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Abstract Being able to capture the characteristics of a time series with a feature
vector is a very important task with a multitude of applications, such as classifica-
tion, clustering or forecasting. Usually, the features are obtained from linear and
nonlinear time series measures, that may present several data related drawbacks.
In this work we introduce NetF as an alternative set of features, incorporating
several representative topological measures of different complex networks map-
pings of the time series. Our approach does not require data preprocessing and
is applicable regardless of any data characteristics. Exploring our novel feature
vector, we are able to connect mapped network features to properties inherent in
diversified time series models, showing that NetF can be useful to characterize
time data. Furthermore, we also demonstrate the applicability of our methodology
in clustering synthetic and benchmark time series sets, comparing its performance
with more conventional features, showcasing how NetF can achieve high-accuracy
clusters. Our results are very promising, with network features from different map-
ping methods capturing different properties of the time series, adding a different
and rich feature set to the literature.
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1 Introduction

Time series, which can be thought of as collections of observations indexed by time,
are ubiquitous in all domains from climate studies or health monitoring to financial
data analysis. There is a plethora of statistical models in the literature adequate to
describe the behaviour of time series [51]. However, technological developments,
such as sensors and mobile devices, lead to the gathering of large amounts of
high dimensional time indexed data for which appropriate methodological and
computational tools are required. With this purpose, recently, feature-based time
series characterization has become a popular approach among time series data
researchers [20,27,60] and proved useful for a wide range of temporal data mining
tasks ranging from classification [21], clustering [60], forecasting [44,55], pattern
detection [24], outlier or anomalies detection [31], motif discovery [13], visualiza-
tion [33] and generation of new data [32], among others.

The main idea behind feature-based approaches is to construct feature vectors
that aim to represent specific properties of the time series data by characterizing
the underlying dynamic processes [20,22]. The usual methodologies for calculating
time series features include concepts and methods from the linear time series anal-
ysis literature [51], such as autocorrelation, stationarity, seasonality and entropy,
but also methods of nonlinear time-series analysis based on dynamic systems the-
ory [23,27,60]. These methods usually involve parametric assumptions, parameter
estimation, non-trivial calculations and approximations, as well as preprocessing
tasks such as finding time series components, differencing and whitening thus pre-
senting drawbacks and computation issues related to the nature of the data, such
as the length of the time series.

This work contributes to the feature-based approach in time series analysis by
proposing an alternative set of features based on complex networks concepts.

Complex networks describe a wide range of systems in nature and society by
representing the existing interactions via graph structures [4]. Network science,
the research area that studies complex networks, provides a vast set of topological
graph measurements [16,47], a well-defined set of problems such as community
detection [19] or link prediction [37], and a large track record of successful appli-
cation of complex network methodologies to different fields [59], including graph
classification [7].

Motivated by the success of complex network methodologies and with the ob-
jective of acquiring new tools for the analysis of time series, several network-based
approaches have been recently proposed. These approaches involve mapping time
series to the network domain. The mappings methods proposed in the literature
may be divided into one of three categories depending on the underlying concept:
proximity, visibility and transition [54,65]. Depending on the mapping method,
the resulting networks capture specific properties of the time series. Some net-
works have as many nodes as the number of observations in the time series, as
visibility graphs [34], while others allow to reduce the dimensionality preserving
the characteristics of the time dynamics, as the quantile graphs [12]. Network-
based time series analysis techniques have been showing promising results and
have been successful in the description, classification and clustering of time se-
ries. Examples include automatic classification of sleep stages [64], characterizing
the dynamics of human heartbeat [50], distinguishing healthy from non-healthy
electroencephalographic series [10] and analysing seismic signals [56].
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In this work we establish a new set of time series features, NetF, by mapping
the time series into the complex networks domain. Further, we propose a procedure
for time series mining tasks and address the question whether time series features
based on complex networks are a useful approach in time series mining tasks. Our
proposed procedure, represented in Figure 1 comprises the following steps: map the
time series into (natural and horizontal) visibility graphs and quantile graphs using
appropriate mapping methods and compute five specific topological measures for
each network, thus establishing a vector of 15 features. These features are then
used in mining tasks. The network topological metrics selected, average weighted
degree, average path length, number of communities, clustering coefficient and
modularity, measure global characteristics, are simple to compute and to interpret
in the graph context and commonly used in network analysis, thus capable of
providing useful information about the structure and properties of the underlying
systems.

Fig. 1 Schematic diagram of the network based features approach to time series
mining tasks.

To investigate the relevance of the set of features NetF we analyse synthetic
time series generated from a set of Data Generating Processes with a range of
different characteristics. Additionally we consider the problem of time series clus-
tering from a feature-based approach in synthetic, benchmark and a new time
series data sets. NetF features are assessed against two other sets of features, ts-
features and catch22 [29,33,38]. The results show that network science measures
are able to capture and preserve the characteristics of the time series data. We
show that different topological measures from different mapping methods capture
different characteristics of the data, complementing each other and providing new
information when combined, rather than considered by themselves as is common in
the literature. Clustering results of empirical data are balanced when compared to
conventional approaches, in some data sets the proposed approach obtains better
results, and in other data sets the results are quite similar between the approaches.
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The proposed set of features have the advantage of being always computable, which
is not always possible using classical time series features.

We have organized this paper as follows. Section 2 introduces basic concepts
of time series and complex networks, setting the notation for the remainder of
the paper, and also presents the mapping methods and networks measurements
used. Next, in Section 3 the novel features of the time series proposed in this work
are presented and a study of these features is carried out in order to characterize
properties of the time series. In Section 4 the time series clustering tasks are
performed as an example of application of network-based features, synthetic and
empirical data sets are used, they are briefly described and compared to two other
classical time series approaches. The results corresponding to the three approaches
are presented. Finally, Section 5 presents the conclusions and some comments.

2 Background

2.1 Time Series

A time series Y = (Y1, . . . , YT ) is a set of observations obtained over time, usually
at equidistant time points. A time series differs from a random sample in that
the observations are ordered in time and usually present serial correlation that
must be account for in all statistical and data mining tasks. Time series analysis
refers to the collection of procedures developed to systematically solve the sta-
tistical problems posed by the serial correlation. Statistical time series analysis
relies on a set of concepts, measures and models designed to capture the essential
characteristics of the data, namely, trend, seasonality, periodicity, autocorrelation,
skewness, kurtosis and heteroscedasticity [60]. Other concepts like self-similarity,
non-linearity structure and chaos, stemming from non-linear science are also used
to characterize time series [9].

Several classes of statistical models that provide plausible descriptions of the
characteristics of the time series data have been developed with a view to fore-
casting and simulation [8]. The statistical models for time series may be broadly
classified as linear and nonlinear, referring usually to the functional forms of con-
ditional mean and variance. Linear time series models are models for which the
conditional mean is a linear function of past values of the time series. The most
popular class are the AutoRegressive Moving Average (ARMA) models. As partic-
ular cases of ARMA models we have: the white noise (WN), a sequence of indepen-
dent and identically distributed observations, the AutoRegression (AR) models,
which specify a linear relationship between the current and past values and the
Moving Average (MA) models, which specify the linear relationship between the
current value and past stochastic terms. ARMA models have been extended to
incorporate non-stationarity (unit root) ARIMA models and long memory char-
acteristics, ARFIMA models. Many time series data present characteristics that
cannot be represented by linear models such as volatility, asymmetry, different
regimes and clustering effects. To model these effects, non-linear specifications for
the conditional mean and for the conditional variance lead to different classes
of nonlinear time series models, such as Generalized AutoRegressive Conditional
Heteroskedastic (GARCH) type models specified by the conditional variance and
developed mainly for financial time series, threshold models and Hidden Markov
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models that allow for different regimes and models for integer valued time se-
ries, INAR. Definitions, properties and details about these models are given in
Appendix A.

2.2 Complex Networks

Graphs are mathematical structures appropriate for modelling complex systems
which are characterized by a set of elements that interact with each other and
exhibit collective properties [15]. Typically, graphs exhibit non-trivial topological
properties due to the characteristics of the underlying system, and so they are
often called complex networks.

A graph (or network), G, is an ordered pair (V,E), where V represents the
set of nodes and E the set of edges between pairs of elements of V . Two nodes vi
and vj are neighbours if they are connected by an edge (vi, vj) ∈ E. The edges
can be termed as directed, if the edges connect a source node to a target node,
or undirected, if there is no such concept of orientation. A graph is also termed
weighted if there is a weight, wi,j , associated with the edge (vi, vj).

Network science has served many scientific fields in problem solving and ana-
lyzing data that is directly or indirectly converted to networks. Currently, there
is a vast literature on problems and successful applications [59], as well as an ex-
tensive set of measurements of topological, statistical, spectral and combinatorial
properties of networks [2,4,16,47], capable of differentiating particular characteris-
tics of the network data. Examples include measures of node centrality [46], graph
distances [36], clustering and community [42], among an infinity of them. Many
of these topological measurements involve the concepts of paths and graph con-
nectivity. A path is a sequence of distinct edges that connect consecutive pairs of
nodes. And, consequently, two nodes are said to be connected if there is a path
between them and disconnected if no such path exists. Thus, some measurements
are based on the length (number of edges) of such connecting paths [16].

2.3 Mapping Time Series into Complex Networks

In the last decade several network-based time series analysis approaches have been
proposed. These approaches are based on mapping the time series into the net-
work domain. The mappings proposed in the literature are essentially based on
concepts of visibility, transition probability and proximity [54,65]. In this work
we use visibility graph and quantile graph methods which are based on visibility
and transition probability concepts, respectively. Next, we briefly describe these
methods.

2.3.1 Visibility Graphs

Visibility graphs (VG) establish connections (edges) between the time stamps
(nodes) using visibility lines between the observations, where nodes are associated
with the natural ordering of observations. Two variants of this method are as
follows.
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The Natural Visibility Graph (NVG) [34] is based on the idea that each ob-
servation, Yt, of the time series is seen as a vertical bar with height equal to its
numerical value and that these bars are laid in a landscape where the top of a bar
is visible from the tops of other bars. Each time stamp, t, is mapped into a node
in the graph and the edges (vi, vj), for i, j = 1 . . . T , i 6= j, are established if there
is a line of visibility between the corresponding data bars that is not intercepted.
Formally, two nodes vi and vj are connected if any other observation (tk, Yk) with
ti < tk < tj satisfies the equation:

Yk < Yj + (Yi − Yj)
(tj − tk)

(tj − ti)
. (1)

We give a simple illustration of this algorithm in Figure 2.

(a) Toy time series (b) NVG and HVG

Fig. 2 Illustrative example of the two visibility graph algorithms. (a) toy time
series and corresponding visibility lines between data bars. Solid pink lines
represent the natural visibility lines corresponding to the NVG method, and
dashed blue lines represent the horizontal visibility lines corresponding to the
HVG method. (b) network generated by the corresponding mappings. The NVG
is the graph with all edges, including the edges represented by the dashed pink
lines, and the HVG is the subgraph that does not include these edges.
Source: Modified from [54].

NVGs are always connected, each node vi sees at least its neighbors vi−1

and vi+1, and are always undirected unless we consider the direction of the time
axis [54]. The network is also invariant under affine transformations of the data [34]
because the visibility criterion is invariant under rescheduling of both the horizon-
tal and vertical axis, as well as in vector translations, that is, each transformation
Y ′ = aY + b, for a ∈ R and b ∈ R, leads to the same NVGs [54].

Eventual sensitivity of NVGs to noise is attenuated by assigning a weight to
the edges. Define wi,j = 1/

√
(tj − ti)2 + (Yj − Yi)2 the weight associated with

the edge (vi, vj) [6]. This weight is related to the Euclidean distance between
the points (ti, Yi) and (tj , Yj). Thus, the resulting network from weighted NVG
(WNVG) method is a weighted and undirected graph.

The Horizontal Visibility Graph (HVG) [39] is a simplification of the NVG
method whose construction differs in the visibility definition: the visibility lines
are only horizontal (see Figure 2). Two nodes vi and vj are connected if, for all
(tk, Yk) with ti < tk < tj , the following condition is met:

Yi, Yj > Yk. (2)



Novel Features for Time Series Analysis: A Complex Networks Approach 7

Given a time series, its HVG is always a subgraph of its NVG. This is illustrated
in Figure 2b where all edges present in the HVG are also present in the NVG,
but the converse is not true, the edges represented by dashed pink lines. HVG
nodes will always have a degree less than or equal to that of the corresponding
NVG nodes. Therefore, there is some loss of quantitative information in HVG in
comparison with NVG [39]. However, in terms of qualitative characteristics, the
graphs preserve part of the data information, namely, the local information (the
closest time stamps) [54].

In a similar way to WNVG, we can assign weights to the edges of the HVG,
wi,j = 1/

√
(tj − ti)2 + (Yj − Yi)2, resulting in a weighted HVG (WHVG).

2.3.2 Quantile Graphs

Quantile Graph (QG) [12] are obtained from a mapping based on transition prob-
abilities. The method consists in assigning the time series observations to bins
that are defined by η sample quantiles, q1, q2, ..., qη. Each sample quantile, qi, is
mapped to a node vi of the graph and the edges between two nodes vi and vj are
directed and weighted, (vi, vj , wi,j), where wi,j represents the transition probabil-
ity between quantile ranges. The adjacency matrix is a Markov transition matrix:∑η
j=1 wi,j = 1, for each i = 1, . . . , η, and the network is weighted, directed and

contains self-loops1. We illustrate this mapping method in Figure 3.

(a) Toy time series (b) QG

Fig. 3 Illustrative example of the quantile graph algorithm for η = 4. (a) toy
time series with coloured regions representing the different η sample quantiles;
(b) network generated by the QG algorithm. Repeated transitions between
quantiles result in edges with larger weights represented by thicker lines.
Source: Reproduced from [54].

The number of quantiles is usually much less than the length of the time se-
ries (η � T ). If η is too large the resulting graph may not be connected, having
isolated nodes2, and if it is too small the QG may present a significant loss of
information, represented by large weights assigned to self-loops. The causal rela-
tionships contained in the process dynamics are captured by the connectivity of
the QG.

1 A self-loop is an edge that connects a node to itself.
2 An isolated node is an node that is not connected by an edge to any other node.
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2.4 Complex Networks Topological Measures

Complex networks have specific topological features which characterize the con-
nectivity between their nodes and, consequently, are somehow reflected in the
measurement processes [16]. There is a wide range of network topology measures
capable of expressing the most relevant features of a network. They include global
network measurements, which measure global properties involving all elements of
the network, node-level or edge-level measurements, which measure a given fea-
ture corresponding to the nodes or edges, and ”intermediate” measurements, which
measure features of subgraphs in the network.

Properties of centrality, distance, community detection and connectivity are
central to understanding features of network structures. Centrality measures aim
to quantify the importance of nodes and edges in the network depending on their
connection topology. Path-based measures refer to sequences of edges that connect
pairs of nodes, depend on the overall network structure and are useful for measur-
ing network efficiency and information propagation capability. Communities and
node connectivity are also very relevant features of networks, which measure how
and which groups of nodes are better connected, measuring the clustering and
resilience of the network.

In this work we propose to study the average weighted degree, k̄, average
path length, d̄, global clustering coefficient, C, number of communities, S, and
modularity, Q, representing global measures of the features described above.

The degree, ki, of a node vi represents the number of edges of vi. It is a fairly
important property that shows the intensity of connectivity in the node neigh-
bourhood. In directed graphs we distinguish between in-degree, kini , the number
of edges that point to vi, and out-degree, kouti , the number of edges that point
from vi to other nodes. The total degree is given by ki = kini + kouti . For weighted
graphs, we can calculate the weighted degree by adding the edge weights instead of
the number of edges. Average path length, d̄, is the arithmetic mean of the short-
est paths, di,j , among all pairs of nodes, where the path length is the number of
edges, or the sum of the edges weights for weighted graphs, in the path. It is a good
measure of the efficiency of information flow on a network. The global clustering
coefficient, C, also known as transitivity, is a measure which captures the degree to
which the nodes of a graph tend to cluster, that is, the probability that two nodes
connected to a given node are also connected. In this work, we refer to network
communities as the grouping of nodes (potentially overlapping) that are densely
connected internally and that can also be considered as a group of nodes that
share common or similar characteristics. The number of communities, S, is the
amount of these groups on the network. The modularity, Q, measures how good
a specific division of the graph is into communities, that is, how different are the
different nodes belonging to different communities. A high value of Q indicates a
graph with a dense internal community structure and sparse connections between
nodes of different communities.
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3 NetF : A Novel Set of Time Series Features

Over the last decades, several techniques for extracting time series features have
been developed (see [5,14,22,23,29,38,45] for more details). Most of these tech-
niques have in common the definition of a finite set of statistical features, such as
autocorrelation, existence of unit roots, periodicity, nonlinearity, volatility among
others, to capture the global nature of the time series.

In this work we introduce NetF as an alternative set of features. Our approach
differs from those previously mentioned in that we leverage the usage of different
complex network mappings to offer a set of time series features based on the topol-
ogy of those networks. One of the main advantages of this approach comes from
the fact that the mapping methods (Section 2.3) do not require typical time series
preprocessing tasks, such as decomposing, differencing or whitening. Moreover,
our methodology is applicable to any time series, regardless of its characteristics.

3.1 The 15 Features of NetF

NetF is constituted by 15 different features, as depicted in Figure 4. These features
correspond to the concatenation of five different topological measures, as explained
in Section 2.4 (k̄, the average weighted degree; d̄, the average path length; C, the
clustering coefficient; S, the number of communities; Q, the modularity), each
of them applied to three different mappings of the time series, as explained in
Section 2.3 (WNVG, the weighted natural visibility graph; WHVG, the weighted
horizontal visibility graph; QG, the quantile graph).

Fig. 4 Schematic diagram of the NetF set of features. A time series Y is
mapped into three complex networks (WNVG, WHVG and QG) and for each of
these networks five topological measures are taken (k̄, d̄, C, S and Q), resulting
in the NetF vector containing 15 features.

Our main goal is to provide a varied set of representative features that expose
different properties captured by the topology of the mapped networks, providing
a rich characterization of the underlying time series.

The topological features themselves were selected so that they represent global
measures of centrality, distance, community detection and connectivity, while still
being accessible, easy to compute and widely used in the network analysis domain.
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3.2 Implementation Details

Conceptually, NetF does not depend on the actual details of how it is computed.
Nevertheless, with the intention of both showing the practicality of our approach,
as well as providing the reader with the ability to reproduce our results, we now
describe in detail how we computed the NetF set of features in the context of this
work.

To compute the WNVGs we implement the divide & conquer algorithm pro-
posed in [35] and for the WHVGs the algorithm proposed in [39]3. To both we
added the weighted version mentioned in Section 2.3.1, adding the respective
weights to the edges. For the QGs we chose η = 50 quantiles, as in [11], and
we implemented the method described in Section 2.3.2 to create the nodes and
edges of the networks. We used the sample quantile method, which uses a scheme
of linear interpolation of the empirical distribution function [30], to calculate the
sample quantiles (nodes) in support of the time series. To save the network struc-
ture as a graph structure, we used the igraph [18] package which also allows us
to calculate the topological measures. Next, we briefly describe the methods and
algorithms used by the functions we used to calculate the measures.

The average weighted degree (k̄) is calculated by the arithmetic mean
of the weighted degrees ki of all nodes in the graph. In this work, the average
path length (d̄) follows an algorithm that does not consider edge weights, and
use the breadth-first search algorithm to calculate the shortest paths di,j between
all pairs of vertices, both ways for directed graphs. For calculate the clustering
coefficient (C), the function that we use in this work ignores the edge direction for
directed graphs. For this reason, before we calculate C for QGs, which are directed
graphs, we first transform them into an undirected graph, where for each pair of
nodes which are connected with at least one directed edge the edge is converted
to an undirected edge. And then, the C is calculated by the ratio of the total
number of closed triangles4 in the graph to the number of triplets5. The function
we use in this work to calculate the number of communities (S) in a network,
calculates densely connected subgraphs via random walks, such that short random
walks tend to stay in the same community. See the Walktrap community finding
algorithm [48] for more details. And to calculate the modularity (Q) of a graph
in relation to some division of nodes into communities we measure how separated
are the nodes belonging to the different communities are as follows:

Q =
1

2|E|
∑
i,j

[
wi,j −

kikj
2|E|

]
δ (ci, cj) ,

where |E| is the number of edges, ci and cj the communities of vi and vj , respec-
tively, and δ(ci, cj) = 1 if vi and vj belong to the same community (ci = cj) and
δ(ci, cj) = 0 otherwise. We performed all implementations and computations in
R [49], version 4.0.3 and a set of packages.

3 http://www.maths.qmul.ac.uk/~lacasa/Software.html
4 A triangle is a set of three nodes with edges between each pair of nodes.
5 A triplet is a set of three nodes with at least edges between two pairs of nodes.

http://www.maths.qmul.ac.uk/~lacasa/Software.html
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3.3 Empirical Evaluation

In this section we investigate, via synthetic data sets, whether the set of features
introduced above are useful for characterizing time series data.

To this end, we consider a set of eleven linear and nonlinear time series mod-
els, denoted by Data Generating Processes (DGP), which present a wide range
of characteristics summarized in Table 1. A detailed description of the DGP and
computational details are given in Appendix A. For each of the DGP’s in Table 1
we generated 100 realizations of length T = 10000. Following the steps presented
in Figure 1, we map each realization into three networks and extract the corre-
sponding topological measures. The resulting time series features, organized by
mapping, are summarized, mean and standard deviation, in Tables B.1 to B.3.
Note that the values have been Min-Max normalized for comparison purposes
since the range of the different features vary across models.

Table 1 Summary about the data generating process (time series models) of the
synthetic data. Parameters, main characteristic of the data sets and notation is
also included. See Appendix A for more details.

Process Parameters Main Property Notation

White Noise εt ∼ N(0, 1) Noise effect WN

AR(1) φ1 ∈ {−0.5, 0.5} Smoothness AR(1)-0.5
AR(1)0.5

AR(2) φ1 = 1.5, φ2 = −0.75 Pseudo-periodic AR(2)

ARIMA(1, 1, 0) φ1 = 0.7 Stochastic trend ARIMA

ARFIMA(1, 0.4, 0) φ1 = 0.5 Long memory effect ARFIMA

SETAR(1) α = 0.5, β = −1.8, Regime-dependent
SETAR

γ = 2, r = −1 autocorrelation6

Poisson-HMM N = 2,
[
0.9 0.1
0.1 0.9

]
State transitions

HMM
λ ∈ {10, 15}

GARCH(1, 1) ω = 10−6, α1 = 0.1, Persistent periods of
GARCH

β1 = 0.8 high or low volatility

EGARCH(1, 1) ω =
(

10−6 − 0.1
√

2/π
)

, Asymmetric effects of
EGARCHα1 = 0.1, β1 = 0.01, positive and negative

γ1 = 0.3 shock

INAR(1) α = 0.5, εt ∼ Po(1) Correlated counts INAR

6 The two regimes have quite different autocorrelation properties: in the first the correlation
is positive while in the second alternates between positive and negative values.



12 Vanessa Freitas Silva et al.

Fig. 5 Plot of one instance of each simulated time series model.

WNVGs (Table B.1) present lowest values for the clustering coefficient (C) for
ARIMA models. Models producing time series with more than one state (HMM and
SETAR) present lower average weighted degree but higher number of communities
(S). The later values are comparable to those for AR(2) time series, fact that can be
explained by the pseudo-periodic nature of the particular AR(2) model entertained
here. WHVGs (Table B.2) present average weighted degree (k̄) approximately 0
for HMM’s and approximately 1 for GARCH and EGARCH. This indicates that HMM time
series have, on average, horizontal visibility for more distant points (in time and/or
value), while the opposite is true for heteroskedastic time series. The clustering
coefficient (C) is lowest (approximately 0) for networks obtained from INAR time
series, indicating that most points have visibility only for their two closest neigh-
bors. QGs (Table B.3) present high values of average path length, (d̄), for ARIMA,
contrasting with all other DGP which present low values. On the other hand, the
(C) for ARIMA presents low values while all other DGP’s present high values.

The next step is to study the feature space to understand which network fea-
tures capture specific properties of the time series models. Figure 6 represents a
bi-plot obtained using the 15 features (5 for each mapping method) and with the
two PC’s explaining 68.8% of the variance. It is noteworthy that the eleven groups
of time series models are clearly identified and arranged in the bi-plot according
to their main characteristics. Overall, we can say that the number of communities
of VGs, S, are positively correlated among themselves and are negatively corre-
lated with the average weighted degree, k̄, of NetF. The average path length, d̄, of
WHVGs and QGs and the clustering coefficient, C, of WHVG are positively cor-
related, but negatively to the d̄, C and Q of WNVG, Q of WHVG and C of QGs.
The features that most contribute to the total dimensions formed by the PCA are:
k̄, S,Q and d̄ of the QGs, k̄ of the WNVGs, and k̄, S and Q of the WHVGs (see
Figure B.1).
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The (stochastic) trend of the ARIMA, in fact the only non-stationary DGP this
data set, is represented by high average path lengths, d̄, in WHVG and QG.
Discrete states in the data, HMM,SETAR,INAR, are associated with the number of
communities, S. The bi-plot further indicates that height average weighted degree,
k̄, mainly that of the WHVG, represents heteroskedasticity in the time series, e.g.,
GARCH and EGARCH. Cycles, AR(2), are captured by the clustering coefficient, C.

Fig. 6 Bi-plot of the first two PC’s for the synthetic data set. Each Data
Generating Process (DGP) is represented by a color and the arrows represent the
contribution of the corresponding feature to the PC’s: the larger the size, the
sharper the color and the closer to the red the greater the contribution of the
feature. Features grouped together are positively correlated while those placed on
opposite quadrants are negatively correlated.

We also did an empirical study of the NetF features in the context of cluster-
ing these synthetic data sets, and the results show that using the entire feature
set leads to better performance than any possible subset. This showcases how the
different features complement each other and how they capture different charac-
teristics of the underlying time series. The details of this study can be seen in
Appendix C.
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4 Mining Time Series with NetF

In this section we illustrate the usefulness of complex networks based time series
features in data mining tasks with a case study regarding time series clustering
via feature-based approach [41]. Within this mining task we analyse the synthetic
data set introduced in Section 3.3, benchmark empirical data sets from UEA &
UCR Time Series Classification Repository [3], the M3 competition data from
package Mcomp [28], the set ”18Pairs” from package TSclust [43] and a new data
set regarding the production of several crops across Brazil [1] using NetF and
two other sets of time series features, namely catch22 [38] and tsfeatures [60], see
Appendix D.

4.1 Clustering Methodology

The overall procedure proposed here for feature-based clustering is represented in
Figure 7.

Fig. 7 Schematic diagram for the time series clustering analysis procedure.

Given a set of time series, compute the feature vectors which are then Min-Max
rescaled into the [0, 1] interval and organized in a feature data matrix. Principal
Components (PC) are computed (no need of z-score normalization within PCA)
and finally a clustering algorithm is applied to the PC’s. Among several algorithms
available for clustering analysis, we opt for k-means [25] since it is fast and widely
used for clustering. Its main disadvantage is the need to pre-define the number of
clusters. This issue will be discussed within each data set example. The clustering
results are assessed using appropriate evaluation metrics: Average Silhouette (AS);
Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) when the
ground truth is available.
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4.2 Data Sets and Experimental Setup

We report the detailed results for the clustering exercise for the eleven data sets
summarized in Table 2. The brief description of the data and clustering results for
the remaining data sets is presented in Tables F.6-F.8.

The data sets in Table 2 belong to the UEA & UCR Time Series Classification
Repository [3], widely used in classification tasks, the M3 competition data from
package Mcomp [28] used for testing the performance of forecasting algorithms,
the set ”18Pairs”, extracted from package TSclust [43] which represents pairs of
time series of different domains. For all these we have true clusters and therefore
clustering assessment measures ARI and NMI may be used. Additionally, we also
analyse a set of observations comprising the production over forty three years of
nine agriculture products in 108 meso-regions of Brazil [1]. We note that the size of
the ElectricDevices dataset, 16575 time series, is different from the total available
in the repository, as exactly 62 time series return missing values for the entropy
feature of the tsfeatures set (see Appendix D) and so we decided to exclude these
series from our analysis.

Table 2 Brief description of the empirical time series data sets.
Data Set Size of Time Series Num. of Source

Data Set Length Classes
18Pairs 36 1000 18 [43]
M3 data 3003 T ∈ [20, 144] 6 [28]
CinC ECG torso 1420 1639 4 [3]
Cricket X 780 300 12 [3]
ECG5000 5000 140 5 [3]
ElectricDevices 16575 96 7 [3]
FaceAll 2250 131 14 [3]
FordA 4921 500 2 [3]
InsectWingbeatSound 2200 256 11 [3]
UWaveGestureLibraryAll 4478 945 8 [3]
Production in Brazil 108 198 9 [1]

4.3 Results

First, we investigate the performance of NetF, catch22 and tsfeatures in the auto-
matic determination of the number of clusters k, using the clustering evaluation
metrics, ARI, NMI and AS. The results (see Table E.5) show overall similar values
but we note that NetF seems to provide a value of k equal to or closer to the ground
truth value (when available) more often. For the Production in Brazil data, for
which there is no ground truth, values for k are obtained averaging 10 repetitions
of the clustering procedure and using the silhouette method. The results of the 10
repetitions are represented in Figure E.3 and summarized in Table 4.
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Next, fixing k to the ground truth we perform the clustering procedure. The
clustering evaluation metrics, mean over 10 repetitions, are presented in Table 37.

Table 3 Clustering evaluation metrics obtained for the three approaches NetF,
tsfeatures and catch22. The values reflect the mean of 10 repetitions of the
clustering analysis with number of classes equal to the ground truth (see
Table 2). The values in bold represent the best results.

ARI NMI AS
Data set [−1, 1] [0, 1] [−1, 1]

tsf. cat. NetF tsf. cat. NetF tsf. cat. NetF

18Pairs 0.51 0.39 0.49 0.89 0.86 0.89 0.42 0.32 0.34
M3 data 0.14 0.13 0.13 0.21 0.19 0.18 0.36 0.22 0.31
CinC ECG tors 0.31 0.32 0.45 0.37 0.35 0.52 0.23 0.19 0.31
Cricket X 0.15 0.15 0.16 0.32 0.28 0.30 0.20 0.16 0.10
ECG5000 0.29 0.28 0.31 0.32 0.29 0.30 0.24 0.24 0.16
ElectricDevices 0.20 0.21 0.19 0.30 0.29 0.29 0.33 0.25 0.27
FaceAll 0.15 0.21 0.15 0.33 0.36 0.29 0.22 0.15 0.09
FordA 0.19 0.01 0.01 0.27 0.01 0.01 0.53 0.33 0.29
InsectWingbeat 0.07 0.21 0.17 0.18 0.37 0.32 0.19 0.18 0.11
UWaveGesture 0.17 0.2 0.18 0.27 0.28 0.28 0.2 0.19 0.12

Synthetic (DGP) 0.76 0.40 0.92 0.91 0.66 0.97 0.73 0.39 0.68
Production Brazil 0.09 0.18 0.30 0.40 0.55 0.70 0.46 0.39 0.61

The results indicate that none of the three approaches performs uniformly
better than the others. Some interesting comments follow. For the synthetic data
sets and 18Pairs, tsfeatures and NetF perform better than catch22 in all evaluation
criteria. The clusters for ECG5000, ElectricDevices and UWaveGestureLibraryAll
data sets produced by the three approaches fare equally well when assessed by ARI,
NMI and AS. The same is true for M3 data and Cricket X data sets, with slightly
lower results. NetF approach seems produce better clusters for CinC ECG torso
measured according to the three criteria, the tsfeatures seems to produce better
clusters for FordA, and the catch22 for FaceAll and InsectWingbeat measured
according to the ARI and NMI.

Analyzing the overall results, Tables 3, F.6-F.8 we can state that tsfeatures
and NetF approaches present the best ARI and NMI evaluation metrics, while ts-
features achieves by far the best results in the AS. If we consider the UEA & UCR
repository classification of the data sets, we note the following: the NetF approach
presents good results for time series data of the type Image (BeetleFly, FaceFour,
MixedShapesRegularTrain, OSULeaf and Symbols), ECG (CinC ECG tors and
TwoLeadECG) and Sensor (Wafer); the tsfeatures performs best for types Simu-
lated (BME, UMD and TwoPatterns), ECG (NonInvasiveFetalECGTho), Image
(ShapesAll) and Sensor (SonyAIBORobotSurface and Trace); finally the catch22
approach presents best results for Spectro (Coffee), Device (HouseTwenty) and
Simulated (ShapeletSim) types. In summary NetF and tsfeatures perform better
in data with the same characteristics while catch22 seems to be more appropriate
to capture other characteristics.

7 The results for the remaining empirical time series data sets of the UEA & UCR Time
Series Classification Repository are presented in Tables F.6 to F.8.
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Regarding the data set Production in Brazil, Table 4 shows more detail on
the clustering results, adding the value k to indicate the number of clusters that
was automatically computed. We note that the 4 clusters obtained with NetF
correspond to 4 types of goods: eggs; energy; gasoline and cattle; hypermarkets,
textile, furniture, vehicles and food. Attribution plots of the clusters obtained
by the three approaches are represented in Figure 8. Note that both tsfeature
and catch22 put eggs and textile production in the same cluster, and tsfeature
cannot distinguish energy. Notice also how the NetF approach produced the cluster
with highest AS and hence the highest intra-cluster-similarity. To illustrate the
relevance of the results, Figure 9 depicts a representative time series for each
cluster.

Fig. 8 Attribution of the Production in Brazil time series to the different
clusters, according to each of the feature approaches. The different productions
are represented on the horizontal axis and by a unique color. The time series are
represented by the colored points according to its production type. The vertical
axis represents the cluster number to which a time series is assigned.

Table 4 Clustering evaluation metrics for the different clustering analysis on
Production in Brazil data set based on Netf, tsfeatures and catch22 approaches.
The values reflect the mean of 10 repetitions of the proposed method for different
feature vectors and for the number of clusters detected according to the average
silhouette metric.

Approach k
ARI NMI AS
[−1, 1] [0, 1] [−1, 1]

NetF 4 0.30 0.70 0.61
catch22 3 0.18 0.55 0.39
tsfeatures 2 0.09 0.40 0.46
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Fig. 9 Production in Brazil representative of each cluster (indicated in subtitle)
obtained using the proposed approach, NetF.

5 Conclusions

In this paper we introduce NetF, a novel set of 15 time series features, and we
explore its ability to characterize time series data. Our methodology relies on map-
ping the time series into complex networks using three different mapping methods:
natural and horizontal visibility and quantile graphs (based on transition proba-
bilities). We then extract five topological measures for each mapped network, con-
catenating them into a single time series feature vector, and we describe in detail
how we can do this in practice.

To better understand the potential of our approach, we first perform an em-
pirical evaluation on a synthetic data set of 3300 networks, grouped in 11 different
and specific time series models. Analysing the weighted visibility (natural and
horizontal) and quantile graphs feature space provided by NetF, we were able to
identify sets of features that distinguish non-stationary from stationary time se-
ries, counting from real-valued time series, periodic from non-periodic time series,
state time series from non-state time series and heteroskedastic time series. The
non-stationarity time series have high values of average path length and low values
of clustering coefficients in their QGs, and the opposite happens for the stationary
time series. Counting series have lowest value of average weighted degree, high-
est value of number of communities in their QGs and lowest value of clustering
coefficient in WHVGs, while the opposite happens for non-counting time series.
For state time series the average weighted degree value in their weighted VGs is
the lowest and the number of communities is high, the opposite happens for the
non-state time series. Heteroskedastic time series are identified with high average
weighted degree values of their WHVGs, compared to the other DGP’s.
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To further showcase the applicability of NetF, we use its feature set for cluster-
ing both the previously mentioned synthetic data, as well as a large set of bench-
mark empirical time series data sets. The results for the data sets in which ground
truth is available indicate that NetF yields the highest mean for ARI (0.287) com-
pared to alternative time series features, namely tsfeature and catch22, with means
of 0.267 and 0.228, respectively. For the NMI metric the results are similar (0.395,
0.397 and 0.358, respectively) and for AS the highest mean was found for tsfeature,
0.332 versus approximately 0.3 for the others. However, the higher values for AS8

must be viewed in light of the low values of ARI and NMI which indicate an im-
perfect formation of the clusters. For the production data in Brazil, for which no
ground truth is available, NetF produces clusters which group production series
with different characteristics, namely, time series of counts, marked upward trend,
series in the same range of values, and with seasonal component.

The results show that NetF is capable of capturing information regarding spe-
cific properties of time series data. NetF is also capable of grouping time series of
different domains, such as data from ECGs, image and sensors, as well as identi-
fying different characteristics of the time series using different mapping concepts,
which stand out in different topological features. The general characteristics of the
data, namely, the size of the data set, the length of the time series and the number
of clusters, do not seem to be influencing the results obtained. Also, NetF does
not require typical time series preprocessing tasks, such as decomposing, differ-
encing or whitening. Moreover, our methodology is applicable to any time series,
regardless of the nature of the data.

The mappings and topological network measures considered are global, but
it is important to clarify that they do not constitute a ”universal” solution. In
particular, we found that the weighted versions of the visibility graph mappings
used here produce better results than their unweighted versions, as we can see in
previous works [53]. In fact, formulating a set of general features capable of fully
characterizing a time series without knowing both the time series properties and
the intended analysis is a difficult and challenging task [32].

For related future work, we intend to add and explore new sets of topolog-
ical measures both, adding local and intermediate features to NetF, as well as
exploring other mapping methods (such as proximity graphs). We also intend to
extend our approach to the multivariate case, since obtaining useful features for
multidimensional time series analysis is still an open problem.
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Appendices
A Time Series Models

Main reference [51]

Linear Models

WN The white noise process, εt, is a sequence of i.i.d. random variables with mean
0 and constant variance σ2

ε . It is the simplest time series process that reflects
information that is neither directly observable nor predictable. We generated
εt ∼ N(0, 1) white noise processes and refer to them as WN.

AR(p) We defined a process Yt as an AR process of order p if it satisfies the
following equation:

Yt =

p∑
i=1

φiYt−i + εt, (3)

where εt is the white noise and φi is the autoregressive constant. We used
p ∈ {1, 2}, and parameters φ1 ∈ {−0.5, 0.5} to generate AR(1) processes and
φ1 = 1.5 and φ2 = −0.75 for AR(2) processes. These parameters ensure that
the time series present the following characteristics: φ1 = 0.5 leads to smoother
time series than φ1 = −0.5; and φ1 = 1.5 and φ2 = −0.75 generates pseudo-
periodic time series. We refer to the three models generated as AR(1)-0.5,
AR(1)0.5 and AR(2), respectively.

ARIMA(p, d, q) The autoregressive integrated moving average model is a gener-
alization of the ARMA model suitable for modeling non-stationary time series.
A process Yt is an ARMA(p, q) process if it satisfies the equation:

Yt =

p∑
i=1

φiYt−i +

q∑
i=1

θiεt−i + εt, (4)

where θi is the moving average constant. If a process Yt is a non-stationary
time series it can be written as an ARIMA(p, d, q) process if its dth-differences
∇dYt = (1−B)dYt, d ∈ N, is a stationary ARMA(p, q) process. So Yt satisfies
the following equation,(

1−
p∑
i=1

φiB
i

)
(1−B)dYt =

(
1 +

q∑
i=1

θiB
i

)
εt, (5)

where B represents the backshift operator, BYt = Yt−1. We use p = 1, d = 1,
q = 0, and φ1 = 0.7 to generate ARIMA(1, 1, 0) processes with stochastic
trend. We refer to these processes as ARIMA.

ARFIMA(p, d, q) Autoregressive fractionally integrated moving average model is
a generalization of the ARIMA model useful for modeling time series with long
range dependence. A process Yt is an ARFIMA(p, d, q) process if it satisfies
the (Eq 5) and the difference parameter, d, can take real values. We generate
ARFIMA(1, 0.4, 0) processes that exhibit long memory and refer to them as
ARFIMA.
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Time series are generated from the above DGP using the R packages timeSeries
[62] and fracdiff [40].

Non Linear Models

SETAR(1) The self-exciting threshold autoregressive model of order 1 specify
the nonlinearity in the conditional mean. It is useful for processes with regime
changes that approximate a nonlinear function by piece wise linear functions
dependent on the regime [57]. This model can be presented by the following
system of equations,

Yt =

{
αYt−1 + εt , if Yt−1 ≤ r
βYt−1 + γεt, if Yt−1 > r

, (6)

where r represents a real threshold. We used α = 0.5, β = −1.8, γ = 2 and r =
−1 and we generated time series with regimes with different autocorrelation
properties: in the first the correlation is positive while in the second alternates
between positive and negative values. We refer to this model as SETAR.

HMM Hidden Markov models are probabilistic models for the joint probability
the random variables (Y1, . . . , YT , X1, . . . , XT ) where Yt is a discrete (or con-
tinuous) variable and Xt is a hidden Markov chain with a finite number of
states, N . The following conditional independence assumptions hold [66]:
1. P (Xt | Xt−1, Yt−1, . . . , X1, Y1) = P (Xt | Xt−1),
2. P (Yt | XT , YT , . . . , X1, Y1) = P (Yt | Xt).
We used N = 2 and the transition matrix:

[
0.9 0.1
0.1 0.9

]
. The data are generated

from a Poisson distribution with λ = 10 for the first regime and λ = 15 for the
second. We refer to this model as HMM. Time seriea are generated using the R
package HMMpa [61].

The next nonlinear models are based on ARCH models where the mean-
corrected asset return is serially uncorrelated but dependent and the dependency
can be described by a simple quadratic function of its lagged values [58]. Hereafter,
εt are uncorrelated random variables, zt represents a white noise with variance 1
and σt the standard deviation of εt, that is εt = σtzt.

GARCH(p, q) The GARCH model is a generalization of the ARCH model in
which the conditional volatility is a function not only of the squares of past
innovations, but also of their own past values [17]. Thus, εt is a GARCH(p, q)
process if it satisfies the following equation,

σ2
t = ω +

p∑
i=1

βiσ
2
t−i +

q∑
i=1

αiε
2
t−i, (7)

where ω > 0, αi, βi ≥ 0,
∑p
i=1 βi +

∑q
i=1 αi < 1. The conditional standard

deviation can exhibit persistent periods of high or low volatility because past
values of the process are fed back into the present value. We used p = 1, q = 1,
ω = 10−6, α1 = 0.1 and β1 = 0.8 to generate the GARCH(1, 1) processes and
we refer to them as GARCH.
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EGARCH(p, q) The exponential GARCH allows asymmetric effects of positive
and negative shocks on volatility [58]. The EGARCH(p, q) model is given by
the equation,

log(σ2
t ) = ω +

q∑
i=1

αi

∣∣∣∣ εt−iσt−i

∣∣∣∣+

p∑
i=1

βilog(σ2
t−i) +

q∑
i=1

γi
εt−i
σt−i

, (8)

where ω = α0−α1

√
2
π , αi characterize the volatility clustering phenomena, βi

is the persistence parameter, and γi describes the leverage effect. The logged
conditional variance allows to relax the positivity constraint of the model coef-

ficients. To this model we choose p = 1, q = 1, ω =
(

10−6 − 0.1
√

2
π

)
, α1 = 0.1,

β1 = 0.01 and γ1 = 0.3, and we refer to it as EGARCH.

INAR(1) The integer-valued autoregressive models have been proposed to model
integer-valued time series, in particular, correlated counts [52]. These models
are based on thinning (random) operations defined on the integers, where the
following binomial thinning is the most common: let X be a non-negative
integer valued random variable and 0 < α < 1, then α ∗X =

∑X
i=1 Yi where

{Yi} is a sequence of i.i.d. Bernoulli random variables, independent of X. A
process Yt is said to be an INAR(1) process if it satisfies the equation,

Yt = α ∗ Yt−1 + εt. (9)

If the innovation sequence εt and the initial distribution are Poisson, Yt is said
to be a Poisson INAR(1) process. We used α = 0.5 and Poisson arrivals with
εt ∼ Po(1) to generate integer valued data with autocorrelation decaying at a
rate of 0.5. We refer to this model as INAR.

Time series from the HMM and GARCH are simulated using the R packages HMMpa
[61] and fGarch [63], respectively. Time series are generated from the remaining
DGP of our own implementation, available from the authors.
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B Feature evaluation in Synthetic Time Series

The topological features of WNVGs, WHVGs and QGs obtained from the 1100
time series models are, respectively, summarized in tables B.1, B.2 and B.3. The
table reporting the mean and standard deviation (in brackets) of the Min-Max
normalized (across models) metrics. The columns of the tables are colored with a
gradient based on the mean values: cells with a maximum value 1 are colored red,
cells with the minimum value 0 are colored white and the remainder with a hue
of red color proportional to its value.

Weighted Natural Visibility Graphs

Table B.1 Table of mean values of the 100 instances of each DGP for each
topological metric, resulting from WNVGs. The standard deviations are
presented in parentheses.

Models
Average Average Number of Clustering

Modularity
Degree Path Length Communities Coefficient

(k̄) (d̄) (S) (C) (Q)

AR(1)-0.5
0.430 0.457 0.225 0.615 0.900

(0.006) (0.032) (0.063) (0.007) (0.022)

AR(1)0.5
0.698 0.443 0.116 0.751 0.963

(0.005) (0.037) (0.037) (0.009) (0.010)

AR(2)
0.719 0.408 0.472 0.968 0.792

(0.008) (0.035) (0.132) (0.012) (0.082)

ARIMA
0.919 0.211 0.257 0.188 0.367

(0.006) (0.095) (0.115) (0.079) (0.140)

ARFIMA
0.790 0.412 0.099 0.766 0.973

(0.005) (0.036) (0.035) (0.012) (0.009)

SETAR
0.273 0.438 0.491 0.631 0.772

(0.006) (0.041) (0.145) (0.007) (0.070)

HMM
0.012 0.446 0.570 0.667 0.654

(0.005) (0.039) (0.150) (0.008) (0.093)

INAR
0.570 0.452 0.131 0.631 0.956

(0.004) (0.118) (0.052) (0.011) (0.024)

GARCH
0.994 0.433 0.070 0.652 0.991

(0.003) (0.036) (0.022) (0.010) (0.005)

EGARCH
0.940 0.425 0.066 0.677 0.980

(0.004) (0.032) (0.027) (0.007) (0.004)

WN
0.581 0.450 0.128 0.667 0.942

(0.005) (0.034) (0.044) (0.007) (0.009)
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Weighted Horizontal Visibility Graphs

Table B.2 Table of mean values of the 100 instances of each DGP for each
topological metric, resulting from WHVGs. The standard deviations are
presented in parentheses.

Models
Average Average Number of Clustering

Modularity
Degree Path Length Communities Coefficient

(k̄) (d̄) (S) (C) (Q)

AR(1)-0.5
0.473 0.004 0.230 0.557 0.319

(0.005) (0.001) (0.057) (0.004) (0.056)

AR(1)0.5
0.628 0.009 0.174 0.697 0.793

(0.003) (0.001) (0.046) (0.004) (0.031)

AR(2)
0.438 0.022 0.600 0.953 0.397

(0.006) (0.002) (0.092) (0.004) (0.074)

ARIMA
0.414 0.588 0.794 0.988 0.236

(0.007) (0.161) (0.106) (0.005) (0.074)

ARFIMA
0.633 0.030 0.204 0.785 0.878

(0.003) (0.004) (0.047) (0.004) (0.028)

SETAR
0.284 0.003 0.508 0.504 0.354

(0.005) (0.001) (0.086) (0.004) (0.092)

HMM
0.009 0.013 0.640 0.467 0.385

(0.003) (0.002) (0.116) (0.006) (0.105)

INAR
0.403 0.034 0.292 0.034 0.927

(0.002) (0.005) (0.056) (0.010) (0.033)

GARCH
0.998 0.007 0.064 0.611 0.777

(0.001) (0.002) (0.022) (0.004) (0.015)

EGARCH
0.900 0.004 0.059 0.591 0.747

(0.001) (0.001) (0.026) (0.005) (0.017)

WN
0.584 0.004 0.170 0.605 0.624

(0.004) (0.001) (0.045) (0.004) (0.033)
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Quantile Graphs

Table B.3 Table of mean values of the 100 instances of each DGP for each
topological metric, resulting from QGs. The standard deviations are presented in
parentheses.

Models
Average Average Number of Clustering

Modularity
Degree Path Length Communities Coefficient

(k̄) (d̄) (S) (C) (Q)

AR(1)-0.5
1.000 0.005 0.000 0.972 0.008

(0.000) (0.000) (0.000) (0.003) (0.003)

AR(1)0.5
1.000 0.005 0.027 0.971 0.374

(0.000) (0.000) (0.010) (0.003) (0.044)

AR(2)
1.000 0.024 0.044 0.829 0.816

(0.000) (0.000) (0.015) (0.003) (0.028)

ARIMA
1.000 0.943 0.062 0.144 0.398

(0.000) (0.068) (0.022) (0.132) (0.099)

ARFIMA
1.000 0.029 0.047 0.808 0.890

(0.000) (0.003) (0.017) (0.009) (0.039)

SETAR
1.000 0.016 0.027 0.946 0.245

(0.000) (0.000) (0.009) (0.003) (0.039)

HMM
0.276 0.001 0.730 0.998 0.289

(0.008) (0.000) (0.008) (0.003) (0.027)

INAR
0.000 0.002 0.981 0.984 0.493

(0.002) (0.001) (0.009) (0.024) (0.010)

GARCH
1.000 0.001 0.031 1.000 0.055

(0.000) (0.000) (0.012) (0.001) (0.016)

EGARCH
1.000 0.002 0.019 0.999 0.041

(0.000) (0.000) (0.010) (0.001) (0.016)

WN
1.000 0.001 0.029 1.000 0.047

(0.000) (0.000) (0.011) (0.000) (0.011)

Principal Component Analysis Results

Fig. B.1 Bar plot with contributions of NetF features to the total of all 15
principal components formed by the PCA. The red dashed line on the plot
indicates the expected average contribution.
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C Clustering of Time Series Models

We analyse the performance of different combinations of the feature vectors from
the WNVG, WHVG and QG mappings in a clustering task using the synthetic data
set. We set the number of clusters to k = 11, the total of time series models, and
assess the clustering results with the evaluation metrics. The results summarized
in Table C.49 indicate that joining the features obtained from the two mapping
concepts (VGs and QGs) adds information that leads to improvements in the
clustering results (compare the first three rows of the Table C.4 with the last
three). In fact, as illustrated in Figure C.2, clustering based on NetF can leads
to a perfect attribution of the time series models samples across the 11 different
clusters.

Table C.4 Clustering evaluation metrics for the different clustering analysis
resulting from different network-based feature vectors. The values reflect the
mean of 10 repetitions of the proposed method for different feature vectors and
for the ground truth (k = 11). The highest values are highlighted.

Mappings
ARI NMI AS
[−1, 1] [0, 1] [−1, 1]

WNVG 0.68 0.86 0.51
WHVG 0.83 0.94 0.63
QG 0.64 0.84 0.66
WNVG - WHVG 0.81 0.93 0.57
WNVG - QG 0.84 0.94 0.67
WHVG - QG 0.90 0.96 0.73
NetF 0.92 0.97 0.68

These results show that different mapping methods capture different properties
from the series, as we analyzed in the Section 3.3, translating into a better cluster-
ing result, as we expected. If we analyse only feature vectors corresponding to one
network kind, the first three rows of Table C.4, we note that the WHVGs are the
ones that best capture the characteristics of time series models, having high eval-
uation values, namely, 0.83 for ARI, 0.94 for NMI and 0.63 for AS. The last three
lines of Table C.4 show better results than those obtained using only WHVG fea-
tures, thus showing that the resulting features of the QGs add information about
certain properties of the time series models.

We still study how these seven sets of features perform in determining the
number of clusters k = 11 using the ARI, NMI and AS evaluation metrics. The
results for k obtained from features corresponding to only one kind of network,
range from 8 to 13 for ARI, from 11 to 14 for NMI and 3 to 9 for AS. However,
when NetF is used, we obtain k = 11 for ARI and NMI and k = 10 for AS.

9 The results are means from 10 repetitions of the clustering analysis. The corresponding
standard deviations indicate little or none variation between the repetitions.
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Fig. C.2 Attribution of the samples corresponding to instances of time series
models to the different clusters, according to NetF. The different models are
represented on the horizontal axis and by a unique color. The time series are
represented by the colored points according to its model process. The vertical
axis represents the cluster number to which a time series is assigned.

D Classical Features

The above described procedure is applied to two further sets of features previously
proposed in the literature. One is a set of time series statistical features that has
been used in a variety of tasks such as clustering [60], forecasting [33,55] and gen-
eration of time series data [32]. It comprises sixteen measures calculated using the
tsfeatures package [29] of the R CRAN [49], namely, frequency and number and
length of seasonal periods, strength of trend, ”spikiness” of a time series, linearity
and curvature, spectral entropy, and measures based on autocorrelation coeffi-
cients of the original series, first-differenced series and second-differenced series.
These will be denoted by tsfeatures in the remainder of this work. The second is
denominated canonical feature set, catch22 [38], has been recently proposed based
on a features library from an interdisciplinary time series analysis literature [22]
and has been used in time series classification tasks [38]. There are twenty two
measures calculated using the Rcatch2210 package [26] of the R CRAN [49], that
include properties of the distributions and simple temporal statistics of values in
the time series, linear and non-linear autocorrelation, successive differences, scaling
of fluctuations, and others.

10 https://github.com/hendersontrent/Rcatch22

https://github.com/hendersontrent/Rcatch22
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E Clustering Time Series with NetF

Fig. E.3 Number of clusters, k, for the Production in Brazil data set using the
silhouette method for 10 repetitions of the clustering analysis using the 3
features vectors: NetF, catch22 and tsfeature.
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F Clustering Results: UEA & UCR Time Series Datasets

For some sets of benchmark empirical time series, some features of tsfeatures and
catch22 approaches (see Appendix D) return missing values, and some have time
series with missing values. We decided not to consider these sets in our clustering
analysis as they are just a few. So Tables F.6 to F.8 present the results for 119
sets, out of a total of 129.

Table F.6 Brief description of the empirical time series datasets from UEA &
UCR time series repository [3] and the clustering evaluation metrics obtained for
the two conventional approaches (tsfeatures and catch22 ) and for the proposed
approach (NetF ). The values reflect the mean of 10 repetitions of the clustering
analysis for the ground truth, k. The values in bold represent the best results of
the respective evaluation metric comparing the two approaches. M represents the
size of data set, T the time series length and k the number of classes.

ARI NMI AS
Data set M T k [−1, 1] [0, 1] [−1, 1]

tsf. cat. Net. tsf. cat. Net. tsf. cat. Net.

ACSF1 200 1460 10 0.22 0.32 0.17 0.50 0.56 0.40 0.48 0.30 0.23

Adiac 781 176 37 0.21 0.21 0.11 0.55 0.55 0.43 0.20 0.26 0.13

ArrowHead 211 251 3 0.24 0.17 0.34 0.27 0.21 0.31 0.24 0.27 0.15

BME 180 128 3 0.50 0.36 0.40 0.58 0.36 0.45 0.55 0.20 0.23

Beef 60 470 5 0.09 0.05 0.04 0.23 0.24 0.18 0.33 0.38 0.18

BeetleFly 40 512 2 0.55 0.10 0.63 0.48 0.11 0.55 0.34 0.26 0.16

BirdChicken 40 512 2 0.07 0.55 0.63 0.10 0.56 0.53 0.35 0.19 0.29

CBF 930 128 3 0.31 0.37 0.37 0.34 0.39 0.40 0.22 0.19 0.13

Car 120 577 4 0.25 0.16 0.20 0.35 0.23 0.29 0.22 0.28 0.18

Chinatown 365 24 2 0.33 0.29 -0.05 0.29 0.21 0.03 0.23 0.34 0.27

ChlorineConcentration 4307 166 3 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.42 0.17

CinCECGTorso 1420 1639 4 0.31 0.32 0.45 0.37 0.35 0.52 0.23 0.19 0.31

Coffee 56 286 2 0.61 1.00 0.45 0.54 1.00 0.42 0.32 0.21 0.13

Computers 500 720 2 0.00 0.00 0.07 0.00 0.00 0.05 0.46 0.17 0.27

CricketX 780 300 12 0.15 0.15 0.16 0.32 0.28 0.30 0.20 0.16 0.10

CricketY 780 300 12 0.13 0.14 0.08 0.27 0.28 0.21 0.19 0.17 0.09

CricketZ 780 300 12 0.15 0.16 0.14 0.33 0.28 0.27 0.19 0.16 0.10

Crop 24000 46 24 0.19 0.16 0.09 0.39 0.34 0.26 0.19 0.18 0.09

DiatomSizeReduction 322 345 4 0.67 0.11 0.69 0.67 0.26 0.67 0.34 0.34 0.26

DistalPhalanxOutlineAgeG 539 80 3 0.45 0.44 0.20 0.35 0.34 0.35 0.47 0.47 0.44

DistalPhalanxOutlineCorr 876 80 2 0.00 0.00 0.01 0.00 0.00 0.01 0.45 0.42 0.69

DistalPhalanxTW 539 80 6 0.41 0.45 0.28 0.47 0.45 0.43 0.31 0.42 0.11

ECG200 200 96 2 0.25 0.07 0.03 0.16 0.05 0.04 0.30 0.19 0.16

ECG5000 5000 140 5 0.29 0.28 0.31 0.32 0.29 0.30 0.24 0.24 0.16

ECGFiveDays 884 136 2 0.02 0.00 0.00 0.02 0.00 0.01 0.36 0.30 0.25

ElectricDevices 16575 96 7 0.20 0.21 0.19 0.30 0.29 0.29 0.33 0.25 0.27

EOGHorizontalSignal 724 1250 12 0.18 0.16 0.12 0.38 0.33 0.27 0.27 0.22 0.13

EOGVerticalSignal 724 1250 12 0.10 0.13 0.06 0.26 0.28 0.17 0.21 0.20 0.11

Earthquakes 461 512 2 0.00 -0.03 -0.07 0.00 0.07 0.04 0.27 0.18 0.52

EthanolLevel 1004 1751 4 0.01 0.00 0.01 0.01 0.00 0.02 0.15 0.27 0.15

FaceAll 2250 131 14 0.15 0.21 0.15 0.33 0.36 0.29 0.22 0.15 0.09

FaceFour 112 350 4 0.26 0.36 0.46 0.32 0.45 0.54 0.39 0.22 0.23

FacesUCR 2250 131 14 0.14 0.19 0.15 0.33 0.37 0.28 0.22 0.15 0.09

FiftyWords 905 270 50 0.19 0.19 0.09 0.57 0.54 0.44 0.18 0.17 0.11

Fish 350 463 7 0.19 0.12 0.17 0.29 0.21 0.30 0.20 0.25 0.13
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Table F.7 (cont.) Brief description of the empirical time series datasets from
UEA & UCR time series repository [3] and the clustering evaluation metrics
obtained for the two conventional approaches (tsfeatures and catch22 ) and for
the proposed approach (NetF ). The values reflect the mean of 10 repetitions of
the clustering analysis for the ground truth, k. The values in bold represent the
best results of the respective evaluation metric comparing the two approaches.
M represents the size of data set, T the time series length and k the number of
classes.

ARI NMI AS
Data set M T k [−1, 1] [0, 1] [−1, 1]

tsf. cat. Net. tsf. cat. Net. tsf. cat. Net.

FordA 4921 500 2 0.19 0.01 0.01 0.27 0.01 0.01 0.53 0.33 0.29

FordB 4446 500 2 0.27 0.07 0.02 0.31 0.07 0.02 0.48 0.29 0.22

FreezerRegularTrain 3000 301 2 0.22 0.27 0.31 0.19 0.21 0.24 0.52 0.50 0.11

FreezerSmallTrain 2878 301 2 0.22 0.27 0.32 0.19 0.21 0.24 0.52 0.50 0.11

Fungi 204 201 18 0.77 0.72 0.40 0.92 0.90 0.68 0.48 0.43 0.13

GestureMidAirD1 338 360 26 0.27 0.25 0.31 0.62 0.59 0.63 0.23 0.23 0.15

GestureMidAirD2 338 360 26 0.24 0.25 0.26 0.60 0.60 0.61 0.21 0.23 0.15

GestureMidAirD3 338 360 26 0.18 0.14 0.16 0.52 0.48 0.50 0.19 0.19 0.13

GesturePebbleZ1 304 [100, 455] 6 0.15 0.16 0.23 0.23 0.22 0.35 0.16 0.15 0.18

GesturePebbleZ2 304 [100, 455] 6 0.15 0.16 0.23 0.23 0.22 0.35 0.16 0.15 0.18

GunPoint 200 150 2 0.00 0.00 0.19 0.06 0.00 0.30 0.70 0.28 0.27

GunPointAgeSpan 451 150 2 0.01 0.10 0.00 0.02 0.07 0.00 0.48 0.23 0.30

GunPointMaleVersusFemale 451 150 2 0.07 0.05 0.32 0.13 0.04 0.37 0.48 0.23 0.30

GunPointOldVersusYoung 451 150 2 0.00 0.08 0.20 0.00 0.06 0.27 0.48 0.23 0.30

Ham 214 431 2 0.00 0.00 0.01 0.00 0.01 0.01 0.33 0.16 0.18

HandOutlines 1370 2709 2 0.05 0.02 0.06 0.02 0.00 0.11 0.37 0.50 0.53

Haptics 463 1092 5 0.04 0.03 0.07 0.07 0.07 0.10 0.38 0.28 0.15

Herring 128 512 2 0.00 -0.01 -0.01 0.00 0.00 0.00 0.22 0.16 0.17

HouseTwenty 135 3000 2 -0.01 0.64 0.10 0.01 0.61 0.09 0.40 0.21 0.29

InlineSkate 650 1882 7 0.10 0.02 0.08 0.22 0.07 0.17 0.29 0.18 0.16

InsectEPGRegularTrain 311 601 3 0.50 0.43 0.55 0.65 0.44 0.61 0.37 0.22 0.19

InsectEPGSmallTrain 266 601 3 0.50 0.44 0.52 0.65 0.46 0.61 0.37 0.21 0.19

InsectWingbeatSound 2200 256 11 0.07 0.21 0.17 0.18 0.37 0.32 0.19 0.18 0.11

ItalyPowerDemand 1096 24 2 0.04 0.01 0.03 0.05 0.01 0.03 0.38 0.40 0.27

LargeKitchenAppliances 750 720 3 0.21 0.06 0.00 0.23 0.05 0.01 0.35 0.23 0.30

Lightning2 121 637 2 0.07 0.02 0.05 0.14 0.04 0.07 0.42 0.28 0.19

Lightning7 143 319 7 0.22 0.21 0.18 0.39 0.39 0.35 0.24 0.24 0.14

Mallat 2400 1024 8 0.70 0.69 0.53 0.80 0.83 0.65 0.35 0.32 0.13

Meat 120 448 3 0.45 0.45 0.17 0.46 0.63 0.18 0.29 0.43 0.13

MedicalImages 1141 99 10 0.10 0.03 0.06 0.28 0.19 0.17 0.31 0.21 0.17

MiddlePhalanxOutlineAgeG 554 80 3 0.42 0.43 0.42 0.39 0.39 0.39 0.56 0.49 0.40

MiddlePhalanxOutlineCorr 891 80 2 -0.01 0.00 -0.01 0.01 0.00 0.01 0.47 0.41 0.71

MiddlePhalanxTW 553 80 6 0.34 0.57 0.24 0.40 0.43 0.39 0.28 0.47 0.14

MixedShapesRegularTrain 2925 1024 5 0.44 0.23 0.52 0.49 0.26 0.55 0.31 0.20 0.21

MixedShapesSmallTrain 2525 1024 5 0.45 0.23 0.51 0.49 0.25 0.54 0.31 0.20 0.21

MoteStrain 1272 84 2 0.01 0.02 0.17 0.01 0.01 0.17 0.48 0.25 0.20

NonInvasiveFetalECGThor1 3765 750 42 0.51 0.27 0.07 0.76 0.58 0.30 0.22 0.20 0.09

NonInvasiveFetalECGThor2 3765 750 42 0.54 0.36 0.11 0.79 0.67 0.36 0.25 0.23 0.11

OSULeaf 442 427 6 0.29 0.28 0.49 0.42 0.38 0.54 0.17 0.15 0.16

OliveOil 60 570 4 0.29 0.18 0.10 0.36 0.27 0.17 0.30 0.32 0.10

PLAID 1074 [100, 1344] 11 0.38 0.27 0.25 0.51 0.41 0.38 0.31 0.22 0.18

PhalangesOutlinesCorrect 2658 80 2 0.01 0.01 0.00 0.00 0.00 0.00 0.33 0.37 0.70

Phoneme 2110 1024 39 0.06 0.07 0.09 0.29 0.31 0.34 0.14 0.13 0.13

PickupGestureWiimoteZ 100 [29, 361] 10 0.22 0.24 0.29 0.50 0.50 0.55 0.18 0.18 0.19

PigAirwayPressure 312 2000 52 0.11 0.04 0.13 0.63 0.57 0.64 0.26 0.20 0.17
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Table F.8 (cont.) Brief description of the empirical time series datasets from
UEA & UCR time series repository [3] and the clustering evaluation metrics
obtained for the two conventional approaches (tsfeatures and catch22 ) and for
the proposed approach (NetF ). The values reflect the mean of 10 repetitions of
the clustering analysis for the ground truth, k. The values in bold represent the
best results of the respective evaluation metric comparing the two approaches.
M represents the size of data set, T the time series length and k the number of
classes.

ARI NMI AS
Data set M T k [−1, 1] [0, 1] [−1, 1]

tsf. cat. Net. tsf. cat. Net. tsf. cat. Net.

PigArtPressure 312 2000 52 0.40 0.45 0.44 0.79 0.82 0.81 0.24 0.24 0.22

PigCVP 312 2000 52 0.13 0.18 0.20 0.64 0.68 0.68 0.20 0.14 0.16

Plane 210 144 7 0.98 0.86 0.97 0.98 0.90 0.97 0.58 0.34 0.37

PowerCons 360 144 2 0.13 0.00 0.25 0.11 0.00 0.22 0.22 0.20 0.22

ProximalPhalanxOutlineAg 605 80 3 0.55 0.57 0.35 0.53 0.56 0.45 0.49 0.40 0.50

ProximalPhalanxOutlineCo 891 80 2 0.05 0.06 0.04 0.07 0.08 0.05 0.44 0.49 0.73

ProximalPhalanxTW 605 80 6 0.43 0.47 0.34 0.56 0.58 0.48 0.29 0.41 0.15

RefrigerationDevices 750 720 3 0.02 0.02 0.02 0.02 0.02 0.02 0.41 0.27 0.27

Rock 70 2844 4 0.36 0.16 0.35 0.51 0.27 0.49 0.25 0.23 0.24

ScreenType 750 720 3 0.03 0.04 0.01 0.03 0.04 0.01 0.31 0.16 0.22

SemgHandGenderCh2 900 1500 2 0.00 0.00 0.01 0.01 0.00 0.00 0.29 0.23 0.31

SemgHandMovementCh2 900 1500 6 0.06 0.04 0.10 0.14 0.12 0.20 0.24 0.23 0.22

SemgHandSubjectCh2 900 1500 5 0.16 0.26 0.18 0.25 0.33 0.28 0.25 0.24 0.26

ShakeGestureWiimoteZ 100 [40, 385] 10 0.54 0.45 0.56 0.72 0.67 0.74 0.29 0.20 0.27

ShapeletSim 200 500 2 0.10 1.00 0.85 0.08 1.00 0.78 0.18 0.33 0.17

ShapesAll 1200 512 60 0.37 0.28 0.23 0.70 0.65 0.60 0.26 0.22 0.13

SmallKitchenAppliances 750 720 3 0.19 0.08 0.18 0.19 0.07 0.20 0.32 0.25 0.50

SonyAIBORobotSurface1 621 70 2 0.58 0.42 0.56 0.53 0.47 0.47 0.34 0.26 0.25

SonyAIBORobotSurface2 980 65 2 0.55 0.37 0.00 0.47 0.28 0.01 0.37 0.22 0.14

StarLightCurves 9236 1024 3 0.49 0.43 0.65 0.57 0.56 0.53 0.42 0.34 0.32

Strawberry 983 235 2 -0.05 -0.02 0.01 0.11 0.09 0.03 0.52 0.35 0.16

SwedishLeaf 1125 128 15 0.46 0.31 0.41 0.68 0.53 0.60 0.25 0.23 0.16

Symbols 1020 398 6 0.69 0.65 0.77 0.78 0.79 0.84 0.40 0.49 0.35

SyntheticControl 600 60 6 0.57 0.61 0.43 0.71 0.74 0.50 0.34 0.20 0.14

ToeSegmentation1 268 277 2 0.01 0.00 0.05 0.01 0.00 0.05 0.22 0.23 0.20

ToeSegmentation2 166 343 2 0.12 0.07 0.37 0.06 0.03 0.26 0.30 0.18 0.37

Trace 200 275 4 1.00 0.73 0.63 1.00 0.79 0.70 0.65 0.35 0.22

TwoLeadECG 1162 82 2 0.00 0.01 0.71 0.00 0.01 0.61 0.60 0.16 0.19

TwoPatterns 5000 128 4 0.14 0.00 0.01 0.17 0.00 0.01 0.16 0.15 0.11

UMD 180 150 3 0.48 0.17 0.35 0.53 0.20 0.38 0.41 0.24 0.21

UWaveGestureLibraryAll 4478 945 8 0.17 0.20 0.18 0.27 0.28 0.28 0.20 0.19 0.12

UWaveGestureLibraryX 4478 315 8 0.18 0.19 0.23 0.30 0.29 0.33 0.19 0.20 0.15

UWaveGestureLibraryY 4478 315 8 0.22 0.16 0.14 0.36 0.25 0.25 0.22 0.20 0.15

Wafer 7164 152 2 -0.02 -0.04 0.99 0.00 0.02 0.96 0.56 0.33 0.51

Wine 111 234 2 0.03 -0.01 0.01 0.03 0.00 0.01 0.39 0.43 0.22

WordSynonyms 905 270 25 0.14 0.10 0.05 0.41 0.34 0.26 0.21 0.18 0.11

Worms 258 900 5 0.19 0.14 0.13 0.24 0.22 0.22 0.26 0.17 0.22

WormsTwoClass 258 900 2 0.04 0.07 0.12 0.02 0.04 0.08 0.34 0.19 0.29

Yoga 3300 426 2 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.20 0.27

Mean 0.24 0.22 0.24 0.33 0.30 0.32 0.33 0.26 0.23

Win 46 28 47 48 28 43 82 26 16

Win (%) 38.66 23.53 39.50 40.34 23.53 36.13 68.91 21.85 13.45
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