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“Out of the night that covers me, 

Black as the pit from pole to pole, 

I thank whatever gods may be 

For my unconquerable soul. 

 

In the fell clutch of circumstance 

I have not winced nor cried aloud. 

Under the bludgeonings of chance 

My head is bloody, but unbowed. 

 

Beyond this place of wrath and tears 

Looms but the Horror of the shade, 

And yet the menace of the years 

Finds and shall find me unafraid. 

 

It matters not how strait the gate, 

How charged with punishments the scroll, 

I am the master of my fate, 

I am the captain of my soul.” 

 

 

Invictus by William Henley 
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Abstract  

Precision Agriculture (PA) is seen as one of the European Union's strategies to 

achieve the goal of producing more with less, in a world with fewer available resources. 

The application of PA techniques in the collection of information from maize allows de-

tecting the existence of spatiotemporal variations in the fields, but traditional approaches 

cannot deal with the multidimensionality of the information to determine the main effects 

of these variations on productivity. A yield gap approach is a promising strategy to assess 

the available biophysical potential of a specific location by comparing a potential yield 

with the field average yield. Following this approach, this work hypothesized that the 

edaphic characteristics that cause consistent high and low productivity patterns in time 

and space can be interpreted as an ecological niche. In light of this interpretation, this 

work sought to apply an ecological niche model, the maximum entropy method by the 

Maxent algorithm, to analyze the low and high yields patterns and determine the key 

factors responsible for the yield gaps in three different plots. This work was carried out 

at Quinta da Cholda, which has an extensive database of various agronomic indicators 

with spatiotemporal dimensionality, such as productivity maps for 2015-2020, soil elec-

trical conductivity, digital elevation maps and fertility maps. From the productivity maps, 

low and high productivity locations were identified and georeferenced and the key factors 

were determined using the Maxent algorithm. In the Cerca plot, productivity is controlled 

by the apparent electrical conductivity for the regions of high productivity (17-25 mS/m) 

and low productivity (7-12 mS/m). In the Lourenço plot, total phosphorus (95-135 mg/kg) 

and pH (7.75 -7.85) are the main factors that characterize the high yields. Low yields are 

characterized by high elevation regions and pH (>7.9). In the Vinha plot, regions with low 

productivity are located in high elevation regions (>70m) associated with low water avail-

ability. The high yields are located in regions with a low topographical position index (-

0.7 - 0), magnesium (170-220 mg/kg) and organic matter (>2%). A factor common to the 

three plots was the influence of topography in both high and low productivity regions. 

The methodology developed here allowed the identification of the main factors respon-

sible for the yield gaps, although certain patterns its agronomic interpretation may not be 

relevant from a quantitative point of view. This work provides agriculture with an innova-

tive modeling approach to efficiently manage high-dimensional spatiotemporal data to 

support advanced AP solutions. 

 

Keywords: Maize; Precision farming; Yield maps; Ecological niche models; Maximum 

Entropy; Machine Learning; Maxent;  
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Resumo 

A Agricultura de Precisão (AP) é vista como uma das estratégias da União 

Europeia para atingir o objetivo de produzir mais com menos, em um mundo com menor  

quantidade de recursos disponíveis. A aplicação de técnicas de AP na recolha de 

informação do milho permite detetar a existência de variações espaço-temporais nos 

campos mas as abordagens tradicionais não conseguem lidar com a 

multidimensionalidade da informação para determinar os principais efeitos destas 

variações na produtividade. Uma abordagem de yield gap é uma estratégia promissora 

para avaliar o potencial biofísico disponível de um local especifico através da 

comparação de uma produtividade potencial com a produtividade média existente. 

Seguindo esta abordagem, este trabalho colocou a hipótese de que as características 

edáficas que provocam padrões de elevada e baixa produtividade consistentes no  

espaço e tempo podem ser interpretados como um nicho ecológico. Á luz desta 

interpretação este trabalho procurou aplicar um modelo de nicho ecológico, o método 

da entropia máxima pelo algoritmo Maxent, para analisar os padrões de baixa e alta 

produtividade e determinar os fatores chave responsáveis pelos yield gaps em três 

parcelas diferentes. Este trabalho foi desenvolvido na Quinta da Cholda, que possui uma 

extensa base de dados de vários indicadores agronômicos com dimensionalidade 

espácio-temporal, tais como mapas de produtividade de 2015-2020, condutividade 

elétrica do solo, mapas de elevação digital e mapas de fertilidade. Apartir dos mapas de 

produtividade, foi identificado e georreferenciado os locais de baixa e alta produtividade 

e os fatores chave foram determinados através algoritmo Maxent. Na parcela Cerca, a 

produtividade é controlada pela condutividade elétrica aparente para as regiões de alta 

produtividade (17-25 mS/m) e de baixa produtividade (7-12 mS/m). Na parcela 

Lourenço, o fosforo total (95-135 mg/kg) e o pH (7,75 -7,85) são os principais fatores 

que caracterizam as altas produtividades. As baixas produtividades são caracterizadas 

por regiões elevadas e pelo pH (>7.9). Na parcela Vinha as regiões de baixa 

produtividade situam-se em regiões de maior elevação (>70m) associado a uma baixa 

disponibilidade hídrica. As altas produtividades situam-se em regiões com um baixo 

índice de posição topográfico (-0.7 - 0), magnésio (170-220 mg/kg) e matéria orgânica 

(>2%). Um fator comum ás três parcelas foi a influência da topografia tanto nas regiões 

de alta e baixa produtividade. A metodologia desenvolvida permitiu a identificação dos 

principais fatores responsáveis pelos yield gaps, embora certos padrões a sua 

interpretação agronómica poderá não ser relevante do ponto de vista quantitativo. Este 

trabalho disponibiliza à agricultura uma abordagem de modelação inovadora para gerir 
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com eficiência dados espaço-temporais de alta dimensão para suporte a soluções de 

AP avançados. 

 

Palavras-chave: Milho; Agricultura de Precisão; Mapas de Produtividade; Modelos de 

Nicho Ecológico, Entropia Máxima, Machine Learning, Maxent. 
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1. Introduction 

Since the food price crisis of 2008-2009, it has become evident that global 

agricultural commodity markets remain highly volatile. There is a structural situation of 

low stocks and stagnating productivity, yet demand steadily increases due to changing 

diets in emerging countries. Extreme events of climate change are also influencing 

agricultural production. Medium-term projections by the Food and Agriculture 

Organization of the United Nations estimate that agricultural production would need 

almost double to meet the need for an anticipated global population of 9 billion people in 

the year 2050, and is the first of the Millennium Development Goals of eradicating hunger 

(Sachs et al., 2019). Agriculture is thus recognized as a public good of top priority, 

although being among the major drivers of negative environmental externalities. It 

accounts for more than 10% of the total greenhouse gas emissions in the EU- 28, is 

among the major contributors to water, soild and biodiversity loss (Recanati et al., 2019). 

Still, it faces the dramatic challenge of producing more with less, with more sustainable 

use of natural resources, considering both water and land scarcity and the need to 

mitigate, as well as to adapt to climate change (Pachauri et al., 2014). 

Precision agriculture (PA) is recurrently pointed out as one of the strategies of 

the European Union to achieve this objective (European Commission, 2019). 

Specifically, the European Green-Deal, which is an integral part of the European 

Commission strategy to implement the 2030 Agenda and achieve the sustainable 

development goals of the United Nations, refers to the PA as one of the mechanisms to 

operationalize its strategy “from farm to fork”1. The Common Agricultural Policy, since its 

foundation, as also has been steadily evolving in time to respond to EU society changes 

and needs. Since 2013, it provides direct support to producers to respond to long term 

objectives reflecting the three dimensions of sustainability: Viable food production, 

balanced rural development and sustainable natural resources management. 

The yield gap approach is a promising way to achieve necessarily sustainable 

intensification. This concept indicates the biophysical potential available to improve 

agricultural production in a specific location (Van Ittersum et al., 2013) and can be 

estimated as the difference between a benchmark and the actual yield (Beza et al., 

2017). Several studies have examined yield gaps at the scale of the region or agro-

climatic zones (Mueller et al., 2012; Neumann et al., 2010). However, there is a lack of 

 
1 Cunha, M. 2020.  Agriculture challenges: context and directions – Agronomic project. Course resources for Agronomic Project (2 

year, 2. MSc in Agronomy, Faculdade de Ciências, Universidade do Porto. https://www.fc.up.pt/pessoas/mccunha/Projeto_agro-
nomico/bases/ICC.htm 
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field/farm studies to understand the yield gaps further. At this level, the availability of 

spatio-temporal agronomic data and reliable modelling approaches are the major 

drawbacks in a yield gap analysis (Beza et al., 2017).  

Since yield is a complex relationship between genetics, environment and 

management (GxMxE), additional complexity arises when spatial and temporal within-

field variations are added up. But if a permanent characteristic exists that impacts the 

yield, those spatial variations will be similar each year (Blackmore et al., 2003; Ping & 

Dobermann, 2005). Still, such an approach is not efficient to support better agricultural 

decisions and does not provide the scientific understanding of the biophysical process 

of the yield gap so there is a necessity to understand the main drivers of the within-field 

variability and quantify them in order to correct the existing yield gaps. 

Maxent is based on a machine learning approach designed to make predictions 

from incomplete information (Phillips et al., 2006). The Maxent algorithm is mainly used 

in species distribution modelling (SDM) (Sillero & Barbosa, 2021). This approach allows 

to identify and quantify the main factors that influence the distribution and the habitat 

selection of living organisms through the use of two components: (i) a georeferenced 

dataset of where the species was detected and (ii) the environmental layers that 

characterize the study area (Merow et al., 2013). 

The basis of ENMs is the ecological niche concept (Hutchinson, 1957) which 

states that the habitat containing suitable environmental conditions enables a species to 

survive and reproduce (Grinnell, 1917). It is possible to express this relation through the 

BAM diagram (biotic, abiotic and movement relationships) (Soberón & Peterson, 2005) 

and outside of the region defined by these factors, the habitat is unsuitable for a species 

to exist. Extending this logic to crop yield, high and low productivity areas affected by 

permanent characteristics that induce a spatial pattern every year can be interpreted as 

a BAM interaction, representing a region where the species (yield class) possess a more 

suitable environmental area to exist.  

So, in light of this interpretation, this thesis proposes using a Maxent approach 

combined with yield maps to identify and quantify the main yield gap driving factors using 

data from three different fields. To our knowledge, this sort of approach has never been 

done before at the farm level. Three types of multiyear yield maps were built to identify 

the existing high and low yield patterns to reach this objective. These areas were then 

analysed using Maxent with an agronomic dataset consisting of electrical conductivity, 

primary and secondary topographic attributes, and fertility maps. 
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Literature Review 

1.1. Precision Agriculture 

Precision Agriculture (PA) is a management strategy that looks to understand, 

interpret, and manage special and temporal variability in agricultural fields to increase 

environmental and economic performance (Braga & Pinto, 2011). The parcels are 

treated heterogeneously, divided by management zones where the soil and the crop 

requirements are matched to their needs. Each operation is chosen at the correct place, 

on the exact intensity, in the right timing (Bongiovanni & Lowenberg-DeBoer, 2004; 

Gebbers & Adamchuk, 2010). 

This definition encompasses the idea that a PA is a management strategy that 

evolves through time. The focus is given to the decision making process regarding 

resource management with the inference that well-supported agronomic decisions will 

have positive repercussions (economic, social, environmental) that may be quantifiable 

or not (Whelan & Taylor, 2013). From a production perspective, PA can be considered 

as the application of information at the site-specific level, with the objective of: a) 

optimizing production efficiency b) optimizing quality c) minimizing environmental 

impacts and d) minimizing risks (agronomic, economic and environmental). 

Variability can be decomposed into two main elements: spatial and temporal 

variability. Spatial variability refers to the soil, crop and environmental characteristics that 

change in distance and depth, while temporal variability measures the same variations 

in relation to time (Shannon et al., 2020). The existence of spatial-temporal variabilities 

in the fields has always been a constant in agriculture. Before the introduction of 

mechanization, small fields allowed the early agricultures to manage these variabilities 

manually to assure that the crops were well adjusted to the existing conditions on the 

farm (Oliver, 2010). Meaning, the factual base of PA – the existence of soil, crop and 

environment variabilities – has always been taken into account since the beginnings of 

agriculture.  

However, with the enlargement of fields, intensive production and mechanization 

in the latter half of the last century, managing within-field spatial variability was not 

possible unless a significant improvement in the technology (Stafford, 2000). Hence, the 

typical approach adopted by farmers was the whole field approach. When handling large 

areas, the farmers would simply ignore the existence of variabilities, and the inputs would 

be applied uniformly throughout the entire field. This type of management strategy is 

appealing because it enables processing large amounts of areas in a short time frame. 
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However, the inefficient application of crop production inputs leads to overapplying and 

underapplying in other sites(Shannon et al., 2020). Sites that cannot lock the inputs lead 

to environmental impacts due to leaching, runoff, and greenhouse gas emissions  

(Balafoutis et al., 2017; Guignard et al., 2017). 

In 1993, the USA department of Defence finished the Global Positioning System 

(GPS), which comprises 24 satellites. This system enabled the development of PA as it 

is today (Oliver, 2010; Stafford, 2000; Zhang et al., 2002; Zhang, 2016). The GPS makes 

it possible to determine a position (latitude, longitude, altitude) anywhere on the planet, 

with an accuracy of a few centimetres using real-time kinematics GPS (González-García 

et al., 2020) . This information is essential for PA. It enables mapping and georeferencing 

the existing variabilities in topography, fertility or productivity, allowing the application of 

crop production inputs using variable rate technology (VRT) in the exact location needed 

(Mulla & Khosla, 2016; Stafford, 2000).  

Nowadays, technological development reached a stage that enables the farmer 

to analyse, measure and make decisions to handle the existing variabilities (Zarco-

Tejada et al., 2014). It is considered that the agricultural sector is going through a fourth 

technological revolution (Agriculture 4.0) supported mainly by the advances in 

information technologies  (Zhai et al., 2020). Advances in several areas, such as remote 

detection, GPS, big data analysis and artificial intelligence, promises to optimize 

agricultural operations and inputs to improve yield and reduce losses (Porter & 

Heppelmann, 2014; Wolfert et al., 2017). However, the explosive information available 

(crop, economic and environmental data) makes it hard to transform into practical 

knowledge (Taechatanasat & Armstrong, 2014). Decision support systems (DSS) are 

necessary to help in the decision-making process based on evidence (Zhai et al., 2020). 

 

1.2. Precision Agriculture Cycle 

PA is a cyclic system of data acquisition used to manage the information 

extraction and decision-making process, with the cycle continuing in the following years  

(Braga & Pinto, 2011; Gebbers & Adamchuk, 2010). The system is organized in four 

stages (figure 1). The information acquired in the process is stored in a database to 

support future decisions (Cambouris et al., 2014; Pedersen & Lind, 2017). The first stage 

identifies where, how and how much variability is present in a given field. To this effect, 

several data acquisition technologies can be used (remote sensing, yield mapping, 

fertility maps, topography) to map these variabilities and georeferenced them (Arslan & 

Colvin, 2002; Bishop & McBratney, 2002; Cahn et al., 1994; Sishodia et al., 2020). 
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Figure 1: PA cycle. Adapted from Arnó Satorra and Martínez Casasnovas (2016) 

The main task of the second stage is to extract and process the acquired data. 

The use of geographical information systems (GIS) is fundamental in this step. During 

the third stage, it is necessary to make decisions regarding complex data. Several 

methodologies exist in supporting the decision-making process, the most noteworthy 

approaches being the construction of management zones, the use of decision support 

systems (DSS) and crop models based on machine learning because of the capability to 

handle highly complex and non-linear agricultural problems (Nawar et al., 2017; Wolfert 

et al., 2017; Zhai et al., 2020). Finally, the decision is operationalized in the field through 

VRT technologies. Two main approaches exist: I) Reactive II) Predictive. In the reactive 

approach (real-time), the crop/soil condition estimation is made and the VRT application 

rate changes in response to local conditions assessed by a sensor at the time of the 

application. In contrast, the predictive approach (map-based) sets the condition of the 

soil/crop off-site, using several different sensors to generate soil property maps (yield, 

topography, fertility). Through the combined use of this information, VRT applications 

recommendations are made  (Adamchuk et al., 2011; Braga & Pinto, 2011). 

 

1.3. Within Field Variability 

The with-in field variability in agricultural soils can be decomposed into two main 

types of components - Temporal and Spatial (Srinivasan, 2006). Spatial variability 

measures the changes in the physicochemical properties of the soil and productive 

capability through space. These different variations can be inherent to the pedological 

factors of the field, but some variability can be introduced through management decisions 

(Iqbal et al., 2005). Spatial variability measures the same changes but through time. The 

main factors that influence the variability are listed in table 1.  
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Table 1: Factors influencing yield variations and survey methods. Adapted from Godwin and Miller (2003) 

Group Factor Method 

Soil-water 
Soil texture, structure, available water 

and waterlogging 

Soil mapping, profile description, electro-

magnetic induction 

Topography Topography and micro-climate Topography surveys, 3D-DGPS 

Soil nutrition 
Major nutrients, pH and trace ele-

ments 

Targeted sampling, canopy density, yield 

maps, ADP 

Crop weeds and 

pests 
Weeds, pests and diseases Field walking, ADP, reflectance imaging 

3D-DGPS: three-dimensional differential global positioning system; ADP:  Aerial digital photography. 

1.3.1.  Soil-Water 

The impact of water availability on yield is well documented (Condon et al., 2002), 

with soil texture being an important environmental factor that influences crop productivity 

because of its direct effect on soil water and complex interactions with other 

environmental factors (He et al., 2014). The apparent electrical conductivity (ECa) is used 

in PA to identify several physicochemical properties (Corwin & Lesch, 2005). In regions 

where salinity is not a significant factor, measurements of the ECa is primarily a function 

of soil moisture, organic matter and texture, as illustrated in table 2 (Corwin & Lesch, 

2005; Kuang et al., 2012). 

Measurement of ECa is done using electrical resistivity, electromagnetic induction 

and time domain frequency which is mainly a function of the number of ions present. 

Electrical resistivity and electromagnetic induction are well suited for field-scale 

applications because their volumes of measurement are large which reduces the 

influence of local scale variability (Corwin & Lesch, 2003; Grisso et al., 2005). Electrical 

resistivity introduces an electrical current into the soil through the electrodes and 

measures the difference in the current flow potential. But electrical resistivity is an 

invasive method that requires good contact between the four electrodes and the soil. 

Electromagnetic induction however, just requires a transmitter coil above the surface. 

The coil induces a circular eddy-current loop in the soil, with the magnitude of these loops 

directly proportional to the electrical conductivity in the vicinity of that loop. However, the 

measurement of ECa with electromagnetic induction depends of a depth weighted 

response function, unlike electrical resistivity, where the measurement is linear over 

depth. Time domain reflectometry measures the time that a voltage pulse travels down 

through a soil probe and back, which is a function of the dielectric constant of the porous 

media being measured. This method is non-invasive and has a similar performance to 

the accepted methods of ECa measurement (Corwin & Lesch, 2005). However, time 
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domain reflectometry is a stationary instrument and its use has been limited due to its 

high cost and need for complex wave form analysis (Hardie, 2020). 

Table 2: Soil texture and their electrical conductivity. Adapted from:(Heege, 2013) 

Soil texture class or influence of salt Electrical conductivity (mS/m) 

Sand 0.1 – 1 

Loamy sand 1.0 – 5.0 

Loam 5.0 – 12.5 

Silt 12.5 – 25.0 

Clay 25.0 – 100 

Saline Soil > 100 

 

The properties measured by ECa can be divided into two categories: a) Static b) 

Dynamic. Dynamic properties change through time, like the soil water content. Water 

affects the ECa measurements because many ions are in the soil solution, and its 

temporal variation provokes different impacts on the ECa (Brevik et al., 2006). Static 

properties, on the other hand, remain constant through time. Among the static properties, 

the texture is considered the property with the greatest influence (table 2) and among 

the textural classes, clay exerts the greatest influence in the ECa because it possesses 

the highest ion exchange capacity (Heege, 2013). 

 

1.3.2.  Topography 

The elevation is a critical layer in PA because it provides critical information on 

topography's impact on yield variability. To develop a high-resolution digital elevation 

map (DEM), the data from a differential GPS or Real time Kinematic GPS is required. 

This allows resolutions from up to 1m on the ground, which is enough to reflect the 

continuous nature of the topography (Bishop & McBratney, 2002). From the DEM, it is 

possible to generate new topographical parameters to characterize it. Wilson and Gallant 

(2000a) divided the topographical parameters into a) primary and b) secondary. Primary 

parameters are calculated directly from a DEM and include slope, aspect, flow 

accumulation, curvature (planar, profile, tangential) and shaded relief. Secondary 

parameters result from the combination of two or more primary parameters and are used 

as indexes that characterize the spatial variability of specific processes in the fields 

(Moore et al., 1991). Several of these indexes describe and quantify the influence of the 

topography in water distribution, such as the topographical wetness index (TWI) and 

distance to flow lines (DFL). 
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The relationship between several primary and secondary topographical 

characteristics with yield has been investigated, and several relations with yield has been 

found. Kravchenko et al. (2000) studied the effect of slope in corn and soybean yield. In 

growing seasons with dry weather, larger yields were observed at low slope locations, 

and moderate and high slopes had a wide range of values. During wet seasons, lower 

yields prevailed at locations with low slopes. Kaspar et al. (2003) analysed the effect of 

elevation, slope and curvature on yields. In years with less than normal precipitation, 

corn yield was negatively correlated with elevation, slope and curvature. In wetter years, 

yield was positively correlated with relative elevation and slope. Bakhsh, Colvin, et al. 

(2000)  showed that lower yield areas of corn were consistent in regions of higher 

elevation, and higher yielding areas were variable. Hansen et al. (2013) demonstrated 

that maize in the summit or shoulder positions had less water, leaf area, biomass, N and 

P uptake when compared with maize grown in backslope areas. Mishra et al. (2008) also 

showed that summit/shoulder areas were associated with low yield values, soil organic 

carbon and pH values. And the opposite relation was found in footslope regions, with 

high yield values, soil organic carbon and pH. Kravchenko and Bullock (2002) found that 

in seasons with enough precipitation, higher elevation and steep slopes and areas with 

convex curvature would produce soybeans with high protein and oil content. But in dry 

seasons, the opposite relation was found. Kravchenko et al. (2005) showed that the yield 

variation was high as 45% in years of low rainfall and low as 14% with above average 

precipitation. Maestrini and Basso (2018) confirmed this relation by showing that the 

performance of areas of a field with a high TWI (depressions) depends on the rain 

patterns of the season. In wet years these regions may be waterlogged, yielding less 

that the rest of the field. In dry years, these regions are wetter than the rest of the field, 

yielding more than the rest of the field. Da Silva and Silva (2008a, 2008b) evaluated the 

relationship between several topographic attributes in irrigated maize and found that the 

highest correlating attribute was the distance do flow accumulation lines (DFL). That is, 

the yield increases when the distance is reduced to water flow accumulation areas. 

Kumhálová et al. (2011) analysed the correlation between flow accumulation and yield 

and found the correlation weak for wet years and strong for drier years. 

The impact of terrain topography in water displacement is due to the gravitational 

potential energy gradients from the elevation differences (Murphy et al., 2009), which 

controls the vertical and horizontal water distribution (Verity & Anderson, 1990). 

Topography's influence on water distribution is one of the main factors for yield 

variabilities (Mishra et al., 2008; Sadler et al., 2000). Godwin and Miller (2003) supported 
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these findings. They also stated that topography was one of the most obvious causes of 

yield variations in field crops for its direct effect on micro-climate related factors. 

 

1.3.3.  Soil Nutrition 

To address soil fertility's spatial variability, extensive soil sampling is recognized 

as a basis for site-specific fertilizer applications (Cambardella & Karlen, 1999). Spatial 

patterns of soil properties and nutrient concentrations need to be characterized to 

establish site-specific farming practices (Cahn et al., 1994). Their quality affects the 

efficacy of soil fertility management (Mueller et al., 2001). There are two primary 

approaches to develop VRT fertilization maps: a) grid soil sampling and b) management 

zone delineation. These two approaches depend on the farmers' managing options, 

fields history, and the available spatial information resources (Ferguson et al., 2017). 

Grid soil sampling is more commonly used if (i) there is no prior knowledge on 

the field; (ii) previous decisions significantly altered the fertility; (iii) several small fields 

were merged into a single field; (iv) if an accurate base map of soil organic matter is 

desired (Ferguson & Hergert, 2009). A grid sampling strategy is enough to reveal fertility 

patterns but only if a high sampling density is used (Flowers et al., 2005; Franzen & 

Peck, 1995; Nanni et al., 2011). It consists in sampling pre-determined spots following a 

regular or irregular grid pattern (figure 2a). It is retrieved between 5-8 samples 

surrounding the pre-determined spots in a radius of 2-3m, which are aggregated in a 

single composite sample. The regular grid pattern was a common sampling method 

before the GPS but is susceptible to systematic errors (Franzen et al., 2018). The 

irregular grid pattern minimizes the effects of these errors in two directions, and it is the 

sampling method most adapted to kriging interpolation (Gotway et al., 1996).     

 

 
Figure 2: The two main approaches for developing soil specific maps: (a) Grid sampling (b) Zone sampling. Adapted 

from Ferguson et al. (2017) 
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A management zone approach may be preferable if several sources of spatial 

information exist. A management zone is a sub-region in a field that exhibits a 

homogenous combination of limiting factors for which a single rate of a crop input is 

necessary for optimal efficiency (figure 2b) (Doerge, 1999; Fraisse et al., 2001; 

Haghverdi et al., 2015). These regions are generated from the combination of several 

layers such as yield maps, topography, aerials photos, electrical conductivity, remote 

sensing, or the farmer's experience. The resulting management zone needs to be simple, 

precise, stable over the years and identify regions that need to be managed differently 

(Khosla et al., 2010). Soil sampling on a management zone approach can be randomly 

collected within each zone and integrated into a single sample for laboratory analysis 

(Chang et al., 2003). This process significantly reduces the cost of the analysis, in 

opposition to grid sampling.  

 There is still a third approach, by using real-time sensors. Traditional sampling 

methods are slow and costly (Rossel & Bouma, 2016), so it is necessary to develop new 

strategies for mapping different soil properties with a high sampling density at a low cost 

(Adamchuk et al., 2004; Viscarra Rossel et al., 2010). For this effect, the use of proximal 

soil sensors can understand and quantify the existing spatial-temporal variabilities in a 

field (Kuang et al., 2012). By being connected to a GPS to register the sampled position, 

it is possible to quickly produce maps of several properties at a high spatial resolution  

(Adamchuk et al., 2011). The type of sensors can be electrical, electromagnetically, 

optical, radiometric, mechanic, acoustic, pneumatic and electrochemical (Viscarra 

Rossel et al., 2010).  

 Ideally, a sensor corresponds to a single soil traits variability and is highly 

correlated to a conventional analyses method. But in reality the sensors respond to 

several properties, and the separation of their effects is difficult (Adamchuk et al., 2004; 

Viscarra Rossel et al., 2010), which allows only indirect information about their 

properties. 
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(Eq.1) 

1.4. Grain yield monitors 

To acquire yield data, yield monitors need to be installed near the grain elevator. 

The most used commercial systems are classified in two categories: i) mass flow meters 

and ii) volume flow meters(Arslan & Colvin, 2002). The mass flow meters calculate the 

productivity directly from the force that hits the impact plate, which is connected to a 

potentiometer that generates an electrical signal that is proportional to the mass of the 

grain (figure 3), while the volume flow potentiometers needs to incorporate the density 

of the grain to determine the rate of flow mass (Arslan & Colvin, 2002; Whelan & Taylor, 

2013). For cereal crops, mass flow meters are the most suitable because the beans are 

partially dry at the time of the harvest and can deal with mechanical handling without 

damage (Fulton et al., 2018). 

 

Figure 3: Mass flow meter. Adapted from Fulton et al. (2018) 

 

To produce a yield map, the number of grains per a specific area (kg/ha) is 

recorded. The yield monitor incorporates several different types of information relayed 

by the sensor system (figure 4). All this information is necessary to determine two 

important parameters for yield estimation: weight of the grain harvested and harvested 

area. The weight of the grain is expressed by the grain flow (kg/s) and the harvested 

area is determined by the speed and operating width of the harvester combine. With this 

information, the yield calculation is done through equation 1 (Whelan & Taylor, 2013):  

 

𝑌𝑡/ℎ𝑎  = (( 
𝑓𝑘𝑔/𝑠  ×  𝑖𝑠

1000 𝑘𝑔/𝑠
)   × (

10 000𝑚2/ℎ𝑎

𝑑𝑚  ×  𝑤𝑚
)  × (

100 −  𝑚%

100 −  𝑠𝑚%
) ) 
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Where: 

Yt/ha = yield in t/ha 

f kg/s =grain flow in kg/s 

i = sampling interval (s) 

dm = distance travelled  

wm = width of the harvester (m) 

m% = grain moisture (%) 

sm% = reference moisture content for the market (%) 

 

 

Figure 4: Sensors system associated with the yield monitor. Adapted from: Arslan and Colvin (2002) 

 

1.4.1.  Yield Maps  

Yield maps have been recognized as a valuable source of information for their 

effectiveness in mapping the within-field yield variability (Diker et al., 2004; Pringle et al., 

2003). Storing yield georeferenced data allows to identify the specific productive potential 

of some sites of the field, gives feedback on how the crop reacted in the function of 

decisions made in previous years and makes it possible to determine the number of 

nutrients that were exported by the crop (Arslan & Colvin, 2002; Reyns et al., 2002). 

However, interpreting multiple years of data may be challenging because yield variability 

is caused by many factors (Wibawa et al., 1993). For example, Machado et al. (2002) 

found that crop stress, pests and diseases could explain up to 50% of yield variability 

across years and sites. As a result, yield maps vary from year to year, making it difficult 

to use them as the basis for site-specific management. Despite strong temporal 

variability of crop yield, it is often possible to detect consistent yield patterns across years 

(Dobermann et al., 2003; Kitchen et al., 2005; Taylor et al., 2007). The assumption is 

that if permanent soil characteristics affected the crop yields, in the same way, each year, 
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the spatial yield pattern that affects that particular area would be similar each year 

(Blackmore et al., 2003; Ping & Dobermann, 2005). Some yield patterns were found 

consistent even when under different crops and varying climate conditions and can 

deliver relevant information regarding the soil characteristics within the field or depict the 

influence of other external factors, such as management practices and weather 

conditions (Diker et al., 2004). Taylor et al. (2007) showed that in specific portions of 

their field study, crop rotation management originated variations in yield spatial patterns 

in previous years. The influence of dry and wet years was also studied, and it has been 

found that high-yielding areas in dry years could be at the same time low yielding areas 

in wet years (Maestrini & Basso, 2018). 

Although yield data is a valuable source of information, a few issues remain. The 

spatial yields patterns that originate from the interaction between management, climate 

and environment conditions within cropping seasons should not be used to generate 

VRT applications maps directly for the year n by solely relying on yield data in year n-1 

(Ping & Dobermann, 2005). Although a single year yield map is useful, it should only be 

used for posterior interpretation of possible yield variations (Ping & Dobermann, 2005). 

It is acknowledged that the yield temporal variability is often stronger than yield spatial 

variability, which can hinder any analysis (Blackmore et al., 2003; Bramley & Hamilton, 

2004). Temporal variability is essentially due to non-stable factors, such as climate 

patterns or the type of crop grown each year (Basso et al., 2012). Also, the number of 

years of yield data available to conduct yield temporal analysis is critical (Bakhsh, 

Jaynes, et al., 2000; Kitchen et al., 2005). Ping and Dobermann (2005) suggested that 

a minimum of 5 years of yield data for irrigated crops is necessary for yield classification. 

On top of that, yield data often comes with a large number of erroneous observations, 

such as flow delay, filling and emptying times, the abrupt speed changes of the combine, 

inaccurate sensor measurements of yield and moisture, the accuracy of the positioning 

system and errors dealing with the harvester operator(Arslan & Colvin, 2002; Blackmore, 

1999; Lyle et al., 2014; Simbahan et al., 2004; Sudduth & Drummond, 2007). 
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1.5. Crop Yield Gap 

The crop yield gap is a concept that describes the difference between the average 

on-farm yield and the yield under optimum management (figure 5) (Van Ittersum et al., 

2013).This information provides the foundation for identifying the most important crop, 

soil and management factors limiting current farm yields (Lobell et al., 2009; Van Ittersum 

et al., 2013). This concept is based on ecological principles, and it is highly relevant 

because it indicates the biophysical potential available to improve agricultural output 

according to its specific location (Van Ittersum et al., 2013). 

 

Figure 5: Different production levels as determined by growth defining, limiting and reducing factors. Adapted from (Van 

Ittersum et al., 2013) 

 

Yield under optimum management is labelled as potential yield (Yp), and is 

defined as “the yield of a cultivar when grown in environments to which it is adapted, with 

nutrients and water non-limiting and with pests, diseases, weeds, lodging, and other 

stresses effectively controlled” ” (Evans & Fischer, 1999). Under irrigated conditions, Yp 

is determined by solar radiation, temperature, atmospheric CO2 and genetic traits that 

govern the growing period and the canopy architecture. In rainfed conditions, Yp is most 

affected by water availability and is referred to as water-limited yield (Yw) (Fischer, 2015; 

Lobell et al., 2009). Yp can be estimated using field experiments and crop growth 

simulations models, evaluating the potential experimental yield (Ye) and potential climatic 

yield (Yp/Yw). Ye are defined as the maximum yield possible to obtain with the best 

management practices (Liang et al., 2011; Lobell et al., 2009). Table 3 summarizes the 

critical benchmarks used in yield gap analysis. 
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Table 3: Common methods to estimate yield benchmarks 

Yield benchmark Estimation method Limitations 

Potential yield 

Climatic potential 

yield (Yp) 

Crop growth simulation models for 

irrigated systems 

Requires site-specific data that is not 

widely available at a local scale and rigor-

ous validation at field conditions 

Water-limited poten-

tial yield (Yw) 

Crop growth simulation models for 

rainfed systems 

As above 

Experiment poten-

tial yield (Ye) 

Field experiments with no yield 

constraints 

Difficult to eliminate yield limiting and yield 

reducing factors. May not represent agro-

ecological conditions of yields 

Economically attainable yield 

Exploitable yield 

(Yex) 

70-80% of potential yield Depends on price ratios and environmental 

conditions 

Attainable farm 

yield (Yat) 

Mean of the upper 10th percentile Related to the best technologies that are 

available and affordable 

Adapted from: (Cassman et al., 2003); (Lobell et al., 2009); (Van Ittersum et al., 2013); (Fischer, 2015) 

 

Average field yield (Ya) is the crop yield actually achieved in the farmer's field. It 

is defined as the average yield reached using the most widely used management 

practices, such as the sowing date, cultivar maturity, plant density, the type of nutrient 

management and crop protection. The yield gap (Yg) is the difference between Yp, Yw or 

Ye and Ya's actual yields. 

It is necessary to take into consideration the environmental, economic and social 

consequences of reaching target yields because in most cases is not desirable or 

practical to completely close the yield gaps (Cunningham et al., 2013; Mueller et al., 

2012). It is also impossible to achieve perfect crop management needed to reach Yp on 

a large scale (Koning & van Ittersum, 2009; Lobell et al., 2009; Van Ittersum et al., 2013). 

The response to applied inputs follows a diminishing return curve when yields approach 

celling yields making it increasingly difficult, time consuming and costly to eliminate the 

small imperfections to make small gains in yield (Cassman et al., 2003). 

Due to these constraints, alternative definitions that are functionally relevant for 

real farming conditions can be used such as economic yields or best farmers yield (Yat) 

(table 3). Comparing these benchmarks with the Ya may be an alternative to assess yield 

gaps. Economically attainable yield is defined as the possible exploited yield attained 

when economically optimal practices are in place.  Because of diminishing returns on 

investment, the exploitable yields (Yex) usually lie around 20-30% below the Yp if 
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favourable weather conditions exist (Fischer, 2015; Lobell et al., 2009; Van Ittersum et 

al., 2013).  

Alternatively, economic yield may be determined by identifying the best yields in 

the farmers’ fields through skilful use of the best available technology (Tittonell & Giller, 

2013), having been measured as the mean of the upper 10th percentile in rice production 

systems (Laborte et al., 2012; Van Ittersum et al., 2013). This benchmark is defined as 

attainable farm yield (Yat).  Using the definitions above Yp is only constrained by genotype 

and environment, where Yat is limited by both these factors as well by optimal agronomic 

practices, socio-economic and institutional issues that have an impact on decision 

making and access to inputs and technology. The difference between the Yex and Yat is 

considered the “exploitable yield gap” whereas the difference between Yp and Yex is the 

“unexploitable yield gap”. 

Several studies have examined yield gaps at the scale of the region, agro-climatic 

zone and global level (Hochman et al., 2016; Licker et al., 2010; Mueller et al., 2012; 

Neumann et al., 2010; Schils et al., 2018) but in order to compare different regions in 

relative terms, it is necessary to use harmonized data (Van Ittersum et al., 2013). The 

Global Yield Gap Atlas (www.yieldgap.org) is an international project with the goal of 

establishing improved methods for estimating the yield gap of existing cropland 

worldwide (Grassini et al., 2017). It is based on local data from each of the worlds’s major 

crop production countries (Grassini et al., 2015), and the estimates of these analyses 

are used as inputs to economic models to assess food security and identify areas where 

research and development interventions should be prioritised (Foley et al., 2011; Mueller 

et al., 2012; Van Ittersum et al., 2013).  

However, more local studies are required to bring the role of the farmer and the 

biophysical conditions into the picture (Beza et al., 2017). Analysing yield gaps at the 

farm and farming levels can better understand whether yield gaps can be closed (Giller 

et al., 2006). However, a major drawback of this type of analysis at the farm level is the 

high data standards required which typically refers to (a) large sample size (b) fine 

resolution (c) great level of detail (Beza et al., 2017). 

 

 

 

 

http://www.yieldgap.org/
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1.6. Ecological Niche Models 

Understanding the relationship between a species or community with the 

spatiotemporal variation in abiotic and biotic conditions is crucial in ecology and 

conservation (Elith & Leathwick, 2009). The use of species distribution models (SDMs)  

and niche ecological models (ENMs) has advanced the understanding of several 

ecological mechanisms responsible for their distribution and is a key tool in predicting 

species response to environmental change (Elith et al., 2006; Elith & Leathwick, 2009; 

Zimmermann et al., 2010).  But there are distinct differences among these two terms. 

SDMs refer to the potential distribution of suitable habitats that are being predicted by 

the model (Peterson & Soberón, 2012), while ENMs refers directly to ecological niche 

theory, and forecasts the species realized niche, according to the type of species records 

available (Sillero, 2011). 

These methods are most often used in one of four ways: (1) to estimate the 

relative habitat suitability or occurrence probability known to be occupied by a species, 

(2) to estimate the relative habitat suitability in geographic areas not known to be 

occupied by the species, (3) to estimate changes in the suitability in a specific scenario 

of environmental change, and (4) as estimates of a species niche (Hampe, 2004; Sillero 

et al., 2021; Soberón & Peterson, 2005). The increased popularity of these techniques 

is due to two main reasons: the increased availability of presence of species data in large 

quantities (Edwards, 2004) and the availability, ease of use and resolution of digital 

environmental layers (Soberón & Peterson, 2004). 

The theoretical framework of ENM/SDMs is based on the ecological niche 

concept, which is understood as the subdivision of the habitat containing the 

environmental conditions that enable individuals of a species to survive and reproduce 

(Grinnell, 1917). It is possible to express this relation through the interaction of three 

factors that limit the distribution of a species (Soberón & Peterson, 2005): A is the 

environmental conditions (abiotic) under which a species can establish a population, 

survive and reproduce; B is the biotic environment which is determined by the interaction 

between species such as competition or predation in which a species can persist; M is 

the area that is accessible to the species via its movement or dispersal capabilities. The 

biotic (B), Abiotic (A) and Movement (M) is the BAM diagram (figure 6), which is an 

abstract representation of the geographic space that represents the region where the 

species occur (Soberón & Peterson, 2005), and has become a central concern in model 

design (Barve et al., 2011; Saupe et al., 2012). Outside of the region defined by these 

factors, the habitat is unsuitable for a species to exist. Region A is commonly known as 

the ‘fundamental niche’, which is a N-dimensional Space where a species can maintain 
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a viable population and persist through time (Hutchinson, 1957). The common area of A 

and B represents the ‘realized niche’ which is the space that a species occupies that 

does not use the entire fundamental niche due to constraints by species interactions  

(Hutchinson, 1957). M constrains the ‘realized niche’ to the “region that has the right set 

of biotic and abiotic factors and that is accessible to the species, as is equivalent to the 

geographic distribution of the species”  (Soberón & Peterson, 2005). The constrained 

space is known as the occupied niche (Pearson, 2007). 

                      

Figure 6: BAM diagram represents the Biotic (B), abiotic (A) and dispersal factors (M). Outside of the space defined by 

three factors, the habitat becomes unsuitable for a species. Adapted from: Sillero (2011) 

 

Three main categories of models are typically used in ENM/SDMs studies such 

as: (i) correlative models estimates a species ecological requirements by relating 

georeferenced locality records to a set of environmental variables (Araujo & Guisan, 

2006; Franklin, 2010) (ii) mechanistic models use detailed bio-physiological information 

about a species and link them to the spatial habitat data, translating the interaction of the 

organism with its environment into key fitness components (Kearney & Porter, 2009); (iii) 

and process-oriented models, which is a combination of certain aspects of the other two 

modelling approaches. A hypothesis about niche, dispersal and biotic interactions can 

be integrated in these hybrid models, estimating species distribution (Peterson et al., 

2015).   

Correlative approaches are far more frequent than the mechanistic or process 

based approaches due to the great availability of detailed data about biodiversity and 

environment, advances in statistical techniques, development of GIS tools and 

specialized modelling software (Elith & Leathwick, 2009; Peterson et al., 2015). Among 

the correlative approaches, the most used methods are machine-learning methods, 
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followed by statistical methods and then similarity based and expert rule approaches 

(Melo-Merino et al., 2020).  

 

 

1.6.1. Maxent 

Maxent is the Java software that implements the maximum entropy method, a 

machine learning algorithm capable of modelling complex, non-linear relationships 

between presence-only data and predictors (Elith et al., 2006; Phillips et al., 2006). The 

Maxent method is one of the most common and popular algorithms for the spatial 

distribution of fossils and living organisms (Kaky et al., 2020; Merow et al., 2013; Phillips 

et al., 2006; Phillips & Dudík, 2008). Its popularity is due to its robustness to low sample 

sizes and relative high predictive accuracy (Pearson et al., 2007) coupled with flexibility 

in model construction, and it is easy to implement automatically (Elith et al., 2006; Merow 

et al., 2013; Townsend Peterson et al., 2007). Maxent allows for many parameters to be 

manually determined by the user but also offers robust default values for accurate 

species distribution models (Phillips & Dudík, 2008). 

To predict an unknown probability distribution, “the best approach is to ensure 

that the approximation satisfies any constraints on the unknown distribution that we are 

aware of, and that subject to those constraints, the distribution should have maximum 

entropy” (Jaynes, 1957). This means that the probability distribution that best represents 

the current state of knowledge of a system is the distribution that is most spread out while 

considering the constraints of the environmental variables of known locations. The 

constraints are expressed as functions of the environmental variables, called features. 

Since the set of constraints underspecifies the model, among the probability distributions 

that satisfy the constraints,  the most unconstrained one is maximum entropy (Jaynes, 

1957). 

For this effect, Maxent calculates the probability density for the presence points 

and for the background (figure 7). The background represents the available environment 

and is defined by many random sample points that characterise the study area. The 

probability density for the background characterizes the available knowledge, whereas 

the probability density of the presence points characterizes the environment where the 

species has been found. Then, Maxent chooses the distribution that maximizes the 

similarity between the environmental characteristics of the total environment and those 

of the locations where the species is known to exist. 
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(Eq.2) 

(Eq.3) 

 

Figure 7: A diagrammatic representation of the probability densities for the presence and background samples. Adapted 

from: Elith et al. (2011). 

 

This is known as the maximum entropy principle, where the true distribution of a 

species is represented as a probability distribution π over the set X of sites in the study 

area. The π assigns a non-negative value to each point x, and the values π(x) sum 

equals to 1. Following Phillips et al. (2006), the approximation of π is a probability 

distribution, defined as 𝜋 in equation 2 and the entropy is: 

 

𝐻(𝜋) = − ∑ 𝜋

𝑥∈𝑋

(𝑥)𝑙𝑛 �̂�(𝑥) 

 

According to (Dudik et al., 2004), the Maxent distribution belongs to the Gibbs 

distribution. Gibbs distributions (equation 3) are exponential distributions parameterized 

by a vector of feature weights λ=(λ1, …,λn) defined by: 

 

𝑞𝜆(𝑥) =
𝑒𝑥𝑝(∑ 𝜆𝑗𝑓𝑗(𝑥)𝑛

𝑗=1 )

𝑍𝜆
 

 

Where 𝑍𝜆 is a normalization constant ensuring that the probabilities of a 

distribution 𝑞𝜆(𝑥) sum to 1 over the study area. Which means that the value of a Maxent 

model 𝑞𝜆 at a site x depends only on the environmental variables at x. Equation 4 is the 

Maxent 𝑞𝜆 distribution that maximizes a penalized log likelihood of the presence 

locations, namely: 
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(Eq.4) 

(Eq.5) 

1

𝑚
∑ 𝑙𝑛(𝑞𝜆(𝑥𝑖))𝑚

𝑖=1 − ∑ 𝛽𝑗𝜆𝑗 ∨𝑛
𝑖=1  

 

Where the regularization parameter 𝛽𝑗is the width of the error bound for the 

features 𝑓𝑗and x1….,xm  are the presence locations. In the first term, the loglikelihood (or 

gain) gets larger to better fit the data. The second term is the regularization, known as 

LASSO penalty (Tibshirani, 1996).This penalty gets larger as the weights 𝜆𝑗 get larger, 

and typically means that the model is more complex and is likely to overfit. Maximizing 

the difference between the two terms is a Gibbs distribution that fits the data well and is 

not too complex. The regularization parameters control the trade-off. 

The best performance of Maxent is when the regularization parameters 𝛽𝑗 are as 

small as possible (equation 5). This ensures that the true feature means (under π) is 

within the error bounds and serves as an incentive to keep the error bounds as tight as 

possible. The regularization parameters are defined as: 

 

𝛽𝑗 = 𝛽√
𝑠2[𝑓𝑗]

𝑚
 

 

Where 𝛽 is a regularization parameter that depends on the feature class and 

𝑠2[𝑓𝑗] is the empirical variance of feature fj so √𝑠2[𝑓𝑗] / m is an estimate of the standard 

deviation of the empirical average.  

Regularization reduces overfitting in two ways. It ensures that the imprecision in 

the empirically measured constraints approximately satisfies the constraints required by 

the prediction. Secondly, regularization penalizes the model proportionally to the 

coefficients magnitude, shrinking several coefficients to zero. The regularization 

coefficient can be tuned to amplify or dampen its effect to produce more or less complex 

models (Merow et al., 2013; Warren & Seifert, 2011). 

Maxent derives several ‘features’ from the predictors, each of which is a simple 

mathematical transformation of the predictor. Six types of features exist: Linear, 

quadratic, product, threshold, hinge and category indicator features. Linear features are 

equal to continuous environmental variables, quadratic features to their squares and 

product features equal products of pairs of continuous environmental variables. 

Threshold features make a continuous predictor binary, 0 below the threshold and 1 

above. Hinge features are similar to the threshold, except that a linear function is used 

instead of a step function (Merow et al., 2013; Phillips & Dudík, 2008). 
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2. Materials and methods 

The materials and methods section is structured in six different subsections. First,  

the objective of this thesis is presented, followed by the characterization of the study 

area. From the yield data, three type of yield maps were calculated to determine if 

permanent yield impacting factors exist.  The soil dataset is described and from the DEM, 

several primary and secondary topographic attributes were derived. Using a yield gap  

 

Figure 8: Flowchart summarizing the methodology used in this study. Blue represents data preparation for the Maxent 

model. Orange indicates Maxent processing.] 

approach, the georeferenced locations of the permanent yield impacting factors were 

extracted for the Maxent analysis. The variable selection process screened all variables 

for correlation and collinearity, where the highest contributing variables for the models 

were selected for model building. Finally, several models were built for the high and low 

yielding regions using the Kuenm R package, and the best model for each yield class 

was kept for the analysis of the response curves generated by Maxent. Figure 8 

summarizes the work that was developed in this thesis. 
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2.1. Objectives 

The purpose of this work is to determine the main yield impacting factors through 

a yield gap approach using an established method in the field of ecology, the maximum 

entropy method (Maxent).  

The niche ecological concept states that suitable environment conditions enable 

a species to survive, reproduce and maintain a species in that particular ecological niche. 

Since specific edaphic conditions characterize a yield pattern, it can also be interpreted 

as an ecological niche. So, we hypothesise that high and low yield patterns can be 

interpreted as a BAM interaction. Using this established framework developed in 

ecology, we propose to analyse low and high yielding locations generated by a multiyear 

yield map through a yield gap approach using a niche ecological model, Maxent.  

It is the expectation that since Maxent can quantify the main biophysical factors 

that influence the distribution and the habitat selection of living organisms, the existing 

yield patterns will be properly characterized by this approach, with the end results being 

realistic, interpretable and viable for future agronomical recommendations.  

 

2.2. Study Area 

Quinta da Cholda is a large maize farm located in the county of Golegã, district 

of Santarém (39°21'48.0"N; 8°32'25.9"W), which is managed by João Coimbra. The farm 

produces grain maize on 560 hectares, which all fields are irrigated by a centre pivot, is 

one of the largest maize producers in Portugal. The farm is specialized in maize and has 

been sowing it continuously over the last 30 years, obtaining average productivity of 16.7 

ton/ha in 2020. It is regarded as one of the most efficient farms in Europe.  

The study area (figure 9) is inserted in the aquifer system of Tejo, whose 

materials are of fluvial origin (IUSS Working Group, 2006):  modern alluviums (Holocene) 

and terraces (Pleistocene) belonging to the most important hydrogeological unit in the 

country, the Tejo-Sado basin. On the right side of the Tejo, the quaternary terraces have 

a large extension near Entroncamento, Golegã, Azinhaga and Pombalino (Almeida et 

al., 2000). 
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Figure 9: Location of the study area, Golegã in the district of Santarém. The studied fields were (a) Vinha, (b) Cerca, 

and (c) Lourenço. 

 

According to Cardoso (1965), the Golegã soils belong to order of soils incipient, 

suborder of alluvisols and group of modern alluviosols. Following Figueira (1997), these 

soils are modern alluviosols of light or medium calcareous texture. They are non-evolved 

soils, without differentiated genetic horizons, practically reduced to the original material 

consisting of mineral and organic detrital materials, transported by river water, from 

gravel and coarse sand to the finest clay particles. 

The farm has a weather station, but it only has data since 2015. As the Santarém 

weather station provides data from 1970 – 2018, it was decided to use this data to 

characterize the weather patterns from 1970 to 2000 and the farm station to characterize 

the weather for 2015-2020 (figure 10).  

 

Figure 10: Ombrothermic diagram. The meteorologic weather data of Santarém for the period of 1970/2000 and 2015-

2020. 
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According to the rational climatic classification of Thornthwaite (1948), the study 

region is classified as a dry-humid climate (mesothermal B4). Following figure 10, the 

Koppen (1936) scale classifies this region as temperate since it is rainy and moderately 

warm, with intense winter rains (Type Cs). Since the average of the warmest month is 

above 22ºC, its subtype is classified as Csa: humid mesothermal, with warm and dry 

summer and a cool and rainy winter. 

2.3. Yield Data 

The maize yield data was collected in the three studied parcels between 2015-

2020 . A few years of data is missing due to wild boars and heavy rust attacks. The maize 

yield data was collected with a Fendt harvester model 5275c and processed by an Ag 

Leader yield monitor. The yield monitor is a fundamental part of producing high quality 

yield data because it receives information from the various combined sensors (figure 4) 

to compute the final yield maps. The maximum, minimum, mean and standard deviation 

of all yield maps are described in table 4. 

Table 4: Descriptive properties of the yield maps 

Field Area (ha) years 
Descriptive statistics 

Max Mean Min SD 

Cerca 23.3 2016 21.62 15.86 4.92 2.78 

  2018 21.28 17.18 9.72 1.42 

  2020 21.06 18.08 12.76 1.09 

Lourenço 17.9 2015 20.85 17.57 8.40 1.19 

  2016 20.83 18.04 9.36 1.35 

  2018 20.88 17.13 10.56 1.13 

  2019 21.66 17.69 12.26 1.22 

  2020 19.64 16.53 13.47 0.92 

Vinha 13.25 2016 19.21 15.77 5.25 1.74 

  2018 16.13 12.87 6.45 1.21 

  2019 19.12 14.53 7.51 1.64 

  2020 17.24 14.85 8.20 1.24 

 

To map the yield variabilities and quantify them, we initially built three types of 

different yield maps and did a visual assessment to figure out if any kinds of patterns 

emerged. Following the assumption that permanent soil characteristics directly impact 

the spatial yield, repeating yield patterns emerge with multiple years of data (Ping & 

Dobermann, 2005). If it does not, the yield pattern fades off after a few years of 

accumulated data (Blackmore et al., 2003). Three yield maps were developed to assess 

this hypothesis: a standardized multiyear yield map, a frequency yield map and a 

spatiotemporal yield map. Different types of yield maps map out different patterns 
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(Eq.8) 

because they are built differently. Upon visual confirmation, if the same pattern is present 

in all three, we follow the Maxent analysis. 

A buffer was applied around the yield maps to remove the low yield areas typically 

affected by soil compaction. This compaction is particularly relevant at the edges of 

parcels due to machine manoeuvres (tractors, trailers and harvesters). The buffer zones 

were 20m for Cerca, Lourenço and Vinha. QGIS was used to create the multiyear yield 

maps and the buffer zones. 

 

2.3.1.  Standardized multiyear yield map 

The yield data was first standardized according to Blackmore (2000) to compare 

yield patterns across years. Following equation 8, the relative yield (𝑆𝑖) was determined 

by dividing the yield data of each location (𝑦i) by the average yield of that particular field 

for that year (𝑦):  

𝑆𝑖 =
𝑦𝑖

𝑦
∗ 100 

After the yield maps for all years were standardized, the yield values were aligned 

then averaged according to the number of years of data available for each field. The 

rationale for standardization had a twofold objective. The first was to remove the climate 

influence from the data since several years of data are being aggregated. Different years 

have different climate influences, and the climatic influence is not the focus of this work. 

The second was to put the data from different years on a relative, comparable scale. The 

resulting maps will look like figure 11.  

 

 

Figure 11: Standardization process for the construction of a multiyear yield map. The maps of several years are stand-

ardized, then a simple average of the resulting maps is done 
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(Eq.9) 

2.3.2.  Yield frequency map 

A yield frequency map was computed using an adapted method of Franzen et al. 

(2008). For each year, the mean and standard deviation is determined. Then, using 

QGIS, the pixels are given a value of +1, 0 or -1, depending on whether the average of 

the pixel was greater than the field average within one standard deviation (+1); whether 

if the pixel was between one standard deviation of the average (0); or if the pixel is less 

than the field average within one standard deviation (-1). After constructing the yield fre-

quency maps for the years available, the data was summed up, resulting in a frequency 

yield map (figure 12). 

 

 

Figure 12: Frequency yield map construction process. 

2.3.3.  Spatio-temporal yield map 

The spatial-temporal variability was assessed according to Blackmore et al. 

(2003) and Clay et al. (2017), where a yield variability map is combined with a temporal 

stability map. For the spatial variability, we used the map calculated in 2.3.1. Then, 

following Whelan and McBratney (2000), temporal stability was evaluated according to 

equation 9: 

𝜎𝑖
2 =

∑ (𝑌𝑖,𝑛 − 𝑌)
2𝑛

𝑖=1

𝑛 − 1
 

Where 𝜎𝑖
2 is the temporal variance at point i, 𝑌𝑖 is the maize yield at point i at year 

n, the 𝑌 is the mean yield for all selected harvest years, and n is the number of harvest 

years.  

The grand mean of the spatial yield map dataset and the grand standard mean 

of the temporal yield map dataset are determined. Following figure 13, the regions of the 

spatial yield map below or above the grand mean are attributed a unique identifier, 1 and 



FCUP 
Filling the maize yield gap based on precision agriculture – A Maxent approach 

28 

 

2 respectively and regions on the temporal yield map below or above the grand standard 

mean are attributed 1 and 3. 

 

 

Figure 13: Workflow for the spatio-temporal yield maps, with the four possible conditions for each map. 

 

As yield and stability are not exclusive, summing up the spatial and the temporal 

identifiers, the resulting spatial-temporal yield map will have four possible combinations 

to describe the existing variability, each with a unique identifier (figure 13): high yield and 

stable temporal variability (HS - 3); high yield and unstable variability (HU - 5); low yield 

and stable variability (LS - 2) and low yield and unstable variability (LU - 4). The resulting  

spatio-temporal yield maps will look like figure 14. 

 

 
 

Figure 14: Spatio-temporal yield map for Vinha with the four possible combinations for spatial and temporal variability. 
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2.4. Soil Data 

The sampling and processing of the soil, digital elevation models and electrical 

conductivity data was made available by a precision farming company, Agroanalitica. All 

rasters were in 2x2m resolution and scripts were developed in R 4.1.1 (R Core Team) 

using the raster package (Hijmans et al., 2015) to convert the rasters into ASCII format, 

snap the rasters to the same size, extend, orientation,  projection and to extract the num-

ber of occurrences according to percentile and yield classes. Each of the environmental 

layers must be in the form of an ASCII grid with matching raster cell size and grid place-

ment to be compatible with the Maxent software (Phillips, 2005). 

The soil dataset consists of soil fertility information (pH, total phosphorus, 

potassium, magnesium, organic matter) a digital elevation model to characterize the 

topography, and the soils apparent electrical conductivity layer (table 5). Limestone was  

 

Table 5: Descriptive statistics of the soil properties in the studied field (Cerca, Lourenço, and Vinha). 

Field Variable unit 
Descriptive statistics 

Max Mean Min SD 

Cerca Limestone g/kg 0.531 0.29 0 0.18 

Electrical conductivity mS/m 30.5 14.39 7.19 4.54 

Digital elevation model m 70.05 69.2 68.41 0.36 

Total Phosphorus mg/kg 453.1 243.9 116.8 76.5 

Magnesium mg/kg 130.9 98.4 79.6 14.3 

Organic matter % 1.56 1.09 0.65 0.19 

pH --- 7.96 7.73 7.36 0.08 

Potassium mg/kg 265.7 203.2 132.7 25.4 

Lourenço Electrical conductivity mS/m 43.41 24.147 10.6 5.66 

Digital elevation model m 69.91 68.75 67.64 0.61 

Total Phosphorus mg/kg 135.81 85.72 43.23 13.93 

Magnesium mg/kg 240.57 178.11 121.71 28.55 

Organic matter % 2.20 2.06 1.87 0.06 

pH --- 7.92 7.78 7.39 0.10 

Potassium mg/kg 174.1 138.4 99.2 17.76 

Vinha Electrical conductivity mS/m 48.4 18.97 12.34 4.09 

Digital elevation model m 70.19 68.41 67.05 0.92 

Total Phosphorus mg/kg 157.01 76.4 32.17 26.9 

Magnesium mg/kg 298.6 169.6 108.1 38.4 

Organic matter mg/kg 2.85 1.72 0.97 0.54 

pH --- 7.88 7.57 6.83 0.19 

Potassium mg/kg 262 173.1 106.9 35.2 

Existing variables for each field 
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only available for Cerca. From the DEM, several primary and secondary topographical 

attributes were extracted. The primary attributes are known to impact yield, and the sec-

ondary parameters describe and quantify the spatial variability of specific processes in 

the fields. 

 

2.4.1. Topographic attributes   

Before deriving topographic attributes used for this analysis based on elevation 

data (table 6), pre-processing was required to remove depressions known as sinks in 

the data. Sinks are local elevation minima without lower neighbourhoods that exist in a 

grid DEM and most of these depressions are artefacts that have an undesirable effect of 

altering the simulated flow networks (Tarboton et al., 1991; Tribe, 1992). There are 

different strategies to deal with sinks, such as depression filling, breaching or a 

combination of both (Wang et al., 2019). 

In this study, a few depression filling and breaching algorithms were tested to 

remove the sinks from the data, such as the ones proposed by Jenson and Domingue 

(1988), Lindsay (2016), Planchon and Darboux (2002) and Wang and Liu (2006). Still, 

all of them were warping the terrain too much. According to Lidberg et al. (2017), 

breaching creates the most accurate stream networks on all resolutions, whereas filling 

is the least accurate. Following his advice, I used the algorithm ‘Breach depressions least 

cost’ proposed by Lindsay (2020), achieving a non-warped DEM free of sinks. This 

algorithm was implemented in WhiteboxTools 2.0.0 (Lindsay, 2018) using the plugin 

WhiteboxTools for Processing for QGIS 3.18.3. 

 

Table 6: Topographic attributes computed from the DEM data.  Adapted from (Wilson & Gallant, 2000b) 

Topographic Attributes Unit Definition 

Primary attributes 

Altitude meters Terrain elevation 

Plan Curvature deg.m-1 Contour curvature 

Profile Curvature deg.m-1 Slope profile curvature 

Aspect degree Direction that a slope faces 

Slope degree Percent change in that elevation over a certain 

distance 

Secondary attributes 

Topographic Wetness Index dimensionless Estimates areas of water concentration 

Distance to Flow Lines meters Yield relation to flow accumulation lines 

Topographic Position Index dimensionless Landscape characterization 
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2.4.1.1. Primary Attributes   

After removing the sinks from the DEM, the DEM was introduced into the SAGA-

GIS 2.3.2 (System for Automated Geoscientific Analysis) to extract several topographic 

attributes in raster format that are known to have an impact on yields, such as aspect, 

slope, profile and planar curvature (Olaya, 2004).  

The slope represents the rate of elevation change for each cell in the DEM. It was 

calculated in degrees using the method of Haralick 10 parameters 3° order polynomial. 

Profile curvature is a measure of the curvature in the vertical plane (figure 15, a). 

Positive values indicate that the surface is upwardly concave, and negative values 

indicate upwardly convex. Planar Curvature is the curvature in a horizontal plane and 

measures the topographical concavities (figure 15,b). Positive values indicate that the 

surface is laterally convex, and negative values indicate that a surface is laterally 

concave (Wilson & Gallant, 2000b). Plan and profile curvature was calculated using the 

method of Zevenbergen and Thorne (1987). 

 
Figure 15: Measures of terrain curvature: (a) Profile curvature (b) Planar Curvature 

 

Aspect describes the orientation of the slope in degrees starting clockwise from 

the north (Wilson & Gallant, 2000b). Since aspect is a circular variable, making aspect a 

suitable parameter for inclusion in the analysis is necessary. It was converted into two 

linear components: aspect Eastness and aspect Northness. The aspect raster is first 

converted into radians by multiplying it by π and dividing by 180. Then the Eastness is 

determined by applying the sine to the aspect layer, and the Northness by applying the 

cosine. Northness is an index from +1 to −1 of how north (+1) or south (−1) a site faces. 

Eastness is an index from +1 to −1 of how east (+1) or west (−1) a site faces. Eastness 

and Northness were calculated using QGIS 3.18.3. 
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(Eq.6) 

2.4.1.2. Secondary Attributes 

Topographic Wetness Index  

The basic concept of the Topographic Wetness Index (TWI) is the expression of 

terrain mass-balance of the catchment water supply and local drainage. This index 

assumes steady-state conditions and quantifies soil water distribution's tendency, which 

is affected by topography and is determined according to equation 6: 

 

𝑇𝑊𝐼 = 𝑙𝑛 [(
𝑇𝐶𝐴

𝐹𝑊
) 𝑡𝑎𝑛⁄ (𝑆)] 

 

The TWI has three key components: total catchment area (TCA), flow width (FW), 

and slope gradient (S) (figure 16). TCA determines the size of the upslope area (number 

of cells) draining into a given cell, FW is the length of a contour orthogonal to the flow 

from the cell, and S is the slope of the focal cell or the slope between the focal cell and 

a further cell downslope (Gruber & Peckham, 2009).  

 

Figure 16: TWI quantifies the terrain mass-balance of the catchment water supply and local drainage. Blue font indicates 

the name of the tools used, and the orange font indicates the three TWI components used.  Adapted from: Kopecký et al. 

(2021) 
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A flow accumulation algorithm is used to calculate de TCA, and it establishes the 

direction of the flow for every cell. Flow accumulation can be calculated using either 

single flow (SF) or multiple flow (MF) algorithms (figure 17). They can describe the 

downslope water movement, following the path of the steepest descent. The most 

common SF algorithm is the deterministic eight-direction, mainly used for approximating 

flow directions in a topographic surface. Its simplicity lies in the use of discrete flow 

angles, and each pixel has a single flow direction that does not capture the effect of 

divergent flow over hillslopes (figure 17,a). A SF algorithm assumes that subsurface flow 

occurs only in the steepest downslope direction from any given point, while MF diverts 

the flow to multiple downslope cells in proportion to the slope between them (figure 17,b) 

(Qin et al., 2007). A value of the exponent parameter in MF algorithms needs to be 

specified since it controls the degree of dispersion in the resulting flow-accumulation grid 

(Qin et al., 2007). 

 

Figure 17: Direction of the flow (a) Single flow direction (b) Multiple flow direction. Adapted from Stojanovic and Stoja-

novic (2019) 

To calculate the TWI, we followed the guidelines of Kopecký et al. (2021)  using 

the open-source software SAGA-GIS (figure 16). The choice of flow accumulation 

algorithm is a critical parameter in the TWI calculation, followed by the slope gradient 

and the flow width. Kopecký et al. (2021)  compared SF and MF's performance and found 

that the best performing MF algorithms explained twice as much variance in the 

measured soil moisture than the SF algorithms. The MF-Freeman's best performing 

algorithm was chosen with a flow accumulation unit of many cells. The chosen flow 

dispersion exponent value was 1.1 because it performed substantially better when 

compared to the higher values previously recommended Kopecký et al. (2021). Then, 

the TCA was converted into a specific catchment area using the flow width calculated 

with the SAGA-GIS default method based on cell aspect. Finally, the chosen slope 

method used the SAGA Haralick 10 parameters 3° order polynomial, with the slope 

gradient in radians. To calculate the final TWI maps, we used the raster calculator from 

QGIS 3.18.3,  following equation 6. 
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Distance to Flow Accumulation Lines  

Distance to flow accumulation lines (DFL) is a secondary attribute developed by 

(Da Silva & Silva, 2006). The calculation of this indicator involves determining the flow 

accumulation, deciding on the proper threshold to keep the main flow lines, and 

calculating the distance away from the flow accumulation areas (figure 18). 

 

Figure 18: Workflow for calculating the Distance to flow accumulation lines. 

 

The flow accumulation algorithm was the D8, due to its simplicity of use and its 

capacity to model the watershed draining structures (Turcotte et al., 2001). From the 

resulting flow accumulation lines (figure 19a), a flow accumulation threshold (FAT) was 

applied to extract the drainage network. The FAT is a user-defined parameter that 

directly affects the structure of the drainage networks extracted from DEMs (Ozulu & 

Gökgöz, 2018). There are several types of FATs and the chosen method was to apply 

1% of the maximum flow accumulation value (Maidment & Morehouse, 2002), with the 

resulting  drainage network outlined in figure 19b.  

 

 

Figure 19: Resulting steps for the calculation of the DFL for Vinha: (a) log10 of Flow accumulation, whiter represents 

more water accumulation (b) 1% of Flow accumulation threshold (c) Distance to flow accumulation lines. 

 

Following the FAT application, it is necessary to determine the distance to the drainage 

network by computing the function Proximity (raster distance). We assigned a pixel value 

of 1 to the drainage network, and the distance was computed from the georeferenced 
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(Eq.7) 

coordinates of said pixels, resulting in a continuous raster layer of distances to the water 

flow lines (figure 19c). The FAT and Proximity were computed using QGIS 3.18.3. 

Topographic Position Index  

The TPI compares the elevation of each cell in a DEM to the mean elevation of a 

specified neighbourhood around that cell (Weiss, 2001). According to Mieza et al. (2016), 

in regions where yield variability correlates with local minima and maxima topographic 

values, the TPI had a better explaining power than topography. So, taking this into 

account, we developed the TPI using equation 7:  

 

𝑇𝑃𝐼 = (ℎ − (𝑥ℎ(𝑟))) 

Where ℎ is the elevation of a grid cell in a meter above sea level, 𝑥ℎ is the mean 

elevation of grid cells in the neighbourhood with radius 𝑟. Positive values represent 

locations higher than the average of their surroundings, and negative values represent 

locations lower than their surroundings. Values near zero are flat areas or regions with 

constant slopes within the neighbourhood (figure 20). The radius controls the scale of 

the analysis, deciding what cells are to be considered “around” the cell. The chosen 

radius was 100 map units (200 m) obtained using the SAGA-GIS. We decided that this 

threshold was enough to reflect the elevation variability of the field. 

 

 

Figure 20: How the choice of the radius impacts the TPI evaluation of its immediate surroundings. 

 

 

2.5. Yield gap approach 

The high and low productivity areas were identified upon visual confirmation of 

similar variabilities in the three yield maps (Annex I). Following a yield gap approach,  

from the yield map calculated in 2.3.1  the existing maximum yield gap between the high 
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and low productivity areas were quantified as 44% for Cerca, 24% for Lourenço and 36% 

for Vinha. The best yields were identified using the attainable farm yield (Yat), with the 

upper 10th percentile as the benchmark (Van Ittersum et al., 2013). The lower 10th 

percentile productivity areas were used as the worst farm yield and identified using the 

histogram of the standardized yield maps (figure 21) calculated in 3.3.1. Then we did the 

same for the 15th percentile and 20th percentile, for the fields in this study. 

 

 

Figure 21: High and low yield classes for: (a) 10th percentile, (b) 15th percentile and (c) 20th percentile for Vinha. 

 

Six different sets of georeferenced points (High10,15,20%, Low10,15,20%) were 

extracted for each field (table 7) to understand the main drivers of the within-field 

variability of the fields using the Maxent algorithm. 

 

Table 7: Percentile and Number of presence points selected from each yield class 

Percentile Yield class 
Number of presence points (#pixels)  

Cerca Lourenço Vinha 

10 
Low 4973 3708 2638 

High 4974 3708 2638 

15 
Low 7460 5561 3956 

High 7460 5561 3956 

20 
Low 9946 7415 5275 

High 9947 7415 5275 
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2.5.1. Maxent Modelling 

Modelling was done using the maximum entropy method with the Maxent 

software 3.4.4 (Phillips, Dudík, et al., 2017). Maxent is a general-purpose machine 

learning method that relies on presence-only and background data (Phillips, Anderson, 

et al., 2017; Phillips et al., 2006; Phillips & Dudík, 2008) to identify better variables 

correlate with the occurrence records. Occurrence data was previously obtained from 

the standardized yield maps, soil fertility parameters, topographical and soil electrical 

conductivity maps were the environmental layers used. 

2.5.2.  Variable Selection 

A sequential approach was chosen to assess the models variables with the most 

information. By improving variable selection, collinearity can be minimized (Feng et al., 

2019) because if two variables are highly correlated, it becomes difficult to separate the 

individual effects of each variable. 

The variables were initially screened for correlations in combination with the jack-

knife procedure of preliminary maxent models (Gąsiorek et al., 2021; Raghavan et al., 

2019). The default parameters of Maxent were used in the preliminary models, and each 

model had its specific occurrence data set (table 7). The jack-knife and the correlation 

coefficients were used to select the variables to retain in the modelling approach. If two 

variables were correlated (r≥ 0.8), a highly contributing variable was chosen, and the 

other was removed. Next, we proceeded to fit another maxent model to remove variables 

that had a low contribution to model gain (less than 1% of percentage and permutation 

importance). Finally, multicollinearity was evaluated using the variance inflation factor 

(VIF) with a stepwise approach. Variables with a VIF < 10 were retained since higher 

values indicate multicollinearity and increase the risk of overfitting by the model 

(Dormann et al., 2013). 

The correlation and VIF analysis were done in R 4.1.1 (R Core Team) using the 

usdm (Uncertainty Analysis for Species Distribution Models) package   (Naimi et al., 

2014) and the raster package (Hijmans et al., 2015). 

2.5.3.  Model calibration, evaluation and creation  

Maxent has several modifiable parameters and while many studies still use the 

default settings (Morales et al., 2017), there is a growing amount of evidence that using 

the default parameters may not generate the best models (Morales et al., 2017; 

Radosavljevic & Anderson, 2014; Syfert et al., 2013).In addition, the area under the 
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receiver operating characteristic curve, known as the AUC, is considered the standard 

method to assess the accuracy of predictive distribution models. It avoids the subjectivity 

in the threshold selection process by summarizing the overall model performance over 

all possible thresholds. However, has been heavily criticised for weighting omission and 

commission errors equally and giving no information about the spatial distribution of 

model errors (Lobo et al., 2008). Additionally, the AUC is only informative when true 

instances of absence are available (Jiménez‐Valverde, 2012). Since this information 

usually does not exist, the use of background data in place of true absences can produce 

misleading results (Lobo et al., 2010). AUC values have also been shown to inflate 

systematically when the size of the study is increased relative to the extent of the 

geographical range of the organism in question (Lobo et al., 2008). Consequently, SDMs 

with high AUC values and excellent predictive performance can be obtained irrespective 

of whether the models identify plausible or causal relationships between environmental 

predictors and the distribution of the species (Veloz, 2009). 

Preliminary models were calibrated using the Maxent algorithm with the Kuenm 

package in R (Cobos et al., 2019), avoiding the previously mentioned drawbacks. This 

package allows the fine-tuning of the two main modifiable parameters that control 

complexity, the regularization multiplier (RM) and the feature classes (FC), instead of the 

default parameters. The statistics of model performance implemented in Kuenm are 

partial ROC as a measure of statistical significance, omission rates (OR), and Akaike 

Information Criterion (AICc). Since AUC is not an appropriate measure in ENMs 

(Jiménez‐Valverde, 2012; Lobo et al., 2008), the partial ROC is a more suitable indicator 

of statistical significance and is determined by a bootstrap resampling of 50% of testing 

data with 500 iterations, where probabilities are assessed by direct count of the 

proportion of bootstrap replicates for which a AUC ratio with values ≤1 reflects 

predictions indistinguishable from random predictions. But a ratio >1 indicates 

predictions that are better than random (Peterson et al., 2008).The OR is used as a 

measure of performance, indicating how well models created with training data predict 

test occurrences (Anderson et al., 2003). AICc is used to evaluate how well models fit to 

the data while penalizing complexity to favour simple models. Models selected by these 

three metrics will maximize model performance and simplicity (Cobos et al., 2019). 

The purpose of the calibration is to evaluate the best potential combination of 

selectable parameters in Maxent to select the most appropriate model. The RM affects 

how focused or closely fit the output distribution is. It is a penalty that occurs in the form 

of a β regularization parameter specific to each feature class, limiting complexity and 

protecting against overfitting (Anderson & Gonzalez Jr, 2011; Phillips et al., 2006; 
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Warren & Seifert, 2011). The RM is a coefficient applied to the value of the respective β 

parameter of each feature class, altering the overall level of regularization rather than 

changing the β parameters individually. FC corresponds to the mathematical 

transformation of the different covariates used in the model to allow complex 

relationships to be modelled. These relationships can be linear (l), quadratic (q), product 

(p), threshold (t) and hinge (h) (Elith et al., 2010; Merow et al., 2013). 

For the preliminary models for each yield class of table 7, a specific set of 

variables was selected according to section 3.7.1. 255 models were created for each 

yield class by combining 17 RM (0.1 to 1, 2 to 6, 8 and 10) and 15 possible combinations 

of four feature classes (l, q, p, h, lq, lp, lh, qp, qh, ph, lqp, lqh, lph, qph, lqph). The 

threshold feature was not included since this appears to improve model performance 

and results in smoother and simpler models, hence more likely to be realistic (Phillips, 

Anderson, et al., 2017). The models were calibrated using 70% of the records for training 

and 30% for testing. 

The best models were evaluated according to: (1) Statistical significance using 

partial ROC (Peterson et al., 2008) (2) Predictive ability is evaluated through the use of 

OR at a threshold of 5% (Anderson et al., 2003); (3) AICc is used to evaluate model 

complexity and models with delta AICc values of ≤2 were selected (Warren & Seifert, 

2011). When more than one best model was obtained, the best one based on the highest 

value of the AUC mean ratio was selected.  

Then, using the best parameter settings selected during model evaluation, the 

final models were created using a 10 cross-validation replicates. All models were set with 

500 iterations. The number of background points adapted to the study area extended 

automatically and model output is cloglog, an estimate of occurrence probability (Phillips, 

Anderson, et al., 2017). The Maxent output for the model is a map representing the 

environmental suitability of the available area through a continuous index (Sillero, 2011) 

of very suitable (value 1) to unsuitable (value 0) and the average of the 10 model outputs 

was used as the basis of interpretations. Model overfit was evaluated considering a 

threshold-independent measure, AUCDIFF (Warren & Seifert, 2011), which is the 

AUCtraining minus AUCtest. Overfit models generally perform well on training data but poorly 

on test data, so low AUCDIFF values indicates that the model is not overly specific to the 

training data, which reduces the risk that the model is over-parameterized (Warren & 

Seifert, 2011).  
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2.5.4.  Final Model 

The contribution of the variables to the final model was evaluated using 

permutation importance and the jack-knife. Permutation importance (PI) was used to 

determine the main impact factors on yield. Factors with more than 10% of PI were 

considered primary impacting factors. For each variable, the PI is determined by 

randomly permuting the values of that variable among the training points (presence and 

background), and the decrease in the training AUC is measured. A large decrease 

indicates that the model depends heavily on that variable (Phillips et al., 2006). Searcy 

and Shaffer (2016) have shown that the PI is biologically realistic, reflecting the role of 

the most critical variables in defining the species' environmental niche.  

The jack-knife was used to assess variables contributing less than 10% of PI to 

the model. These variables were considered secondary impacting factors. The jack-knife 

analysis systematically excludes a variable in each run, and the model is created with 

the remaining variables. Then, a model is created using each variable in isolation and 

another one with all the variables. Each step increases the models gain by modifying the 

coefficient for a single feature, assigning the increase in gain to the environmental 

variable that the feature depends on (Phillips et al., 2006). Variables that showed a high 

model gain when used in isolation or a high drop in gain occurs when the variable is 

omitted were chosen to be analysed. But an issue remains: the jack-knife shows which 

variables have the most useful information for the model performance and does not 

consider the agronomical importance of the chosen variables. 

Exploring the response curves for each predictor helps to understand which 

range of values are agronomically relevant. Maxent produces two sets of response 

curves that help to understand which range of values are agronomically relevant. When 

both sets are not similar, correlation among variables is present and should be 

considered when analysing the response curves. It is also necessary to define a cut-off 

value of the environmental suitability (ES) where values below this threshold are 

considered having low suitability for the yield class in analysis, so they are not analysed. 

It was decided on a threshold of 0.7 of ES for this effect. 

  In the average model, one variable varies with all the other variables set to their 

average value. The value shown on the y-axis is the predicted probability of suitable 

conditions, given in the cloglog output. But the model might depend on correlated 

variables in ways that are not evident in the response curves. Maxent produces a second 

set of response curves to make it easier to analyse correlated variables. The response 

curve is created by generating a model using only the corresponding variable and 

disregarding all the others (Phillips et al., 2006). 
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3. Results and discussion 

The results obtained in this work will be structured in three sections, one for each 

field, where i present the main results of the high and low yield models, followed by the 

discussion. For all the images concerning yield maps, yield suitability, topography, 

electrical conductivity and fertility maps, we forward them to figure 9 if it is necessary to 

check the scale and the geographic north. 

Six different yield class models (High10,15,20, Low10,15,20) were tested for each field, 

with 255 different models built for each yield class.  The selected models for the highly 

productive areas were statistically significant with an OR lower than the 5% threshold, 

and among these, the least complex model was chosen. The same process was applied 

to the low yield models. As an example, Table 8 shows the results of Cerca obtained 

with the Kuenm package.  

 

Table 8: Model selection process for the high and low yield classes of Cerca. 

Percentile TCM SSM MOr MAIC SSM + MOr SSM + MAIC SSM + Mor + Maic Selected model 

High yield models 

10 255 255 7 1 7 1 1 RM_0.2_F_lq 

15 255 255 0 1 0 1 0 RM_0.1_F_lq 

20 255 255 158 1 158 1 1 RM_0.2_F_ph 

Low yield models 

10 255 255 126 1 126 1 1 RM_0.2_F_qp 

15 255 255 78 1 78 1 1 RM_0.1_F_qp 

20 255 255 61 1 61 1 1 RM_0.2_F_lph 

TCM = total candidate models; SSM = statistically significant models; MOr = models that satisfy the criterion of omission rate, 
MAIC = models that satisfy the AICc; AICc = Akaike information criterion; RM = selected regulation multiplier; F = selected features 

 

The final models produced in table 9 all showed good performance, except model 

high15  which failed to reach an OR below 5% (table 8). The remainder of the models 

were statistically significant with an OR below 5.0%, had low standard deviations during 

model training and testing, while showing low overfit to the data. Finally,  we selected 

the best models that characterize the high and low yields according to an OR below 5%. 

If 2 models have similar ORs, the least complex model is chosen according to the lowest 

AICc. 
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Table 9: Statistics of the best-selected models (goodness of fit) of Cerca. 

 

The same selection process was made for the models that best characterize the high 

and low yielding areas of Lourenço and Vinha, also achieving good model performances. 

Model results are available in annexe II. 

 

3.1. Cerca Field 

3.1.1. High Yield 

The model used to characterize the high yielding regions of Cerca was the high10. 

According to the percentual contribution (PC) of model gain, the results show that LS 

(57.7%) and ECa (18.1%) have the highest contributions (table 10). The permutation 

importance (PI) shows that ECa is the primary impacting factor, with 43.5%, followed by 

DEM, Mg and OM with 18.2%, 18.1 and 14.6%, respectively. These four factors explain 

94.4% of the high yielding areas. LS showed a high PC but a low PI (0.5%).  

  

Table 10: Environmental variables used for yield class model high10 in Cerca. 

Variable LS ECa TPI OM K Mg pH DEM SL 

Percent Contribution 57.7 18.1 6.5 5.6 4.3 3.1 1.8 1.5 1.3 

Permutation Importance 0.5 43.6 2.6 14.6 1.7 18.1 0.1 18.2 0.6 

LS = Limestone; ECa = Apparent electrical conductivity; TPI = Topographic position Index  OM = Organic matter; K = 

Potassium; Mg = Magnesium; pH = Soil acidity; DEM = Digital elevation model; SL = Slope; 

 

The Jack-knife (figure 22) indicates which secondary impacting factors appear to be 

relevant. From these, only LS and K show high model gain when used in isolation. 

 

Yield 
Class 

Selected 
model 

Mean 
AUC 
ratio 

OR AICc AUCTrain Stdevtrain AUCTest Stdevtest AUCDiff 

High yield models 

10 RM_0.2_F_lq 1.41 0.049 99171.69 0.7573 0.000683 0.7568 0.00027 0.0005 

15 RM_0.1_F_lq 1.369 0.051 150589.5 0.7153 0.000539 0.715 0.00907 0.0003 

20 RM_0.2_F_ph 1.442 0.049 199849.6 0.6964 0.000382 0.6946 0.00505 0.0018 

Low yield models 

10 RM_0.2_F_qp 1.459 0.045 98129.4 0.7705 0.00128 0.7701 0.00814 0.0004 

15 RM_0.1_F_qp 1.364 0.047 149902.7 0.7208 0.00129 0.7206 0.00820 0.0002 

20 RM_0.2_F_lph 1.438 0.05 199893.7 0.7035 0.00025 0.7011 0.00498 0.0024 
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Figure 22: The Jack-knife test for evaluating the relative importance of environmental variables for yield class model 

high10 in Cerca  

The analysis identified several factors responsible for the high yielding areas, with 

different impacts in certain regions. Overall, the response curves show little correlation, 

with the high yielding locations characterized by figure 23, with LS of 0-0.5 mg / kg, ECa 

of 17-25 mS / m, an OM of 1.1-1.5 %, a Mg of 100-130 mg / Kg, a K of 200-260 mg / kg. 

The DEM and LS presented correlation in their response curves. The single variable 

model for DEM indicates ES values below the 0.7 thresholds, decreasing ES values with 

increasing altitude. But the average model, when considering the other variables, 

suggests a high ES between the altitudes of 68.4-69.2m. Similarly, LS indicated high ES 

in the average model at all concentrations, while the single model showed high ES when 

LS is above 0.47 mg/kg. 
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Variable map Single variable* Average** 

Electrical conductivity 

   
Digital Elevation Model 

  
 

Magnesium 

  
 

Organic Matter 

  
 

Limestone 

  
 

Potassium 

   

Figure 23: The environmental variables that control the high yield areas in Cerca. The dots in the variable map column 

represent the location of the presence points. 

*   Maxent model made with only the corresponding variable 

** Maxent model where one variable is made to vary with all the other variables set to their average value 
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3.1.2. Low Yield 

The model used to characterize the low yielding regions is the low10 model. PC 

shows that OM (36.1%) and ECa (33.5%) contribute the most to model gain (table 11). 

PI shows that ECa, P, K and TPI are the primary impacting factors for the low yield with 

23.5%, 22.1%, 20.3% and 12.3%, respectively. These four factors explain 78.2% of the 

low yielding regions. 

 
Table 11: Environmental variables used for yield class model low10 in Cerca. 

Variable OM ECa TPI K pH DEM P LS Mg 

Percent Contribution 36.1 33.5 8.2 5.6 4.5 4.4 P 2.1 2 

Permutation Importance 4.5 23.5 12.3 20.3 2.9 1.8 22.1 6.1 6.5 

OM = Organic matter; ECa =Apparent electrical conductivity; TPI = Topographic position Index; K = Potassium; ; pH = Soil 

acidity; DEM = Digital elevation model; P = Phosphorus; LS = Limestone; Mg = Magnesium. 

The Jack-knife (figure 24) indicates which secondary impacting factors appear to 

be relevant. From these, only OM show high model gain when used in isolation. 

 
Figure 24: The Jack-knife test for evaluating the relative importance of environmental variables for yield class model 

low10 in Cerca 

 

The response curves show little correlation between them, with the low yielding 

locations characterized by figure 25 with a ECa of 7-12 mS/m, P of 120-150 mg/Kg, a K 

of 130-175, OM of 0.65-0.8% and a TPI of 0.1-0.35.  
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Variable map Single variable Average* 

Electrical conductivity 

   
Potassium 

   
Phosphor 

   
Topographic Position Index 

   
Organic Matter 

   
Figure 25: The environmental variables that control the low yield areas in Cerca. The dots in the variable map column 

represent the location of the presence points. 

*   Maxent model made with only the corresponding variable 

** Maxent model where one variable is made to vary with all the other variables set to their average value 
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3.1.3. Discussion - Cerca 

Apparent electrical conductivity (ECa) is influenced by several soil properties such 

as salinity, texture, water content and bulk content (Corwin & Lesch, 2005; Sudduth et 

al., 2005). Given the importance that the models give to ECa for high and low productivity 

areas, it appears that the stable soil properties directly impact the yield (Farahani & 

Buchleiter, 2004; Michael Mertens et al., 2008). The high10 model indicates that high 

yielding areas have high environmental suitability (ES) in the range of 17-25 mS/m, while 

the low yielding areas were in the range of 7-12 mS/m (figure 26). ECa in these ranges 

indicates that the texture of high yielding areas are characterized for having a higher clay 

content, and the low yielding areas possess fewer clay. Soils in the 17-25 mS/m range 

are characterized for being silty soils (Heege, 2013), and these tend to have higher water 

retention than sandy soils (Jalota et al., 2010; Kaspar et al., 2004), which is a favourable 

factor towards explaining the higher yields. 

Regarding topography's impact on yield in Cerca, figure 23 indicates a high ES 

in the elevations of 68.4 – 69.2m for high yields, which appears to be a depression (figure 

26). Regions with lower elevation than the surrounding areas tend to receive more water 

and be waterlogged in wet years or more productive in dry years (Kaspar et al., 2004; 

Maestrini & Basso, 2018). This indicates that the maize in this region is properly drained, 

receiving a higher level of water and nutrients from the surrounding areas, bolstering the 

yield. In opposition, the high TPI (0.1-0.35) (figure 25) indicates regions with higher 

relative altitude concerning their surroundings (figure 26). Higher elevations or summit 

regions are typically characterized for having lower yields (Bakhsh, Jaynes, et al., 2000; 

Hansen et al., 2013; Mishra et al., 2008) and the results indicate the same.  

Although it is difficult to disentangle the OM effects on yield, several works have 

shown that building soil OM improves yields over time (Kaur et al., 2008; Majumder et 

al., 2008; Oldfield et al., 2018), although the increase in yield levels of at 2% of Soil OM 

(Lal, 2020; Oldfield et al., 2019).This is due to the improvement of several soil properties, 

including retaining water and nutrients, improving the water holding capacity and 

aeration, and minimising topsoil erosion (Doran & Zeiss, 2000; Lal, 2016; Philip 

Robertson et al., 2014). Our results for Cerca seem to be in line with the existing 

bibliography. Higher productive regions are situated in areas with OM around 1.1-1.5% 

(figure 23), while the low yielding areas have OM of 0.65-0.8% (figure 25). This indicates 

that it might be possible to increase the yields in this region if a correction is made.  

Magnesium is responsible for several functions in maize (Cakmak & Yazici, 

2010), such as supporting nitrogen uptake and simultaneously controlling processes 

responsible for photosynthesis and assimilate production and partition (Cakmak & 
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Kirkby, 2008; Gerendás & Führs, 2013; Senbayram et al., 2015). It is a component of 

the chlorophyl molecule, constituting 15-20% of the total leaf content (Farhat et al., 

2016). Deficiencies in Mg can lead to impairments of growth and yield and having correct 

levels of Mg in the soil can improve crop yield (Wang et al., 2020). The high10 model 

identified Mg as a primary factor for the high yields with the ideal concentrations of 100-

130 mg/kg (figure 23). The low10 model did not identify Mg as a responsible factor. This 

could be because potassium (K) and phosphor (P) are two main macronutrients 

necessary for plant growth and are shown to impact the low yielding regions. 

Potassium (K) is the most abundant cation in plant tissues, and plays a key role 

in several regulatory systems, such as resistance to pests and diseases, photosynthesis, 

osmoregulation, enzyme activation, protein synthesis, phloem loading and transport and 

uptake (Amtmann et al., 2008; Epstein & Bloom, 2005; Zörb et al., 2014). K is considered 

a fundamental macronutrient for the proper growth, development and sustainable yield 

(Adnan, 2020; Marschner, 2011). K in the low10 model was identified as a primary factor 

(figure 25) with concentrations in the range of 130-175 mg/kg. The high10 model identified 

K as a secondary variable, with the ideal concentration of 200-260 mg/kg (figure 23). 

Improving the K concentrations in low yielding regions can also enhance the P uptake 

since they appear to have a synergistic relation (Epstein & Bloom, 2005; Hussain et al., 

2007; Iqbal & Hidayat, 2016). Several works indicate that the critical limit for potassium 

is in the range of 125-150 mg/kg, depending on the characteristics of the soil (Breker et 

al., 2019; Mallarino & Higashi, 2009; Van Biljon et al., 2008). These results indicate that 

a K soil deficiency might exist in this area (figure 26). 

Phosphor (P) is the second most limiting nutrient in maize, directly affects growth 

and yield (Dhillon et al., 2017). P has an important role in the storage and energy 

transport (ATP) for endergonic processes, photosynthesis,  synthesis of nucleic acids 

and organic compounds, redox reactions, carbohydrate metabolism and active uptake 

of nutrients (Marschner, 2011; Vance et al., 2003). Despite its importance, P is the least 

accessible macronutrient, which 80% of the P content is fixed in primary phosphate 

minerals and as hydroxides, oxides and silicate minerals  (Mengel & Kirkby, 2012; Vance 

et al., 2003; White & Hammond, 2008). Phosphor was identified as a relevant factor in 

the low10 model (figure 25), with concentrations in the region of 120-150 mg/kg. The 

high10 model did not identify P as a relevant variable. This could be since concentrations 

above 150 mg/kg are enough to maintain the necessary crop nutrient requirements for 

the high yield regions. Low P concentrations on the soil are known to impact yield (Plénet 

et al., 2000) directly. The results indicate that the areas with 120-150 mg/kg appear to 

be deficient in available P. A detailed soil analysis is required to identify the available P 

in the identified areas correctly (figure 26).  
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Limestone is mainly use has an soil amendment, and is the most effect manage-

rial practice for reducing high levels of soil pH by neutralizing excessive hydrogen ions 

in the soil solution (Bolan et al., 2003), reduces the availability of mineral elements 

(Fe2+,Al3+) that are less soluble at higher pH values (Fageria & Baligar, 2008) and  im-

proves nutrient availability (Rengel, 2003).LS was identified as a secondary variable in 

the high10 model (figure 23). The average model is not particularly informative since it 

indicates high ES at all concentrations due to interaction with other variables. The single 

variable model, however,  indicates high ES when LS is above 0.47 g/kg. Even if the 

levels of LS in the field are low (Hazelton & Murphy, 2016), levels above 0.47 g/kg appear 

to contribute to the high yielding areas. Although its PI importance is low (0.5%), it is the 

variable with the 2o highest contribution to model gain. Its contribution is not entirely 

clear, but since LS is a source of several cations (Ca2+, Mg2+) that are important for crop 

production (Fageria & Nascente, 2014), this could be having a positive impact on yield. 

 

 

Figure 26: Location of the main factors in Cerca that drive: (a) High yields  (b) Low yields 
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3.2. Lourenço Field 

3.2.1. High Yield 

The model that was selected to characterize the high yielding areas of Lourenço 

was the high10 model. According to its PC the most contributing variables to model gain 

are DEM (27%), P (20.7%) and pH (17.4%) (table 12). PI shows that P, pH and DEM are 

the main contributing factors with 30.3%, 19.9% and 12.3% respectively. These 3 factors 

explain 62.5% of the high yielding areas. 

Table 12: Environmental variables used for yield class model high10 in Lourenço.  

Variable DEM P pH OM TPI K East North ECa DFL 

Percent Contribution 27 20.7 17.4 7.9 6.4 5.4 4.8 4.6 4.3 1.5 

Permutation Importance 12.3 30.3 19.9 9.3 7 6.9 3 6.7 2.5 2.2 

DEM = Digital elevation model; P = Phosphorus; pH = Soil acidity; OM = Organic matter; TPI = Topographic position 

index; ; K = Potassium; East = Eastness; North = Northness; DFL = Distance to flow accumulation lines. 

 

The Jack-knife (figure 27) indicates which secondary impacting factors appear to 

be relevant. From these,  OM , TPI and OM show high model gain when used in isolation, 

and drop in gain when omitted. The response curves for the high10 shows high correlation 

between several variables (figure 28).   

 

 

Figure 27: The Jack-knife test for evaluating the relative importance of environmental variables for yield class model 

high10 in Lourenço. 

 

The single and average model for P indicates that high yielding areas are 

characterized by a total P 95-135 mg/kg. And that below 80 mg/kg, the ES drops 

drastically.  
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Variable map Single variable Average* 
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Figure 28: The environmental variables that control the high yield areas in Lourenço. The dots in the variable map column 

represent the location of the presence points 

*  Maxent model made with only the corresponding variable 

** Maxent model where one variable is made to vary with all the other variables set to their average value 
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When the single variable model for pH is inspected, the ES indicates a peak in 

pH of 7.45 and fluctuation of the ES in the ranges of 7.75-7.85 and a ES drop in pH 7.9. 

The average model indicates that a pH of 7.75-7.85 characterizes the high yield class, 

and the ES had a drop when the pH reached 7.9. High yielding areas are not present in 

pH above 7.9.  

The average model response curve for the DEM indicates that elevations 

between 68.5-69.5m have high ES, which are mainly in the northern part of the field. 

Inspecting the single variable model shows that elevations of 67.7-67.9m, located in the 

southern region, and elevations of 69.4-69.6m, located in the northern region, have a 

high ES (figure 28). The average model for the TPI indicates a high ES for regions above 

0.55, which are areas with a higher relative elevation with its surroundings, are located 

in the southern part of the field (figure 28). The single variable model indicates high ES 

in the range of –(0.4-0.2), which is located in the south part of the field and in the 

northwest region. And there is also a weaker indication that relatively flat areas (0.1 TPI) 

in the north influence yield, presenting a small peak of 0.6 of ES. 

The single variable and the average model for high yielding areas indicated that 

OM had a peak in ES in the region of 1.95-1.98%. Afterwards, both models indicates that 

with increasing percentage of OM, the ES decreases until it reaches the OM value of 

2.17%, where a high ES is present.  

The K single and the average model showed similar tendencies, with high ES in 

the 110 mg/kg region and a lower ES peak of 0.6 in the 155-165 mg/kg region. The single 

model also indicated a high ES in the concentration of 140 mg/kg. Still, the average 

model did not consider this result due to the existing interactions with the other variables. 

 

3.2.2. Low Yield 

The model that best explained the low yielding regions is the low20. According to 

the PC, the variables that most contribute to model gain are the pH (32.5%), DEM 

(18.3%), Mg (17.6%), K (11.5%) and P (10.2%) (table 13). The PI shows that Mg is the 

main contributing factor, with 31.3%, followed by pH, P, DEM and K with 23.5%, 15%, 

13.3% and 11.6 %, respectively. These factors cumulatively explain 94.7% of the low 

yielding regions. 

 

 



FCUP 
Filling the maize yield gap based on precision agriculture – A Maxent approach 

53 

 

 

Table 13: Environmental variables used for yield class model low20 in Lourenço. 

Variable pH DEM Mg K P North TPI DFL 

Percent Contribution 32.5 18.3 17.6 11.5 10.2 5 2.5 2.3 

Permutation Importance 23.5 13.3 31.3 11.6 15 1.7 2.5 1 

pH = soil acidity; DEM = Digital elevation model; Mg=Magnesium; K = Potassium ; P = Phosphorus; North = Northness; 

TPI = Topographic position index;  DFL = Distance to flow accumulation lines. 

The Jack-knife (figure 29) indicates which secondary impacting factors appear to 

be relevant. No secondary variables were chosen, since the primary factors have a high 

explaining power. The response curves for the low20 shows high correlation between 

several variables (figure 30).  

 

            

Figure 29: The Jack-knife test for evaluating the relative importance of environmental variables for yield class model 

low20 in Lourenço. 

Mg had ES values in the average model of 0.3 in 180-200 mg/kg concentrations 

for exchangeable magnesium. The single model indicates a tendency for having higher 

ES with increasing concentrations for the low yielding regions (figure 30). 

Near the concentration of 7.9 pH, models made with only pH indicates a high ES. 

When the model accounting other variables, the pH range increases to 7.4, 7.5-7.7 and 

7.9. The 7.9 pH characterizes the centre area of the field (figure 30). 

The average P model presents a low and decreasing ES with increasing 

concentrations of P, having 3 peaks in the region of 43, 70 and 110 mg/kg (figure 30). 

The single variable model for the low yielding areas indicates that concentrations 

between 43-70 mg/kg show a high ES. 
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Figure 30: The environmental variables that control the low yield areas in Lourenço. The dots in the variable map column 

represent the location of the presence points 

*  Maxent model made with only the corresponding variable 

** Maxent model where one variable is made to vary with all the other variables set to their average value 
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The average model of the DEM identified 3 peaks in ES, with altitudes of 67.8m, 

68.1m and 69.7-69.9m. The single variable model also identified 3 peaks of ES above 

the 0.7 thresholds at 68.2m, 68.7-69m and 69.7m. The low yielding areas of Lourenço 

are mainly located in the centre of the field and the eastern and western border (figure 

30). 

For K, the single model indicates 3 ES peaks in the 105 and 150 and 170 mg/kg 

regions. When the average model is checked, it means high ES in the concentrations of 

100-120 mg/kg of K for the low yielding areas (figure 30). 

 

3.2.3. Discussion - Lourenço 

In Lourenço, topography plays a significant role in the yield. High yielding areas 

are located in the north and the south of the field (figure 31). The northern area has an 

elevation of 68.5-69.5m with a high ES in the average model, and the southern areas 

have an elevation of 67.7-67.9m with a high ES in the single variable model (figure 28). 

Although the DEM indicates that elevations in these ranges play a part in influencing the 

yield, this result is not entirely useful because of the relative nature of the topography 

since several regions in this field have altitudes in the same range of elevation. But when 

the relative nature of topography is taken into account with the TPI, it becomes clear that 

these areas are either lower elevation regions or relatively flat areas. The single variable 

model indicates that these lower elevation areas are mainly located down south and 

northwest with a TPI of – (0.4 - 0.2). The flat areas are up north with a TPI of 0.1 in the 

single variable model (figure 28). But since a 200 m radius was used in the TPI to 

characterize Lourenço, it is possible that the surrounding areas are strongly influencing 

the 0.1 TPI value and that using a lower radius might be preferable to characterize the 

microtopography of a field.  

Low yielding areas are mainly located in the centre of the field and in the western 

border of the field . The centre area of the map has two summit areas with elevations of 

68.7- 69m and 69.7m (figure 30). The average model for the low20 failed to identify the 

relative altitude of 68.7 - 69 m, probably due to being better explained by P and pH in 

that area (figure 31), but the single model did identify that this elevation had a high ES 

towards low yields (figure 30).  

These results show here are in line with previous works about the impact that 

topography has on crop yield, where high elevation areas are characterized for having 

low yields and low elevation areas have high yields (Bakhsh, Jaynes, et al., 2000; 

Hansen et al., 2013; Mishra et al., 2008; Zhu et al., 2015). 
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Although most of the results align with the existing literature, two areas in 

Lourenço have been detected that presented conflicting results. A small area in the 

southern region has a TPI of 0.6 in the average model, a relatively high elevation area, 

which is characterized for having high yields (figure 28). Typically, high elevations are 

characterized as being less productive, and the result in this area is contradictory. Since 

a buffer was applied earlier on, the removal of this information may be inflating the TPI 

in this area coupled with the 200m radius used for the TPI calculation. These high 

yielding areas are also located in a region with a high P concentration, impacting the 

yield in this location. Also, elevations of 68.2m were identified as an impacting factor for 

the low crop yields in the western border of the field (figure 30). This area is characterized 

for being having a lower elevation regarding its surroundings. Since no other variables 

were identified in this region, a possible explanation for the existing low yield in this locale 

might be soil compaction since the edges of parcels are typically under stress from 

machine manoeuvres (Alakukku et al., 2003; Hamza & Anderson, 2005). Waterlog could 

also explain the results in this location, since it is a low elevation area. Waterlogged 

plants suffer from a reduction in the amount of oxygen available in the cells because 

oxygen's solubility and diffusion rate are extremely low in water (Voesenek & Bailey‐

Serres, 2015). However, the model did not identify either TWI or DFL as primary or 

secondary contributing variables for the low yields, so this explanation is unlikely. 

Although Maxent searches for the pattern that best describes the existing presence 

locations, these results indicate that a pattern does exist, but it might not be responsible 

for the presence locations.  

OM for Lourenço was selected only for the high yielding areas, where the high10 

model indicates that between 1.95-1.98% contributes to the high yield (figure 28). But a 

ES of 1 above the 2.17% value is present in both the single and average models. This 

indicates that although this field has a high organic matter content, with an average of 

2.07%, it appears that values above 2.17% explain the yield in that specific region (figure 

31). 

Soil pH is considered the main variable of soil chemistry due to its profound 

impact on several chemical reactions involving essential plant nutrients. The pH level 

influences the solubility, biological availability and mobility of the nutrients (McCauley et 

al., 2009; Penn & Camberato, 2019). 

When inspecting the single variable model for high yields, there is a peak of ES 

in pH of 7.45, a fluctuation of the ES in the ranges of 7.75-7.85 and a ES drop in pH 7.9 

(figure 28). The average model indicates that a pH of 7.75-7.85 characterizes the high 

yield class, and the ES had a drop when the pH reached 7.9. High yielding areas are not 

present in pH above 7.9. In the low yielding regions, models made with only pH (figure 
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30) indicates a high ES with a 7.9 pH. With the average model, the pH range increases 

to 7.4, 7.5-7.7 and 7.9 mainly due to the interaction with other variables. But pH of 7.9 

characterized the centre area of the field and was signalled by the high and low model.    

When investigating the P response curves, the high yield regions are 

characterized by a P of 95-135 mg/kg, which influences mainly the southern areas of 

Lourenço. The northern regions are also affected by P of 80mg/kg. After this threshold, 

a sharp drop in ES occurs (figure 28). Regions below this threshold barely have any high 

yielding areas. For the low yielding areas, the average model presents a low and 

decreasing ES (figure 30) with increasing concentrations of P, having 3 peaks in the 

region of 43, 70 and 110 mg/kg. Due to the interaction of pH and elevation, P’s effect 

apparently has a low impact on crop yield distribution. But the single variable model for 

the low yielding areas indicates that concentrations between 43-70 mg/kg show a high 

ES. This result is biologically plausible since P in low concentrations directly impacts 

maize growth and yield (Mollier & Pellerin, 1999; Plénet et al., 2000). However, since 

this work used total P in the analysis, we do not know the exact amount of available P in 

the soil. So, we can only state that the low concentration of total P in that region impacts 

the yield.   

Since P was also identified with pH as a relevant variable for both the high10 and 

low20 yield class models, pH could be influencing total P availability in the low yielding 

areas. Soil pH impact on P is well known, with the highest P biological availability near 

pH 6.5. Above pH 6.5, phosphorus starts to precipitate with calcium, becoming less 

available for the plants (Penn & Camberato, 2019; Shen et al., 2011). Hinsinger (2001) 

showed that in pH values around 8, the solubility of Ca phosphate decreases. In this 

case, levels above 7.9 pH appear to impact P availability since the areas with pH above 

7.9 have low amounts of total P (figure 30). A detailed soil analysis is required to confirm 

this relation. 

Magnesium was identified as the most relevant variable for the low20 model. The 

ES of the average model is 0.3 in the concentrations of 180-200 mg/kg for exchangeable 

Mg. And the single model indicates a tendency for having higher ES with increasing 

concentrations for the low yielding regions (figure 30). These results go against the 

existing bibliography, stating that concentrations above 120 mg/kg are considered 

relatively sufficient (Wang et al., 2020) for maintaining high yields. Although this range 

of Mg values explains the low yielding areas in that location, it does not mean that its 

biologically relevant. These results could be explained because Maxent searches for the 

distribution that best explains the presence locations of this yield class. But there are 

more impacting factors that are biologically relevant that exist in the same area.  
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In the high10 model of Lourenço, K was identified as a relevant variable. The 

northern areas have higher K levels than the southern areas (figure 28). The average 

model appears to reflect the K distribution in the field better. The northern areas are 

located in region with K values between 155 mg/kg with a ES of 0.6, below the defined 

threshold of 0.7, but the single model identified concentrations of 140 mg/kg in the single 

model. The southern areas are characterized by a K value of 110 mg/kg, and values in 

these ranges impact yield. Still, since the southern region is located in a depression, the 

water and nutrients that this area receives probably balances the low level of K that 

characterizes that area (Franzen et al., 2018; Kravchenko & Bullock, 2000). For the low20 

model of Lourenço, K was identified as a relevant variable. The single model identified 3 

ES peaks in 105, 150 and 170 mg/kg concentrations. The K values of 150 mg/kg and 

170 mg/kg are mainly located in the centre of the field, which is also characterized by 

low levels of P, high levels of pH and high altitude (figure 30). The single model gives a 

more reliable measure of the influence of K in this case. It indicates that concentrations 

of 100-120 mg/kg characterize the low yielding areas in the eastern border of Lourenço, 

and a few areas in the south (figure 31). Several works show that the critical limit for 

potassium is 125-150 mg/kg, depending on the characteristics of the soil (Breker et al., 

2019; Mallarino & Higashi, 2009; Van Biljon et al., 2008). These results indicate that a K 

soil deficiency might exist in these areas. 

 

 

Figure 31: Location of the main factors in Lourenço that drive: (a) High yields  (b) Low yields 
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3.3. Vinha Field 

3.3.1. High Yield 

The best model to characterize the high yielding regions of Vinha was the high10. 

Following the PC of model gain, TPI (36%), pH (15.8%), Mg (13.5%), and OM (11.7%) 

have the highest contributions (table 14). The PI shows that Mg is the main contributing 

factor with 25%, followed by pH and TPI with 23.4% and 17.6% respectively. These three 

variables cumulatively explain 66% of the high yielding regions. 

Table 14: Environmental variables used for yield class model high10 in Vinha. 

 Variable TPI pH Mg OM SL P ECa K North East 

Percent Contribution 36 15.8 13.5 11.7 6.2 4.9 4.2 3.3 2.3 2 

Permutation Importance 17.6 23.4 25 8.4 6.5 6.3 7 3.4 1.6 1 

TPI = Topographic position index;  pH= Soil acidity; Mg = Magnesium;  OM = Organic matter;  SL = Slope; P = Phosphorus; 

ECa = Apparent electrical conductivity; K = Potassium; North = Northness; East = Eastness. 

The Jack-knife (figure 32) indicates which secondary impacting factors appear to 

be relevant. OM shows high model gain when used in isolation, and drop in gain when 

omitted. The response curves for the high10 shows high a correlation between several 

variables (figure 33).  

                      

 

Figure 32: The Jack-knife test for evaluating the relative importance of environmental variables for yield class model 

high10 in Vinha. 

 

The TPI indicates that the region of -0.7 to 0 has a high ES for high yields (figure 

33). Negative TPI indicates areas with lower relative altitude concerning its surroundings, 

mainly located surrounding a higher elevation area situated in the centre of the field. 
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Figure 33: The environmental variables that control the high yield areas in Vinha. The dots in the variable map column 

represent the location of the presence points. 

*  Maxent model made with only the corresponding variable 

** Maxent model where one variable is made to vary with all the other variables set to their average value 
 

The pH in the single variable model indicates a peak of ES between the 

concentrations of 6.9-7, and between 7.3-7.8 several fluctuations in ES exist. The 

average model identified the same concentrations, but only the 7.8 pH range had a ES 

index above the 0.7 thresholds (figure 33). 

The single and average model for Mg showed similar concentrations of ES in the 

range of 170-220 mg/kg (figure 33). 

For the OM, the single variable model identified a high ES in the range of 1.1%, 

and 2.2-2.8% with fluctuation in the ES. And the average model had a high ES in 



FCUP 
Filling the maize yield gap based on precision agriculture – A Maxent approach 

61 

 

concentrations of 1-2.4%. But below 1.1% in the single and average model had a high 

drop in ES.  

3.3.2. Low Yield 

The best model used to characterize the low yielding regions is the low10. 

According to the PC to model gain, the DEM is the main contributing variable with 54.5%. 

The PI indicates that DEM is the primary factor with 37%, followed by OM with 12.5% 

(table 15). 

Table 15: Environmental variables used for yield class model low10 in Vinha. 

DEM = Digital elevation model; SL = Slope; ECa =  Apparent electrical conductivity; DFL = Distance to flow accumulation 

lines; Mg = Magnesium; East = Eastness; Ph = Soil acidity; K = Potassium; North = Northness;  PRC = Profile curvature; 

TWI = Topographic wetness index; OM = Organic matter; P = Phosphorus. 

 

The Jack-knife (figure 34) indicates which secondary impacting factors appear to 

be relevant. PRC and TWI have  the highest model gain when used in isolation, and DFL 

and SL present a high drop in model gain when omitted. The response curves for the 

low10 shows high correlation between several variables (figure 35).  

 

Figure 34: The Jack-knife test for evaluating the relative importance of environmental variables for yield class model 

low10 in Vinha. 

The DEM indicates that the centre area of the field is characterized for elevations 

above 70m, which have a high ES for low yields (figure 35). 

 

 

Variable DEM SL ECa DFL Mg East Ph K North PRC TWI OM P 

Percent Contribution 54.5 6.4 5 4.9 4.8 4.1 3.9 3.5 3.3 3.1 3.1 1.9 1.4 

Permutation Importance 37 7.4 2.5 4.7 5.1 7.2 3.9 5.6 4.3 1.9 2.1 12.5 5.9 
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Figure 35: The environmental variables that control the low  yield areas in Vinha. The dots in the variable map column 
represent the location of the presence points. 
*  Maxent model made with only the corresponding variable 
** Maxent model where one variable is made to vary with all the other variables set to their average value 
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For OM, the single variable model indicates a high ES in 1% of OM concentration, 

with a decrease in ES with increasing OM values (figure 35). The average model shows 

different behaviour, that with increasing values of OM, the ES also improves, with values 

between 2.1 - 2.9% having high ES. 

Although correlation is present in PRC, the response curves show similar 

behaviour. The single and average model indicates that with increasing values of PRC, 

there is an increase in ES. Only the single variable model indicates high values of ES, 

which are above 1 °/ m. 

For the TWI, the single and average model indicates an increase in ES with 

decreasing values of TWI. Only the single variable model indicates high values of ES, 

which are above 5. 

The slope single and average models show that the response curves have 

opposite behaviours due to correlation among variables. The average model indicates a 

maximum of ES of 0.55 in regions with 0° degrees and a decrease in ES with increasing 

slope values, while the single variable model indicates high ES with values above 1.5° 

degrees. 

The average model for DFL indicates a steady ES value of 0.47 with increasing 

distances while the single variable model shows a high ES above 25m. 

 

3.3.3. Discussion - Vinha 

Topography was also a primary factor in affecting the high and low yielding areas 

in Vinha (figure 36). High yields are characterized for having a TPI of -0.7 to 0, which 

indicates lower relative elevation concerning its surroundings (figure 33). The low yield 

areas are located in a clear summit, with an elevation above 70m that dominates the 

centre area of the field (figure 35). High yields are typically characterized for being in 

lower elevations, and lower yields are typically in summit regions or backslope areas, 

and the results for Vinha indicate the same (Kumhálová et al., 2011; Muñoz et al., 2014; 

Zhu et al., 2015).  

However, an issue was detected. Since the TPI and the DEM variables were 

correlated, the high10 and low10 class yield models chose different variables to 

characterize the topography during the variable selection process. The high10 used the 

TPI and identified the north region of the field as a high elevation area (figure 35). Since 

the low10 model chose the DEM to characterize the topography, it failed to identify that 

same area as a high elevation zone regarding its surroundings (figure 33). This is 

relevant because, without the proper information regarding the relative topography, the 
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Maxent analysis for the low yields failed to characterize that specific region since it did 

not have the right information.  

Slope and profile curvature are low contributing variables for the low10 model, so 

their impact on the yield class distribution is small but not underrated. The profile 

curvature average model does not show any values above the designated threshold of 

0.7, but the single model indicates a high ES above 1 °/ m. The slope average model 

has no values above the 0.7 thresholds and with increasing slope values, there is a 

continuous decrease in ES. But the single model indicates high ES above values of 

above 1.5º (or 2.6%), which indicates that regions above 2.6% inclination are 

characterized for being low yielding locales. Iqbal et al. (2005) showed that in good 

growing conditions, regions with slopes under 2% had high yields, and steeper slopes 

have more erosion and lower water infiltration rate, which leads to lower productivities 

(Jiang & Thelen, 2004). Kaspar et al. (2003) and Jaynes et al. (2003) also  show that 

curvature, along with other topographical information, were significant attributes in 

predicting corn yields for dry years. Meaning that convex areas are associated to low 

yielding areas, with our results indicating similar findings.  

Analysing the OM, the high yields of Vinha in the average model are 

characterized for having an OM content between 1.1% and 2.8% overall. The single 

model shows a dip in ES in the region between 1.2 – 2.1%, with the average model 

indicating a similar but smaller dip in ES in the same range of values. This range of 

values characterizes the centre of the field, which is also a high elevation area that was 

shown to impact the yields. The high ES demonstrated in the average model for 1.1% of 

OM is explained due to being in a low elevation area (figure 33), which was also shown 

to impact the yields positively. There is an indication that the high crop yields are 

impacted below 1.1% of OM (figure 35), but the average model doesn’t follow the same 

trend. The low10 yield model had contradicting response curves. The single variable 

model indicates a high ES in 1% of OM. Increasing concentrations of OM shows a 

decrease in the ES (figure 35). Although the average model shows the opposite relation, 

this is due to the DEM interaction, which is the highest contributing variable to model 

gain. The area in the centre of the field where high ES is found, is located in a high 

elevation area which is skewing the average model results. So, taking into account the 

results from the single variable model, the areas with OM below 1%, mainly located in 

the northern region of the field, appears to have an impact on the yield in that location 

(figure 35). Since concentrations below 2% have been associated with lower yields (Lal, 

2020; Oldfield et al., 2019), an increase of OM in the identified area is suggested. 

Mg was identified as a variable with a high PI in the high10 yield model but not in 

the low10 yield model. The single variable and the average model showed similar 



FCUP 
Filling the maize yield gap based on precision agriculture – A Maxent approach 

65 

 

concentrations of ES in the range of 170-220 mg/kg (figure 33). Above 220 mg/kg, the 

sharp drop in ES is provoked by the high elevation areas where high concentrations of 

Mg are located. High elevations were previously identified as a main contributing factor 

for the low yield. Wang et al. (2020) reported that values above 120 mg/kg for Mg are 

enough to maintain a high level of yield, and this result agrees with the author. 

The low10 model revealed that water availability plays a secondary role in the low 

yielding areas (figure 36). There is a significant model gain then TWI and DFL are used 

in isolation, and DFL also presents a significant drop in model gain when this variable is 

omitted. The average models for the TWI and DFL present lower ES due to the existing 

interactions from other higher contributing variables to the model gain, such as the DEM. 

Because they are low contributing variables, their impact on the overall ES is reduced 

but should not be overlooked because of the high importance of water in the crop yield. 

DFL has an ES value of 0.45-0.55 in all the distances (figure 35), while TWI presents a 

maximum value of 0.6 ES in the range of 5-7. When the single variable models are 

analysed for TWI and DFL, the low10 indicates that TWI in the range of 5-7 have a high 

ES, and DFL in the 25-50m distance have a high ES (figure 35). These results are similar 

to those of Maestrini and Basso (2018) and Kumhálová et al. (2014), where a low TWI 

characterizes low yielding areas due to being drier than the rest of the field. Following 

the DFL, Da Silva and Silva (2008a) reported an increase in the average yield until 17.5 

m of distance to flow lines. After this mark, there is a continuous decrease in average 

yield when longer distances occur. Our results indicate similar results, with the low 

yielding areas mainly situated in the ranges of 25-50m, indicating lower water availability. 

The pH was identified as a primary variable for the high10 yield classes models, 

but was not identified as a contributing variable for the low yield areas. In the single 

model, the ES indicates a peak of pH between the values of 6.9-7 and 7.3-7.8 with 

fluctuations in the ES (figure 33). The average model identified the same range of values, 

but only the 7.8 pH range had a ES index above the 0.7 threshold. The results from the 

average model do not appear to have a biological basis since maize has a strong 

preference for neutral pH (Fernández & Hoeft, 2009; Islam et al., 1980). However, the 

single model indicates the highest ES in the range of 6.9 pH (figure 33) indicating that 

lower pH values have a positive impact on yield in that specific region. 
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Figure 36: Location of the main factors in Vinha that drive: (a) High yields  (b) Low yields 

3.4. General discussion 

For each field, 1530 models were built to characterize the different yield impacting 

factors. The best selected models correctly modelled the relationship between different 

variables, and multiple yield impacting factors were examined and determined. 

Cerca was the only field where ECa is identified as the main driving force, 

influencing both the high and low yielding areas. Lourenço showed a particular relation 

between pH and total P in the centre area of the field, where the area with pH near 8 is 

characterized for having low total P, which could be due to the decrease of the solubility 

of calcium phosphate due to high pH. The water-related variables, TWI and DFL, were 

seldom selected except for Vinha. The low yield model for Vinha indicates that water is 

a secondary factor also coincides with an area of high elevation. Although Quinta da 

Cholda has an efficient water management system, low TWI combined with high DFL in 

high elevation areas is an indication that this area is has less water availability, which 

can drive the yields down. 

The topographical attributes were consistently selected as the main contributing 

variables in the three fields. This highlights the impact that topography has on high and 

low yielding areas, as previously mentioned by several authors. Organic matter was also 

selected for all fields, but its effects were less impactful and more focused. Areas whose 

values were above 1.5% OM had a positive impact on yields and areas below 1% OM 

had a negative impact on yields. 
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4. Using Maxent approach to fill the gap 

Following the success of this approach in identifying the main yield impact factors, 

using Cerca field as an example, we propose a set of specific recommendations to help 

reduce the existing yield gap. The results are compiled in table 16 and figure 26 for 

Cerca. The maximum yield gap in this field is 44% between the high and low yields. 

Following on the variable importance, ECa is the most relevant factor for the low yields 

(23.5 %). We suggest (if possible) increasing the ECa between 10-14 mS/m. But since 

this might be texture related, this recommendation might not be realistic or feasible. The 

next variable to be corrected should be total P (22.1 %). The model indicates a lack of P 

in the low yielding areas, and a correction should be made. But since Total P was used, 

it is necessary to realize a soil analysis to determine the available P. After determining 

the available P, the identified areas by the model should be corrected. K is the third 

highest contributing variable to low yields (20.3 %), where a correction of 25 – 75 mg / 

kg is recommended. 

 

Table 16: The main yield gap factors and the proposed solution to reduce the existing yield gap in the Cerca. 

  Highest yield  Lowest yield  

Variables Units Values importance  Values importance Yield gap 

Yield % 116 -  72 - 44 

Yield  Ton./ha 20.1 -  12.6 - 7.5 

ECa mS/m 17-26 43.6 %  7-12 23.5% +10-14 

Topography - x 18.2%  x 12.3% x 

Mg mg/kg 100-130 18.1%  80-90 6.5% +20-40 

OM % 1.1-1.5 14.6%  0.65-0.8 4.5% +0.5-0.7  

LS g/kg 0.5 0.6%  0 6.1% +0.5 

K* mg/kg >200 1.7%  130-175 20.3% +25-70 

Total P* mg/kg >350 -  120-150 22.1% +200-230 

ECa = Apparent electrical conductivity; Topography = Digital elevation model + Topographical position index; Mg= Mag-
nesium; OM = Organic matter; LS = Limestone; K = Potassium; P = Phosphorus. 
Bold indicates the main variables to be corrected. 
X indicates structural variables, not viable to be corrected. 
*Possible interaction between K and P. 
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5. Conclusion and perspectives 

A maximum entropy approach combined with PA technologies was used to 

determine the main factors responsible for the existing yield gaps in three different fields. 

Agriculture is a complex system where the yield pattern is driven by an intricate 

interaction between several environmental components. Following on the hypothesis 

that an existing yield pattern of a species (maize) can be interpreted as an ecological 

niche, we analysed these complex interactions using the Maxent algorithm based on a 

dataset consisting of yield maps of several years, topographical information and fertility 

maps. 

Since Maxent can model complex, existing non-linear relationships, the results 

obtained here showed that complex relations in yield can be modelled using this ap-

proach. The main crop impacting factors at the farm level were determined, where they 

are located, and a detailed agronomic recommendation can be prescribed for narrowing 

the actual yield gap. Although Maxent managed to identify several yields impacting fac-

tors, caution is required when interpreting the results because the identified patterns by 

the maximum entropy approach sometimes are not agronomically relevant.  

Because this study managed to answer the proposed research questions by 

modelling a highly complex environment, using such an innovative approach holds the 

potential to support smart PA solutions. 

 Perspectives 

During the development of this work, a few issues were identified that in the future 

could be improved. Variable selection should contemplate removing low contributing 

variables to model gain through the jack-knife combined with the permutation 

importance. The jack-knife allows to inspect the amount of information available, and 

small contributing variables might contain information others do not. Using both metrics 

will ensure that the model possesses the variables with the most information. 

When Maxent identifies a variable responsible for a specific pattern, but the 

pattern reveals to be a high importance variable but agronomically irrelevant, the variable 

should be removed, and the model rerun from the beginning of the analysis. 

The radius used in the topographical position index (200m) sometimes failed to 

characterize the local topography, so adding a layer with a smaller radius (25 - 50 m) 

might improve the model performance. 

We suggest an existing tool for the Maxent algorithm to visually check the 

variables that negatively influences model prediction the most. The automatic 
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compilation of the limiting factors for the high and low yields can drive more insight in the 

interpretation and the analysis of the model output, instead of manually building the yield 

characterizing factors map by hand, as was done in this work. We suggest the mapping 

tool implemented in the package “rmaxent” (Baumgartner et al., 2017).  

 A calculation tool can be developed to calculate the profit margin from correcting 

the yield liming factors, to determine which factors are worth correcting first through a 

cost/benefit analysis and the level of yield gap that can be closed by correcting a limiting 

variable.  
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Annex 

Annex I – Different yield maps produced 

 

 
 

Multiyear Yield maps for Cerca: (a) Temporal Yield map (b) Yield frequency map. Number of years that are above or 

below the average yield within 1 standard deviation (c) Relative yield map 

 

 
Multiyear Yield maps for Lourenço: (a) Temporal Yield map (b) Yield frequency map. Number of years that are above or 

below the average yield within 1 standard deviation (c)Relative yield map 

 

 

 
Multiyear Yield maps for Vinha (a) Temporal Yield map (b) Yield frequency map. Number of years that are above or be-

low the average yield within 1 standard deviation (c) Relative yield map 
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Annex II – Model selection and goodness of fit of Lourenço and Vinha 

Model selection process of Lourenço for the high and low yield classes. 

Percentile TCM SSM MOr MAIC SSM + MOr SSM + MAIC SSM + Mor + Maic Selected model 

High yield models 
10 255 255 213 1 213 1 1 RM_0.1_F_lqph 

15 255 255 134 1 134 1 1 RM_0.1_F_ph 

20 255 255 93 2 39 2 1 RM_2_F_lh 

Low yield models 
10 255 255 1 1 1 1 1 RM_5_F_lh 

15 255 255 194 3 194 3 1 RM_0.1_F_qh 

20 255 255 191 1 191 1 1 RM_0.1_F_qh 

 
Statistics of the best selected models (goodness of fit) for Lourenço 

 
 
Model selection process of Vinha for the high and low yield classes. 

Percentile TCM SSM MOr MAIC SSM + MOr SSM + MAIC SSM + Mor + Maic Selected model 

High yield models 
10 255 255 181 1 181 1 1 RM_0.1_F_lph 

15 255 255 4 1 4 1 1 RM_10_F_lh 

20 255 255 22 1 22 1 1 RM_0.1_F_lph 

Low yield models 
10 255 255 20 1 20 1 1 RM_0.4_F_lp 

15 255 255 21 1 21 1 1 RM_0.5_F_h 

20 255 255 17 1 17 1 1 RM_0.2_F_qph 

 
Statistics of the best selected models (goodness of fit) for Vinha 

 

Yield 

Class 

Selected 

model 

Mean 

AUC 

ratio 

OR AICc AUCTrain Stdevtrain AUCTest Stdevtest AUCDiff 

High yield models 

10 RM_0.1_F_lqph 1.479 0.049 70192.42 0.8195 0.00065 0.814 0.00598 0.0055 

15 RM_0.1_F_ph 1.394 0.049 108694 0.7588 0.00115 0.7539 0.00661 0.0049 

20 RM_2_F_lh 1.269 0.049 148927.4 0.6958 0.00079 0.6943 0.01100 0.0015 

Low yield models 

10 RM_5_F_lh 1.406 0.049 72022.74 0.7983 0.00075 0.7971 0.00663 0.0012 

15 RM_0.1_F_qh 1.404 0.05 107147.8 0.7703 0.00067 0.767 0.00528 0.0033 

20 RM_0.1_F_qh 1.358 0.045 146250.6 0.7255 0.00071 0.7213 0.00699 0.0042 

Yield 

Class 

Selected 

model 

Mean 

AUC 

ratio 

OR AICc AUCTrain Stdevtrain AUCTest Stdevtest AUCDiff 

High yield models 

10 RM_0.1_F_lph 1.462 0.049 48940.75 0.8313 0.00139 0.8213 0.00042 0.01 

15 RM_10_F_lh 1.237 0.05 77471.87 0.7093 0.000704 0.7072 0.00986 0.0021 

20 RM_0.1_F_lph 1.361 0.049 100980.7 0.7453 0.00119 0.7374 0.00828 0.0079 

Low yield models 

10 RM_0.4_F_lp 1.382 0.048 48589.19 0.8244 0.00120 0.8231 0.01289 0.0013 

15 RM_0.5_F_h 1.464 0.05 73539.95 0.8093 0.00057 0.8057 0.00965 0.0036 

20 RM_0.2_F_qph 1.489 0.049 98578.73 0.78 0.00094 0.7746 0.00506 0.0054 


