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New Maps of the Dark Side: Redshift drift cosmography

by Bruno Rocha

The growing amount of observational evidence for the recent acceleration of the uni­

verse unambiguously demonstrates that canonical theories of cosmology and particle

physics are incomplete (if not incorrect) and that new physics is out there, waiting to be

discovered. The most fundamental task for the next generation of astrophysical facilities is

therefore to search for, identify and ultimately characterise this new physics. The acceler­

ation is seemingly due to a dark component whose low­redshift gravitational behaviour is

very similar to that of a cosmological constant. However, currently available data provides

very little information about the high­redshift behaviour of this dark sector or its interactions

with the rest of the degrees of freedom in the model.

It is becoming increasing clear that tackling the dark energy enigma will entail signifi­

cantly extending the redshift range where its behaviour can be accurately mapped. A new

generation of astrophysical facilities, including Euclid, the ELT, and the SKA have dark en­

ergy characterization as a key science driver, and in addition to significantly increasing the

range and sensitivity of current observational probes will allow for entirely new tests. The

goal of this thesis will be to carry out an assessment of the cosmological impact and model

discriminating power of one such probe: measurements of the redshift drift of objects fol­

lowing the Hubble flow. We will also make a comparison between different cosmographic

expansions and the impact that they cause in the analysis of redshift drift measurements.

In addition, the synergies of the combination of SKA and ELT data will be studied as well

as which cosmographic expansion is best suited for each redshift region.
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A crescente quantidade de evidência observacional para a recente aceleração do uni­

verso demonstra sem ambiguidade que as teorias canónicas de cosmologia e física de

partículas estão incompletas (se não incorrectas) e que nova física anda por aí, à espera

de ser descoberta. A tarefa mais fundamental para a próxima geração de instalações

astrofísicas é, portanto, procurar, identificar e, em última análise, caracterizar esta nova

física. A aceleração é aparentemente devida a uma componente escura onde o com­

portamento gravitacional para baixos redshifts é muito semelhante ao de uma constante

cosmológica. No entanto, os dados actualmente disponíveis fornecem muito pouca infor­

mação sobre o comportamento a redshifts altos desta energia escura e as suas interac­

ções com o resto dos graus de liberdade do modelo.

Está a tornar­se cada vez mais claro que enfrentar o enigma da energia escura impli­

cará um alargamento significativo da gama de redshifts onde o seu comportamento pode

ser mapeado com precisão. Uma nova geração de infraestruturas astrofísicas, incluindo

o Euclid, o ELT, e o SKA têm a caracterização da energia escura como um dos seus

focos, e além de aumentarem significativamente o alcance e a sensibilidade das son­

das observacionais actuais, permitirão testes inteiramente novos. O objectivo desta tese

será a realização de uma avaliação do impacto cosmológico e do poder discriminador de

modelos de uma dessas sondas: a medição do redshift drift de objectos que seguem o

fluxo Hubble. Também será feita uma comparação entre as diferentes expansões cosmo­

gráficas e o impacto que estas causam na análise das medições do redshift drift. Além

disso, serão também estudadas as sinergias da combinação de dados SKA e ELT e qual

a expansão cosmográfica mais adequada para cada região de redshift.

Palavras­Chave: Cosmografia, Redshift Drift, SKA, ELT
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Chapter 1

Introduction

Current day Cosmology is at an exciting stage by progressing into a so called precision

Cosmology [1]. There is a standard model, much like the analogous of the standard model

of Particle Physics, and the main scientific focus is to try to refine the essential parame­

ters. That model is the ΛCDM model, often called concordance model. It is one of the

most simple yet successful ways to describe the Universe. It follows Einstein’s General

Relativity and considers the existence of a cosmological constant Λ, which corresponds to

the energy density of space and is assumed to be the dark energy preferred by observa­

tions, and a vanishing spatial curvature. Additionally, the matter present in the Universe is

pressure­less and composed by baryonic matter plus cold dark matter (i.e. non­relativistic

dark matter). With the previously mentioned assumptions, the ΛCDM model proved to be

able to describe the formation of the Universe and its evolution. However, like any model,

there are problems that remain unanswered/can’t be answered in its current state. Two of

the more concerning problems are the fine­tuning problem and the coincidence problem

[2]. The first one arises from the fact that the energy density of the cosmological constant

Λ from quantum field theory predictions and observations differ in approximately 120 or­

ders of magnitude. To do Cosmology it is necessary to fine­tune 120 decimal places, a

massive concern. The second problem results from the inability to explain why today the

cosmological constant density and the matter density have the same order of magnitude,

something that dark energy models tend to agree that has a very low probability to occur.

With such problems in mind, it is safe to say that the Universe’s expansion acceleration

rate is far from being explained. Furthermore, many other models are compatible with

the same observations or degenerate into the ΛCDM model. At this point in time it is

impossible to distinguish dark energy models from Modified Gravity Models. Even models

1



2 New Maps of the Dark Side: Redshift drift cosmography

with different approaches to the description of dark matter can be indistinguishable from

each other. So, it is crucial to have a clearer way to discern which model is better. New

facilities like Euclid [3], the ELT [4], and the SKA [5] [6] will start to operate within the next

10 years and will provide observations with higher quality than ever. This upcoming data

will give more insight about the characterization of the Universe’s expansion acceleration.

The new instruments will also, in theory, allow real­time measurements of the Universe’s

expansion [6] [7] [8]. One of the physical parameters that can be studied in real­time is

the redshift drift, the main focus of this thesis.



Chapter 2

Redshift Drift

The way that the Universe expands is one of the most compelling topics of study in Cos­

mology. Currently, it is known that the Universe is expanding at an accelerating pace.

Most, if not all, of the data from the measurements of this accelerated expansion are eval­

uated in relation to our current light cone. Those measurements are made as a function of

the redshift that the objects in study display. Redshift is the name given to the decrease in

frequency that photons can obtain through various ways, one off them being the expansion

of the Universe. This decrease in frequency happens because in an expanding Universe

the wavelengths of photons will increase. As consequence, the relation c = λν imposes

that the frequency must decrease. An object with a higher redshift corresponds to a more

distant body and the emission event will be also older.

Furthermore, since the Universe is expanding, most models predict that the distance

from a light source that only follows the expansion of the Universe to an observer will vary

with time, causing also a redshift variation. This phenomenon is called redshift drift and

was firstly described by Sandage [9] and McVittie [10] in 1962. Redshift drift measure­

ments are model independent and can measure directly the expansion rate. They can

also in theory be used to mitigate degeneracies between cosmological models as well as

test the Copernican principle [11].

With the advancement in the technology of observational facilities, it will be possible to

examine our Universe’s evolution in real­time. This new branch of Cosmology is referred

as real­time cosmology. Some of the possible study observables are the redshift drift, cos­

mic parallax, drift of the polarization of inverse­Compton scattered CMB photons and flux

drift [11] [12]. From these observables, the redshift drift is the one that is most promising

and has most research on it. As such, it will be the only one studied in this work.

3



4 New Maps of the Dark Side: Redshift drift cosmography

To get the standard expression for the redshift drift, it is only necessary to consider a ho­

mogeneous and isotropic Universe with a Friedmann­Lemaitre­Robertson­Walker (FLRW)

space­time (equation 2.1).

ds2 = −dt2 + a(t)2

(
dr2

1 − kr2 + r2
(

dθ2 + sin2θdϕ2
))

(2.1)

With this in mind, it is possible to obtain the equalities presented in 2.2.

1 + z =
λ0

λ
=

a0

a
=

dt0

dt
(2.2)

Where a and a0 are, respectively, the scale factors from the moment when the emission

happened and present time, z is the cosmological redshift. From here on the absence of

subscript represents the event’s emission time and the subscript 0 the current epoch, which

represents the moment in time that said event is observed. Differentiating the left side of

the expression 2.2 (the usual definition of redshift) in order to t0 one can obtain

dz
dt0

=
1
a

da0

dt0
− a0

a2
da0

dt
dt
dt0

(2.3)

From the definition of Hubble parameter (equation 2.4) and recalling equation 2.2 it fol­

lows that the redshift drift will depend on the Hubble parameter of the chosen cosmological

model (equation 2.5).

H ≡ 1
a

da
dt

(2.4)

∆z
∆t

= (1 + z)H0 − H(z) (2.5)

Figure 2.1 illustrates the redshift drift as a function of z for different different models

and cosmological parameters. As it can be seen, the expected signal to be observed is

extremely small, just a variation of 10−10 in redshift in a time span of 10 years. For com­

parison, this variation is comparable in orders of magnitude to the redshift drift expected

from other sources beyond the cosmic expansion like plate tectonics and the Sun’s motion

within the galaxy [12].
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Figure 2.1: Redshift drift as a function of z for different cosmological parameters of flat
ΛCDM and CPL models (these models will be explained with more detail in sections 4.1
and 4.2 respectively).The scale of 1x10−18s−1 is approximately equal to 3x10−11year−1

2.1 How to measure the Redshift Drift?

Redshift drift measurements are obtained from the measurement of the spectroscopic

velocity drift, ∆v. These quantities are related as shown in equation 2.6 (E(z) is the re­

scaled Hubble parameter and is equal to H(z)/H0, c is the speed of light).

∆v =
c∆z

1 + z
= cH0∆t

(
1 − E(z)

1 + z

)
(2.6)

When inputting a Hubble parameter correspondent to a ΛCDM model with Ωm0 = 0.3

in the previous relation we obtain a spectroscopic change of a few cm/s in a decade. With

this in mind, it is crucial to choose a good cosmic accelerometer, i.e., a type of object that

from which it is possible to retrieve satisfactory redshift drift data. Liske et al. [4] made a

list of useful traits that potential accelerometers should have:

• be capable to precisely capture motion of galaxies due to the expansion of the Uni­

verse (Hubble Flow);

• a sharp spectrum in order to alleviate the error on redshift measurements;



6 New Maps of the Dark Side: Redshift drift cosmography

• extensive useful spectral features, because observations on redshift drift will be very

time consuming and it is crucial to maximize the amount of information obtained;

• be bright;

• be able to be observed in a wide range of redshifts.

The authors also call attention for the fact that some features seem to clash with each

other, showing once more the difficulty in choosing the right object to study. From the

possible cosmic accelerometers that present a favorable amount of the previous require­

ments, the Lyman­α absorption lines and Neutral Hydrogen (HI) are the ones that spark

most interest.

2.1.1 Lyman­α absorption lines

The Lyman­α (Ly­α) forest is the name given to the phenomenon that occurs when ra­

diation from quasi­stellar objects (QSOs) is intercepted by intergalactic neutral hydrogen

(HI). Thosemediums with HI absorb radiation from the Ly­α region of the QSOs continuum.

Since this continuum arrives redshifted to the gas concentrations, the absorption lines pro­

duced will be blueshifted multiple times into lower wavelengths creating a ”forest” in the

spectrum. The further the QSO is from the observer (and by extension with a higher red­

shift) the bigger is the forest in the observed spectrum. The Ly­α absorption lines appear

in the Ultraviolet and visible wavelengths and can be observed from ground telescopes in

objects with redshifts between 1.7 ≲ z ≲ 5, a region where most of cosmological models

say that the redshift drift is negative and will be strictly decreasing in value [4] [13]. This

way of measuring the redshift drift was first proposed by Loeb [14] and, for that reason, it

is sometimes called the Sandage­Loeb test [15]. High resolution spectrographs operating

in the visible region of the electromagnetic spectrum, like the ELT (see section 5.2), will

be capable to detect this phenomenon [4].

In figure 2.2 [16] we have an example of this phenomenon. The top side spectrum

corresponds to quasar 3C 273 with a redshift equal to 0.158, obtained from Hubble’s

Space Telescope Faint­Object Spectrograph (which explains the fact that the redshift is

inferior from what was stipulated for ground telescopes), and the bottom side to quasar

Q1422+2309 that has a redshift of 3.62 fromKeck I HIRES. As it can be seen, quasars from

more distant regions in space, like Q1422+2309, have a high density of Ly­α absorption

lines while closer QSOs just as 3C 273 present only a couple.
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Figure 2.2: Example of a Lyman­α forest. The quasar 3C 273 with z = 0.158 has only
a few Ly­α absorption lines. Meanwhile the quasar Q1422+2309 with z = 3.62 has a
high density of Ly­α absorption lines. The density of absorption lines is proportional to
the distance of the observed QSO, the more distant is the object the higher is the density.

[16]

2.1.2 Neutral Hydrogen (HI)

Another method to measure redshift drift is through the change of frequency of the neutral

hydrogen signal of galaxies measured at different epochs. Neutral hydrogen emits very

rarely a photon with a frequency of 1420 MHz, commonly referred in Astronomy as the 21

cm line. This emission happens when a HI atom with an aligned proton spin and electron

spin, a state with more energy than when the spins are anti­aligned, has its electron spin

inverted making the system lose energy by radiation [17]. The HI signals can be observed

by ground telescopes in redshift ranges of 0 < z < 1, a region different from the Ly­α for­

est where the redshift drift is expected to be positive and strictly increasing, being a good

complement to the data obtained from Lyman­α absorption lines [8]. Darling [18] tried to

measure the redshift drift using indirectly this method. The results showed instrumental

systematic uncertainties with the measurements obtained being three orders of magnitude

larger than the expected. He also concluded that it would take about 125 years for cur­

rent technology to measure directly the cosmic acceleration. In the future, powerful radio

telescopes like the SKA (see section 5.1) will be able to measure HI frequency shifts with

enough precision to do real­time cosmology [6].
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Figure 2.3: Emission of the 21 cm wavelength photon occurs when a neutral hydrogen
atom has its aligned proton and electron spins flipped to anti­aligned [17]



Chapter 3

Cosmography

In the same way that redshift drift measurements are independent of the cosmological

model chosen, it is possible to characterize the Universe’s evolution without postulating

a priori a model through cosmography (also called cosmokinetics). This form of Cosmol­

ogy emerges from the symmetries and geometry of a FLRW space­time, without using

directly Einstein’s field equations. This way, the number of assumptions made is kept to

a minimum. From these assumptions, it is possible to write the scale factor using current

date observations as a cosmographic series obtained from a Taylor expansion around

the present time, t0. Until the fifth order we obtain equation 3.1. For notation simplicity

tH = H0(t − t0).

a(tH) = a0

[
1 + tH − q0

2
(tH)

2 +
j0
3!
(tH)

3 +
s0

4!
(tH)

4 +
c0

5!
(tH)

5 +
p0

6!
(tH)

6 + O((tH)
7)

]
(3.1)

The cosmographic coefficients are respectively the Hubble parameter (H), the decel­

eration parameter (q), the jerk (j), the snap (s), the crackle (c) and the pop (p).*

H ≡ 1
a

da
dt

q ≡ − 1
aH2

d2a
dt2 j ≡ 1

aH3
d3a
dt3 (3.2)

s ≡ 1
aH4

d4a
dt4 c ≡ 1

aH5
d5a
dt5 p ≡ 1

aH6
d6a
dt6 (3.3)

*The crackle and pop parameters can also be referred as lerk (l) and the max­out (m) parameters respec­
tively.

9
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Each of these parameters holds information about the way that the Universe expands.

For example, the signal of q tells if our Universe’s expansion is accelerating or decelerat­

ing. A positive sign means that we are in a Universe that is decelerating and a negative

sign the opposite. The j holds information on the changes from positive acceleration to

negative acceleration and vice­versa, much like a second order derivative of a function.

The snap quantifies the way that dark energy evolves [19]. The others are less clear in

what information they give and the s parameter is usually considered the minimum order in

which it is possible to distinguish cosmological models from the concordance model (see

section 4.1) [20] [21].

Lets then describe the Hubble parameter in terms of a cosmographic series. From the

definition of redshift (equation 2.2), it is obtained the following expression

1
1 + z

= 1 + tH − q0

2
(tH)

2 +
j0
3!
(tH)

3 +
s0

4!
(tH)

4 +
c0

5!
(tH)

5 +
p0

6!
(tH)

6 + O((tH)
7) (3.4)

Now, it will be introduced the variable α.

α =
1

1 + z
− 1 =

a − a0

a0
(3.5)

This variable will be useful to shorten some calculations and facilitate an easier tran­

sition between different redshift parameterizations, something that will be addressed in

future sub­chapters. Computing α in equation 3.4 results in an equation where α is de­

scribed by a power series.

α = tH − q0

2
(tH)

2 +
j0
3!
(tH)

3 +
s0

4!
(tH)

4 +
c0

5!
(tH)

5 +
p0

6!
(tH)

6 + O((tH)
7) (3.6)

This power series can be inverted so that now tH is the one described by a power

series as a function of α. [22]

tH = α +
q0

2
α2 +

1
3!
(−j0 + 3q2

0)α
3 +

1
4!
(−10j0q0 + 15q3

0 − s0)α
4

+
1
5!
(−c0 + 10j20 − 105j0q2

0 + 105q4
0 − 15q0s0)α

5

+
1
6!
(−21c0q0 + 280j20q0 − 1260j0q3

0 + 35j0s0 − p0 + 945q5
0 − 210q2

0s0)α
6 + O(α7)

(3.7)



3. Cosmography 11

Now, to obtain an expression for the redshift drift it is needed to compute the cosmo­

graphic expansion for the Hubble parameter. From the definition of Hubble parameter in

equation 2.4 and writing it in respect for the variable tH we will have

dtH = H0dt then H =
1
a

da
dt

=
H0

a
da

dtH
(3.8)

And so, the Hubble parameter as a function of tH will be equal to

H(tH) = H0

[
1 + (−q0 − 1)tH +

1
2
(j0 + 3q0 + 2)t2

H +
1
3!
(−4j0 − 3q2

0 − 12q0 + s0 − 6)t3
H

+
1
4!
(c0 + 10j0q0 + 20j0 + 30q2

0 + 60q0 − 5s0 + 24)t4
H +

1
5!
(−6c0 − 10j20 − 120j0q0

− 120j0 + p0 − 30q3
0 − 270q2

0 + 15q0s0 − 360q0 + 30s0 − 120)t5
H + O(t6

H)

]
(3.9)

When combining equations 3.7 and 3.9 we obtain the cosmographic expansion until

the fifth order of our chosen α.

H(α) = H0

[
1 + (−q0 − 1)α +

1
2
(j0 − q2

0 + 2q0 + 2)α2 +
1
3!
(4j0q0 − 3j0 − 3q3

0 + 3q2
0 + s0

− 6q0 − 6)α3 +
1
4!
(c0 − 4j20 + 25j0q2

0 − 16j0q0 + 12j0 − 15q4
0 + 12q3

0 − 12q2
0 + 7q0s0

− 4s0 + 24q0 + 24)α4 +
1
5!
(11c0q0 − 5c0 − 70j20q0 + 20j20 + 210j0q3

0 − 125j0q2
0

+ 80j0q0 − 15j0s0 − 60j0 + p0 − 105q5
0 + 75q4

0 − 60q3
0 + 60q2

0s0 + 60q2
0 − 35q0s0

+ 20s0 − 120q0 − 120)α5 + O(α6)

]
(3.10)

Substituting α and expanding it for low redshifts

α =
1

1 + z
− 1 = −z + z2 − z3 + z4 − z5 + ... (3.11)

We obtain the cosmographic expansion of the Hubble parameter as a function of z.
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H(z) = H0

[
1 + (q0 + 1)z +

1
2

(
j0 − q2

0

)
z2 +

1
3!

(
−3j0 − 4j0q0 + 3q3

0 + 3q2
0 − s0

)
z3

+
1
4!

(
c0 − 4j20 + 25j0q2

0 + 32j0q0 + 12j0 − 15q4
0 − 24q3

0 − 12q2
0 + 7q0s0 + 8s0

)
z4

+
1
5!

(
−11c0q0 − 15c0 + 70j20q0 + 60j20 − 210j0q3

0 − 375j0q2
0 − 240j0q0 + 15j0s0 − 60j0

−p0 + 105q5
0 + 225q4

0 + 180q3
0 − 60q2

0s0 − 105q0s0 + 60q2
0 − 60s0

)
z5 + O(z6)

]
(3.12)

This expression is consistent to what is obtained from the literature [23]. Finally, we can

get an expression for the redshift drift in terms of cosmographic coefficients when using

equation 3.12 in equation 2.5. The cosmographic expansion for the redshift drift will be

∆z
∆t

= −H0

[
q0z +

1
2

(
j0 − q2

0

)
z2 +

1
3!

(
−3j0 − 4j0q0 + 3q3

0 + 3q2
0 − s0

)
z3

+
1
4!

(
c0 − 4j20 + 25j0q2

0 + 32j0q0 + 12j0 − 15q4
0 − 24q3

0 − 12q2
0 + 7q0s0 + 8s0

)
z4

+
1
5!

(
−11c0q0 − 15c0 + 70j20q0 + 60j20 − 210j0q3

0 − 375j0q2
0 − 240j0q0 + 15j0s0 − 60j0

−p0 + 105q5
0 + 225q4

0 + 180q3
0 − 60q2

0s0 − 105q0s0 + 60q2
0 − 60s0

)
z5 + O(z6)

]
(3.13)

The same can be done as well for the spectroscopic velocity drift when inputting equa­

tion 3.12 in equation 2.6, obtaining

∆v = − cH0∆t
1 + z

[
q0z +

1
2

(
j0 − q2

0

)
z2 +

1
3!

(
−3j0 − 4j0q0 + 3q3

0 + 3q2
0 − s0

)
z3

+
1
4!

(
c0 − 4j20 + 25j0q2

0 + 32j0q0 + 12j0 − 15q4
0 − 24q3

0 − 12q2
0 + 7q0s0 + 8s0

)
z4

+
1
5!

(
−11c0q0 − 15c0 + 70j20q0 + 60j20 − 210j0q3

0 − 375j0q2
0 − 240j0q0 + 15j0s0 − 60j0

−p0 + 105q5
0 + 225q4

0 + 180q3
0 − 60q2

0s0 − 105q0s0 + 60q2
0 − 60s0

)
z5 + O(z6)

]
(3.14)
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3.1 Cosmography’s shortcomings

As to be expected from such a simple way to describe the Universe, cosmography faces

a lot of problems. There is a good reason why the most studied cosmographic coefficients

are the deceleration parameter and the jerk. The Taylor series starts to diverge for red­

shifts bigger than 1, so coefficients that are well defined for low redshifts, like q and j, are

more reliable and easy to study. Also, in equation 3.4 the fraction 1/(1 + z) has a pole at

z = −1 (a time in the future) which implies that the radius of convergence of the cosmo­

graphic series is at most equal to 1 [24] [25], i.e., the series will start to diverge for redshifts

larger than 1. One way to mathematically tackle this problem is to create different parame­

terizations for the redshift instead of z (see sections 3.2 and 3.3). A new parameterization

will not change any underlying physics and it will improve the convergence radius. It is

also possible to use models based on rational approximations (see section 3.4) instead of

polynomial approximations constructed when using a Taylor series. Furthermore, in par­

allel with the convergence issue, the cosmographic method is built around truncations of a

Taylor series so deviations from the true values will most certainly occur when increasing

the redshifts, worsening the predictability of this method at this domain.

The entanglement of cosmographic parameters is another problem that will always be

present in cosmography. In the same way that it is possible to find a cosmographic series

for H(z), it is also possible to determine a cosmographic series for every other parameter.

When doing that, we can verify that every parameter is expressed by combinations of the

remaining parameters. This means that is impossible to measure those quantities directly

since they can not be disentangled from each other. Although, there is an exception, the

Hubble constant. It only appears in the description of the Hubble parameter (equation

3.12) as a multiplicative term and is never seen in any other cosmographic variable. The

Hubble constant serves as an initial condition for cosmographic models[19].

By the definition of cosmography, the cosmographic coefficients are not know a priori

but, during an analysis, it is necessary to establish a range of values in which the data will

be constrained. The priors are usually built to constraint values for perturbations around

the ΛCDM model. This implies that cosmography is very dependent of imposed cosmo­

logical priors. If the true values were from a range beyond the ΛCDM priors the analysis

could still suggest that the data follows ΛCDM not because it is being predictive but be­

cause there wouldn’t be a better solution.
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3.2 Improved Redshift: y

One way to try to solve the convergence issues that cosmography suffers is to define

another redshift parameterization. The improved redshift ­ y ­ was created with that pur­

pose. This parametrization is commonly found in the literature [24]. In equation 2.2 we

can see that redshift is defined as (λ0 − λ)/λ. Why not define it as (λ0 − λ)/λ0? The y

parameterization is defined by the previous relation. In terms of z, y is expressed as

y =
z

1 + z
(3.15)

This way past values for redshift are constrained between 0 and 1. The α for this

parameterization is

α =
1

1 + z
− 1 = (1 − y)− 1 = −y (3.16)

Recalling equation 3.10 and inputting α accordingly we obtain the cosmographic ex­

pansion for the Hubble parameter as a function of y.

H(y) = H0

[
1 − (−q0 − 1)y +

1
2
(j0 − q2

0 + 2q0 + 2)y2 − 1
3!
(4j0q0 − 3j0 − 3q3

0 + 3q2
0 + s0

− 6q0 − 6)y3 +
1
4!
(c0 − 4j20 + 25j0q2

0 − 16j0q0 + 12j0 − 15q4
0 + 12q3

0 − 12q2
0 + 7q0s0

− 4s0 + 24q0 + 24)y4 − 1
5!
(11c0q0 − 5c0 − 70j20q0 + 20j20 + 210j0q3

0 − 125j0q2
0

+ 80j0q0 − 15j0s0 − 60j0 + p0 − 105q5
0 + 75q4

0 − 60q3
0 + 60q2

0s0 + 60q2
0 − 35q0s0

+ 20s0 − 120q0 − 120)y5 + O(y6)

]
(3.17)

Once more, the value obtained is in agreement with the literature [23] [26].

To obtain the redshift drift expressed in terms of y, and subsequently also the spectro­

scopic velocity drift, it is necessary to write ∆z as a function of ∆y.

∆z =
∆y

(1 − y)2 (3.18)

Using this relation and recalling 2.5, we obtain the redshift drift (equation 3.19) and ∆v

(equation 3.20) for y.
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∆y
∆t

= (1 − y)H0 − (1 − y)2H(y) (3.19)

∆v =
c∆y

1 − y
= cH0∆t(1 − (1 − y)E(y)) (3.20)

3.3 Exponential parameterization: x

Although in theory the improved redshift drift variable y should help with the convergence

issues, studies keep suggesting that it fails to be predictive [19] [27]. So, one can test

another parameterization for the redshift drift. The new variable x is equal to 3.21 as a

function of z.

x = ln(1 + z) (3.21)

The new α will be

α =
1

1 + z
− 1 = e−x − 1 (3.22)

When expanding it for low redshifts we obtain

α = −x +
x2

2
− x3

3!
+

x4

4!
− x5

5!
+ ... (3.23)

And just like what was previously made, the Hubble parameter will be equal to

H(x) = H0

[
1 + (q0 + 1)x +

1
2

(
j0 − q2

0 + q0 + 1
)

x2 +
1
3!

(
−4j0q0 + 3q3

0 + q0 − s0 + 1
)

x3

+
1
4!

(
c0 − 4j20 + 25j0q2

0 + 8j0q0 + j0 − 15q4
0 − 6q3

0 − q2
0 + 7q0s0 + q0 + 2s0 + 1

)
x4

+
1
5!

(
−11c0q0 − 5c0 + 70j20q0 + 20j20 − 210j0q3

0 − 125j0q2
0 − 20j0q0 + 15j0s0 − p0

+105q5
0 + 75q4

0 + 15q3
0 − 60q2

0s0 − 35q0s0 + q0 − 5s0 + 1
)

x5 + O(x6)

]
(3.24)

Again, after determining the relation between ∆x and ∆z, it is possible to get the redshift

drift and ∆v expressed as a function of x.
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∆z = ex∆x (3.25)

∆x
∆t

= H0 − e−x H(x) (3.26)

∆v = c∆x = cH0∆t(1 − e−xE(x)) (3.27)

3.4 Rational model ­ Padé approximants

Another way to improve cosmography’s issues is by utilizing Padé approximants. A Padé

approximant is a rational function that best fits a given power series A(x) [28]. The numer­

ator p(x) will be a polynomial with degree m and the denominator q(x) will have degree

n.

A(x) = ∑ aixi =
p(x)
q(x)

=
p0 + p1x + p2x2 + ... + pmxm

1 + q1x + q2x2 + ... + qnxn (3.28)

The values of m and n added together must be equal to the value of the power series

last order, i. In this work i will always be equal to 5 since in all the previously constructed

functions we have redshift truncations after the fifth order. The Padé approximants are

usually referred as [m/n]. Below we have an example of the approximants P[1/4] and

P[3/2].

P[1/4] =
p0 + p1x

1 + q1x + q2x2 + q3x3 + q4x4 P[3/2] =
p0 + p1x + p2x2 + p3x3

1 + q1x + q2x2 (3.29)

Because a Padé approximant is a rational function, it has some advantages when com­

paring it with a polynomial model. Rational functions are less oscillatory than polynomial

functions, can fit a wider range of curves and have outstanding asymptotic properties [29].

A Padé approximation has also another great property that differs from other rational ap­

proximations like rational Chebyshev. When most techniques only compact information

already known, Padé approximants can provide new information about the power series

[28]. Unfortunately, Padé approximants have the same drawbacks as rational functions

as well. There is still no clear way to determine what is the best value to choose for the
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degrees of the numerator and denominator and sometimes vertical nuisance asymptotes

can appear in an unpredictable way [29].

More information about the determination of Padé approximants will be given in ap­

pendix A.





Chapter 4

Fiducial Models

Now it is time to test the cosmographic series developed in the last section. For that to

happen, it is necessary to know the hyper­parameters of the cosmographic model, namely

the set of values (H0, q0, j0, s0, c0, p0), for each fiducial model. It is worth noticing again

that the value of H0 only acts as a multiplicative factor in the description of the redshift

drift. For that reason, H0 will have a fixed value of 70 km s−1Mpc−1 throughout the rest of

the work.

4.1 Flat ΛCDM model

The ΛCDM is the standard cosmological model. It is simple and can explain the large­

scale structures of galaxies and the Universe’s expansion for late and early epochs of its

evolution. The model assumes that the Universe is dominated by non­relativistic matter

and a dark energy component. To simplify even more this model, it will be considered

that the Universe also has a flat geometry. This will help greatly in the calculation of

cosmographic parameters as we will see. Furthermore, the dark energy is considered

as described by a barotropic factor w(a), a factor that represents the ratio between the

pressure of the fluid p and its energy­density ρ.

To test the ΛCDM with a cosmographic approach, it is needed to know the respective

Hubble parameter to get to the end goal of studying the redshift drift. Much like in section

3, we will take a general approach to determine the Hubble parameter since it can be

useful for the next section where a perturbation of this model will be studied, the CPL

parameterization.

19
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Solving Einstein’s Field Equations with in account all the previous assumptions, the

normalized Hubble parameter will have the form [30]

E(a)2 = Ωm0a−3 + (1 − Ωm0)F(a) (4.1)

Where Ωm0 is the present day matter density parameter and the function F(a) for a

generic barotropic factor, w(a), is equal to

F(a) = exp

(
−3

∫ a

1

w(a) + 1
a

da

)
(4.2)

This function describes the dark energy component of the Universe and its expression

is what distinguishes different dark energy models. The ΛCDM model has a barotropic

factor equal to −1 which means that dark energy in this model exerts negative pressure

and does not evolve with time. Its F(a) will be equal to 1 so equation 4.1 takes the form

E(a)2 = Ωm0a−3 + (1 − Ωm0) (4.3)

Rewriting it in function of z, we obtain the Hubble parameter as a function of redshift

for the ΛCDM model.

H(z) = H0

√
1 − Ωm0 + Ωm0(1 + z)3 (4.4)

Expanding this expression in order of z and matching it with equation 3.12 it is possible

to determine the present day cosmographic coefficients for the ΛCDM model.

q0 = −1 +
3
2

Ωm0 j0 = 1 s0 = 1 − 9
2

Ωm0 (4.5)

c0 = 1 + 3Ωm0 +
27
2

Ω2
m0 p0 = 1 − 27

2
Ωm0 − 81Ω2

m0 −
81
4

Ω3
m0 (4.6)

As it can be verified in equation 4.5, the non obtainment of a j0 equal to 1 with great

precision is a great indicator that the Universe can not be described by a flat ΛCDMmodel.

It is also possible to determine the present day matter density parameter from a sufficiently

good determination of q0. Again from 4.5, we obtain the value of Ωm0 = (2q0 + 2)/3.

We then tested the fitness of the cosmographic expansions for the parameterizations

z, y, x and the best performing Padé approximants for z (z­P[3/2]), y (y­P[1,4]) and x (x­

P[4,1]). The model studied has a Ωm0 equal to 0.3 so the hyper­parameters for it are
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(70,­0.55,1,­0.35,3.115,­10.88675). Since the redshift drift is inherently dependent of the

Hubble parameter, the relative error obtained from cosmographic approximations for that

parameter can be used to understand the bias present in those expansions. In figure 4.1

we have the plot of the relative errors for the Hubble parameter in the range 0 < z < 6

and the table 4.1 displays some relative errors for selected redshifts in percentage. As

expected, all the studied functions are well suited to describe the Hubble parameter for

redshifts below 1. The z parameterization of the redshift possesses the largest amount

of relative error for high redshifts. The other two parameterizations without the use of

Padé approximants perform better comparatively to z for higher redshifts with x being an

all around better approximation. The use of Padé approximants reduces the relative error

of the parameterizations indicating a better chance to predict true values, except for x­

Padé[4/1] that is almost identical to the x parameterization for this ΛCDM model. For that

reason, the values of the aforementioned cosmographic function are omitted in table 4.1.

The graphic for the spectroscopic velocity drift as a function of the redshift for the

different cosmographic functions is shown in figure 4.2. In table 4.2 are presented the

relative errors for ∆v in the same way as table 4.1. There is a significant propagation of

the errors from the Hubble parameter, demonstrating the necessity to find an extremely

good approximation for the Hubble parameters so that redshift drift cosmography can be

reliable at high redshifts.

Figure 4.1: Relative error for the cosmographic expansion of the Hubble parameter for a
flat ΛCDM model with Ωm0 = 0.3. The solid lines represent traditional parameterizations

and the dashed lines the Padé ones.
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Hubble parameter relative error in %
Cosmographic function z = 1 z = 2 z = 3 z = 4 z = 5 z = 6

z 0.1% 9% 69% 260% 687% 1479%
y 3% 16% 31% 42% 52% 59%
x 0.03% 0.3% 2% 4% 7% 10%

z Padé[3/2] 0.2% 2% 6% 10% 14% 18%
y Padé[1/4] 0.5% 6% 18% 30% 41% 51%

Table 4.1: Relative error in percentage for the Hubble parameter cosmographic expan­
sions of a ΛCDM model with Ωm0 = 0.3 for some selected values of z. The values for
z­Padé[4,1] were omitted for this model since they are indistinguishable from the regular

x parameterization.

Figure 4.2: Plot of the spectroscopic velocity drift as a function of redshift for the the
studied cosmographic expansions. The solid red line represents the original ∆v curve,

the other lines have the same color labels as figure 4.1.

∆v relative error in %
Cosmographic function z = 1 z = 2 z = 3 z = 4 z = 5 z = 6

z 0.8% 770% 665% 1359% 2658% 4735%
y 79% 4139% 870% 694% 668% 674%
x 0.2% 30% 17% 21% 26% 31%

z Padé[3/2] 1% 184% 56% 53% 56% 59%
y Padé[1/4] 19% 1296% 251% 183% 162% 153%

Table 4.2: Relative error in percentage for the spectroscopic velocity drift cosmographic
expansions of a ΛCDMmodel with Ωm0 = 0.3 for some selected values of z. Once again,

the values for z­Padé[4,1] were omitted.
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4.2 Flat CPL model

Although the ΛCDM model explains most of the Universe’s properties it is not infallible,

possessing some big unanswered problems, some of them cited in section 1. Alternative

theories are constantly being proposed, but not every new theory will be compatible with

cosmography. Modified gravity theories incompatible with a FLRW space­time framework

are not suitable to be utilized in standard cosmography by definition. By contrast, models

that will only differ in the form that characterize dark energy evolution can be evaluated us­

ing cosmography. One such example is the Chevallier­Polarski­Linder parameterization,

CPL for short [31][32]. The model surges from the idea to describe the barotropic factor

as a Taylor expansion with the form

w(a) = ∑ wi(1 − a)i (4.7)

It is used the scale factor instead of the redshift directly because this way no diver­

gences occur for small z, making it more physical [19]. When the barotropic factor is

truncated at the first order we obtain the CPL model. The barotropic factor will then be

w(a) = w0 + w1(1 − a) (4.8)

The new F(a) will be

F(a) = a−3(1+w0+w1)exp(−3w1(1 − a)) (4.9)

And finally we obtain H(z) for the CPL model.

H(z) = H0

√
Ωm0(1 + z)3 + (1 − Ωm0)(1 + z)3(1+w0+w1)exp

(
− 3w1z

1 + z

)
(4.10)

Doing the same procedure as section 4.1, once again we obtain the present day cos­

mographic parameters values.

q0 =
1
2
(w0(3 − 3Ωm0) + 1) (4.11)

j0 =
1
2
(w1(3 − 3Ωm0) + w2

0(9 − 9Ωm0) + w0(9 − 9Ωm0) + 2) (4.12)
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s0 =
1
4
(w1(33Ωm0 − 33) + w3

0(−27Ω2
m0 + 108Ωm0 − 81) + w2

0(−27Ω2
m0 + 171Ωm0 − 144)

+ w0(81Ωm0 + w1(−9Ω2
m0 + 72Ωm0 − 63)− 81)− 14)

(4.13)

c0 =
1
4
(w2

1(9Ω2
m0 − 72Ωm0 + 63) + w1(213 − 213Ωm0) + w4

0(324Ω2
m0 − 810Ωm0 + 486)

+ w3
0(648Ω2

m0 − 1917Ωm0 + 1269) + w2
0(378Ω2

m0 − 1584Ωm0 + w1(297Ω2
m0 − 918Ωm0

+ 621) + 1206) + w0(−489Ωm0 + w1(189Ω2
m0 − 927Ωm0 + 738) + 489) + 70)

(4.14)

p0 =
1
8
(w2

1(−459Ω2
m0 + 2502Ωm0 − 2043) + w1(3321Ωm0 − 3321) + w5

0(972Ω3
m0

− 8262Ω2
m0 + 14580Ωm0 − 7290) + w4

0(1944Ω3
m0 − 23409Ω2

m0 + 46818Ωm0 − 25353)

+ w3
0(1134Ω3

m0 − 23814Ω2
m0 + 57267Ωm0 + w1(891Ω3

m0 − 11745Ω2
m0 + 24057Ωm0

− 13203)− 34587) + w2
0(−9315Ω2

m0 + 32328Ωm0 + w1(567Ω3
m0 − 16065Ω2

m0

+ 41013Ωm0 − 25515)− 23013) + w0(7407Ωm0 + w2
1(27Ω3

m0 − 1863Ω2
m0 + 5265Ωm0

− 3429) + w1(−5508Ω2
m0 + 21645Ωm0 − 16137)− 7407)− 910)

(4.15)

Since the ΛCDM model is equal to a CPL model with w0 = −1 and w1 = 0, it is easy

to confirm that the above equations for the present day cosmographic parameters are

consistent with the ones obtained in the previous section. It is also consistent with lower

order expansions found in the literature [26].

With a little algebra, one can obtain the CPL parameters from those present day pa­

rameters. For the model be fully described it is only needed to know the cosmographic

parameters q0, j0 and s0.

w0 =
1 − 2q0

3(Ωm0 − 1)
(4.16)

w1 =
(−2j0 + 6q0 − 1)Ωm0 + 2j0 − 4q2

0 − 2q0

3(Ωm0 − 1)2 (4.17)

Ωm0 =
8j0q0 + 7j0 − 16q2

0 + 2q0 + 2s0 − 1 + (1 − 2q0)
√

f (q0, j0, s0)

2j0q0 + 10j0 − 8q0 + 2s0
(4.18)
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f (q0, j0, s0) = 9j20 + 8j0q2
0 − 12j0q0 − 14j0 + 32q2

0 + 8q0s0 − 4s0 + 1 (4.19)

To test the fitness of the cosmographic series studied, we calculated the mean relative

error for the Hubble parameter curve in the interval 0 < z < 6 as a function of the CPL

model hyper­parameters (the set (Ωm0, w0, w1)). The results are plotted from figures 4.3 ­

4.5. The best performing parameterizations are x, z­Padé[3/2] and x­Padé[4/1], although

x­Padé[4/1] is very similar to x for CPL parameters values close to ΛCDM. The usual z

parameterization presents higher mean relative errors when compered with other options,

meaning that is less likely to reflect the true cosmographic values upon an analysis. It is

also relevant to notice that Padé approximants have generally lower mean relative errors.

It also seems that cosmographic series that use Padé approximants have lower mean

relative errors, sometimes two orders of magnitude lower. Curiously, the mean relative

error of the y parameterization is independent of every CPL parameters chosen, at least

around ΛCDM values.

Figure 4.3: Mean relative error of the Hubble parameter in the redshift range 0 < z < 6
as a function of Ωm0 for each cosmographic series.
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Figure 4.4: Mean relative error of the Hubble parameter in the redshift range 0 < z < 6
as a function of w0 for each cosmographic series.

Figure 4.5: Mean relative error of the Hubble parameter in the redshift range 0 < z < 6
as a function of w1 for each cosmographic series.



Chapter 5

Forecasts

As seen in the previous sections, it will be crucial to determine if a cosmographic ap­

proach will be useful to retrieve information from the future redshift drift measurements

for low and high redshift regimes. For the estimation of the future data measurements,

we used a Markov Chain Monte Carlo (MCMC) code named emcee for Python [33]. For

the visualization of the MCMC results the Python’s module corner was utilized [34]. Next,

one needs to define cosmological priors for the cosmographic parameters. Some typi­

cal values found in the literature, for example the one found in Dunsby and Luongo [19],

consist of uninformative uniform priors with: q0 ∈ [−0.95,−0.3], j0 ∈ [0, 2], s0 ∈ [−2, 7],

c0 ∈ [−5, 10], p0 ∈ [−10, 50]. These values will be slightly increased because the models

studied will have parameters beyond the previously presented ranges (for example the p0

for the ΛCDM model is equal to ­10.88675), and are shown in table 5.1. For the present

day Hubble constant we assumed two scenarios, the first one being an uniform prior with

values between [60, 80]. Since other types of data that set smaller bounds for the values of

H0 can be used to constrain better the cosmographic parameters [35], the second case will

be a prior where H0 is described by a normal distribution with a standard deviation equal

to 3 km s−1Mpc−1. The value for the standard deviation was chosen to closely resemble

the ones from the literature for observations of H0 [36].

27
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Cosmological priors used
Parameter Uniform H0 (U) Normal distribution H0 (N)

H0 [60, 80] N (70, 32)
q0 [−1, 1] [−1, 1]
j0 [−10, 10] [−10, 10]
s0 [−30, 30] [−30, 30]
c0 [−50, 50] [−50, 50]
p0 [−100, 100] [−100, 100]

Table 5.1: Cosmological priors used

5.1 SKA

The Square Kilometer Array or SKA when completed will be the world’s largest radio tele­

scope. As it is planned, its construction will be divided in two phases. Phase 1 will rep­

resent about 10% ­ 20% of the final array with telescopes in Australia and South Africa.

Phase 2 will correspond to the phase where construction will be fully completed with the

addition of more telescopes in the previous countries plus some in other African nations

[37]. It was conceptualized to explore the evolution of the Universe from the observation

of hydrogen and will study areas like planetary formation, gravitational waves, cosmology

and dark energy. It will also in theory be capable to study real­time cosmology from the

observation of the shift in frequency of natural hydrogen, as seen in section 2.1.2. In the

book ”Advancing Astrophysics with the Square Kilometre Array” published by the SKA Or­

ganisation there is an article written by Klöckner et al. [6] detailing the experiment. It will

consist of measurements of the 21 cm line frequency shifts for billions of Milky Way­type

galaxies for any given redshift bin during two distinct epochs in time. The high number of

measurements will compensate its uncertainties leading to a precision in the determination

of the frequency shift of about 0.001 Hz. This value will translate to a precision of a few

cm/s per year for the spectral velocity drift making possible the distinction between different

cosmological models. These observations will have to take in account systematic errors

by peculiar velocities from the galaxies, obtained when these are under influence of a local

gravitational well which makes them stray away from the Hubble flow. Other sources of

uncertainties come from changes in the position of the array of telescopes caused by, for

example, plate tectonics and tides (as mentioned in section 2), and technical limitations of

the hardware.

We follow the recipe for the uncertainties for the spectral velocity drift for SKA phase 2

presented in Martins et al. [7]. For this phase, the observations will take 125 days with the
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possibility to repeat the experiment several times during the period that SKA will function,

which will be about 50 years. In total there will be 10 bins equally spaced between the

redshift values 0.1 to 1. The uncertainties will range from 1% of the ∆v for the redshift

bin at z = 0.1 and 10% for z = 1. We generated a mock data set for a flat ΛCDM model

with Ωm0 = 0.3. (figure 5.1) with these expected uncertainties and conducted an MCMC

analysis for the cosmographic series of z, z­Padé[3/2] and x. This mock data, as well as

future ones, were created without the expected dispersion from the measurements, since

the main objective is to test the different cosmographic expansions and the dispersion

would only introduce extra variance. Nonetheless, a case with the presence of dispersion

in the data was studied in appendix B.

Firstly we studied the case with a uniform prior for the value of H0 (U prior) and then the

normal distribution prior (N prior). The results for the first are shown in figures 5.2­5.4 and

in table 5.2 while for the second in figures 5.5­5.7 and in table 5.3. It was observed that

all the tested cosmographic expansions present similar constraints for all the parameters

that are not H0. While there is no significant reduction in the uncertainties obtained for the

cosmographic parameters, the N prior proved to be able to capture the true values more

accurately than the use of the U prior. For that reason, for the future data estimations only

the N prior will be used. The z expansion presents lower uncertainties for the c0 and p0

values. The expansion for z­Padé[3/2] appears to be worse than the others at predicting

true values in the low redshift regime.

Figure 5.1: Spectroscopic velocity drift mock data for SKA observations from a flat ΛCDM
model with Ωm0 = 0.3. The blue dashed line represents the true curve for this fiducial

model.
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Figure 5.2: Corner plot for the cosmographic parameters obtained from SKA data when
using only the z redshift parameterization and U prior. In blue we have the true values for

each parameter.

SKA Results for the U prior

Parameters Expected z z­P[3/2] x

H0 70 66.96+7.71
−5.07 68.46+7.53

−6.05 68.09+7.47
−5.78

q0 −0.55 −0.58+0.06
−0.05 −0.55+0.06

−0.05 −0.56+0.06
−0.05

j0 1 1.21+0.56
−0.50 0.66+0.38

−0.32 0.96+0.58
−0.57

s0 −0.35 1.32+5.93
−4.89 −4.95+3.49

−2.96 −0.88+5.41
−6.09

c0 3.115 8.37+18.08
−13.69 −20.71+24.08

−20.17 1.65+19.13
−26.27

p0 −10.88675 1.03+49.81
−46.58 7.91+63.43

−69.58 4.65+63.85
−69.05

Table 5.2: MCMC results for SKA observations with uninformative priors
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Figure 5.3: Corner plot for the cosmographic parameters obtained from SKA data when
using the z redshift parameterization with Padé approximant [3/2] and U prior. In blue we

have the true values for each parameter.

SKA Results for the N prior

Parameters Expected z z­P[3/2] x

H0 70 69.49+3.06
−3.04 69.74+2.96

−3.03 69.642+3.02
−3.00

q0 −0.55 −0.56+0.03
−0.03 −0.54+0.03

−0.03 −0.55+0.03
−0.03

j0 1 1.17+0.56
−0.50 0.63+0.36

−0.31 0.93+0.57
−0.55

s0 −0.35 1.18+6.18
−4.83 −5.03+3.18

−2.88 −1.03+5.46
−5.95

c0 3.115 8.21+18.13
−13.14 −20.79+23.45

−20.26 1.48+19.09
−26.79

p0 −10.88675 −0.36+53.03
−46.11 6.27+64.14

−70.07 3.66+64.92
−68.47

Table 5.3: MCMC results for SKA observations with a normal distribution prior for H0



32 New Maps of the Dark Side: Redshift drift cosmography

Figure 5.4: Corner plot for the cosmographic parameters obtained from SKA data when
using only the x redshift parameterization and U prior. In blue we have the true values for

each parameter.
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Figure 5.5: Corner plot for the cosmographic parameters obtained from SKA data when
using only the z redshift parameterization and N prior. In blue we have the true values for

each parameter.
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Figure 5.6: Corner plot for the cosmographic parameters obtained from SKA data when
using the z redshift parameterization with Padé approximant [3/2] and N prior. In blue we

have the true values for each parameter.
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Figure 5.7: Corner plot for the cosmographic parameters obtained from SKA data when
using only the x redshift parameterization and N prior. In blue we have the true values for

each parameter.
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5.2 ELT

Another facility that will be capable to measure the expansion of the Universe in real­

time is the European Extremely Large Telescope or simply ELT. Upon its completion this

telescope situated in the Atacama desert will have a main mirror with a diameter of 39

meters and will be biggest visible and infrared spectrum telescope in the world [38]. These

specifications will enable redshift drift measurements from the Lyman­α absorption lines,

previously discussed in section 2.1.1, by the HIgh REsolution Spectrograph (HIRES) that

will be integrated on the ELT. Just as the measurements that will be obtained from SKA,

ELT measurements will have to take in account other phenomena capable of interfering

with the absorption lines. A study on the uncertainties obtained when measuring Lyman­α

wasmade in the article of Liske et al. [4]. This article had an influence in the development of

the COsmic Dynamics and EXo­earth experiment (CODEX), a proposed spectrograph to

be added to the ELT and predecessor of the HIRES [39]. Some of the phenomena studied

were the presence of peculiar motions, just like for SKA, galactic feedback and optical

depth variations. It was concluded that none of them will have a significant impact on

the observations, something very cited in the literature [40] [41]. Technological limitations

were also taken in account being concluded that the redshift drift measurements demand

a long telescope time (at least 4000 h of observing time).

In the same article the authors obtained one expression for the spectroscopic velocity

drift uncertainties. That expression can be seen in equation 5.1 and it is dependent on the

signal to noise ratio (S/N) of the spectra, the number of background QSO’s observed for

each bin (NQSO) and respective redshift (zQSO).

σ∆v = 1.35
2370
S/N

√
30

NQSO

(
5

1 + zQSO

)x

, with x =


1.7, if z ≤ 4.

0.9, otherwise.
(5.1)

The signal to noise ratio will be assumed to being approximately equal to 3000 and

the number of quasi­stellar objects (NQSO) observed for each bin 10. The redshift bins

will be 10 and equally spaced from redshifts 2 to 5. The time span of the observations

will be chosen to be 20 years. Doing a similar procedure as in the previous section, we

generated a mock data set (figure 5.8) and made an MCMC analysis. The results obtained

are shown in figures 5.9­5.11 and in table 5.4. All cosmographic expansions have trouble

when predicting values for q0 since this parameter is preponderant only for lower redshift
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regimes as said before. The z parameterization shows to be capable to predict parameters

dependent on the high redshift regimes with good constraints (s0, c0 and p0). Once again,

z­Padé[3/2] appears to be worse than the other expansion at predicting cosmographic

parameters.

Figure 5.8: Spectroscopic velocity drift mock data for ELT observations from a flat ΛCDM
model with Ωm0 = 0.3. The blue dashed line represents the true curve for this fiducial

model.

ELT results for the N prior

Parameters Expected z z­P[3/2] x

H0 70 69.49+3.06
−3.18 70.16+3.00

−3.05 69.71+3.03
−3.04

q0 −0.55 −0.83+0.19
−0.12 −0.54+0.40

−0.32 −0.22+0.40
−0.38

j0 1 1.23+0.31
−0.38 −0.08+1.48

−1.35 0.34+1.17
−1.32

s0 −0.35 −0.15+0.65
−0.59 −7.29+6.28

−4.72 −0.06+5.54
−4.82

c0 3.115 3.46+0.87
−0.84 −18.68+28.51

−22.30 1.69+24.15
−21.07

p0 −10.88675 −12.50+3.37
−4.16 5.20+65.83

−68.61 5.38+59.38
−63.82

Table 5.4: MCMC results for ELT observations with a normal distribution prior for H0
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Figure 5.9: Corner plot for the cosmographic parameters obtained from ELT data when
using only the z redshift parameterization and N prior. In blue we have the true values for

each parameter.
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Figure 5.10: Corner plot for the cosmographic parameters obtained from ELT data when
using the z redshift parameterization with Padé approximant [3/2] and N prior. In blue we

have the true values for each parameter.
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Figure 5.11: Corner plot for the cosmographic parameters obtained from ELT data when
using only the x redshift parameterization and N prior. In blue we have the true values for

each parameter.
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5.3 SKA and ELT

It is expected that a model independent mapping of the Universe for lower and higher

regimes to cause a significant impact Cosmology’s future [42]. In this section a combina­

tion of the previous mock data (figure 5.12) will be used to test the accuracy of cosmog­

raphy. The results are shown in figures 5.13­5.15 and in table 5.5. With the junction of

the data sets z showed more difficulty in recovering values true when compared with the

others, but still showed less uncertainties in its determinations. Contrary to previous re­

sults, upon the use of data from low and high redshift regimes the z­Padé[3/2] expansion

is shown capable to obtain good constrains for all parameters except for s0. That result

may be caused by some kind of nuisance asymptote expected to happen sometimes for

rational approximations, as discussed in 3.4.

Figure 5.12: Combination of the previously mentioned mock data sets.

SKA + ELT results for the N prior

Parameters Expected z z­P[3/2] x

H0 70 70.51+3.28
−3.18 69.59+3.00

−2.98 69.66+2.98
−2.93

q0 −0.55 −0.54+0.02
−0.03 −0.55+0.03

−0.03 −0.55+0.03
−0.03

j0 1 0.91+0.10
−0.11 0.94+0.20

−0.41 0.93+0.34
−0.41

s0 −0.35 −0.48+0.32
−0.30 −0.87+1.39

−3.25 −1.39+3.28
−3.78

c0 3.115 3.96+0.40
−0.42 −0.92+9.36

−11.11 −5.01+18.33
−17.26

p0 −10.88675 −16.90+3.51
−2.99 −33.90+93.82

−47.32 −38.29+64.91
−37.68

Table 5.5: MCMC results for SKA + ELT observations with a normal distribution prior for
H0
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Figure 5.13: Corner plot for the cosmographic parameters obtained from SKA + ELT data
when using only the z redshift parameterization and N prior. In blue we have the true

values for each parameter.

5.3.1 ”Pessimistic” case

Even with new technological advanced facilities, the measurement of the redshift drift will

be challenging. The observation time required is large and the number of QSO’s cat­

alogued that can be used for Lyman­α measurements is still relatively small. This new

mock data will be evaluated for the values of redshift [0.1, 0.2, 0.3] with uncertainties of

[3%, 5%, 10%] respectively for the SKA, and redshifts of [2.5, 3.5, 5.0] for ELT, as de­

scribed in Martins et al. [7]. The new data set can be seen in figure 5.16. The results

are shown in figures 5.17­5.19 and in table 5.6. We observed that the uncertainties in­

creased for high order cosmographic parameters but lower order parameters can still be

constrained well.
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Figure 5.14: Corner plot for the cosmographic parameters obtained from SKA + ELT data
when using the z redshift parameterization with Padé approximant [3/2] and N prior. In

blue we have the true values for each parameter.

SKA + ELT results for the N prior (”Pessimistic” case)

Parameters Expected z z­P[3/2] x

H0 70 69.29+3.28
−3.31 69.78+3.00

−3.02 69.71+3.00
−2.99

q0 −0.55 −0.55+0.03
−0.03 −0.53+0.04

−0.04 −0.54+0.04
−0.05

j0 1 0.99+0.18
−0.21 0.34+0.70

−0.60 0.70+0.74
−0.69

s0 −0.35 −0.15+0.62
−0.52 −7.16+4.56

−3.75 −1.27+4.23
−6.21

c0 3.115 3.63+1.67
−1.67 −19.43+20.37

−20.27 −1.13+20.95
−24.78

p0 −10.88675 −13.48+9.25
−8.84 −3.43+69.15

−63.43 −2.38+62.36
−62.56

Table 5.6: MCMC results for 3 SKA + 3 ELT observations from flat ΛCDM with Ωm0 = 0.3
observations with a normal distribution prior for H0
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Figure 5.15: Corner plot for the cosmographic parameters obtained from SKA + ELT data
when using only the x redshift parameterization and N prior. In blue we have the true

values for each parameter.

5.3.2 ”Optimistic” case

We then studied a hypothetical scenario where we would have 100 SKA measurements

and 100 ELTmeasurements with the same cosmological model tested before (figure 5.20).

An increase in the number of measurements will constraint more tightly the parameters and

indicate possible deviations from the true values. The redshift domain was slightly changed

because some expansions presented a few numerical bugs in that range. The results are

presented in figures 5.21­5.23 and in table 5.7. In this test the cosmographic expansion in

x appears to be more stable, deviating less from the true values. The z expansion showed

an aggravation in its capability to predict correctly high redshift dependent cosmographic

parameters.
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Figure 5.16: Spectroscopic velocity drift mock data for 3 SKA + 3 ELT observations from
a flat ΛCDM model with Ωm0 = 0.3. The blue dashed line represents the true curve for

this fiducial model.

SKA + ELT results for the N prior (”Optimistic” case)

Parameters Expected z z­P[3/2] x

H0 70 70.90+4.36
−3.47 69.29+3.11

−3.21 69.35+2.91
−2.98

q0 −0.55 −0.54+0.03
−0.03 −0.56+0.02

−0.03 −0.56+0.02
−0.03

j0 1 0.99+0.07
−0.09 1.03+0.08

−0.07 1.001+0.08
−0.08

s0 −0.35 −0.19+0.17
−0.21 −0.14+0.33

−0.67 −0.66+0.91
−0.92

c0 3.115 3.69+0.20
−0.23 1.58+4.67

−4.02 −0.52+6.85
−6.79

p0 −10.88675 −13.62+1.53
−1.46 −44.38+106.30

−39.54 −27.85+26.38
−25.32

Table 5.7: MCMC results for 100 SKA + 100 ELT observations from flat ΛCDMwith Ωm0 =
0.3 observations with a normal distribution prior for H0

5.3.3 Model distinction

Finally, we studied the model distinction capabilities by making a comparison between a

flat ΛCDMmodel with Ωm0 = 0.3 and flat CPL model with parameters (0.3,­1,0.1). The dif­

ference between the models is lower than the expected observations uncertainties making

them difficult to discern from each other, as seen in figure 5.24. By contrast, the difference

between the cosmographic parameters will be more noticeable. As shown in equation

4.12, a small difference in the w1 value will greatly change the value of j0. In this case, it

changes the j0 from 1 for the ΛCDM model to 1.105 for this new CPL model. The results

are shown in the figures 5.25­5.27 and in the table 5.8. All the cosmographic series stud­

ied favoured the CPL model demonstrating the capacity to distinguish models with similar
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Figure 5.17: Corner plot for the cosmographic parameters obtained from 3 SKA + 3 ELT
observations when using only the z redshift parameterization and N prior. The data fol­
lowed a flat ΛCDM model with Ωm0 = 0.3. In blue we have the true values for each

parameter.

spectroscopic velocity drifts but with different cosmographic parameters.
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Figure 5.18: Corner plot for the cosmographic parameters obtained from 3 SKA + 3 ELT
observations when using the z redshift parameterization with Padé approximant [3/2] and
N prior. The data followed a flat ΛCDM model with Ωm0 = 0.3. In blue we have the true

values for each parameter.

SKA + ELT results for the N prior (Model distinction)

Parameters Expected z z­P[3/2] x

H0 70 68.97+2.78
−2.76 69.19+3.21

−2.99 69.17+3.09
−3.03

q0 −0.55 −0.56+0.02
−0.02 −0.56+0.03

−0.03 −0.56+0.02
−0.03

j0 1.105 1.12+0.06
−0.05 1.13+0.08

−0.07 1.11+0.08
−0.08

s0 0.12775 0.11+0.13
−0.12 0.39+0.46

−0.39 −0.27+0.74
−0.74

c0 4.333525 3.84+0.24
−0.24 6.26+4.29

−2.93 −0.06+5.01
−5.01

p0 −7.63618625 −11.32+1.33
−1.31 25.04+54.12

−60.15 −29.06+19.74
−19.39

Table 5.8: MCMC results for 100 SKA + 100 ELT observations from flat CPL with param­
eters (0.3,­1,0.1) observations with a normal distribution prior for H0



48 New Maps of the Dark Side: Redshift drift cosmography

Figure 5.19: Corner plot for the cosmographic parameters obtained from 3 SKA + 3 ELT
observations when using only the x redshift parameterization and N prior. The data fol­
lowed a flat ΛCDM model with Ωm0 = 0.3. In blue we have the true values for each

parameter.
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Figure 5.20: Spectroscopic velocity drift mock data for 100 SKA + 100 ELT observations
from a flat ΛCDM model with Ωm0 = 0.3. The blue dashed line represents the true curve

for this fiducial model.
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Figure 5.21: Corner plot for the cosmographic parameters obtained from 100 SKA + 100
ELT observations when using only the z redshift parameterization and N prior. The data
followed a flat ΛCDM model with Ωm0 = 0.3. In blue we have the true values for each

parameter.
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Figure 5.22: Corner plot for the cosmographic parameters obtained from 100 SKA + 100
ELT observations when using the z redshift parameterization with Padé approximant [3/2]
and N prior. The data followed a flat ΛCDM model with Ωm0 = 0.3. In blue we have the

true values for each parameter.
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Figure 5.23: Corner plot for the cosmographic parameters obtained from 100 SKA + 100
ELT observations when using only the x redshift parameterization and N prior. The data
followed a flat ΛCDM model with Ωm0 = 0.3. In blue we have the true values for each

parameter.

Figure 5.24: Comparison between a flat ΛCDMmodel with Ωm0 = 0.3 and flat CPLmodel
with parameters (0.3,­1,0.1). As it can be seen, the difference between them is lower than

the expected observations uncertainties.
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Figure 5.25: Corner plot for the cosmographic parameters obtained from SKA + ELT
data when using only the z redshift parameterization and N prior. The data followed a
flat CPL model with parameters (0.3,­1,0.1). In orange we have the true values for the
cosmographic parameters for the CPL model and in blue we have the parameter values

for the case of the flat ΛCDM model with Ωm0 = 0.3.
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Figure 5.26: Corner plot for the cosmographic parameters obtained from SKA + ELT
data when using the z redshift parameterization with Padé approximant [3/2] and N prior.
The data followed a flat CPL model with parameters (0.3,­1,0.1). In orange we have the
true values for the cosmographic parameters for the CPL model and in blue we have the

parameter values for the case of the flat ΛCDM model with Ωm0 = 0.3.
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Figure 5.27: Corner plot for the cosmographic parameters obtained from SKA + ELT
data when using only the x redshift parameterization and N prior. The data followed a
flat CPL model with parameters (0.3,­1,0.1). In orange we have the true values for the
cosmographic parameters for the CPL model and in blue we have the parameter values

for the case of the flat ΛCDM model with Ωm0 = 0.3.





Chapter 6

Final Remarks and Conclusions

Themain goal of this work was to assess themodel discriminating power that future data on

redshift drift when using together with a cosmographic approach. With the cosmographic

parameters, we conducted an analysis of the fitness for each approximation. It was shown

that the z parameterization has the highest mean relative errors, making it less reliable in

recovering the true values. It was also shown that, in the neighbourhood of ΛCDM values,

the mean relative error for the y parameterization is independent of every CPL parameter.

The x parameterization has the lowest mean relative error of the cosmographic series

that don’t use Padé approximants. The use of Padé approximants has lowered the mean

relative errors. Finally, we studied the predictive power of redshift drift cosmography for

future redshift drift data provided by the SKA and ELT.

For the low redshift data that will be obtained from the Square Kilometer Array it was

concluded that the z and x parameterizations can accurately determine low order cosmo­

graphic parameters. The z­Padé[3/2] cosmographic function has difficulty in recovering

the true values. For the high redshift regime from the data that will be obtained by the

European Extremely Large Telescope, the z­Padé[3/2] cosmographic function was once

again shown to be non predictive. It was also shown that for the z parameterization the

values of s0, c0 and p0 were predicted correctly with trade off being inaccurate values for q0

and j0. When combining the two types of data it was observed that now, the z­Padé[3/2]

cosmographic function could predict well the true values, with exception of the p0 parame­

ter. The opposite happened for the z parameterization where the junction of the two types

caused a worse determination of the true values. The x parameterization appears to also

predict correctly true values. It was also shown that a good cosmographic theory can be

57
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used to distinguish degenerated models that have different sources of dark energy. Over­

all, it can be said that all the studied expansions work well for the low redshift regime.

Meanwhile, for high redshifts the chosen expansion will be important for the recovery of

true values. Not only that, each expansion will benefit from different types data. For ex­

ample, the z parameterization performed worse with data simultaneously from low and

high redshifts while the z­Padé[3/2] suffers the opposite problem, it needs data from both

regions.

There is still a clear need to study more high redshift cosmography to fully utilize the

information obtained from future high redshift data. In a future work one could possibly ex­

periment this same analysis with other rational approximations like Chebyshev rationals

[43] [44]. Other method that is recently being explored to tackle cosmography’s shortcom­

ings is the use of orthogonalized logarithmic polynomials, although it is still being debated

if said polynomials applications would be useful [45] [46]. Since there is also a truncation

when defining the Taylor series expansion in time for the scale factor (equation 3.1), maybe

it would be useful to implement immediately rational approximations so that equation 3.4

would be something like

1
1 + z

≈ p(tH)

q(tH)
(6.1)

These new functions for the numerator and denominator would have a less clear mean­

ing but they could potentially be determined by relations between cosmographic parame­

ters.
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Appendix A

Padé Approximants

For any given power series A(x), the Padé approximant can be calculated by doing

A(x)− p(x)
q(x)

= 0 (A.1)

With p(x) = p0 + p1x + p2x2 + ... + pmxm and q(x) = 1 + q1x + q2x2 + ... + qnxn.

Expanding equation A.1 one can determine all the coefficients for p(x) and q(x).

a0 = p0

a1 + a0q1 = p1

a2 + a1q1 + a0q2 = p2

...

am + am−1q1 + ... + a0qm = pm

am+1 + amq1 + ... + am−n+1qn = 0

...

am+n + am+n−1q1 + ... + amqn = 0

(A.2)

The sections A.1, A.2 and A.3 contain the numerator (p(x)) and denominator (q(x))

for the Hubble parameter of the cosmographic functions z­Padé[3/2], y­Padé[1/4] and x­

Padé[4/1] respectively.
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A.1 z­Padé[3/2]

p(z) = H0

[
1 + z[(q0 + 1) + (−13c0 j0q0 − 30c0 j0 + 18c0q3

0 + 30c0q2
0 + 5c0s0 + 130j30q0

+ 120j30 − 280j20q3
0 − 230j20q2

0 + 25j20s0 − 3j0 p0 + 270j0q5
0 + 240j0q4

0 + 40j0q2
0s0 + 110j0q0s0

+ 3p0q2
0 − 90q7

0 − 90q6
0 − 30q3

0s0 + 35q0s2
0 + 40s2

0)/(5(−3c0 j0 + 3c0q2
0 + 12j30 − 23j20q2

0

+ 24j0q4
0 + 11j0q0s0 − 9q6

0 − 3q3
0s0 + 4s2

0))] + z2[(j0 − q2
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A.2 y­Padé[1/4]
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Appendix B

Data with Dispersion

In this appendix it will be conducted the same analysis as in section 5 but for this case the

measurements of the mock data set will have dispersion. The new data is presented in

figure B.1. The results are shown in figures B.2­B.4 and in table B.1. As it can be seen,

there are no significant deviations from what was obtained before except an even more

accentuated difficulty in recovering true values of high order cosmographic parameters for

the z and x parameterizations.

Figure B.1: Spectroscopic velocity drift mock data for SKA observations from a flat ΛCDM
model with Ωm0 = 0.3. The blue dashed line represents the true curve for this fiducial

model.
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Figure B.2: Corner plot for the cosmographic parameters for the z redshift parameteriza­
tion and N prior (case with dispersion). In blue we have the true values for each parameter.

Dispersed SKA + ELT results for the N prior

Parameters Expected z z­P[3/2] x

H0 70 70.10+3.07
−3.08 69.76+2.92

−3.04 69.65+3.01
−3.03

q0 −0.55 −0.56+0.02
−0.03 −0.56+0.02

−0.03 −0.57+0.03
−0.03

j0 1 1.10+0.09
−0.09 1.09+0.19

−0.18 1.33+0.24
−0.32

s0 −0.35 0.25+0.28
−0.27 0.38+1.51

−1.26 2.03+2.12
−3.08

c0 3.115 3.41+0.39
−0.42 7.08+7.33

−8.60 9.31+12.33
−17.25

p0 −10.88675 −8.61+3.73
−3.71 30.64+50.32

−95.05 9.60+61.85
−68.11

Table B.1: MCMC results for the case with dispersion. The prior used was the N prior.
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Figure B.3: Corner plot for the cosmographic parameters for the z redshift parameteriza­
tion with Padé approximant [3/2] and N prior (case with dispersion). In blue we have the

true values for each parameter.
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Figure B.4: Corner plot for the cosmographic parameters obtained for the x redshift pa­
rameterization and N prior (case with dispersion). In blue we have the true values for

each parameter.
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