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Resumo

Os contínuos avanços tecnológicos das últimas décadas levaram a que o mercado de trabalho esteja
cada vez mais ligado às áreas da Ciência, Tecnologia, Engenharia e Matemática (STEM—Science,
Technology, Engineering, Mathmatics). Assim, é necessário que os planos de estudos das escolas
evoluam e passem a abranger disciplinas relacionadas com o raciocínio lógico, como a robótica.
Esta inclusão será benéfica para os estudantes, uma vez que contribui para o desenvolvimento de
pensamento criativo, perseverança, espírito de equipa, assim como outras competências funda-
mentais. Neste sentido, o projeto REDI foi desenvolvido inicialmente como um robot educativo,
cujo comportamento era definido pela ligação de sensores e atuadores através de cavilhas. Estas
conexões seriam então interpretadas pelo robot, que seguiria as instruções dadas pelo utilizador.

Após várias iterações deste projeto, o trabalho proposto para esta dissertação será o de criar
um robot portátil, que apenas necessite de uma folha de papel para ser programado. Para tal, as
instruções para comandar a máquina terão de ser definidas de forma completamente nova, uma vez
que o design original de construção envolvia a ligação elétrica entre todas as cavilhas, tornando o
projeto caro e complexo. Em alternativa, o comportamento do robot aqui detalhado será definido
através de ligações desenhadas em papel. Este terá um Raspberry Pi 4 com duas câmaras e um
microcontrolador ESP32 que lê dois codificadores e comanda os dois motores. Uma das câmaras
será usada como sensores virtuais, enquanto a outra será usada para capturar a foto que define o
comportamento do robot. Este será economicamente viável e robusto (sem peças móveis) e fácil
de copiar.

O propósito desejado com esta nova ideia é o de manter os custos baixos para os estabeleci-
mentos de ensino, pois retira a necessidade de ter equipamento caro como tablets, smartphones ou
PCs, mesmo para a programação do robot. Os utilizadores, frequentemente estudantes do ensino
secundário, podem simplesmente utilizar uma folha de papel para "programar" o robot, sendo esta
atividade rápida. Isto torna esta experiência barata e educativa. Esta estratégia traz também a van-
tagem de todos os estudantes poderem estar a trabalhar em simultâneo e individualmente nas suas
ligações, com a sua folha de papel, sem terem de interagir com o robot de imediato mas podendo,
em poucos segundos, testar o seu programa num robot partilhado.

Esta dissertação foca-se na preparação do hardware do robot e no algoritmo de processamento
de imagem dedicado à identificação das conexões desenhadas em papel, que ditarão o compor-
tamento do robot. Este é lido a partir de um diagrama impresso num papel que contém blocos
que simbolizam o robot, onde conexões são desenhadas através de linhas coloridas. O software
usa a biblioteca OpenCV para descobrir estas ligações que serão depois traduzidas em instruções
(usando uma matriz de ligações) para o robot. Vários exemplos de possíveis implementações
foram usados para validar o algoritmo, que foi testado com sucesso. As situações incluem linhas
cruzadas com deformação de imagem, que pode resultar da lente ou de desalinhamento entre a
posição da câmara e do papel. O tempo de processamento máximo da fotografia do diagrama de
programação do robot, para os exemplos abordados, é de 3 segundos e inclui a correção da dis-
torção da lente, a homografia para retificar a perspetiva, o processamento de imagem para deteção
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de círculos, filtragem da cor para reconhecimento de linhas e a deteção final das conexões.



Abstract

The continuous technological advances in motion throughout the last decades have lead to a shift
in the work market, which is more focused than ever on the areas of Science, Technology, Engi-
neering and Mathematics (STEM). To be maintained, this shift requires that the school programs
follow suit, teaching courses related to STEM and general logic—for example, robotics. From
early on in their school education, the students should benefit from the development of creative
thought, perseverance, teamwork and other fundamental skills.

With this in mind, project REDI was first developed as a standalone educational robot, whose
behaviour was defined by sensors and actuators, connected through plugs. These connections
would then be interpreted by the robot which would, in this way, follow the user’s instructions.

After various iterations of this project, this dissertation work aims to create a standalone
portable robot, that requires only paper to define its behaviour. To achieve that, the instructions to
command the robot’s motion have to be defined in a new way, since the original design required
electrical connections between every plug, which made the full project expensive and complex. As
an alternative, the proposed robot’s behaviour will be defined through paper-drawn connections.
The robot will feature a Raspberry Pi 4 with two cameras and a ESP32 microcontroller to read
two encoders and drive the two motors. One of the cameras will be used as virtual sensors while
the other is used to capture the image that will define the behaviour. The proposed robot is cost
effective and is meant to be robust (no moving parts except the wheels) and easy to replicate.

The goal of this new idea is to keep costs low and make the project more desirable for schools,
since this takes away the need of expensive equipment like tablets, smartphones or PCs, not even
for programming the robot. The users, likely secondary school students, can simply use a paper
sheet to "program" the robot, making this a cheap and fruitful learning experience with a very low
setup time to make the first program. This strategy is also advantageous in the sense that each
student can work at the same time and individually on their connections, with their own paper
sheet, not having to interact with the physical robot straight away but still being able to, in a few
seconds, try out the drawn program in a shared robot.

This dissertation focuses on the hardware preparation and on the image processing algorithm
dedicated to the recognition of the connections drawn on paper that will in turn dictate the be-
haviour of the robot. This behaviour is read from a pre-printed paper diagram of the blocks that
make up the working of the robot, where connections are drawn as coloured lines. The software
used the OpenCV library to identify connections that will be later translated into commands (con-
nection matrix) for the robot. Various realistic sample programs were used as validation cases, and
tested successfully. They included situations with lines crossing and with some image deforma-
tion which could be a result of the lens of the camera or misalignments of the camera’s position
to the target piece of paper. The maximum processing time for the photograph of the robot’s
programming diagram is, for the examples studied, of three seconds and it includes correcting
the distortion caused by the lens, homography for perspective rectification, image processing for
circle detection, colour filtering for line recognition and connection logic detection.
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Chapter 1

Introduction

1.1 Context

In a world where technological evolution is constantly happening and kids are getting access

to it at an increasingly earlier rate, what is being taught in schools has to change to keep up

with the most recent developments in pedagogical research. STEM1 disciplines should be made

accessible starting in primary schools and continuing in the curriculum throughout all academic

years. Exercising these skills has been proven to help develop creative thought, perseverance,

teamwork and other fundamental skills.2.

It is no secret that classes can be monotone and students lose interest easily when there is no

real interaction between the student and the theory being taught. Including disciplines like robotics

in school curriculums could be a great way to fight these as the kids would be able to put their

lessons in practice.

This dissertation is the continuation of the REDI robot, a standalone educational robot, whose

behaviour was defined by sensors and actuators, connected through plugs. This project will change

the way the robot is programmed. Instead of using electrical connections to define the behaviour of

the robot, it will be defined by drawing lines on a paper that will later be translated into instructions.

Projects like this being implemented in schools along the current curriculum would be a great

step to diversify what is being taught to our children, to encourage their creativity and teamwork

abilities and to help them be forward-thinkers.

1.2 Objectives and Motivation

This dissertation work aims to create a standalone portable robot, that requires only paper-drawn

connections to define its behaviour. They will be detected by taking a photograph of said paper and

processing the image on a Raspberry Pi 4. This new approach to the REDI robot has the advantage

of allowing each student to work at the same time and individually on their connections, with their

1Science, Technology, Engineering and Mathematics
2https://blog.robotiq.com/7-reasons-to-teach-robotics-at-school

1
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own paper sheet, not having to interact with the physical robot straight away but still being able

to, in a few seconds, try out the drawn program in a shared robot.

Even though schools should broaden their curriculums to include more STEM disciplines, one

justification for not doing so is the added cost to the school’s already small budget. By creating a

robot as cost effectively as possible and by not having it rely on another equipment like a tablet

or laptop (that would be an added expense) without compromising the quality, projects like this

become more appealing. This could be a way to attract interest from schools and be a step towards

change in the current study plans.

1.3 Dissertation Structure

In addition to the current introductory chapter, there are four more chapters in this dissertation.

Chapter 2 contains the state of the art robots used in different educational projects. In Chapter 3,

the entirety of the solution is described. In Section 3.4 the selected hardware is detailed and in

3.5 the entire image processing pipeline is explained. Chapter 4 shows the results and analysis

of several sample programs. Finally, Chapter 5 is devoted to some conclusions and future work

regarding this project.



Chapter 2

State of the Art

This work will, hopefully, be implemented in schools to help teach young students how to think

logically and to learn other STEM skills. As projects for schools and for children have been

increasingly created in the last decade, it was necessary to study several existing projects to know

what already exists and how REDI will differ from them.

2.1 Previous Projects

This dissertation work is the continuation of several projects that will be described in this section.

2.1.1 RODA - RObot Didáctico de Aveiro

The REDi concept was inspired by the RODA robot which is a modular robot built for com-

petitions by Bruno Pires in Aveiro University [1] in 2008. The basis of the robot is that it is

programmed by connecting plugs into operational blocks and thus defining the desired behaviour.

Figure 2.1 shows the different connection points for the plugs to be inserted on. This allows for

someone with minimal knowledge of programming to program a robot and have instant feedback

if the instructions given originated the desired actions.

Figure 2.1: RODA robot

3



4 State of the Art

It also has two variations for its assemble. As it is built in layers, by switching them between

themselves, the robot can be used in the Micro-Mouse1 or Firefighter Robot2 competitions as can

be seen in figure 2.2.

(a) Micro-Mouse Variation (b) Firefighter Robot Variation

Figure 2.2: Variations of RODA

2.1.2 Original REDi

The original REDi robot [2] was created to be an educational tool for younger students unlike the

RODA robot. Even though the programming logic is the same, i.e. the behaviour is defined by

connecting logical blocks with wires, the hardware and software are different and were developed

from scratch according to the project’s needs. The final model can be seen in figure 2.3 with

several wires connected.

Figure 2.3: REDi robot

This project started in 2015 and consisted in creating the aforementioned robot and an online

simulation platform. On one window of the simulator, the desired behaviour is defined by connect-

ing the virtual points to one another as shown on figure 2.4a. On the other window (figure 2.4b),

the simulation starts and the robot’s actions are observed to see the result of the programming done

previously.

1http://microrato.ua.pt/
2http://robobombeiro.ipg.pt/

http://microrato.ua.pt/
http://robobombeiro.ipg.pt/
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(a) Connection of wires (b) Execution of robot

Figure 2.4: Simulator RediSim

2.1.3 REDi3

As a result of a dissertation made in 2018, Vasco Pinto [3] created the REDi3, a robot whose

behaviour was programmed on the simulator mentioned above. As the REDi project continues to

be for educating young students, the cost of the robot is important because it limits the number

of schools that can afford to have it. The different way of programming when compared to the

original allowed the project to become cheaper, lighter and smaller.

In figure 2.5 it can be seen that the main chassis is an AlphaBot (mentioned in section 2.3) and

the mirror support was designed specifically for this purpose and 3D printed. The V-shaped mirror

was used to allow the camera to be a virtual sensor so the robot could see obstacles in its course.

Figure 2.5: REDi3 robot

2.2 Behaviour Defined by Image Processing

Even though the work to be carried out is a continuation of an existing project, the method of

defining the robot’s behaviour will be new and so it was essential to find out what types of projects
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exist that also require image processing and in what way are the commands defined.

By researching, different projects that resort to image processing were found. T-Maze is a

tangible programming tool developed by Wang [4]. It uses 3D blocks with images printed on

them to create a logical program. When completed, a photograph is taken of the entire sequence.

Another interesting project was the Tactode [5] project. It uses puzzle-like pieces to define the

desired behaviour and that information is decoded through the processing of a a captured picture.

Even so, a similar project to the one proposed where the robot’s behaviour is defined by draw-

ing on a paper was not found.

2.3 Robots

As this dissertation also consists of creating a robot, it is necessary to study the different types

that exist on the current market. The table 2.7, based on the dissertation [6] by Angela Cardoso,

compares several attributes of different educational robots.

Analysing the table, the PiBot was identified as a possible choice as it is open source, reason-

ably cheap, uses Raspberry Pi and has a camera. This project was developed by Vega [7], in 2018,

to help robotics instruction in secondary education. One of its goals was to be low cost so that

price was not an obstacle to learning. Thus, its structure is a model designed to be 3D printed.

Another interesting robot due to its price and components is the AlphaBot23. Although it is

not found in the table 2.7, it is frequently used for teaching [8] and also has a camera. Both robots

can be seen in figure 2.6.

Figure 2.6: PiBot (left) and AlphaBot2 (right)

For the 2019 Portuguese Robotics Open, it was necessary to develop a robot for the Robot@Factory

Lite competition. Lima [9] built a vehicle that, like the PiBot, has its chassis printed in 3D, low-

ering its production cost. This model is relevant as it continues to be developed at Faculdade de

Engenharia da Universidade do Porto, where the next version of REDI will be created.

3https://www.waveshare.com/wiki/AlphaBot2

https://www.waveshare.com/wiki/AlphaBot2
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Figure 2.7: Comparison between Educational Robots
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Chapter 3

REDi 4.0

3.1 Problem Definition

In order to motivate students to learn new skills like robotics, it is necessary to innovate and bring

them new and exciting projects.

This dissertation is the evolution of the REDI robot which was a standalone educational robot,

whose behaviour was defined by sensors and actuators, connected through plugs. Afterwards, a

simulator RediSim was created making it possible to program and run the robot without having a

physical one with you. The problem with this is that students tend to learn more when they can

interact with devices they can touch and manipulate. Because of that, the next iteration was made

where the instructions were given on the simulator but the physical robot was the one to execute

the commands.

As schools have a low budget, it is important for this project to be cost effective. Therefore,

it will be created a standalone robot that does not depend on an extra device (e.g. tablet, laptop)

but that is more affordable than the original robot. As such, this project has to have a new and

affordable way to define the behaviour of the robot in order to eliminate the need of expensive and

complex electrical connections.

3.2 General Architecture

Previous work regarding the REDI robot used a portion of software written in Free Pascal on the

Lazarus platform to read the connection matrix and later execute the defined behaviour from the

connection matrix.

The approach taken in the current work is to read the connection matrix from the photograph,

taken by the USB camera, of the paper with the drawn connections.

After successful reading of the connection matrix, the previous software written in Lazarus

would run with the adaptation of the movement commands that are to be sent to the ESP32 micro-

controller.

9
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During the execution of the defined behaviour, another piece of software reads the camera to

emulate sensors in order to produce virtual sonars. This is done by assuming that the background

is mostly of the same colour and that obstacles will cause clear edges on the image received by the

Raspberry Pi camera.

3.3 Proposed Solution

With the creation of a robot being a fundamental part of this project, it was necessary to decide if a

pre-existing robot should be bought like the AlphaBot21 because of its reduced cost, or if it would

be more advantageous to build one from scratch or based on other projects (e.g. PiBot, RaFL) as

it would allow for more freedom to customise it.

Before making this decision, it is essential to establish which major components will be used.

For movement we will use a ESP32 microcontroller with two encoders and for image processing

we will have a Raspberry Pi 4.

To mitigate the cost of the robot, it was decided to define the behaviour of the robot through

the drawing on a paper of connections that are later translated into instructions. For that to be

possible, a photograph of the paper will have to be captured so the image can be precessed and the

connections detected.

To implement virtual sensors and image capturing, two possibilities were considered. The first

would be to use one fixed camera for the Raspberry Pi aimed at a chrome lamp mounted on top

of it. This system was explored and developed in the article by Ferreira et al [10]. This structure

was developed for the Alphabot2 robot so it might have to change. This method would cause the

collected image to be curved due to the shape of the lamp, but it would not be a problem as it

would still be possible to calculate the distance from the robot to any surrounding obstacle and to

capture the photograph of the paper.

The second proposed method would be to implement two fixed cameras, oriented in opposite

directions. The first would be pointing towards the ceiling while the other would be facing the

floor and would have a 200º lens2. When mounted at a distance from the top of the robot, this

hypothesis would allow capturing the puzzle through the lower camera (e.g. picking up the vehicle

and pointing the camera at the place where the paper is located) and the upper one would detect

obstacles close to the robot.

To make this decision, the Analytic Hierarchy Process was used. In this process, which meth-

ods to compare and which parameters to assess are identified. Giving weights to these criteria and

evaluating each method according to each factor, the final result is achieved through the sum of the

multiplications between the given judgments and the weights of the defined criteria. Thus, table

3.1 represents the AHP performed to decide which image collection method to use.

1https://www.botnroll.com/pt/kits-para-montagem/2709-alphabot2-plataforma-rob-tica-m-vel-compat-vel-com-
raspberry-pi-3-n-o-inclu-a-raspberry-pi.html

2https://mauser.pt/catalog/product_info.php?cPath=1667_2620_2621& products_id=096-7651

https://www.botnroll.com/pt/kits-para-montagem/2709-alphabot2-plataforma-rob-tica-m-vel-compat-vel-com-raspberry-pi-3-n-o-inclu-a-raspberry-pi.html
https://www.botnroll.com/pt/kits-para-montagem/2709-alphabot2-plataforma-rob-tica-m-vel-compat-vel-com-raspberry-pi-3-n-o-inclu-a-raspberry-pi.html
https://mauser.pt/catalog/product_info.php?cPath=1667_2620_2621& products_id=096-7651
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Table 3.1: AHP of Image Capturing

fixed camera + chrome lens 2 cameras
Robustness 0,4 0,1 0,9

Cost 0,2 0,5 0,5
Personalization 0,1 0,4 0,6

Resolution 0,3 0,3 0,7
SCORE 0,27 0,73

The robustness criterion is very important as this project is intended to be implemented in

schools, an environment where the repair of components will not be immediate. Cost also has

to be taken into account as it affects the likelihood of the product being purchased. In this case,

personalization is not fundamental, unlike image resolution, which is a decisive parameter for the

success of the image processing. Analysing table 3.1, using two cameras seems to be the best

decision as it allows the project to be more robust and the image quality to be better.

Once this decision was made, the same process was used to decide which type of robot to use,

which is represented in table 3.2.

Table 3.2: AHP of Robot

PiBot AlphaBot2 RaFL
Robustness 0,2 0,4 0,25 0,35

Cost 0,2 0,4 0,2 0,4
Personalization 0,3 0,1 0,05 0,85
Raspberry Pi 0,1 0,5 0,5 0

Microcontroller 0,1 0 0 1
Camera 0,1 0,5 0,5 0

SCORE 0,29 0,205 0,505

As before, robustness and cost are criteria that have to be considered. The existence of a

location for a Raspberry Pi, for an ESP32 or for a camera is also taken into account but these are

not fundamental parameters as any of the robots will have to be customized.

With the decisions taken, the proposed solution will be a differential robot based on the one

developed for Robot@Factory Lite with a Raspberry Pi 4, an ESP32, two motors with encoders

and two cameras, one of them with a 200º lens. The final REDI project will then consist of a robot

whose behaviour is determined by lines drawn on a pre-defined paper with a fixed schematic.
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3.4 Hardware

As it was decided that a new robot was going to be built anew, which components to use could be

chosen without limitations from previous projects. As such, every element was picked to fit each

other and to be non-expensive and of easy access on the market.

3.4.1 Raspberry Pi and ESP32

The Raspberry Pi 4 (figure 3.1a) is a low-cost, single board computer of reduced size, in this

case featuring 4GB of RAM. This kind of computer allows only one high frame rate camera (RPi

camera) but allows other high resolution USB cameras at a low frame rate. Another advantage

of RPi programming is Linux compatibility and easy OpenCV interfacing. It also has Bluetooth,

Ethernet and Wireless connections that will not be used in the final product but that were useful

during its development. In figure 3.1a, the Raspberry Pi is enclosed in a heat sink case (in black)

in order to stop it from overheating which could lead to a decrease in performance

As will be seen in 3.4.2, two cameras will be used: the RPi camera is reserved for virtual

sensing and the USB camera will be used to photograph the paper with the connections. This

means that the frame rate of the USB camera can be low but the resolution will limit the capability

to read the connections from the paper.

The ESP32 is a microcontroller that transforms the instructions given by the Raspberry Pi in

a way that can be interpreted and executed by the motors. This MCU was chosen instead of the

popular Arduino because it is a more complete board with Wireless and Bluetooth connectivity

and has a lower power consumption. It can be viewed on figure 3.1b.

(a) Raspberry Pi 4 with cooling case (b) ESP32 microcontroller

Figure 3.1: Development Boards

These two components communicate through Serial Port by connecting the Txd pin (pin used

to transmit data) of the Raspberry Pi 4 to the Rxd pin (pin used to receive data) of the ESP32 and

vice versa. The transmission is made with a Baud-Rate of 115200 and follows the SERIAL_8N1

protocol, which means that the communication starts with one start bit followed by eight data bits,
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no parity bit, and one stop bit. This information is then sent as PWM signals to the motors, as can

be studied in figure 3.5.

3.4.2 USB and Raspberry Pi Cameras

As previously mentioned, the instructions for the robot will be decoded from pictures taken by a

camera. In this case it was chosen a USB one, shown in figure 3.2a, with a 140 degree lens and

with a maximum resolution of 1920x1080 pixels for a frame captured in video mode. This camera

is positioned on top of the robot, with the lens turned skywards, as seen on figure 3.6a.

The Raspberry Pi camera, shown on figure 3.2b, connects to the microcomputer by its ribbon

cable and has a 200 degree lens to double as a virtual sensor. By being placed parallel to the

ground with the lens turned down, it is possible to calculate the distance to any obstacles in its

view. This features is not yet implemented but it was partially developed.

(a) Raspberry Pi 4 camera with 140 degree lens (b) Raspberry Pi 4 camera with 200 degree lens

Figure 3.2: Raspberry Pi Cameras

3.4.3 Power

As the various chosen components need different power supplies, it was decided to use two 18650

batteries connected in serial for a 7.2V supply and two converters to reduce it to 5V and 3.3V

as the Raspberry Pi 43 and the ESP324 have to be supplied by these exact values, respectively.

Furthermore, the DC motor and its encoders5 can also use 5V as it is a value in their accepted

range.

3.4.4 Electrical Diagram

The electrical diagram for the motors connection with the drivers and ESP32 was reworked a

number of times but in the end it ended up being similar to the one proposed in the open repository

3https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
4https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
5https://wiki.dfrobot.com/Micro_DC_Motor_with_Encoder-SJ01_SKU__FIT0450

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://wiki.dfrobot.com/Micro_DC_Motor_with_Encoder-SJ01_SKU__FIT0450
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(a) 18650 batteries (b) Power converter

Figure 3.3: Power sources

Figure 3.4: DC Motor with Encoder

of curiores in GitHub6, shown in figure 3.5. The motors shown in the picture are the same as the

ones used in this project but the model of the drivers and microcontroller are different.

Figure 3.5: Electrical Diagram of the connection of the motors to the encoders 6

3.4.5 Bill of Materials

As the purpose of this project is to be integrated in schools, the overall cost of the robot had to be

low. In the following table 3.3, the sum of all components was reached a total of around 254C.

6https://github.com/curiores/ArduinoTutorials/tree/main/MultipleEncoders

https://github.com/curiores/ArduinoTutorials/tree/main/MultipleEncoders
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Even though the unit prices are rounded up, it was considered that the total cost of the robot’s

components was 260C to leave some leeway for other building costs.

Table 3.3: Bill of Materials

Component Quantity Price Link
Raspberry Pi 4 1 65,00 C https://bit.ly/2Ybwi2E

ESP32 1 20,00 C https://bit.ly/2Yiwcqr
Step Down converter 2 8,00 C https://bit.ly/39YXpAI

Batteries 2 10,00 C https://bit.ly/2ZQsk0s
USB Camera 1 40,00 C https://amzn.to/3B8Jq7G

Raspberry Pi Camera 1 40,00 C https://bit.ly/3l0wLhq
Driver 1 16,00 C https://bit.ly/3D2kCP5

Motor + Encoder 2 18,00 C https://bit.ly/3omAS9y
Castor Wheel 1 3,00 C https://bit.ly/3A3Nc0B

Wheels 2 6,00 C https://bit.ly/3orVJIy
Cooling Case 1 12,00 C https://bit.ly/3a1FskY

Battery Supporter 2 2,00 C https://bit.ly/2Y8qpDq
Pressure Button 1 7,00 C https://bit.ly/3ipfVqM
Battery Charger 1 7,00 C https://bit.ly/2Y3GWbU

TOTAL 254,00C

3.4.6 Final Assembly

All the components mentioned above in table 3.3 were then assembled. Even though the plan was

to build a robot based on the one from Robot@Factory Lite, the health pandemic that occurred

limited the access to the faculty and to the resources needed to adapt and print a 3D chassis. As

such, the prototype was built on a sturdy 16.5x20.5x6.5cm cardboard box as can be seen on figure

3.6.

Every component was placed on the inside of the box with the exception of the Raspberry Pi

4. This was decided so that, even though each element is accessible, they will be hidden from

view and protected by the cardboard. On the bottom right corner of figure 3.6b, the USB camera

can be seen peeking from below also in an attempt to preserve it while having it be able to take

photographs. The necessary connectors pass from the top to the bottom of the box through a small

gap on its side, as seen on figure 3.6a.

https://bit.ly/2Ybwi2E
https://bit.ly/2Yiwcqr
https://bit.ly/39YXpAI
https://bit.ly/2ZQsk0s
https://amzn.to/3B8Jq7G
https://bit.ly/3l0wLhq
https://bit.ly/3D2kCP5
https://bit.ly/3omAS9y
https://bit.ly/3A3Nc0B
https://bit.ly/3orVJIy
https://bit.ly/3a1FskY
https://bit.ly/2Y8qpDq
https://bit.ly/3ipfVqM
https://bit.ly/2Y3GWbU
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(a) Diagonal view with sketch of where the Raspberry Pi
Camera would go (b) Top view

Figure 3.6: Prototype of Robot
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3.5 Software - Image Processing

3.5.1 Introduction

One of the objectives of this dissertation is to program a robot by drawing connections on paper.

To do so, a picture will be taken of said paper; but that in itself is not enough for the instructions

to be deciphered. Thus, it was necessary to process the photograph.

Image processing entails taking a picture and extracting meaning from it. In this case, the

desired information is composed by the connections between points in the pre-defined schematic

which will then be interpreted into commands for the robot. However, first, these connections have

to be discovered from the image data.

An image is a matrix of pixels. Each pixel is used to represent a colour. In this dissertation,

the colour will be defined mostly in the RGB colour space. It is composed of three channels that

respectively represent red, green and blue. Each ranges from 0 to 255, and the weight of each

value impacts the pixel colour equally. The HSV colour space will also be used in this work; it too

has three channels, but they signify hue, saturation and value. The first one ranges from 0 to 179

and represents the pixel colour while the last two range from 0 to 255 and indicate its intensity and

lightness, respectively.

To process the pictures taken, the OpenCV library was used, since it is open-source, comprises

a large catalogue of functions and tools, and is recommended for projects that involve computer

vision or image processing. It is also compatible with Python, the programming language selected

for having many free open-sourced libraries created by online communities.

3.5.2 Pipeline

In the following subsections, the whole process from taking a picture to the robot moving will be

explained in a more detailed way. On figure 3.7, a more generic summary is shown in the form of

a diagram.

3.5.3 Schematic of Connections

As mentioned previously, the basis of this project is to have a robot move in a way determined by

the connections drawn on a sheet of paper. For that, a reference schematic was needed: that is, a

design that is the same in every paper sheet, so that the relative position of the connection points

is known. From fere on out, connection points are the little circles on the paper that were the

plugs on the original robot and it is to and from them that connections are established. The chosen

model resembles the surface of the original REDI robot and can be seen in figure 3.8. The numbers

depicted in this figure are only here represented for indicative purposes, and do not appear on the

actual project’s paper sheets.

The different symbols in figure 3.8 [2] are enumerated in red and represent several sensors,

actuators and operations. Number 1 is a line sensor; 2,3, 4 and 17 are proximity sensors and 18 is

a floor sensor. The two actuators present are the motors at 9 and 13. Numbers 5 and 8 are inverters,
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Figure 3.7: Pipeline

6 and 7 adders, 10 and 12 timers and 11 is a multiplication by the constant at number 16. There

are also two multiplexors in 14 and 15.
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Figure 3.8: Schematic of the Robot’s Connections

3.5.4 From Photograph to Connection Matrix

This section is dedicated to the process of analysing the photograph taken by the USB camera to

extract the information drawn on by the user to ultimately provide the robot its commands. The

way to do it is by using different computer vision algorithms that will be expanded upon in the

following sections.

3.5.4.1 Calibration

The calibration of a camera is divided into intrinsic and extrinsic parameters. Intrinsic parameters

include internal elements such as lens and image sensor; extrinsic parameters deal with the position

of the camera to the world.

When a camera has a wide-angle lens, the resulting image can have a curved look around the

edges. This event is called radial distortion and can be corrected by calibrating7 the camera so the

final picture is true to the object that is being captured. For the calibration to be successful, there

are three major elements that have to be calculated:

• the distortion coefficients, associated to the distortions of the camera;

• the camera matrix: unique to every camera, with values such as focal length and optical

centres;

7https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html

https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
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• translation and rotation vectors, associated to the images captured by the camera.

For these last ones to be obtained, it was necessary to print out an image of a distinct pat-

tern in order to have a dataset of pictures with easily known points. The most commonly used

design is a chessboard, as it is composed by alternating black and white squares, which pro-

vides an easy relation between the real measurements and the ones calculated in the photograph.

It was important to collect an ample dataset of images, from different perspectives and vari-

ous distances to the camera, as can be seen in figure 3.9. For each picture in the saved set,

cv2.findChessboardCorners(image, chessboardDimension, flag) finds the chess-

board corners; when done, this information is used in cv2.calibrateCamera(objectPoints,

imagePoints, imageSize, cameraMatrix, flags, criteria) to determine the above

mentioned elements.

Figure 3.9: Example of pictures for the chessboard dataset

As these values are always true for this camera regardless of the picture captured, the calcu-

lations may be done only once to save execution time. With this data, for every new photograph,

cv2.getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha,

newImgSize) calculates the new camera matrix and region of interest. In this function, al-

pha (the scaling parameter) equalled 1 so that no pixels from the source image were lost. At

last, the photograph was undistorted with the use of cv2.undistort(src, cameraMatrix,

distCoeffs, dst, newCameraMatrix).

3.5.4.2 Homography

When the photograph is first taken, it generally is never in an ideal positioning to be analysed

as its perspective is, almost always, askew and there will be irrelevant information that could be

erased. To this effect, it was necessary to calculate the homography matrix H to then apply a

perspective transformation to the image. The above mentioned matrix is the relation between the

points in one picture to the corresponding ones in another image and is the result of the function

cv2.findHomography(ptssrc, ptsdst).

To simplify which points to use for this transformation, ArUco markers were placed in the

corners of the paper. An Aruco marker is a “synthetic square marker composed by a wide black

border and a inner binary matrix which determines its identifier (id). The black border facilitates its

fast detection in the image and the binary codification allows its identification and the application
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of error detection and correction techniques.”8 [11] As the ArUco Library is open-source, very

easy to use and is integrated in the OpenCV library, it was decided that it was a good choice to use

it to aid correction of perspective and orientation.

Consequently, ArUco markers were placed in the corners of the reference paper to provide

easy points for the homography function. Beginning with only one marker, it was observed that

the final perspective correction was not ideal as the image was mostly corrected around the cor-

ner with the ArUco, leaving the rest of the picture with distortion that was still significant. Ap-

plying two markers, each to one corner, the result was improved but there were still some un-

wanted warp. Placing three ArUcos, as seen on figure 3.10, proved to be enough to produce

a final perspective correction with minimal distortion. After calculating the resulting matrix H,

cv2.warpPerspective(img, H, img.size()) was run and the photograph was returned

in its ideal perspective, with the irrelevant information to the analysis erased.

Figure 3.10: Schematics that will be given to the students to draw on

3.5.4.3 Connection Points Detection

After applying the homography function, the next step was to determine where the connection

points were located. The first approach was to use the Hough Circle Transform [12] as it is a

standard function to detect circles. In a simplified description, this method works in the following

manner: a circle is defined by the parametric equation 3.1, where a and b are the coordinates of

the circle’s centre and r is its corresponding radius. The algorithm states that, for every (x,y)

coordinate, all possible values of the unknown parameters (a,b,r) are stored in what is called an

8https://docs.opencv.org/4.1.0/d5/dae/tutorial_aruco_detection.html

https://docs.opencv.org/4.1.0/d5/dae/tutorial_aruco_detection.html
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accumulator matrix. After all coordinates are checked, the maxima of the matrix are taken as the

parameters that define the circles.

(x−a)2 +(y−b)2 = r2 (3.1)

In the cv2 library9, this function is made faster by using a gradient method, also called the 2-1

Hough Transform as detailed in [13], which uses the normal of each edge point.

This is supposed to be a fail-safe method but, when tested, the results were not good enough

for the purposes of this project. It either returned to many circles that were not even in the picture

or it did not return the important ones. This could probably be improved by dividing the image in

several parts and applying this method to each section, instead of using it for the whole page at

once.

The next approach was to use the function approxPolyDP(contour, precision, True),

which is a feature of the contour method. It takes the contour shape and approximates it to a closed

polygon with less vertices, where the distance between them is less then a specified precision

value. It uses the Douglas-Peucker algorithm10 which takes a line composed of several segments

and finds a close trajectory with less pieces. Thus, by narrowing down the results to only those

with 8 or more segments (value used because it is considered that a closed polygon with more than

7 parts has to be a circle) and discarding the ones whose area is either too large or too small to

match the estimated area of the connection points of the pre-defined schematic, a list was made

with the centres of each resulting circle.

Even though this method was more viable than the Hough Circles Transform, it was not 100%

successful as some circles got deformed by the lines drawn by the users. As such, a safeguard was

added to ensure that every connection point is detected. As the design printed in the paper sheet is

always the same, the position of each element relative to the paper is fixed. As a reference photo

exists, the radius and centres of each circle were hardcoded into the script. This reference comes

in the form of dictionary dict_ref : it associates the coordinates of each schema’s connection point

with both a label indicating whether that is an input or output, and with a tag to be recognised by

the Lazarus program (these values have no correlation to the labels on figure 3.8).

With this information, a translation vector was calculated in order to provide a reasonable

approximation of where the missing points should be in the picture. With these two steps, a dictio-

nary dict_circles was saved of the centres of the circles in the photograph with its corresponding

coordinates in the reference frame.

3.5.4.4 Line Detection

The instructions for the robot are defined by the user drawing lines between the connection points

with a coloured pen to differentiate the sketching from the print of the paper sheet. Therefore

9https://docs.opencv.org/4.5.1/d3/de5/tutorial_js_houghcircles.html
10https://en.wikipedia.org/w/index.php?title=Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm&oldid=1040270574

https://docs.opencv.org/4.5.1/d3/de5/tutorial_js_houghcircles.html
https://en.wikipedia.org/w/index.php?title=Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm&oldid=1040270574


3.5 Software - Image Processing 23

detecting the lines drawn on the paper is necessary to identify which instructions are being given

by the user.

To do this, the image was converted into the HSV colour space (briefly explained in subsection

3.5.1). This conversion was made because this colour space is more invariant to shades of grey

and distinguishes vivid colours more easily than the RGB one. This happens because one can limit

the saturation and lightness values to exclude most shades of grey in HSV while including every

hue, where in the RGB colour space one can only manipulate the amounts of red, green and blue

in the final colour.

By creating a lower and upper threshold of colours and only saving the pixels with val-

ues in that range with the cv2.inRange(img, lower_thresh, upper_thresh) function,

the drawn-on lines were detected and the background eliminated by using the bitwise operation

cv2.bitwise_and(img1, img2, mask = mask). To improve the connections for analy-

sis, as the previous operations decrease their quality, they were dilated with a kernel of size 7 and

put through a median filter to remove unwanted noise without blurring its edges.

The first method used to determine which lines represent which connections was the Hough

Line Transform. It works with the same principle of the Hough Circle Transform explained in

subsection 3.5.4.3. As the desired object of detection is a line, the parametric equation will be the

one defined in equation 3.2 where "r is the length of a normal from the origin to this line and θ is

the orientation of r with respect to the X-axis"11. Consequentially, every possible values of r and

θ for the different (x,y) tuples are the ones collected on the accumulator matrix and the maxima

are accepted as the parameters that define the line. The problem with this method is that it only

detects straight lines and the drawing may contain curved lines.

xcos(θ)+ ysin(θ) = r (3.2)

With that in mind, it was decided to use the contour function cv.findContours(image,

mode, method) as it returns a vector of edge points which can be manipulated.

3.5.4.5 Connection detection

Following the identification of all the connection points and drawn lines, a list of every circle that

intersected the contour of the detected lines was saved. Thus, all other connection points would be

ignored and every contour that did not intersect with a circle would be considered unwanted noise

and eliminated.

Afterwards, each contour was analysed individually. Even though the contour pixels were

known, it would be better to be able to separate the data of each line. The chosen solution was

to implement the trace_skeleton.from_numpy(img) function that returns a series of poly-

lines.

11https://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm

https://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
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A polyline is a continuous line composed of one or more segments. This means that the data is

now separated into individual lines. According to the information on the functions’ repository12,

using Python to run this method would be very inefficient as it would take too much time. Thus, to

expedite the process, this function was used on C++ but with a wrapper in python to still be able

to run with the rest of the script.

To be able to implement the aforementioned function, it was necessary to first skeletonise the

image using the function skeletonize(img)13 from the scikit-image library. This library is open-

source and is used for image processing with the Python computer language. This function is a

"method for extracting the skeleton of a picture by removing all the contour points of the picture

except those points that belong to the skeleton" [14].

With this done, the input and output circles were identified, and each input was studied indi-

vidually. This analysis consisted of: 1) For circle a, the polyline that connects to it was detected

by choosing the closest one to the centre of a; 2) Its slope was determined; 3) The slopes of the

hypothetical lines that a makes with every output circle were calculated; 4) The difference be-

tween the result of step 2 and every outcome of step 3 were computed; 5) The output circle b

which hypothetical line to a had the minimum result of step 4 is considered the other end of the

connection, i.e. a is connected to b.

Finally, a connection matrix is initialised and its positions (a,b) and (b,a) are filled with 1.

The first methods that were tried to identify the connections were based on "following" every

line, that is to say, one would start from one end and collect every point that was identified as

belonging to that line, until the other end was reached. The main problem found by doing this was

how to know which points belonged to which lines different ones crossed. By using the algorithm

described above, this problem is solved as the information needed does not depend on the middle

of the lines where crossings happen, but on the periphery as that is where the input and output

circles are.

3.5.5 Movement

As will be mentioned in the future work section, the idea is to integrate current and previous work.

The current project will build a connection matrix (a "program") that will be sent to the previous

software in order to be executed. Prior work also implemented a very simple set of virtual sensors

that would be continuously read and fed into the executing program that actually implements the

wanted behaviours (calculating outputs based on operations with the available signals).

12https://github.com/LingDong-/skeleton-tracing
13https://scikit-image.org/docs/dev/auto_examples/edges/plot_skeleton.html

https://github.com/LingDong-/skeleton-tracing
https://scikit-image.org/docs/dev/auto_examples/edges/plot_skeleton.html


Chapter 4

Results and Discussion

4.1 Introduction

In this chapter, six different schematics will be shown and will be denominated as A, B, C, D, E

and F, with increasing levels of perceived complexity.

Three experiments were considered essential: the first one was to study the results of every

important step of one example; the second one was to, at a constant distance, run various scenarios

with incremental difficulty, and check that the final connections are correctly drawn; the last one

was to take photographs of one schematic at different distances. After verifying that the results

of the second experiment were as expected, the script was run ten times to average the execution

time of each example.

Another test consisted on analysing several coloured pens to identify which colours were the

best to draw with, and to also experiment with varied thicknesses of pen tips to see what effect this

has on the lines’ detection.

As a result of the current world situation, it was not possible to go to schools and trial this

project with the students that are the target audience of this dissertation. As such, there will be no

user evaluation to further demonstrate the success of this work.

4.2 Step-by-Step Pipeline Results

As mentioned above, the result of every step of the image processing algorithm was computed for

schematic A, and will be shown in the following figures.

Figure 4.1 shows the photo taken from a height of approximately 20cm. As the lens of the USB

camera has 140 degrees, the previous picture will be calibrated with the result being presented in

figure 4.2.

To correct the perspective of the photograph, a homography algorithm was applied with the

use of the ArUco markers, as can be seen in figure 4.3 where the perspective is comparable to the

one in the reference schema, as intended.

25
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Figure 4.1: Schematic A, Step 1: photograph of the connection diagram

Figure 4.2: Schematic A, Step 2: after calibration

Figure 4.3: Schematic A, Step 3: after homography
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Figures 4.4 and 4.5 show the detection of the connection points at different stages of the script.

The first one is the result of the polygon approximation method where contours that may resemble

circles are chosen. As this is not fail-safe, meaning that some of the circles may not be found by the

algorithm, an extra function was added so ensure that every connection point is identified. Since

schematic A represents a fairly simple design, the circles are all detected with the first method.

Figure 4.4: Schematic A, Step 4: detection of connection points with polygon approximation

Figure 4.5: Schematic A, Step 5: extra detection of missing connection points

To extract the lines drawn by the user, a colour filter was applied and the outcome was dis-

played on a blank background as shown on figure 4.6. As the result is thinner and more dis-

connected than the true lines on the sheet, they were dilated and smoothed over to achieve some

measure of continuity, as it can be seen on figure 4.7.
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Figure 4.6: Schematic A, Step 6: detection of lines

Figure 4.7: Schematic A, Step 7: lines after treatment (dilation and blurring)

Figure 4.8 is the skeleton of the previous image, which means that pixels were removed from

it starting from the edges until no more pixels can be erased without altering the shape. This way,

the lines are described with a thickness of approximately 1 pixel.

After processing everything, the final connections are deducted and presented on figure 4.9 in

the reference schema with straight lines of different colours to distinguish between them.

4.3 Pipeline Performance with Complex Validation Cases

To guarantee that the image processing algorithm works for more difficult cases than the shown

above, five more schematics (B, C, D, E and F) were put to the test. All of them were captured at
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Figure 4.8: Schematic A, Step 8: skelleton of the lines

Figure 4.9: Schematic A, Step 9: Reference image with connections detected, final result

a height of approximately 20 cm.

Design A (figure 4.1) was chosen because it was considered simple enough to be a base ex-

ample. Even though there are two connections, the fact that there is only one output circle for two

inputs and that the lines have completely different slopes makes inferring the connections simple

enough for the algorithm, as it can be seen on the previous section.

Schematic B (figure 4.10a) was a natural progression from A, as there is a similar connection

to the previous example but with an added unconnected line. As the script processes one contour

at a time, it was necessary to verify that the separate link was also analysed. As can be seen on

figure 4.10b, the experiment was a success.

The connections of model C (figure 4.11a) are still accessible, but the long length of one of
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(a) Photo taken (b) Reference image with connections detected
by the algorithm (brown, green and light green
straight-lines)

Figure 4.10: Schematic B

them makes it interesting to study. One concern was the possibility that the dilation process would

make the line intersect another circle, and that the resulting connections would consequently be

wrong. Presented in figure 4.11b is the reference schema with the algorithm’s detected lines.

(a) Photograph of the connection diagram (b) Reference image with connections detected
by the algorithm (brownish, green and dark blue
straight-lines)

Figure 4.11: Schematic C

To up the ante, schematic D (figure 4.12a) was drawn. It has a four way intersection and had

several connections that could be misinterpreted. Even so, figure 4.12b shows that every line was

correctly detected.

Next, schematic E (figure 4.13a) was drawn to verify if there would be a problem because of

the similar slopes of the lines both on the left and on the right of the paper, together with their

closeness. The results shown on figure 4.13b demonstrate that every connection was well detected

as expected. The right side was easily resolved because, as before, there was only one output circle

for two inputs. The left did not have the chance to go wrong because the lines did not intersect at

any point, and so were analysed as separate contours.
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(a) Photograph of the connection diagram (b) Reference image with connections detected by
the algorithm (pink, purple, grey, green and black
straight-lines)

Figure 4.12: Schematic D

To rectify that oversight, model F (figure 4.14a) was drawn in a similar way to E but with the

left lines intersecting, to force them to be examined in the same contour. But the result seen on

figure 4.14b demonstrates that the algorithm was successful and the connections were detected

correctly.

(a) Photograph of the connection diagram (b) Reference image with connections detected by
the algorithm (red, dark blue, light and dark green
straight-lines)

Figure 4.13: Schematic E

These are some examples that highlight the capacity of the algorithm to recognise and adapt to

the different designs that can be imputed by the users. The algorithm proves to be robust, given the

constraints it was designed for. Further considerations on how to properly draw-on the connections

and overall best practices for success will be later discussed in section 4.7.
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(a) Photograph of the connection diagram (b) Reference image with connections detected by
the algorithm (green, pink, dark green and purple
straight-lines)

Figure 4.14: Schematic F

4.4 Distance Analysis

In order to study at what distance the photograph should be taken, various images of schematic A

were taken and processed at different heights. Starting at around 10 centimetres it was clear that it

was not possible to capture the entirety on the paper sheet. Going up to 20 centimetres the results

were very good and are demonstrated on section 4.2.

Taking a picture at 30 centimetres resulted in figure 4.15a. Even though it caused the image to

be a little more blurred around the edges (figure 4.15b), the algorithm was still able to process it,

detect every circle (figure 4.15c) and establish the right connections (figure 4.15d).

Going up to 40 centimetres (figure 4.16a), the program was able to calibrate the photograph

and apply the homography method but, as can be seen on figure 4.16b, the image lost too much

quality and became too blurry for the algorithm to be able to detect the circles.

In conclusion, the ideal distance for the photograph to be taken would be between 20 to 30

centimetres to guarantee that the image after homography has enough quality to be processed.

It is important to remember that some quality (quantified in amount of pixels) is always lost in

calibration and homography: therefore, the initial photograph should be taken in the best possible

conditions of light.

4.5 Runtime

While the complexity analysis was being performed, the opportunity to examine the runtime of

each schematic was taken. As demonstrated in table 4.1, every model was executed 10 times; each

runtime was noted and the average value calculated. It is important to note that every time was

measured in milliseconds, and that it does not include capturing the photograph, as that depends

mainly on the user.
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(a) Photograph of the connection diagram (b) Image after homography

(c) Detection of connection points (d) Reference image with connections detected by
the algorithm (blue and black straight-lines)

Figure 4.15: Schematic A: Photograph of the connection diagram captured 30 cm from the paper
sheet

(a) Pphotograph of the connection diagram (b) Image after homography

Figure 4.16: Schematic A: Photograph of the connection diagram captured 40 cm from the paper
sheet

Examining the average values of each schematic, the increase in runtime can be mainly at-

tributed to two factors: the number of contours extracted and the complexity of the model. Schematic

A only has one contour and is a straightforward design, so it makes sense that it also has the lowest

runtime. Schematics B, C, D and F all are composed by two contours, and the execution times
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Table 4.1: Runtime (in milliseconds)

A B C D E F

Run 1 2344.9 2618.6 2780.2 2765.4 3035.5 2725.9
Run 2 2624.9 2719.6 2583.8 2731.6 2811.9 2851.1
Run 3 2298.5 2554.0 2679.1 2684.5 3273.2 2844.2
Run 4 2254.4 2513.5 2547.2 2862.6 2998.1 2616.7
Run 5 2506.5 2953.4 2569.6 2716.6 3124.1 2619.4
Run 6 2326.4 2519.9 2568.5 2686.1 2875.3 2648.7
Run 7 2279.6 2566.4 2674.1 2705.0 3043.1 2904.0
Run 8 2633.7 3011.4 2552.2 2765.5 2977.2 2859.3
Run 9 2321.5 2522.1 2940.5 2657.1 2912.6 2683.5

Run 10 2285.2 2488.3 2749.8 2724.0 2885.3 2618.5

Average 2387.6 2646.7 2664.5 2729.9 2993.6 2737.2

are in accordance with the conjecture in section 4.3, stating that the complexity of each design

increases from A to F. Model E, even if it is simpler than trial F, has three contours to analyse; so,

it is expected for it to take the longest to execute. Thus, a correlation between compute time and

number of contours (translated into amount of non-intersecting groups of lines) is demonstrated.

4.6 Colour and Line Thickness Analysis

The colour of the pen used for drawing and the thickness of its line make a difference in the

detection of the connections. The algorithm for line detection consists of a filter that removes any

pixels with a colour representation in the HSV colour space lower or higher than [0, 70, 120] and

[179, 255, 255], respectively. In this case, this means that every colour with a saturation higher

than 70 and a lightness higher than 120, will be detected.

To examine which pen colours are acceptable, every colour from a standard 12 pack of pens

was drawn on a reference sheet. As can be seen on figure 4.17, two columns were drawn. On the

left side, every line has approximately 0.6 millimetres (around 4 pixels) of width and was made

by a pen with a thin tip. On the right, a thicker tip was used for a width of around 1 millimetre

(approximately 7 pixels). These values are not exact to every line, but are their average.

Figure 4.18 shows the detected lines after the dilation and blurring processes. As is expected,

even though the colours from each presented column are very similar, the thicker strokes are more

easily detected. Even so, two lines were identified on the left column: red and orange. As these

colours were detected on both thinner and thicker strokes, a red pen or an orange one should be

used when programming the robot to achieve the best results.
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Figure 4.17: Picture of scheme with lines drawn from multiple pens

Figure 4.18: Lines recognised by the colour detection algorithm

4.7 Discussion

With the previous experiments, it was demonstrated that the image processing algorithm works

when a coloured pen with a tip that draws with a thickness superior to 1 millimetre is used. A few

complications occurred when lines passed over the black edges of circles or when going over a

grey symbol, but if the line is wide enough then that problem does not happen.

It is important to note that in this dissertation several guidelines were established for the image

processing algorithm to work efficiently. It is considered that the only thing that can be connected
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to an input is an output, and that it can only be one. The lines, when being drawn, can not touch

other circles, so it is fine for the line to be curved as long as it is not excessively and unnecessarily.

An experiment on different ambient light sources was not officially made, but during the

semester it was observed that natural light is the best for taking the photographs and that desk

lamps should be avoided because of the glare they give; overhead lights also work well.

Finally, it is recommended that every photograph should be captured with the paper sheet on

a hard surface by picking up the robot and turning it upside down. Even though it may work to

hold the paper down to the camera, good results are not guaranteed as it will cast a shadow on the

picture and possibly deform it excessively.
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Conclusions

The main purpose of this dissertation is to have a behaviour of a robot that is defined by drawings

on paper. To this end, a robot REDI5 has been prototyped. The robot features a well known

Raspberry Pi 4 with two cameras. It also uses a ESP32 microcontroller to read two encoders and

the drive to motors. One of the cameras will be used as virtual sensors while the other is used to

capture the image that will define the behaviours. The firmware inside the robot reads the encoders

for additional precision of the motor controls. The motors are controlled by PWM signals of the

ESP32 microcontroller using an H-bridge. The Raspberry Pi 4 and the ESP32 communicate by

serial port, thus allowing the behaviour read from the cameras to actually move the robot. With all

electronics, cameras, motors, batteries and chargers accounted for, the budget of this robot rounds

the 260C.

This dissertation focused on the hardware preparation and on the vision system dedicated to

the recognition of the connections drawn on paper that will in turn dictate the behaviour of the

robot. The software uses the OpenCV library to identify connections that will be later decoded

into behaviour for the robot. Several realistic sample programs were used as validation cases

including situations with lines crossing and some deformation. This deformation can come from

the lens of the camera and from misalignments of the camera to the target piece of paper.

The processing operations include correction for distortions caused by the lens, homography

for perspective correction, colour image processing for circle and line detection and connection

logic detection. The processing time is typically less than three seconds for a camera with a

resolution of 1920x1080.

5.1 Future Work

It is necessary to implement the Raspberry Pi 4 camera as virtual sensors for the information

obtained to be what controls the robot. This data would be continuously read and fed into the

executing program that actually implements the wanted behaviours by calculating the outputs

based on operations with the available signals.

37
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On the reference paper in figure 3.10, there are two blocks with hourglasses and one other that

has a K letter. The first represent timers and the last is an operation that includes a constant defined

as K. An algorithm to read these values should be implemented.

A way to make the debugging process easier and visible to the user would be a great addition

to this work. This could be done by using LEDs and/or by allowing the user to connect to the

robot through the VNC platform. Optimizing execution time and making the image processing

algorithm more robust so that shadows become a lesser problem when capturing the photograph

is also a possible secondary upgrade.

The purpose for the future is to implement a similar robot with the same objectives, but with

a modular paper sheet. The hope is to have multiple disconnected blocks, each with an operation,

sensor or actuator. When programming the wanted behaviour for the robot, the user would then

select only the desired blocks and draw the connections on them. This would allow more freedom

to have as many inverters or adders in the final sheet as it would not have a fixed structure.
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