
Faculty of Engineering of University of Porto 

 

 
 

 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

 

Development of a battery management system 
interface for adapting second life batteries to 

energy storage 
 

 
 
 

 
Jorge Lopes dos Santos Teixeira Carrondo 

 
 

 
 
 
 
 
 
 
 

Thesis carried out in the 
Integrated Master in Electrical and Computers Engineering 

Energy Major 
 

 
 

Supervisor(FEUP): Rui Esteves Araújo 
   Supervisor(New Electric): Celso Menaia 

 
 
 
 

 

February 2019



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Jorge Carrondo, 2019 



 

 

 

 

 

 

 

Abstract 
 

 

 

 
With the advent of electric vehicles, surges the issue of the used batteries for vehicles, 

namely cars, such as Tesla (Models X and S), VW (GTE, E-Golf and E-Up), Nissan (Leaf and NV200) and 
BMW i3. After its normal daily use, the batteries might not be suited anymore to be utilized in a 
different vehicle since it requires power peaks. However, there is still an important and ever-growing 
use case for these batteries as an energy storage unit that can be used for domestic and industrial 
installations paired up with renewable energy injection. 

In order to safely and accurately provide energy there is a need of technical and theoretical 
expertise not only for installing the system but to regulate it too. For that, an interface that can 
communicate directly with batteries and respective BMS is a breakthrough.  

This project aims to study the battery management system used in electric vehicles and 
obtain as much information as possible regarding its communication protocol and control features. 
Based on the information obtained by using SavvyCAN and reverse engineering methods to infer how 
the batteries communicate, it will be developed an electronic interface with a Teensy Arduino 
board tailored for this specific usage, in order to adapt the second life batteries from electric 
vehicles to a possible storage solution, namely, an interface, using OPUS Projektor, to visualise and 
control each and every paramenter necessary, in conjunction with renewable energy injection. 

 
 

 

 

 

 

 

 

 

 

i 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii 



 

 

 

 

 

 

Contents 

 

1. Introduction .................................................................................................... 1 

1.1 Motivation ................................................................................................ 1 

1.2 Objectives ................................................................................................ 2 

1.3 Structure ................................................................................................. 3 

2. State of the Art ................................................................................................ 5 

2.1 Current use case ........................................................................................ 5 

2.2 BMS review ............................................................................................... 8 

2.3 Market perception .................................................................................... 13 

2.4 Future prospects ...................................................................................... 14 

3. Interface development ..................................................................................... 15 

3.1 Specifications of the desired product .............................................................. 15 

3.2 Architecture of the connection ..................................................................... 16 

3.3 Devices used ........................................................................................... 18 

3.4.1 SIMP BMS Board .................................................................................. 18 

3.4.2 Physical display .................................................................................. 20 

3.4 Programming the microcontroller .................................................................. 29 

3.5 Smart grid/metering integration ................................................................... 32 

4. Practical cases and testing ................................................................................ 35 

4.1 Setup .................................................................................................... 35 

4.2 Data gathering ......................................................................................... 37 

4.3 Interconnected batteries ............................................................................ 39 

4.4 Module testing ......................................................................................... 42 

4.5 Tesla module analysis ................................................................................ 45 

4.6 Feasibility .............................................................................................. 48 

 

iii 



 

 

 

 

5. Conclusions ................................................................................................... 55 

5.1 Practical usage and implementation ............................................................... 55 

5.2 Future work ............................................................................................ 56 

References ......................................................................................................... 57 

Annexes ............................................................................................................. 59 

A: VW battery, BMS and data connections ................................................................. 59 

B: Wiring manual for SIMP BMS board ....................................................................... 60 

C: VWBMSV2 (January 2019) .................................................................................. 63 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iv 



 

 

 

 

 

List of figures 

 

Figure 1 - Inside of a Tesla Powerwall unit [7] ................................................................. 6 

Figure 2 - Share of annual battery storage additions, by technology [5] .................................. 7 

Figure 3 - Schematic of a BMS [6] ................................................................................ 8 

Figure 4 - Overview of safety thresholds relating to the battery current [6] ........................... 10 

Figure 5 - Attractiveness of macro factors related to ES by region [1] ................................... 13 

Figure 6 - Targets of certain European countries for renewable energy penetration [1] ............. 14 

Figure 7 - Diagram of the proposed solution .................................................................. 17 

Figure 8 - SIMP BMS board (Front) .............................................................................. 18 

Figure 9 - SIMP BMS board (Back) ............................................................................... 19 

Figure 10 - Physical display (Front) ............................................................................ 20 

Figure 11 - Physical display (Back) ............................................................................. 21 

Figure 12 - Building the interface .............................................................................. 22 

Figure 13 - SOC graph editing ................................................................................... 23 

Figure 14 - Setup for the VW series ............................................................................ 24 

Figure 15 - SOC graph test ....................................................................................... 25 

Figure 16 - Fully operational display connected to the modules .......................................... 26 

Figure 17 - Detail of the SIMP board wired to the display using CAN ..................................... 27 

Figure 18 - VW series interface ................................................................................. 28 

Figure 19 - Tesla interface ...................................................................................... 28 

Figure 20 - Basic fluxogram of program iteration ............................................................ 29 

Figure 21 - Snippet of the BMS code for VW [2] .............................................................. 30 

Figure 22 - Specifications for the Tesla battery [2] with changes ......................................... 31 

Figure 23 - Example of Microgrid Architecture [8] ........................................................... 32 

Figure 24 - VW battery module and respective CAN bus connection ..................................... 35 

Figure 25 - VW BMS ............................................................................................... 36 

Figure 26 - Kvaser cable and connection with module ...................................................... 37 

Figure 27 - Series of 8 batteries (different IDs) .............................................................. 40 

Figure 28 - Schematic of the VW series connection ......................................................... 41 

Figure 29 - Electrical battery charger ......................................................................... 42 

Figure 30 - Electronic load AT8612 ............................................................................. 43 

Figure 31 - Initial values ......................................................................................... 43 

Figure 32 - Values after discharge .............................................................................. 44 

Figure 33 - Tesla module connected to SIMP BMS board .................................................... 45 

 

 

v 



 

 

 

 

Figure 34 - Tesla BMS embedded in the battery ............................................................. 46 

Figure 35 - Tesla's Model S BMS ................................................................................. 47 

Figure 36 - Tesla menu ........................................................................................... 48 

Figure 37 - Debug screen......................................................................................... 49 

Figure 38 - Menu with "Error" status due to Overvoltage ................................................... 50 

Figure 39 - Discharge process ................................................................................... 51 

Figure 40 - 40W load .............................................................................................. 52 

Figure 41 - Menu with correct values .......................................................................... 53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

vi 



 

 

 

 

 

List of tables 

 

Table 1 - Variables in the display ............................................................................... 21 

Table 2 - Log information from a VW battery module ...................................................... 37 

Table 3 - IDs from the 8 different batteries .................................................................. 38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vii 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

viii 



 

 

 

 

 

 

List of equations 

 
SOC (1) ................................................................................................................ 9 

SOH (2) ................................................................................................................ 9 

DOD (3) ............................................................................................................... 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ix 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 



 

 

 

 

 

 

Abbreviations and symbols 

  

 

 

List of abbreviations 

  

AC  Alternated Current 

BMCU  Battery Management Control Unit 

BMS  Battery Management System 

BPU  Battery Protection Unit 

CAN  Controller Area Network 

DC  Direct Current  

DER  Distributed Energy Resources 

DOD  Depth of Discharge  

DSO  Distribution System Operator  

ES  Energy Storage  

EV  Electric Vehicle 

FET  Field Effect Transistor 

IEA  International Energy Agency 

LC  Load Controller   

LMU  Local Management Unit 

 

xi 



 

 

 

 

MC  Microsource Controller 

MGCC  Micro Grid Central Controller 

OEM  Original Equipment Manufacturer 

PV  Photovoltaic 

RES  Renewable Energy System  

s-BMS  Scalable BMS  

SAO  Safe Area of Operation  

SOC  State of Charge  

SOH  State of Health  

TSO  Transmission System Operator 

 

 

 

 

List of units  

 

Ah       Ampere Hour (Unit of charge) 

Bd   Baud (Unit of speed in telecommunications) 

C   Farad (F)  

Hz   Hertz (Frequency) 

kWh   KiloWatt Hour  

Ω    Ohm (Resistance) 

Φ    Phi (Phase angle) 

 

 

 

 

xii



 

1 
 

 

 

 

 

Chapter 1 

Introduction 
 

 

 

The following chapter will give a simple and concise explanation on the basic topics to be 

discussed throughout the document as well as the motivation and context of the project in question. 

Thus, this is the first approach to the subject at hand in a scientific and technological perspective. 

 

1.1 Motivation 
 

As technology progresses so does the need to adapt and repurpose components and practices 

that need to be improved for the sake of efficiency, environmental protection, financial sustainability 

and to attain the best final product. With the advent of electric vehicles surges the issue of the used 

batteries for vehicles, namely cars such as Tesla (Models X and S), VW (GTE, E-Golf and E-Up), Nissan 

(Leaf and NV200) and BMW i3. After its normal daily use, the battery might not be suited anymore to 

be used again in a different vehicle since it requires power, however, there is still an important and 

ever-growing use case for said battery as an energy storage unit for domestic and industrial 

installations paired up with renewable energy injection. 

This means that, in conjunction with a renewable energy unit, such as a solar panel, a wind 

turbine or a mini-hydric that may produce energy while it is not being used, a storage unit is able to 

mitigate that issue by saving unused energy for later use. These storage units can be bulky and 

expensive at times however, with the repurpose of electric vehicles’ batteries; a solution can be 

obtained that is just as efficient with less space necessary and reduced costs. This will drive up the 

demand of storage units in the near future.  

 

 



 

2 
 

 

 

Finally, there are also waste and pollution concerns that come at play with recycling 

batteries. By extending their usage, the strain caused on the environment will be reduced. 

The following thesis will focus on the problems and methods on how to convert as well as 

improve the efficiency of second life batteries, more specifically, better and more accurate readings 

(temperature, voltage, current…) and individualised control of the modules that contain them by 

assessing their characteristics and streamlining their functioning with a microcontroller (Arduino 

Due). This project occurred at New Electric in Amsterdam, a company which specialises in converting 

vehicles to electric and currently has a partnership to elaborate a storage unit prototype using 

batteries, either from recalls or electric vehicles that are already used. This means it is a project 

with industry and market capability and potential. 

There is not only an enormous potential for storage facilities and equipment but also a 

deeply rooted need for it in order to make renewable energy sources more endemic and ubiquitous 

in the near future since, as previously stated, they cannot be easily controlled due to being subject 

to weather/climate conditions. Energy storage is then the missing link in production by means of 

renewable sources and daily usage since it allows for continuous use on a large scale independent 

of the time of day (day or night), weather conditions (wind, rain, sun) and possible system failures 

altogether. Electric vehicles are also a growing trend and mixing storage and EV (Electrical Vehicle) 

charging/discharging process in harmony will inevitably lead to a more feasible penetration of RES 

(Renewable Energy Sources) in the day to day life of the average consumer and industries, either 

big or small, alike. 

To sum up, both EVs and energy storage can be used in sync as to compliment and round up 

the gaps in energy production and irregular consumption with the final objective of detachment from 

the electrical grid and independence from it without compromising efficiency and reliability.  

 

1.2 Objectives 
 

This project aims to study the batteries of EVs, in this particular case a VW and Tesla, and 

provide as much information regarding its communication protocol by means of reverse engineering 

and trial and error methodology in terms of connections and properties. The following step is to 

improve said communications and funnel them in order to both manage individual control and provide 

a tool to yield usability for other purposes. This can be achieved by microcontroller specifically built 

for this purpose, a Teensy Arduino board with open source coding on Github. Finally, I will build on 

the schematics and electronics as well as program in order to adapt the modules for large scale 

energy storage. It was heavily focused on data protocols and communication between batteries, a 

topic I learned throughout the project. 

 

 

 

 

 



 

3 
 

Throughout the document a market analysis will be present in order to better understand the 

necessity and demand of energy and the use case for storage. 

The main topics this document will be focused on are: 

• Analyse and improve communication protocols between different modules of the 

units with an Arduino microcontroller; 

• Adapt electric vehicles’ batteries after their normal functioning period for energy 

storage in both domestic and industrial installations; 

• Increase usability and ease of access of said units by creating an interface for it; 

• Constant improvement of said interface as an efficient and reliable product; 

• Analysis and validation of test results on the final product. 

 

1.3 Structure  
 

The following document will be divided into 5 distinct sections, explained below. 

In Chapter 1, Introduction, a simple description of the context and current environment of 

the technology and science being worked upon is presented as well as objectives of the project. 

In Chapter 2, State of the Art, it will be given a presentation of current models, technologies 

and forecast of market sales, consumption needs and production goals. 

In Chapter 3, Interface development, it will be presented the main specifications for the 

product, an overview of the connection that was established as well as the devices necessary for the 

interface. Then, the programming section of the microcontroller will be explained and, finally, how 

a possible integration with the grid can be done (brief explanation of the process). 

Chapter 4, Practical cases and testing, will go through the setup of a Tesla module and VW 

set of modules and how the electronics will be changed to account for a different type of usage. 

Testing will be presented and explained. 

Chapter 5, Conclusions, presents the final take and elaborates on the implementation feature 

and plan for real life use case and work which can be performed later on. 

 

 

 

 

 

 

 

 



 

4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 
 

 

 

 

Chapter 2  

State of the Art 
 

 

 

Throughout this section, the present state of the technology and everything involved with its 

production and propagation will be analysed. This means the technology, markets and R&D cases will 

be targeted. A special focus will be given to BMS (Battery Management System) structure and how it 

operates as well as concrete issues it solves. 

 

2.1 Current use case 
 

OEM batteries are an essential part of the ever-growing market of the electric and sustainable 

new paradigm of transportation either by land, in the form of cars and other vehicles such as efficient 

trains, trucks and motorcycles but also maritime transport of people (ferryboats and passenger boats) 

but also big cargo ships. In the near future, there is also possibility of electric or hybrid aeroplanes, 

being researched by companies like Rolls-Royce [1]. 

The sale of electric cars has been steadily increasing with more than 1 million being sold in 

2017 [2] with projection of 125 million units by the year of 2030, according to the IEA (International 

Energy Agency). It is safe to say, then, that there is a considerable demand for and development of 

electric vehicles. Companies such as Tesla are at the forefront of development in batteries and 

charging solutions for both vehicles and also home facilities with their Powerwall model, Figure 1, 

which can supply a home for over a week (depending on size and energetic needs) even without any 

connection to the electrical grid [3], which means more independence and control to the end-user. 

 



 

6 
 

 

 

 

 

 

Figure 1 - Inside of a Tesla Powerwall unit [3] 

 

This unit is scalable up to 10 units and has internal converter (bidirectional DC/DC) and 

connection to the grid in the form of DC/AC, as well as embedded cooling unit and connection point. 

An energy storage unit usually gets its input from a RES such as photovoltaic panels or wind turbines 

which, by default, are not able to be controlled by human necessity due to being subject to weather 

conditions. That is one of the main reasons why storing energy while it is not being used is important 

in this new paradigm of clean and renewable sources of energy. 

 According to the IEA, there are still long strides to be made in the energy storage field. The 

value of storage in 2017 was 15300 MWh [4]. This was divided into 39% of compressed air storage, 

28% related to lithium-ion batteries, 12% to flow batteries and 6% to sodium-based ones with other 

technologies covering the remainder.  

 



 

7 
 

 

 

 

Figure 2 - Share of annual battery storage additions, by technology [4] 

 

By analysing the histogram above from Figure 2, it is safe to say that lithium-ion batteries 

are the dominant and ever-growing part of energy storage, creating a monopoly when it comes to 

that technology in the upcoming years. Battery costs continue to drop, as unit costs for lithium-ion 

decreased 22% between 2016 and 2017. While prices of active materials increased substantially over 

2017, particularly those of cobalt (which more than doubled) and lithium (which grew by half), they 

have not had a substantial effect on battery prices [4]. 

Storage facilities provide a reliable and secure alternative to the mainstream electrical grid 

as a new paradigm of self-sustainability and independence. This change of structuring in the electrical 

system has advantages in multiple fronts:  

• Technologically it provides more reliability by decentralizing the production of 

energy meaning it’s less fallible to system failures and weather unpredictability 

(clouds in a centralised solar power plant can cause lengthy loss of energy 

production); 

• On an economical perspective it diversifies the energy market making it healthier; 

• Independent fiscal benefits either by grants and subsidies for renewable energy but 

mostly due to becoming a “prosumer” (consumer who produces own energy); 

• Environmental reasons due to reducing fossil fuel usage and energy waste as well as 

reusing pollutant lithium batteries.    

 

 

 



 

8 
 

 

2.2 BMS review 
 

The BMS of a module is an integral part of its control capabilities in terms of regulating 

voltage, temperature, current and other factors. It is essential for its safe usage by guaranteeing its 

constant functioning in the SAO (Safe Area of Operation), gathering and providing data and, 

eventually, improving and optimising the battery. 

The architecture of a BMS is quite complex, as can be visualised in Figure 3, and it involves 

logic programmable units with blocks that regulate the current it passes through it by means of cutoff 

with electronic systems. A FET (Field Effect Transistor), linked to the charger, is able to cut the 

transit of current between the charger and battery in case of over temperature or a short-circuit 

situation in order not to damage the battery or the load.  

 

 

Figure 3 - Schematic of a BMS [5] 



 

9 
 

 

Several programmable units are embedded in a BMS unit as well as multiplexers. Temperature 

sensors are also essential in conjunction with circuit breakers and converters. The BMS is the core of 

the battery control as it will be detailed further along this document. 

SOC (State of Charge), SOH (State of Health) and other equations are essential to 

understanding how a battery operates and is utilized and are going to be data present throughout 

this document and in the final product; the visual display to interface with the set of different 

batteries.  

 

 

                                                          SOC =
Creleasable

Crated
× 100%                                                    (1) 

   

Creleasable is the capacitance of the battery measured at any moment. Crated is the stipulated 

capacity given by the manufacturer. SOC will never be 100% due to manufacturing itself not being 

perfect and 100% efficient. Also, to be taken into consideration is the lifecycle of a large capacity 

battery will degrade over time and, depending on the model, there’s a minimum threshold for 

discharging in order to maximise its duration. 

 

 

                                                    SOH =
Cmax

Crated
× 100%                                                 (2) 

 

Cmax is the range at which it may operate, meaning, the total energy it yields from full charge 

until discharge. Overtime, SOH will diminish. 

 

 

DOD =
1

SOC
                              (3) 

 

 

 

 

 

 

 



 

10 
 

 

The BMS controls each aspect of SOC, SOH, temperature, voltage and current. The BMS 

operates as a control system for a battery and I will present some specifications of a Lithium Balance 

model [6]. 

The s-BMS (scalable) can be applied in automotive cases but also industrial and storage 

solutions, hence, it has a broad range of purposes and capabilities, namely communication protocol, 

safety and performance. 

Communication protocol entails receiving and sending data in a constant and accurate way 

between the main controller and auxiliary equipment such as chargers, circuit breakers, switches, 

sensors and displays. Safety regards aspects of cell balance, voltage and current thresholds and 

overheating. The multiple cells of a module must be as balanced as possible so to avoid errors. As for 

current and voltage it is necessary to avoid short-circuits, overvoltage and also make sure the module 

does not overstep the established maximum temperature.  

A BMS has specific current and voltage thresholds which depend on the sampling rate which, 

in this case, is 5Hz meaning certain current spikes that are too quick may not get detected namely 

when the battery is being initially charged. Figure 4 represents the safety levels and status. 

 

 

 

 

Figure 4 - Overview of safety thresholds relating to the battery current [5] 

 

 

 

 

 

 



 

11 
 

 

 

Cell balancing is a crucial part of the operation of a module and it implies that the BMS seeks 

the constant equilibrium of the voltage values of their cells. This can be achieved by method of 

bleeding which involves transmitting energy from the highest voltage cell to the lower ones in order 

to equilibrate them.  

The objective is to limit each cell to “cell target voltage” and not to let it go lower the 

“minimum target voltage” and this is achieved by charging the cells at the same speed at first. Then, 

as different cells may have different capacities and be more or less degraded than others, they will 

get to 100% SOC sooner. This cell that has reached maximum charging state now will flow its voltage 

to the cells that are below the minimum voltage range specified and they will get charged until the 

s-BMS operation balances them to the same levels.  

Lithium Balance, as well as other BMS systems, can provide individual cell voltages which is 

quite important since there might be discrepancies among them in terms of voltage and other factors. 

This way, the BMS alerts the user for differences in values that would otherwise remain unnoticed 

and could not only degrade the system but cause other unintended, hazardous consequences. So, a 

BMS, regardless of the specific model or battery is being used on, essentially gathers all sort of 

information related to the battery or set of batteries and analyses it with the main objectives of 

creating setpoints and alarms in case of breach of values, namely, overvoltage and temperature (most 

important ones). After this main, primary function, the BMS can also control and manipulate the 

values, to a certain extent, as far as chemical, technical and functional limitations of the battery it 

is embedded on go, in order to regulate them for security reasons or to improve its efficiency. In the 

former, it can lower voltage, temperature and cut off current if necessary. As for the latter, it aims 

to optimise the usage and life cycle of a battery or set of batteries without compromising the integrity 

and proper functioning of the device.  

There is a need for specific and accurate sensors to measure temperature, balancing amongst 

the cells, voltage, current as well as a vast and encompassing communication protocol. To be taken 

into consideration as well is the cell limit that is supported for a BMS unit and the respective LMU 

(Local Management Unit) slave board, the latter being directly beneath the hierarchical structure of 

the former and having the possibility of multiple units, depending on how many modules and cells 

the s-BMS aims to control. The BPU (Battery Protection Unit) is a unit that guarantees the safety and 

operability of the entire system. 

 

 

 

 

 

 

 

 

 



 

12 
 

 

Depending on each manufacturer, there are thresholds to be considered, namely in terms of 

temperature, humidity, air pressure. I will present some technical specifications of Lithium Balance’s 

s-BMS board: 

 

Weight: BMCU 86g, LMU 72g; 

Maximum number of LMUs: 32; 

Maximum cells per LMU: 8; 

Maximum battery capacity: 2000 Ah; 

Maximum battery voltage: 1000V. 

 

The power consumption is at around 2.1W for the BMCU (Battery Management Controller 

Unit) and 0.3W for each LMU meaning the main usage of power comes from the central processor 

which, in turn, allocates resources and redirects computing power to the individual sub-units (LMUs) 

and BPU for recurring safety procedures and error messages, not to mention possible need of circuit 

breakers and other fault mitigation techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

13 
 

 

 

2.3 Market perception  
 

Due to integration of more renewable energy in the electrical grid, which may very well be 

endemic in the upcoming years, there has also been an increase in the procurement of storage unit 

worldwide.  

An important part of the discussion on storage systems is the development of new 

technologies as well as attractiveness in different markets [6].The market, being inextricably bound 

to weather and climate conditions as well as region specific consumption requirements, has a 

heterogeneous landscape throughout the world, as can be seen in the data below. 

 

 

Figure 5 - Attractiveness of macro factors related to ES by region [6] 

 

  

Analysing the data from Figure 5 it can be inferred there are still long strides to be made 

especially in demand which means this market of storage is still underdeveloped, with exceptions 

being the USA and Australia where there is both demand and storage experience in the former’s case.  

 

 

 

 

 

 



 

14 
 

 

 

2.4 Future prospects 
 

With the introduction of DER (Distributed Energy Resources) and respective control structures 

for it, the market is no longer as centralised as before, acting more and more in a mesh network. 

This evolution of the market implies more decentralisation and independence to the end user due to 

having the possibility of producing the energy it consumes as well as selling the excess to other users 

or universal end buyer. This will make the grid more reliable since it has several points of production, 

curbing single point of failures and, overall, with better quality. This interconnection is essential for 

the integration of renewable energy sources that, by its nature, cannot be controlled, being 

dependent on weather and climacteric conditions. For this, storage units have an essential role to be 

played by absorbing the excess energy and using it to power houses and industries when necessary. 

By analysing the market data for both electrical vehicles and storage systems sales and 

production it can be inferred some results and predictions for this technology in the upcoming years 

or even decades. 

 

 

Figure 6 - Targets of certain European countries for renewable energy penetration [6] 

 

 

As can be seen form Figure 6 above, there is a significant expected increase in the injection 

of renewables in the grid, especially in countries like the Netherlands, U.K. and Poland, in a short 

period of time meaning, that this form of energy is going to become more and more common in the 

continent, even prevalent, in a limited amount of time.  

 



 

15 
 

 

 

 

 

Chapter 3 

Interface development 
 

 

 

 This section will be focused on the development of an interface and its connection to the 

battery and respective BMS. It will show the entire development of said interface from the requisites 

of the prototype, to the connection to the battery and BMS as well as respective tests, building of 

the model and end result.  

 

3.1 Specifications of the desired product 
 

It will now be presented the main requirements for a working product that were accomplished 

throughout the development process as well as future improvements that can be made. 

 Main requisites:  

• Provide a basic yet complete set of data upon turning on the device. This ranges from SOC, 

Temperature, Discharge Current, Discharge Voltage, Charge Current and Charge Voltage as 

the main data points that are necessary to be available throughout the entire process 

visualization and control process (discharge, charging…); 

• Graph of SOC variation over time that can be accessed by pressing the top left button in the 

interface. This is important to better visualise the history of the unit in question and if it was 

discharged or charged and how long it took; 

• Possibility of controlling the main aspects of the functioning of a storage unit. 

 

 

 



 

16 
 

 

As for future developments, the following improvements can be applied:  

• Individual data of each, separate cell; 

• Possibility of switching off and on cell/module as to redirect energy production or 

consumption as necessary; 

• Others… 

The interface must be, at its essence, easy to use while, at the same time, providing information 

and control to any user.  

 

 

3.2 Architecture of the connection 
 

The interface does not work as a separate, independent entity but, instead, is part of a more 

intricate system consisting of several parts that need to be operating seamlessly and in harmony with 

each other.  

First, there is the battery, that either provides the energy to the load or receives it from a 

RES or electric battery charger or another source. This primary block is comprised of the BMS as well 

which was already described in Chapter 2 and the battery pack can have a different number of cells, 

depending on the model and manufacturer and modules as well.  

The first block is connected to the interface by means of Controller Area Network (CANH and 

CANL) connections, described in more detail later on which, in turn, is connected to the visual display 

using the program. This will be explained further down this section.  

For future development, this interface can also be connected to an inverter to the grid, 

namely bidirectional AC/DC. In the following diagram I will present both the work accomplished 

throughout the project and also possible implementation.  



 

17 
 

 

Figure 7 - Diagram of the proposed solution 

 

 

The green arrows represent the data communication between the controller (BMS), battery 

pack, interface, display and inverter whereas the orange arrows are physical, electrical connections. 

The connections are all bidirectional, creating a feedback system where information is passed from 

the BMS to the battery, imposing limits and safety measures and the battery provides the values to 

be read by the BMS. The BMS also sends values to the interface and the display is a representation of 

the data read by the interface and, in turn, can also serve as a gateway for controlling purposes by 

the user.  

 

 

 

 

 

 

 

 

 

 



 

18 
 

 

 

3.3 Devices used 
 

The following part of the project is to adapt and program an interface system using the OPUS 

Projektor software in conjunction with the Tesla module and SIMP BMS board. The physical display is 

a Wachendorff OPUSA3 which is connected from the CAN to the computer. 

 

3.4.1 SIMP BMS Board 

 

The board that connects the different batteries or set of batteries (as is the case of the VW 

modules) is custom built for this purpose and will be shown in the next figures, 8 and 9. 

 

 

Figure 8 - SIMP BMS board (Front) 

 

 

 

 

 

 

 



 

19 
 

 

 

 

Figure 9 - SIMP BMS board (Back) 

 

 

The wiring procedure and setup can be seen in Annex B and it requires a 12V source as well 

as CAN communication in the form of CANH (CAN High) and CANL (CAN Low) wires connected from 

the battery or serial port (8 connected batteries) to the board itself. 

 

 

 

 

 

 

 

 

 

 



 

20 
 

 

3.4.2 Physical display  

 

The goal is to make a simple yet efficient display, shown in figures 10 and 11, that can be 

used by the average customer and provides all the information necessary for the best performance 

and usability as possible. The information is the following: SOC, SOH, Discharge Current, Discharge 

Voltage, Charge Current, Charge Voltage and Temperature. This information was already being read 

by the Arduino and board apparatus, so it was just a visual and interactive upgrade and bridging the 

abstraction level closer to a client/non-technical user perspective.  

 

 

Figure 10 - Physical display (Front) 



 

21 
 

             

Figure 11 - Physical display (Back) 

 

It is necessary to document the variables being used for the display, its type (integer, char 

or other) and where in the CAN they come from, represented in Table 1. 

 

 

 

Table 1 - Variables in the display 

Variables Type Value CAN ID 

chrgvolt uint16 49100mV 0x351 

chrgcurr int 0 0x351 

disvolt uint16 42000mV 0x356 

discurr int 0 0x356 

SOH uint16 100 
(Max) 

0x355 

SOC int 100 
(Max) 

0x355 

alarm uchar 0,0,0,0 0x35A 

temp int 0 0x356 

time?  int  0  

name uchar - 0x370 

number uchar - 0x35E 
 

 

 



 

22 
 

 

 

 

 

Figure 12 - Building the interface 

 

 

Some information is perceived to be of the utmost importance, especially for the end user. 

That is why I chose to create a graph for the SOC and how it varies throughout its usage, namely, if 

it was discharged the day before and how much was it used, how long it took to recharge. 

Temperature is also data that is relatable and easy to understand by any non-technical user however, 

it is linked with the alarm, in case it goes under or over the set parameters of the battery.  

 

 

 

 



 

23 
 

 

 

 

 

 

Figure 13 - SOC graph editing 

 

Using the OPUS software, I managed to design a functioning display system, seen in the 

previous figures, 12 and 13, where the most important part was declaring the correct IDs from Table 

3 in order to get the readings from the BMS. This display works with VW and Tesla since they all have 

the same communication protocols, hence, it is a ubiquitous system as intended. After connecting I 

was able to get the values as can be seen in Figures 29 and 30, VW and Tesla respectively in the 

display. 

Ultimately, the prime objective of said interface is, not only to visualise in a fast and 

seamless way the important values, when there is some sort of error, but also to control and send 

messages. For instance, being able to simply turn on or off each module or divert them for different 

loads seems to be paramount for a smart, controllable and reliable energy management system. 



 

24 
 

 

 

Figure 14 - Setup for the VW series 



 

25 
 

 

Figure 15 - SOC graph test 

 

 

Figures 14 and 15 show both the complete interconnection with the 8 VW modules, 12V power 

source and display through use of CAN protocol and the testing of the SOC value in a graph in said 

physical display.  



 

26 
 

 

Figure 16 - Fully operational display connected to the modules 



 

27 
 

 

Figure 17 - Detail of the SIMP board wired to the display using CAN 

 

Figures 16 and 17 detail the connections with the board and physical display. 



 

28 
 

 

Figure 18 - VW series interface 

 

Figure 19 - Tesla interface 

 

Figures 18 and 19 show, respectively, the values for VW (8 modules) and Tesla.  



 

29 
 

 

The following step is to improve the usability of the interface itself, now that it can already 

provide all the necessary values. This is fairly important from an adoption perspective since there is 

a need for simplicity and to only get the information that is necessary for a day to day usage without 

being too cluttered by technical data.  

The main data that ought to be available in the home screen of the display is SOC, current 

and voltage as well as temperature. Furthermore, there is a list of options that can be implemented: 

1. Being able to control how many modules are active at a certain time and the voltage 

they provide; 

2. Switch between storage (receiving) and battery (feeding); 

3. Detailed information about tariffs and total energy produced. 

 

These options can improve the storage system efficiency. 

 

3.4 Programming the microcontroller 
 

The software used for Arduino Due was open source mostly from Tom de Bree and the main 

program can be consulted in Annex C. As far as communication is concerned, the Victron VE Can 

protocol, namely the addresses it communicates through, is the same for the VW and Tesla, as can 

be seen in Table 3. Since the communication protocol is the same, this makes the interface being 

built more universal due to the possibility of being used for more than one type/model of batteries, 

increasing its versatility and usability turning it into a more ubiquitous system overall.  

 

Figure 20 - Basic fluxogram of program iteration 

 



 

30 
 

This fluxogram (Figure 20) is but a simple representation of the most basic function of the 

controller to its core; the processing of data, in the form of variables such as voltage and current, 

yielding of status, dependent on aforementioned variables and thresholds and consequential status. 

It is then possible to change the values and thresholds. 

 

 

Figure 21 - Snippet of the BMS code for VW [7] 

 

It can be seen in the Figure 21 above some variables used for the code, namely SOH, the 

maximum voltage for discharge and charging processes which depends on the battery itself and it is 

dictated by the respective BMS. 

As for the Tesla situation, the code, namely the communication protocol with the Victron VE 

Can as well as the settings to be specified and changed for a particular module, follows the same 

structure as for the VW so I choose to present the different programs interchangeably since the main 

function of the code presented is the same and can be analysed like that. 

 



 

31 
 

 

 

Figure 22 - Specifications for the Tesla battery [7] with changes  

 

Focusing on the “settings.CAP” function, seen on Figure 22, the value was changed from 100 

to 220 Ah to more accurately represent the battery since it is its stated capacity. The speed that the 

CAN is operating at is 500k Bd and is imperative that its speed be in sync with the BMS otherwise 

there will be no communication possible between the entities and no information being received and 

transmitted. This part of the code was changed as well as some “print”s in the console for better 

visibility of the information being provided. The ESS mode yields the possible errors such as 

Overvoltage due to cell unbalancing or Undervoltage and can be used by setting it to 1. 

 



 

32 
 

 

 

 

3.5 Smart grid/metering integration  
 

For this last step it is necessary to convert energy and transmit it to and from the grid, as 

well as DERs that the user may have installed in the electrical structure itself.  For that, not only an 

accurate and complex control system is fundamental for the operation but also reliable and effective 

DER and RES as well as AC/DC inverter. 

Since the prototype is a 50kWh storage unit  meaning either 10 Tesla modules or 50 VW 

modules (or a combo of both) there is a need to keep them balanced and loaded so voltage, current 

and temperature info are important basis but phasing (Φ) is a critical element for a well-functioning 

grid, and that is mitigated by the AC/DC converter itself. 

The infrastructure necessary for an optimised endemic storage inclusion in the daily use of 

an average consumer relates not only to the storage equipment itself but also ancillary services 

namely the regulation of certain parameters such as wave quality (frequency, flicker related issues) 

and the distribution of loads and control of consumption by the MGCC (Micro Grid Central Controller).  

 

 

 

Figure 23 - Example of Microgrid Architecture [8] 

 

 

 

 



 

33 
 

In the previous structure, represented in Figure 23, it can be observed that the electric grid 

is powered in the Low Voltage (LV) side by RES such as wind generator and Photovoltaic (PV) cell. 

There can be seen a storage device and the apparatus necessary for its usage, namely, an AC/DC 

inverter which conducts the bidirectional interface to the grid. The storage device not only receives 

energy, but it can also transmit it to the grid, acting as a generator. For this, there is a MC 

(Microcontroller) and LC (Load Controller) upstream of the hierarchy.  

The traditional infrastructure of the energy market is centralized, meaning there is a main 

producer of energy, usually in the form of a government monopoly company which not only builds 

but also oversees the entire production and transmission structure (power plants, electrical grids, 

control systems). The TSO (Transmission System Operator) and DSO (Distribution System Operator) 

act independently from each other and have the goals of streamlining the energy as best as possible 

without causing faults or surcharges on the grid.  

The storage device, linked to the AC/DC inverter, can be the set of modules that I worked 

on and there is a bidirectionality involved, meaning it is both being powered, either by the grid or 

the RES of the facility, but it serves as battery as well, depending on the needs and desires of the 

user and climate/weather conditions at a certain time or even availability of the grid.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

34 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

35 
 

 

 

 

Chapter 4 

Practical cases and testing 
 

 

 

 

This section will go through the setup process of connecting batteries, VW in series or a single 

Tesla module, as well as tests of charging and discharging process, thus simulating an actual storage 

unit/load.  

 

4.1 Setup  
 

The element being studied and developed is a VW battery module which can be seen in figures 

24 and 25, as well as its BMS. 

                                                     

Figure 24 - VW battery module and respective CAN bus connection 



 

36 
 

 

These batteries have 12 cells each and have a nominal capacity of 25Ah, 1086Wh with a 

voltage of 44.4V per module. Each module is protected by an aluminium cover and the 

communication is done through an SPI interface. They have 2 internal thermistors and a low-power 

microcontroller. They range from 3.22V to 4.08V when they start being discharged for safety 

reasons.  

The BMS is the device that wields information related to a battery in terms of voltage and 

current and their limits. It also provides information about SOC, SOH, temperature and others, 

depending on the specific battery and need for it. It can be used to improve and manipulate the 

battery and its functions as well with specific software. 

 

                                              

Figure 25 - VW BMS 

 

The connection of the module with the PC and, consequently, with the software BUSMASTER 

is done by using a Kvaser Leaf Light HS cable (Figure 26).   

 



 

37 
 

                                         

Figure 26 - Kvaser cable and connection with module 

 

 

4.2 Data gathering 
 

By using the software BUSMASTER which allows receiving CAN bus messages directly from the 

battery itself, I was able to collect 4 different IDs from the aforementioned module. 

 

Table 2 - Log information from a VW battery module 

Time  Direction  Channel  CAN ID  Type  DLC  Data Bytes  

12:22:20:3284 Rx 1 0x1A555402 x 8 81 00 00 00 FE FE FE FE 

12:22:20:3294 Rx 1 0x16A9541B x 8 80 AA A0 AA AA A0 AA AA 

12:22:20:8284 Rx 1 0x18FED202 x 5 0C 00 00 00 00 

12:22:20:8294 Rx 1 0x1A555461 x 8 82 20 20 31 39 2D 00 00 

 

Each module has specific IDs, visitble in Table 2 and provides different messages which, by 

previous methods of reverse engineering, it is known that the messages are related to temperature 

in steps of 0.5ºC for the first CAN ID and others are related to voltage and current presumably.  

For each module (8 in total) the 4 discernibly IDs from the BMS can be different. Due to this 

uniqueness it is necessary to evaluate each battery respectively. Furthermore, after this individual 

analysis they will be linked together in a series. The information can be reciprocal, meaning that not 

only can the information be received but also sent to the BMS in a later part of the development of 

the project ahead. 

The next step is to evaluate the entire communication protocol of the modules and respective 

BMSs and gather more information, represented in Table 3. 



 

38 
 

It is essential to have as many information as possible for the SOC and SOH as well due to the 

need of knowing the available energy for consumption and balancing with the necessity for energy at 

a given moment, meaning, if it meets the requirements for the need of energy. The SOH yields the 

battery’s capacity and remaining life cycle. 

 

 Table 3 - IDs from the 8 different batteries 

BUSMASTER - Exported Log File Report  

Timestamp Direction  Channel  CAN ID  Type  DLC  Data Bytes   

00:00:00:3270 Rx 1 0x18FED302 x 5 0C 00 00 00 00 B1 

00:00:00:3280 Rx 1 0x16A9541C x 8 80 AA A0 AA AA A0 AA AA   

00:00:00:3290 Rx 1 0x1A555462 x 8 81 32 37 34 30 DB 00 00   

00:00:00:8270 Rx 1 0x1A555403 x 8 7D 00 00 00 FE FE FE FE   

00:00:00:3870 Rx 1 0x18FED402 x 5 0C 00 00 00 00 B2 

00:00:00:3880 Rx 1 0x16A9541D x 8 80 AA A0 AA AA A0 AA AA   

00:00:00:3890 Rx 1 0x1A555463 x 8 82 20 20 31 39 2D 00 00   

00:00:00:8870 Rx 1 0x1A555404 x 8 7E 00 00 00 FE FE FE FE   

00:00:00:3030 Rx 1 0x1A555402 x 8 80 00 00 00 FE FE FE FE B3 

00:00:00:3040 Rx 1 0x16A9541B x 8 80 AA A0 AA AA A0 AA AA   

00:00:00:8030 Rx 1 0x18FED202 x 5 0C 00 00 00 00   

00:00:00:8040 Rx 1 0x1A555461 x 8 81 32 37 34 30 DB 00 00   

00:00:00:4810 Rx 1 0x18FED702 x 5 0C 00 00 00 00 B4 

00:00:00:4830 Rx 1 0x16A95420 x 8 80 AA A0 AA AA A0 AA AA   

00:00:00:4830 Rx 1 0x1A555466 x 8 82 20 20 31 39 97 00 00   

00:00:00:9810 Rx 1 0x1A555407 x 8 7E 00 00 00 FE FE FE FE   

00:00:00:1970 Rx 1 0x18FED102 x 5 0C 00 00 00 00 B5 

00:00:00:1980 Rx 1 0x16A9541A x 8 80 AA A0 AA AA A0 AA AA   

00:00:00:1980 Rx 1 0x1A555460 x 8 81 32 37 34 30 DB 00 00   

00:00:00:6970 Rx 1 0x1A555401 x 8 77 00 00 00 FE FE FE FE   

00:00:00:0370 Rx 1 0x18FED802 x 5 0C 00 00 00 00 B6 

00:00:00:0380 Rx 1 0x16A95421 x 8 80 AA A0 AA AA A0 AA AA   

00:00:00:0390 Rx 1 0x1A555467 x 8 82 20 20 31 39 2D 00 00   

00:00:00:5370 Rx 1 0x1A555408 x 8 7D 00 00 00 FE FE FE FE   

00:00:00:4960 Rx 1 0x18FED502 x 5 0C 00 00 00 00 B7 

00:00:00:4970 Rx 1 0x16A9541E x 8 80 AA A0 AA AA A0 AA AA   

00:00:00:4980 Rx 1 0x1A555464 x 8 80 34 31 48 20 16 00 00   

00:00:00:7960 Rx 1 0x1A555405 x 8 76 00 00 00 FE FE FE FE   

00:00:00:3910 Rx 1 0x1A555406 x 8 77 00 00 00 FE FE FE FE B8 

00:00:00:3920 Rx 1 0x16A9541F x 8 80 AA A0 AA AA A0 AA AA   

00:00:00:8910 Rx 1 0x18FED602 x 5 0C 00 00 00 00   

00:00:00:8920 Rx 1 0x1A555465 x 8 81 31 38 34 30 EC 00 00   

 



 

39 
 

 

 

 

 

 

Each of the 4 different ID types yields a different piece of information related to the battery: 

 

• 0x18FEDn02 is a simple unique tag for a battery with n being the number in the series and 

the data it provides is irrelevant; 

• 0x16A9541* is for cell balancing (which will be explored further down the document) and the 

data is important, A being for a balanced cell and 0 for inactive one meaning it should have 

as many “A”s as possible; 

• 0x1A55540n (with n being module number), gives the temperature readings in 0.5 °C steps 

and I infer the data being FE as normal temperature readings without crossing the limits; 

• 0x1A55546n seems to be an internal communication handshake between possibly different 

modules in series with the data having random numbers.   

 

 It was not possible to deduce and understand every single aspect of the communication 

protocol, namely the meaning of the transmitted “Data Bytes”, due to lack of information available 

for public consultation at the time by the manufacturer of the equipment. So it was purely by testing 

and deducing by reverse engineering that was possible to get the significance of said values.  

 

 

4.3 Interconnected batteries 
 

The following step was to connect all batteries in series through an 8 port CANbus serial cable 

as can be seen in figure 27.  

 



 

40 
 

 

Figure 27 - Series of 8 batteries (different IDs) 

 

The wiring diagram is included in Annex A and the schematic is shown in the next page, Figure 

28, and it consists of interconnecting the CANH and CANL respectively from the battery or set of 

batteries in this case, to the SIMP BMS board. The batteries need to be powered by a 12V voltage 

source and the connection on the CAN terminals (CANH and CANL) needs to have a 60Ω resistance 

between them. 

 



 

41 
 

 

Figure 28 - Schematic of the VW series connection 

 

 

 

The Battery Pack can be comprised of any number of modules with different specifications 

as long as the data communication can occur. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

42 
 

 

 

4.4 Module testing 
 

In order to evaluate the efficiency and quality of a particular module it is necessary to 

connect it to a load (Figure 30). An electronic load was used to simulate a real-life use case; a DC 

Electronic Load model AT8612. The battery chosen was the B6.  

 

 

Figure 29 - Electrical battery charger 

 

First part of the process involved charging the module with a 48V battery charger (Figure 29) 

connected to the electrical grid. This procedure took about 20 minutes (note that the battery, being 

second life, has a lower capacity than the original stated value). The battery is from July 24th 2015 

meaning it was over 3 years old at the time of the testing. However, there is no way of knowing how 

much usage it had since it is from a recall.  

 



 

43 
 

            

 

Figure 30 - Electronic load AT8612 

 

After charging the battery, I proceeded to test its capacity by connecting it to the electronic 

load. The threshold of the battery in terms of current and voltage is 6A and 48.9V meaning a low 

speed discharge, represented in Figure 31. 

 

 

Figure 31 - Initial values 

 

 



 

44 
 

 

 

As expected, the discharge process took significantly more time, around 3 hours to finish, 

without breaching the parameters of 40V and 6A since it would damage the battery to go any lower. 

       

 

 

Figure 32 - Values after discharge 

 

The value of 24Ah in a 25Ah battery represents a 96% SOC. To be taken into consideration 

that the battery could not lower the 40V mark, proved by Figure 32, hence it is not known if it could 

have powered the load even more. 

 

 

 

 

 

 

 



 

45 
 

 

4.5 Tesla module analysis  
 

This procedure involved wiring the exit port of the CANbus communication of a Tesla module 
as can be seen in Figure 33. 

 

 

 

Figure 33 - Tesla module connected to SIMP BMS board 

 

 This particular module has a capacity of 232Ah, energy of 5.3KWh and the cells have a 

nominal voltage of 3.8V and the cutoff process occurs at 4.2V for charging and 3.3V for discharging 

as was proven in testing. As for the discharge current, it reaches a maximum of 750A. The cells 

(444 per module) have 3400mAh of capacity. 



 

46 
 

 

Unlike the VW model, the SIMP BMS board does not require outside powering, being powered 

only by the 5V output from the battery itself. The BMS is embedded in the battery and through the 

plastic cover, seen in Figure 34 and 35. 

 

 

Figure 34 - Tesla BMS embedded in the battery 

 

Using the software from Tom de Bree for Tesla and adapting it, it was possible to get data 

once more. This module in particular had 2 temperature sensors with 3 significant digits each, 

meaning it was more precise. The same can be said of the voltage that it is given, making it a more 

accurate estimation.  



 

47 
 

 

Figure 35 - Tesla's Model S BMS 

 



 

48 
 

 

Figure 36 - Tesla menu 

 

This menu from Figure 36 yields data from the Tesla battery which, in turn, is provided by 

the BMS system, seen in the previous figure. Different status such as, Ready or Error, will depend on 

the thresholds defined and the values at a certain time that the battery is operating at. 

 

4.6 Feasibility 

 

After connecting all batteries, it is possible to infer that the system of the BMS, if there’s a 

certain imbalance between the cells of the module, does not yield the correct temperature, switching 

constantly to a negative outlier value by default.  

I managed to analyse the module in question and, like it appears in the terminal, had the 

lowest voltage value in total and the cell imbalance was over 0.25V, as can be seen in the monitor 

below with the debug settings turned on. 



 

49 
 

 

 

Figure 37 - Debug screen 

 

 

From Figure 37 and 38 we gather that in the module #2 it is possible to check there is an 

outlier value of -37.00C in the temperature in alternated measurements. At first, it was hypothesised 

that this could be due explained by low voltage, most specifically, low cell voltage in the first ones 

generating an imbalance between the others. After charging the module #2 and waiting for the 

balancing to take effect I switched the battery to one with the same ID set. This was to eliminate 

the possibility that the sensor in the original battery, which was already charged, was not damaged. 

The error persisted and kept giving the outlier value. This kept happening even after switching ports. 

The conclusion I reached was the issue was not in the battery itself but how the software is 

interpreting the given value. Furthermore, this overcharging would not have occurred in a practical 

situation of being used in the electrical vehicle as originally intended since the cells would discharge 

and charged at the same rate, having no need to wait for days for the balancing to be complete. 

 

 



 

50 
 

 

Figure 38 - Menu with "Error" status due to Overvoltage 

 

After a week of discharge, there was no significant voltage drop so I decided to connect it to 

a 40W load as to speed up the process as can be seen in Figure 39. 

 



 

51 
 

 

Figure 39 - Discharge process 



 

52 
 

 

Figure 40 - 40W load 

 

 

This discharging process, shown in Figure 40, yielded results in the span of an hour and the 

highest cell dropped below 4.1V meaning there was no more Overvoltage status. It can be inferred 

that since this was an abnormal situation it would not require that long to discharge by normal means 

(no load).  



 

53 
 

 

Figure 41 - Menu with correct values 

 

 

By analysing the difference in voltages in the cells, there is some difference between the 

first 7 cells in most modules and the last 5. In figure 41, it is possible to see the BMS structure and 

there are 2 controllers, each with a maximum of 7 cells being controlled. This means that the first 7 

cells have a different controlling unit than the last 5 which might explain the slight offset between 

the cells. This difference, however, is negligible and causes no detriment to the functioning of the 

module after this is balanced and the highest cell goes below 4.1V. To sum up, it is possible to see 

the overall voltage in every individual cell with a total of 96 (12 per module), and the temperature 

of each module. I modified the code because it was reading 3 temperatures but since there is only 1 

sensor in these batteries it was yielding a null value. There’s an aggregate of the voltage in the 

modules, lowest and highest cell voltage and average temperature of the modules. This data is crucial 

for safety and performance related processes since overvoltage and temperature over the maximum 

stipulated one can damage the equipment and surroundings heavily and balanced cells are something 

to thrive for. The testing was now complete. 

 After some minor modifications on the code and getting temperatures and voltage in each 

cell, the next step is to optimise the functionality of the batteries, most specifically, their 

communication protocols as to: 

 

1. Manipulate each cell individually by means of balancing; 

2. Test the limits of temperature at which the battery may operate in a storage 

environment; 

3. Control easily and view accurate information in real time. 

 



 

54 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

55 
 

 

 

 

 

Chapter 5 

Conclusions 
 

 

 This section will wrap up and clear up some possible errors and incomplete features 

throughout the process and propose fixes to be made in the future. Overall, it will be review of the 

entire process thus far. 

 

5.1 Practical usage and implementation 
 

As previously mentioned throughout this document, there is a pressing problem to be solved 

with the integration of DER and RES for two main reasons: impossibility of controlling weather and 

climate conditions and instability on the grid. This implies that a swift and accurate control 

equipment in tune with the storage unit that can regulate the strain on the grid of production and 

consumption without compromising continuous usage is an essential gear in the entire process.  

From the perspective of a user it is important to have a product that can be used in a fast 

and manageable way. As referred previously, this project and, consequently, the product that was 

delivered at the end of it, has a real-life use case for the new paradigm of RES and DER with more 

independence and control to the end-user, increasing profits and reducing energy consumption 

without compromising quality of life and reliability and safety. This interface and electrical 

installation that is connected to it is, then, a solution for a problem in the world.  

The project could not continue at the time because New Electric did not yet have an inverter, 

that is supposed to be delivered by another company (partnership). However, I managed to create a 

working product by studying the BMS operation and communication modes and then CAN connections 

and, by methods of trial and error and reverse engineering, achieved positive results. Since most of 

the information had to be gathered and analysed from scratch and most of the technical and 

theoretical practices were complementary to what I learned in the course, I had to learn and try 

different possibilities and get to a solution.  

 



 

56 
 

5.2 Future work 
 

• Improve functionalities of the interface: This can be done by continue programming and 

adding features to the interface without forgetting the ease of use required for this particular 

setting. Said improvements range from more information (individual cell values) to better 

visual. 

 

• Connection to the inverter: The final part of the project will require using the battery pack 

and display setup as storage unit in an industrial or housing facility. The aforementioned unit 

requires an inverter for grid connection that was not available at the time I did my project. 

 

 

As for the batteries that can be used, the program and communication protocols are the same 

for VW, Tesla and Panasonic, at least. The configuration and schematics may vary in other batteries, 

but the essence is the same as well as possible connection to the grid meaning the interface can 

easily be adapted for other modules and be improved on them as well with further control of modules 

and even individual cells and bidirectionality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

57 
 

 

 

 

 

References 
 

 

 

[1]  Electrifying the future. Retrieved September 28, 2018, from Rolls-Royce: https://www.rolls-

royce.com/media/our-stories/electrification.aspx#e-fan-x 

[2]  Bree, T. d. (2018). VWBMSV2 and TeslaBMSV2.  

[3]  Tesla. (2018), PowerWall. Retrieved October 29, 2018, from 

https://www.tesla.com/powerwall/ 

[4]  IEA. Energy storage Tracking Clean Energy Progress, Retrieved October 29, 2018, from 

https://www.iea.org/tcep/energyintegration/energystorage/ 

[5]  Lithium Balance. (2016), s-BMS User Manual Version 2.01.  

[6]  Azure International . (2018). Energy Storage World Markets Report. 

[7]  Global EV Outlook 2018. Retrieved September 28, 2018, from https://www.iea.org/gevo2018/ 

[8]  WIREs Energy Environ 2013, 2: 86–103 doi: 10.1002/wene.34.  

 

 

  

https://www.rolls-royce.com/media/our-stories/electrification.aspx#e-fan-x
https://www.rolls-royce.com/media/our-stories/electrification.aspx#e-fan-x
https://www.tesla.com/powerwall/
https://www.iea.org/tcep/energyintegration/energystorage/
https://www.iea.org/gevo2018/


 

58 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

59 
 

 

 

 

 

Annexes 

A: VW battery, BMS and data connections 
 

 

 

 



 

60 
 

 

 

 

B: Wiring manual for SIMP BMS board 
 

 

 

 

 



 

61 
 

 

 

 

 

 

 

 

 

 



 

62 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

63 
 

 

 

 

 

C: VWBMSV2 (January 2019) 
 

#include "BMSModuleManager.h" 

#include <Arduino.h> 

#include "config.h" 

#include "SerialConsole.h" 

#include "Logger.h" 

#include <ADC.h> //https://github.com/pedvide/ADC 

#include <EEPROM.h> 

#include <FlexCAN.h> //https://github.com/teachop/FlexCAN_Library  

#include <SPI.h> 

#include <Filters.h>//https://github.com/JonHub/Filters 

#include "BMSUtil.h" 

#define CPU_REBOOT (_reboot_Teensyduino_()); 

 

BMSModuleManager bms; 

SerialConsole console; 

EEPROMSettings settings; 

 

/////Version Identifier///////// 

int firmver = 190113; 

//Curent filter// 

float filterFrequency = 5.0 ; 

FilterOnePole lowpassFilter( LOWPASS, filterFrequency ); 

 

//Simple BMS V2 wiring// 

const int ACUR1 = A0; // current 1 

const int ACUR2 = A1; // current 2 

const int IN1 = 17; // input 1 - high active 

const int IN2 = 16; // input 2- high active 

const int IN3 = 18; // input 1 - high active 

const int IN4 = 19; // input 2- high active 

const int OUT1 = 11;// output 1 - high active 

const int OUT2 = 12;// output 1 - high active 

const int OUT3 = 20;// output 1 - high active 

const int OUT4 = 21;// output 1 - high active 

const int OUT5 = 22;// output 1 - high active 

const int OUT6 = 23;// output 1 - high active 

const int OUT7 = 5;// output 1 - high active 

const int OUT8 = 6;// output 1 - high active 

const int led = 13; 

const int BMBfault = 11; 

 

byte bmsstatus = 0; 

//bms status values 

#define Boot 0 

#define Ready 1 

#define Drive 2 



 

64 
 

#define Charge 3 

#define Precharge 4 

#define Error 5 

// 

//Current sensor values 

#define Undefined 0 

#define Analoguedual 1 

#define Canbus 2 

#define Analoguesing 3 

// 

//Charger Types 

#define NoCharger 0 

#define BrusaNLG5 1 

#define ChevyVolt 2 

#define Eltek 3 

#define Elcon 4 

// 

 

int Discharge; 

//variables for output control 

int pulltime = 1000; 

int contctrl, contstat = 0; //1 = out 5 high 2 = out 6 high 3 = both 

high 

unsigned long conttimer1, conttimer2, conttimer3, Pretimer, Pretimer1 = 

0; 

uint16_t pwmfreq = 15000;//pwm frequency 

 

int pwmcurmax = 200;//Max current to be shown with pwm 

int pwmcurmid = 50;//Mid point for pwm dutycycle based on current 

int16_t pwmcurmin = 0;//DONOT fill in, calculated later based on other 

values 

 

//variables for VE driect bus comms 

char* myStrings[] = {"V", "14674", "I", "0", "CE", "-1", "SOC", "800", 

"TTG", "-1", "Alarm", "OFF", "Relay", "OFF", "AR", "0", "BMV", "600S", 

"FW", "212", "H1", "-3", "H2", "-3", "H3", "0", "H4", "0", "H5", "0", 

"H6", "-7", "H7", "13180", "H8", "14774", "H9", "137", "H10", "0", 

"H11", "0", "H12", "0"}; 

//variables for VE can 

uint16_t chargevoltage = 49100; //max charge voltage in mv 

int chargecurrent; 

uint16_t disvoltage = 42000; // max discharge voltage in mv 

int discurrent; 

uint16_t SOH = 100; // SOH place holder 

unsigned char alarm[4], warning[4] = {0, 0, 0, 0}; 

unsigned char mes[8] = {0, 0, 0, 0, 0, 0, 0, 0}; 

unsigned char bmsname[8] = {'S', 'I', 'M', 'P', ' ', 'B', 'M', 'S'}; 

unsigned char bmsmanu[8] = {'T', 'O', 'M', ' ', 'D', 'E', ' ', 'B'}; 

long unsigned int rxId; 

unsigned char len = 0; 

byte rxBuf[8]; 

char msgString[128];                        // Array to store serial 

string 

uint32_t inbox; 

signed long CANmilliamps; 

//struct can_frame canMsg; 

//MCP2515 CAN1(10); //set CS pin for can controlelr 

 



 

65 
 

//variables for current calulation 

int value; 

uint16_t offset1 = 1735; 

uint16_t offset2 = 1733; 

int highconv = 285; 

float currentact, RawCur; 

float ampsecond; 

unsigned long lasttime; 

unsigned long looptime, looptime1, UnderTime, cleartime, chargertimer = 

0; //ms 

int currentsense = 14; 

int sensor = 1; 

//running average 

const int RunningAverageCount = 16; 

float RunningAverageBuffer[RunningAverageCount]; 

int NextRunningAverage; 

//Variables for SOC calc 

int SOC = 100; //State of Charge 

int SOCset = 0; 

int SOCtest = 0; 

///charger variables 

int maxac1 = 16; //Shore power 16A per charger 

int maxac2 = 10; //Generator Charging 

int chargerid1 = 0x618; //bulk chargers 

int chargerid2 = 0x638; //finishing charger 

float chargerendbulk = 10.0; //V before Charge Voltage to turn off the 

bulk charger/s 

float chargerend = 10.0; //V before Charge Voltage to turn off the 

finishing charger/s 

int chargertoggle = 0; 

int ncharger = 1; // number of chargers 

//variables 

int outputstate = 0; 

int incomingByte = 0; 

int storagemode = 0; 

int x = 0; 

int balancecells; 

int cellspresent = 0; 

int Charged = 0; 

 

//VW BMS CAN variables//////////// 

int controlid = 0x0BA; 

int moduleidstart = 0x1CC; 

//Serial Expansion Variables/// 

int SerialID = 0; //ID assigned over serialbus 

int SerialSlaves = 0; //number of slaves present 

 

//Debugging modes////////////////// 

int debug = 1; 

int gaugedebug = 0; 

int inputcheck = 0; //read digital inputs 

int outputcheck = 0; //check outputs 

int candebug = 0; //view can frames 

int debugCur = 0; 

int CSVdebug = 0; 

int menuload = 0; 

int debugdigits = 2; //amount of digits behind decimal for voltage 

reading 



 

66 
 

 

ADC *adc = new ADC(); // adc object 

void loadSettings() 

{ 

  Logger::console("Resetting to factory defaults"); 

  settings.version = EEPROM_VERSION; 

  settings.checksum = 2; 

  settings.canSpeed = 500000; 

  settings.batteryID = 0x01; //in the future should be 0xFF to force it 

to ask for an address 

  settings.OverVSetpoint = 4.1f; 

  settings.UnderVSetpoint = 3.0f; 

  settings.ChargeVsetpoint = 4.1f; 

  settings.ChargeHys = 0.2f; // voltage drop required for charger to 

kick back on 

  settings.DischVsetpoint = 3.2f; 

  settings.CellGap = 0.2f; //max delta between high and low cell 

  settings.OverTSetpoint = 65.0f; 

  settings.UnderTSetpoint = -10.0f; 

  settings.ChargeTSetpoint = 0.0f; 

  settings.DisTSetpoint = 40.0f; 

  settings.WarnToff = 5.0f; //temp offset before raising warning 

  settings.IgnoreTemp = 0; // 0 - use both sensors, 1 or 2 only use 

that sensor 

  settings.IgnoreVolt = 0.5;// 

  settings.balanceVoltage = 3.9f; 

  settings.balanceHyst = 0.04f; 

  settings.logLevel = 2; 

  settings.CAP = 100; //battery size in Ah 

  settings.Pstrings = 2; // strings in parallel used to divide voltage 

of pack 

  settings.Scells = 14;//Cells in series 

  settings.discurrentmax = 300; // max discharge current in 0.1A 

  settings.chargecurrentmax = 300; //max charge current in 0.1A 

  settings.chargecurrentend = 50; //end charge current in 0.1A 

  settings.socvolt[0] = 3100; //Voltage and SOC curve for voltage based 

SOC calc 

  settings.socvolt[1] = 10; //Voltage and SOC curve for voltage based 

SOC calc 

  settings.socvolt[2] = 4100; //Voltage and SOC curve for voltage based 

SOC calc 

  settings.socvolt[3] = 90; //Voltage and SOC curve for voltage based 

SOC calc 

  settings.invertcur = 0; //Invert current sensor direction 

  settings.cursens = 2; 

  settings.voltsoc = 0; //SOC purely voltage based 

  settings.Pretime = 5000; //ms of precharge time 

  settings.conthold = 50; //holding duty cycle for contactor 0-255 

  settings.Precurrent = 1000; //ma before closing main contator 

  settings.Serialexp = 0; //0 standalone - 1 Serial Master - 2 Serial 

Slave 

  settings.gaugelow = 50; //empty fuel gauge pwm 

  settings.gaugehigh = 255; //full fuel gauge pwm 

  settings.ESSmode = 0; //activate ESS mode 

  settings.chargertype = 2; // 1 - Brusa NLG5xx 2 - Volt charger 0 -No 

Charger 

  settings.chargerspd = 100; //ms per message 



 

67 
 

  settings.UnderDur = 5000; //ms of allowed undervoltage before 

throwing open stopping discharge. 

  settings.CurDead = 5;// mV of dead band on current sensor 

} 

CAN_message_t msg; 

CAN_message_t inMsg; 

CAN_filter_t filter; 

uint32_t lastUpdate; 

 

void setup() 

{ 

  delay(4000);  //just for easy debugging. It takes a few seconds for 

USB to come up properly on most OS's 

  pinMode(ACUR1, INPUT); 

  pinMode(ACUR2, INPUT); 

  pinMode(IN1, INPUT); 

  pinMode(IN2, INPUT); 

  pinMode(IN3, INPUT); 

  pinMode(IN4, INPUT); 

  pinMode(OUT1, OUTPUT); // drive contactor 

  pinMode(OUT2, OUTPUT); // precharge 

  pinMode(OUT3, OUTPUT); // charge relay 

  pinMode(OUT4, OUTPUT); // Negative contactor 

  pinMode(OUT5, OUTPUT); // pwm driver output 

  pinMode(OUT6, OUTPUT); // pwm driver output 

  pinMode(OUT7, OUTPUT); // pwm driver output 

  pinMode(OUT8, OUTPUT); // pwm driver output 

  pinMode(led, OUTPUT); 

  analogWriteFrequency(OUT5, pwmfreq); 

  analogWriteFrequency(OUT6, pwmfreq); 

  analogWriteFrequency(OUT7, pwmfreq); 

  analogWriteFrequency(OUT8, pwmfreq); 

  Can0.begin(500000); 

 

  //set filters for standard 

  for (int i = 0; i < 8; i++) 

  { 

    Can0.getFilter(filter, i); 

    filter.flags.extended = 0; 

    Can0.setFilter(filter, i); 

  } 

  //set filters for extended 

  for (int i = 9; i < 13; i++) 

  { 

    Can0.getFilter(filter, i); 

    filter.flags.extended = 1; 

    Can0.setFilter(filter, i); 

  } 

  //if using enable pins on a transceiver they need to be set on 

  adc->setAveraging(16); // set number of averages 

  adc->setResolution(16); // set bits of resolution 

  adc->setConversionSpeed(ADC_CONVERSION_SPEED::MED_SPEED); 

  adc->setSamplingSpeed(ADC_SAMPLING_SPEED::MED_SPEED); 

  adc->startContinuous(ACUR1, ADC_0); 

 

  SERIALCONSOLE.begin(115200); 

  SERIALCONSOLE.println("Starting up!"); 

  SERIALCONSOLE.println("SimpBMS V2 VW"); 



 

68 
 

  // Display reason the Teensy was last reset 

  Serial.println(); 

  Serial.println("Reason for last Reset: "); 

  if (RCM_SRS1 & RCM_SRS1_SACKERR)   Serial.println("Stop Mode 

Acknowledge Error Reset"); 

  if (RCM_SRS1 & RCM_SRS1_MDM_AP)    Serial.println("MDM-AP Reset"); 

  if (RCM_SRS1 & RCM_SRS1_SW)        Serial.println("Software Reset");                   

// reboot with SCB_AIRCR = 0x05FA0004 

  if (RCM_SRS1 & RCM_SRS1_LOCKUP)    Serial.println("Core Lockup Event 

Reset"); 

  if (RCM_SRS0 & RCM_SRS0_POR)       Serial.println("Power-on Reset");                   

// removed / applied power 

  if (RCM_SRS0 & RCM_SRS0_PIN)       Serial.println("External Pin 

Reset");               // Reboot with software download 

  if (RCM_SRS0 & RCM_SRS0_WDOG)      Serial.println("Watchdog(COP) 

Reset");              // WDT timed out 

  if (RCM_SRS0 & RCM_SRS0_LOC)       Serial.println("Loss of External 

Clock Reset"); 

  if (RCM_SRS0 & RCM_SRS0_LOL)       Serial.println("Loss of Lock in 

PLL Reset"); 

  if (RCM_SRS0 & RCM_SRS0_LVD)       Serial.println("Low-voltage Detect 

Reset"); 

  Serial.println(); 

  /////////////////// 

  // enable WDT 

  noInterrupts();                                         // don't 

allow interrupts while setting up WDOG 

  WDOG_UNLOCK = WDOG_UNLOCK_SEQ1;                         // unlock 

access to WDOG registers 

  WDOG_UNLOCK = WDOG_UNLOCK_SEQ2; 

  delayMicroseconds(1);                                   // Need to 

wait a bit.. 

  WDOG_TOVALH = 0x1000; 

  WDOG_TOVALL = 0x0000; 

  WDOG_PRESC  = 0; 

  WDOG_STCTRLH |= WDOG_STCTRLH_ALLOWUPDATE | 

                  WDOG_STCTRLH_WDOGEN | WDOG_STCTRLH_WAITEN | 

                  WDOG_STCTRLH_STOPEN | WDOG_STCTRLH_CLKSRC; 

  interrupts(); 

  ///////////////// 

  SERIALBMS.begin(115200); 

  //SERIALBMS.begin(612500); //Tesla serial bus 

  //VE.begin(19200); //Victron VE direct bus 

#if defined (__arm__) && defined (__SAM3X8E__) 

  serialSpecialInit(USART0, 612500); //required for Due based boards as 

the stock core files don't support 612500 baud. 

#endif 

  SERIALCONSOLE.println("Started serial interface to BMS."); 

  EEPROM.get(0, settings); 

  if (settings.version != EEPROM_VERSION) 

  { 

    loadSettings(); 

  } 

  bms.renumberBoardIDs(); 

  Logger::setLoglevel(Logger::Off); //Debug = 0, Info = 1, Warn = 2, 

Error = 3, Off = 4 

  lastUpdate = 0; 

  //bms.clearFaults(); 



 

69 
 

  bms.findBoards(); 

  digitalWrite(led, HIGH); 

  bms.setPstrings(settings.Pstrings); 

  bms.setSensors(settings.IgnoreTemp, settings.IgnoreVolt); 

  ////Calculate fixed numbers 

  pwmcurmin = (pwmcurmid / 50 * pwmcurmax * -1); 

  //// 

  if (settings.Serialexp == 1) 

  { 

    delay(300);//wait for all other boards to boot 

    Serialslaveinit(); 

  } 

 

  ///precharge timer kickers 

  Pretimer = millis(); 

  Pretimer1  = millis(); 

} 

 

void loop() 

{ 

  while (Can0.available()) 

  { 

    canread(); 

  } 

  if (SERIALCONSOLE.available() > 0) 

  { 

    menu(); 

  } 

  if (settings.Serialexp != 0) 

  { 

    if (SERIALBMS.available() > 0) 

    { 

      Serialexp(); 

    } 

  } 

 

  if (outputcheck != 1) 

  { 

    contcon(); 

    if (settings.ESSmode == 1) 

    { 

      bmsstatus = Boot; 

      contctrl = contctrl | 4; //turn on negative contactor 

    

      if (digitalRead(IN1) == LOW)//Key OFF 

      { 

        if (storagemode == 1) 

        { 

          storagemode = 0; 

        } 

      } 

      else 

      { 

        if (storagemode == 0) 

        { 

          storagemode = 1; 

        } 

      } 



 

70 
 

      if (bms.getHighCellVolt() > settings.balanceVoltage && 

bms.getHighCellVolt() > bms.getLowCellVolt() + settings.balanceHyst) 

      { 

        balancecells = 1; 

      } 

      else 

      { 

        balancecells = 0; 

      } 

      //Pretimer + settings.Pretime > millis(); 

      if (storagemode == 1) 

      { 

        if (bms.getHighCellVolt() > settings.StoreVsetpoint) 

        { 

          digitalWrite(OUT3, LOW);//turn off charger 

          contctrl = contctrl & 253; 

          Pretimer = millis(); 

          Charged = 1; 

        } 

        else 

        { 

          if (Charged == 1 && bms.getHighCellVolt() < 

(settings.StoreVsetpoint - settings.ChargeHys)) 

          { 

            Charged = 0; 

            digitalWrite(OUT3, HIGH);//turn on charger 

            if (Pretimer + settings.Pretime < millis()) 

            { 

              contctrl = contctrl | 2; 

              Pretimer = 0; 

            } 

          } 

        } 

      } 

      else 

      { 

        if (bms.getHighCellVolt() > settings.OverVSetpoint || 

bms.getHighCellVolt() > settings.ChargeVsetpoint) 

        { 

          digitalWrite(OUT3, LOW);//turn off charger 

          contctrl = contctrl & 253; 

          Pretimer = millis(); 

          Charged = 1; 

        } 

        else 

        { 

          if (Charged == 1 && bms.getHighCellVolt() < 

(settings.ChargeVsetpoint - settings.ChargeHys)) 

          { 

            Charged = 0; 

            digitalWrite(OUT3, HIGH);//turn on charger 

            if (Pretimer + settings.Pretime < millis()) 

            { 

              // Serial.println(); 

              //Serial.print(Pretimer); 

              contctrl = contctrl | 2; 

            } 

          } 



 

71 
 

        } 

      } 

      if (bms.getLowCellVolt() < settings.UnderVSetpoint || 

bms.getLowCellVolt() < settings.DischVsetpoint) 

      { 

        digitalWrite(OUT1, LOW);//turn off discharge 

        contctrl = contctrl & 254; 

        Pretimer1 = millis(); 

      } 

      else 

      { 

        digitalWrite(OUT1, HIGH);//turn on discharge 

        if (Pretimer1 + settings.Pretime < millis()) 

        { 

          contctrl = contctrl | 1; 

        } 

      } 

      //pwmcomms(); 

    } 

    else 

    { 

      switch (bmsstatus) 

      { 

        case (Boot): 

          Discharge = 0; 

          digitalWrite(OUT3, LOW);//turn off charger 

          digitalWrite(OUT1, LOW);//turn off discharge 

          contctrl = 0; 

          bmsstatus = Ready; 

          break; 

        case (Ready): 

          Discharge = 0; 

          if (bms.getHighCellVolt() > settings.balanceVoltage && 

bms.getHighCellVolt() > bms.getLowCellVolt() + settings.balanceHyst) 

          { 

            bms.balanceCells(); 

            balancecells = 1; 

          } 

          else 

          { 

            balancecells = 0; 

          } 

          if (digitalRead(IN3) == HIGH && (bms.getHighCellVolt() < 

(settings.ChargeVsetpoint - settings.ChargeHys))) //detect AC present 

for charging and check not balancing 

          { 

            bmsstatus = Charge; 

          } 

          if (digitalRead(IN1) == HIGH) //detect Key ON 

          { 

            bmsstatus = Precharge; 

            Pretimer = millis(); 

          } 

          break; 

        case (Precharge): 

          Discharge = 0; 

          Prechargecon(); 

          break; 



 

72 
 

        case (Drive): 

          Discharge = 1; 

          if (digitalRead(IN1) == LOW)//Key OFF 

          { 

            digitalWrite(OUT4, LOW); 

            digitalWrite(OUT1, LOW); 

 

            contctrl = 0; //turn off out 5 and 6 

            bmsstatus = Ready; 

          } 

          break; 

        case (Charge): 

          Discharge = 0; 

          digitalWrite(OUT3, HIGH);//enable charger 

          if (bms.getHighCellVolt() > settings.balanceVoltage) 

          { 

            bms.balanceCells(); 

            balancecells = 1; 

          } 

          else 

          { 

            balancecells = 0; 

          } 

          if (bms.getHighCellVolt() > settings.ChargeVsetpoint) 

          { 

            digitalWrite(OUT3, LOW);//turn off charger 

            bmsstatus = Ready; 

          } 

          if (digitalRead(IN3) == LOW)//detect AC not present for 

charging 

          { 

            digitalWrite(OUT3, LOW);//turn off charger 

            bmsstatus = Ready; 

          } 

          break; 

        case (Error): 

          Discharge = 0; 

          if (digitalRead(IN3) == HIGH) //detect AC present for 

charging 

          { 

            bmsstatus = Charge; 

          } 

          if (cellspresent == bms.seriescells()) //detect a fault in 

cells detected 

          { 

            if (bms.getLowCellVolt() >= settings.UnderVSetpoint) 

            { 

              bmsstatus = Ready; 

            } 

          } 

          break; 

      } 

    } 

    if (settings.cursens == Analoguedual || settings.cursens == 

Analoguesing) 

    { 

      getcurrent(); 

    } 



 

73 
 

  } 

  if (millis() - looptime > 500) 

  { 

    looptime = millis(); 

    bms.getAllVoltTemp(); 

    //UV  check 

    if (settings.ESSmode == 1) 

    { 

      if (bms.getLowCellVolt() < settings.UnderVSetpoint || 

bms.getHighCellVolt() < settings.UnderVSetpoint) 

      { 

        bmsstatus = Error; 

      } 

    } 

    else //In 'vehicle' mode 

    { 

      if (bms.getLowCellVolt() < settings.UnderVSetpoint || 

bms.getHighCellVolt() < settings.UnderVSetpoint) 

      { 

        if (UnderTime > millis()) //check is last time not undervoltage 

is longer thatn UnderDur ago 

        { 

          bmsstatus = Error; 

        } 

      } 

      else 

      { 

        UnderTime = millis() + settings.UnderDur; 

      } 

    } 

 

    if (debug != 0) 

    { 

      printbmsstat(); 

      bms.printPackDetails(debugdigits); 

    } 

    if (CSVdebug != 0) 

    { 

      bms.printAllCSV(); 

    } 

    if (inputcheck != 0) 

    { 

      inputdebug(); 

    } 

    if (outputcheck != 0) 

    { 

      outputdebug(); 

    } 

    else 

    { 

      gaugeupdate(); 

    } 

    updateSOC(); 

    currentlimit(); 

    VEcan(); 

    sendcommand(); 

    if (cellspresent == 0) 

    { 



 

74 
 

      cellspresent = bms.seriescells();//set amount of connected cells, 

might need delay 

    } 

    else 

    { 

      if (cellspresent != bms.seriescells()) //detect a fault in cells 

detected 

      { 

        bmsstatus = Error; 

      } 

    } 

    if (settings.Serialexp != 0) 

    { 

      if (settings.Serialexp == 1) 

      { 

        SerialReqData(); 

      } 

    } 

    alarmupdate(); 

    resetwdog(); 

  } 

  if (millis() - cleartime > 5000) 

  { 

    //bms.clearmodules(); 

  } 

  if (millis() - looptime1 > settings.chargerspd) 

  { 

    looptime1 = millis(); 

    if (settings.ESSmode == 1) 

    { 

      chargercomms(); 

    } 

    else 

    { 

      if (bmsstatus == Charge) 

      { 

        chargercomms(); 

      } 

    } 

  } 

} 

 

void alarmupdate() 

{ 

  alarm[0] = 0x00; 

  if (settings.OverVSetpoint < bms.getHighCellVolt()) 

  { 

    alarm[0] = 0x04; 

  } 

  if (bms.getLowCellVolt() < settings.UnderVSetpoint) 

  { 

    alarm[0] |= 0x10; 

  } 

  if (bms.getAvgTemperature() > settings.OverTSetpoint) 

  { 

    alarm[0] |= 0x40; 

  } 

  alarm[1] = 0; 



 

75 
 

  if (bms.getAvgTemperature() < settings.UnderTSetpoint) 

  { 

    alarm[1] = 0x01; 

  } 

  alarm[3] = 0; 

  if ((bms.getHighCellVolt() - bms.getLowCellVolt()) > 

settings.CellGap) 

  { 

    alarm[3] = 0x01; 

  } 

 

  ///warnings/// 

  warning[0] = 0; 

  if (bms.getHighCellVolt() > (settings.OverVSetpoint - 

settings.WarnOff)) 

  { 

    warning[0] = 0x04; 

  } 

  if (bms.getLowCellVolt() < (settings.UnderVSetpoint + 

settings.WarnOff)) 

  { 

    warning[0] |= 0x10; 

  } 

 

  if (bms.getAvgTemperature() > (settings.OverTSetpoint - 

settings.WarnToff)) 

  { 

    warning[0] |= 0x40; 

  } 

  warning[1] = 0; 

  if (bms.getAvgTemperature() < (settings.UnderTSetpoint + 

settings.WarnToff)) 

  { 

    warning[1] = 0x01; 

  } 

} 

 

void gaugeupdate() 

{ 

  if (gaugedebug == 1) 

  { 

    SOCtest = SOCtest + 10; 

    if (SOCtest > 1000) 

    { 

      SOCtest = 0; 

    } 

    analogWrite(OUT8, map(SOCtest * 0.1, 0, 100, settings.gaugelow, 

settings.gaugehigh)); 

    SERIALCONSOLE.println("  "); 

    SERIALCONSOLE.print("SOC : "); 

    SERIALCONSOLE.print(SOCtest * 0.1); 

    SERIALCONSOLE.print("  fuel pwm : "); 

    SERIALCONSOLE.print(map(SOCtest * 0.1, 0, 100, settings.gaugelow, 

settings.gaugehigh)); 

    SERIALCONSOLE.println("  "); 

  } 

  if (gaugedebug == 2) 

  { 



 

76 
 

    SOCtest = 0; 

    analogWrite(OUT8, map(SOCtest * 0.1, 0, 100, settings.gaugelow, 

settings.gaugehigh)); 

  } 

  if (gaugedebug == 3) 

  { 

    SOCtest = 1000; 

    analogWrite(OUT8, map(SOCtest * 0.1, 0, 100, settings.gaugelow, 

settings.gaugehigh)); 

  } 

  if (gaugedebug == 0) 

  { 

    analogWrite(OUT8, map(SOC, 0, 100, settings.gaugelow, 

settings.gaugehigh)); 

  } 

} 

void printbmsstat() 

{ 

  SERIALCONSOLE.println(); 

  SERIALCONSOLE.println(); 

  SERIALCONSOLE.println(); 

  SERIALCONSOLE.print("BMS Status : "); 

  if (settings.ESSmode == 1) 

  { 

    SERIALCONSOLE.print("ESS Mode "); 

    if (bms.getLowCellVolt() < settings.UnderVSetpoint) 

    { 

      SERIALCONSOLE.print(": UnderVoltage "); 

    } 

    if (bms.getHighCellVolt() > settings.OverVSetpoint) 

    { 

      SERIALCONSOLE.print(": OverVoltage "); 

    } 

    if ((bms.getHighCellVolt() - bms.getLowCellVolt()) > 

settings.CellGap) 

    { 

      SERIALCONSOLE.print(": Cell Imbalance "); 

    } 

    if (bms.getAvgTemperature() > settings.OverTSetpoint) 

    { 

      SERIALCONSOLE.print(": Over Temp "); 

    } 

    if (bms.getAvgTemperature() < settings.UnderTSetpoint) 

    { 

      SERIALCONSOLE.print(": Under Temp "); 

    } 

    if (storagemode == 1) 

    { 

      if (bms.getLowCellVolt() > settings.StoreVsetpoint) 

      { 

        SERIALCONSOLE.print(": OverVoltage Storage "); 

        SERIALCONSOLE.print(": UNhappy:"); 

      } 

      else 

      { 

        SERIALCONSOLE.print(": Happy "); 

      } 

    } 



 

77 
 

    else 

    { 

      if (bms.getLowCellVolt() > settings.UnderVSetpoint && 

bms.getHighCellVolt() < settings.OverVSetpoint) 

      { 

        if ( bmsstatus == Error) 

        { 

          SERIALCONSOLE.print(": UNhappy:"); 

        } 

        else 

        { 

          SERIALCONSOLE.print(": Happy "); 

        } 

      } 

    } 

  } 

  else 

  { 

    SERIALCONSOLE.print(bmsstatus); 

    switch (bmsstatus) 

    { 

      case (Boot): 

        SERIALCONSOLE.print(" Boot "); 

        break; 

      case (Ready): 

        SERIALCONSOLE.print(" Ready "); 

        break; 

      case (Precharge): 

        SERIALCONSOLE.print(" Precharge "); 

        break; 

      case (Drive): 

        SERIALCONSOLE.print(" Drive "); 

        break; 

      case (Charge): 

        SERIALCONSOLE.print(" Charge "); 

        break; 

      case (Error): 

        SERIALCONSOLE.print(" Error "); 

        break; 

    } 

  } 

  SERIALCONSOLE.print("  "); 

  if (digitalRead(IN3) == HIGH) 

  { 

    SERIALCONSOLE.print("| AC Present |"); 

  } 

  if (digitalRead(IN1) == HIGH) 

  { 

    SERIALCONSOLE.print("| Key ON |"); 

  } 

  if (balancecells == 1) 

  { 

    SERIALCONSOLE.print("|Balancing Active"); 

  } 

  SERIALCONSOLE.print("  "); 

  SERIALCONSOLE.print(cellspresent); 

  SERIALCONSOLE.println(); 

  SERIALCONSOLE.print("Out:"); 



 

78 
 

  SERIALCONSOLE.print(digitalRead(OUT1)); 

  SERIALCONSOLE.print(digitalRead(OUT2)); 

  SERIALCONSOLE.print(digitalRead(OUT3)); 

  SERIALCONSOLE.print(digitalRead(OUT4)); 

  SERIALCONSOLE.print(" Cont:"); 

  SERIALCONSOLE.print(contstat, BIN); 

  SERIALCONSOLE.print(" In:"); 

  SERIALCONSOLE.print(digitalRead(IN1)); 

  SERIALCONSOLE.print(digitalRead(IN2)); 

  SERIALCONSOLE.print(digitalRead(IN3)); 

  SERIALCONSOLE.print(digitalRead(IN4)); 

} 

 

void getcurrent() 

{ 

  if ( settings.cursens == Analoguedual || settings.cursens == 

Analoguesing) 

  { 

    if ( settings.cursens == Analoguedual) 

    { 

      if (currentact < 19000 && currentact > -19000) 

      { 

        sensor = 1; 

        adc->startContinuous(ACUR1, ADC_0); 

      } 

      else 

      { 

        sensor = 2; 

        adc->startContinuous(ACUR2, ADC_0); 

      } 

    } 

    else 

    { 

      sensor = 1; 

      adc->startContinuous(ACUR1, ADC_0); 

    } 

    if (sensor == 1) 

    { 

      if (debugCur != 0) 

      { 

        SERIALCONSOLE.println(); 

        if ( settings.cursens == Analoguedual) 

        { 

          SERIALCONSOLE.print("Low Range: "); 

        } 

        else 

        { 

          SERIALCONSOLE.print("Single In: "); 

        } 

        SERIALCONSOLE.print("Value ADC0: "); 

      } 

      value = (uint16_t)adc->analogReadContinuous(ADC_0); // the 

unsigned is necessary for 16 bits, otherwise values larger than 3.3/2 V 

are negative! 

      if (debugCur != 0) 

      { 

        SERIALCONSOLE.print(value * 3300 / adc->getMaxValue(ADC_0)); 

//- settings.offset1) 



 

79 
 

        SERIALCONSOLE.print(" "); 

        SERIALCONSOLE.print(settings.offset1); 

      } 

      RawCur = int16_t((value * 3300 / adc->getMaxValue(ADC_0)) - 

settings.offset1) / (settings.convlow * 0.0001); 

 

      if (abs((int16_t(value * 3300 / adc->getMaxValue(ADC_0)) - 

settings.offset1)) <  settings.CurDead) 

      { 

        RawCur = 0; 

      } 

      if (debugCur != 0) 

      { 

        SERIALCONSOLE.print("  "); 

        SERIALCONSOLE.print(int16_t(value * 3300 / adc-

>getMaxValue(ADC_0)) - settings.offset1); 

        SERIALCONSOLE.print("  "); 

        SERIALCONSOLE.print(RawCur); 

        SERIALCONSOLE.print(" mA"); 

        SERIALCONSOLE.print("  "); 

      } 

    } 

    else 

    { 

      if (debugCur != 0) 

      { 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.print("High Range: "); 

        SERIALCONSOLE.print("Value ADC0: "); 

      } 

      value = (uint16_t)adc->analogReadContinuous(ADC_0); // the 

unsigned is necessary for 16 bits, otherwise values larger than 3.3/2 V 

are negative! 

      if (debugCur != 0) 

      { 

        SERIALCONSOLE.print(value * 3300 / adc->getMaxValue(ADC_0) 

);//- settings.offset2) 

        SERIALCONSOLE.print("  "); 

        SERIALCONSOLE.print(settings.offset2); 

      } 

      RawCur = int16_t((value * 3300 / adc->getMaxValue(ADC_0)) - 

settings.offset2) / (settings.convhigh * 0.0001); 

      if (value < 100 || value > (adc->getMaxValue(ADC_0) - 100)) 

      { 

        RawCur = 0; 

      } 

      if (debugCur != 0) 

      { 

        SERIALCONSOLE.print("  "); 

        SERIALCONSOLE.print((float(value * 3300 / adc-

>getMaxValue(ADC_0)) - settings.offset2)); 

        SERIALCONSOLE.print("  "); 

        SERIALCONSOLE.print(RawCur); 

        SERIALCONSOLE.print("mA"); 

        SERIALCONSOLE.print("  "); 

      } 

    } 

  } 



 

80 
 

  if (settings.invertcur == 1) 

  { 

    RawCur = RawCur * -1; 

  } 

  lowpassFilter.input(RawCur); 

  if (debugCur != 0) 

  { 

    SERIALCONSOLE.print(lowpassFilter.output()); 

  } 

  currentact = lowpassFilter.output(); 

  if ( settings.cursens == Analoguedual) 

  { 

    if (sensor == 1) 

    { 

      if (currentact > 500 || currentact < -500 ) 

      { 

        ampsecond = ampsecond + ((currentact * (millis() - lasttime) / 

1000) / 1000); 

        lasttime = millis(); 

      } 

      else 

      { 

        lasttime = millis(); 

      } 

    } 

    if (sensor == 2) 

    { 

      if (currentact > 180000 || currentact < -18000 ) 

      { 

        ampsecond = ampsecond + ((currentact * (millis() - lasttime) / 

1000) / 1000); 

        lasttime = millis(); 

      } 

      else 

      { 

        lasttime = millis(); 

      } 

    } 

  } 

  else 

  { 

    if (currentact > 500 || currentact < -500 ) 

    { 

      ampsecond = ampsecond + ((currentact * (millis() - lasttime) / 

1000) / 1000); 

      lasttime = millis(); 

    } 

    else 

    { 

      lasttime = millis(); 

    } 

  } 

  RawCur = 0; 

} 

 

void updateSOC() 

{ 

  if (SOCset == 0) 



 

81 
 

  { 

    if (millis() > 9000) 

    { 

      bms.setSensors(settings.IgnoreTemp, settings.IgnoreVolt); 

    } 

    if (millis() > 10000) 

    { 

      SOC = map(uint16_t(bms.getAvgCellVolt() * 1000), 

settings.socvolt[0], settings.socvolt[2], settings.socvolt[1], 

settings.socvolt[3]); 

 

      ampsecond = (SOC * settings.CAP * settings.Pstrings * 10) / 

0.27777777777778 ; 

      SOCset = 1; 

      SERIALCONSOLE.println("  "); 

      SERIALCONSOLE.println("//////////////////////////////////////// 

SOC SET ////////////////////////////////////////"); 

    } 

  } 

  if (settings.voltsoc == 1) 

  { 

    SOC = map(uint16_t(bms.getAvgCellVolt() * 1000), 

settings.socvolt[0], settings.socvolt[2], settings.socvolt[1], 

settings.socvolt[3]); 

 

    ampsecond = (SOC * settings.CAP * settings.Pstrings * 10) / 

0.27777777777778 ; 

  } 

  SOC = ((ampsecond * 0.27777777777778) / (settings.CAP * 

settings.Pstrings * 1000)) * 100; 

  if (SOC >= 100) 

  { 

    ampsecond = (settings.CAP * settings.Pstrings * 1000) / 

0.27777777777778 ; //reset to full, dependant on given capacity. Need 

to improve with auto correction for capcity. 

    SOC = 100; 

  } 

 

 

  if (SOC < 0) 

  { 

    SOC = 0; //reset SOC this way the can messages remain in range for 

other devices. Ampseconds will keep counting. 

  } 

 

  if (debug != 0) 

  { 

    if (settings.cursens == Analoguedual) 

    { 

      if (sensor == 1) 

      { 

        SERIALCONSOLE.print("Low Range "); 

      } 

      else 

      { 

        SERIALCONSOLE.print("High Range"); 

      } 

    } 



 

82 
 

    if (settings.cursens == Analoguesing) 

    { 

      SERIALCONSOLE.print("Analogue Single "); 

    } 

    if (settings.cursens == Canbus) 

    { 

      SERIALCONSOLE.print("CANbus "); 

    } 

    SERIALCONSOLE.print("  "); 

    SERIALCONSOLE.print(currentact); 

    SERIALCONSOLE.print("mA"); 

    SERIALCONSOLE.print("  "); 

    SERIALCONSOLE.print(SOC); 

    SERIALCONSOLE.print("% SOC "); 

    SERIALCONSOLE.print(ampsecond * 0.27777777777778, 2); 

    SERIALCONSOLE.println ("mAh"); 

  } 

} 

 

void Prechargecon() 

{ 

  if (digitalRead(IN1) == HIGH) //detect Key ON 

  { 

    digitalWrite(OUT4, HIGH);//Negative Contactor Close 

    contctrl = 2; 

    if (Pretimer +  settings.Pretime > millis() || currentact > 

settings.Precurrent) 

    { 

      digitalWrite(OUT2, HIGH);//precharge 

    } 

    else //close main contactor 

    { 

      digitalWrite(OUT1, HIGH);//Positive Contactor Close 

      contctrl = 3; 

      bmsstatus = Drive; 

      digitalWrite(OUT2, LOW); 

    } 

  } 

  else 

  { 

    digitalWrite(OUT1, LOW); 

    digitalWrite(OUT2, LOW); 

    digitalWrite(OUT4, LOW); 

    bmsstatus = Ready; 

    contctrl = 0; 

  } 

} 

 

void contcon() 

{ 

  if (contctrl != contstat) //check for contactor request change 

  { 

    if ((contctrl & 1) == 0) 

    { 

      analogWrite(OUT5, 0); 

      contstat = contstat & 254; 

    } 

    if ((contctrl & 2) == 0) 



 

83 
 

    { 

      analogWrite(OUT6, 0); 

      contstat = contstat & 253; 

    } 

    if ((contctrl & 4) == 0) 

    { 

      analogWrite(OUT7, 0); 

      contstat = contstat & 251; 

    } 

    if ((contctrl & 1) == 1) 

    { 

      if ((contstat & 1) != 1) 

      { 

        if (conttimer1 == 0) 

        { 

          analogWrite(OUT5, 255); 

          conttimer1 = millis() + pulltime ; 

        } 

        if (conttimer1 < millis()) 

        { 

          analogWrite(OUT5, settings.conthold); 

          contstat = contstat | 1; 

          conttimer1 = 0; 

        } 

      } 

    } 

 

    if ((contctrl & 2) == 2) 

    { 

      if ((contstat & 2) != 2) 

      { 

        if (conttimer2 == 0) 

        { 

          Serial.println(); 

          Serial.println("pull in OUT6"); 

          analogWrite(OUT6, 255); 

          conttimer2 = millis() + pulltime ; 

        } 

        if (conttimer2 < millis()) 

        { 

          analogWrite(OUT6, settings.conthold); 

          contstat = contstat | 2; 

          conttimer2 = 0; 

        } 

      } 

    } 

    if ((contctrl & 4) == 4) 

    { 

      if ((contstat & 4) != 4) 

      { 

        if (conttimer3 == 0) 

        { 

          Serial.println(); 

          Serial.println("pull in OUT7"); 

          analogWrite(OUT7, 255); 

          conttimer3 = millis() + pulltime ; 

        } 

        if (conttimer3 < millis()) 



 

84 
 

        { 

          analogWrite(OUT7, settings.conthold); 

          contstat = contstat | 4; 

          conttimer3 = 0; 

        } 

      } 

    } 

    /* 

       SERIALCONSOLE.print(conttimer); 

       SERIALCONSOLE.print("  "); 

       SERIALCONSOLE.print(contctrl); 

       SERIALCONSOLE.print("  "); 

       SERIALCONSOLE.print(contstat); 

       SERIALCONSOLE.println("  "); 

    */ 

  } 

  if (contctrl == 0) 

  { 

    analogWrite(OUT5, 0); 

    analogWrite(OUT6, 0); 

    analogWrite(OUT7, 0); 

  } 

} 

 

void calcur() 

{ 

  adc->startContinuous(ACUR1, ADC_0); 

  sensor = 1; 

  SERIALCONSOLE.print(" Calibrating Current Offset ::::: "); 

  while (x < 20) 

  { 

    offset1 = offset1 + ((uint16_t)adc->analogReadContinuous(ADC_0) * 

3300 / adc->getMaxValue(ADC_0)); 

    SERIALCONSOLE.print("."); 

    delay(100); 

    x++; 

  } 

  offset1 = offset1 / 21; 

  SERIALCONSOLE.print(offset1); 

  SERIALCONSOLE.print(" current offset 1 calibrated "); 

  SERIALCONSOLE.println("  "); 

  x = 0; 

  adc->startContinuous(ACUR2, ADC_0); 

  sensor = 2; 

  SERIALCONSOLE.print(" Calibrating Current Offset ::::: "); 

  while (x < 20) 

  { 

    offset2 = offset2 + ((uint16_t)adc->analogReadContinuous(ADC_0) * 

3300 / adc->getMaxValue(ADC_0)); 

    SERIALCONSOLE.print("."); 

    delay(100); 

    x++; 

  } 

  offset2 = offset2 / 21; 

  SERIALCONSOLE.print(offset2); 

  SERIALCONSOLE.print(" current offset 2 calibrated "); 

  SERIALCONSOLE.println("  "); 

} 



 

85 
 

 

void VEcan() //communication with Victron system over CAN 

{ 

  msg.id  = 0x351; 

  msg.len = 8; 

  if (storagemode == 0) 

  { 

    msg.buf[0] = lowByte(uint16_t((settings.ChargeVsetpoint * 

settings.Scells ) * 10)); 

    msg.buf[1] = highByte(uint16_t((settings.ChargeVsetpoint * 

settings.Scells ) * 10)); 

  } 

  else 

  { 

    msg.buf[0] = lowByte(uint16_t((settings.StoreVsetpoint * 

settings.Scells ) * 10)); 

    msg.buf[1] = highByte(uint16_t((settings.StoreVsetpoint * 

settings.Scells ) * 10)); 

  } 

  msg.buf[2] = lowByte(chargecurrent); 

  msg.buf[3] = highByte(chargecurrent); 

  msg.buf[4] = lowByte(discurrent ); 

  msg.buf[5] = highByte(discurrent); 

  msg.buf[6] = lowByte(uint16_t((settings.DischVsetpoint *  

settings.Scells) * 10)); 

  msg.buf[7] = highByte(uint16_t((settings.DischVsetpoint *  

settings.Scells) * 10)); 

  if (bmsstatus == Error) 

  { 

    msg.buf[2] = 0x00; 

    msg.buf[3] = 0x00; 

    msg.buf[4] = 0x00; 

    msg.buf[5] = 0x00; 

    alarm[2] = 0xF0; 

  } 

  else 

  { 

    alarm[2] = 0x00; 

  } 

  Can0.write(msg); 

 

  msg.id  = 0x355; 

  msg.len = 8; 

  msg.buf[0] = lowByte(SOC); 

  msg.buf[1] = highByte(SOC); 

  msg.buf[2] = lowByte(SOH); 

  msg.buf[3] = highByte(SOH); 

  msg.buf[4] = lowByte(SOC * 10); 

  msg.buf[5] = highByte(SOC * 10); 

  msg.buf[6] = 0; 

  msg.buf[7] = 0; 

  Can0.write(msg); 

  msg.id  = 0x356; 

  msg.len = 8; 

  msg.buf[0] = lowByte(uint16_t(bms.getPackVoltage() * 100)); 

  msg.buf[1] = highByte(uint16_t(bms.getPackVoltage() * 100)); 

  msg.buf[2] = lowByte(long(currentact / 100)); 

  msg.buf[3] = highByte(long(currentact / 100)); 



 

86 
 

  msg.buf[4] = lowByte(uint16_t(bms.getAvgTemperature() * 10)); 

  msg.buf[5] = highByte(uint16_t(bms.getAvgTemperature() * 10)); 

  msg.buf[6] = 0; 

  msg.buf[7] = 0; 

  Can0.write(msg); 

  delay(2); 

  msg.id  = 0x35A; 

  msg.len = 8; 

  msg.buf[0] = alarm[0];//High temp  Low Voltage | High Voltage 

  msg.buf[1] = alarm[1]; // High Discharge Current | Low Temperature 

  msg.buf[2] = alarm[2]; //Internal Failure | High Charge current 

  msg.buf[3] = alarm[3];// Cell Imbalance 

  msg.buf[4] = warning[0]; 

  msg.buf[5] = warning[1]; 

  msg.buf[6] = warning[2]; 

  msg.buf[7] = warning[3]; 

  Can0.write(msg); 

  msg.id  = 0x35E; 

  msg.len = 8; 

  msg.buf[0] = bmsname[0]; 

  msg.buf[1] = bmsname[1]; 

  msg.buf[2] = bmsname[2]; 

  msg.buf[3] = bmsname[3]; 

  msg.buf[4] = bmsname[4]; 

  msg.buf[5] = bmsname[5]; 

  msg.buf[6] = bmsname[6]; 

  msg.buf[7] = bmsname[7]; 

  Can0.write(msg); 

  delay(2); 

  msg.id  = 0x370; 

  msg.len = 8; 

  msg.buf[0] = bmsmanu[0]; 

  msg.buf[1] = bmsmanu[1]; 

  msg.buf[2] = bmsmanu[2]; 

  msg.buf[3] = bmsmanu[3]; 

  msg.buf[4] = bmsmanu[4]; 

  msg.buf[5] = bmsmanu[5]; 

  msg.buf[6] = bmsmanu[6]; 

  msg.buf[7] = bmsmanu[7]; 

  Can0.write(msg); 

  if (balancecells == 1) 

  { 

    if (bms.getLowCellVolt() + settings.balanceHyst < 

bms.getHighCellVolt()) 

    { 

      msg.id  = 0x3c3; 

      msg.len = 8; 

      if (bms.getLowCellVolt() < settings.balanceVoltage) 

      { 

        msg.buf[0] = lowByte(uint16_t(settings.balanceVoltage * 1000)); 

        msg.buf[1] = highByte(uint16_t(settings.balanceVoltage * 

1000)); 

      } 

      else 

      { 

        msg.buf[0] = lowByte(uint16_t(bms.getLowCellVolt() * 1000)); 

        msg.buf[1] = highByte(uint16_t(bms.getLowCellVolt() * 1000)); 

      } 



 

87 
 

      msg.buf[2] =  0x01; 

      msg.buf[3] =  0x04; 

      msg.buf[4] =  0x03; 

      msg.buf[5] =  0x00; 

      msg.buf[6] =  0x00; 

      msg.buf[7] = 0x00; 

      Can0.write(msg); 

    } 

  } 

} 

 

void BMVmessage()//communication with the Victron Color Control System 

over VEdirect 

{ 

  lasttime = millis(); 

  x = 0; 

  VE.write(13); 

  VE.write(10); 

  VE.write(myStrings[0]); 

  VE.write(9); 

  VE.print(bms.getPackVoltage() * 1000, 0); 

  VE.write(13); 

  VE.write(10); 

  VE.write(myStrings[2]); 

  VE.write(9); 

  VE.print(currentact); 

  VE.write(13); 

  VE.write(10); 

  VE.write(myStrings[4]); 

  VE.write(9); 

  VE.print(ampsecond * 0.27777777777778, 0); //consumed ah 

  VE.write(13); 

  VE.write(10); 

  VE.write(myStrings[6]); 

  VE.write(9); 

  VE.print(SOC * 10); //SOC 

  x = 8; 

  while (x < 20) 

  { 

    VE.write(13); 

    VE.write(10); 

    VE.write(myStrings[x]); 

    x ++; 

    VE.write(9); 

    VE.write(myStrings[x]); 

    x ++; 

  } 

  VE.write(13); 

  VE.write(10); 

  VE.write("Checksum"); 

  VE.write(9); 

  VE.write(0x50); //0x59 

  delay(10); 

  while (x < 44) 

  { 

    VE.write(13); 

    VE.write(10); 

    VE.write(myStrings[x]); 



 

88 
 

    x ++; 

    VE.write(9); 

    VE.write(myStrings[x]); 

    x ++; 

  } 

  /* 

    VE.write(13); 

    VE.write(10); 

    VE.write(myStrings[32]); 

    VE.write(9); 

    VE.print(bms.getLowVoltage()*1000,0); 

    VE.write(13); 

    VE.write(10); 

    VE.write(myStrings[34]); 

    VE.write(9); 

    VE.print(bms.getHighVoltage()*1000,0); 

    x=36; 

    while(x < 43) 

    { 

     VE.write(13); 

     VE.write(10); 

     VE.write(myStrings[x]); 

     x ++; 

     VE.write(9); 

     VE.write(myStrings[x]); 

     x ++; 

    } 

  */ 

  VE.write(13); 

  VE.write(10); 

  VE.write("Checksum"); 

  VE.write(9); 

  VE.write(231); 

} 

// Settings menu 

void menu() 

{ 

  incomingByte = Serial.read(); // read the incoming byte: 

  if (menuload == 4) 

  { 

    switch (incomingByte) 

    { 

      case '1': 

        menuload = 1; 

        candebug = !candebug; 

        incomingByte = 'd'; 

        break; 

      case '2': 

        menuload = 1; 

        debugCur = !debugCur; 

        incomingByte = 'd'; 

        break; 

      case '3': 

        menuload = 1; 

        outputcheck = !outputcheck; 

        if (outputcheck == 0) 

        { 

          contctrl = 0; 



 

89 
 

          digitalWrite(OUT1, LOW); 

          digitalWrite(OUT2, LOW); 

          digitalWrite(OUT3, LOW); 

          digitalWrite(OUT4, LOW); 

        } 

        incomingByte = 'd'; 

        break; 

      case '4': 

        menuload = 1; 

        inputcheck = !inputcheck; 

        incomingByte = 'd'; 

        break; 

      case '5': 

        menuload = 1; 

        settings.ESSmode = !settings.ESSmode; 

        incomingByte = 'd'; 

        break; 

      case '6': 

        menuload = 1; 

        cellspresent = bms.seriescells(); 

        incomingByte = 'd'; 

        break; 

      case '7': 

        menuload = 1; 

        gaugedebug = !gaugedebug; 

        incomingByte = 'd'; 

        break; 

      case '8': 

        menuload = 1; 

        CSVdebug = !CSVdebug; 

        incomingByte = 'd'; 

        break; 

      case '9': 

        menuload = 1; 

        if (Serial.available() > 0) 

        { 

          debugdigits = Serial.parseInt(); 

        } 

        if (debugdigits > 4) 

        { 

          debugdigits = 2; 

        } 

        incomingByte = 'd'; 

        break; 

      case 113: //q for quite menu 

        menuload = 0; 

        incomingByte = 115; 

        break; 

      default: 

        // if nothing else matches, do the default 

        // default is optional 

        break; 

    } 

  } 

  if (menuload == 2) 

  { 

    switch (incomingByte) 

    { 



 

90 
 

      case 99: //c for calibrate zero offset 

        calcur(); 

        break; 

      case '1': 

        menuload = 1; 

        settings.invertcur = !settings.invertcur; 

        incomingByte = 'c'; 

        break; 

      case '2': 

        menuload = 1; 

        settings.voltsoc = !settings.voltsoc; 

        incomingByte = 'c'; 

        break; 

      case '3': 

        menuload = 1; 

        if (Serial.available() > 0) 

        { 

          settings.ncur = Serial.parseInt(); 

        } 

        menuload = 1; 

        incomingByte = 'c'; 

        break; 

      case '4': 

        menuload = 1; 

        if (Serial.available() > 0) 

        { 

          settings.convlow = Serial.parseInt(); 

        } 

        incomingByte = 'c'; 

        break; 

      case '5': 

        menuload = 1; 

        if (Serial.available() > 0) 

        { 

          settings.convhigh = Serial.parseInt(); 

        } 

        incomingByte = 'c'; 

        break; 

      case '6': 

        menuload = 1; 

        if (Serial.available() > 0) 

        { 

          settings.CurDead = Serial.parseInt(); 

        } 

        incomingByte = 'c'; 

        break; 

      case 113: //q for quite menu 

        menuload = 0; 

        incomingByte = 115; 

        break; 

      case 115: //s for switch sensor 

        settings.cursens ++; 

        if (settings.cursens > 3) 

        { 

          settings.cursens = 0; 

        } 

        /* 

          if (settings.cursens == Analoguedual) 



 

91 
 

          { 

            settings.cursens = Canbus; 

            SERIALCONSOLE.println("  "); 

            SERIALCONSOLE.print(" CANbus Current Sensor "); 

            SERIALCONSOLE.println("  "); 

          } 

          else 

          { 

            settings.cursens = Analoguedual; 

            SERIALCONSOLE.println("  "); 

            SERIALCONSOLE.print(" Analogue Current Sensor "); 

            SERIALCONSOLE.println("  "); 

          } 

        */ 

        menuload = 1; 

        incomingByte = 'c'; 

        break; 

      default: 

        // if nothing else matches, do the default 

        // default is optional 

        break; 

    } 

  } 

  if (menuload == 8) 

  { 

    switch (incomingByte) 

    { 

      case '1': //e dispaly settings 

        if (Serial.available() > 0) 

        { 

          settings.IgnoreTemp = Serial.parseInt(); 

        } 

        if (settings.IgnoreTemp > 2) 

        { 

          settings.IgnoreTemp = 0; 

        } 

        bms.setSensors(settings.IgnoreTemp, settings.IgnoreVolt); 

        menuload = 1; 

        incomingByte = 'i'; 

        break; 

      case '2': 

        if (Serial.available() > 0) 

        { 

          settings.IgnoreVolt = Serial.parseInt(); 

          settings.IgnoreVolt = settings.IgnoreVolt * 0.001; 

          bms.setSensors(settings.IgnoreTemp, settings.IgnoreVolt); 

          // Serial.println(settings.IgnoreVolt); 

          menuload = 1; 

          incomingByte = 'i'; 

        } 

        break; 

      case 113: //q to go back to main menu 

        menuload = 0; 

        incomingByte = 115; 

        break; 

    } 

  } 

  if (menuload == 7) 



 

92 
 

  { 

    switch (incomingByte) 

    { 

      case '1': 

        if (Serial.available() > 0) 

        { 

          settings.WarnOff = Serial.parseInt(); 

          settings.WarnOff = settings.WarnOff * 0.001; 

          menuload = 1; 

          incomingByte = 'a'; 

        } 

        break; 

      case '2': 

        if (Serial.available() > 0) 

        { 

          settings.CellGap = Serial.parseInt(); 

          settings.CellGap = settings.CellGap * 0.001; 

          menuload = 1; 

          incomingByte = 'a'; 

        } 

        break; 

      case '3': 

        if (Serial.available() > 0) 

        { 

          settings.WarnToff = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'a'; 

        } 

        break; 

      case '4': 

        if (Serial.available() > 0) 

        { 

          settings.UnderDur = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'a'; 

        } 

        break; 

      case 113: //q to go back to main menu 

        menuload = 0; 

        incomingByte = 115; 

        break; 

    } 

  } 

  if (menuload == 6) //Charging settings 

  { 

    switch (incomingByte) 

    { 

      case 113: //q to go back to main menu 

 

        menuload = 0; 

        incomingByte = 115; 

        break; 

      case '1': 

        if (Serial.available() > 0) 

        { 

          settings.ChargeVsetpoint = Serial.parseInt(); 

          settings.ChargeVsetpoint = settings.ChargeVsetpoint / 1000; 

          menuload = 1; 



 

93 
 

          incomingByte = 'e'; 

        } 

        break; 

      case '2': 

        if (Serial.available() > 0) 

        { 

          settings.ChargeHys = Serial.parseInt(); 

          settings.ChargeHys = settings.ChargeHys / 1000; 

          menuload = 1; 

          incomingByte = 'e'; 

        } 

        break; 

      case '4': 

        if (Serial.available() > 0) 

        { 

          settings.chargecurrentend = Serial.parseInt() * 10; 

          menuload = 1; 

          incomingByte = 'e'; 

        } 

        break; 

      case '3': 

        if (Serial.available() > 0) 

        { 

          settings.chargecurrentmax = Serial.parseInt() * 10; 

          menuload = 1; 

          incomingByte = 'e'; 

        } 

        break; 

      case '5': //1 Over Voltage Setpoint 

        settings.chargertype = settings.chargertype + 1; 

        if (settings.chargertype > 5) 

        { 

          settings.chargertype = 0; 

        } 

        menuload = 1; 

        incomingByte = 'e'; 

        break; 

      case '6': 

        if (Serial.available() > 0) 

        { 

          settings.chargerspd = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'e'; 

        } 

        break; 

    } 

  } 

  if (menuload == 5) 

  { 

    switch (incomingByte) 

    { 

      case '1': 

        if (Serial.available() > 0) 

        { 

          settings.Pretime = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'k'; 

        } 



 

94 
 

        break; 

      case '2': 

        if (Serial.available() > 0) 

        { 

          settings.Precurrent = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'k'; 

        } 

        break; 

      case '3': 

        if (Serial.available() > 0) 

        { 

          settings.conthold = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'k'; 

        } 

        break; 

      case '4': 

        if (Serial.available() > 0) 

        { 

          settings.gaugelow = Serial.parseInt(); 

          gaugedebug = 2; 

          gaugeupdate(); 

          menuload = 1; 

          incomingByte = 'k'; 

        } 

        break; 

      case '5': 

        if (Serial.available() > 0) 

        { 

          settings.gaugehigh = Serial.parseInt(); 

          gaugedebug = 3; 

          gaugeupdate(); 

          menuload = 1; 

          incomingByte = 'k'; 

        } 

        break; 

      case 113: //q to go back to main menu 

        gaugedebug = 0; 

        menuload = 0; 

        incomingByte = 115; 

        break; 

    } 

  } 

  if (menuload == 3) 

  { 

    switch (incomingByte) 

    { 

      case 113: //q to go back to main menu 

        menuload = 0; 

        incomingByte = 115; 

        break; 

      case 'f': //f factory settings 

        loadSettings(); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.println(" Coded Settings Loaded "); 



 

95 
 

        SERIALCONSOLE.println("  "); 

        menuload = 1; 

        incomingByte = 'b'; 

        break; 

   

      case 114: //r for reset 

        SOCset = 0; 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print(" mAh Reset "); 

        SERIALCONSOLE.println("  "); 

        menuload = 1; 

        incomingByte = 'b'; 

        break; 

   

      case '1': //1 Over Voltage Setpoint 

        if (Serial.available() > 0) 

        { 

          settings.OverVSetpoint = Serial.parseInt(); 

          settings.OverVSetpoint = settings.OverVSetpoint / 1000; 

          menuload = 1; 

          incomingByte = 'b'; 

        } 

        break; 

 

      case 'g': 

        if (Serial.available() > 0) 

        { 

          settings.StoreVsetpoint = Serial.parseInt(); 

          settings.StoreVsetpoint = settings.StoreVsetpoint / 1000; 

          menuload = 1; 

          incomingByte = 'b'; 

        } 

 

      case 'b': 

        if (Serial.available() > 0) 

        { 

          settings.socvolt[0] = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'b'; 

        } 

        break; 

 

      case 'c': 

        if (Serial.available() > 0) 

        { 

          settings.socvolt[1] = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'b'; 

        } 

        break; 

 

      case 'd': 

        if (Serial.available() > 0) 

        { 

          settings.socvolt[2] = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'b'; 

        } 



 

96 
 

        break; 

 

      case 'e': 

        if (Serial.available() > 0) 

        { 

          settings.socvolt[3] = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'b'; 

        } 

        break; 

 

      case '9': //Discharge Voltage Setpoint 

        if (Serial.available() > 0) 

        { 

          settings.DischVsetpoint = Serial.parseInt(); 

          settings.DischVsetpoint = settings.DischVsetpoint / 1000; 

          menuload = 1; 

          incomingByte = 'b'; 

        } 

        break; 

 

      case '0': //c Pstrings 

        if (Serial.available() > 0) 

        { 

          settings.Pstrings = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'b'; 

          bms.setPstrings(settings.Pstrings); 

        } 

        break; 

 

      case 'a': // 

        if (Serial.available() > 0) 

        { 

          settings.Scells  = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'b'; 

        } 

        break; 

 

      case '2': //2 Under Voltage Setpoint 

        if (Serial.available() > 0) 

        { 

          settings.UnderVSetpoint = Serial.parseInt(); 

          settings.UnderVSetpoint =  settings.UnderVSetpoint / 1000; 

          menuload = 1; 

          incomingByte = 'b'; 

        } 

        break; 

 

      case '3': //3 Over Temperature Setpoint 

        if (Serial.available() > 0) 

        { 

          settings.OverTSetpoint = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'b'; 

        } 

        break; 



 

97 
 

 

      case '4': //4 Udner Temperature Setpoint 

        if (Serial.available() > 0) 

        { 

          settings.UnderTSetpoint = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'b'; 

        } 

        break; 

 

      case '5': //5 Balance Voltage Setpoint 

        if (Serial.available() > 0) 

        { 

          settings.balanceVoltage = Serial.parseInt(); 

          settings.balanceVoltage = settings.balanceVoltage / 1000; 

          menuload = 1; 

          incomingByte = 'b'; 

        } 

        break; 

 

      case '6': //6 Balance Voltage Hystersis 

        if (Serial.available() > 0) 

        { 

          settings.balanceHyst = Serial.parseInt(); 

          settings.balanceHyst =  settings.balanceHyst / 1000; 

          menuload = 1; 

          incomingByte = 'b'; 

        } 

        break; 

 

      case '7'://7 Battery Capacity inAh 

        if (Serial.available() > 0) 

        { 

          settings.CAP = Serial.parseInt(); 

          menuload = 1; 

          incomingByte = 'b'; 

        } 

        break; 

 

      case '8':// discurrent in A 

        if (Serial.available() > 0) 

        { 

          settings.discurrentmax = Serial.parseInt() * 10; 

          menuload = 1; 

          incomingByte = 'b'; 

        } 

        break; 

    } 

  } 

  if (menuload == 1) 

  { 

    switch (incomingByte) 

    { 

      case 'R'://restart 

        CPU_REBOOT ; 

        break; 

 

      case 'i': //Ignore Value Settings 



 

98 
 

      while (Serial.available()) {Serial.read();} 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println("Ignore Value Settings"); 

        SERIALCONSOLE.print("1 - Temp Sensor Setting:"); 

        SERIALCONSOLE.println(settings.IgnoreTemp); 

        SERIALCONSOLE.print("2 - Voltage Under Which To Ignore 

Cells:"); 

        SERIALCONSOLE.print(settings.IgnoreVolt * 1000, 0); 

        SERIALCONSOLE.println("mV"); 

        SERIALCONSOLE.println("q - Go back to menu"); 

        menuload = 8; 

        break; 

 

      case 'e': //Charging settings 

      while (Serial.available()) {Serial.read();} 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println("Charging Settings"); 

        SERIALCONSOLE.print("1 - Cell Charge Voltage Limit Setpoint: 

"); 

        SERIALCONSOLE.print(settings.ChargeVsetpoint * 1000, 0); 

        SERIALCONSOLE.println("mV"); 

        SERIALCONSOLE.print("2 - Charge Hystersis: "); 

        SERIALCONSOLE.print(settings.ChargeHys * 1000, 0 ); 

        SERIALCONSOLE.println("mV"); 

        if (settings.chargertype > 0) 

        { 

          SERIALCONSOLE.print("3 - Pack Max Charge Current: "); 

          SERIALCONSOLE.print(settings.chargecurrentmax * 0.1); 

          SERIALCONSOLE.println("A"); 

          SERIALCONSOLE.print("4- Pack End of Charge Current: "); 

          SERIALCONSOLE.print(settings.chargecurrentend * 0.1); 

          SERIALCONSOLE.println("A"); 

        } 

        SERIALCONSOLE.print("5- Charger Type: "); 

        switch (settings.chargertype) 

        { 

          case 0: 

            SERIALCONSOLE.print("Relay Control"); 

            break; 

          case 1: 

            SERIALCONSOLE.print("Brusa NLG5xx"); 

            break; 

          case 2: 

            SERIALCONSOLE.print("Volt Charger"); 

            break; 

          case 3: 

            SERIALCONSOLE.print("Eltek Charger"); 

            break; 

          case 4: 

            SERIALCONSOLE.print("Elcon Charger"); 



 

99 
 

            break; 

          case 5: 

            SERIALCONSOLE.print("Victron Charger"); 

            break; 

        } 

        SERIALCONSOLE.println(); 

        if (settings.chargertype > 0) 

        { 

          SERIALCONSOLE.print("6- Charger Can Msg Spd: "); 

          SERIALCONSOLE.print(settings.chargerspd); 

          SERIALCONSOLE.println("mS"); 

        } 

        /* 

          SERIALCONSOLE.print("7- Can Speed:"); 

          SERIALCONSOLE.print(settings.canSpeed/1000); 

          SERIALCONSOLE.println("kbps"); 

        */ 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println("q - Go back to menu"); 

        menuload = 6; 

        break; 

 

      case 'a': //Alarm and Warning settings 

      while (Serial.available()) {Serial.read();} 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println("Alarm and Warning Settings Menu"); 

        SERIALCONSOLE.print("1 - Voltage Warning Offset: "); 

        SERIALCONSOLE.print(settings.WarnOff * 1000, 0); 

        SERIALCONSOLE.println("mV"); 

        SERIALCONSOLE.print("2 - Cell Voltage Difference Alarm: "); 

        SERIALCONSOLE.print(settings.CellGap * 1000, 0); 

        SERIALCONSOLE.println("mV"); 

        SERIALCONSOLE.print("3 - Temp Warning Offset: "); 

        SERIALCONSOLE.print(settings.WarnToff); 

        SERIALCONSOLE.println(" C"); 

        SERIALCONSOLE.print("4 - Temp Warning Offset: "); 

        SERIALCONSOLE.print(settings.UnderDur); 

        SERIALCONSOLE.println(" mS"); 

        menuload = 7; 

        break; 

 

      case 'k': //contactor settings 

      while (Serial.available()) {Serial.read();} 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println("Contactor and Gauge Settings Menu"); 

        SERIALCONSOLE.print("1 - PreCharge Timer: "); 

        SERIALCONSOLE.print(settings.Pretime); 

        SERIALCONSOLE.println("mS"); 

        SERIALCONSOLE.print("2 - PreCharge Finish Current: "); 

        SERIALCONSOLE.print(settings.Precurrent); 



 

100 
 

        SERIALCONSOLE.println(" mA"); 

        SERIALCONSOLE.print("3 - PWM contactor Hold 0-255 :"); 

        SERIALCONSOLE.println(settings.conthold); 

        SERIALCONSOLE.print("4 - PWM for Gauge Low 0-255 :"); 

        SERIALCONSOLE.println(settings.gaugelow); 

        SERIALCONSOLE.print("5 - PWM for Gauge High 0-255 :"); 

        SERIALCONSOLE.println(settings.gaugehigh); 

        menuload = 5; 

        break; 

 

      case 113: //q to go back to main menu 

        EEPROM.put(0, settings); //save all change to eeprom 

        menuload = 0; 

        debug = 1; 

        break; 

      case 'd': //d for debug settings 

        while (Serial.available()) {Serial.read();} 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println("Debug Settings Menu"); 

        SERIALCONSOLE.println("Toggle on/off"); 

        SERIALCONSOLE.print("1 - Can Debug :"); 

        SERIALCONSOLE.println(candebug); 

        SERIALCONSOLE.print("2 - Current Debug :"); 

        SERIALCONSOLE.println(debugCur); 

        SERIALCONSOLE.print("3 - Output Check :"); 

        SERIALCONSOLE.println(outputcheck); 

        SERIALCONSOLE.print("4 - Input Check :"); 

        SERIALCONSOLE.println(inputcheck); 

        SERIALCONSOLE.print("5 - ESS mode :"); 

        SERIALCONSOLE.println(settings.ESSmode); 

        SERIALCONSOLE.print("6 - Cells Present Reset :"); 

        SERIALCONSOLE.println(cellspresent); 

        SERIALCONSOLE.print("7 - Gauge Debug :"); 

        SERIALCONSOLE.println(gaugedebug); 

        SERIALCONSOLE.print("8 - CSV Output :"); 

        SERIALCONSOLE.println(CSVdebug); 

        SERIALCONSOLE.print("9 - Decimal Places to Show :"); 

        SERIALCONSOLE.println(debugdigits); 

        SERIALCONSOLE.println("q - Go back to menu"); 

        menuload = 4; 

        break; 

 

      case 99: //c for calibrate zero offset 

      while (Serial.available()) {Serial.read();} 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println("Current Sensor Calibration Menu"); 

        SERIALCONSOLE.println("c - To calibrate sensor offset"); 

        SERIALCONSOLE.print("s - Current Sensor Type : "); 

        switch (settings.cursens) 

        { 



 

101 
 

          case Analoguedual: 

            SERIALCONSOLE.println(" Analogue Dual Current Sensor "); 

            break; 

          case Analoguesing: 

            SERIALCONSOLE.println(" Analogue Single Current Sensor "); 

            break; 

          case Canbus: 

            SERIALCONSOLE.println(" Canbus Current Sensor "); 

            break; 

          default: 

            SERIALCONSOLE.println("Undefined"); 

            break; 

        } 

        SERIALCONSOLE.print("1 - invert current :"); 

        SERIALCONSOLE.println(settings.invertcur); 

        SERIALCONSOLE.print("2 - Pure Voltage based SOC :"); 

        SERIALCONSOLE.println(settings.voltsoc); 

        SERIALCONSOLE.print("3 - Current Multiplication :"); 

        SERIALCONSOLE.println(settings.ncur); 

        if (settings.cursens == Analoguesing || settings.cursens == 

Analoguedual) 

        { 

          SERIALCONSOLE.print("4 - Analogue Low Range Conv:"); 

          SERIALCONSOLE.print(settings.convlow * 0.1, 1); 

          SERIALCONSOLE.println(" mV/A"); 

        } 

        if ( settings.cursens == Analoguedual) 

        { 

          SERIALCONSOLE.print("5 - Analogue High Range Conv:"); 

          SERIALCONSOLE.print(settings.convhigh * 0.1, 1); 

          SERIALCONSOLE.println(" mV/A"); 

        } 

        if (settings.cursens == Analoguesing || settings.cursens == 

Analoguedual) 

        { 

          SERIALCONSOLE.print("6 - Current Sensor Deadband:"); 

          SERIALCONSOLE.print(settings.CurDead); 

          SERIALCONSOLE.println(" mV"); 

        } 

        SERIALCONSOLE.println("q - Go back to menu"); 

        menuload = 2; 

        break; 

 

      case 98: //c for calibrate zero offset 

      while (Serial.available()) {Serial.read();} 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println("Battery Settings Menu"); 

        SERIALCONSOLE.println("r - Reset AH counter"); 

        SERIALCONSOLE.println("f - Reset to Coded Settings"); 

        SERIALCONSOLE.println("q - Go back to menu"); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.println(); 

        SERIALCONSOLE.print("1 - Cell Over Voltage Setpoint: "); 

        SERIALCONSOLE.print(settings.OverVSetpoint * 1000, 0); 



 

102 
 

        SERIALCONSOLE.print("mV"); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("2 - Cell Under Voltage Setpoint: "); 

        SERIALCONSOLE.print(settings.UnderVSetpoint * 1000, 0); 

        SERIALCONSOLE.print("mV"); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("3 - Over Temperature Setpoint: "); 

        SERIALCONSOLE.print(settings.OverTSetpoint); 

        SERIALCONSOLE.print("C"); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("4 - Under Temperature Setpoint: "); 

        SERIALCONSOLE.print(settings.UnderTSetpoint); 

        SERIALCONSOLE.print("C"); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("5 - Cell Balance Voltage Setpoint: "); 

        SERIALCONSOLE.print(settings.balanceVoltage * 1000, 0); 

        SERIALCONSOLE.print("mV"); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("6 - Balance Voltage Hystersis: "); 

        SERIALCONSOLE.print(settings.balanceHyst * 1000, 0); 

        SERIALCONSOLE.print("mV"); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("7 - Ah Battery Capacity: "); 

        SERIALCONSOLE.print(settings.CAP); 

        SERIALCONSOLE.print("Ah"); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("8 - Pack Max Discharge: "); 

        SERIALCONSOLE.print(settings.discurrentmax * 0.1); 

        SERIALCONSOLE.print("A"); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("9 - Cell Discharge Voltage Limit Setpoint: 

"); 

        SERIALCONSOLE.print(settings.DischVsetpoint * 1000, 0); 

        SERIALCONSOLE.print("mV"); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("0 - Slave strings in parallel: "); 

        SERIALCONSOLE.print(settings.Pstrings); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("a - Cells in Series per String: "); 

        SERIALCONSOLE.print(settings.Scells ); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("b - setpoint 1: "); 

        SERIALCONSOLE.print(settings.socvolt[0] ); 

        SERIALCONSOLE.print("mV"); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("c - SOC setpoint 1:"); 

        SERIALCONSOLE.print(settings.socvolt[1] ); 

        SERIALCONSOLE.print("%"); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("d - setpoint 2: "); 

        SERIALCONSOLE.print(settings.socvolt[2] ); 

        SERIALCONSOLE.print("mV"); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("e - SOC setpoint 2: "); 

        SERIALCONSOLE.print(settings.socvolt[3] ); 

        SERIALCONSOLE.print("%"); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.print("g - Storage Setpoint: "); 



 

103 
 

        SERIALCONSOLE.print(settings.StoreVsetpoint * 1000, 0 ); 

        SERIALCONSOLE.print("mV"); 

        SERIALCONSOLE.println("  "); 

        SERIALCONSOLE.println(); 

        menuload = 3; 

        break; 

      default: 

        // if nothing else matches, do the default 

        // default is optional 

        break; 

    } 

  } 

  if (incomingByte == 115 & menuload == 0) 

  { 

    while (Serial.available()) {Serial.read();} 

    SERIALCONSOLE.println(); 

    SERIALCONSOLE.println("MENU"); 

    SERIALCONSOLE.println("Debugging Paused"); 

    SERIALCONSOLE.print("Firmware Version : "); 

    SERIALCONSOLE.println(firmver); 

    SERIALCONSOLE.println("b - Battery Settings"); 

    SERIALCONSOLE.println("a - Alarm and Warning Settings"); 

    SERIALCONSOLE.println("e - Charging Settings"); 

    SERIALCONSOLE.println("c - Current Sensor Calibration"); 

    SERIALCONSOLE.println("k - Contactor and Gauge Settings"); 

    SERIALCONSOLE.println("i - Ignore Value Settings"); 

    SERIALCONSOLE.println("d - Debug Settings"); 

    SERIALCONSOLE.println("R - Restart BMS"); 

    SERIALCONSOLE.println("q - exit menu"); 

    debug = 0; 

    menuload = 1; 

  } 

} 

void canread() 

{ 

  Can0.read(inMsg); 

  // Read data: len = data length, buf = data byte(s) 

  if (inMsg.id == 0x3c) 

  { 

    CAB300(); 

  } 

  if (inMsg.id < 0x300)//do VW BMS magic if ids are ones identified to 

be modules 

  { 

    if (candebug == 1) 

    { 

      bms.decodecan(inMsg, 1); //do VW BMS if ids are ones identified 

to be modules 

    } 

    else 

    { 

      bms.decodecan(inMsg, 0); //do VW BMS if ids are ones identified 

to be modules 

    } 

  } 

  if ((inMsg.id & 0x1FFFFFFF) < 0x1A5554F0 && (inMsg.id & 0x1FFFFFFF) > 

0x1A555400)   // Determine if ID is Temperature CAN-ID 

  { 



 

104 
 

    if (candebug == 1) 

    { 

      bms.decodetemp(inMsg, 1); 

 

    } 

    else 

    { 

      bms.decodetemp(inMsg, 0); 

    } 

  } 

  if (candebug == 1) 

  { 

    Serial.print(millis()); 

    if ((inMsg.id & 0x80000000) == 0x80000000)    // Determine if ID is 

standard (11 bits) or extended (29 bits) 

      sprintf(msgString, "Extended ID: 0x%.8lX  DLC: %1d  Data:", 

(inMsg.id & 0x1FFFFFFF), inMsg.len); 

    else 

      sprintf(msgString, ",0x%.3lX,false,%1d", inMsg.id, inMsg.len); 

 

    Serial.print(msgString); 

 

    if ((inMsg.id & 0x40000000) == 0x40000000) {  // Determine if 

message is a remote request frame. 

      sprintf(msgString, " REMOTE REQUEST FRAME"); 

      Serial.print(msgString); 

    } else { 

      for (byte i = 0; i < inMsg.len; i++) { 

        sprintf(msgString, ", 0x%.2X", inMsg.buf[i]); 

        Serial.print(msgString); 

      } 

    } 

    Serial.println(); 

  } 

} 

void CAB300() 

{ 

  for (int i = 0; i < 4; i++) 

  { 

    inbox = (inbox << 8) | inMsg.buf[i]; 

  } 

  CANmilliamps = inbox; 

  if (CANmilliamps > 0x80000000) 

  { 

    CANmilliamps -= 0x80000000; 

  } 

  else 

  { 

    CANmilliamps = (0x80000000 - CANmilliamps) * -1; 

  } 

  if (settings.cursens == Canbus) 

  { 

    RawCur = CANmilliamps; 

    getcurrent(); 

  } 

  if (candebug == 1) 

  { 

    Serial.println(); 



 

105 
 

    Serial.print(CANmilliamps); 

    Serial.print("mA "); 

  } 

} 

void currentlimit() 

{ 

  if (bmsstatus == Error) 

  { 

    discurrent = 0; 

    chargecurrent = 0; 

  } 

  else 

  { 

    if (bms.getAvgTemperature() < settings.UnderTSetpoint) 

    { 

      discurrent = 0; 

      chargecurrent = 0; 

    } 

    else 

    { 

      if (bms.getAvgTemperature() < settings.ChargeTSetpoint) 

      { 

        discurrent = settings.discurrentmax; 

        chargecurrent = map(bms.getAvgTemperature(), 

settings.UnderTSetpoint, settings.ChargeTSetpoint, 0, 

settings.chargecurrentmax); 

      } 

      else 

      { 

        if (bms.getAvgTemperature() < settings.DisTSetpoint) 

        { 

          discurrent = settings.discurrentmax; 

          chargecurrent = settings.chargecurrentmax; 

        } 

        else 

        { 

          if (bms.getAvgTemperature() < settings.OverTSetpoint) 

          { 

            discurrent = map(bms.getAvgTemperature(), 

settings.DisTSetpoint, settings.OverTSetpoint, settings.discurrentmax, 

0); 

            chargecurrent = settings.chargecurrentmax; 

          } 

          else 

          { 

            discurrent = 0; 

            chargecurrent = 0; 

          } 

        } 

      } 

    } 

  } 

  ///voltage influence on current/// 

  if (storagemode == 1) 

  { 

    if (bms.getHighCellVolt() > (settings.StoreVsetpoint - 

settings.ChargeHys)) 

    { 



 

106 
 

      chargecurrent = map(bms.getHighCellVolt(), 

(settings.StoreVsetpoint - settings.ChargeHys), 

settings.StoreVsetpoint, settings.chargecurrentmax, 

settings.chargecurrentend); 

    } 

    if (bms.getHighCellVolt() > settings.OverVSetpoint) 

    { 

      chargecurrent = 0; 

    } 

  } 

  else 

  { 

    if (bms.getHighCellVolt() > (settings.ChargeVsetpoint - 

settings.ChargeHys)) 

    { 

      chargecurrent = map(bms.getHighCellVolt(), 

(settings.ChargeVsetpoint - settings.ChargeHys), 

settings.ChargeVsetpoint, settings.chargecurrentmax, 

settings.chargecurrentend); 

    } 

    if (bms.getHighCellVolt() > settings.OverVSetpoint) 

    { 

      chargecurrent = 0; 

    } 

  } 

  if (bms.getLowCellVolt() < settings.UnderVSetpoint || 

bms.getLowCellVolt() < settings.DischVsetpoint) 

  { 

    discurrent = 0; 

  } 

  ///No negative currents/// 

  if (discurrent < 0) 

  { 

    discurrent = 0; 

  } 

  if (chargecurrent < 0) 

  { 

    chargecurrent = 0; 

  } 

} 

void inputdebug() 

{ 

  Serial.println(); 

  Serial.print("Input: "); 

  if (digitalRead(IN1)) 

  { 

    Serial.print("1 ON  "); 

  } 

  else 

  { 

    Serial.print("1 OFF "); 

  } 

  if (digitalRead(IN3)) 

  { 

    Serial.print("2 ON  "); 

  } 

  else 

  { 



 

107 
 

    Serial.print("2 OFF "); 

  } 

  if (digitalRead(IN3)) 

  { 

    Serial.print("3 ON  "); 

  } 

  else 

  { 

    Serial.print("3 OFF "); 

  } 

  if (digitalRead(IN4)) 

  { 

    Serial.print("4 ON  "); 

  } 

  else 

  { 

    Serial.print("4 OFF "); 

  } 

  Serial.println(); 

} 

void outputdebug() 

{ 

  if (outputstate < 5) 

  { 

    digitalWrite(OUT1, HIGH); 

    digitalWrite(OUT2, HIGH); 

    digitalWrite(OUT3, HIGH); 

    digitalWrite(OUT4, HIGH); 

    analogWrite(OUT5, 255); 

    analogWrite(OUT6, 255); 

    analogWrite(OUT7, 255); 

    analogWrite(OUT8, 255); 

    outputstate ++; 

  } 

  else 

  { 

    digitalWrite(OUT1, LOW); 

    digitalWrite(OUT2, LOW); 

    digitalWrite(OUT3, LOW); 

    digitalWrite(OUT4, LOW); 

    analogWrite(OUT5, 0); 

    analogWrite(OUT6, 0); 

    analogWrite(OUT7, 0); 

    analogWrite(OUT8, 0); 

    outputstate ++; 

  } 

  if (outputstate > 10) 

  { 

    outputstate = 0; 

  } 

} 

void sendcommand() 

{ 

  msg.id  = controlid; 

  msg.len = 8; 

  msg.buf[0] = 0x00; 

  msg.buf[1] = 0x00; 

  msg.buf[2] = 0x00; 



 

108 
 

  msg.buf[3] = 0x00; 

  msg.buf[4] = 0x00; 

  msg.buf[5] = 0x00; 

  msg.buf[6] = 0x00; 

  msg.buf[7] = 0x00; 

  Can0.write(msg); 

  delay(1); 

  msg.id  = controlid; 

  msg.len = 8; 

  msg.buf[0] = 0x45; 

  msg.buf[1] = 0x01; 

  msg.buf[2] = 0x28; 

  msg.buf[3] = 0x00; 

  msg.buf[4] = 0x00; 

  msg.buf[5] = 0x00; 

  msg.buf[6] = 0x00; 

  msg.buf[7] = 0x30; 

  Can0.write(msg); 

} 

void resetwdog() 

{ 

  noInterrupts();                                     //   No - reset 

WDT 

  WDOG_REFRESH = 0xA602; 

  WDOG_REFRESH = 0xB480; 

  interrupts(); 

} 

void pwmcomms() 

{ 

  int p = 0; 

  p = map((currentact * 0.001), pwmcurmin, pwmcurmax, 50 , 255); 

  analogWrite(OUT7, p); 

  /* 

    Serial.println(); 

      Serial.print(p*100/255); 

      Serial.print(" OUT8 "); 

  */ 

  if (bms.getLowCellVolt() < settings.UnderVSetpoint) 

  { 

    analogWrite(OUT8, 224); //12V to 10V converter 1.5V 

  } 

  else 

  { 

    p = map(SOC, 0, 100, 220, 50); 

    analogWrite(OUT8, p); //2V to 10V converter 1.5-10V 

  } 

  /* 

      Serial.println(); 

      Serial.print(p*100/255); 

      Serial.print(" OUT7 "); 

  */ 

} 

void Serialexp() 

{ 

  /* 

    incomingByte = SERIALBMS.read(); // read the incoming byte: 

    Serial.println(); 

    Serial.print(incomingByte); 



 

109 
 

    Serial.print("|"); 

    incomingByte = SERIALBMS.read(); // read the incoming byte: 

    if (incomingByte == 0xFF) 

    { 

    Serial.println(); 

    Serial.print(incomingByte); 

    incomingByte = SERIALBMS.read(); // read the incoming byte: 

    Serial.print("|"); 

    Serial.print(incomingByte); 

    Serial.print("|"); 

    Serial.print(incomingByte); 

    if (settings.Serialexp == 1) //Do Serial Master Things 

    { 

    Serial.print(SERIALBMS.read(), HEX); 

    Serial.print("|"); 

    Serial.print(SERIALBMS.read(), HEX); 

    } 

    if (settings.Serialexp == 2) //Do Serial Slave Things 

    { 

    switch (incomingByte) 

    { 

    case 0x00: //q to go back to main menu 

    if (SerialID == 0) 

    { 

      SerialID = SERIALBMS.read(); 

      SERIALBMS.write(0x01); //response is 1 higher than sent id 

      SERIALBMS.write(SerialID); 

      Serial.print("New ID : "); 

      Serial.print(SerialID); 

    } 

    else 

    { 

      SERIALBMS.write(0xFF); 

      SERIALBMS.write(0x00); 

      SERIALBMS.write(SERIALBMS.read()); 

    } 

    break; 

    } 

    } 

    } 

  */ 

} 

void SerialReqData() 

{ 

  /* 

    SERIALBMS.write(0x12); 

  */ 

} 

void Serialslaveinit() 

{ 

  /* 

    int buff[8]; 

    while (1 == 1) 

    { 

    for (int I = 1; I < 51; I++) 

    { 

      SERIALBMS.write(0xFF); 

      SERIALBMS.write(0x00); 



 

110 
 

      SERIALBMS.write(I); 

      Serial.write(" | "); 

      delay(2); 

      if (SERIALBMS.available() > 0) 

      { 

        for (int x = 0; x < 4; x++) 

        { 

          buff[x] = SERIALBMS.read(); 

          Serial.write(buff[0]); 

          Serial.write(buff[1]); 

          Serial.write(buff[2]); 

        } 

        if (buff[0] = 0xFF) 

        { 

          if (buff[1] == I) 

          { 

            break; 

          } 

        } 

      } 

      else 

      { 

        Serial.write("No Serial Slaves Found"); 

        break; 

      } 

    } 

    break; 

    } 

  */ 

} 

void chargercomms() 

{ 

  if (settings.chargertype == Elcon) 

  { 

    msg.id  =  0x1806E5F4; //broadcast to all Elteks 

    msg.len = 8; 

    msg.ext = 1; 

    msg.buf[0] = highByte(uint16_t(settings.ChargeVsetpoint * 

settings.Scells * 10)); 

    msg.buf[1] = lowByte(uint16_t(settings.ChargeVsetpoint * 

settings.Scells * 10)); 

    msg.buf[2] = highByte(chargecurrent / ncharger); 

    msg.buf[3] = lowByte(chargecurrent / ncharger); 

    msg.buf[4] = 0x00; 

    msg.buf[5] = 0x00; 

    msg.buf[6] = 0x00; 

    msg.buf[7] = 0x00; 

 

    Can0.write(msg); 

    msg.ext = 0; 

  } 

  if (settings.chargertype == Eltek) 

  { 

    msg.id  = 0x2FF; //broadcast to all Elteks 

    msg.len = 7; 

    msg.buf[0] = 0x01; 

    msg.buf[1] = lowByte(1000); 

    msg.buf[2] = highByte(1000); 



 

111 
 

    msg.buf[3] = lowByte(uint16_t(settings.ChargeVsetpoint * 

settings.Scells * 10)); 

    msg.buf[4] = highByte(uint16_t(settings.ChargeVsetpoint * 

settings.Scells * 10)); 

    msg.buf[5] = lowByte(chargecurrent / ncharger); 

    msg.buf[6] = highByte(chargecurrent / ncharger); 

    Can0.write(msg); 

  } 

  if (settings.chargertype == BrusaNLG5) 

  { 

    msg.id  = chargerid1; 

    msg.len = 7; 

    msg.buf[0] = 0x80; 

    /* 

      if (chargertoggle == 0) 

      { 

      msg.buf[0] = 0x80; 

      chargertoggle++; 

      } 

      else 

      { 

      msg.buf[0] = 0xC0; 

      chargertoggle = 0; 

      } 

    */ 

    if (digitalRead(IN2) == LOW)//Gen OFF 

    { 

      msg.buf[1] = highByte(maxac1 * 10); 

      msg.buf[2] = lowByte(maxac1 * 10); 

    } 

    else 

    { 

      msg.buf[1] = highByte(maxac2 * 10); 

      msg.buf[2] = lowByte(maxac2 * 10); 

    } 

    msg.buf[5] = highByte(chargecurrent / ncharger); 

    msg.buf[6] = lowByte(chargecurrent / ncharger); 

    msg.buf[3] = highByte(uint16_t(((settings.ChargeVsetpoint * 

settings.Scells ) - chargerendbulk) * 10)); 

    msg.buf[4] = lowByte(uint16_t(((settings.ChargeVsetpoint * 

settings.Scells ) - chargerendbulk)  * 10)); 

    Can0.write(msg); 

    delay(2); 

    msg.id  = chargerid2; 

    msg.len = 7; 

    msg.buf[0] = 0x80; 

    if (digitalRead(IN2) == LOW)//Gen OFF 

    { 

      msg.buf[1] = highByte(maxac1 * 10); 

      msg.buf[2] = lowByte(maxac1 * 10); 

    } 

    else 

    { 

      msg.buf[1] = highByte(maxac2 * 10); 

      msg.buf[2] = lowByte(maxac2 * 10); 

    } 

    msg.buf[3] = highByte(uint16_t(((settings.ChargeVsetpoint * 

settings.Scells ) - chargerend) * 10)); 



 

112 
 

    msg.buf[4] = lowByte(uint16_t(((settings.ChargeVsetpoint * 

settings.Scells ) - chargerend) * 10)); 

    msg.buf[5] = highByte(chargecurrent / ncharger); 

    msg.buf[6] = lowByte(chargecurrent / ncharger); 

    Can0.write(msg); 

  } 

  if (settings.chargertype == ChevyVolt) 

  { 

    msg.id  = 0x30E; 

    msg.len = 1; 

    msg.buf[0] = 0x02; //only HV charging , 0x03 hv and 12V charging 

    Can0.write(msg); 

    msg.id  = 0x304; 

    msg.len = 4; 

    msg.buf[0] = 0x40; //fixed 

    if ((chargecurrent * 2) > 255) 

    { 

      msg.buf[1] = 255; 

    } 

    else 

    { 

      msg.buf[1] = (chargecurrent * 2); 

    } 

    if ((settings.ChargeVsetpoint * settings.Scells ) > 200) 

    { 

      msg.buf[2] = highByte(uint16_t((settings.ChargeVsetpoint * 

settings.Scells ) * 2)); 

      msg.buf[3] = lowByte(uint16_t((settings.ChargeVsetpoint * 

settings.Scells ) * 2)); 

    } 

    else 

    { 

      msg.buf[2] = highByte( 400); 

      msg.buf[3] = lowByte( 400); 

    } 

    Can0.write(msg); 

  } 

 

 

 

 

 

 

 

  



 

113 
 

 


