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Abstract: Gemcitabine is an anticancer drug used to treat a wide range of solid tumors and is a
first line treatment for pancreatic cancer. Our group has previously developed novel conjugates
of gemcitabine with cell-penetrating peptides (CPP), and here we report some preliminary data
regarding the pharmacokinetics of gemcitabine, two gemcitabine-CPP conjugates and respective
CPP gathered from GastroPlus™, and analyze these results considering our previous evaluation
of gemcitabine release and conjugates’ bioactivity. Additionally, seeking to shed some light on
the relation between the penetration ability of CPP and their physicochemical properties, chemical
descriptors for the 20 natural amino acids were calculated, a new principal property scale (z-scale)
was created and CPP prediction models were developed, establishing quantitative structure-activity
relationships (QSAR). The z-scores of the peptides conjugated with gemcitabine are presented and
analyzed with the aforementioned data.

Keywords: gemcitabine; cell-penetrating peptides (CPP); in silico; pharmacokinetics; GastroPlus™;
z-scale

1. Introduction

Gemcitabine (2′,2′-difluoro-2′-deoxycytidine, dFdC, Gem, Figure 1) is a drug considered as
‘first-line treatment’ for various types of solid tumors and is clinically used in the treatment of various
cancers including pancreatic cancer, non-small cell lung cancer (NSCLC), bladder, ovarian, and breast
cancer, as well as some blood cancers, such as non-Hodgkin’s lymphoma [1–3]. Like most anticancer
drugs, gemcitabine is administered intravenously. Its cellular uptake is primarily facilitated and
governed by the human equilibrative nucleoside transporter 1 (hENT1) and human concentrative
nucleoside transporter 3 (hCNT3) [4,5]. Inside cells, gemcitabine acts as an antimetabolite, but first needs
to be activated by phosphorylation to its triphosphate form (dFdCTP) by deoxycytidine kinase (dCK)
and other intracellular kinases. dFdCTP is incorporated into DNA, leading to DNA strand termination
after the incorporation of one more nucleotide, and also competes with deoxycytidine triphosphate
(dCTP) as an inhibitor of DNA polymerase. The incorporation of this extra nucleotide into DNA appears
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to be resistant to the normal mechanisms of DNA. Moreover, gemcitabine diphosphate (dFdCdP) is a
potent inhibitor of ribonucleotide reductase (RNR), resulting in depletion of deoxyribonucleotides
necessary for DNA synthesis, further potentiating the effects of dFdCTP in causing cell death by
apoptosis [6,7].

Figure 1. Chemical structures of gemcitabine and gemcitabine-CPP conjugates Gem-Cys-Pen
and Gem-Cys-pVEC.

However, there are some factors hindering the full potential of gemcitabine: (a) gemcitabine
may rapidly undergo deamination to its inactive uridine metabolite (2’,2’-difluorodeoxyuridine,
dFdU), by cytidine deaminase (CDA), which is present at high levels in both human plasma and
liver; (b) gemcitabine monophosphate (dFdCMP) is deaminated into dFdUMP by deoxycytidylate
deaminase (DCTD); (c) the phosphorylated metabolites of gemcitabine are inactivated via reduction
by cellular 5’-nucleotidase (5’-NT). Enzymatic conversion of gemcitabine rapidly clears it from the
body [7,8]. Additionally, some tumor cells can develop resistance to gemcitabine related to nucleoside
transporter deficiency [5]. As the adverse effects associated with chemotherapeutic agents remain
severe, many efforts have been made to maximize therapeutic efficacy and attenuate the nocuous side
manifestations. Numerous gemcitabine prodrugs have been developed to alter some of the unfavorable
physicochemical properties of the drug and ideally improve its oral bioavailability.

Recently, our group has synthesized two gemcitabine-CPP conjugates (Figure 1), in an effort
to both retard or prevent deamination of gemcitabine (masking its aniline moiety) and facilitate its
delivery into cancer cells [9], taking advantage of the fact that all CPP are able to efficiently pass through
cell membranes while being non-cytotoxic and carrying a wide variety of cargos inside cells [9,10].
CPP Penetratin (Pen, RQIKIWFQNRRMKWKK-NH2) and pVEC (LLIILRRRIRKQAHAHSK-NH2)
were selected for conjugation with gemcitabine [9]. These are two well-known CPP and have both
been reported in numerous cancer studies over the last two decades [11,12]. An additional cysteine
residue (Cys) was coupled to the N-terminus of both CPP, producing Cys-Pen and Cys-pVEC, to allow
the subsequent binding to parent drug. The time-dependent kinetics of gemcitabine release from
hydrolysis of these new conjugates was studied in phosphate-buffered saline (PBS) at pH 7.4, 37 ◦C, and
their biological activity was evaluated against three human tumoral cell lines: MKN-28 (human gastric
cancer), Caco-2 (heterogeneous human epithelial colorectal adenocarcinoma) and HT-29 (human colon
adenocarcinoma). The results were promising, revealing an increase in the anti-proliferative activity of
gemcitabine in vitro upon conjugation with the CPP [9].

In this work, we used computational tools to study the pharmacokinetics (PK) of drug gemcitabine,
gemcitabine-CPP conjugates and respective CPP, and to establish a possible relation between penetration
potency of CPP and their physicochemical properties. The PK data was acquired using GastroPlus™;
amino acid properties were calculated in Schrödinger’s Maestro software; principal component
analysis (PCA), multivariate analysis (MVA) and partial least square discriminant analysis (PLS-DA)
were used to build CPP prediction models in SIMCA by Umetrics. GastroPlus™ is a powerful
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mechanistically based simulation and modeling software for pharmaceutical research. With Advanced
Compartmental Absorption and Transit (ACAT™) and Physiologically Based Pharmacokinetic (PBPK)
models, it has features and capabilities to support model-based drug development in all phases of drug
discovery, translational research, and clinical development. This software has been used in numerous
academic studies and by pharmaceutical companies of excellence, along with the U.S. Food and Drug
Administration (FDA), the Centers for Disease Control and Prevention (CDC), the National Institutes
of Health (NIH), the National Cancer Institute (NCI) and the China Food and Drug Administration
(CFDA).

Peptides and proteins have been the subject of considerable interest in medicine, research, and
drug development due to some of their specific properties and a wide variety of applications [13,14].
In particular, CPP have the intrinsic property to efficiently deliver covalently or noncovalently bound
therapeutic molecules (nucleic acids, proteins, drugs, imaging agents, etc.) into a variety of cell types and
tissues in a nontoxic manner, via receptor-independent mechanisms (primarily endocytosis) [10,15,16].
Besides their ability to be uptaken by cells and act as an excellent therapeutic delivery vehicle, it has
been established that CPP are generally relatively short peptides (less than 40 amino acids), have low
cytotoxicity, dose-dependent efficiency, and no restriction with respect to the size or type of cargo.
Additionally, CPP can enhance the water solubility of drugs [17].

The rational design and prediction of new CPP requires an understanding of the defining properties
and similarities of these peptides. For example, almost every CPP sequence involves positively charged
amino acids and it has also been shown that secondary structure, specifically helicity, is a key factor
governing the interactions of a given CPP with cell membranes, and peptides with an α-helical region
can enter cells more efficiently [18].

Theoretical and computational methods are powerful and very often useful tools to predict new
CPP sequences, based on previously available experimental data and calculations of several amino
acid and peptide properties. Initially, principal components analysis (PCA) and binary classification
were explored for pattern recognition models [19,20]. With the determination of physicochemical
properties of amino acids and peptides, quantitative structure activity relationship studies (QSAR),
partial least squares (PLS) regression and multivariate analysis (MVA) can also be used as tools [21–24].
Hellberg et al. developed a tridimensional scale (z1–z3) for the 20 natural amino acids to perform
quantitative structure-activity relationship (QSAR) of peptides, using 29 physicochemical properties [23].
This method and these scales have since been extended to include more amino acids and descriptive
properties in the search for new CPP sequences.

In this project, we followed the same methodology and selected 12 physicochemical properties of
the 20 natural amino acids to extract 3 z-scores. This tridimensional z-scale was used to build several
CPP prediction models and to discuss the properties of amino acids and peptides that seem to play
an important role in the penetration ability of these peptide sequences. Although it is possible to
create models that allow for amino acid position-based optimization, the models created here were to
predict a binary classification: CPP or non-CPP, using various calculated global peptide descriptors.
This has been applied in multiple previous studies regarding peptide modeling with varying successful
results [21,25].

2. Methods

2.1. Amino Acids–Structure, Physicochemical Properties and Creation of a Z-Scale

The structures of the 20 natural amino acids were drawn in Maestro (version 10.4, Schrödinger,
LLC, New York, NY, USA). All amino acids were capped using C-terminal amidation and N-terminal
acetylation to better simulate an amino acid as part of a peptide chain, linked through amide bonds.
Maestro’s LigPrep tool was used to simultaneously minimize the structures and generate possible
charge states at pH 7.0 (histidine was only included in its charged, deprotonated state).
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Physicochemical properties of the amino acids were calculated by Maestro’s QikProp tool.
This data was imported into SIMCA (version 13.0 ed, Umetrics AB, Umeå, Sweden) where it was
scaled and centered. After principal component analysis (PCA) of the data, 3 principal components
were extracted. These scores (designated z1, z2 and z3) constitute a z-scale used to quantitatively
describe each amino acid and the peptide sequences. The 12 selected properties for PCA were: number
of rotatable bonds (#rotor), molecular weight (mol MW), volume, solvent accessible surface area
(SASA), number of hydrogen bond donors (donorHB), number of hydrogen bond acceptors (accptHB),
globularity (glob), octanol/water partition coefficient (QPlogPo/w), polar surface area (PSA), net charge
(Tot Q), and ratios FISA/SASA (FISA is the hydrophilic component of SASA) and FOSA/SASA (FOSA
is the hydrophobic component of SASA).

In general, the relation of the PCs with the physicochemical properties suggests the first PC (z1) is
mainly related to properties describing size and shape properties, such as volume, SASA, globularity
and molecular weight; the second PC (z2) seems to be more related to the polarity of the amino acids
and the descriptors QPlogPo/w, accptHB, donorHB, FISA/SASA and PSA; finally, z3 seems to be
predominantly influenced by electronic properties (in this case described by charge).

2.2. Peptides

2.2.1. Datasets

Peptide sequences were extracted from the different CellPPD (Designing of Cell Penetrating
Peptides) databases, available from http://crdd.osdd.net/raghava/cellppd/dataset.php. This provided a
main dataset of experimentally validated cell-penetrating (900 CPP) and both validated and randomly
generated non-active peptides (1148 non-CPP) after removal of duplicates.

The lack of experimentally validated non-CPP is a known problem [26,27] and creating balanced
datasets, which has been demonstrated to be very crucial in modeling [26,28,29], is therefore a major
problem. To try to overcome this issue, the main dataset was reduced to contain only 900 non-CPP, the
same number of CPP present. The deleted 248 peptides were selected randomly.

To study the influence of terminal chains, all peptides were truncated to originate 6 other datasets.
First, the peptides were divided in half, generating an N-terminal and a C-terminal dataset. In the
cases of peptides with an odd number of amino acids, the N-terminal was the longer chain. Then, five
residues were taken from each terminal, originating the “first 5AA” and “last 5AA” datasets. Finally,
the same process was used, but to create “first 10AA” and “last 10AA” datasets.

2.2.2. Peptide Descriptors

Every peptide is described as a sequence of the z-scores of their amino acids. The mean of the
z-scores across the entire sequence was calculated (mean z1, mean z2 and mean z3). The absolute
difference between terminals was calculated (|Nt − Ct|), as well as the absolute difference between
the first and last 5 or 10 amino acids. Using an extension of the Eisenberg’s equation where the
hydrophilicity descriptor of the original equation was replaced with the generated z-scale values
(Equation (1)), as established by Maccari et al. [30], the z-scale moment was calculated for each dataset.

Equation (1): Original Eisenberg’s equation; N: number of amino acids in the peptide sequence; n:
order number of the specific amino acid examined; H: experimental hydrophilicity of a specific amino
acid; δ: angle between two adjacent amino acids, which in the case of an alpha helical structure is
defined as 100◦.

µ =

√√√√ N∑
n=1

Hn· sin(δn)


2

+

 N∑
n=1

Hn· cos(δn)


2

(1)

Some properties of the peptides were calculated and applied as descriptors to the models. These
properties included the peptides’ steric bulk (calculated as the mean number of non-hydrogen atoms
in the amino acid side chains), the mean net donating hydrogen bonds (calculated as the accepted

http://crdd.osdd.net/raghava/cellppd/dataset.php
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hydrogen bonds subtracted from the donated hydrogen bonds), the total charge of the peptide
sequences as well as the mean net charge, which takes into consideration the total number of amino
acids in each sequence. Additionally, the total number of Arg, His, Lys, Asp and Glu residues, and the
total number and ratio of positively and negatively charged amino acids were also considered when
building the prediction models.

2.3. Prediction Model Generation and Optimization

Using SIMCA and Partial Least Square Discriminant Analysis (PLS-DA), numerous prediction
models were generated by varying the included properties and descriptors.

To be able to perform external validation of the built models, a test set composed of peptides
not included in the generation of the models is needed. So, 50% of the main dataset peptides were
randomly extracted and selected as the test set.

Internal classification predictive value, Q2, and fit measurements were calculated and analyzed in
the optimization process. Four performance measurements to access the predictability of the different
models were calculated based on the number of true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN). These measurements were sensitivity, specificity, accuracy and Matthew’s
correlation coefficient (MCC), a quality measurement for binary classifications (Equations (2) to (5)).

Equations (2) to (5): Sensitivity, representing the percentage of correctly predicted positive
sequences; specificity, representing the percentage of correctly predicted negative sequences; accuracy,
representing the percentage of correctly predicted sequences overall; and Matthew’s correlation
coefficient (MCC), a quality measurement for binary classifications.

(Sensitivity) :
TP

TP + FN
× 100 (2)

(Specificity) :
TN

TN + FP
× 100 (3)

(Accuracy) :
TP + TN

TP + FN + TN + FP
× 100 (4)

(MCC) :
(TP× TN) − (FP× FN)√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
× 100 (5)

2.4. Pharmacokinetic Assessment of Gemcitabine, Cpp and Gemcitabine-Cpp Conjugates

The pharmacokinetic study of gemcitabine, CPP and conjugates was performed in GastroPlus™
(version 9.5, Simulations Plus, Inc., Lancaster, California, USA), a mechanistically based simulation
and modeling software for pharmaceutical research. GastroPlus™ builds physiologically based
pharmacokinetic (PBPK) models and can run simulations based on a drug’s structure and collected
data to predict the most important parameters in pharmacokinetics (PK), such as the maximum
concentration reached in plasma and liver, time necessary to reach such concentrations, binding to
plasma proteins, fraction absorbed and bioavailability. It also draws a graphical representation of
plasmatic concentration over time and calculates the area under the curve (AUC). GastroPlus™ not
only simulates human PK, but can also be used to study mice, rats, monkeys, beagles, cats, rabbits
and minipigs, based on preinstalled human and animal physiological parameters. This software
has been used to successfully and accurately predict PK profiles, an important tool in early on drug
discovery [31].

All the simulations in the scope of this project were performed to predict the PK for 24 h after
intravenous administration of 1250 mg (1 h perfusion), using the Compartmental model of GastroPlus™.
The software did not provide an estimated clearance for any of the molecules studied here, thus,
gemcitabine’s clearance value of 168 L/h was input into the software, according to this drug’s FDA
label and information deposited on DrugBank [32–34].
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The general workflow of PBPK modeling has been described in publications and tutorials [35–37].
The preliminary model in this case was based on the physicochemical data from ADMET Predictor™
module of GastroPlus™, using a standard compartmental PBPK model.

3. Results and Discussion

The choice of amino acids and their combination in a peptide sequence when designing new
CPP are fundamental. Properties such as size, polarity and charge vary greatly within the 20 natural
amino acids, and to better understand how these properties correlate with CPP penetration ability, 12
physicochemical properties were selected and PCA was performed to extract 3 principal components
(PCs), forming a tridimensional z-scale, presented in Table 1. The relation of the PCs with the
physicochemical properties can be seen in Figure 2.

Table 1. Extracted z-scores for the 20 natural amino acids and their physicochemical properties.

Amino Acid z1 z2 z3 Amino Acid Properties

Ala (A) −3.4535 −0.8314 0.8710 Non-polar, aliphatic
Arg (R) 5.9227 −0.7707 1.9428 Positively charged
Asn (N) 0.4104 −4.0436 −0.5900 Polar
Asp (D) 0.1502 −2.2592 −1.7815 Negatively charged
Cys (C) −1.8132 0.7809 −0.0062 Polar
Gln (Q) 2.5410 −2.5906 0.0520 Polar
Glu (E) 1.4594 −1.6961 −1.7366 Negatively charged
Gly (G) −3.2706 −1.7938 0.5308 Non-polar, aliphatic
His (H) 1.4195 0.2462 0.6037 Positively charged
Ile (I) −1.3560 1.8903 0.6660 Non-polar, aliphatic

Leu (L) −1.5348 1.8836 0.7144 Non-polar, aliphatic
Lys (K) 2.7685 0.6670 2.5607 Positively charged
Met (M) −0.0676 2.3168 0.4266 Non-polar, aliphatic
Phe (F) −0.0247 2.9087 −1.2433 Aromatic
Pro (P) −3.3838 −0.4244 −0.0096 Polar
Ser (S) −1.6519 −1.4774 0.3484 Polar
Thr (T) −1.3364 −0.5600 0.3103 Polar
Trp (W) 1.7531 3.3182 −1.7406 Aromatic
Tyr (Y) 2.0819 1.7453 −1.1132 Aromatic
Val (V) −2.9262 0.7588 0.6271 Non-polar, aliphatic

Figure 2. Loading plot explaining PC1 vs. PC2 for the 20 natural amino acids z-scale PCA.
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Every peptide was described as a sequence of the z-scores of their amino acids and peptide
descriptors were calculated for every peptide in the main dataset. PCA was performed to extract
3 PCs for each peptide. Several prediction models were generated by varying the included properties
and descriptors, and Pen, Cys-Pen, pVEC and Cys-pVEC were predicted as CPP; their z-scores are
presented in Table 2. All the models created in this project showed a decent ability to predict CPP, with
an average of 79% sensitivity, 80% specificity, 81% accuracy, 61% MCC and 0.406 Q2.

These results show Pen and Cys-Pen have z1 scores 2-fold higher than the z1 scores calculated
for pVEC and Cys-pVEC. The same difference was observed for the z2 scores. However, regarding
the third PC, pVEC and Cys-pVEC z3 scores are higher than the ones calculated for Pen and Cys-Pen.
Adding a Cys residue to the original CPP sequences seems to have had a bigger impact on the PC
related to size and shape, z1, where it was possible to differentiate the original CPP from the modified
Cys-CPP, whereas z2 and z3 scores are very similar for the CPP and Cys-CPP.

As previously mentioned, charged has long been appointed as one of the most important
features/characteristics of CPP. In Table 3, the number of charged amino acids and ratio of hydrophilic
residues to total number of residues are presented. The difference in the content of positively charged
amino acids in Pen and pVEC can explain the higher z3 scores calculated for pVEC (and Cys-pVEC).

With respect to the in vitro results previously observed by our group, there was a significant
improvement in the biological activity of gemcitabine upon conjugation of the drug with either CPP,
with Gem-Cys-pVEC conjugate showing the best results in MKN-28 and HT-29 cells (Table 4).

In Table 5 are the input data used in GastroPlusTM to simulate plasma concentration. Concentration
curves were then compared to that of parental drug (GEMZAR®, gemcitabine for injection) and the
approximation between values has been achieved.

Despite the promising in vitro bioactivity, favorable pharmacokinetic properties are required for
the success of therapies in vivo. According to the simulations carried out in GastroPlus™, conjugates’
bioavailability is ensured and plasma concentration should reach therapeutic levels (Table 6).

Table 2. Extracted z-scores for the studied peptides.

Peptide z1 (Size and Shape) z2 (Polarity) z3 (Charge)

Pen 2.3233 0.4802 0.6731
Cys-Pen 2.0865 0.5016 0.6364

pVEC 1.0880 0.2586 1.0435
Cys-pVEC 0.9411 0.2895 0.9911

Table 3. Electronic and hydrophilic properties of the studied CPP.

Sequence #AA1 #Arg1 #Lys1 #His1 HR2 (%) Pred.3 Exp.4 Ref.

Pen RQIKIWFQNRRMKWKK 16 3 4 0 63 + + [38]
Cys-Pen CRQIKIWFQNRRMKWKK 17 3 4 0 59 + N.D.
pVEC LLIILRRRIRKQAHAHSK 18 4 2 2 44 + + [39]

Cys-pVEC CLLIILRRRIRKQAHAHSK 19 4 2 2 42 + N.D.
1 # indicates number of total or indicated amino acid residues; 2 hydrophilic ratio (calculated at www.bachem.com/
service-support/peptide-calculator); 3 predicted penetration ability; 4 experimentally verified penetration ability.
N.D.: not determined.

Table 4. Biological activity and half-life of the studied molecules.

Compound Caco-2
IC50/µM [9]

MKN-28
IC50/µM [9]

HT-29
IC50/µM [9]

t1/2
(PBS, 37 ◦C)/h

Gem >100 >100 >100 >2 [40]
Cys-Pen >100 >100 >100 N.D.

Cys-pVEC >100 >100 >100 N.D.
Gem-Cys-Pen 67.13 ± 2.92 46.99 ± 5.91 47.26 ± 11.3 230 [9]

Gem-Cys-pVEC >100 20.68 ± 6.81 45.20 ± 1.04 42 [9]

N.D.: not determined.

www.bachem.com/service-support/peptide-calculator
www.bachem.com/service-support/peptide-calculator
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Table 5. Input data used in GastroPlus™ to simulate plasma concentration of GEMZAR®.

Parameter Value Reference/Data Source

Solubility 5.01 mg/mL at pH 7.92 ADMET PredictorTM

pKa 3.54 (DrugBanka: 3.6) ADMET PredictorTM

LogP −1.32 (DrugBanka: 1.4) ADMET PredictorTM

Dose 1250 mg FDA (Ref. ID: 3503046)b

Effective permeability, Peff 0.59 cm/s × 10−4 Caco-2 (Nuno Vale Lab)
Blood/plasma ratio 1.12 ADMET PredictorTM

Clearance 168 L/h [41]
Physiology Human, fasting conditions FDA (Ref. ID: 3503046)b

Body weight (Kg) 70 FDA (Ref. ID: 3503046)b

a From Reference 33; b From highlights of prescribing information [42].

Table 6. Predicted pharmacokinetic properties of studied molecules determined with GastroPlus™.

Compound Fup
1 (%) B/P ratio2 Vc

3 F (%) 4 Fa (%) 5 AUC 0-inf 6 AUC 0-t 7 Cmax
8 Cmax liver

9 Sol. 10

Gem 84.61 1.12 1.45 99.949 99.949 7.4368 7.4367 5.9505 5.8709 5.01
Pen 22.50 0.93 0.14 99.999 99.999 7.4404 7.4404 7.4403 7.4398 1.83

Cys-Pen 26.72 0.92 0.11 99.999 99.999 7.4404 7.4404 7.4401 7.4394 4.66
Gem-Cys-Pen 12.91 0.98 0.17 100.000 100.000 7.4405 7.4404 7.4404 7.4403 1.26

pVEC 13.35 1.13 0.16 100.000 100.000 7.4405 7.4405 7.4404 7.4403 28.94
Cys-pVEC 15.53 1.12 0.11 100.000 100.000 7.4405 7.4404 7.4404 7.4403 17.34

Gem-Cys-pVEC 42.89 1.20 0.18 99.998 99.999 7.4404 7.4403 7.4400 7.4393 5.39
1 percentage of drug that is not bound to plasma proteins (100 = fully unbound); 2 blood/plasma concentration ratio (ratio of concentrations of the drug in whole blood and plasma);
3 distribution volume, in L/kg; 4 bioavailability; 5 fraction absorbed as a percent of the dose (crossing the lumen and entering enterocytes); 6 area under the plasma concentration–time
curve, in µg-h/mL, extrapolated to infinity; 7 area under the plasma concentration–time curve, in µg-h/mL, for the time of the simulation; 8 maximum plasma concentration reached in the
central compartment, in µg/mL; 9 maximum concentration reached in the liver, in µg/mL; 10 solubility in mg/mL.
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The calculated AUC for the conjugates was comparable to the AUC calculated for gemcitabine, yet,
estimated Cmax was higher for all peptides and conjugates analyzed compared to gemcitabine
alone (Figure 3). Gem- Cys-pVEC conjugate binds less extensively to plasma proteins (>Fup,
42.89%). Considering this conjugate showed the best bioactivity in MKN-28 and HT-29 cells, and
released gemcitabine in PBS faster than Gem-Cys-Pen conjugate (50% over 42 h, versus 9.6 days for
Gem-Cys-Pen [8]), we believe Gem-Cys-pVEC conjugate has the best suitable profile for drug delivery.
Binding to plasma proteins acts as a protection from quick biotransformation and degradation due to
the action of plasma circulating enzymes [40] (such as proteases and CDA). This increases circulation
time and can also be advantageous to biodistribution. However, it is important that there is a significant
percentage/amount of the drug/compound free in circulation so that it can reach its target and exert its
pharmacologic action. Differences in Vc of gemcitabine and the conjugates can be explained by their
different affinity to bind to plasma proteins.

Figure 3. Plasma concentration–time profiles for gemcitabine and the Gem-Cys-pVEC conjugate after
IV infusion (1 h).
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4. Conclusions

The main goal of this study was to combine the in vitro and in silico approaches to highlight the
potential clinical applications of CPP in drug delivery. The development of an amino acid z-scale and
the calculation of peptide descriptors was important to understand some factors impacting penetration
ability. We believe this method is of great value for pharmaceutical design using CPP for drug delivery.
Given the results of this work, we intend to continue studying this approach and these conjugates,
and to carry out in vivo experiments, considering Gem-Cys-pVEC our therapeutic lead as it showed
the most promising results regarding in silico calculated properties, pharmacokinetic potential and
in vitro bioactivity.
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