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Abstract 

Cancer therapy is still hampered by the negative side effects of chemotherapy 

and radiotherapy, and there is an urgent need to discover new therapeutics, namely cost-

effective antitumor agents from natural sources. The cyanobacterial extracellular 

polymeric substances (EPS) are mainly composed by heteropolysaccharides that can 

remain attached to the cell surface or be released into the environment (RPS). Their 

unique features have shown great potential for a wide range of biotechnological and 

biomedical applications. However, the studies about their action as antitumor agents are 

still very limited. Previously, it was reported a strong antitumor activity regarding the RPS 

from a Synechocystis mutant on a Group 3 sigma factor (ΔsigF) towards human 

melanoma (Mewo), thyroid (8505C), and ovary carcinoma (A2780) cell lines. 

Furthermore, this carbohydrate polymer was extensively characterized, and since it 

revealed high peptide (~27% w/w) and sulfate (≈12% w/w) contents, the impact of these 

features in its antitumor activity were evaluated in this work. For this purpose, and in an 

attempt to optimize RPS production, the Synechocystis ΔsigF cultures were grown in 

bioreactors. Subsequently, the polymer was isolated and its peptide and sulfate content 

were manipulated. The polymer variants obtained were tested in vitro, towards the 

human melanoma (Mewo) cell line, and in vivo, by performing the chick embryo 

chorioallantoic membrane (CAM) assay. Our results showed that aeration increased the 

growth rate of Synechocystis ΔsigF cultures but not the amount of RPS produced per 

cell. However, the polymer yield obtained after 30 days of culture in aerated bioreactors 

was 1.5-fold higher than in Erlenmeyer flask, indicating that this is a good system to 

increase ΔsigF polymer production.  Previously, it was also shown that the ΔsigF polymer 

with reduced peptide content (reduction of ~40%) has stronger antitumor activity in vitro 

towards the Mewo cell line, compared to the unmodified ΔsigF polymer. Here, the half 

maximal inhibitory concentration (IC50) for the polymer variant with reduced peptide 

content was determined, and the antitumor activity of both variants was validated in vivo 

using the CAM model. Moreover, the Fourier transformed infrared spectroscopy (FTIR) 

allowed an insight into the functional groups that can be related to the polymer’s 

bioactivity. 

In summary, this type of cyanobacterial polymers can be a promising platform for 

the development of a bioproduct suitable for tumor treatment, namely for melanoma.  

Keywords: cyanobacteria; extracellular polymeric substances (EPS); ΔsigF polymer; 

polymer variants; antitumor activity (in vitro; in vivo CAM model). 
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Resumo 

Os atuais tratamentos contra o cancro apresentam diversas contraindicações 

devido aos efeitos secundários característicos da quimioterapia e radioterapia. Isto tem 

levado a uma extensa procura de novas estratégias terapêuticas, como, por exemplo, o 

uso de agentes antitumorais de origem natural com elevado custo-benefício. As 

substâncias poliméricas extracelulares (EPS) produzidas pelas cianobactérias são 

maioritariamente constituídas por heteropolissacarídeos que podem permanecer 

ligados à superfície celular ou serem libertados para o meio (RPS - released 

polysaccharides). Devido às suas características únicas, os EPS apresentam um grande 

potencial para uma vasta gama de aplicações biotecnológicas e biomédicas. No entanto, 

os estudos relacionados com a ação destes polímeros como agentes antitumorais são 

ainda bastante limitados. Recentemente, foi demonstrado que RPS produzidos por um 

mutante de Synechocystis num fator sigma do Grupo 3 (ΔsigF) apresentam uma forte 

atividade antitumoral contra linhas celulares de melanoma (Mewo), cancro da tiroide 

(8505C) e carcinoma de ovário (A2780). Para além disso, o polímero do ΔsigF foi 

extensivamente caracterizado, tendo sido revelada a presença de grande quantidade 

de péptidos (~27% p/p) e grupos sulfatos (~12% p/p). Assim, neste trabalho, foi avaliado 

o possível impacto destas características na atividade antitumoral do polímero ΔsigF. 

Inicialmente, e de forma a otimizar a produção de RPS, culturas de Synechocystis ΔsigF 

foram crescidas em biorreatores com arejamento. Posteriormente, o polímero foi isolado 

e o seu conteúdo em péptidos e sulfato foi manipulado. As variantes obtidas foram 

testadas in vitro, na linha celular Mewo, e in vivo, através do modelo da membrana 

corioalantóide de embrião de galinha (CAM). Os resultados obtidos demonstraram que 

a introdução do arejamento nas culturas de Synechocystis ΔsigF aumentou a taxa de 

crescimento celular, não afetando, contudo, a quantidade de RPS produzida por célula. 

No entanto, a quantidade total de polímero obtida após 30 dias de cultura em 

biorreatores com arejamento foi 1,5 vezes mais elevada do que na cultura crescida em 

matrazes com agitação orbital, indicando que este sistema de biorreatores é adequado 

para aumentar a produção do polímero ΔsigF. Anteriormente, foi também demonstrado 

in vitro, que o polímero ΔsigF com conteúdo reduzido em péptidos (menos 40%) tem 

atividade antitumoral mais forte do que o polímero ΔsigF não modificado na linha celular 

Mewo. Neste trabalho, a metade da concentração inibitória máxima (IC50) da variante 

do polímero com conteúdo reduzido em péptidos foi determinada, e a atividade 

antitumoral de ambas as variantes foi validada in vivo, através do modelo CAM. Para 

além disso, espectroscopia de infravermelho com transformada de Fourier (FTIR) 
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permitiu identificar os grupos funcionais que podem estar relacionados com a 

bioatividade destes polímeros. 

Em resumo, este tipo de polímeros extraídos de cianobactérias podem constituir 

uma plataforma promissora para o desenvolvimento de um bioproduto adequado para 

o tratamento de tumores, nomeadamente de melanomas. 

 

Palavras-chave: cianobactérias; substâncias poliméricas extracelulares (EPS); 

polímero ΔsigF, variantes do polímero, atividade antitumoral (in vitro; modelo in vivo 

CAM). 
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Introduction 

1.Cyanobacteria 

Cyanobacteria represent a widespread group of autotrophic Gram-negative 

bacteria capable of performing oxygenic photosynthesis (Sharma et al. 2013). This ability 

allowed cyanobacteria to shape the geochemistry of the planet in the Precambrian, being 

responsible for the oxygenation of the primitive Earth’s atmosphere (Schopf 2002). 

Afterwards, the cyanobacterial endosymbiotic relationship with a non-phototrophic host 

resulted in the origin of the chloroplast, leading to the emergence of primitive eukaryotic 

photoautotrophs and, consequently, the evolution of photosynthetic algae and plants (Ku 

et al. 2015). Furthermore, cyanobacteria display a crucial role in the global primary 

production, being important players in the biogeochemical cycles of oxygen, carbon, and 

nitrogen (Sharma et al. 2013). These microorganisms constitute a very morphologically 

diverse group that comprise unicellular, colonial, and filamentous forms. Some 

filamentous strains are capable of cellular differentiation, developing heterocysts (cells 

specialized in nitrogen fixation), akinetes (resting cells for survival under environmental 

stress) or motile hormogonia (short and motile chains of cells for short-distance dispersal 

and host infection). They can be found as free-living organisms, aggregates, microbial 

mats and biofilms, or live in symbiotic association with other organisms, providing 

nitrogen and/or carbon to their host (Rippka et al. 1979, Whitton 1992, Castenholz et al. 

2001). 

The long cyanobacteria evolutionary history is one of the main causes for their 

cosmopolitan distribution and the extensive variety of their ecological niches, ranging 

from saline or freshwater to terrestrial and extreme environments, being characterized 

as one of the most successful and oldest life forms. In fact, cyanobacteria are capable 

of tolerating ecological changes in their habitats and adapt to extreme environmental 

conditions, such as deserts, high or low temperatures, hypersaline waters, high UV 

radiation and desiccation (Pereira et al. 2009, Sharma et al. 2013). Recently, 

cyanobacteria become a rich source of valuable biomacromolecules and other 

metabolites, which make them attractive platforms for industrial and biotechnological 

applications (reviewed in Dittmann et al. 2001, Singh et al. 2017). Moreover, their easy 

genetic manipulation and high growth rates compared to other photosynthetic organisms 

increase their commercial potential, becoming promising candidates for multiples 

sectors, such as wastewater treatment, biofertilization and production of biofuels, as well 
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as cosmetic and pharmaceutical industries, due to their bioactive compounds with 

antioxidant and anti-inflammatory properties, for example (Singh et al. 2017, Garlapati 

et al. 2019). Recently, biotechnological advances have focus on optimize the production 

of high value products/compounds, namely biofuels and commodity chemicals, through 

genetic/metabolic engineering as a sustainable alternative to synthetic ones (Ducat et 

al. 2011, Carroll et al. 2018). 

 

2. Extracellular polymeric substances (EPS) 

2.1. Main features and roles 

The extracellular polymeric substances (EPS) are biomacromolecules secreted 

by both unicellular and multicellular organisms, and, due to their composition and 

physicochemical properties, have become more attractive for several industrial and 

biomedical applications (Wotton 2004, Gunn et al. 2016, Moradali and Rehm 2020).  

Long before the acquisition of this term, the EPS were already the target of 

several studies, being reported in 1875 by Thomas Henry Huxley when he studied mud 

from the Atlantic seafloor and discovered an albuminous slime that formed a continuous 

mat of living protoplasm (Rehbock 1975). At that time, Huxley was convinced that it was 

a primordial slime and decided to designated it as Bathybius haeckelii, since it was in 

agreement with the Ernst Haeckel’s hypothesis, in “The History of Creation”, that 

postulated the origin of life from a primordial slime (Flemming 2016). Nevertheless, years 

later was demonstrated that this “primordial slime” was, in fact, a calcium sulphate 

precipitate, which resulted from the alcohol used to preserve the samples (Rehbock 

1975, Flemming 2016). Later on, the EPS were described as macromolecules mainly 

formed by polysaccharides that can be composed by one type of monosaccharide 

(homopolysaccharides) or various sugar residues (heteropolysaccharides)  (Flemming 

and Wingender 2010, Gunn et al. 2016). The EPS can play several physiological roles 

that are crucial to the producing strains, such as protection against biotic and abiotic 

stress, acting as a direct response to natural environmental variations (Wotton 2004, 

Flemming 2016). Furthermore, they can increase resistance against desiccation, due to 

their high capacity of water retention, and can play a role in infection processes, 

conferring resistance to nonspecific and specific host defense mechanisms (Laspidou 

and Rittmann 2002, Flemming and Wingender 2010, Donot et al. 2012). Besides 
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protection, more functions have been attributed to EPS, such as contribution to the 

formation, functional integrity and stability of biofilms, cell adhesion, chelation of metal 

and ions, motility, regulation of molecules diffusion, nutrient entrapment, cell-cell 

communication (e.g. as quorum sensing molecules) and, indirectly, horizontal gene 

transfer between the cells (extensively reviewed in Wotton 2004, Flemming and 

Wingender 2010, Donot et al. 2012, Flemming 2016).  

 

2.2. Biosynthesis  

Several studies reported the possible conservation of the EPS biosynthetic 

mechanisms in Gram-negative and Gram-positive bacteria (Low and Howell 2018). 

Generally, the EPS production is a 3-step process taking place in different cell 

compartments: (i) in the cytoplasm occurs the activation of monosaccharides into sugar 

nucleotides; (ii) the repeating units are transferred onto a carrier (typically lipidic), through 

the action of glycosyltransferases at the plasma membrane; (iii) then the assemble 

and/or polymerization of the units occurs, and the produced polymer is exported to the 

cell surface. The assembly and export of the EPS usually follow one of three possible 

mechanisms: ABC transporter-, Synthase- and Wzy-dependent pathways (Fig. 1). In the 

case of the ABC transporter-dependent pathway, all reactions involved in the 

polymerization occur on the cytoplasmic face of the plasma membrane. Afterwards, the 

polysaccharide is carried along the plasma membrane by an ABC transporter 

(KpsM/KpsT) and exported through the outer membrane by a transmembrane complex 

formed by KpsE and KpsD proteins. In the Synthase-dependent pathway, the machinery 

involved may differ significantly on the polymer produced (Low and Howell 2018). 

Generally, a synthase (e.g. Alg8 or BcsA) is responsible for the simultaneous 

polymerization and export of the polymer across the plasma membrane. In the periplasm, 

other proteins are able to modify the polymer or degrade polymer surplus and, in the final 

step, the polysaccharide is guided and protected from degradation by two independent 

proteins (e.g. AlgK and AlgE) or only one protein with both functions (e.g. BcsC) (Pereira 

et al. 2015, Whitfield et al. 2015). In the Wzy-dependent pathway, after activation of 

monosaccharides, lipid-linked repeating units are translocated to the periplasmic face of 

the plasma membrane through Wzx and the polymerization is catalyzed by Wzy. Finally, 

the translocation of the polymer through the cell envelope is controlled by the 
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transmembrane complex Wza/Wzc, being the phosphorylation state of Wzc controlled 

by the phosphatase Wzb (Islam and Lam 2014, Pereira et al. 2015). 

 

Figure 1. Schematic representation of the main events leading to the production of bacterial extracellular polymeric 

substances (EPS). The EPS assembly, polymerization and export may occur by one of the three main mechanisms: the 

Wzy-, ABC transporter- or Synthase-dependent pathways. IM- inner membrane; PG- peptidoglycan; OM- outer 

membrane. Adapted from Pereira et al. (2019). 

 

2.3. Cyanobacterial EPS 

Many cyanobacterial strains are able to produce EPS, mainly composed by 

heteropolysaccharides. These polymers can be covalently linked or loosely attached to 

the cell surface that according to their consistency and thickness can be referred as 

capsules (thick and slimy layer closely associate with the cells), sheaths (thin and dense 

layer loosely covering the cells) or slimes (mucilaginous material with looser association 

with the cells); or be released into the surrounding environment (released 

polysaccharides - RPS) (Rossi and De Philippis 2016).  

In agreement to other bacteria, the cyanobacterial EPS can play a defensive and 

protective role against adverse environmental conditions (Wotton 2004). In fact, it was 
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described the presence of UV absorbing substances in the sheaths of several 

cyanobacterial strains, which confirms the role of the EPS in protecting cyanobacterial 

cells from the harmful effects of UV radiation (Garcia‐Pichel and Castenholz 1991). In 

addition, the cyanobacterial EPS can be involved in the gliding motility of hormogonia 

(Khayatan et al. 2015), prevention of cell damage from desiccation (Danin et al. 1998), 

participation in the sequestration of metals and nutrients (Parker et al. 1996, Mager and 

Thomas 2011) and in biofilm formation (Rossi and De Philippis 2015), and in the 

protection of nitrogenase against the negative effects of oxygen, through the formation 

of an heterocyst envelope polysaccharide (HEP) layer (Muro-Pastor and Hess 2012).  

The identification of the physiological conditions that influence the synthesis of 

the EPS is crucial for the optimization of their productivity. EPS production is described 

as strain- and growth-dependent. Nevertheless, over the years, several studies have 

been indicating a vast number of environmental factors that can affect the amount of 

cyanobacterial EPS produced, as well as influence their composition, structure and 

physicochemical properties (Pereira et al. 2009). Light (intensity and quality) seems to 

be one of the major factors influencing the cyanobacterial EPS production. The exposure 

to continuous light or high-light intensities lead to higher production of EPS by some 

strains (Lupi et al. 1994, Mota et al. 2013), whilst in other cases, specific light 

wavelengths were responsible for their significant enhancement (Ehling-Schulz et al. 

1997, Han et al. 2014). The nutrient availability (e.g. of nitrogen, phosphate, and 

sulphate) and its cell ratio (e.g. C:N ratio) can also affect the biosynthesis of the EPS. It 

is well established that higher availability of nitrogen and/or carbon increase the EPS 

production, however N starvation can also be responsible for higher yield of EPS 

production (Otero and Vincenzini 2003, Kumar et al. 2007). Accordingly, studies revealed 

that starvation or limiting availability of other nutrients, such as manganese, 

phosphorous, potassium or sulfur, resulted in a maximization in EPS production (Markou 

et al. 2012). Moreover, aeration can stimulate EPS production by improving light 

penetration and nutrients availability, or by promoting a physical separation of the EPS 

from the cells surface (Moreno et al. 1998, Su et al. 2007). 

Despite this knowledge, the data available to understand the intricate machinery 

and the specific pathways of cyanobacterial EPS biosynthesis is still very limited. Recent 

studies suggest a much more complex scenario regarding the molecular machinery 

involved in the assembly and export of the cyanobacterial EPS compared to other 

bacterial EPS. A phylum-wide analysis showed that many cyanobacteria contain genes 

encoding proteins putatively involved in each of the three aforementioned pathways, but 
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not the complete set defining one pathway (Pereira et al. 2015). This suggested that the 

cyanobacterial EPS production does not follow a single pathway and/or more elements 

are involved, being the genes under different regulatory mechanisms. Herewith, 

concerning the high number of genes involved in cyanobacterial EPS production, and 

that some may encode proteins with redundant function, it is expected that an intricate 

regulatory network might operate to control the EPS biosynthesis. Up to date, the 

majority of the studied regulatory elements associated to cyanobacterial EPS were 

reported in filamentous strains, being most of them related with the production of the 

heterocyst HEP-layer. For example, in Anabaena PCC 7120, the nitrogen-control 

transcription factor (NtcA) is indirectly involved with the control of EPS biosynthesis 

(López-Igual et al. 2012). Furthermore, it is expected that the alternative sigma factors 

may play an important role in EPS production control, since they are known to be 

involved in regulation of acclimatation responses and survival in diverse environmental 

conditions (Feklístov et al. 2014). It was demonstrated, also in Anabaena PCC 7120, 

that the alternative Group 3 sigma factor SigJ, which is associated with desiccation 

tolerance, plays a role in EPS production (Yoshimura et al. 2007, Srivastava et al. 2016). 

In the case of Nostoc punctiforme, SigJ (as well as SigF) is involved in hormogonium 

development control, activating genes associated with synthesis and secretion of 

hormogonium-specific polysaccharide (HPS) (Gonzalez et al. 2019). Recently, the 

impact of SigF in motility control, production of RPS/EPS, vesiculation and protein 

secretion in Synechocystis sp. PPC 6803 was reported (Flores et al. 2019a).  

 

2.3.1. Distinct features of cyanobacterial EPS  

Cyanobacterial EPS exhibit unique features when compared to EPS produced by 

other microbial sources, such as: 

(i) high number of different monosaccharides (up to 13), which result in a 

variety of linkage types and lead to complex architectures and structures (Pereira et al. 

2009). Whilst the EPS produced by other bacteria generally contain less than four 

monosaccharides, most of the cyanobacterial EPS described contain six or more 

different types of monomers (Rossi and De Philippis 2016). Up to date, have been found 

in cyanobacterial EPS, hexoses (fructose, galactose, glucose and mannose), pentoses 

(arabinose, ribose and xylose) and deoxyhexoses (fucose and rhamnose). Furthermore, 

they frequently have one or two hexoses/uronic acids (glucuronic and galacturonic 
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acid) in their composition (Pereira et al. 2009). Glucose is the monosaccharide most 

frequently found in cyanobacterial EPS, however, in some species, the presence of 

arabinose, fucose, galactose or mannose occur in higher concentrations than glucose 

(Parikh and Madamwar 2006, Rossi and De Philippis 2016).  

(ii) sulphate groups, which is extremely rare among EPS from bacteria, but 

common between EPS produced by archaea and eukaryotes. Together with the 

presence of uronic acids and the ketal-linked pyruvate groups, the sulphate groups are 

important to confer strong anionic charge and a “sticky” behavior to the EPS (Sutherland 

1994, Arias et al. 2003).  

(iii) peptides, usually enriched in alanine, glycine, valine, leucine, isoleucine, and 

phenylalanine (Kawaguchi and Decho 2002). The presence of proteins enriched with 

aspartic and glutamic acids was also observed in some cases (Flaibani et al. 1989, 

Garozzo et al. 1998). These polypeptides, together with deoxysugars and ester-linked 

acetyl groups, confer high levels of hydrophobicity and, consequently, the emulsifying 

and rheological properties of the EPS (Neu et al. 1992, Pereira et al. 2009). 

(iv) unusual sugars, such as methyl sugars (e.g. 4-O-methyl rhamnose, 3-O-

methyl glucose, 2,3-O-methyl rhamnose and 3-O-methyl rhamnose) and/or amino-

sugars (glucosamine and galactosamine and their N-acetyl derivates) (Hu et al. 2003).  

(v) high-molecular mass fractions, reaching values of more than 2 MDa in some 

cases. This feature contributes to modify the rheological properties of water by acting  as 

thickening agents, for example (Xu and Zhang 2016). 

Furthermore, other non-carbohydrates constituents (e.g. pyruvate and acetate) 

have been identified in cyanobacterial EPS, for example in members of Cyanothece (De 

Philippis and Vincenzini 1998) and Nostoc (De Philippis et al. 2000) genus. Compared 

with other microbial polysaccharides, the cyanobacterial EPS are still less characterized. 

Despite the intensive research, the structure of cyanobacterial EPS is hindered by their 

complex nature, however, their particular features and structural complexity also make 

these polymers attractive platforms for biotechnological/biomedical applications 

(Garozzo et al. 1998, Gloaguen et al. 1999, Helm et al. 2000, Shah et al. 2000, Volk et 

al. 2006).  
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2.3.2. Biotechnological application of cyanobacterial EPS  

Cyanobacterial EPS are biodegradable and biocompatible macromolecules, 

which make them promising sustainable and eco-friendly substitutes to petrochemical-

derived polymers available in the market (Rehm 2010, Donot et al. 2012). Moreover, the 

industrial production of cyanobacterial EPS confers important advantages compared to 

biopolymers derived from plants or algae since: (i) the cyanobacterial producing strains 

have only minimal nutritional requirements, preventing the need of expensive EPS 

precursors/substrates and allowing a better control of growth/production and low 

variability of the final product; (ii) usually exhibit higher growth rates, which accelerate 

the production process; (iii) can be easily manipulated by genetic engineering, allowing 

to obtain polymers with specific properties for high-value applications; (iv) the culture 

conditions can be easily modified in order to optimize the EPS production; (v) the EPS 

are commonly secreted by the cells, which facilitates the isolation process; (vi) and have 

particular physicochemical properties, which can lead to interesting and novel 

functionalities (Selbmann et al. 2002, Freitas et al. 2011, Rütering et al. 2016). Overall, 

cyanobacterial EPS represent a low-cost raw material adaptable to a high number of 

distinct fields. 

The main areas of biotechnological application of cyanobacterial EPS have been 

bioremediation, cosmetics, pharmaceutics, food, painting industry and soil stabilization 

(reviewed in Singh et al. 2017). Recently, research has focused on cyanobacterial EPS 

potential for biomedical applications, such as the development of innovative biomaterials 

(e.g. scaffolds, drug carriers and coatings) (Leite et al. 2017, Costa et al. 2019, Costa et 

al. 2021, Matinha-Cardoso et al. 2021). Additionally, a vast array of biological activities 

have been described for cyanobacterial EPS, such as antitumor (Yue et al. 2012, Ou et 

al. 2014), immunostimulatory (Løbner et al. 2008), anticoagulant (Yamamoto et al. 2003), 

antioxidant (Parwani et al. 2014), antibacterial (Najdenski et al. 2013), antifungal 

(Najdenski et al. 2013) and antiviral (Hayashi et al. 1996, Ahmadi et al. 2015, Mader et 

al. 2016, Reichert et al. 2017). These distinct bioactivities are attractive for several 

biomedical applications and may be associated with their compositional and structural 

features, such as the accessibility/presence of amino-sugars, sulfate groups and uronic 

acids, low molecular mass fractions, and hydrophobic nature. Nevertheless, the majority 

of the studies only infer the association between the features of cyanobacterial EPS and 

their bioactivities, based on physiochemical comparisons to EPS from other sources 

(Gacheva et al. 2013, Flamm and Blaschek 2014). For example, by comparison with 
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other sulfated EPS, it has been described that the high sulfate content of cyanobacterial 

EPS may be strongly involved in antiviral (Aleksandar et al. 2010), antioxidant (Parwani 

et al. 2014), anticoagulant (Majdoub et al. 2009) and antitumor (Ruiz-Ruiz et al. 2011) 

activities.  

 

2.4. Cyanobacterial EPS as antitumor agents 

Cancer is the second major cause of death worldwide, with an estimation of 19.3 

million new cases and 9.98 million of deaths in 2020. Based on the GLOBOCAN project 

in 2020, it is expected more than 30 million new cancer cases and 16 million deaths by 

2040 (Ferlay et al. 2020). These predicted high numbers increase the demand of early 

cancer detection, such as screening programs, and the development of advanced and 

innovative therapies and treatments. Due to the limitations and negative side effects of 

chemotherapy and radiotherapy, more researchers are focused in alternative 

therapeutics that are clinically effective and less expensive, namely anticancer agents 

from natural sources (Cragg and Newman 2018, Khan et al. 2019). Several studies have 

been showing that biopolymers of polysaccharidic nature, including the cyanobacterial 

EPS, may be valuable antitumoral agents, by preventing tumor development and 

inhibiting proliferation, invasion, adhesion, metastasis and/or angiogenesis (Zong et al. 

2012). Furthermore, studies with EPS from different sources have been shown that five 

types of antitumor molecular mechanisms may be triggered: (i) cell cycle arrestment; (ii) 

activation of the mitochondrial-mediated apoptotic pathway; (iii) production and 

activation of nitric oxide (NO) pathway; (iv) immunomodulatory pathways; (v) other 

specific mechanisms with pathways not define yet, such as production of reactive oxygen 

species and inhibition of galectin 3 and topoisomerase (Zong et al. 2012, Khan et al. 

2019).  

Despite the very limited number of studies, the antitumor activity potential of 

cyanobacterial cell crude extracts containing EPS or their isolated EPS have already 

been described (Yue et al. 2012, Li et al. 2018). However, most of these studies are 

based on the antioxidant and antiproliferative (Li et al. 2011, Yue et al. 2012, Gacheva 

et al. 2013, Ou et al. 2014, Li et al. 2018), antimigration (Gloaguen et al. 1999), and anti-

invasion (Mishima et al. 1998) activities of cyanobacterial EPS, and not directly 

correlated to their antitumor activity. Moreover, the induction of apoptosis trough 

caspase-3 activation in tumor cells was reported in studies with EPS from Aphanothece 



    
FCUP 

 Cyanobacterial extracellular polymeric substances (EPS): Production and antitumor activity evaluation 
10 

 
 

halophytica (Ou et al. 2014), Nostoc sphaeroides (Li et al. 2018), and Synechocystis sp. 

PPC 6803 (Flores et al. 2019b). Nevertheless, in vivo studies performed with 

cyanobacterial EPS are still very scarce, and only two studies were reported using tumor 

cell-transplanted mice (Zheng et al. 1994, Mishima et al. 1998). In this context, intensive 

research efforts are still required to unveil and understand the antitumor molecular 

mechanisms and the EPS compositional/structural features that are related to their 

antitumor activity.  

 

2.4.1. Synechocystis EPS as antitumor agent 

Synechocystis sp. PCC 6083 is a well characterized and genetic amenable 

unicellular cyanobacterium that was considered the “green E. coli” (Branco dos Santos 

et al. 2014). Therefore, despite being a moderate EPS-producer, this strain has been 

used to study the genes involved in EPS production (Pereira et al. 2019, Santos et al. 

2021). Recent studies reported that Synechocystis sp. PCC 6083 Group 3 sigma factor 

SigF knockout mutant (∆sigF) releases up to 4-fold more polysaccharides than the wild-

type (Flores et al. 2019a). The ∆sigF polymer was shown to have a strong antitumor 

activity, by reducing the cell viability in a time- and dose-dependent manner in three 

human tumor cell lines: melanoma (Mewo), thyroid carcinoma (8505C) and ovarian 

carcinoma (A2780) (Flores et al. 2019b). In addition, high levels of apoptosis of the ∆sigF 

polymer were reported, reaching up to ~40%, which was correlated to the increased 

levels of caspase-3 and p53, showing the induction of mitochondrial-mediated apoptotic 

pathway. Furthermore, these high levels of apoptosis suggest that ∆sigF polymer 

induced one of the highest levels of apoptosis observed among natural polymers (Ruiz-

Ruiz et al. 2011, Liu et al. 2016, Li et al. 2018, Flores et al. 2019b). The polymer isolated 

from ∆sigF culture was also extensively characterized, being detected high sulfate (≈12% 

w/w) and protein (≈27% w/w) contents, and four fractions with distinct molecular mass, 

being the >800 kDa the most abundant (Flores et al. 2019a). However, the role of this 

constituents in the polymer antitumor activity is still unclear.  
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Aims 

Previously, it was demonstrated by the research group, in which this work took 

place, that an extracellular carbohydrate polymer released by a mutant of a unicellular 

cyanobacterium (Synechocystis ∆sigF) exhibits a strong antitumor activity against 

several human tumor cell lines. Therefore, the major aim of this study was to gain an 

insight into the polymer features that are relevant for its antitumor activity. For this 

purpose, the polymer peptide and/or sulfate contents were manipulated originating 

different variants that were tested on the human melanoma cell line (Mewo). In addition, 

the antitumor activity of the most promising variant was evaluated in vivo, using the 

chicken embryo chorioallantoic membrane (CAM) model. 
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Materials and Methods 

1. Cyanobacterial strains and culture conditions 

The cultures of Synechocystis sp. PCC 6803 wild-type (sub-strain PCC-M) and 

its ΔsigF knockout mutant (Huckauf et al. 2000, Trautmann et al. 2012)(Huckauf et al. 

2000, Trautmann et al. 2012) were grown in Erlenmeyer flasks containing BG11 medium 

(550 mL of culture) (Rippka et al. 1979) at 30 ºC under 12 h light (50 μE m-2 s-1)/12 h 

dark regimen, with orbital shaking at 150 r.p.m. The ΔsigF cultures were also grown in 

Erlenmeyer flasks containing BG11 medium enriched with sulfur (supplemented with 1 

g L-1 CaSO4·2H2O and with less 0.85 g L-1 CaCl2·2H2O to avoid surplus of calcium) in 

the same culture conditions. To study the optimization of the ΔsigF polymer production, 

Synechocystis ΔsigF was grown in bioreactors (550 mL of culture) at 30 °C, under a 12 

h light (50 μE m-2 s-1)/12 h dark regimen, with continuous aeration (1.2 L min-1). The 

ΔsigF mutant was maintained in BG11 medium supplemented with kanamycin (100 μg 

mL−1), while the experiments were performed in the absence of selective pressure. 

 

2. DNA extraction and confirmation of the segregation of the 

ΔsigF mutant 

Cyanobacterial genomic DNA was extracted as described by Ferreira et al. 

(2018) and DNA concentration was determined using a Nanodrop ND-1000 (Nanodrop 

Technologies Inc., USA). Complete segregation of the mutants was confirmed by PCR 

amplification using the oligonucleotide primers listed on Table 1, as reported by Flores 

et al. (2019a). PCR reactions were performed using a thermal cycler (MyCycler™, Bio-

Rad laboratories Inc., Hercules, CA, USA) following procedures previously described 

(Tamagnini et al. 1997). The PCR profile included an initial denaturation at 94 °C for 5 

min, followed by 35 cycles at 94 °C for 1 min, 54 °C for 1 min, 72 °C for 75 s, and a final 

extension at 72 °C for 7 min. The PCR products were separated by agarose gel 

electrophoresis (Sambrook and Russell 2001). 
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Table 1. List of oligonucleotides used in this work to confirm Synechocystis ΔsigF segregation. 

Primer name Sequence (5´- 3’) Reference 

Slr1564.5O GGGTGGTTATCAACAGCAAGCCCAGCAAAT (Flores et 
al. 2019a) Slr1564.3O GAGATTGTGGAGGTAACCTGCACTCTGGCT 

 

3. Light microscopy 

Cells were observed using an Olympus X31 light microscope (Olympus, Spain) 

and micrographs were acquired with an Olympus DP25 camera and the Cell B software 

(Olympus, Spain). Cells were also stained with Alcian Blue (0.5% w/v in 50% ethanol) 

for the visualization of acid carboxylated and sulfated polysaccharides (Thornton et al. 

2007).  

 

4. Growth assessment 

Growth measurements were performed by monitoring optical density, dry weight, 

and the chlorophyll a content. Optical density (OD) was measured 

spectrophotometrically at 730 nm according to Anderson and McIntosh (1991). For the 

determination of the dry weight (DW), 5 mL of culture were dried at 60 ºC until a constant 

weight was reached. The content of chlorophyll a (chl a) was extracted using 90% (v/v) 

methanol and determined spectrophotometrically as reported by Meeks and Castenholz 

(1971). All the measurements were performed with three technical replicates. 

 

5. Determination of total carbohydrate content and released 

polysaccharides (RPS) 

The content of total carbohydrates and RPS in cyanobacterial cultures was 

determined by the phenol-sulfuric acid method (Dubois et al. 1956), as previously 

reported by Mota et al. (2013). All experiments were performed with three technical 

replicates. 
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6. Polymer isolation  

The ΔsigF polymer was isolated according to Flores and Tamagnini (2019). 

Briefly, the Synechocystis ΔsigF cultures were dialyzed (12–14 kDa of molecular weight 

cut-off; Medicell International) against a minimum of 10 volumes of deionized water for 

48 h with continuous stirring. Then, the cultures were centrifuged at 20,000 x g for 25 

min at 8 °C, and 2 volumes of 96% ethanol were added to the supernatant. After an 

incubation at 4 ºC overnight, the suspension was centrifuged at 20,000 x g for 25 min at 

6 °C, and the supernatant was discarded. The pellet was resuspended in 1 mL of 

autoclaved type II water and lyophilized. The dried polymer was stored at room 

temperature (RT) until further use.  

 

7. Quantification of protein and sulphate contents  

The lyophilized polymers were resuspended in deionized water and the peptide 

content was quantified using the Lowry method (Lowry et al. 1951). The sulfate content 

was determined by hydrolyzing 2 mg of the ΔsigF polymer with 1 mL of 2 M HCl for 5 h 

at 110 °C, and the quantification was performed with Sulfate Assay Kit (MAK 132, Sigma-

Aldrich Co., MO, USA), according to the manufacturer's guidelines.  

 

8. Peptide removal and analysis 

The peptide content of the polymer was removed by trichloroacetic acid (TCA) 

precipitation. Briefly, an aqueous polymer solution (5 mg mL-1) was incubated with 15% 

TCA, for 15 min at RT, and then centrifugated at 11000 x g for 20 min at 4 ºC.  Then, the 

supernatant was dialyzed against a minimum of 10 volumes of deionized water for 48 h 

with continuous stirring and lyophilized, as performed for the polymer isolation. The 

treatment efficiency was assessed by measuring the peptide content before and after 

the TCA precipitation using the Lowry method, as described above.  
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9. Human tumor cell lines and culture conditions 

The human melanoma cell line Mewo (kindly given by Prof. Marc Mareel, 

Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, Belgium) 

(Pópulo et al. 2015) was cultured in DMEM culture medium with stable glutamine 

(Capricorn Scientific, Germany) and supplemented with 10% fetal bovine serum (FBS, 

GIBCO, Invitrogen, UK), 1× penicillin/streptomycin (Biowest, France) and 1.25 μg mL-1 

amphotericin B (Corning, USA). Cells were maintained in a humidified incubator at 37 °C 

with 5% CO2. The cell line was authenticated following genotyping at Institute for 

Research and Innovation in Health (i3S) Genomics Core Facility (Porto, Portugal) using 

the PowerPlex® 16 HS System (Promega, USA) and according to DNA profiles available 

at ATCC and ECACC STR profiles database. Cells were also confirmed to be free of 

mycoplasma contamination following at Genomics Core Facility (Porto, Portugal) 

 

10. Cell viability assays 

Cell viability analysis was carried out performing a resazurin based assay, using 

PrestoBlue™ Cell Viability Reagent as described in Pópulo et al. (2015). Briefly, cells 

were plated on 96-well plates (1 × 104 cells/well) and allowed to adhere for 24 h at 37 

°C. Cells were then treated with: supplemented medium (Blank); Synechocystis ΔsigF 

polymer and respective variants resuspended in non-supplemented medium at 

concentrations ranging from 0.0875 to 1.5 mg mL-1 or with polymer vehicle 

(supplemented medium containing the equivalent amount of non-supplemented medium 

used in the polymer solutions). Following 48 h treatment, cells were washed three times 

with non-supplemented medium and further incubated for 45 min with PrestoBlue™ 

reagent (Life Technologies, EUA) previously diluted 1:10 in supplemented medium. 

Fluorescence was then measured (excitation 560 nm; emission 590 nm) using the 

Synergy HT Multi-Mode Microplate Reader (BioTek Instruments Inc., EUA). Five 

technical and four biological replicates were analyzed. Cell viability was determined by 

analyzing the mean fluorescence values obtained for each sample as percentage of the 

values obtained for control cells (Blank cells), after removing the background values 

(medium only).  

 

https://www.google.com/search?rlz=1C1GCEA_enPT947PT947&sxsrf=ALeKk03v0LqrgOTXLMKCze20ZrEoWYozmw:1629025828227&q=Carlsbad&stick=H4sIAAAAAAAAAOPgE-LSz9U3MKmqSInPVeIAsYtMyvO0tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcWLWDmcE4tyipMSU3awMgIAMQ3irFIAAAA&sa=X&sqi=2&ved=2ahUKEwj2vsiO8rLyAhVgTDABHWhkBRUQmxMoATAWegQIJxAD
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11. Fourier transformed infrared spectroscopy (FTIR)  

For Fourier transformed infrared spectroscopy (FTIR), 2 mg of polymer were 

mixed with 200 mg of KBr and the powders pressed at 8 tons for 1 min, using an 

automatic press. FTIR spectra of the polymer were acquired using a Frontier FTIR 

spectrometer (PerkinElmer, USA) from 4000 to 400 cm−1 and with 4 cm−1 resolution. 

 

12. In vivo chicken embryo chorioallantoic membrane (CAM) 

angiogenesis and tumor growth assay 

The effect of the ΔsigF polymer variants on the angiogenic response and tumor 

growth of Mewo cells was evaluated in vivo, using the chicken embryo chorioallantoic 

membrane (CAM) model as previously described (Ferreira et al. 2016, Leite et al. 2020). 

According to the European Directive 2010/63/EU, ethical approval is not required for 

experiments using embryonic chicken. Correspondingly, the Portuguese law on animal 

welfare does not restrict the use of chicken eggs. Briefly, fertilized chick (Gallus gallus) 

eggs were incubated horizontally at 37.5 °C in a humidified atmosphere and referred to 

embryonic development day (EDD 0). On EDD3, 2 mL albumen was withdrawn, and a 

square window was opened in the eggshell to allow the growth of the CAM detached 

from the shell. The window was sealed with transparent adhesive tape and the eggs 

were re-incubated until EDD9. At EDD9, 1 × 106 Mewo cells were resuspended in a 

mixture of 10 µL of 0.7 mg mL-1 ΔsigF polymer variants (unmodified ΔsigF or ΔsigF 

polymer with reduced peptide content) and 5 µl Matrigel™ (Corning® Inc., Bedford, MA, 

USA) and placed on top of the growing CAM, into a 5 mm silicon rings, under sterile 

conditions. As controls, the same amount of cells was used, resuspended in polymer 

vehicle (non-supplemented DMEM) and 5 µl Matrigel. A total of 76 eggs (29 for 

unmodified ΔsigF polymer, 28 for ΔsigF polymer with reduced peptide content and 19 

for control), distributed through 2 independent experiments were inoculated. The eggs 

were resealed and further incubated for 4 days. At EDD13, embryos were euthanized by 

adding 2 mL of 10% neutral-buffered formalin in the top of the CAM. The rings were 

removed and the fixed CAMs were excised and photographed ex ovo under a 

stereoscope at 20× magnification (Olympus SZX16 coupled with a DP71 camera; 

Olympus Corp., Tokyo, Japan). For angiogenesis analysis, the number of new vessels 
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(<20 µm diameter) growing radially towards the ring area was counted in a blind manner. 

For tumor growth analysis, the area of CAM tumors was determined using the Cell A 

software (Olympus, Spain).  

 

13. Statistical analysis 

Data were plotted and statistically analyzed using GraphPad Prism version 5.0 

(GraphPad Software) using analysis of variance (ANOVA), followed by Bonferroni’s 

multiple comparisons test (growth assessment, carbohydrates production and 

determination of polymer’s peptide content), or Dunn's multiple comparisons test (CAM 

assay). 
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Results and Discussion 

1. Optimization of Synechocystis ∆sigF polymer production 

Envisaging the optimization of the polymer production, cultures of Synechocystis 

∆sigF were grown in bioreactors [30 °C, 12 h light (50 μE m-2 s-1)/12 h dark regimen with 

continuous aeration (1.2 L min-1)]. Since Synechocystis ∆sigF cultures were grown 

without selective pressure, the segregation of this mutant was confirmed by PCR 

amplification before each experiment (Fig. 2).  

 

Figure 2. Confirmation of Synechocystis ∆sigF mutant segregation by PCR analysis. The PCR amplifications were 

performed using a specific primer pair targeting the flanking regions of the sigF gene (Slr1564.50/Slr1564.30) (for more 

details, see Materials and Methods section). Genomic DNA was extracted from Synechocystis PCC 6803 wild-type (wt) 

and Synechocystis ∆sigF cultures as described by Ferreira et al. (2018). Expected size of the PCR products: wt-1485 bp; 

∆sigF- 2737 bp. 

 

The growth measurements were performed by monitoring the optical density 

(OD), chlorophyll a (chl a) content, and dry weight (DW), and compared to ΔsigF cultures 

grown in Erlenmeyer flasks under previously established conditions [30 °C, 12 h light (50 

μE m-2 s-1)/12 h dark regimen with orbital agitation]. The Synechocystis ΔsigF cells grown 

in bioreactors with aeration showed an increase in the growth rate (OD ~2-fold), 

compared to the ΔsigF cells grown in Erlenmeyer flasks (Fig. 3). These results are in 

agreement with previous studies on other cyanobacterial strains that reported faster 

growth rates for cultures with aeration, since this condition improve nutrient and light 

availability for the cells (Ogbonda et al. 2007, Monteiro et al. 2010). In contrast, the 

amount of total carbohydrates produced by ∆sigF cells grown with continuous aeration 

decreased compared to the cells grown in Erlenmeyer flasks (Fig.4A), and the amount 

of RPS did not significantly change between the two conditions (Fig. 4B). Furthermore, 

when the values were normalized per chl a, the amounts of total carbohydrates and RPS 

were significantly lower in ∆sigF cells that grow in bioreactors (Fig. 4C and 4D), indicating 



    
FCUP 

 Cyanobacterial extracellular polymeric substances (EPS): Production and antitumor activity evaluation 
19 

 
 

that cells under continuous aeration are using their energy pools to boost their growth, 

rather than to carbohydrates production. This can be clearly perceive comparing the 

amount of polymer produced by g of DW (in Erlenmeyer flasks 84 mg of polymer per g 

DW; in Bioreactors 79 mg of polymer per g DW). However, the total polymer yield after 

30 days of culture was 1.5-fold higher in the bioreactor compared to the Erlenmeyer 

flasks, so in the future this cultivation set can be utilized to increase the RPS production. 

Previous studies reported that aeration can increase the EPS production in some 

cyanobacteria strains (Moreno et al. 1998, Su et al. 2007), but it was also described that 

environmental conditions can affect the cells carbon/energy fluxes, redirecting it from the 

production of cyanobacterial EPS and other carbohydrate-rich molecules e.g. 

polyhydroxybutyrate (PHB) to cell growth and vice-versa (Trabelsi et al. 2009, Carpine 

et al. 2020). 

 

Figure 3. Growth curves of Synechocystis PCC 6803 ∆sigF cultures grown in Erlenmeyer flasks with orbital agitation 

(Erlenmeyer flask) and in bioreactors with aeration (Bioreactor), both at 30 °C and 12 h light (50 μE m-2 s-1)/12 h dark 

regimen. Growth was monitored by measuring the optical density (OD) at 730 nm (A), the chlorophyll a (chl a) content (B) 

and dry weight (DW) (C) (for more details, see Materials and Methods section). 

 



    
FCUP 

 Cyanobacterial extracellular polymeric substances (EPS): Production and antitumor activity evaluation 
20 

 
 

 

Figure 4. Total carbohydrates and released polysaccharides (RPS) of Synechocystis PCC 6803 ∆sigF cultures grown in 

Erlenmeyer flasks with orbital agitation (Erlenmeyer flask) and in bioreactors with aeration (Bioreactor), both at 30 °C and 

12 h light (50 μE m-2 s-1)/12 h dark regimen. Total of carbohydrates and RPS production were quantified by the phenol-

sulfuric method, and the values expressed as mg of carbohydrates per liter (L) of culture (A and B, respectively) or mg of 

carbohydrates per mg of chl a (C and D, respectively) (for more details, see Materials and Methods section). 
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2. Manipulation of the polymer sulfate content 

It has been previously demonstrated that the ∆sigF polymer has high amount of 

sulfate (12% w/w) and peptides (28% w/w), however, is still unclear the role of these 

components in its strong antitumor activity (Flores et al. 2019a). Considering that a 

correlation between the presence of sulfate groups and cyanobacterial EPS antitumor 

activity was already describe in the literature (Mishima et al. 1998), the sulfate content 

of our polymer was manipulated. For that, Synechocystis ∆sigF cultures were grown in 

BG11 medium enriched with sulfate (for more details, see Materials and Methods). 

Firstly, the growth of ∆sigF cells grown with sulfate surplus (∆sigF + SO4) was monitored 

and compared to ∆sigF cells grown only in BG11 medium (∆sigF), revealing a similar 

growth pattern between them (Fig. 5).  

 

Figure 5. Growth curves of Synechocystis PCC 6803 ∆sigF cultures grown in BG11 medium (∆sigF) and in BG11 medium 

supplemented with sulfate - 1 g L-1 CaSO4·2H2O (∆sigF +SO4). Growth was monitored by measuring the optical density 

(OD) at 730 nm (A), chlorophyll a (chl a) content (B) and dry weight (DW) (C) (for more details, see Materials and Methods 

section). Cultures were grown in Erlenmeyer flasks with a 12 h light (50 μE m−2 s−1)/12 h dark regimen, 30 ºC, and 150 

r.p.m. orbital agitation. Experiments were made in triplicate and are represented as mean ± STD. 

Additionally, the amount of total carbohydrates and amount of RPS produced by 

cultures with surplus of sulfate were evaluated and compared to cultures with unmodified 
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BG11. Regarding the total carbohydrates, the amount produced by ∆sigF cells grown 

with sulfate surplus (∆sigF + SO4) increased significantly (~2 fold-more) compared to the 

cells grown in unmodified BG11 (∆sigF) (Fig. 6A). However, the same pattern was not 

observed for the RPS. The amount of RPS for the cultures grown with sulfate surplus did 

not change significantly, compared to the cultures grown in BG11 (Fig. 6B). This is also 

evident, when the values were normalized per chl a (Fig. 6C and 6D). These results were 

supported by the amount of polymer produced by g of DW, that did not show significant 

differences between the polymer produced by cultures grown in BG11 medium (~83 mg 

of polymer per g of ∆sigF culture DW) compared to cultures grown in medium 

supplemented with sulfate (~75 mg of polymer per g of ∆sigF culture DW). 

  

Figure 6. Total carbohydrates and released polysaccharides (RPS) of Synechocystis PCC 6803 ∆sigF cultures grown in 

BG11 medium (∆sigF) and in BG11 medium supplemented with sulfate - 1 g L-1 CaSO4·2H2O (∆sigF +SO4). Total 

carbohydrates and RPS production were quantified by phenol-sulfuric method and the values are expressed as mg of 

carbohydrates per liter (L) of culture (A and B, respectively) or mg of carbohydrates per mg of chl a (C and D, respectively) 

(for more details, see Materials and Methods section). Experiments were made in triplicate and are represented as mean 

± STD (* p ≤ 0.05, *** p ≤ 0.001). 

. 
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In addition, the productions of EPS by Synechocystis ∆sigF cultures grown with 

sulfate surplus and in standard condition media were monitored through optical 

microscopy with Alcian Blue staining, a specific dye for acidic polysaccharides. Once 

again, no significant differences could be visualized between the RPS produced by ∆sigF 

cells grown with sulfate surplus compared to RPS produced by ∆sigF cells grown in 

BG11 (Fig. 7). This observation, together with the higher content of total carbohydrates, 

suggests that cultures grown in sulfate-enriched medium can accumulate carbon 

intracellularly, for example as glycogen or PHB. In fact, another Synechocystis sp. PCC 

6803 mutant (slr0977, kpsM) that showed a similar content of total carbohydrates 

compared to the wild-type strain, but a significant reduction of the amount of RPS and 

capsular polysaccharides, displayed an increase of PHB accumulation (Santos et al. 

2021). However, further analyses are necessary to determine if indeed any storage 

compound is significantly increased in ∆sigF cultures with sulfate surplus. 

 

Figure 7. Light micrographs of Synechocystis PCC 6803 ∆sigF cultures grown in BG11 medium (A) and BG11 medium 

enriched with sulfate (B) and stained with Alcian Blue highlighting the production of extracellular polysaccharides –EPS 

(for more details, see Materials and Methods section). Scale bar = 20 μm. 

 

After isolate the two ∆sigF polymer variants (unmodified ∆sigF polymer and ∆sigF 

polymer from cultures with sulfate surplus), their sulfate content was measured using the 

Sulfate Assay kit. However, the presence of dark precipitates after polymers hydrolysis 

hindered a feasible quantification of the sulfate (data not shown). Therefore, another 

assay is necessary to be performed in order to correctly determine the sulfate content of 

the different ∆sigF polymer variants, namely ion-exchange chromatography. Due to the 

laboratory access restrictions this part of the work was not pursued.  

 

. . 
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3.  Manipulation of the polymer peptide content 

The peptide content of the unmodified ∆sigF polymer and ∆sigF polymer from 

cultures with sulfate surplus, was also manipulated to understand its impact on the 

antitumor activity. For that, the peptide fraction of these polymer variants was reduced 

using trichloroacetic acid (TCA) precipitation. After this treatment, the peptide fraction 

was reduced by approximately 40% in both polymer variants (Fig. 8), with a loss of only 

~5% of the initial amount of polymer. These values are in agreement with the efficiency 

of the peptide precipitation previously reported for other cyanobacterial polymers 

(Chirasuwan et al. 2007). Moreover, it was verified that the percentage of peptide content 

of the ∆sigF polymer variants from cultures grown in BG11 medium was significatively 

higher than ∆sigF polymer variants from cultures with sulfate surplus (~3 fold) (Fig. 8). 

This suggests a possible modification regarding the functional groups of the polymer 

isolated from the ∆sigF cells grown with sulfate surplus.  

 

Figure 8. Determination of the peptide content of ∆sigF polymer variants from cells grown in BG11 medium or BG11 

medium with sulfate surplus before (∆sigF and ∆sigF SO4, respectively) and after trichloroacetic acid (TCA) precipitation 

(∆sigF -pep and ∆sigF SO4 -pep, respectively) (for more details, see Materials and Methods section). Peptide content was 

quantified by the Lowry method, using bovine serum albumin (BSA) as standard. Experiments were made in triplicates 

(** p ≤ 0.01; *** p ≤ 0.001). 
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4. Determination of half maximal inhibitory concentration (IC50) 

for the evaluation of the potential antitumor activity in vitro  

Preliminary unpublished studies from the research group showed that with the 

ΔsigF polymer with reduced peptide (ΔsigF -pep) content had stronger antitumor activity 

than the unmodified ΔsigF polymer towards the human melanoma cell line (Mewo). In 

addition, the ΔsigF polymer from cultures with sulfate surplus did not show significant 

differences (Silva 2020). Therefore, due to the time and technical constraints mentioned 

in the previous section we pursued this line of work with the ΔsigF -pep by determining 

its half maximal inhibitory concentration (IC50). For this purpose, a dose-response curve 

analysis towards Mewo cells was carried out using increasing concentrations (0.0875, 

0.175, 0.35, 0.7 and 1.0 mg mL-1). As expected, after 48 h of treatment, a decrease in 

cell viability was observed with the increase in the polymer concentration. Cell viability 

was decreased in 50% at the concentration of approximately 0.58 mg mL-1 of the ΔsigF 

-pep (Fig. 9), which was lower than the concentration previously determined of the ΔsigF 

polymer (≥0.7 mg mL-1) (Flores, unpublished results).  

 

Figure 9. Effect of the Synechocystis ΔsigF polymer with reduced peptide content on the viability of human melanoma 

(Mewo) cells, analyzed using the PrestoBlue™ viability assay. The ΔsigF polymer was obtained from cultures grown in 

BG11 medium. The peptide fraction of the polymer was reduced by performing the trichloroacetic acid (TCA) treatment 

protocol (for more details see Materials and Methods section). Cells were treated with different concentrations of the 

polymer for 48 h. Cells treated with polymer vehicle were also used as controls showing no differences to Blank (data not 

shown). Results are express in relation to Blank and are represented as mean ± STD of four independent experiments. 
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5. Identification of functional groups in the polymer variants (by 

Fourier transformed infrared spectroscopy - FTIR) 

The functional groups of the unmodified ΔsigF polymer (ΔsigF) and the ΔsigF 

polymer with reduced peptide content (ΔsigF -pep) were identified through Fourier 

transformed infrared (FTIR) spectroscopy (Fig. 10). The polysaccharide backbone of 

both analyzed polymers was confirmed, with the band at 1078.07 cm-1 and 1041.47 cm-

1, which indicate the vibration absorptions of C-O-C ring of polysaccharides, in the ΔsigF 

polymer and the ΔsigF -pep, respectively (Fernando et al. 2017, Li et al. 2019). 

Moreover, the bands ranging from 2921.17 to 2851.12 cm-1 are also characteristic peaks 

of polysaccharides. The FTIR spectrum of the unmodified ΔsigF polymer was in 

agreement with the previously reported in Flores et al. (2019), and reveal a similar 

pattern regarding the characteristic peaks of polysaccharides for the ΔsigF -pep polymer. 

However, and as expected, some differences were detected corresponding to the 

amides and amines groups. The major difference in the spectra was around 1535-1550 

cm-1 that is assigned to the N-H bending related to amide II (Yee et al. 2004).  Moreover, 

the bands at 832.70 cm-1and 679.45 cm-1, which are related to the primary amine NH2 

wagging and twisting bands, and secondary amide N-H wagging, respectively (Stuart 

2004), were only observed in the ΔsigF polymer (Fig. 10A). These results corroborated 

the efficiency of TCA treatment on ΔsigF polymer, since the major differences detected 

were regarding the functional groups related to the peptides, and corroborate the direct 

link to the stronger antitumor activity towards the Mewo cell line exhibited by the ΔsigF -

pep compared to the unmodified ΔsigF polymer.  
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Figure 10. Fourier transformed infrared (FTIR) spectra of the ΔsigF polymer (A) and ΔsigF polymer with reduced peptide content (B). Values indicate the major absorptions bands and the 

corresponding wavenumbers. Experiments were made in triplicate and a representative spectrum is shown. 
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6. In vivo assessment of the polymer antitumor activity (chick 

embryo chorioallantoic membrane - CAM assay) 

 

The chick embryo chorioallantoic membrane (CAM) assay model is a low-cost, 

reproducible, and reliable preclinical cancer model that allows investigation of tumor 

growth and angiogenesis in vivo, being often used to evaluate potential anticancer 

drugs (Ferreira et al. 2016). Therefore, and following the in vitro results showing that 

the variant of ΔsigF polymer with reduced peptide content (ΔsigF -pep) had stronger 

antitumor potential, a CAM assay was performed. To study the effect of the ΔsigF -

pep variant and compared to the unmodified ΔsigF polymer, Mewo cells were 

resuspended in the polymer variants at a concentration of 0.7 mg mL-1 in DMEM 

(polymer vehicle) and matrigel, and then inoculated in the CAM model.  As controls, 

cells resuspended in DMEM and matrigel were used. At the end of the experiment, 

CAMs bearing tumors were fixed, excised from the embryo and photographed ex ovo 

(Fig. 11A). This is the first time that the Mewo cell line was tested by the in vivo CAM 

assays scientific platform at i3S-Institute for Research and Innovation in Health (Univ. 

Porto). Our results showed that Mewo cells were successfully xenografted in the 

CAM, presenting a mortality rate comparable with that of untreated/naive embryos 

(below 10%). 

The size of melanoma tumors developed and the angiogenic response was 

evaluated 4 days after inoculation of Mewo cell line. The results obtained showed that 

the tumors size decreased significantly independently of the ΔsigF polymer variant 

utilized for the treatment compared to the controls (Fig. 11B). In contrast, no 

significant differences were observed regarding the number of novel radial blood 

vessels formed in the tumors treated with the polymer variants solutions or DMEM 

(Fig. 11C).  

It is interesting to notice that, in the in vitro assays, the ΔsigF -pep polymer 

showed stronger antitumor activity compared to the unmodified polymer while in our 

in vivo experiment no significant differences were observed regarding the effect of the 

two polymer variants (using this specific concentration). However, further studies are 

required, e.g., a detailed histological analysis to assess whether the effect of the 

polymer variants were distinct at tumor cell morphology. 
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Figure 11. Representative microphotographs of the chick embryo chorioallantoic membrane (CAM) xenografts (A), 

and evaluation of tumor size in mm2 (B) and angiogenic response as number of newly formed vessels (C), obtained 

4 days after inoculation of Mewo cell line untreated (polymers vehicle) and treated with 0.7 mg mL-1 of ΔsigF polymer 

(ΔsigF) or ΔsigF polymer with reduced peptide content (ΔsigF -pep), into the CAM (for more details see Materials and 

Methods section). CAM tumor size was obtained after inoculation of Mewo cells resuspended with vehicle (n=13 

eggs), ΔsigF (n=18 eggs) or ΔsigF -pep (n=17 eggs). Number of newly formed vessels was evaluated after inoculation 

of Mewo cells resuspended with vehicle (n=9), ΔsigF (n=19 eggs) or ΔsigF -pep (n=13 eggs). Results are represented 

as mean ± STD (* p ≤ 0.05).  
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Conclusions and future perspectives 

Overall, this work contributes to a better understanding of certain polymer 

features to its antitumor activity. In vitro, the ∆sigF polymer with reduced peptide 

content showed strong antitumor activity towards the melanoma cell line (Mewo) 

compared to the unmodified ∆sigF polymer. In the chick embryo chorioallantoic 

membrane (CAM) assay the two polymer variants reduced tumor growth, validating 

the polymer bioactivity in vivo. However, no significant differences were observed for 

the two polymer variants, but further studies, e.g. histological analysis, are still 

required. Moreover, other promising polymer properties could be manipulated (e.g. 

amino sugars and uronic acids) and their antitumor activity could be tested in vitro 

towards different cell lines, and in vivo, using CAM or animal models (e.g. mice). 

In summary, this work demonstrates that Synechocystis ΔsigF polymer/ 

polymer variants are a potential platform for the study and/or development of a tumor 

treatment based on cyanobacterial EPS. 
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