibit the results for F = 1 and F = 3

correspondingly, where 5000 additional messages were sent per valid message. Figures 5.6c

and 5.6d depict the outcomes for F = 1 and F = 3 where 50000 additional messages were

sent for each valid message.

Based on the gathered results, a flood attack conducted by a faulty primary causes

many issues in the system’s ability to process requests, leading it to a state where the

system is almost inoperative. It is to note that the number of flood messages is sufficiently

high to impact system performance without triggering a view change since new requests

are still ordered before non-primaries associated timers are expired.

86 Injecting Faults in Byzantine Fault Tolerance Protocols

Lastly, when comparing both experiments based on the number of messages sent, we

can see that increasing the strength of the flood does extend the degradation period the

system experiences, especially since there is a considerable difference in the number of

rounds that the flood was triggered for each experiment.

c) Targeted flood against primary conducted by faulty non-primaries

For this experiment, we conducted two similar fault schedules, where faulty non-

primaries targeted the primary with a flood that ranged between the 5000 and 50000

additional messages per valid message sent. Faults were triggered at the start of the con-

sensus round number 50000 and ran for 50000 rounds.

(a) Target primary at F = 1, 5000 messages (b) Target primary at F = 3, 5000 messages

(c) Target primary at F = 1, 50000 messages (d) Target primary at F = 3, 50000 messages

Figure 5.7: Results from a flood fault schedule that targeted all system

Figure 5.7 presents the results for this experiment where faulty non-primaries flood

specifically the primary. Figures 5.7a and 5.7b display the results for F = 1 and F = 3

where 5000 additional messages were sent per legitimate message. Figures 5.7c and 5.7d

depict the outcomes for F = 1 and F = 3 where 50000 additional messages were sent for

each valid message.

The results here reveal that there is a degree of degradation applied to the system while

a flood attack is targeting the primary of the system. This reduction in performance is

essentially due to the primary wasting time reading and processing the additional messages

it receives.

5. Experimental Evaluation 87

When thoroughly comparing the experiments here and those in the section where non-

primaries flood the entire system, we see that flooding an entire system proves to be slightly

more impactful than flooding only the primary.

5.4 Protocol specific faults

In this section, we tested the system against a more particular set of faults that target

specific messages and functions, such as the agreement and view change phase and the

usage of faulty clients to compromise the system. The experiments in this section were

run for the F = 3 configuration since we only wanted to experiment with specific protocol

elements. It is to note that the results discussed in this segment focus more on the ability

to disrupt the system’s state than the performance impact.

Faults run in the experiments in this section, with the exception of client-related tests,

started at consensus round 50000 and were triggered for a variable number, which depended

on the goal we wanted to achieve, i.e., initiate view changes deliberately.

Most arguments from the messages were modified, particularly the integer value ones,

as they were easier to manipulate. It is worth noting that several different tests were

generated for each argument based on the host (replica or client). Each argument had the

following tests:

• randomized value;

• increments of 10 of the message’s original argument value;

• decrements of 10 of the message’s original argument value;

• faulty replicas send modified messages to only the primary, and the messages are

altered based on one of the first three points in separate tests.

• faulty clients send messages with different argument values to different sub-sets of

replicas, where the values are always the same for each respective replica;

• faulty clients send messages with different argument values to different sub-sets of

non-primaries, where the values are always the same for each respective replica.

Additional tests related to flood-based attacks were also added for particular messages

types, specifically view changes.

88 Injecting Faults in Byzantine Fault Tolerance Protocols

5.4.1 Agreement phase - REQUEST

REQUEST messages at a low level are coded with the following arguments: the client’s

id, the session id of the client, the sequence number created based on the message type,

the operation sequence number disregarding message type, the command to be executed,

the current view, and the type of the request. Most arguments, particularly those with

an integer value, were modified and tested separately in different experiments as they are

easier to manipulate.

For this experiment, we ran several different fault schedules applied to 10 faulty clients

out of the total of 50, which involved modifying the contents of the REQUEST message

to confuse the system into, for instance, initiate a view change. In addition, since faulty

clients individually use their own request number as a metric for injection, the starting

point chosen for fault triggering was the request number 10000. Faults were triggered for

a variable amount of request transmission rounds, which depended on the experiment’s

objective.

The results of the experiments are summarized in the table 5.8.

Client
Session ID

Sequence
Number Operation ID Current View Experiment

Result

Test 1

Test 2

Test 3

Test 4

View Change
 Triggered

No Change

No Change

No Change

Injection
Target

Injection
Target

Injection
Target

Injection
Target

Figure 5.8: Experimental results for REQUEST message modification

The summary (Figure 5.8) displays that most arguments that were modified did not

present any change that could disrupt the system’s state, with the exception of one, the

”Operation ID”.

In two of the many tests performed to the argument ”Operation ID”, view changes were

triggered as a result. When changing this argument across different messages (where the

argument is static for each different message related to different replicas) and subsequently

sending them to different sub-sets of replicas or different sub-sets of non-primaries (primary

receives no messages), view changes were consequently initiated. We believe that the

view change protocol was initiated due to, non-primaries waiting to receive the ordered

5. Experimental Evaluation 89

requests they had in their ToOrder set but instead were not ordered by the primary despite

retransmission attempts by each non-primary.

Figure 5.9 depicts the results for when faulty clients send messages with different op-

eration ids (same ids for the same replica) to different replicas. This experiment was run

for around 500 client rounds, starting at client round 10000.

Figure 5.9: Results for F = 3 for when faulty clients send REQUESTS with different
operation ids to different replicas.

The gathered results reveal multiple episodes of low throughput values across the test.

Each of these descending values represents a view change that occurred midway through

the test. After a couple of view changes, the protocol/replicas started detecting that it

was a replay attack and consequently discarded REQUESTS that were similar afterward

from those clients. The performance degradation observed after the last view change is

due to faulty clients continuing to execute the fault setup. Since the REQUESTS from the

faulty clients are never processed, the injection continues indefinitely because the round

number for each faulty client never reaches the end trigger fault point. We can infer that

it is possible to initiate view changes by using faulty clients deliberately.

Using this setup, we expanded the experiment to a collusion between faulty clients and

faulty non-primaries. This experiment revolved around making the faulty non-primary

into the primary through induced view changes from the attacks from faulty clients. Once

it became the primary, it would delay message transmission by 100 milliseconds every time

it wanted to send a message. The experiment was run for 500 client rounds, starting at

client round 10000.

The results presented in figure 5.10 show that the system can suffer from a colluding at-

tack between faulty clients and faulty non-primaries. Once the faulty non-primary became

the primary, the entire system’s performance went down because of the injected delay. It

is to note that we stopped the test midway, only to show that this situation is existent.

90 Injecting Faults in Byzantine Fault Tolerance Protocols

Figure 5.10: Results for F = 3 for when faulty clients collude with a faulty-primary to
delay the system.

5.4.2 Agreement phase - PROPOSE

PROPOSE messages consist of the consensus id (sequence number), the epoch (view num-

ber), the replica id and a value (request to be executed). We focused our efforts solely in

two arguments, the sequence and view number as they were easy to manipulate.

For this experiment, different fault schedules were run where the primary was the sole

faulty replica, which involved modifying the contents of the PROPOSE message. Faults

were triggered at the round of consensus 50000 for 50000 consensus rounds. Figure 5.11

presents the summary of tests performed under these circumstances.

Consensus
 ID View Number Experiment

Result

Test 1

Test 2

Injection
Target

Injection
Target

View Change
 Triggered

View Change
 Triggered

Figure 5.11: Experimental results for PROPOSE message modification.

As expected, throughout the experiments, the faulty primary was replaced through a

view change whenever it tried to send any altered message.

5.4.3 Agreement phase - WRITE

Like the PROPOSE message, WRITE message follows a similar pattern which consist

of the consensus id (sequence number), the epoch (view number), the replica id and a

value (request to be executed). Similarly as the previous experiment, only two arguments

were manipulated, the sequence and view number. Faults were triggered at the start of

consensus round 50000 for 50000 rounds in total. The following Figure 5.12 displays the

results of the experiments.

5. Experimental Evaluation 91

Consensus
 ID View Number Experiment

Result

Test 1

Test 2

No Change

No Change

Injection
Target

Injection
Target

Figure 5.12: Experimental results for WRITE message modification.

The findings revealed no evidence of a disruption in the system’s state or a significant

impact on performance. These attacks were ineffective because at least 2 f + 1 correct

replicas contributed to consensus. The perceived performance impact is comparable to the

results of when faulty replicas did not contribute to consensus, such as message dropping

from faulty non-primaries or faulty non-primaries crashing.

5.4.4 Agreement phase - ACCEPT

As in the previous phases of the agreement, ACCEPT messages use a similar pattern

consisting of the consensus id (sequence number), the epoch (view number), the replica id,

and a value (request to be executed). Only two arguments were modified, the sequence

and view number. Faults were triggered at the start of consensus round 50000 for 50000

rounds in total. Figure 5.13 presents the results of the elaborated tests.

Consensus
 ID View Number Experiment

Result

Test 1

Test 2

No Change

No Change

Injection
Target

Injection
Target

Figure 5.13: Experimental results for WRITE message modification.

The findings revealed no evidence of a disruption in the system’s state or a significant

impact on performance. These attacks were ineffective because there were at least 2 f + 1

correct replicas contributing to consensus. The perceived performance impact is compara-

ble to the results of when faulty replicas did not contribute to consensus, such as message

dropping or replica crashing.

92 Injecting Faults in Byzantine Fault Tolerance Protocols

5.4.5 View change phase - STOP

STOP messages consist of the next view number and a set of requests that were time-outed.

We only modified the view number as it was easy to manipulate. In addition, we tested

with flood attacks, where faulty replicas only transmitted STOP messages during its fault

schedule. Faults were triggered at the start of consensus round 50000 for 50000 rounds in

total. Figure 5.14 presents the results of the elaborated tests.

View Number Experiment
Result

Test 1

Test 2
(Flood)

Injection
Target

View Change
 Triggered;

Non-faulty Replicas
Crash;

System Invariance
Broken;

No Change

Figure 5.14: Experimental results for STOP message modification.

Throughout the tests, we observed that nothing would happen when modifying the

values for the view number, which was to expect as there was at least the minimum

number of correct replicas in execution in the group.

In the second experiment, we found out that flood attacks with this message type

created situations where correct replicas would crash due to the depletion of memory or

storage. This situation evolved into one where all correct replicas were crashing. It is to

note that, once the first correct replica crashed, the invariance of the system broke, and as

such, the group could not progress any further.

Because we know that correct replicas can crash due to resource depletion caused by

a flood of STOP messages, we expanded the test to one where faulty non-primaries flood

only the primary in order to provoke a view change.

For this experiment, two faulty non-primaries focused their attacks only on the primary

of the system. The reason we use two faulty non-primaries is because if we use three faulty

replicas, we risk breaking the system’s invariance once the primary crashes.

The flood attack started triggering at the round of consensus 50000 and ran for 50000

rounds. The following Figure 5.15 displays the results of the experiment.

The results exhibited in Figure 5.15 testify that it is possible to compromise a correct

primary replica via a flood of STOPS anytime we want. We see that right after the flood

5. Experimental Evaluation 93

Figure 5.15: Results for F = 3 for when a correct primary gets replaced via a flood of
STOP messages.

is injected against the correct primary, it tends to decrease its performance tremendously,

which is most likely due to a tentative to process all incoming STOP messages. During

this period, the primary could still order some requests but at a sluggish pace. Once

the primary reached a resource depletion state and subsequently crashing, a view change

happened, and a new primary was elected.

From around the 190-second mark till the 400-second mark, we see that the system

is under the effect of a significant performance impact. This is caused by the two faulty

non-primaries still attacking the former primary (which crashed) and because the former

primary was not functional. This situation is comparable to many tests in the section 5.3,

considering that once the system reached the 2 f + 1 scenario, a performance impact would

occur. It is worth noting that

It is worth noting that we can further amplify this situation into one where we deliber-

ately initiate a view change through a targeted flood to replace a correct primary into one

of the faulty non-primaries.

5.4.6 View change phase - STOPDATA

STOPDATA messages consist of the next view number and their decision logs. Only the

view number was modified. Like the previous phase of this protocol, it was also tested

with flood attacks while only using STOPDATA messages. Faults were triggered at the

start of the consensus round 50000 for 50000 in total. Figure 5.16 displays the summary

of the experiment results.

The outcomes from this experiment revealed very similar results to the previous phase

of the view change. Nothing happened whenever we modified the view number, as the

system still had the correct minimum of replicas to continue processing.

94 Injecting Faults in Byzantine Fault Tolerance Protocols

View Number Experiment
Result

Test 1

Test 2
(Flood)

Injection
Target

View Change
 Triggered;

Non-faulty Replicas
Crash;

System Invariance
Broken;

No Change

Figure 5.16: Experimental results for STOPDATA message modification.

The second test exposed comparable results as the STOP phase, where a STOPDATA

flood attack would lead correct replicas into crashing due to their memory being depleted.

Furthermore, we also had situations where the invariance of the system broke, which hap-

pened whenever the number of correct replicas was lower than the minimum threshold

for consensus/processing to progress. Lastly, similarly to the STOP phase, it was possi-

ble to initiate view changes deliberately with a targeted flood attack against the system’s

primary.

5.4.7 View change phase - SYNC

SYNC messages consist of the view number and a proof (agreed upon consensus instances).

It is to note that only the primary was the sole faulty replica. Only the view number was

altered. In this phase, we also flooded the system with SYNC messages. Faults were

triggered at the start of the consensus round 50000 for 50000 in total. The following

Figure 5.17 presents the results of the tests.

View Number Experiment
Result

Test 1

Test 2
(Flood)

Injection
Target

View Change
 Triggered

View Change
 Triggered

Figure 5.17: Experimental results for SYNC message modification.

The results showed that whenever the faulty primary tried to send any message with

a modified view number, a view change would be triggered to replace it. As for the

5. Experimental Evaluation 95

flood attack, the faulty primary ended up delaying the system by mere seconds, till it was

replaced later on, which was expected.

Chapter 6

Conclusion and Future Work

In this document, we discussed the model basis of how byzantine fault-tolerant protocols

work, as we also reviewed several protocols, specifically deterministic, in order to find

proven and possible theoretical weaknesses that a fault injector could later explore. We

found that deterministic protocols, especially those that use a primary, have various issues

that could lead to several types of attacks being used to exploit them.

As for the second point, we proposed a new fault injector, Zermia, capable of maintain-

ing its level of intrusiveness low due to the use of aspect-based functions to inject faults.

This novel fault injector is also the first, to this date, to employ gRPC to trade information

between a Coordinator server and an Agent to reduce the level of communication complex-

ity. Additionally, it is shown that it can inject faults in multiple replicas and clients and

can employ a simple priority system to maximize the potential damage to a system/replica.

The experimental evaluation of BFT-SMaRt revealed that we were successful in inject-

ing diverse faults into it, as the results of some tests revealed interesting behaviors and

performances that had not yet been verified. These tests also revealed that BFT-SMart,

as expected, is prone to faults that involve the system’s primary. It also revealed new

attacks possible to be made against BFT-SMaRt, such as crashing correct replicas in the

protocol with flood-based attacks, which depleted the memory of the replicas. We also

were capable of using faulty clients to disrupt the protocol into the view change phase

whenever we wanted.

As for the application’s future, it could be beneficial to use this injector to assess other

distributed systems aside from BFT protocols, given that a multitude of these faults can

affect them, but the focus, for now, is purely on testing BFT protocols. One of the biggest

hurdles will be deploying this application on other protocols since it will be needed to

97

98 Injecting Faults in Byzantine Fault Tolerance Protocols

understand their underline structure to adapt it. As such, it will be required to restructure

the application’s architecture into one that has a better capability to do it so. As for

now, Zermia only works with BFT-SMaRt, and the variety of attacks has yet to be further

expanded to include faults such as MAC/signature forging attacks.

Bibliography

[1] R. A. Quinnell, “Distributed operating systems combine multiple processors into a

single machine.” EDN, vol. 40, no. 20, pp. 38–43, 1995. [Cited on page 2.]

[2] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva: Speculative

byzantine fault tolerance,” Proceedings of 21st ACM SIGOPS Symposium on Operat-

ing Systems Principles, SOSP 2007, pp. 45–48, New York 2007. [Cited on pages xvii,

2, 3, 12, 17, 22, 23, 26, and 50.]

[3] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and P. Maniatis, “Zeno: Eventually

consistent byzantine-fault tolerance,” Proc. NSDI, pp. 169–184, 2009.

[4] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next 700 bft protocols,”

in Proceedings of the 5th European conference on Computer systems, 2010, pp. 363–

376. [Cited on page 2.]

[5] A. Shoker, J.-P. Bahsoun, , and M. Yabandeh, “Improving independence of failures

in bft,” Network Computing and Applications (NCA), 2013 12th IEEE International

Symposium, pp. 227–234, Aug 2013. [Cited on page 2.]

[6] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie, “Fault-scalable

byzantine fault tolerant services,” SOSP, 2005. [Cited on page 2.]

[7] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “Hq replication: A

hybrid quorum protocol for byzantine fault tolerance,” in Proceedings of the 7th sym-

posium on Operating systems design and implementation, 2006, pp. 177–190. [Cited

on pages 2 and 17.]

[8] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo, “Efficient

byzantine fault-tolerance,” IEEE Transactions on Computers, vol. 62, no. 1, pp. 16–30,

2011. [Cited on page 2.]

99

100 Injecting Faults in Byzantine Fault Tolerance Protocols

[9] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,”

ACM Transactions on Computer Systems (TOCS), vol. 20, no. 4, pp. 398–461, 2002.

[Cited on pages xvii, 2, 12, 13, 17, 18, 23, 27, 36, 45, and 47.]

[10] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication for the masses with

bft-smart,” in 2014 44th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks. IEEE, 2014, pp. 355–362. [Cited on pages 2, 4, 17, 27, 42,

45, 55, 71, and 79.]

[11] J.-P. Bahsoun, R. Guerraoui, and A. Shoker, “Making bft protocols really adaptive,”

in 2015 IEEE International Parallel and Distributed Processing Symposium. IEEE,

2015, pp. 904–913. [Cited on page 2.]

[12] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making byzantine

fault tolerant systems tolerate byzantine faults,” NSDI, vol. 9, pp. 153–168, 2009.

[Cited on pages 2, 17, and 37.]

[13] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Spin one’s wheels?

byzantine fault tolerance with a spinning primary,” in 2009 28th IEEE International

Symposium on Reliable Distributed Systems. IEEE, 2009, pp. 135–144. [Cited on

page 12.]

[14] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Byzantine replication under attack,”

in 2008 IEEE International Conference on Dependable Systems and Networks With

FTCS and DCC (DSN). IEEE, 2008, pp. 197–206. [Cited on pages xvii, 12, 17, 32,

33, 35, 37, 49, and 58.]

[15] P.-L. Aublin, S. B. Mokhtar, and V. Qu´ema, “Rbft: Redundant byzantine fault

tolerance,” IEEE 33rd International Conference on Distributed Computing Systems,

pp. 297–306, July 2013. [Cited on pages xvii, 2, 37, 38, 39, 60, and 62.]

[16] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of bft proto-

cols,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-

munications Security, 2016, pp. 31–42. [Cited on page 2.]

[17] S. Duan, M. K. Reiter, and H. Zhang, “Beat: Asynchronous bft made practical,” in

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security, 2018, pp. 2028–2041.

Bibliography 101

[18] F. Shen, Y. Long, Z. Liu, H. Liu, D. Gu, and N. Liu, “A practical dynamic enhanced

bft protocol,” International Conference on Network and System Security, NSS, pp.

288–304, 2019.

[19] C. Liu, S. Duan, and H. Zhang, “Epic: Efficient asynchronous bft with adaptive secu-

rity,” 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN), pp. 337–451, 2020. [Cited on page 2.]

[20] R. Martins, R. Gandhi, P. Narasimhan, S. Pertet, A. Casimiro, D. Kreutz, and

P. Veríssimo, “Experiences with fault-injection in a byzantine fault-tolerant proto-

col,” Proc. of ACM/IFIP/ USENIX Middleware’13, 2013. [Cited on pages 3 and 42.]

[21] S. Bano, A. Sonnino, A. Chursin, D. Perelman, and D. Malkhi, “Twins: White-glove

approach for bft testing,” arXiv preprint arXiv:2004.10617, 2020. [Cited on pages 3,

42, and 43.]

[22] D. Gupta, L. Perronne, and S. Bouchenak, “Bft-bench: Towards a practical evalua-

tion of robustness and effectiveness of bft protocols,” in Distributed Applications and

Interoperable Systems, 2016, pp. 115–128. [Cited on pages 3, 42, and 62.]

[23] grpc : A high-performance, open source universal rpc framework. [Online]. Available:

https://github.com/grpc [Cited on pages 4 and 71.]

[24] J. C. de Sousa, “Byzantine state machine replication for the masses,” Ph.D. disserta-

tion, Universidade de Lisboa (Portugal), 2017. [Cited on pages xvii, 4, 27, 28, 30, 42,

45, 55, and 71.]

[25] F. B. Schneider, “Implementing fault-tolerant services using the state machine ap-

proach: A tutorial,” ACM Computing Surveys (CSUR), vol. 22, no. 4, pp. 299–319,

1990. [Cited on page 7.]

[26] C. Cachin, “Security and fault-tolerance in distributed systems,” IBM Zurich Research

Lab, 2006. [Cited on pages 9 and 10.]

[27] M. Fischer, N. Lynch, and M. Paterson, “Impossibility of distributed consensus with

one faulty process,” Journal of the Association for Computing Machinery, 1985. [Cited

on page 10.]

https://github.com/grpc

102 Injecting Faults in Byzantine Fault Tolerance Protocols

[28] M. Correia, G. S. Veronese, N. F. Neves, and P. Verissimo, “Byzantine consensus in

asynchronous message-passing systems: a survey,” International Journal of Critical

Computer-Based Systems, vol. 2, no. 2, pp. 141–161, 2011. [Cited on page 11.]

[29] G. Bracha, “Asynchronous byzantine agreement protocols,” Information and Compu-

tation, pp. 130–143, 1987. [Cited on page 11.]

[30] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM

TOPLAS, pp. 382–401, 1982. [Cited on pages xvii, 13, 14, 15, 16, and 17.]

[31] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in OSDI, vol. 99,

no. 1999, 1999, pp. 173–186. [Cited on pages 17, 23, 27, 45, and 47.]

[32] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riché,

“Upright cluster services,” Proc. of the ACM SOSP’09, 2009. [Cited on page 17.]

[33] A. Bessani, M. Santos, J. Felix, N. Neves, and M. Correia, “On the efficiency of

durable state machine replication,” Proceedings of the 2013 USENIX Annual Technical

Conference, San Jose, CA, USA , 2013. [Cited on pages xvii and 31.]

[34] R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren, “Modifi: a model-

implemented fault injection tool,” in International Conference on Computer Safety,

Reliability, and Security. Springer, 2010, pp. 210–222. [Cited on page 40.]

[35] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and tools,”

Computer, vol. 30, no. 4, pp. 75–82, 1997.

[36] N. Song, J. Qin, X. Pan, and Y. Deng, “Fault injection methodology and tools,”

in Proceedings of 2011 International Conference on Electronics and Optoelectronics,

vol. 1. IEEE, 2011, pp. V1–47. [Cited on page 40.]

[37] H. Ziade, R. A. Ayoubi, R. Velazco et al., “A survey on fault injection techniques,”

Int. Arab J. Inf. Technol., vol. 1, no. 2, pp. 171–186, 2004. [Cited on pages 40 and 41.]

[38] R. Kumar, P. Jovanovic, and I. Polian, “Precise fault-injections using voltage and tem-

perature manipulation for differential cryptanalysis,” 2014 IEEE 20th International

On-Line Testing Symposium (IOLTS), pp. 43–48, 2014. [Cited on page 41.]

[39] M. Madau, M. Agoyan, J. Balasch, M. Grujić, P. Haddad, P. Maurine, V. Rožić,

D. Singelée, B. Yang, and I. Verbauwhede, “The impact of pulsed electromagnetic

Bibliography 103

fault injection on true random number generators,” 2018 Workshop on Fault Diagnosis

and Tolerance in Cryptography (FDTC), pp. 43–48, 2018. [Cited on page 41.]

[40] M. Dumont, M. Lisart, and P. Maurine, “Electromagnetic fault injection : How faults

occur,” 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),

pp. 9–16, 2019.

[41] A. Cui and R. Housley, “Badfet : Defeating modern secure boot using second-order

pulsed electromagnetic fault injection,” 11th USENIX Workshop on Offensive Tech-

nologies (WOOT 17), 2017. [Cited on page 41.]

[42] P. Yuste, D. Andrès, L. Lemus, J. Martin, and P. Gil-Vicente, “Inerte: Integrated

nexus-based real-time fault injection tool for embedded systems,” International Con-

ference on Dependable Systems and Networks, 2003. [Cited on page 41.]

[43] J. Arlat, Y. Crouzet, and J. C. Laprie, “Fault injection for dependability validation of

fault-tolerant computer systems,” Proc. 19th International Symp. on Fault-Tolerant

Computing, pp. 348–355, 1989. [Cited on page 41.]

[44] H. Madeira, M.Rela, F.Moreira, and J.Silva, “Rifle: A general purpose pin-level fault

injector,” Proc. First European Dependable Computing Conference, pp. 199–216,

1994. [Cited on page 41.]

[45] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo, “Using heavy-ion

radiation to validate fault-handling mechanisms,” IEEE micro, pp. 8–23, 1994. [Cited

on page 41.]

[46] J. Carreira, H. Madeira, J. G. Silva et al., “Xception: Software fault injection and

monitoring in processor functional units,” Dependable Computing and Fault Tolerant

Systems, vol. 10, pp. 245–266, 1998. [Cited on page 41.]

[47] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari: A flexible software-

based fault and error injection system,” IEEE Transactions on computers vol. 44, pp.

248–260, 1995.

[48] R. Chandra, R. M. Lefever, K. R. Joshi, M. Cukier, and W. H. Sanders, “A global-

state-triggered fault injector for distributed system evaluation,” IEEE Transactions

on Parallel and Distributed Systems vol. 15, pp. 593–605, 2004.

104 Injecting Faults in Byzantine Fault Tolerance Protocols

[49] S. Han, K. G. Shin, and H. A. Rosenberg, “Doctor: An integrated software fault

injection environment for distributed real-time systems,” Proceedings of 1995 IEEE

International Computer Performance and Dependability Symposium, pp. 204–213,

1995. [Cited on page 41.]

[50] P. Sousa, N. F. Neves, and P. Verissimo, “Hidden problems of asynchronous proactive

recovery,” in Proceedings of the Workshop on Hot Topics in System Dependability,

2007. [Cited on page 50.]

[51] I. Abraham, G. Gueta, D. Malkhi, L. Alvisi, R. Kotla, and J. Martin, “Revisiting fast

practical byzantine fault tolerance,” ArXiv, Dec 2017. [Cited on page 51.]

[52] I. Abraham, G. Gueta, D. Malkhi, and J. Martin, “Revisiting fast practical byzantine

fault tolerance: Thelma, velma, and zelma,” ArXiv, Jan 2018. [Cited on page 54.]

[53] L. Perronne and S. Bouchenak, “Towards efficient and robust bft protocols,” in Fast

Abstract in the 46th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks, 2016. [Cited on page 58.]

[54] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Ycsb : Yahoo! cloud serving benchmark. [Online]. Available: https:

//github.com/brianfrankcooper/YCSB [Cited on page 79.]

[55] Cooper, Brian F and Silberstein, Adam and Tam, Erwin and Ramakrishnan, Raghu

and Sears, Russell, “Benchmarking cloud serving systems with ycsb,” in Proceedings of

the 1st ACM symposium on Cloud computing, 2010, pp. 143–154. [Cited on page 79.]

https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB

	Acknowledgements
	Abstract
	Resumo
	Glossary
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Proposed solution
	1.3 Contribution
	1.4 Document Structure

	2 Related Work and State of the Art
	2.1 BFT overview
	2.1.1 Fault models
	2.1.2 Byzantine fault tolerance concepts
	2.1.3 Synchrony in BFT
	2.1.4 fault handling and recovering techniques
	2.1.5 Byzantine Generals’ Problem and the 3f+1 solution

	2.2 Practical Byzantine Fault Tolerance
	2.2.1 Protocol overview
	2.2.2 Fault free execution
	2.2.3 Checkpoint system
	2.2.4 Fault handling while having a faulty primary
	2.2.5 Fault recovery model

	2.3 Zyzzyva
	2.3.1 Protocol overview
	2.3.2 Fault free execution
	2.3.3 Fault handling when having a faulty primary
	2.3.4 Fault handling when there is one faulty replicas
	2.3.5 Fault recovery model

	2.4 BFT-SMaRt
	2.4.1 Protocol overview
	2.4.2 Fault Free execution
	2.4.3 Fault handling with a faulty primary
	2.4.4 Fault handling with a faulty client
	2.4.5 Fault recovery models

	2.5 Prime
	2.5.1 Protocol overview
	2.5.2 Fault free execution
	2.5.3 Fault handling when having a faulty primary
	2.5.4 Fault recovery model

	2.6 RBFT
	2.6.1 Protocol overview
	2.6.2 Fault free execution
	2.6.3 Fault handling when having a faulty primary

	2.7 Fault injection
	2.7.1 BFT fault injectors
	2.7.2 Summary of the BFT fault injectors

	3 Analysis of protocols under attack
	3.1 PBFT
	3.1.1 Protocol fault analysis
	3.1.2 Network and other faults

	3.2 Zyzzyva
	3.2.1 Protocol fault analysis
	3.2.2 Network and other faults

	3.3 BFT-SMaRt
	3.3.1 Protocol fault analysis
	3.3.2 Network and other faults

	3.4 Prime
	3.4.1 Protocol fault analysis
	3.4.2 Network and other faults

	3.5 RBFT
	3.5.1 Protocol fault analysis
	3.5.2 Network and other faults

	3.6 Summary

	4 Zermia: A fault injector for BFT systems
	4.1 Zermia's architecture
	4.1.1 Coordinator
	4.1.2 Agent
	4.1.3 Faults
	4.1.4 Fault schedules

	4.2 Zermia's model and test cycle
	4.2.1 Initial configurations
	4.2.2 Booting process
	4.2.3 Execution process

	4.3 Zermia's Implementation details
	4.3.1 Coordinator
	4.3.2 Agent
	4.3.3 Predefined faults in Zermia
	4.3.4 Schedule conflicts

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Baseline results
	5.3 Communication-based faults
	5.3.1 Crashing Replicas
	5.3.2 Delaying Replicas
	5.3.3 Message dropper
	5.3.4 Flood attacks

	5.4 Protocol specific faults
	5.4.1 Agreement phase - REQUEST
	5.4.2 Agreement phase - PROPOSE
	5.4.3 Agreement phase - WRITE
	5.4.4 Agreement phase - ACCEPT
	5.4.5 View change phase - STOP
	5.4.6 View change phase - STOPDATA
	5.4.7 View change phase - SYNC

	6 Conclusion and Future Work
	Bibliography

