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Resumo 

A biodiversidade não está uniformemente distribuída pelo nosso planeta. Os ecossistemas 

de água doce possuem uma quantidade desproporcionada de biodiversidade quando 

comparados com outros biomas, embora cubram apenas uma pequena porção da superfície 

do nosso planeta. Sendo a água essencial para atividades humanas, o crescimento 

populacional e o desenvolvimento económico exercem uma enorme pressão sobre os 

ecossistemas de água doce. Para além das pressões antropogénicas diretas, tais como a 

extração excessiva, a construção de barragens, a modificação do habitat e a poluição, as 

espécies de água doce apresentam geralmente distribuições restritas a uma bacia 

hidrográfica ou a uma região, e enfrentam a ameaça de centenas de espécies invasoras que 

foram introduzidas nos ecossistemas de água doce. Devido a todos estes fatores, a 

biodiversidade dos ecossistemas de água doce é das mais ameaçadas do nosso planeta. 

As redes hidrográficas merecem atenção especial porque são habitats particularmente 

ameaçados e ricos em biodiversidade. As redes hidrográficas são corpos lineares de água 

com uma organização dendrítica, ou em forma de árvore, que flui das cabeceiras até à foz do 

rio. A distribuição de organismos em redes hidrográficas não é aleatória, resultando de vários 

processos que funcionam a diferentes escalas, como o clima, a hidrologia, ou interações 

bióticas. A diversidade e abundância de peixes e outros organismos estão geralmente 

associadas a um aumento da ordem dos rios, mas há também processos de dispersão que 

devem ser tidos em conta. A distribuição de algumas espécies, como as espécies invasoras, 

é frequentemente mais um reflexo de processos espaciais, tais como múltiplas introduções e 

expansão posterior, do que de filtros ambientais que limitam a distribuição. Para espécies 

adaptadas à alternância entre fases de secas e inundadas, as cabeceiras dos rios podem 

funcionar como refúgios para interações bióticas adversas. As comunidades ribeirinhas, tal 

como os peixes, podem persistir no tempo num estado de equilíbrio dinâmico que varia entre 

estados alternativos, sem qualquer direção discernível de mudança. Desvios a este equilíbrio 

podem indicar perturbações na comunidade de origem natural, como secas ou inundações, 

ou de origem antropogénica. 

Os modelos de distribuição de espécies (em inglês Species Distribution Models - SDM) são 

um conjunto de ferramentas utilizadas para obter previsões espacialmente explícitas de 

adequação ambiental, relacionando as ocorrências das espécies com dados ambientais 
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relevantes. Devido à sua natureza e à natureza das redes hidrográficas, o desenvolvimento 

de SDM para organismos que estão associados a habitats ribeirinhos é um desafio. Os 

organismos aquáticos raramente estão disponíveis para observação direta, e mesmo com a 

ajuda de técnicas padrão, como a pesca elétrica, podemos assumir que não conseguimos 

detetar todas as espécies presentes num determinado local. Esta questão, conhecida como 

detetabilidade imperfeita, é uma fonte comum de viés nos SDM e tende a ser ignorada pelos 

investigadores de água doce. Também, incorporar a autocorrelação espacial (em inglês 

spatial autocorrelation - SAC) melhora o desempenho dos SDM, mas as estruturas 

dendríticas das redes hidrográficas, juntamente com fortes gradientes ambientais, criam 

dependências espaciais com estruturas complexas que não são completamente descritas por 

distâncias euclidianas entre observações. As interações bióticas, tais como competição e/ou 

predação, podem ser uma potencial fonte de discrepância entre a distribuição real e a prevista 

das espécies, particularmente se as interações forem entre espécies invasoras e espécies 

nativas. A monitorização a longo prazo das comunidades é essencial para compreender o 

impacto das pressões antropogénicas nos ecossistemas ribeirinhos, mas as observações são 

geralmente recolhidas em locais espacialmente discretos. Uma visão espacial contínua da 

dinâmica temporal das comunidades é essencial para estudar as pressões antropogénicas e 

para planear ações de conservação e gestão. 

O principal objetivo desta tese é desenvolver e testar novas ferramentas de modelação 

estatística para ajudar ecologistas e conservacionistas a obter uma representação mais 

realista da distribuição das espécies e da dinâmica temporal das comunidades à escala da 

paisagem fluvial. Concentrei-me principalmente nas soluções para as questões relacionadas 

com o problema da detetabilidade imperfeita, incorporação de SAC em SDM aplicados a 

redes hidrográficas, na utilização de interações bióticas em SDM, e na extrapolação de 

dinâmicas temporais de comunidades para uma previsão espacial contínua á escala da rede 

hidrográfica. Para abordar estas questões, recolhi dados sobre a distribuição de peixes, 

lagostins e anfíbios num sistema de estudo específico, uma bacia hidrográfica Mediterrânica 

no Nordeste de Portugal, o rio Sabor. 

Para descrever a distribuição das espécies de peixe com dados recolhidos num grande 

trabalho de pesca elétrica no rio Sabor em 2012, desenvolvemos um modelo hierárquico 

Bayesiano em que modelámos a probabilidade de presença de água em segmentos de rio, e 

a probabilidade de ocupação de espécies condicionada à presença de água, em relação a 

variáveis ambientais e espaciais de grande escala. Também modelámos o tempo à primeira 

deteção das espécies, utilizando um modelo de sobrevivência com distribuição exponencial. 

Como é difícil determinar o tempo exato de deteção de uma espécie quando se procede à 
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amostragem de peixes com a técnica de pesca elétrica, modificámos o modelo de 

sobrevivência para incluir observações censuradas em intervalos. Para incorporar as 

dependências espaciais, incluímos um termo espacial de autocovariância na estimativa da 

probabilidade de presença de água e da probabilidade de ocupação das espécies. As 

ocupações das espécies foram consistentemente afetadas pela ordem do rio, elevação, e 

precipitação anual, enquanto o tempo de deteção de espécies foi influenciada principalmente 

pela profundidade e, em menor medida, pela largura dos cursos de água. 

O pressuposto de equilíbrio entre os organismos e o seu ambiente é um postulado padrão de 

trabalho com SDM que raramente é cumprido, particularmente para espécies que estão em 

processo de expansão como as espécies invasoras. Além disso, para espécies que invadem 

os sistemas fluviais, a estrutura dendrítica da rede hidrográfica limita os padrões da expansão. 

Para descrever a distribuição de duas espécies de lagostins invasores no rio Sabor, utilizámos 

uma classe de modelos geoestatísticos desenvolvidos para lidar com SAC em redes 

hidrográficas (em inglês, Spatial Stream Network Models - SSNM). Estes modelos obtiveram 

melhor performance do que modelos puramente ambientais, evidenciando que a distribuição 

destes lagostins invasores é mais um produto de processos espaciais do que de filtragem 

ambiental. 

As interações biológicas são fatores importantes que moldam a distribuição das espécies. 

Quando as espécies nativas são deslocadas de parte da sua área de distribuição, podem 

persistir em refúgios ecológicos. Estes refúgios podem ser manchas de habitat inadequadas 

para espécies invasoras, ou áreas que as espécies invasoras ainda não colonizaram devido 

à distância, barreiras físicas ou atraso na expansão. Identificar a localização e os fatores que 

influenciam a distribuição destes refúgios é importante para conservação destas espécies. 

Para modelar a distribuição dos refúgios ecológicos de anfíbios na bacia hidrográfica do rio 

Sabor, incluímos como variáveis preditoras a probabilidade de presença dos dois lagostins 

invasores entre outros preditores ambientais e espaciais. Verificámos que os refúgios de 

anfíbios estão localizados principalmente nas cabeceiras do rio Sabor, sendo provável que 

estes refúgios contraiam no futuro em função de cenários plausíveis de expansão dos 

lagostins invasores. 

A gestão dos ecossistemas fluviais é geralmente planeada à escala da bacia hidrográfica e, 

como tal, é importante desenvolver ferramentas que permitam a extrapolação das dinâmicas 

das comunidades que são observadas em segmentos discretos de rios para uma previsão 

espacial contínua de toda a rede hidrográfica. Para analisar dados de abundância de peixes 

recolhidos em 30 locais na bacia do rio Sabor entre 2012 e 2019, utilizámos uma nova 

abordagem que descreve e compara a dinâmica das comunidades usando as propriedades 
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geométricas das suas trajetórias num espaço escolhido de dissemelhança. Calculámos a 

velocidade média e a direccionalidade global de mudança das comunidades de peixes e 

utilizámos modelos SSNM para relacionar estas métricas com os fatores ambientais e 

extrapolar a dinâmica da comunidade para toda a bacia hidrográfica. Não encontrámos 

qualquer evidência de direccionalidade na mudança das comunidades de peixes do Sabor, 

apoiando a hipótese de que estas existem num estado de equilíbrio frouxo (em inglês, Loose 

Equilibrium). No entanto, a velocidade de mudança foi maior nas linhas de água que correm 

para a albufeira do aproveitamento hidroelétrico localizado perto da foz do rio Sabor. Estes 

cursos de água estão provavelmente sob uma pressão crescente a partir da albufeira, devido 

a alterações do regime hídrico e expansão de espécies alóctones. 

De um modo geral, esta tese faz avançar a nossa compreensão dos fatores que regulam a 

distribuição das espécies e comunidades em redes hidrográficas, o que constitui um 

conhecimento essencial para a conservação destes ecossistemas. O novo conjunto de 

ferramentas apresentado pode ajudar ecologistas e conservacionistas a obter uma 

representação mais realista da distribuição da biodiversidade e da sua dinâmica temporal à 

escala da paisagem fluvial. 

Palavras chave:  

anfíbios, análise de trajetória de comunidades, autocorrelação espacial, deteção imperfeita, 

dinâmica de comunidades, ecologia de rios, geoestatística, invasões biológicas, lagostins 

invasores, modelo de deteção-ocupação, modelos bayesianos hierárquicos, modelos de 

distribuição de espécies, peixes, redes ecológicas dendríticas, tempo à primeira deteção 
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Abstract 

Biodiversity is not evenly distributed across our planet. Freshwater ecosystems hold a 

disproportionate amount of biodiversity when compared with other biomes, though it only 

covers a small portion of our planet surface. Because water is essential for human activities, 

population growth and economic development put an enormous pressure on freshwater 

ecosystems. Besides the direct anthropogenic pressures, such as over exploitation, damming, 

habitat modification and pollution, the freshwater species usually present restricted 

distributions, to a watershed or a region, and face the threat of hundreds of invasive species 

that have been introduced to freshwater ecosystems. Due to all these factors, freshwater 

biodiversity is among the most threatened of our planet. 

Stream networks deserve special attention because they are particularly threatened and rich 

in biodiversity. Streams networks are linear bodies of water with a dendritic, or tree shape, 

organization, flowing from the headwaters to a single outlet. The distribution of organisms in 

stream networks are not random, resulting from several processes that work at different 

scales, like climate, hydrology and biotic interactions. The diversity and abundance of fish and 

many other organisms are usually associated with an increase in stream order, but there are 

also dispersal processes that should be taken into account. The distribution of some species, 

like invasive species, is often more a reflection of spatial processes, such as multiple 

introductions and posterior expansion, than environmental filters that limit the distribution. 

Headwaters can function as refuges from adverse biotic interactions for species that support 

water intermittency. Stream communities, like fish, usually persist in time in a state of dynamic 

equilibrium, varying between alternate states with no discernible direction of change. 

Deviations from this equilibrium may reflect disturbances to the community from natural states, 

like droughts or floods, or from anthropogenic sources. For proper conservation and 

management of stream networks, it is essential to understand the drivers of the spatial 

patterns and dynamics of stream biodiversity. 

Species distribution models (SDM’s) are the set of tools used to derive spatially-explicit 

predictions of environmental suitability, by relating species occurrences to relevant 

environmental data. Due to their nature and the nature of the stream network habitats, the 

development of SDM’s for organisms that are associated with streams is challenging. Aquatic 

organisms are rarely available for direct observation, and even with the help of standard 
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techniques, like electrofishing, it is fair to assume that we will fail to detect some of the species 

present at any given location. This issue, known as imperfect detectability, is a common 

source of bias in SDM’s, and tends to be ignored by freshwater researchers. Accounting for 

spatial autocorrelation (SAC) improves SDM performance, but the dendritic structure of 

stream networks, together with strong environmental gradients, create spatial dependences 

with complex structures that are not completely described by Euclidean distances. Biotic 

interactions, such as competition or predation, are also a potential source of mismatch 

between the actual and the predicted distribution of species, particularly if the interactions are 

between invasive species and native species. Long term monitoring of communities is 

essential to understand the impact of anthropogenic pressures in stream ecosystems, but 

usually rely on data collected on any given number of discrete locations. A spatial continuous 

view of the temporal dynamics would be essential to study such pressures, and of value to 

plan conservation and management actions. 

The main aim of this thesis is to develop new tools and frameworks to help ecologists and 

conservationists to obtain a more realistic depiction of the distribution of species, and the 

temporal dynamics of communities at the riverscape scale. I mainly focused on solutions to 

the issues related to dealing with imperfect detectability, accounting for SAC in stream 

networks, accounting for biotic interactions, and extrapolating the community temporal 

dynamics to a continuous spatial prediction. To address these issues, I have collected data 

on the distribution of fish, crayfish, and amphibians on a specific study system, the Sabor 

River, a Mediterranean watershed in the Northeast of Portugal. 

To describe the distribution of fish species with data collected in a comprehensive 

electrofishing survey, while accounting for imperfect detectability, we extended the time-to-

detection occupancy-detection model to include interval-censored observations, because it is 

difficult to ascertain the exact time-to-detection of a species when sampling fish with 

electrofishing techniques. Using a Bayesian hierarchical framework, we modelled the 

probability of water presence in stream segments, and the probability of species occupancy 

conditional on water presence, in relation to environmental and spatial variables. We also 

modelled time-to-first detection conditional on occupancy in relation to local factors, using a 

modified interval-censored exponential survival models. To account for SAC, we included a 

spatial autocovariate term in the estimation of the probability of water presence and the 

probability of species occupancy. Species occupancies were consistently affected by stream 

order, elevation and annual precipitation, while species detection rate was primarily influenced 

by depth and, to a lesser extent, stream width. 
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The assumption of equilibrium between organisms and their environment is a standard 

working postulate in SDM’s that is seldom met, particularly for species that are expanding their 

range like invasive species. Furthermore, for species invading river systems, the dendritic 

structure of the stream network will constrain the patterns of the expansion. In this thesis, I 

addressed these issues by describing the distribution of two invasive crayfish in the Sabor 

river stream network, using a class of geostatistical models developed to deal with SAC in 

stream networks, known as spatial stream network models (SSNM). Accounting for SAC 

greatly improved model performance, evidencing that the distribution of these invasive 

crayfish was more of a product of spatial process than environmental filtering. 

Biotic interactions are important drivers of species distributions. When native species are 

displaced from part of their distributional range, they may persist in ecological refuges. These 

refuges may be patches of habitat that are unsuitable for invasive species or areas where 

invasive species have not reached due to distance, physical barriers or time lags in the 

expansion. Identifying the distribution and the environmental drivers of these refuges is of 

conservation concern. We modelled the distribution of amphibian ecological refuges in the 

Sabor river catchment, by including as predictor variables the probability of presence of the 

two invasive crayfish, among other environmental and spatial predictors. We found that the 

refuges of amphibians are located mainly in the headwaters, and that, under plausible 

expansion scenarios of the crayfish species, these refuges are likely to contract in the future. 

Management of stream networks is usually planned at the river basin scale, and as such, it is 

important to develop frameworks that allow the extrapolation of the community dynamics 

observed at discrete segments of rivers to a continuous spatial view of the entire river basin. 

We collected stream fish data on 30 locations on the Sabor river basin, between 2012 and 

2019, and used a novel framework to describe and compare the trajectories of the fish 

communities using their geometric properties in a given dissimilarity space. We computed the 

mean velocity and the overall directionality of change of the fish community, and used the 

SSNM framework to relate these metrics to environmental drivers and extrapolate the 

community dynamics to the entire watershed. We found no evidence of directionality in the 

change of the Sabor fish communities, supporting the hypothesis that these communities exist 

in a loose equilibrium state. However, the rate of change was higher in streams draining into 

the hydroelectric reservoir located near the mouth of the Sabor River. These streams are likely 

under increased stress from the reservoir, due to alterations of the flow regime and/or 

expansion of alien species from the reservoir. 

Overall this thesis advances our understanding of the drivers that govern the distribution of 

species in stream networks, providing key information for the conservation of these 
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ecosystems. The new set of tools presented here can aid ecologists and conservationists to 

obtain a more realistic depiction of species distribution and their temporal dynamics at the 

riverscape scale.  

Keywords:  

amphibians, biological invasions, community dynamics, community trajectory analysis, 

dendritic ecological networks, geostatistics, hierarchical Bayesian models, imperfect 

detection, invasive crayfish, occupancy-detection modelling, spatial autocorrelation, species 

distribution models, stream ecology, stream fish, time-to-first-detection
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Chapter 1 – General Introduction 

1.1 Biodiversity and its decline 

Biodiversity is a term that entered the lexicon of biologists by the second half of the 

1980’s decade (Tangley, 1985; Wilson, 1988), and achieved widespread use in 

academia (Harper & Hawksworth, 1994) and in our societies by the turn of the century. 

The term is the contraction of “Biological Diversity” and is attributed by Wilson (1988) to 

Walter G. Rosen. There are several definitions (Wilcox, 1984; Wilson, 1988) but they can 

be summed by Gaston & Spicer (2004) definition: "variation of life at all levels of 

biological organization". 

Biodiversity as the variation of life at all levels of biological organization, refers not only 

to the total number of life forms across an area, but also to the range of differences 

between those forms (Delong, 1996). It can be seen as the combined evolutionary capital 

amassed by all species since the beginning of life at least 3500 million years ago (Schopf, 

2006). Every successful solution to each evolutionary challenge was imprinted in the 

DNA of the survivors and was passed onto the next generations. We depend directly on 

biodiversity for food, but also for regulating the processes that recycle the air we breed 

and the water we drink. Several human activities are directly dependent on biodiversity, 

like agriculture, forestry, fishing, and hunting, while the world's economy is based on 

fuels that resulted from the fossilization of living organisms (Guo et al., 2010; Isbell et al., 

2017; McNeely, 1994; Scherr & McNeely, 2008). Several of our technological advances 

are drawn from biological systems (biomimicry), being active principles for medicine, 

vehicle design, textiles, and others (Benyus, 1997). The squander of such resources, 

besides limiting new technological advances, hinder our survival as species. Biodiversity 

is correlated with the stability of ecosystems and loss of biodiversity is related to a 

decrease in the efficiency of ecosystems processes (Cardinale et al., 2012). 

The decline in biodiversity, as well as habitat destruction, was acknowledged even before 

the term was coined (Wilson, 1985). Nowadays, we witness a rate of species extinction 

that could be up to 100 times steeper than the baseline rate of species extinctions, 

indicating that we could have entered the sixth mass extinction event (Ceballos et al., 

2015). Human activities are the main cause of biodiversity loss (Dirzo et al., 2014; 

Ceballos et al., 2015), mainly due to habitat alteration and destruction. Other major 

causes are direct exploitation of organisms (harvesting, hunting, fishing), pollution, the 
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introduction of alien species, emerging diseases, and climate change. These factors 

have a negative impact on their own. but are particularly serious when acting 

simultaneously. Therefore, understanding and finding solutions to the decline of 

biodiversity is a critical challenge facing humanity. 

1.2 The freshwater biodiversity crisis 

Biodiversity is not evenly distributed across the planet. Freshwater ecosystems hold only 

0.01% of the world’s water and cover only about 0.8 % of the planet surface (Gleick, 

2014), but provide habitats for about 6% of total species and a third of the vertebrate 

species (Dudgeon et al., 2006). There are over 126 000 animal species belonging to 17 

phyla described for freshwater ecosystems (Balian et al., 2008), the majority of which 

are insects (60.4%), followed by vertebrates (14,5%) and crustaceans (10%). The 

number of strictly freshwater fish species currently known is around 13 000, 

corresponding to about 45% of the total fish species recorded (Lévêque et al., 2008). 

Amphibians are highly dependent on water to complete their life cycle and, and as such, 

the majority (73%) are dependent on freshwater habitats (Balian et al., 2008). The 

number of endangered species in freshwater is disproportionally high when comparing 

with land and marine environments (Strayer & Dudgeon, 2010). This is the result of 

external threats and the fact that many species of freshwater are endemic to certain 

watershed or regions, often presenting small distribution ranges (Balian et al., 2008). The 

insular nature of freshwater habitats results in a high level of fragmentation and 

endemism, and low ability to migrate, making these species very sensitive to human 

impacts and climate changes (Strayer & Dudgeon, 2010). 

Water is essential for human activities, and following population growth and economic 

development, water usage has increased by a factor of six in the last 100 years 

(UNESCO World Water Assessment Programme, 2020), putting enormous pressure on 

freshwater ecosystems. Freshwaters hold just 0.01% of the world’s water (Gleick, 2014), 

but are the bulk of the water that is available for human activities, with mankind already 

using uses more than half of the accessible runoff water (Vitousek, 1997). The 

overexploitation of a habitat that is concentrated in less than 1% of the world surface 

(Figure 1.1, Gleick, 2014) makes freshwater ecosystems one of the most threatened 

ecosystems of the world (Dudgeon et al., 2006; Sala et al., 2000; Strayer & Dudgeon, 

2010). Nowadays, more than 58000 large dams (International Commission on Large 

Dams [ICOLD], 2020)  and over a million smaller impoundments fragment river networks 

(Jackson et al., 2001). There are several impacts of dams and reservoirs in river basins: 
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interruption the river continuum, blocking fish migration and altering sediment and 

nutrient transport; Siltation and habitat homogenization; Downstream flow and water 

quality alteration (Schmutz & Moog, 2018). Rivers have also been confined by levees, 

dredged and straightened for navigation and flood control (Strayer & Dudgeon, 2010). 

Alterations to riparian zones alter the inputs of water and materials and may cause water 

eutrophication, which together with pollution can have big impacts on biotic communities 

of freshwaters. Several hundreds of species have been introduced in freshwater 

ecosystems (Strayer, 2010) and freshwater fisheries are seriously overexploited 

(Dudgeon et al., 2006; Strayer & Dudgeon, 2010). It is predicted that climate change, 

with drought episodes becoming more frequent and more intense, will exacerbate the 

human pressure on freshwater habitats (UNESCO World Water Assessment 

Programme, 2020). Therefore, understanding and conserving the biodiversity of 

freshwater has become a top priority in recent years. 

 

Figure 1.1 - Visualisation of the distribution (by volume) of water on Earth. Each cube (as the one representing 

biological water) corresponds to approximately 1400 cubic km of water. The figure comprises 1 million small blocks. 

Adapted from Cmglee (2020) with data taken from Shlklomanov (1993). 
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1.3 Stream Networks 

In the context of biodiversity research in freshwater ecosystems, running waters 

(streams, rivers) deserve special attention, as they are both particularly threatened and 

particularly rich in aquatic organisms (Dudgeon et al., 2006; Sala et al., 2000; Strayer & 

Dudgeon, 2010). When precipitation exceeds evaporation, or evapotranspiration, the 

residual water either infiltrates into the ground or runs superficially to the ocean, lakes or 

inland basins (Dai & Trenberth, 2002). The running superficial water gathers downhill, 

forming linear bodies of flowing water know as streams. Small streams join other streams 

becoming larger streams, that eventually became known as rivers flowing to an ocean 

or an endorheic basin. The structure of a stream network can be described as dendritic, 

tree-shaped, and is characterized by flow directionality, from headwaters to a single 

downstream outlet (Peterson et al., 2013). Although rivers worldwide only hold 0.0002% 

of the total water and 0.006% of the freshwater of the world (about 2 120 km3, Figure 

1.1, Shiklomanov, 1993) at any given time, the volume of water that passes through 

rivers annually is far greater. Each year, rivers worldwide discharge about 37 288 km3 

of freshwater to the oceans, which corresponds to about 35% of the inland precipitation 

(Dai & Trenberth, 2002). The interannual variation of precipitation causes temporal and 

spatial variation in the flow, with streams in arid and semiarid zones showing no 

superficial flow during at least part of the year and in at least some sectors of the 

watershed. (Cid et al., 2017). For instance, in Mediterranean river basins the small 

headwater streams of first and second order can be completely dry in the hot summer 

period (Kerezsy et al., 2017; Magalhães et al., 2007). 

From headwaters to mouth, stream networks form a continuous biophysical system. The 

biological communities within stream networks respond to the change of continuous 

physical variables, as stream width and depth, as well as inputs and transportation of 

matter and energy (Vannote et al., 1980). Headwaters present a predictable shift 

between wet and dry phases that harbour a rich and diverse community (Meyer et al., 

2007). Species that dwell in headwater have developed morphological, physiological, 

and behavioural adaptations to cope with the intermittency of flow (Sánchez-Montoya et 

al., 2017). Headwaters can function as refuges from harsher environmental conditions 

or adverse biotic relations like competitors, predators that could be invasive species 

(Meyer et al., 2007). 

While headwater communities rely on allochthonous organic matter inputs from the 

terrestrial environment, such as leaves and other detritus that are washed to the stream, 
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and communities of medium rivers rely on autochthonous production from algae and 

aquatic plants, downstream communities in large rivers are adapted to capitalize on the 

organic matter that leaked and is transported through the stream network with little or no 

production of their own (Vannote et al., 1980). The large rivers usually present more 

species of fish than headwaters and can enhance species richness in nearby tributaries, 

regardless of their size, through mass effects and dispersal processes (Erös, 2017; 

Matthews, 1998). Large rivers are also more likely to be affected by human activities, 

such as damming or the introduction of exotic species (Johnson et al., 1995). 

Stream networks are more than ribbons of linear bodies of water. In river catchments, 

usually, they present a large network of heterogeneous habitats that are connected by 

complex dendritic structure creating strong environmental gradients over a range of 

spatial scales (Domisch et al., 2015; Erös & Schmera, 2010; Fausch et al., 2002; 

Peterson et al., 2013; Vannote et al., 1980; Ward & Stanford, 1995). This complexity 

makes the study of the distribution of organisms in streams challenging, thus adding to 

relevance of this thesis.  

1.4 Biodiversity modelling in aquatic systems 

1.4.1 Species distribution models 

1.4.1.1 The basic approach 

An understanding of the drivers governing variation of biodiversity distribution in space 

and time is key to freshwater ecosystems conservation (Geist, 2011). Freshwater 

ecosystems, such as stream networks, are complex systems for which our observations 

and knowledge could be insufficient to establish casual relationships (Wang & Grant, 

2019b). Therefore, models should be regarded as a scientific process that is used to 

structure our observations, knowledge and assumptions, using an abstraction of reality 

with a formal description of the essential elements and their relations, to enhance our 

understanding of a system (Wang & Grant, 2019a, 2019b).  

Species distribution models (SDM’s) is the set of statistical tools that use occurrence or 

abundance records of any given species from field samples, museums, literature, and/or 

on-line databases, to derive spatial explicitly predictions of environmental suitability for 

species in a given range and time period (Guisan et al., 2013; Guisan & Thuiller, 2005). 

Usually, this is achieved by establishing species-environmental relations using relevant 

environmental data from the locations where the species was recorded and, desirably, 
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from locations where the species is presumably absent. Once the data is compiled and 

a model fitted, assuming that the model is valid, it is possible to generate predictions and 

then apply them to inform conservation planning and management (Guisan & Thuiller, 

2005; Rodríguez et al., 2007). 

There have been several applications of SDM’s for conservation biology: improving the 

maps in atlas (Bustamante & Seoane, 2004); detecting potential suitable habitat and 

populations in locations without data (Jarnevich & Reynolds, 2011; Seoane et al., 2003); 

predicting future range shifts due to climate change (Araújo et al., 2006); identifying 

species that are underrepresented in the current network of protected areas using gap 

analysis (Araújo et al., 2007; Hermoso et al., 2016); designing reserves (Dobson et al., 

2013); predicting areas of conflict between human activities and wildlife, like agriculture 

(Ficetola et al., 2014) and transportation (Santos et al., 2018); identifying barriers to 

species dispersion (Meixler et al., 2009); selecting areas for species reintroduction 

(Olsson & Rogers, 2009); and habitat restoration (Adame et al., 2015).  

The use of SDM’s has also been valuable for understanding the impact of biological 

invasions (Franklin, 2013; Guisan et al., 2013; Rodríguez et al., 2007; Srivastava et al., 

2019), as the dispersion of alien species by human activities confuses biogeographical 

patterns (Capinha et al., 2015). SDM’s have been used to identify areas under the risk 

of biological invasions (Capinha et al., 2011; Hortal et al., 2010; Jiménez-Valverde et al., 

2011); predict the distribution of invasive species in newly invaded areas (Capinha & 

Anastácio, 2011); assess the factors associated with colonization success (Capinha et 

al., 2012); measure the impact on native species (Ficetola et al., 2011); and select 

possible areas for conservation actions (Préau et al., 2020).  

Although there has been an increase in the need and use of SDM´s to support 

conservation planning and decision-making, actions are most often taken without the 

support of these tools (Guisan et al., 2013). Their difficult adoption by practitioners, 

besides the relative complexity of the statistical skills needed, maybe is related to a 

misplaced notion that the theoretical assumptions behind SDM’s are unrealistic (Araújo 

& Peterson, 2012). SDM’s have limitations and assumptions that have been extensively 

discussed, such as niche conservatism of species (i.e., the lack of consideration of the 

adaptation potential of species), the static nature of the models concerning the biotic and 

abiotic interactions, and the tendency of SDMs to over-simplify species-environment 

relationships (Araújo & Guisan, 2006; Araújo & Peterson, 2012; Guisan et al., 2013; 

Guisan & Thuiller, 2005). When developing SDM’s, one should address the following 

critical issues: choose the adequate statistical framework and adopt the best standards; 
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use an appropriate spatial and temporal scale that match the modelling purpose and fit 

the available data; choose sound and ecological meaningful predictors; and collect 

enough data to cover the environmental gradients (Domisch et al., 2015). 

1.4.1.2 The problem of imperfect detection 

The failure to detect a species when a species is present is a very common source of 

bias in datasets used to produce SDM’s (Dorazio, 2012; Guillera-Arroita et al., 2014; M. 

Kéry & Schmidt, 2008; Marc Kéry, 2011; Lahoz-Monfort et al., 2014; Lobo et al., 2010). 

When conducting field surveys, non-detecting a species when a species is present in a 

habitat patch, sampling unit, etc., could be a result of several factors: the species of 

interest may be notorious cryptic and hard to find due to a small size, cryptic habits, or 

camouflage (Mazerolle et al., 2007); the efficiency of the sampling protocol (Einoder et 

al., 2018); and the habitat characteristics (Ferreira & Beja, 2013). This issue is known as 

imperfect detectability and results from the fact that the probability of detecting a species, 

when it is present in a patch of habitat or sampling unit, is usually less than one 

(MacKenzie et al., 2002). 

To account for imperfect detectability MacKenzie et al. (2002) developed a new class of 

models that jointly models the ecological process of the species presence (occurrence) 

and observational process (detectability). These models are known as “site occupancy” 

or “occupancy-detection” models, and normally rely on replicated surveys conducted at 

a subset of sampling units (MacKenzie et al., 2006). These replicated surveys can be 

made by visiting sites more than once, or in a single visit divided by time, observer or 

method, as long as each survey/observation remain independent of other observations 

(independence assumption), and that the state of the sampling unit (site) doesn’t change 

between observations (closure assumption, i.e., a site remains occupied or vacant 

across all surveys; Guillera-Arroita et al., 2011; MacKenzie, 2006). 

If undertaking repeated surveys is not an option, an alternative is to model the 

observations as a continuous process using the time needed to detect the first individual 

of a species (time-to-first detection, Garrard et al., 2008). Time-to-first detection is a 

decreasing function of detectability and is known to be affected by factors such as 

species abundance, species traits, and sampling efficiency (Bornand et al., 2014; 

Garrard et al., 2013; McCarthy et al., 2013). Time-to-first detection is modelled as a 

parametric survival model (Kleinbaum & Klein, 2012). The rationale being that if a 

species is present at a site, finding an individual is a matter of time, the more time spent 
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the higher the probability to find the species. When sampling is halted, usually due to 

logistic constraints, it’s possible to estimate the probability of a failed detection (Figure 

1.2). 

 

1.4.1.3 Accounting for biotic interactions 

Another potential source of mismatch between the actual and predicted distribution of a 

species is related to the effects of biotic interactions, which can contract the used niche 

in relation to the potential niche defined only by abiotic drivers. Biotic interactions can 

shape species distribution from local to continental scale (Araújo & Luoto, 2007; Wisz et 

al., 2013) in different ways: competition among species affect range limits as for instance 

in the case of mutual exclusion over large extents of the European ranges of hedgehog 

species (Hewitt, 1999); Predators, especially apex consumers, are key species in 

ecosystems and can have a strong influence on the abundance and distribution of their 

prey, and can also have cascading effects across the ecosystems (Estes et al., 2011); 

Invasive species can also be vectors of pathogens that once introduced in naïve 

populations can have a decimating effect, as for example, is the case of North American 

crayfish carrying subclinical infections of the oomycete Aphanomyces astaci, the agent 

of the crayfish plague, that have devastated the populations of European crayfish since 

the XIX century (Gherardi, 2007). If an ecological link between a pair species is known 

or suspected, the most straightforward approach to account for biotic interactions in 

SDM’s is to use the distribution of one species and other abiotic predictors to predict the 

distribution of the second species, but many other approaches have been proposed 

(Wisz et al., 2013). 

Figure 1.2 - Similarities between survival analysis and time to first detection. In survival analysis the event of interest is referred 

as failure. The probability of the failure occurring after time T, i.e. the failure occurring at time t > T, is given by the survival 

probability for time T. In time to first detection models, the probability of species being present given that it was not detect until 

time T, i.e. it would be detect at time t > T, is given by survival function for time T multiplied by the occupancy probability (ψ). 



FCUP 
Modelling biodiversity patterns and processes to 
support conservation in stream networks 

19 

Ch1 

 
 

1.4.2 The challenges of distribution modelling in river networks 

The distribution of freshwater species in streams results from top-down and bottom-up 

processes. Climate may be the main top-down driver of species distribution at continental 

or basin-scale with cascading effects to catchment scale and reach scale, but we may 

observe a mismatch of the predicted species distribution at more local scales due to 

habitat heterogeneity derived from local topography and hydrology, or human impact in 

the surrounding landscape or directly in the stream network (e.g.: impoundments). The 

choice of scale and resolution, as well as the environmental predictors, is not trivial and 

maybe a potential source bias (Domisch et al., 2015). 

Riverine ecosystems and freshwater species have several properties that challenge the 

application of SDM’s, thereby making it more difficult than in other systems to understand 

the patterns of species distribution (Olden et al., 2010). This is because stream 

ecosystems differ from their terrestrial and marine counterparts in fundamental aspects. 

Streams present a dendritic linear network of habitats connected laterally, longitudinally 

and vertically, with strong environmental gradients creating highly heterogeneous 

systems over a range of spatial scales (Domisch et al., 2015; Erös & Schmera, 2010; 

Fausch et al., 2002; Peterson et al., 2013; Vannote et al., 1980; Ward & Stanford, 1995). 

Moreover, while most fish and other aquatic species are strictly dependent on streams 

for habitat and dispersion, other organisms, although preferably using streams, can 

disperse overland like crayfish (Cruz & Rebelo, 2007), amphibians (Grant et al., 2010) 

and aquatic mammals (Quaglietta et al., 2014), further confusing patterns of species 

distribution in stream networks. 

The multiple spatial influences affecting aquatic organisms needs to be incorporated in 

distribution models to correctly understand and predict their distributions, though the way 

to do it correctly differs greatly from that used in SDMs applied to terrestrial species. 

Ecological data usually shows spatial autocorrelation (SAC), due for instance to the 

presence of environmental gradients or habitat patches that affect species distributions 

(Legendre, 1993). SAC thus arises because nearby pairs of points tend to be more 

similar in physical conditions and present a similar species composition and abundance 

than pairs further apart (Legendre, 1993), which is a potential source of bias because it 

violates SDM’s assumption of independence among observations (Diniz-Filho et al., 

2003; Legendre, 1993; Record et al., 2013; Václavík & Meentemeyer, 2012). SDM’s that 

do not account for SAC are more prone to type 1 errors (Diniz-Filho et al., 2003; Record 
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et al., 2013), i.e., failing to predict the presence of a species where it is present, while 

SDM’s that do account for SAC usually have enhanced predictive performance (Václavík 

et al., 2012). 

To incorporate SAC in generalised linear modes (GLM’s), it is necessary to relax the 

independence assumption by modelling the covariance matrix in the residuals as a 

function of nearby observations (Ver Hoef et al., 2018). Two common approaches that 

account for SAC are geostatistical and autoregressive models. In geostatistical models, 

SAC is modelled as a function of the distance between observations, while in 

autoregressive models SAC is modelled as conditional to the observations in a network 

of neighbours (Ver Hoef et al., 2018). Autoregressive models, like the autologistic 

models, include an autocovariate coding the influence of neighbouring locations and a 

corresponding parameter to estimate the strength of neighbourhood effects (Augustin et 

al., 1996; Bardos et al., 2015; Besag, 1974; Gumpertz et al., 1997; Hoeting et al., 2000). 

To construct the autocovariate, it is necessary to select the neighbourhood of each 

location, the set of locations that have influence on the value of the variable at the focal 

location, and weight the influence of each neighbour usually using distance. Weighted 

means are known to produce invalid weighting schemes, namely by not assuring 

symmetric weights among neighbours, and as such it is preferable to use weighted sums 

(Bardos et al., 2015). 

Geostatistical models usually rely on Euclidean distances to account for SAC, but 

Euclidean distances alone are of little application when modelling species distributions 

that are constrained to streams like fish or aquatic macroinvertebrates (Peterson & Ver 

Hoef, 2010), or even species that move preferably along streams but may disperse 

across the land as amphibians (Grant et al., 2010) and semi-aquatic mammals 

(Quaglietta et al., 2014). To apply geostatistical models to streams networks, it is thus 

more appropriate to use hydrological (along the channel) distances (Isaak et al., 2014; 

Peterson et al., 2007). The hydrological distances can be symmetric, among all locations 

within the stream network, or asymmetric, if only the locations connect by flow are taken 

into consideration (Figure 1.3, Peterson et al., 2007). Spatial stream network models 

(SSNM) were proposed by Ver Hoef et al. (2006) as a framework to deal with SAC in 

stream networks that take into account the dendritic structure and the direction of flow. 

Similar to previous geostatistical models, SSNM can fit in the random component an 

autocovariance function based on Euclidean distances, which is useful to account for 

spatial patterns that arise from the linkage with the terrestrial landscape, including due 

to factors like climate, land cover or overland dispersal by semi-aquatic organisms (Isaak 
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et al., 2014). These models, however, can also include two autocovariance functions 

based on hydrological distances: a tail-up and a tail down model based on moving-

average over a dendritic structure (Isaak et al., 2014; Peterson & Ver Hoef, 2010; Ver 

Hoef & Peterson, 2010). Tail-down models have the autocovariance function pointed 

downstream, and allow for spatial dependence among all locations in the stream 

network. Tail-up models have the autocovariance function pointed upstream, and only 

allow for spatial dependence among locations that are connected by flow. Spatial weights 

can be used to split the tail up autocovariance function at stream confluences using a 

relevant metric, like flow discharge or catchment area, to give a more accurate 

representation of tributary influence downstream (Isaak et al., 2014; Peterson & Ver 

Hoef, 2010). Tail-up models were designed to predict the distribution of organisms that 

move passively downstream while tail down are useful to predict organisms that actively 

colonise up-streams (Peterson & Ver Hoef, 2010). Autocovariance functions may be 

combined to create a flexible covariance structure that simultaneous account for several 

types of spatial relationships across several scales, and to assess the importance of 

each component as a function of the variance explained (Isaak et al., 2014; Peterson & 

Ver Hoef, 2010). 

Figure 1.3 - Different distances used to compute spatial autocorrelation in stream networks. Distances a) and b) are 

symmetric and c) is asymmetric. Adapted from Peterson et al. (2007)  
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1.5 Modelling dynamic community patterns  

Freshwater communities1 are changing worldwide due to increasing anthropogenic 

pressures (Albert et al., 2020; Reid et al., 2019). Several studies have been devoted to 

understanding how and why freshwater communities change over time, but are usually 

based on data collected over an extended time period at a small number of discrete 

locations (e.g. Baranov et al., 2020; Bêche et al., 2009; Erős et al., 2020; Jourdan et al., 

2018; Matthews & Marsh-Matthews, 2016). While long term data is essential for 

understanding community dynamics (Matthews & Marsh-Matthews, 2017), it is crucial to 

have a spatial continuous view of such dynamics in order prioritize conservation actions 

(Cid et al., 2020; Fausch et al., 2002). 

Changes in biological communities may result from local extinctions and/or colonizations 

that affect their composition and richness (Heino, 2013), but more usually they result 

from variations in species abundances (Grossman et al., 1990; Magalhães et al., 2007; 

Matthews & Marsh-Matthews, 2017). These temporal variations may be gradual or more 

abrupt (saltatory), and may alternate between alternative stable states, revolving around 

a loose equilibrium, or presenting a directional departure from the initial state as a result 

of a disturbance or ecological succession (Figure 1.4, Collins, 2000; DeAngelis et al., 

1985; Matthews et al., 2013; Matthews & Marsh-Matthews, 2017). The usual metrics that 

quantify these changes in species composition, as the Kendal’s coefficient or the 

coefficient of variation (Grossman et al., 1990), do not reflect the temporal patterns. 

These patterns have been inferred by visual examination of plotted trajectories in a 

chosen space of community resemblance (Magalhães et al., 2007; Matthews & Marsh-

Matthews, 2017).  

Based on the geometric properties of such trajectories, De Cáceres et al. (2019) 

developed an analytical framework to analyse and describe the temporal dynamics of 

                                                

1 In the literature, the terms “assemblage” and “community” have been used 

interchangeably, although they don’t necessarily have the same meaning (Fauth et al., 

1996). In this thesis, I use the term “community” (sensu Matthews & Marsh-Matthews, 

2017) to describe the fish (or other faunal groups) found in a particular place and time. 

In this context, there’s a predictability about the species that are found together, and 

there are biotic and abiotic factors that shape the communities through time and space 

(Matthews & Marsh-Matthews, 2017). 
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ecological communities (Community Trajectory Analysis). To define the trajectory of a 

community, each observation serves as a point in a multidimensional space and the 

trajectory is formalized as the set of directed segments connecting the observations in 

order. The multidimensional space is defined by the dissimilarity coefficient (e.g. Bray-

Curtis) chosen to evaluated the resemblance between observations (De Cáceres et al., 

2013, 2019; Sturbois et al., 2021). The geometric properties of the trajectories provide 

information about the community dynamics, for instance, the length of the segments and 

the trajectory can be used to quantify how much the community changes and if changes 

are abrupt or gradual, and the angles between segments and overall directionality 

quantify if the change is directional or not (De Cáceres et al., 2019; Sturbois et al., 2021). 

The synchrony of the variation of the communities in pairs of locations can be assessed 

by quantifying the convergence/divergence of the trajectories (De Cáceres et al., 2019). 

All these metrics could be used to model the spatial patterns of community dynamics in 

streams using the SSNM framework (Peterson & Ver Hoef, 2010). 

Figure 1.4 - Hypothetical trajectories reflecting the temporal dynamics of a community in a multivariate species-space. 

The framework depicts gradual versus saltatory change crossed with non-directional and directional change. Figure 

adapted from Matthews et al., 2013. 
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1.6 Objectives 

Modelling the distribution of aquatic and semi-aquatic organisms in streams networks is 

challenging to say the least, but it is also critical to address the current freshwater 

biodiversity crisis. Therefore, the general objective of this thesis is to develop new ideas, 

frameworks and tools that can aid ecologists and conservationists to obtain a more 

realistic depiction of species distribution and their temporal dynamics at the riverscape 

scale, as well as a better understanding of biotic and abiotic factors that drive such 

distributions. To address this general goal, I have focused on a study system involving a 

Mediterranean watershed, the Sabor River, where I have undertaken several empirical 

studies related to distribution, biotic interactions and community dynamics of several 

animal groups, including crayfish, fish and amphibians (details in Chapter 2). Based on 

this system, the thesis pursued the following specific objectives: 

1. To develop new approaches to account for imperfect detectability in distribution 

modelling across stream networks. Aquatic species are notoriously difficult to 

observe, and even standard protocols like electrofishing have a varying efficiency 

(Penczak & Głowacki, 2008; Reynolds, 1996; Zalewsky & Cowx, 1990), thus making 

imperfect detection an important issue that needs to be duly considered in species 

distribution modelling. While the toolbox of detection-occupancy models is rich and 

varied, most of the techniques available are difficult to use with sampling schemes 

often adopted for stream fish. Therefore, I have aimed at developing new tools to 

occupancy-detection modelling tailored for stream fish sampling, taking the Bayesian 

framework and a time to first detection approach, borrowing techniques from 

parametric survival analysis.  

2. To develop and test new approaches to deal with spatially autocorrelated (SAC) data 

in species distribution models across stream networks. SAC is pervasive to ecological 

data and river ecosystems are no exception. To account for SAC in river ecosystems 

is necessary to take into account the dendritic structure of the streams networks 

(Peterson & Ver Hoef, 2010), but the methods available have rarely been used in 

combination with species distribution models in stream networks, particularly in the 

case of occupancy-detection models. Therefore, in the presented thesis I tested and 

developed new empirical frameworks to integrate SAC in distribution models, 

including: 

a. Autoregressive models using hydrological distances to define the neighbourhood, 

in occupancy-detection models based on the time to first detection approach. For 

this component, I have used stream fish as the model organisms. 
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b. Geostatistical models that explicitly account for the dendritic structure of stream 

networks (Peterson & Ver Hoef, 2010; Ver Hoef et al., 2006; Ver Hoef & Peterson, 

2010), to improve spatial modelling of aquatic species distributions and 

community dynamics. For this component, I have used crayfish, fish and 

amphibians as model organisms. 

3. To develop and test new approaches to model the effects of invasive species on 

present and future distributions of native species. Biotic interactions can be important 

drivers of species distribution (Araújo & Luoto, 2007; Wisz et al., 2013), and so they 

need to be duly considered. This is particularly important in the case of invasive 

species affecting native species, where spatial modelling can be used to identify in 

what areas should be targeted for conservation. For this component, I have used 

crayfish and amphibians as model organisms. 

4. To develop and test new approaches to model spatial patterns in the community 

dynamics of aquatic organisms. The dynamics of communities is usually inferred from 

a relatively small number of discrete locations, but it is poorly known how to model 

the spatial pattern of temporal variation in the communities of aquatic organisms. To 

address this, in this thesis I aimed to combine for the first time, new geostatistical 

techniques developed for modelling processes in stream networks, with new methods 

designed to quantify community dynamics based on trajectory analysis (De Cáceres 

et al., 2019),  For this component, I have used fish as model organisms. 

1.7 Thesis outline 

This thesis is structured in seven chapters, which include a general introduction (chapter 

1), a brief description of the study area and of the studied species (chapter 2), a general 

discussion (chapter 7), and four chapters that correspond to four scientific papers that 

are already published in international peer-reviewed papers. Chapter 3, 4, and 5 

describe the modelling of the distribution of fish, invasive crayfish, and amphibians, 

respectively, while dealing with particular challenges of species distribution modelling in 

stream networks. Chapter 6 describes a framework to develop a continuous spatial view 

of the dynamic of stream fish communities. The content of each chapter is summarised 

below. 

 

Chapter 1 is an introduction to the main themes this thesis addresses. It starts by 

describing the biodiversity crisis with a particular emphasis on freshwater ecosystems. 
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Then, it makes a brief description of stream networks and summarises the challenges of 

species distribution modelling in stream networks. It ends with the thesis objectives and 

outlines. 

 

Chapter 2 makes a brief description of the system at study. It starts with a brief 

description of the study area, the Sabor river catchment, and then proceed to make a 

small description of the studied species giving notes on conservation status and 

biogeography. 

 

Chapter 3 addresses objectives 1 and 2a, combining a novel occupancy-detection 

model with an autoregressive spatial structure, to describe and understand the drivers 

of distribution of the most common fish species in the Sabor river network, while 

accounting for imperfect detectability and spatial autocorrelation. The data was collected 

in a large survey in the summer of 2012, with a total of 184 sites visited, of which 95 were 

dry. Using a Bayesian framework, I developed a hierarchical occupancy-detection model 

that estimates the probability of the presence of water in stream channels, and 

conditional on the presence of water the probability of species presence related to large 

scale environmental predictors and spatial factors. The observation model estimates the 

detection probability using time-to-first-detection conditional on species presence and 

environmental predictors, using a modified interval-censored exponential survival model. 

The posterior probability of species occurrence derived from the model was used to 

produce distribution maps. This study was published in Ecology and Evolution: Ferreira, 

M., Filipe, A. F., Bardos, D. C., Magalhães, M. F., & Beja, P. (2016). Modeling stream 

fish distributions using interval‐censored detection times. Ecology and Evolution, 6(15), 

5530–5541. https://doi.org/10.1002/ece3.2295  

 

Chapter 4 addresses objective 2b, providing one of the first ever applications regarding 

species distributions of geostatistical approaches to the modelling of ecological 

processes in stream networks. The approach is applied to data on the occurrence of two 

crayfish species across the River Sabor in the summer 2012. Because the dendritic 

structure of stream networks may constrain the dispersion of the invasive crayfish, we 

used geostatistical mixed models to relate the occurrence of crayfish to large scale 

environmental predictors, while specifying three spatial autocorrelation components in 

https://doi.org/10.1002/ece3.2295
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the random errors. These components describe spatial dependencies between sites as 

a function of Euclidean distances, hydrological distances among flow connected sites, 

and hydrological distances irrespective of flow connection. This study was published in 

Biological Invasions: Filipe, A. F., Quaglietta, L., Ferreira, M., Magalhães, M. F., & Beja, 

P. (2017). Geostatistical distribution modelling of two invasive crayfish across dendritic 

stream networks. Biological Invasions, 19(10), 2899–2912. 

https://doi.org/10.1007/s10530-017-1492-3  

 

Chapter 5 addresses objectives 2a and 3, investigating the spatial distribution and 

environmental drivers of amphibians refuges under invasion by two species of crayfish. 

Data on amphibian occurrence was collected at 168 200-m stream stretches during 

2015. Geostatistical models were used to relate the amphibian species occurrence to 

environmental factors and biotic interactions with crayfish, while controlling for Euclidean 

and hydrological spatial dependencies. The biotic interactions were specified using the 

crayfish occurrence probability, computed in the previous chapter, as a predictor in the 

amphibian distribution models. We then used a novel approach to predict future 

amphibian distributions under different scenarios of crayfish expansion across the 

stream network, thereby identifying areas that will likely remain free from crayfish 

(refuges), and thus should be primary targets for amphibian conservation efforts. This 

study was published in Diversity and Distributions: Mota-Ferreira, M., & Beja, P. (2020). 

Combining geostatistical and biotic interaction modeling to predict amphibian refuges 

under crayfish invasion across dendritic stream networks. Diversity and Distributions, 

26(6), 699–714. https://doi.org/10.1111/ddi.13047  

 

Chapter 6 addresses objective 4, describing a framework to create a continuous spatial 

depiction of species community dynamics across a river network. Based on stream fish 

data collected at 30 sites between 2012 and 2019, we first used community trajectory 

analysis to quantify the directionality and velocity of community change in the River 

Sabor watershed. We then used the geostatistical approach already applied in previous 

chapters to model descriptors of community dynamics in relation to large scale 

environmental predictors while accounting for Euclidean and hydrological spatial 

dependencies. We then projected the models to the entire watershed, thereby providing 

a basis to visualise spatial patterns in community change. This study was published in 

Diversity and Distributions: Mota-Ferreira, M., Filipe, A. F., Magalhães, M.F., Carona, S., 

https://doi.org/10.1007/s10530-017-1492-3
https://doi.org/10.1111/ddi.13047
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& Beja, P. (2021). Spatial modelling of temporal dynamics in stream fish communities 

under anthropogenic change. Diversity and Distributions, 27(2), 313–326. 

https://doi.org/10.1111/ddi.13189  

Chapter 7 provides the main conclusions obtained from these studies, and contextualise 

them concerning existing research in the field. It also discusses the main shortcomings 

and caveats of the studies, as well the main challenges that were met in the making of 

this thesis. In the end, it raises specific questions that still need to be addressed, as well 

as promising research pathways for the future. 
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Chapter 2 – Study system 

2.1 Study Area  

The fieldwork to collect the data used in this thesis was conducted in the Sabor river 

catchment, a tributary of Douro river in NE Portugal (N41º090–42º000, W7º150–6º150, 

Figure 2.), mostly within the Baixo Sabor Long Term Ecological Research Site 

(LTER_EU_PT_002) and Natura 2000 site of Sabor-Maçãs (PTCON0021). It is a 

scarcely populated region (8.5 – 28.7 inhabitants / km2 ; 

https://www.pordata.pt/Municipios) following a process of land abandonment since the 

1970s (Azevedo et al., 2011; Hoelzer, 2003). The study area is in the transition between 

the meso- and supra-Mediterranean bioclimatic zones (Monteiro-Henriques, 2010), with 

cold winters and hot dry summers. Precipitation is mainly concentrated in October-March 

and virtually absent in the hot summer months of June-August. Because of this, most of 

the headwater streams dry out, or become a series of isolated pools, in the summer, 

though the main river and largest tributaries are permanent. The stream network covers 

a wide range of environmental conditions in terms of elevation (1000 – 1500 meters 

above sea level), total annual precipitation (443 – 1163 mm), and mean annual 

temperature (6.9 – 16.6ºC). Two hydroelectric dams (Feiticeiro: 181 ha; Baixo Sabor: 2 

820 ha) located near the mouth of the Sabor river started to be built in 2009 with the 

main reservoir filled during the winter of 2014/2015 (Jackson, 2011; Santos et al., 2017). 

Besides the two hydroelectric dams and a few small impoundments, the streams are 

free-flowing. 

  

https://www.pordata.pt/Municipios


FCUP 
Modelling biodiversity patterns and processes to 
support conservation in stream networks 

42 

Ch2 

 
  

Figure 2.1 – Study Area 
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2.2 Studied organisms 

2.2.1 Non-native invasive crayfish  

Crayfish are among the largest and longest-lived freshwater invertebrates (Gherardi et 

al., 2011). Most species are omnivorous and ecologically key species, consuming plants 

and detritus, and being opportunistic predators of invertebrates, amphibians eggs and 

larvae, and even crayfish (Gherardi, 2007; Nyström et al., 1996). Crayfish are an 

important socioeconomic resource; in 2018, the worldwide production of crayfish 

aquaculture was about 1.7 million tonnes, corresponding to 1.49% of the worldwide 

production of aquaculture species, but corresponding to 5.49% of the value (Junning et 

al., 2020). Due to stocking and introductions, much of the present distribution of crayfish 

is due to human intervention (Gherardi, 2007), with at least eleven non-native invasive 

crayfish species (NICS) in Europe (Kouba et al., 2014). These include some populations 

that were once regarded as native, but that are in fact historical introductions (Gherardi, 

2007).  

According to Gherardi (2007), NCIS can impact biodiversity at different levels. NCIS can 

impact biodiversity at individual and population level by predating on native species 

(Cruz, Pascoal, et al., 2006; Cruz & Rebelo, 2005; Ilhéu et al., 2007; Sousa et al., 2019), 

modifying or inhibiting native species behaviour (Gamradt et al., 1997; Nunes, 2011; 

Nyström & Åbjörnsson, 2000), and being a vector for diseases for native crayfish 

(Alderman et al., 1990; Diéguez-Uribeondo & Söderhäll, 1993) and for other organisms 

(Brannelly et al., 2015). They also have become important prey for native species 

(Correia, 2001). NCIS are known to compete and even hybridize with native crayfish 

(review by Gherardi, 2007). The impact of NCIS in aquatic ecosystems can be 

devastating, causing the local extirpation of native species such as amphibians (Cruz et 

al., 2008). Due to diet plasticity, NCIS can consume in several trophic levels, becoming 

the central species on the nutrient cycle of the invaded habitats (Nyström et al., 1996). 

NCIS also alter the physicochemical properties of the water in invaded habitats. By 

walking, tail flipping, and burrowing, NCIS promote the suspension of sediments and 

nutrients and are thus linked to blooms of cyanobacteria (Welch & Pintor, 2014; 

Yamamoto, 2010). Options to control and mitigate NCIS exist, but are expensive, labour 

intensive, and so far have met limited success (Gherardi et al., 2011; Stebbing et al., 
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2014). Once a population of NCIS is established in the wild, eradication is nearly 

impossible. The focus should be on raising public awareness about the impact of NCIS  

and halting the spread of NCIS to non-invaded habitats that serve as refuges for native 

species (Gherardi, 2012). 

In the Iberian Peninsula, there are no native crayfish, though invasive species are 

widespread in most freshwater systems (Clavero et al., 2016; Kouba et al., 2014). The 

earliest crayfish invader was probably the white-clawed crayfish, Austropotamobius 

italicus, which was once regarded as a naturally occurring species and an important 

socio-economic resource (Gutiérrez-Yurrita et al., 1999), but now it has been recognised 

as a species introduced from Italy, in the XVI century (Clavero et al., 2016). Following a 

crash in A. italicus populations, the Spanish authorities tried to introduce several species 

of exotic crayfish in the decade of 1970 (Gutiérrez-Yurrita et al., 1999), but only two 

species became widespread: the red swamp crayfish, Procambarus clarkii (Girard, 

1852), and the signal crayfish, Pacifastacus leniusculus (Dana1852), (Figure 2.2, Kouba 

et al., 2014). P. clarkii was introduced in the south of Spain (Gutiérrez-Yurrita et al., 1999) 

and has invaded almost every basin in the Iberian Peninsula (Kouba et al., 2014). P. 

leniusculus was introduced in the Madrid region and as spread to the colder waters of 

the historical distribution of A. italicus (Gutiérrez-Yurrita et al., 1999; Kouba et al., 2014).  

The red swamp crayfish, P. clarkii is a typically dark red crayfish and is generally 

regarded as the most ubiquitous NICS in the world. It is native to the north-eastern 

Mexico and the southcentral USA (Crandall, 2010; Gherardi, 2006). It is capable of 

reaching over 50g within 3 to 5 months of age, with adults measuring from 5.5 to 12cm 

(Global Invasive Species Database, 2011). Reproductively, P. clarkii, exhibits traits of an 

r-selected species, with early maturity at a small body size, rapid growth rates, large egg 

production (400 pleopodal eggs for an average-sized female), and a short life span. Due 

to its commercial value, this species has been introduced across the North American 

continent and later to South America, East Africa, Asia and Europe (Crandall, 2010; 

Gherardi, 2006). Although P. clarkii is usually associated with larger, warmer lowland 

streams, there are increasing reports of occurrence at higher altitudes and latitudes 

(Chucholl, 2013). 

The signal crayfish, P. leniusculus, is a larger crayfish native to the north-western USA 

and south-western Canada (Johnsen & Taugbøl, 2010), and is the most widespread 
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NICS in Europe (Kouba et al., 2014). The common name of this specie comes from the 

white-turquoise patch on the upper-side of the chelae, near the junction of the fix with 

the movable finger (Lewis, 2002). P. leniusculus males can reach up to 16 cm in length 

and females up 12 cm, and the weight is typically 60 and 110g, at 50 and 70mm carapace 

length, respectively (Global Invasive Species Database, 2005). Females produce 200 to 

400 eggs that are carried under the tail until hatching. Juvenile crayfishes stay with the 

mother during three stages (two moults), before they became independent. Sexual 

maturity is reached at 6-9 cm, corresponding to an age of 2-3 years. 

In the watershed of the Sabor river where the study was conducted, these two NICS 

were first reported in the 1990s. while P. clarkii was probably introduced by local people 

(Bernardo et al., 2011). P. leniusculus was introduced by the Spanish authorities in 1994, 

in two small streams near the international section of Maçãs river (Bernardo et al., 2011). 

  

Figure 2.2 Invasive crayfish species present in the Sabor river catchment. On left the red swamp crayfish, Procambarus cclarkii 

(Girard, 1852), and on right the signal crayfish, Pacifastacus leniusculus (Dana1852). P. clarkii photo by Mertz (2017) and P. 

leniusculus by MMF. 
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2.2.2 Stream fish 

Fish are among the most charismatic organisms inhabiting freshwater ecosystems. In 

stream networks, the fish diversity and abundances tend to be correlated with stream 

order (Harrel et al., 1967; Paller, 1994; Platts, 1979). The main stems of rivers, usually 

perennial, tend to have richer and more abundant communities, while headwaters 

usually present a subset of the species found downstream (Cook et al., 2004) or a 

community dominated by a few headwater specialists (Meyer et al., 2007). In the 

absence of major sources of disturbances, stream networks can present very stable fish 

communities over time (Gorman & Karr, 1978). Although the numbers of the observed 

species can vary through time, the composition tends to remains stable, with few 

extinctions and additions disregarding species introductions, also few changes in the 

more abundant species (Magalhães et al., 2007; Matthews et al., 2013; Matthews & 

Marsh-Matthews, 2016, 2017). Matthews & Marsh-Matthews (2017) proposes that most 

fish communities are in a state of ‘Loose Equilibria’ (S. L. Collins, 2000; DeAngelis et al., 

1985), where communities vary across time, but given enough time communities return 

towards a central condition instead of remaining in an altered state. 

In the Iberian Peninsula, as well as the rest of the Mediterranean region, the native 

ichthyofauna is dominated by the Cyprinidae family (Tierno de Figueroa et al., 2013). 

They occur mainly in rivers that were formed in the transition from the Oligocene to the 

Pliocene, together with the rise of the main mountains. The absence of canals between 

rivers during the quaternary left a clear phylogeographic structure in the native Iberian 

ichthyofauna, which presents a high level of endemism (Gómez & Lunt, 2007). Because 

of this, closely related endemic species usually have different distributions associated 

with the main rivers, with a few zones of sympatry that resulted from occasional 

headwater captures among river basins or human-mediated introduction (Gómez & Lunt, 

2007). Besides the native fish fauna, the Iberian Peninsula, there is a large number of 

introduced freshwater fish in Iberian waters. For instance, in Portugal there are at least 

twenty non-native fish species recorded (Anastácio et al., 2019). Non-native fish may 

have multiple impacts on native species and ecosystems, including hybridization, 

disease transmission, disruption of biotic interactions, predation and competition (Ribeiro 

& Leunda, 2012). Most of the introductions have been intentional, often to enhance 

fisheries activities (Anastácio et al., 2019).  

In the Sabor River studied in this thesis, the native ichthyofauna belongs to the families 

Cyprinidade, represented by four genera and five species, all endemic to the Iberian 

Peninsula, and Salmonidae, with a single species, Salmo trutta (Figure 2.3): 
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 Luciobarbus bocagei (Steindachner, 1864) – It is the largest of the species observed 

in the Sabor basin, reaching a length of up to over 60 cm, but it is usually under 30 

cm (MMF personal observation). It can have a lifespan of over a decade, with males 

becoming sexually mature between the third and fourth years, and females between 

the sixth and eight years (Doadrio et al., 2011; Salvador Milla, 2017). The species has 

two pairs of barbells located near the mouth that probably helps in the benthonic diet; 

L. bocagei mainly consumes detritus and aquatic insect larvae (Salvador Milla, 2017). 

Although it is listed as Least Concern in Portugal and by IUCN (Cabral et al., 2005; 

IUCN, 2020), several of the populations of L. bocagei have disappeared from the 

Douro basin in Spain (Doadrio et al., 2011). 

Figure 2.3 – Native fish fauna of the Sabor river basin. All photos by MMF. 
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 Pseudochondrostma duriense (Coelho, 1985) – It is a medium-sized species, with 

lengths up to 50 cm (Doadrio et al., 2011), but usually does not surpass the 20 cm 

(MMF personal observation). It feeds mainly in detritus and vegetal material and  

occasionally macroinvertebrates using a conspicuous straight corneous lower lip 

(Sánchez-Hernández et al., 2011). This species makes small upriver migrations to 

spawn (Doadrio et al., 2011). P. duriense is listed as Least Concern in Portugal 

(Cabral et al., 2005) and as Vulnerable by the IUCN (IUCN, 2020). 

 Squalius alburnoides (Steindachner, 1866) – This is a complex that resulted from 

unidirectional hybridization involving females of Squalius pyrenaicus with males from 

an already extinct species from the lineage of Anaecypris hispanica (Collares-Pereira 

et al., 2013; Collares-Pereira & Coelho, 2010). The individuals of this complex are 

small, the length is usually less than 10 cm (MMF personal observation), and present 

sexual and asexual reproduction modes that are neither strictly clonal nor hemiclonal 

(Collares-Pereira et al., 2013). The persistence in natural populations is dependent 

on the mating with sympatric species of Squalius, which in the Sabor basin is S. 

carolitertii, leading to the replacement of the ancestral genome of S. pyrenaicus by 

the genome of the extant species (Collares-Pereira et al., 2013). S alburnoides is 

listed as Vulnerable in Portugal and by the IUCN (Cabral et al., 2005; IUCN, 2020). 

 Squalius carolitertii (Doadrio, 1988) – It is a larger and more robust species than S. 

alburnoides, but seldom surpasses the 15 cm of total length (MMF personal 

observation). The diet consists mainly of small arthropods and small fishes caught on 

the water column (Doadrio et al., 2011). S. carolitertii is listed as Least Concern in 

Portugal and by the IUCN (Cabral et al., 2005; IUCN, 2020). 

 Achondrostoma sp. This is a species assigned to Achondrostoma arcasii in a paper 

of this thesis, but molecular evidence suggests that it’s a taxon yet to be named 

(Robalo et al., 2007). This species is morphological similar to A. arcasii, presenting 

the same reddish spots in the fins and not exceeding the 13 cm in length (MMF 

personal observation). It’s an omnivorous species, feeding mainly on detritus and 

plant material but with aquatic macroinvertebrates as an important complement 

(Sánchez-Hernández et al., 2011). Because this species is yet to be formally 

described, its conservation status as not been evaluated yet, but due to its restrict 

distribution it should be a classification of high threat, like endangered (EN) or critical 

endangered (CR). 
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 Salmo trutta (Linnaeus, 1758) – is a salmonid species associated with cold 

headwaters, with a native distribution across Europe, but that has been introduced 

worldwide in temperate areas (Filipe et al., 2013). In the Iberian Peninsula, there are 

two coexisting populations with distinct life strategies: migrant populations that 

complete the life cycle in the ocean, and, more common, resident populations, as the 

population found in the Sabor basin (Alonso et al., 2017). It is a very appreciated 

species for sport fishing and as such has been widely targeted for re-stocking and 

introductions (Piccolo, 2011). S. trutta mainly feeds on fish and terrestrial 

invertebrates that fall or are washed into the water (Alonso et al., 2017). IUCN list this 

species as Least Concern (IUCN, 2020); in Portugal, while the migrant populations 

are classified as Critically Endangered (CR), the resident populations are listed as 

Least Concern (Cabral et al., 2005).  

 

Besides the native species, in the Sabor river basin there are five exotic species 

registered, including two species of cyprinids, and one species each of Cobitidae, 

Centrarchidae, and Poeciliidae (Figure 2.4): 

Figure 2.4 - Exotic fish fauna of the Sabor river basin. Photo of A. alburnus by Harka (2011). Photo of G. lozanoi and C. 

paludica by Perez (2010b, 2010a). Photo of L. gibbosus by Wissink (2018). Photo of G. holbrooki by Aguilar (2006). 
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 Alburnus alburnus (Linnaeus, 1758) – A medium cyprinid, usually under 17 cm total 

length (MMF personal observation). It is native to central Europe, but was introduced 

in reservoirs in Spain as forage fish in the decade of 1990’s, and since then has 

spread to the main basins of the Iberian Peninsula (Vinyoles et al., 2007). The 

plasticity of the diet and habitat requirements are key in this species success as an 

invader (David Almeida et al., 2017; Latorre et al., 2020; Matono et al., 2018). A. 

alburnus can have an impact on other cyprinids of similar size at several levels: It is 

a strong competitor for habitat and food, and a predator of eggs clutches (Latorre & 

Almeida, 2019). It is also capable of hybridization with endemic Squalius species 

(Almodóvar et al., 2012). 

 Gobio lozanoi (Doadrio & Madeira, 2004) – A small cyprinid, usually not larger than 

12 cm (MMF personal observation). It is native to the south of France and east of the 

Iberian Peninsula, and has spread to the main basins of the Iberian Peninsula during 

the XXth century (Doadrio et al., 2011). It is a benthonic feeder and consumes mainly 

small arthropods (Oscoz et al., 2006). The spread of this species has been favoured 

by impoundments and river regulation (Muñoz-Mas et al., 2016).  

 Cobitis paludica (de Buen, 1930) – A small species native to the south of the Iberian 

Peninsula, which is regarded as introduced in the Douro basin (Doadrio et al., 2011), 

although this status has been contested by some authors (Sánchez-Hernández et al., 

2018). Accidental release due to the traditional use of this species as bait should 

account for the majority of the introductions. It is a benthonic feeder that consumes 

mainly chironomid larvae and ostracods (Sánchez-Carmona et al., 2008). C. paludica 

is a native of the south of Portugal, as such it doesn’t have an exotic status (Anastácio 

et al., 2019) and is listed by the IUCN as Vulnerable (IUCN, 2020).  

 Lepomis gibbosus (Linnaeus, 1758) – A small centrarchid species, usually less than 

10 cm (MMF personal observation). It is native to east-central North America, and is 

presently distributed across most of western and central Europe as a result of 

introductions going back more than 100 years (Bhagat et al., 2006). L. gibbosus was 

introduced by Spanish authorities, over 100 years, as forage fish to previously 

introduced piscivore species (Elvira & Almodóvar, 2001). In Portugal, the expansion 

of this species is related to introduction in reservoirs by anglers and subsequent 

expansion (Godinho et al., 1998). L. gibbosus is an opportunistic and plastic forager 

(D. Almeida et al., 2009), and can be more efficient forager than native species 



FCUP 
Modelling biodiversity patterns and processes to 
support conservation in stream networks 

51 

Ch2 

 
(Anastácio et al., 2019). The males of this species present parental care behaviour 

(Naspleda et al., 2017). 

 Gambusia holbrooki (Girard, 1859) – A small poecilid species native to the eastern 

coast of North America that has been introduced worldwide as a mosquito control 

agent (Pyke, 2008). The species was introduced in Spain in 1921, and has spread to 

almost every basin in the Iberian Peninsula (Doadrio et al., 2011; Moreno-Valcárcel 

& Ruiz-Navarro, 2017). Although its efficiency as a control agent has been disputed, 

It is widely regarded as an aggressive invader with a negative impact on invertebrates, 

amphibians and other fish (Pyke, 2008). 

2.2.3 Amphibians 

Amphibians populations worldwide are declining fast (Alford & Richards, 1999; 

McCallum, 2007; Wake, 1991), and are presently considered the most threatened faunal 

group (IUCN, 2020). Although no single global cause has been identified, six leading 

causes have been advanced, which may act independently or in multiple interactions (J. 

P. Collins & Storfer, 2003): alien species introduction, over-exploitation, land-use 

change, global alterations, contaminants, and emerging diseases. In recent years, the 

panzootic chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis, 

which emerged in Asia and has spread with the help of global trade of amphibians, has 

been linked to the decline of amphibian populations worldwide, particularly in stream 

associated populations on remote and pristine habitats (Fisher & Garner, 2020; O’Hanlon 

et al., 2018). In Europe, however, amphibian declines are commonly associated with 

habitat destruction and/or alteration, and invasive species (Cruz et al., 2008; Ferreira & 

Beja, 2013; Nyström et al., 2007; Stuart et al., 2004).  

The most common life cycle of amphibians involves three distinct stages: aquatic eggs 

and larvae, and usually more water independent adult stage (Pough et al., 1998). 

Females usually lay jelly-covered eggs in aquatic habitats that hatch into larvae that 

subsequently metamorphose into adults. Anuran larvae (tadpoles) are hatched limbless, 

developing hind limbs first and forelimbs just before the end of the metamorphosis. The 

digestive track also suffers important changes, both morphological and physiological, as 

the individual transitions from a suspension-feeding tadpole to a carnivorous adult 

(Hourdry et al., 1996). Urodele larvae develop both pairs of limbs in the early stages of 

development and are always carnivore (Pough et al., 1998). The changes that occur 
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during metamorphosis are controlled by hormones, but are also influenced by external 

factors such as temperature and conspecific larvae density (Pough et al., 1998). 

While the highest diversity of amphibians is usually associated with ponds and pools, 

particularly in the Mediterranean (Beja & Alcazar, 2003; Ferreira & Beja, 2013; Gómez-

Rodríguez et al., 2010; Snodgrass et al., 2000), small streams can sustain high 

amphibian diversity, particularly in regions where ponds are scarce (De Vries & Marco, 

2017). Larger river and streams are regarded as unsuitable habitat for most amphibians 

due to hydrology and predation risk  (De Vries & Marco, 2017), but amphibians are 

particularly adapted to small intermittent streams (Sánchez-Montoya et al., 2017). The 

predictable shift between dry and wet phases of headwaters and small streams that are 

unsuitable for predators, such as fish and crayfish, but can provide food resources such 

as algae and macroinvertebrates, makes these habitats particularly valuable for 

amphibians (De Vries & Marco, 2017; Meyer et al., 2007; Sánchez-Montoya et al., 2017). 

In the Iberian Peninsula, the fauna of amphibians includes a large number of endemic or 

quasi-endemic species. The current distribution of the Iberian amphibians results from a 

complex process of contractions during the quaternary ice ages, and posterior expansion 

during the interglacial periods (Gómez & Lunt, 2007). Most of the current genera of 

Iberian amphibians were already present in what is now the Iberian Peninsula during the 

Miocene (23.8 – 5.3 MY, Pinho & de Almeida, 2008).  

The batrachofauna in the system studied in this thesis includes at least thirteen species 

(Loureiro et al., 2008), of which only eight species present a strong association with 

stream habitats: three urodele species from the family Salamandridae, and five anuran 

species from three families, two species each from Alytidae and Ranidae, and one 

species from Bufonidae (Figure 2.5). 

 Salamandra salamandra (Linnaeus, 1758) – It is a medium-sized salamandrid 

species, which usually does not reach more than 200mm in length, and is distributed 

across Europe (Sillero et al., 2014; Velo-Antón & Buckley, 2015). This species 

presents high geographical variation, with at least ten subspecies recognized for the 

Iberian Peninsula (Burgon et al., 2021). S. s. galaica, the subspecies present in the 

Sabor river basin, presents oviviparism as the most common reproduction strategy 

(Velo-Antón & Buckley, 2015). In mesocosm experiments, larvae of S. salamandra 
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were predated by P. clarkii, although it did not significantly reduce larvae survival 

(Cruz & Rebelo, 2005). 

 Triturus marmoratus (Latreille, 1800) – With a usual length between 110 and 160 mm, 

this species is distributed from Portugal to France (Montori, 2014; Sillero et al., 2014). 

The aquatic phase of the adults usually begins in November or December, and may 

extend until May at lower altitudes, while at higher altitudes it often lasts from May to 

November (Caetano & Castanet, 1993). The oviposition strategy of females of this 

species, which involves laying single eggs in submerged vegetation by bending the 

leaves (Montori, 2014), may render this species more susceptible to predation by 

crayfish. Possibly in association with this, the introduction of P. clarkii can drive local 

populations of T. marmoratus to extinction (Cruz et al., 2008). 

 Lissontriton boscai (Lataste, 1879) – A small salamandrid that usually does not reach 

more than 100 mm in length, and is endemic to the western part of the Iberian 

Peninsula (Díaz-Paniagua, 2014; Sillero et al., 2014). Adults of this species may stay 

in aquatic habitats for a large part of the year if conditions are favourable (Caetano & 

Leclair Jr., 1999). The oviposition strategy of this species is similar to T. marmoratus 

(Díaz-Paniagua, 2014). In mesocosm experiments, predation by P. clarkii significantly 

reduces larvae survival (Cruz & Rebelo, 2005). 

 Alytes cisternasii (Boscá, 1879) – A small anuran, usually smaller than 5 cm, which is 

endemic to the southwest of the Iberian Peninsula (Márquez, 2017; Reino et al., 2017; 

Sillero et al., 2014). Males of this genus wrap the fertilized egg chord around their 

hind legs, and carries it on land during the embryonic development, only releasing the 

eggs mass in a water body when the tadpoles are fully formed (Márquez, 1992). This 

species is more associated with xeric habitats and temporary water masses than its 

sister species A. obstetricans, and as such its reproduction activity tends to be 

explosive after the first autumn rains (Márquez, 1992, 2017; Reino et al., 2017). In 

mesocosm experiments, predation by P. clarkii significantly reduced larvae survival 

(Cruz & Rebelo, 2005). 

 Alytes obstetricans (Laurenti, 1758) – Very similar to its sister species, A. cisternasii 

has a wider distribution from Portugal to Germany (Bosch, 2014; Sillero et al., 2014). 

In the Iberian Peninsula, the species from this genus present a parapatric distribution 

with a small sympatric zone, with A. obstetricans being distributed in the northern half 

and associated with regions with high precipitation (Reino et al., 2017). The peak of 
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the reproduction activity is at the end of spring, and larvae may stay in the water for 

several years (Bosch, 2014; Márquez, 1992). 

 Bufo spinosus (Daudin, 1803) – The largest of the Iberian anurans, this species is 

distributed from the Northwest of Africa, across the Iberian Peninsula, to the south 

and west of France (Ortiz-Santaliestra, 2014; Recuero et al., 2012). It reproduces 

preferably in streams and permanent water bodies, including irrigation reservoirs 

(Ferreira & Beja, 2013). In mesocosm experiments, P. clarkii did not predate on eggs 

and embryos, but rapidly consumes newly hatched tadpoles (Cruz & Rebelo, 2005). 

 Pelophylax perezi (López Seoane, 1885) – A medium-size ranid, usually larger than 

5 cm, widely distributed in the Iberian Peninsula and south and west coast of France 

(Egea-Serrano, 2014; Sillero et al., 2014). P. perezi is mostly associated with aquatic 

habitats, although it is capable of land dispersion. It is the most common amphibian 

in the Iberian Peninsula, occupying almost every existent water body, including man-

made (Egea-Serrano, 2014; Ferreira & Beja, 2013). In mesocosm experiments, P. 

clarkii predates eggs and tadpoles of P. perezi, and significantly reduces their survival 

(Cruz & Rebelo, 2005). However, in natural populations, a positive correlation has 

been found between the presence of P. clarkii and P. perezi (Cruz, Rebelo, et al., 

2006). 

 Rana iberica (Boulenger, 1879) – A small ranid, usually not larger than 5 cm, endemic 

to the Northwest part of the Iberian Peninsula, where the Atlantic climatic influence is 

stronger (Salvador, 2015; Sillero et al., 2014). Like P. perezi, it is a mostly aquatic 

species, but usually only occupies small, fast, and cold mountain streams (Salvador, 

2015).  

In the IUCN Red List assessment, Rana iberica is classified as vulnerable and is the only 

species with a threat conservation status, while all others are classified as least concern. 

However, with the exceptions of B. spinosus and L. boscai, all species show a 

decreasing trend (IUCN, 2020). This assessment listed as major threats to these species 

the loss and modification of habitats, invasive species and emergent diseases (IUCN, 

2020). In Portugal, none of these species is considered threatened (Cabral et al., 2005). 
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Figure 2.5 - Amphibians associated with streams of the Sabor river region. All photos by MMF. 
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Abstract 

Controlling for imperfect detection is important for developing species distribution models 

(SDMs). Occupancy-detection models based on the time needed to detect a species can be 

used to address this problem, but this is hindered when times to detection are not known 

precisely. Here we extend the time to detection model to deal with detections recorded in time 

intervals, and illustrate the method using a case study on stream fish distribution modelling. 

We collected electrofishing samples of six fish species across a Mediterranean watershed in 

Northeast Portugal. Based on a Bayesian hierarchical framework, we modelled the probability 

of water presence in stream channels, and the probability of species occupancy conditional on 

water presence, in relation to environmental and spatial variables. We also modelled time to first 

detection conditional on occupancy in relation to local factors, using modified interval-censored 

exponential survival models. Posterior distributions of occupancy probabilities derived from the 

models were used to produce species distribution maps. 

Simulations indicated that the modified time to detection model provided unbiased parameter 

estimates despite interval-censoring. There was a tendency for spatial variation in detection 

https://doi.org/10.1002/ece3.2295
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rates to be primarily influenced by depth and, to a lesser extent, stream width. Species 

occupancies were consistently affected by stream order, elevation and annual precipitation. 

Bayesian P-values and AUCs indicated that all models had adequate fit and high discrimination 

ability, respectively. Mapping of predicted occupancy probabilities showed widespread 

distribution by most species, but uncertainty was generally higher in tributaries and upper 

reaches. 

The interval-censored time to detection model provides a practical solution to model occupancy-

detection when detections are recorded in time intervals. This modelling framework is useful for 

developing SDMs while controlling for variation in detection rates, as it uses simple data that 

can be readily collected by field ecologists. 

3.1 Introduction 

Species distribution models (SDMs) are widely used for research on biodiversity patterns and 

processes, and for informing conservation action and wildlife management (Guisan & Thuiller, 

2005). Despite their value, SDMs may often be biased due to the use of datasets including false 

absences (Dorazio, 2012; Kéry, 2011; Lahoz-Monfort et al., 2014; Lobo et al., 2010) because 

failure to detect a species where it is present is a common source of error in biological surveys 

(Guillera-Arroita et al. 2014, and references therein). This problem may be solved using 

occupancy-detection modelling, whereby presence-absence and detectability given presence 

are jointly modelled in relation to covariates (MacKenzie et al., 2006), though only recently this 

approach has been considered in SDM development (G. Chen et al., 2013; Kéry et al., 2013; 

Lahoz-Monfort et al., 2014).  

Occupancy-detection modelling is generally based on data from replicate discrete surveys 

conducted at, at least, a subset of sampling units (sites) (MacKenzie et al., 2006). Replicated 

surveys may be made by visiting sites more than once, but they may also be conducted at the 

same site on a single visit but partitioned by time, observer or method, or they can be conducted 

at different locations within a site (Guillera-Arroita, 2011; MacKenzie et al., 2006). In the removal 

design (MacKenzie et al. 2006), surveying is halted at a site once the species is detected and it 

was proposed that detection probabilities could be modelled as functions of covariates that vary 

across sites and also those (“such as local environmental conditions, time of day, or survey or 

experience") that vary across surveys. This removal design is therefore a very general approach 

to modelling first-detections where survey effort is treated as a series of discrete surveys. As 

such a crucial issue is exactly how the detection probabilities are modelled parametrically; 
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MacKenzie et al. (2006) suggested a logistic model using a combination of covariates that varied 

only between sites and those that vary between both sites and surveys. 

A potentially more natural approach for developing SDMs while controlling for imperfect 

detection is to model the observation process as continuous process (e.g. a Poisson point 

process in time) and use the time needed to first detect a species, rather than a detection/non-

detection history (Garrard et al., 2008; Guillera-Arroita et al., 2011). Time to first detection is an 

inverse function of detectability, and is known to be affected by factors such as species 

abundance, species traits, and sampling efficiency (Bornand et al., 2014; Garrard et al., 2013; 

McCarthy et al., 2013). The method is based on survival analysis (Kleinbaum & Klein, 2012), 

using distributions of times to first detection to parameterize a survival curve S(t)  (i.e., the 

probability of a species remaining undetected before a given time t), and to separate the 

probability of occupancy from the probability of detection given occupancy. The method has 

been mostly used in visual surveys of vascular plants (e.g. Garrard et al. 2008, 2013; McCarthy 

et al. 2013; Bornand et al. 2014), but it is likely useful for a wide range of taxonomic groups and 

sampling methods.  

One problem of time to detection approaches is that the exact time when a species was first 

detected may be difficult to estimate precisely in some circumstances due, for instance, to 

sampling or recording constraints. In the case of bird point counts it is common practice to divide 

the count in time intervals, and recording species detections in each interval rather than at 

specific points in time (e.g. Alldredge et al. 2007). Likewise, in surveys of aquatic organisms 

using for instance nets, electrofishing or traps, species detections can often be recorded only 

within time intervals, and so the exact time to first detection is not known precisely (e.g. Beja & 

Alcazar 2003). In conventional survival analysis this problem has been described as interval-

censoring, commonly resulting when periodic assessments (e.g. clinical or laboratory 

examinations) are used to assess if an event of interest has occurred (D.-G. Chen et al., 2012; 

Kleinbaum & Klein, 2012; Radke, 2003). In these circumstances, the event is known only to 

have occurred before a given assessment (right-censoring) and after the previous assessment 

(left-censoring), corresponding to the upper and lower bounds of a time interval. Common 

approximations for dealing with interval-censored data assume exact times (e.g., events 

occurring at the lower-bound, mid-point or upper bound of the interval); these approaches are 

arbitrary and can result in biased estimates of the survival curve and the effects of covariates 

(D.-G. Chen et al., 2012; Radke, 2003). We therefore avoid such approximations in applying 

interval-censored survival analysis to occupancy-detection modelling. 

In this study, we developed a time-to-first detection framework in the context of SDMs, using a 

modified formulation of interval-censored survival analysis to deal with detections recorded in 
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time intervals (Kleinbaum & Klein, 2012). This provides a natural and coherent parameterization 

of detection probabilities for the removal design (MacKenzie et al. 2006) as a function of site 

covariates and arbitrary time intervals, by way of a detection rate that may be constant 

(exponential survival model) or vary with elapsed time (e.g. the 2-parameter Weibull survival 

model), and can be modelled as a function of site-covariates using a log-linear model. 

The approach is illustrated using stream fish distributions, for which detection may greatly vary 

across sampling sites, and times to detection are difficult to estimate precisely due to sampling 

constraints (Penczak & Głowacki, 2008; Reynolds, 1996; Zalewsky & Cowx, 1990). In detail, we 

examined if the interval-censored time to detection approach allows building reliable models 

when imperfect detection is a potential drawback. We then used these models to extrapolate 

distributions of fish throughout the catchment streams. Finally, we discuss potential applications 

of the interval-censored time to detection model to different datasets that may often be collected 

by field ecologists.  

3.2 Methods 

3.2.1 Fish and environmental data 

Descriptions of the study area, and of methodological details for species surveys and, the 

collection of environmental data are provided in Appendix 3.S1 Supplementary Methods in 

Supporting Information. We studied time to detection data for freshwater fish species sampled 

using electrofishing (Reynolds, 1996), in 50-m reaches (hereafter sites) distributed across the 

river Sabor catchment (NE Portugal). Sampling was conducted in the summer of 2012 at 89 

sites, while no conditions for fish occurrence due to lack of surface water were recorded at 

another 95 sites. The study focused on the six most prevalent species (>20 sampling sites), 

including four natives (Luciobarbus bocagei, Pseudochodrostoma duriense, Squalius 

alburnoides, and Squalius carolitertti) and two exotics (Gobio lozanoi and Lepomis gibbosus). 

At each site we carried out an electrofishing session lasting for 15 to 25 minutes, with longer 

surveys used in wider streams to cover adequately the entire sector. The first detection of each 

species was recorded in 5-minute intervals due to practical constraints associated with 

electrofishing sampling. 

Detection probabilities were modelled in relation to stream width and depth, because these 

variables strongly affect detectability by inducing variations in electrofishing efficiency 

(Reynolds, 1996) and in fish abundances (MacKenzie et al., 2006; McCarthy et al., 2013). 

Occupancy probabilities were modelled in relation to annual precipitation, elevation, and 
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Strahler’s stream order, because these variables are known to strongly influence the distribution 

of stream fish in Mediterranean regions (M. T. Ferreira et al., 2007; Filipe et al., 2004; Magalhães 

et al., 2002), and they could be readily used to project the distribution models for the entire 

watershed.  

3.2.2 Neighborhood effects  

Modelling included neighbourhood effects to account for potential biases resulting from spatial 

autocorrelation of the data, i.e., lack of independence between the values of variables sampled 

at nearby locations (Legendre, 1993). We employed autologistic models (Augustin et al., 1996; 

Bardos et al., 2015; Besag, 1974; Gumpertz et al., 1997; Hoeting et al., 2000) for species 

occurrence and surface water presence; Wi = 1 denotes water presence at site i, while Zi = 1 

indicates true species presence. These models include an autocovariate that models the 

distance-weighted influence on response variables of surrounding response values, and a 

corresponding parameter allowing estimation of the strength of neighbourhood effects. The 

autocovariate was constructed as a weighted sum over neighborhood responses, not as a 

weighted mean, following the work of Bardos et al. (2015). We used an inverse-distance 

weighting, based on hydrological distance (stream length) in km, with a long-distance cut-off of 

30km (above which the weighting is zero) and a short-distance cut-off of 5km, below which the 

weighting remains at 1/5, encoding the idea that the influence of particularly close sites does 

not increase without limit. The autocovariates at site 𝑖 are therefore: 

𝑊𝑠𝑝𝑖 = ∑ min(
1

𝑑𝑖𝑘
,
1

5
)

𝑘≠𝑖
𝑘≤𝑁𝑠
𝑑𝑖𝑘≤30

𝑊𝑘 

𝑍𝑠𝑝𝑖 = ∑ min(
1

𝑑𝑖𝑘
,
1

5
)

𝑘≠𝑖
𝑘≤𝑁𝑠
𝑑𝑖𝑘≤30

𝑍𝑘 

Equation 3.1 

Where NS = 184 is the total number of sampling sites (including ‘dry’ sites) and di,k is the 

hydrological distance in km between sites i and k. Different long-distance cut-offs were tested 

but the 30-km limit  was retained because each site had at least two other sampling sites in its 

30-km neighbourhood, and because it efficiently removed autocorrelation in model residuals as 

judged through Moran’s I correlograms (Legendre & Legendre, 2012). 
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3.2.3 Species distribution models 

We use WinBUGS to estimate autologistic models for water availability and true species 

presence-absence; i = Pr(Wi = 1 | W-i) denotes the conditional probability of water presence at 

site i, given water presence-absence at all other sites (denoted W-i) and  similarly i = Pr(Zi = 1 

| Z-i) is the conditional probability of true occurrence at site i. Zi depends on Wi and each depends 

on a common set Xji, j=1,2,...,n, of covariates, via autologistic models   

𝑙𝑜𝑔𝑖𝑡(𝜒𝑖) = 𝛼0 + 𝛼1𝑋1𝑖 +⋯+ 𝛼𝑛𝑋𝑛𝑖 + 𝛼auto𝑊𝑠𝑝𝑖 

𝑙𝑜𝑔𝑖𝑡(𝜓𝑖) = 𝛽0 + 𝛽1𝑋1𝑖 +⋯+ 𝛽𝑛𝑋𝑛𝑖 + B(𝑊𝑖 − 1) + 𝛽auto𝑍𝑠𝑝𝑖 

Equation 3.2 

Where αauto, α0, α1, … and βauto, β0, β1, … are regression coefficients and B is a large positive 

constant (e.g. 109) that ensures the probability of presence i is effectively zero when water is 

absent (Wi = 0). 

We related true occupation to observed species presence and detection times via a model 

based on interval-censored exponential survival models (D.-G. Chen et al., 2012; Kleinbaum & 

Klein, 2012). Under interval-censoring (see Appendix 3.S2 Interval-censored time to detection 

model in Supporting Information), the likelihood of detecting a species at each sampling site, in 

the time interval (t1,i, t2,i], during a survey of duration Ti, is given in terms of parametric detection-

time distributions S(t) = S(t, ):  

𝑙(𝛿 = 1|𝑡1,𝑖, 𝑡2,𝑖, 𝜃𝑖, 𝜓𝑖) = 𝜓𝑖 (𝑆(𝑡1,𝑖, 𝜃𝑖) − 𝑆(𝑡2,𝑖, 𝜃𝑖)) 

𝑙(𝛿 = 0|𝑇𝑖, 𝜃𝑖, 𝜓𝑖) = 𝜓𝑖𝑆(𝑇𝑖 , 𝜃𝑖) + (1 − 𝜓𝑖) 

Equation 3.3 

For i ∈ {1, 2, … NS}, where i  is an indicator variable specifying whether the species was 

detected (i  = 1) or not (i  = 0) at site i, θi is a vector of detection-time distribution parameters 

at site i, t1i and t2i are the lower and upper bounds of the time interval in which the species was 

detected at site i, Ti  is the total survey time at site i. 
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 For the analysis here we use the exponential detection-time distribution S(t) = e-t, where the 

detection rate  is the sole parameter, so that the likelihood is then 

𝑙(𝛿 = 1|𝑡1,𝑖, 𝑡2,𝑖, 𝜆𝑖, 𝜓𝑖) = 𝜓𝑖(𝑒
−𝜆𝑖𝑡1,𝑖 − 𝑒−𝜆𝑖𝑡2,𝑖) 

𝑙(𝛿 = 0|𝑇𝑖, 𝜆𝑖, 𝜓𝑖) = 𝜓𝑖𝑒
−𝜆𝑖𝑇𝑖 + (1 − 𝜓𝑖) 

Equation 3.4 

and we use a log-linear model for the detection rate i at site i   

log(𝜆𝑖) = 𝛾0 + 𝛾1𝑌1𝑖 +⋯+ 𝛾𝑚𝑌𝑚𝑖 

Equation 3.5 

where Yji, j=1,2,...,m, comprise linear and quadratic terms for environmental covariates  and 

1,2,... are regression coefficients.   

3.2.4 Simulations for the detectability model 

We conducted simulations to evaluate the performance of the interval-censored exponential 

model for detection data resulting from a study design comparable to ours, using an approach 

similar to Garrard (2009). For a set of K = 150 sampling sites, we used a Bernoulli trial with a 

probability 𝜓 to generate the “known” occupancy status at each site. Detection times given 

occupancy were generated using a random generator of exponential distribution times, with 

detection rate . We set a maximum time for sampling at each site of Tmax= 15 minutes, with 

non-detections occurring when sites were vacant or when time to detection exceeded Tmax. 

Simulations were performed considering nine combinations of parameters, with occupancy set 

to 𝜓 = 0.25, 0.5 and 0.75, and the detection rate set to 𝜆 = 0.20, 0.10 and 0.07. These detections 

rates correspond to mean detection times of 5, 10 and 15 minutes respectively. For each 

combination of parameters, we ran 1000 times. 

3.2.5 Model building and evaluation 

To avoid model instability and allow comparisons between parameters, all environmental 

covariates were standardized to zero mean and unit standard deviation. The detection 

component was fit to the full model, including second order polynomials of both depth and width, 

thereby allowing for non-linear changes in detection in relation to covariates. The occupancy 

and water presence components were also fit to the full model, including the three large-scale 

environmental variables and the neighbourhood effects. We fitted full models instead of seeking 

more parsimonious models because there is at present considerable uncertainty on the most 
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reliable methods to undertake selection in Bayesian models (e.g. Kéry 2010), the number of 

variables was low relative to sample sizes, and modelling was based on a small set of variables 

described in the literature to affect stream fish detection and occupancy. The effects of variables 

were judged from the 95% credible intervals, assuming that evidence for an effect is ambiguous 

when the credible interval of a parameter estimate includes zero (Kéry, 2010). 

Overall model fit was assessed using posterior predictive checks based on standard Bayesian 

P-values (Gelman et al., 1996), measuring the discrepancy between observed and predicted 

detections at sampling sites. Extreme P-values (e.g., >0.95 or <0.05) are indicative of poor fit, 

whereas values near 0.5 indicate well-fitting models. Model discrimination ability was evaluated 

using an elaboration of the area under the receiver operating characteristic curve (AUC) in which 

posterior AUC distributions are calculated (Zipkin et al., 2012). Predicted probabilities of species 

presence cannot be directly compared to observed presences/absences, because false 

absences may occur (Garrard et al., 2013). In our study, AUC was based on comparisons 

between predicted detection probabilities and actual detections/non-detections at sites that were 

sampled (i.e., sites that were not dry), thereby providing an evaluation of the time to detection 

model fit. Probability of detecting a species at each site i, conditional on the sampling duration, 

Ti, was based on the second part of Equation 3.4, as follows: 

Pr(𝑡𝑖 < 𝑇𝑖|𝜓𝑖, 𝜆𝑖) = 𝜓𝑖(1 − 𝑒−𝜆𝑖𝑇𝑖) 

Equation 3.6 

This unconditional probability of detection integrates both the probability of the species being 

present at the site, and the conditional probability of detection given presence. We performed a 

5-fold cross-validation, in order to obtain a true predictive performance measure (Broms et al., 

2016): (i) we randomly divided the data in 5 sets; (ii) withholding one set, we fitted the model to 

the remaining sets; (iii) computed AUC for the withheld set; and (iv) we repeated the process for 

every sub-set. We used all draws of the estimates of equation 5 to estimate posterior 

distributions and credible intervals of AUC values (ranging 0-1, where values > 0.5 indicate 

progressively better discrimination ability) using the R package ROCR (Sing et al., 2005).  

The posterior probabilities of species detection were also used against actual detections/non-

detections to estimate spatial autocorrelation in model residuals. For each model, we 

constructed a Moran’s I correlogram using the mean values of the residuals posterior 

distributions, and evaluated the significance of Moran’s I coefficients with Monte Carlo 

permutation tests using the R package APE (Paradis et al., 2004). To build the correlogram, 

pairwise distances were divided in classes such that a similar number of pairs was assigned to 
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each class, thereby assuring comparable power in tests of significance across all distance 

classes (Legendre & Legendre, 2012).  

3.2.6 Species distribution mapping  

We developed occupancy probability maps comprising (i) posterior autologistic occupancy 

probabilities �̅�𝑖 for sampled sites 𝑖 ≤ 𝑁𝑠 and (ii) extrapolated probabilities �̅�𝑖for a further 1861 

unsampled sites (with labels 𝑖 > 𝑁𝑠) across the stream network of the Sabor catchment, for 

which neighbourhood effects are extrapolated by treating sampled sites as though they are 

neighbours of each unsampled site, i.e. by applying equation 1 to sites 𝑖 > 𝑁𝑠. In the case where 

equation 1 reduces to a logistic model (i.e.  𝛼auto = 𝛽auto = 0), then for each extrapolation site 

𝑖 > 𝑁𝑠,  �̅�𝑖 reduces to a posterior logistic occupancy probability. We used this extrapolation 

approach for neighbourhood effects because including the unsampled sites as missing data in 

the autologistic model was computationally impractical in WinBUGS.  

For computational convenience, the stream network was segmented according to the following 

criteria: (i) each first order stream was one segment; (ii) one segment in higher order streams 

was the reach between two successive tributaries; and (iii) long reaches were divided so that all 

segments were < 1000m. Each segment was then assigned with the environmental 

characteristics of the corresponding centroid. At each segment we thus assumed that 

environmental conditions and neighbourhood effects were constant, and there was no variation 

in the probabilities of water presence and species occupancy at 50-m stream reaches. We used 

the mean estimated probabilities of species occupancy, and the standard deviation of the 

posterior distribution to produce the maps of predicted species distribution, and the uncertainty 

of model predictions. All spatial analysis and data manipulation were performed in ArcMap 10.0 

(ESRI, 2011). 

3.2.7 Model Fit 

 Models were fit in WinBUGS (Lunn et al., 2000), by calling WinBUGS through the package 

R2WinBUGS (Sturtz et al., 2005) in R (R Core Team, 2019), and handling the results back in R. 

Following a sensitivity analysis (Cressie et al., 2009), prior distributions of parameters were 

specified as normal distributions with zero mean and 10 units of standard deviation. We ran five 

chains of 100,000 iterations after a burn in of 50,000, and thinned the chains by 20 resulting in 

12,500 simulations for each parameter. Convergence was assessed with the R-hat statistic, 

which examines the variance ratio of the MCMC algorithm within and between chains across 
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iterations. WinBUGS code is provided in Appendix 3.S3 Code used to fit the time to detection 

model using WinBUGS in Supporting Information. 

3.3 Results 

The simulation results (Table 3.1) showed that at sample sizes similar to ours the interval-

censored model performed well. The simulated parameters were always well within the 

estimated credible intervals, and they were generally very close to the median parameter 

estimates. However, the occupation probability tended to be overestimated for lower levels of 

occupancy especially for lower detection rates.  

The occupation-detection models for the six species showed adequate convergence of 

parameter estimates as judged from the R-hat statistics. Bayesian P-values were far from zero 

and one, ranging from 0.43 (L. gibbosus) to 0.64 (S. alburnoides), and thus model fit was 

considered adequate. Median AUCs estimated through cross-validation ranged between 0.67 

and 0.93 indicating that the discrimination ability between detection and non-detection sites was 

particularly high (AUC > 0.80) for all species but L. gibbosus (Table 3.2). Moran’s I correlograms 

indicated that there was no significant autocorrelation in the residuals of species occupancy-

detection models. There was evidence for depth influencing the detection probabilities of L. 

bocagei, P. duriense, and S. carolitertii, as the credible intervals of parameter estimates for the 

linear (except S. carolitertii) and quadratic terms did not overlap zero (Table 3.2). These results 

suggested a U-shaped relationship with the median time to first detection, with shorter detection 

times when the stream was neither too shallow nor too deep (Figure 3.1). In the case of width, 

the credible intervals did not overlap zero in the model developed for S. alburnoides, suggesting 

also a U-shaped relationship (Figure 3.1). The probability of the stream channel having surface 

water during the sampling visit was positively related to stream order, elevation and precipitation, 

but the latter two effects were ambiguous because the credible intervals overlapped zero (Table 

3.2, Appendix 3.S4 Response curves to environmental variables in Supporting Information). The 

probability of occupancy in sites with surface water was positively related to stream order for L. 

bocagei and S. carolitertii; elevation had a positive effect on S. alburnoides, and a negative 

effect on G. lozanoi and L. gibbosus; and precipitation had a negative effect on L. bocagei, S. 

alburnoides, and S. carolitertii (Table 3.2, Appendix 3.S4 Response curves to environmental 

variables in Supporting Information).  Evidence for positive neighbourhood effects was found for 

S. carolitertii (Table 3.2). 
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Maps of predicted distribution indicated that L. bocagei, P. duriense, and S. carolitertti were 

widespread, occupying most of the main river and its two largest tributaries (Figure 3.2). S. 

alburnoides was more restricted, occurring primarily in the upper reach of the Sabor and the two 

main tributaries. From the two exotic species, G. lozanoi occurred primarily in the downstream 

reaches of the main river and its largest tributary, whereas L. gibbosus was more widespread, 

though it was also absent from upstream reaches and smallest tributaries (Figure 3.2). 

Uncertainty in model predictions was low to moderate, and it was highest for P. duriense, L. 

gibbosus, and S. alburnoides (Appendix S5 Maps of prediction uncertainty in Supporting 

Information). In most cases, uncertainty in species occupancy probability tended to be higher in 

the tributaries and in upper river reaches, where it was affected by uncertainties in whether the 

watercourses were dry or not. 

 

Table 3.1 - Performance of the interval-censored time to detection model in retrieving parameter from 

simulated data. The simulated data was generated using 9 combinations of parameters, including three levels 

each of occupancy probability (Ψ) and detection rate (λ). For each simulated condition we present the median 

and credible intervals (in brackets) of parameter estimates based on the medians from 1000 simulations. 

Simulated Parameters Estimated parameters 

    

0.25 0.20 0.26 (0.15 - 0.36) 0.19 (0.09 - 0.33) 

  0.10 0.28 (0.17 - 0.60) 0.09 (0.02 - 0.20) 

  0.07 0.35 (0.16 - 0.63) 0.04 (0.01 - 0.14) 

0.5 0.20 0.49 (0.39 - 0.60) 0.20 (0.15 - 0.27) 

 0.10 0.48 (0.34 - 0.77) 0.10 (0.05 - 0.19) 

  0.07 0.50 (0.32 - 0.73) 0.07 (0.03 - 0.15) 

0.75 0.20 0.74 (0.65 - 0.83) 0.20 (0.16 - 0.26) 

  0.10 0.72 (0.60 - 0.86) 0.11 (0.07 - 0.15) 

  0.07 0.69 (0.52 - 0.86) 0.07 (0.05 - 0.13) 
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Table 3.2 - Mean parameter estimates and the corresponding 95% credible intervals (in brackets) of the best-supported models used in the distribution mapping of six freshwater fish species. Values 

are shown for each level of the hierarchical model: water availability - probability of a site having water; occupancy – probability of species occupying a site; detection – detection rate of the species in 

sites where it is present. AUC is the area under the curve of the receiver operating characteristic. Highlighted in grey and in bold are parameters (except the intercept) with credible intervals excluding 

zero. 

Parameters L. bocagei P. duriense S. alburnoides S. carolitertii G. lozanoi L. gibbosus 

Water availability       

  Intercept -0.44 (-1.69 ; 0.8) -0.44 (-1.68 ; 0.81) -0.43 (-1.67 ; 0.82) -0.44 (-1.69 ; 0.82) -0.43 (-1.68 ; 0.84) -0.42 (-1.68 ; 0.82) 

  Elevation 0.37 (-0.40 ; 1.14) 0.37 (-0.4 ; 1.16) 0.37 (-0.4 ; 1.16) 0.37 (-0.41 ; 1.14) 0.37 (-0.4 ; 1.14) 0.37 (-0.4 ; 1.14) 

  Stream Order 2.55 (1.86 ; 3.35) 2.55 (1.86 ; 3.35) 2.55 (1.86 ; 3.35) 2.55 (1.86 ; 3.35) 2.55 (1.86 ; 3.35) 2.55 (1.86 ; 3.35) 

  Precipitation 0.37 (-0.13 ; 0.90) 0.38 (-0.12 ; 0.89) 0.38 (-0.12 ; 0.89) 0.38 (-0.13 ; 0.89) 0.38 (-0.12 ; 0.91) 0.37 (-0.13 ; 0.89) 

  Neighbourhood -0.11 (-1.36 ; 1.12) -0.10 (-1.36 ; 1.13) -0.11 (-1.39 ; 1.09) -0.11 (-1.38 ; 1.12) -0.11 (-1.37 ; 1.12) -0.12 (-1.35 ; 1.11) 

Occupancy       

  Intercept -3.34 (-6.33 ; -0.72) -0.87 (-3.95 ; 4.91) 1.40 (-1.39 ; 5.72) -2.77 (-4.46 ; -1.21) -4.93 (-8.19 ; -2.25) -1.71 (-3.99 ; 1.67) 

  Elevation -0.39 (-2.59 ; 1.02) 0.49 (-4.76 ; 2.50) 3.06 (-0.05 ; 5.83) 1.55 (0.78 ; 2.44) -5.25 (-8.39 ; -2.56) -0.96 (-5.33 ; 1.61) 

  Stream Order 3.79 (1.83 ; 6.93) 2.18 (-0.88 ; 6.07) -1.08 (-3.53 ; 0.93) 1.34 (0.48 ; 2.35) 1.72 (0.18 ; 3.70) -0.96 (-3.06 ; 1.15) 

  Precipitation -1.89 (-4.02 ; -0.36) -1.84 (-7.09 ; 0.38) -4.02 (-7.46 ; -0.58) -1.03 (-2.24 ; -0.13) -1.23 (-3.44 ; 0.87) -1.11 (-3.5 ; 0.56) 

  Neighbourhood -0.34 (-4.11 ; 3.65) 1.97 (-2.37 ; 7.43) 0.25 (-4.91 ; 4.97) 3.06 (0.54 ; 5.30) -1.12 (-4.75 ; 2.42) 3.66 (-2.49 ; 7.46) 

Detection        

  Intercept -1.15 (-2.03 ; -0.19) -2.47 (-3.05 ; -1.14) -3.06 (-3.81 ; -2.13) -1.00 (-1.51 ; -0.54) -1.54 (-2.05 ; -1.08) -3.17 (-3.86 ; -2.18) 

  Width -1.03 (-4.00 ; 1.82) 0.56 (-2.57 ; 2.27) 4.01 (1.28 ; 6.37) -0.53 (-2.29 ; 1.11) -0.13 (-2.05 ; 1.64) 0.55 (-2.06 ; 2.44) 

  Width2 2.06 (-0.79 ; 5.85) -0.01 (-1.56 ; 2.60) -5.40 (-8.43 ; -2.11) 0.36 (-1.03 ; 1.96) 0.31 (-1.22 ; 2.16) 0.45 (-1.27 ; 3.05) 

  Depth 2.84 (0.18 ; 5.25) 1.80 (0.46 ; 3.25) 0.46 (-1.63 ; 2.16) 1.42 (-0.19 ; 3.12) 0.41 (-1.81 ; 2.64) 0.15 (-2.21 ; 2.34) 

  Depth2 -3.01 (-5.33 ; -0.42) -1.59 (-2.82 ; -0.45) -0.30 (-1.88 ; 2.18) -1.49 (-3.02 ; -0.01) -0.57 (-2.93 ; 1.92) 0.32 (-1.94 ; 3.4) 

AUC 0.92 (0.80 - 1.00) 0.83 (0.53 - 0.96) 0.83 (0.63 - 0.94) 0.83 (0.61 - 1.00) 0.93 (0.68 - 1.00) 0.67 (0.14 - 0.94) 

Bayesian P-value 0.54 0.58 0.64 0.55 0.5 0.43 
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3.4 Discussion 

Our work expanded the time to detection model (Garrard et al., 2008, 2013) to deal with 

detections collected in time intervals (interval-censoring), and illustrated its value for 

modelling species distribution using stream fish as a case study. The environmental 

correlates of occupancy identified for each species were in line with previous research 

on Mediterranean stream fish (e.g. Magalhães et al. 2002; Filipe et al. 2004; Ferreira et 

al. 2007), suggesting that models successfully incorporated key factors influencing 

species distributions. For most species we found significant spatial variation in 

detectability, supporting the importance to control for imperfect detection in distribution 

modelling studies (Guillera-Arroita et al., 2014; Lahoz-Monfort et al., 2014). Overall, our 

approach should provide a useful addition to the toolbox of field ecologists modelling 

species distributions while controlling for imperfect detection (G. Chen et al., 2013; 

Lahoz-Monfort et al., 2014). 

Figure 3.1 - Variation in median times to first detection of each species with 0.9 success probability if species is present, as a 

function of stream depth and width. Curves were derived from the detection models in Table 2, by varying the values of one 

variable conditioning on the mean values of other covariates in the model. 
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Figure 3.2 - Predicted occupancy probabilities of six fish species across the river Sabor catchment, combining the probabilities of 

surface water being present in the watercourse, and the conditional probabilities of occupancy given water presence. Line width is 

proportional to stream order. 
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Our study was based on the exponential model, which has been used in time to detection 

studies (Garrard et al., 2008, 2013), and it was considered a convenient choice due to 

its simplicity and its wide applicability (Kleinbaum & Klein, 2012). The exponential is the 

simplest of the parametric survival models (Kleinbaum & Klein, 2012), where times to 

detection are described by only one parameter and detections are assumed to occur at 

a constant rate (Garrard et al., 2008). Due to its memoryless property (K. E. Murphy et 

al., 2002), the non-detections on previous intervals do not provide information for a 

starting sampling interval, and thus it cannot model increases or decreases in 

detectability during each survey. This limitation may be overcome using other parametric 

survival models, but exploring these possibilities were beyond the scope of our study. In 

contrast to previous time to detection studies (Garrard et al., 2008, 2013), our study was 

based on detections recorded in 5-minute time intervals rather than continuously. This 

was unavoidable, because during electrofishing it is nearly impossible to keep a 

continuous track of each species captured, due to logistic constraints and difficulties in 

species identification.  

Therefore, we have used a modification of the time to detection approach based on 

interval-censored survival analysis (D.-G. Chen et al., 2012; Kleinbaum & Klein, 2012), 

because common approximations assuming for instance events occurring at the lower-

bound, mid-point or upper bound of the interval may result in biased estimates of the 

survival curve and the effects of covariates (Radke, 2003). Simulations showed that our 

approach provides unbiased estimates of detection rates and occupancy probabilities, 

suggesting that the method perform well in retrieving simulated values under conditions 

similar to our sampling design. It should be noted, however, that the occupancy 

probability tended to be overestimated for rare species (values of 0.25 in prevalence).  

In four out of six species, we found that variation in detectability across sites was 

influenced by stream depth, stream width, or both, and that responses to these variables 

varied across species. These effects may reflect variation in electrofishing efficiency, 

which is generally expected to be lower when water is too deep or too shallow, and when 

rivers are very wide (e.g., Zalewsky & Cowx 1990; Penczak & Głowacki 2008). 

Electrofishing efficiency is known to be affected by factors such fish size, shape and 

behaviour (e.g., benthic versus pelagic) (e.g., Zalewsky & Cowx 1990; Penczak & 

Głowacki 2008), which may explain to at least some extent the differences observed 

across species. It is also possible that effects of width and depth were mediated by their 

strong influence on Mediterranean stream fish abundances (e.g., Ferreira et al. 2007), 

which in turn may have major effects on species detection probabilities (MacKenzie et 
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al., 2006; McCarthy et al., 2013). Different species reach the highest abundances in 

stream sectors of different width and depth (e.g., Ferreira et al. 2007), which may also 

contribute to explain changes in detection across species. Whatever the reasons, the 

results obtained provide empirical support to the view that accounting for imperfect 

detection is important when undertaking species distribution modelling (Lahoz-Monfort 

et al., 2014). This may be particularly relevant when focusing on aquatic species such 

as fish and amphibians, because organisms living underwater are notoriously difficult to 

sample and may be highly affected by imperfect detection (Głowacki, 2011), thereby 

calling for the use of modelling techniques controlling for variation in detectability (Comte 

& Grenouillet, 2013; M. Ferreira & Beja, 2013).  

Modelling results revealed relationships between occupancy probabilities and 

environmental variables that are in line with the results from other studies carried out in 

Mediterranean streams, highlighting in particular the strong effect of stream order on 

occupancy (M. T. Ferreira et al., 2007; Filipe et al., 2004; Magalhães et al., 2002). For 

instance, we found that occupancy by L. bocagei and P. duriensis strongly increased 

with stream order, which is in line with observations elsewhere showing that barbel and 

straight-mouse nase then to be more prevalent in higher order streams. Overall, results 

suggest that time to detection modelling was successful in identifying key factors 

affecting fish distribution, while controlling for variation in detectability. It is noteworthy, 

however, that this component of the hierarchical model accounted only for the probability 

of occupancy when there is water in the watercourse, because part of the streams were 

dry and thus unavailable for occupation by the target species. This was dealt with by 

modelling the probability of water presence in relation to environmental variables as an 

additional component of the hierarchical model, using binary draws from this probability 

to simulate surface water availability, then predicting the probability, given water 

availability, of fish occupancy of any 50-m reach of the stream network. Results indicated 

that the probability of water presence was mainly related to stream order, with headwater 

streams of order one and two tending to be dry and thus without conditions for fish, while 

streams and rivers of order three and above had a high probability of having water. This 

pattern is common in Mediterranean streams and elsewhere, where headwaters dry and 

as the stream channel increases in size downstream, surface water remains in pools or 

in surface flowing (Lake, 2003; Robson et al., 2013). We thus suggest that both the 

presence of water and the detection of species given water presence should be routinely 

considered when modelling the distribution of aquatic organisms along stream networks 

and in other waterbodies (e.g., pond breeding amphibians; Ferreira & Beja 2013), 
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providing a more realistic account of two potentially distinct processes affecting 

occupancy.  

Evaluation of model discrimination ability for occupancy-detection models is difficult, 

because true absences are unknown, and so predicted probabilities of species 

occupancy cannot be directly compared with observed presences/absences (Garrard et 

al., 2013). To circumvent this problem, Garrard et al. (2013) evaluated occupancy-

detection models by comparing the observed and predicted proportion of sites where 

each species was detected. Here we expanded this approach, using a variant of the AUC 

method described by Zipkin et al. (2012) to compare predicted detection probabilities 

with observed detections/non-detections, which avoided any assumptions about the 

characteristics of non-detections. AUC is a standard method for evaluating species 

distribution models (e.g., Kharouba et al. 2013) that provides a more complete 

characterization of model discrimination ability than the simple comparison of the 

observed and predicted proportion of species detections. In contrast to Zipkin et al. 

(2012) we used AUC to estimate the discrimination ability between detections and non-

detections, and not between presences and absences.  

The approach described here may find wide applicability where time to detection 

approaches are sought to control for imperfect detection in occupancy studies (e.g. 

Garrard et al. 2008, 2013), but where a species detection can only be determined to lie 

in an interval obtained from a sequence of sampling intervals. This may be generally the 

case in electrofishing studies such as ours, but the problem may also occur over a wide 

range of circumstances. For instance, sampling of aquatic organisms in shallow waters 

often involve dip-netting during fixed time intervals (Beja & Alcazar, 2003). Also, during 

bird counts it is common to register detections in time intervals (Alldredge et al., 2007), 

because it is impractical to register the exact moment when each individual was seen or 

heard. Finally, in studies involving periodic checking of traps (e.g., drift nets, mist nets, 

live traps for small mammals) it is possible to know that a capture event occurred after 

the trap was set but before it was checked, but the exact moment of capture it is often 

unknown. In all these cases, time to detection modelling may benefit from a wealth of 

methods developed to deal with interval-censored data, which have been particularly 

well explored in the medical and veterinary sciences (e.g., Radke 2003; Chen et al. 

2012). These methods allow extending the relatively simple case described in our study, 

by accommodating for instance variation in the duration of time intervals across sampling 

units, or by replacing the exponential by a more flexible model (e.g., Weibull) that can 

account for changes in detectability within each sampling occasion (e.g., Kleinbaum & 
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Klein 2012; Chen et al. 2012). Overall, the interval-censored time to detection model 

framework revealed as a promising approach for developing SDMs, that could 

accommodate variation in detection rates, and we expect this approach to be tested in 

other case studies where time of first detection is not known precisely. 
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3.6 Supplementary Materials 

Appendix 3.S1 Supplementary Methods 

3.S1.1 Study area  

The study was conducted in NE Portugal, in the river Sabor catchment (Figure 3.S), 

which covers a wide range of environmental conditions in terms of elevation (100-1500 

meters above sea level), total annual precipitation (443 - 1163 mm), and mean annual 

temperature (6.9 – 15.6oC). Climate is Mediterranean, with precipitation largely 

concentrated in October-March, while it is virtually absent in the hot summer months 

(June-August). Flow regime is highly seasonal, with most headwater streams drying out 

or being reduced to a series of disconnected pools in summer, though the main 

watercourse and some of the tributaries are permanent.  

3.S1.2 Fish sampling 

Fish sampling was carried out at 50-m reaches of streams (hereafter referred to as sites) 

distributed across the watershed, during the summer of 2012 (June 13 to July 15, and 

August 28 to September 15). The reach length was selected based on previous studies 

showing that it is appropriate for describing spatial and temporal variations in 

Mediterranean stream fish assemblages (Magalhães et al., 2002, 2007). We visited 184 

sites across the watershed, and sampled the 89 sites with flowing water or isolated pools. 

The remaining sites were totally dry, and so they could not sustain fish populations during 

the sampling period. The sites were selected in the field based on accessibility and 

representativeness, as long they were 4 to 10km apart from each other, and provided a 

thorough coverage of the watershed (Figure 3.S). Within each site, we sampled fish 

using a single anode electrofishing gear (350-750 V, 3–5A, DC), following standard 

procedures (Penczak & Głowacki, 2008; Zalewsky & Cowx, 1990). Electrofishing was 

always conducted by the same operator (M.F.), accompanied by a second operator to 

net fish displaced by electrofishing.  Sampling was carried out during 15 to 25 minutes, 

with longer surveys used in wider streams to cover adequately the entire sector 

(Reynolds, 1996). During each sampling session, we electrofished progressively in the 

upstream direction, and transferred fish alive to containers distributed along the margins. 

Because most fish captured were small-sized or otherwise difficult to identify to species 

level without careful examination, identification and the estimate of times to first detection 
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were made at the end of the sampling session. To this end, fish captured in each interval 

of 5 minutes were transferred to a different set of marked containers, which allowed the 

recording of species detections in 5-minute intervals. After identification fish were 

returned alive to the stream.  

Sampling yielded 12 fish species (Table 3.S.1), of which four natives (Luciobarbus 

bocagei, Pseudochodrostoma duriense, Squalius alburnoides, and Squalius carolitertti) 

and two exotics (Gobio lozanoi and Lepomis gibbosus) were used in occupation-

detection modelling. The remaining six species occurred too rarely (1 to 13 sites), and 

so they were discarded to reduce potential problems associated with a low number of 

events per variable in occupancy and detection models (e.g., Vittinghoff & McCulloch, 

2007). 

Table 3.S.1 - List of fish species sampled in the Sabor catchment in the summer of 2012. The percentage of sites with 

detections is provided for each species (frequency of detection; n=89 sites). The percentage of sites with detections is 

provided for each species (frequency of detection; n=89 sites). Species used in distribution modelling (occurring in > 20 

sites) are highlighted in bold type. 

Species 
Frequency of detection 

(%) 

Native  

  Pseudochondostoma 
duriense 

56.2 

  Squalius carolitertii 53.9 

  Luciobarbus bocagei 52.8 

  Squalius alburnoides 33.7 

  Achondrostoma arcasii 13.5 

  Salmo trutta 11.2 

  Cobitis paludica 10.1 

Exotic   

  Gobio lozanoi 41.6 

  Lepomis gibbosus 31.5 

  Gambusia holbrookii 14.6 

  Alburnus 4.5 

  Carassius auratus 1.1 
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Figure 3.S1 - Map of the study area, showing the location of sites visited in the summer of 2012 (June 13 to July 15, and August 28 to 

September 15). Fish sampling was carried in 89 sites that had flowing water or isolated pools, while the remaining 95 sites were dry. 
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3.S1.3 Environmental covariates  

Detection probabilities were modelled in relation to stream width and depth (Table 3.S.2), 

because electrofishing efficiency tends to be lower in larger and deeper watercourses 

(Reynolds, 1996). Also, these variables may strongly influence fish abundances, which 

in turn may positively affect detectability (MacKenzie et al., 2006; McCarthy et al., 2013). 

Mean reach width was estimated from measurements taken along four equally spaced 

transversal segments, whereas mean depth was estimated from three measurements 

taken in each of the four segments (Table 3.S.2).  

Covariates for site occupancy included total annual precipitation, elevation, and 

Strahler’s stream order, which have been widely reported to strongly influence the 

distribution of stream fish in Mediterranean regions (M. T. Ferreira et al., 2007; Filipe et 

al., 2004; Magalhães et al., 2002). The same covariates were used to model the 

probability of water presence at each site. Elevation at each sampling site was calculated 

from a 10-m resolution Digital Elevation Model (DEM) derived from 1: 25,000 topographic 

maps using ArcMap 10.0 (ESRI, 2011). Stream order was used to define stream size 

based on the hierarchy of tributaries, and it was extracted from the Catchment 

Characterization and Modelling database (CCM2), based on a 100-m resolution DEM 

(Vogt et al., 2007). Precipitation was extracted from WorldClim current climate predictors, 

which are based on the monthly mean interpolations from records collected over a 50-

year period (1950-2000), with a 30 arc-seconds grid resolution (approximately 1km2; 

Hijmans et al., 2005).  The resolution of this variable was converted to match the 10-m 

resolution of the DEM. 
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Table 3.S.2 - Description and summary statistics (mean ± SD, range) of environmental variables used to model variation 

in detection rate and occupancy probability. 

Variables Description Mean ± SD Range 

Detection model    

Stream width 

(m) 

Mean of four width measurements 

taken at equally spaced transversal 

segments along the 50-m sampling 

reach. 

9.7±6.8 1.5-34.8 

Stream depth 

(cm) 

Mean of depth measurements taken at, 

25%, 50%, and 75% of the length of 

each transversal segment. 

34±19 9-100 

Occupancy 

model 
   

Elevation (m) 

Altitude above sea level extracted from 

a 10-m resolution digital elevation 

model derived from 1: 25,000 

topographic maps 

469±202 110-800 

Precipitation 

(mm) 

Average of total annual precipitation 

(1950-2000), extracted from WorldClim 

and downscaled to a 10-m resolution. 

686±82 568-894 

Stream order 

Strahler’s stream order, extracted from 

the River and Catchment Database 

CCM2 

2.6±1.4 1-6 
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Appendix 3.S2 Interval-censored time to detection model 

The modelling procedure was based on the exponential time to detection model 

developed by (Garrard et al., 2008, 2013), using a modified formulation of interval-

censored parametric survival models to deal with cases when detections are recorded in 

time intervals instead of continuously (D.-G. Chen et al., 2012; Kleinbaum & Klein, 2012). 

Under the general parametric survival model for the time T observed for a certain event 

of interest (e.g. the first detection of a species), the probability of observing an event after 

time t (i.e. time of the event T is greater than t) equals the survival distribution for time t: 

Pr(𝑇 > 𝑡) = 𝑆(𝑡) 

Equation 3.S1 

and the probability of observing an event before a time t equals the complementary 

probability of observing the event after time t: 

Pr(𝑇 ≤ 𝑡) = 1 − 𝑆(𝑡) 

Equation 3.S2 

Therefore, the probability of the event occurring in a given time interval defined by a 

lower bound (t1) and an upper bound (t2) is the probability of observing the event before 

the time t2 minus the probability of observing the event before time t1: 

Pr(𝑡1 < 𝑇 ≤ 𝑡2) = 1 − 𝑆(𝑡2) − (1 − 𝑆(𝑡1)) = 𝑆(𝑡1) − 𝑆(𝑡2) 

Equation 3.S3 

This very general formulation can be parameterized using one of several available 

distributions of survival times, including in the simplest case the exponential model, 

which is fully described by a single parameter – the detection rate (𝜆): 

𝑆(𝑡) =  𝑒−𝜆𝑡 

Equation 3.S4 
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In the context of species detection, the previous equations can be combined to estimate 

the likelihood of species detection in a given time interval. Considering that a species 

occupies a site i, and that first detections follows an exponential distribution with 

detection rate 𝜆, the likelihood of observing a first-detection event (denoted 𝛿𝑖 = 1) during 

a survey interval defined by (𝑡1,𝑖, 𝑡2,𝑖], is 

(𝛿𝑖 = 1, 𝑡1,𝑖, 𝑡2,𝑖|𝜆) = 𝑒−𝜆𝑡1,𝑖 − 𝑒−𝜆𝑡2,𝑖 

Equation 3.S5 

and the likelihood of not detecting (𝛿𝑖 = 0) the species during a survey of duration Ti is   

𝑙(𝛿𝑖 = 0|𝜆, 𝑇𝑖) = 𝑒−𝜆𝑇𝑖 

Equation 3.S6 

These equations assume that the event will occur, even if it is not detected during the 

survey time. However, in contrast to survival analysis, it is uncertain whether a species 

is present or absent, and so it may remain unrecorded either because it is absent or 

because it is present but remained undetected. This possibility is considered in time to 

detection models by including in equations S5 and S6 the probability that the species 

actually occupy the site. That is, the probability of detection in a given time interval under 

unknown occupancy is given by 

𝑙 ( 1  |𝑡1,𝑖, 𝑡2,𝑖, 𝜆, 𝜓) = 𝜓(𝑒−𝜆𝑡1,𝑖 − 𝑒−𝜆𝑡2,𝑖) 

𝑙(𝛿𝑖 = 0|𝑇𝑖, 𝜆, 𝜓) = 𝜓(𝑒−𝜆𝑇𝑖) + (1 − 𝜓) 

Equation 3.S7 

where 𝜆 is the rate at which detection events occur, ψ is the probability of the species 

occupying a site, 𝑇𝑖 is the survey time at site i. This formulation implies that the likelihood 

of not recording a species during a survey (𝛿 = 0) is now a function of both imperfect 

detection (𝜓. 𝑒−𝜆𝑇𝑖) and true absence (1 − 𝜓) (Garrard et al., 2008, 2013). The model 

assumes that the species is available for detection during the entire sampling period, 

which is a reasonable assumption, considering that all fish occurring in a stream reach 

are exposed to electrofishing sampling (Reynolds, 1996). However, a more general 

treatment of imperfect detection would have to describe both the probability of a species 

being available for sampling and the probability of detection given availability (e.g., Kéry 

& Schmidt, 2008), but this was beyond the scope of this study.  
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In the above we have specified the observation process as the exponential model from 

Equation 3.S4 onward; returning now to full generality we give the likelihood expressions 

for any given parametric detection-time distribution 𝑆(𝑡) = 𝑆(𝑡, 𝜃)with vector of 

parameters  : 

𝑙 ( 1  |𝑡1,𝑖, 𝑡2,𝑖, 𝜃, 𝜓) = 𝜓. (𝑆(𝑡1,𝑖, 𝜃) − 𝑆(𝑡2,𝑖, 𝜃)) 

𝑙(𝛿𝑖 = 0|𝑇𝑖, 𝜃, 𝜓) = 𝜓(𝑆(𝑇𝑖 , 𝜃)) + (1 − 𝜓) 

Equation 3.S8 

Whereas the exponential model has the property that the detection probability for any 

time interval (𝑡1, 𝑡2] depends only on the length 𝑡1 − 𝑡2 of the interval (the memoryless 

property, Murphy et al., 2002), more general distributions such as the 2-parameter 

Weibull distribution allow detection probabilities for equal intervals to increase or 

decrease with later times. This allows, for example, for inclusion of changing detection 

probability over time due for instance to disturbances from survey efforts. 

Due to this property, when using the exponential model, i.e. the simplest of parametric 

survival models (Kleinbaum & Klein, 2012), the interval-censored time to detection model 

with equal intervals is the mathematical equivalent of the occupation-detection models 

with removal design (MacKenzie et al., 2006) with equal detection probabilities for each 

of a series of discrete surveys. In this approach researchers record species detections 

at the end of intervals of length ∆𝑡, stopping after the 1st detection or once a predefined 

maximum number (𝐾) of intervals has elapsed. If time to first detection of species follows 

an exponential survival time model with detection rate λ then the detection probability in 

each interval is  p = 1 − e−λΔt. 

When the first detection at a site happens within the interval defined by times t1 and t2, 

and calling that interval the ki
th repeat visit we can developed the likelihood in Equation 

3.S7 as follows: 

𝑙 ( 1  |𝑡1,𝑖, 𝑡2,𝑖, 𝜆, 𝜓) = 𝜓. (𝑒−𝜆𝑡1 − 𝑒−𝜆𝑡2) = 𝜓. [(𝑒−𝜆)
𝑡1
− (𝑒−𝜆)

𝑡2
]

= 𝜓. [(1 − p)
𝑡1

Δ𝑡⁄ − (1 − p)
𝑡2

Δ𝑡⁄ ] 

Equation 3.S9 
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If we keep Δt constant then by definition of the ki
th repeat visit, we know that 𝑡2/Δt = 𝑘𝑖 

and 𝑡1/Δt = 𝑘𝑖 − 1, so we have: 

𝑙 ( 1  |𝑘𝑖, 𝑝, 𝜓) = 𝜓. [(1 − p)𝑘𝑖−1 − (1 − p)𝑘𝑖] = 𝜓. (1 − p)𝑘𝑖−1. (1 − 1 + 𝑝)

= 𝜓. (1 − p)𝑘𝑖−1. 𝑝 

Equation 3.S10 

which is the expression for removal sampling detection data for a site where 1st detection 

happens at the ki-th repeat visit, i.e. we get (ki − 1) non-detections followed by the single 

detection (MacKenzie et al., 2006). 

When there are no detections after a total survey time Ti (i.e. K repeat visits with K = 

T/Δt): 

𝑙(𝛿𝑖 = 0|𝑇𝑖, 𝜃, 𝜓) = 𝜓(𝑒−𝜆𝑇𝑖) + (1 − 𝜓) = 𝜓(1 − p)𝐾 + (1 − 𝜓) 

Equation 3.S11 

The first-detection time models considered here  generalize the above scheme to allow 

(i) uneven sampling times/intervals, (ii) variation of detection rates between sites and (iii) 

variation of detection rates as a function of time by employing non-exponential 

parametric survival models (e.g. Weibull model Kleinbaum & Klein, 2012).  
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Appendix 3.S3 Code used to fit the time to detection model using 

WinBUGS 

 

model { 

# priors 

a0 ~ dnorm(0, .1) I(-10, 10) # Intercept for Water availability 

b0 ~ dnorm(0, .1) I(-10, 10) # Intercept for occupation 

g0 ~ dnorm(0, .1) I(-10, 10) # Intercept for detection 

 

for (n in 1:Xocc) { # mean effects in occupation 

 a[n] ~ dnorm(0, .1) I(-10, 10) #Effects Water availability 

 b[n] ~ dnorm(0, .1) I(-10, 10) #Effects occupancy 

} 

 

for (m in 1:Xdet) { 

 g[m]~ dnorm(0, .1) I(-10, 10) #Effects Detection 

} 

 

a.sp ~ dnorm(0, .1) I(-10, 10) #Spatial Effect on Water availability 

b.sp ~ dnorm(0, .1) I(-10, 10) #Spatial Effect on occupation 

 

#Spatial Autologistic term computation 

 

for (i in 1:nsite) { 

for(j in 1:nnb[i]) { 
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autoZ[i,j] <- Z[nblists[i,j]] 

 }   

Z.sp[i]<-inprod(autoW[i,1:nnb[i]],autoZ[i,1:nnb[i]])   

} 

 

#Model 

for (i in 1:nsite) { 

 

 #Water availability 

 lW[i] <- a0 + inprod(a[ ], X1[i, ]) + a.sp * W.sp[i] 

 pW[i] <- 1/(1+exp(-lW[i])) 

 W[i] ~ dbern(pW[i]) 

 

 #Occupancy Model 

 lpsi[i] <- b0 + inprod(b[ ], X1[i, ]) - (1 - W[i]) * pow(10, 9) + b.sp * Z.sp[i]  

 psi[i] <- 1/(1+exp(-lpsi[i])) 

 

 Z[i] ~ dbern(psi[i]) #True state occupation 

 

 #Detection rate  

 lambda[i] <- exp(g0 + inprod(g[], X2[i,]))  

 

 #Survival function for Left bound 

 S1[i] <- exp(-lambda[i] * y1[i]) 
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 #Survival function for Right bound 

 S2[i] <- exp(-lambda[i] * y2[i]) 

 

 #when species is detected 

 pp[i] <- (S1[i] - S2[i]) * psi[i] 

 

 #when species is not detected 

 pn[i] <- S2[i]  * psi[i] + (1 - psi[i]) 

  

 #Select likelihood 

 p[i] <- (d[i]*pp[i] + (1-d[i])*pn[i]) #d[i] = 1 where detected, d[i]= 0 where not 

detected 

 

 ones[i] ~ dbern(p[i]) #ones trick 

 

 # Probability of detecting an individual at site i (Evaluation purposes) 

 p1[i] <- psi[i] * (1 - exp(-lambda[i] * TT[i])) 

 Res[i] <- d[i] - p1[i] #Residuals 

 

 #Replicate observations 

 d_rep[i] ~ dbern(p1[i]) #Generate replicate observations 

 Res_rep[i] <- d_rep[i] - p1[i] #Replicate residuals 

} 

 

fit <- sum(Res[])              # Sum of residuals for actual data set 

fit.new <- sum(Res_rep[])      # Sum of residuals for new data set 
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test <- step(fit.new - fit)   # Test whether new data set more extreme 

bpvalue <- mean(test)      # Bayesian p-value 

 

# Catchment area extrapolation 

 

#Spatial Autologistic term computation 

for (i in 1:nsite2) { 

for(j in 1:nnb2[i]) { 

autoZ2[i,j] <- Z[nblists2[i,j]] 

}   

Z2.sp[i]<-inprod(autoW2[i,1:nnb2[i]],autoZ2[i,1:nnb2[i]])   

} 

 

 

for (j in 1:nsite2) { 

 #Water availability 

 lW2[j] <- a0 + inprod(a[ ], X3[j, ]) + a.sp * W.sp2[j] 

 pW2[j] <- 1/(1+exp(-lW2[j])) 

 W2[j] ~ dbern(pW2[j]) 

 

 #Occupancy Model 

 lpsi2[j] <- b0 + inprod(b[ ], X3[j, ]) - (1 – W2[j]) * pow(10, 9) + b.sp * Z.2sp[j]  

 psi[j] <- 1/(1+exp(-lpsi2[j])) 

} 

}# end of model 
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Appendix 3.S4 Response curves to environmental variables 

 

Figure 3.S2 - Relationships estimated from hierarchical occupancy-detection models between environmental variables 

and both the probability of the watercourse having water during the sampling visit, and the probability of occupancy for 

each fish species when surface water is present.  
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Appendix S5 Maps of prediction uncertainty 

 

Figure 3.S3 - Maps of model prediction uncertainty for predicted distributions of six stream fish species in the Sabor 

catchment. Uncertainty was estimated from the standard deviation of the posterior distribution of occupancy probabilities 

derived from the best-supported model for each species 
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Abstract 

Species distribution models combining environmental and spatial components are 

increasingly used to understand and forecast species invasions. However, modelling 

distributions of invasive species inhabiting stream networks requires due consideration 

of their dendritic spatial structure, which may strongly constrain dispersal and 

colonization pathways. Here we evaluate the application of novel geostatistical tools to 

species distribution modelling in dendritic networks, using as case study two invasive 

crayfish (Procambarus clarkii and Pacifastacus leniusculus) in a Mediterranean 

watershed. Specifically, we used logistic mixed models to relate the probability of 

occurrence of each crayfish to environmental variables, while specifying three spatial 

autocorrelation components in random errors. These components described spatial 

dependencies between sites as a function of (i) straight-line distances (Euclidean model) 

https://doi.org/10.1007/s10530-017-1492-3
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between sites, (ii) hydrologic (along the waterlines) distances between flow-connected 

sites (tail-up model), and (ii) hydrologic distances irrespective of flow connection (tail-

down model). We found a positive effect of stream order on P. clarkii, indicating an 

association with the lower and mid reaches of larger streams, while P. leniusculus was 

affected by an interaction between stream order and elevation, indicating an association 

with larger streams at higher altitude. For both species, models including environmental 

and spatial components far outperformed the pure environmental models, with the tail-

up and the Euclidean components being the most important for P. clarkii and P. 

leniusculus, respectively. Overall, our study highlighted the value of geostatistical tools 

to model the distribution of riverine and aquatic invasive species, and stress the need to 

specify spatial dependencies representing the dendritic network structure of stream 

ecosystems. 

 

4.1 Introduction 

The invasion of stream ecosystems by exotic species is a cause of concern worldwide 

due to their negative environmental and economic impacts (Strayer, 2010; Walsh et al., 

2016). Therefore, understanding how invasive freshwater species spread into novel 

areas is essential to prevent further expansion, promote eradication, or adapt to their 

continued presence. This problem has often been addressed using distribution modelling 

tools, aiming to understand invasion drivers, predict species range expansions or 

contractions in relation to natural and anthropogenic factors, and to guide early 

detections (Capinha et al., 2013; Capinha & Anastácio, 2011; Larson & Olden, 2012; 

Siesa et al., 2011; Václavík & Meentemeyer, 2012). However, studies often ignore the 

specificities of aquatic organisms, particularly those living along dendritic stream 

networks, which may bias model results and ultimately mislead management 

prescriptions (Peterson et al., 2013). 

While terrestrial species live and move in a two-dimensional space, the movements of 

stream species are constrained by the topology of the dendritic stream network, which 

strongly affects their distribution, persistence and diversity (Altermatt, 2013; Carrara et 

al., 2012). This applies to strictly aquatic species such as freshwater molluscs and fish, 

but also to species that move preferentially along waterlines but that can also travel 

overland such as amphibians and semi-aquatic mammals (e.g., Grant et al. 2010; 

Quaglietta et al. 2014). In invasive species, the stream spatial structure may constrain 
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the patterns of expansion from initial founder populations, with individuals dispersing up- 

and downstream and progressively colonizing favourable habitats across the stream 

network (Bernardo et al., 2011; Bronnenhuber et al., 2011; Hein et al., 2011). Stream 

reaches that are connected and close to founder populations may thus become occupied 

first, while farther or unconnected reaches may take more time to be colonized, even if 

there are favourable habitat conditions. Early during expansion, the distribution is unlikely 

to be in equilibrium with the environment, as a species may be absent from potentially 

suitable sites because of colonization time lag and dispersal limitations (Václavík & 

Meentemeyer, 2009, 2012). Over time, the species may progressively spread across the 

river network and eventually colonize all suitable habitats, thereby converging to an 

equilibrium with prevalent environmental conditions. At this stage, the stream network 

topology may still be important because, for instance, reaches sharing the same 

headwaters are likely to have similarities in terms of flow regime and water chemistry, 

thus providing similar habitat conditions (Carrara et al., 2012; Mcguire et al., 2014; 

Peterson et al., 2013). Failure to incorporate these spatial processes may introduce 

errors and biases in distribution modelling, such as over-estimating the importance of 

environmental factors (Diniz-Filho et al., 2003; Václavík & Meentemeyer, 2012), under-

estimating potential distribution ranges (Václavík & Meentemeyer, 2012), or over-

estimating actual distribution ranges (De Marco, Diniz-Filho, et al., 2008; Václavík et al., 

2012; Václavík & Meentemeyer, 2009). 

The use of geostatistical modelling to account for spatial dependencies in physical and 

ecological processes across stream networks was first introduced by Ver Hoef et al. 

(2006), providing a valuable tool to improve distribution modelling of aquatic invasive 

species. Geostatistical models are similar to conventional linear mixed models, with 

spatial autocorrelation specified in the random errors. In ecological applications, the 

deterministic mean of the dependent variable is modelled as a linear function of 

explanatory variables, and local deviations from the mean are modelled using the spatial 

autocorrelation between nearby sites (Peterson & Ver Hoef, 2010; Ver Hoef et al., 2006; 

Ver Hoef & Peterson, 2010). This is specified using covariance functions, which 

represent the strength of the influence between sites as a function of the distance 

separating such sites. Distances can be straight-line (Euclidean) distances measured 

overland, or hydrologic distances measured along the flow lines (i.e. longitudinal 

connection). Hydrologic distances can represent flow-connected relations, assuming that 

a point downstream may be influenced by a point upstream, but not the reverse (tail-up 

models), or both flow-connected and flow-unconnected relations, assuming that 
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influences are not limited by flow direction (tail-down models). The stream network 

models of Ver Hoef & Peterson (2010) account for these multiple spatial relationships 

based on a mixture of covariances, each of which may be specified using a moving-

average function (e.g. exponential, spherical, linear-with-sill). Covariance functions differ 

on how they specify the distance-decay of spatial influences, but typically they have three 

parameters: the nugget effect, representing the variation between sites when their 

separation distance approaches zero; the sill, representing the variance found among 

spatially independent sites; and the range, representing how fast the covariance decays 

with distance (Peterson et al., 2007). Application of these models to aquatic invasive 

species might provide information on the relative role of environmental versus spatial 

processes on current distributions, which can help clarifying whether the species is in 

equilibrium with the environment. Also, they might provide a basis to infer likely 

mechanisms of expansion (e.g. Siesa et al., 2011), by comparing for instance the relative 

importance of different spatial components. Finally, they might allow more robust 

inferences on species occurrences at unobserved sites, using observed values at nearby 

sites. 

This study explores the use of geostatistical distribution modelling to clarify the conditions 

associated with the establishment of two invasive crayfish and to predict their potential 

expansion range in dendritic stream networks. We focused on the red swamp crayfish 

Procambarus clarkii and the signal crayfish Pacifastacus leniusculus, which are the two 

most widely distributed invasive crayfish worldwide (Gherardi et al., 2011; Hänfling et al., 

2011). Previous studies have shown that these crayfish have different environmental 

requirements and that their invasion range may still not be in equilibrium with the 

environment (Capinha et al., 2013; Capinha & Anastácio, 2011), but they disregarded 

the potentially important role of spatial processes occurring across dendritic stream 

networks. Here we use a case study in a Mediterranean watershed of NE Portugal, 

aiming to: i) identify the main environmental factors explaining the current crayfish 

distributions, ii) quantify the relative importance of environmental and spatial processes 

influencing the distributions; iii) compare the relative importance of spatial processes 

described by the Euclidean, tail-up and tail-down models; and iv) predict the potential 

invasion ranges by combining environmental and spatial predictors. Results are used to 

discuss the value of geostatistical approaches in relation to conventional species 

distribution modelling to deal with aquatic invasive species. 
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4.2 Methods 

4.2.1 Study area and species 

The study was conducted in NE Portugal, in the river Sabor watershed (N 41º09’–42º00’, 

W 7º15’–6º 15; Figure 4.1), which covers a wide range of environmental conditions in 

terms of elevation (100-1500 meters above sea level), total annual precipitation (443 - 

1163 mm), and mean annual temperature (6.9 – 15.6oC). Climate is Mediterranean, with 

precipitation largely concentrated in October-March, while it is virtually absent in the hot 

summer months (June-August). Flow regime is highly seasonal, with most headwater 

streams drying out or being reduced to a series of disconnected pools in summer, though 

the main watercourse and the largest tributaries are permanent. A large hydroelectric 

power plant involving two dams located near the mouth of the Sabor river were under 

construction during the study period (Jackson, 2011), but otherwise the river was largely 

free flowing except for a few small impoundments. See Ferreira et al. (2016) for details 

of the study area. The two crayfish species studied were intentionally introduced in 

Europe in the 1960s (P. leniusculus) and in the 1970s (P. clarkii), due to their economic 

value (Clavero, 2016), and currently have well-established populations (Capinha et al., 

2013; Souty-Grosset et al., 2006). In the Sabor watershed, P. clarkii was first recorded 

in the 1990s (Bernardo et al., 2011), but possibly was present earlier because it has 

spread rapidly in the Iberian Peninsula since the first introduction in 1973 (Habsburgo-

Lorena, 1978; Ramos & Pereira, 1981). Although P. leniusculus was also introduced in 

the Iberian Peninsula in the 1970s, it probably reached the Sabor only in 1994, following 

a deliberate introduction in the Spanish sector of the watershed (Bernardo et al., 2011). 

Recent studies suggest that the two species are still expanding in the Sabor watershed, 

which may be a consequence of dispersal from source populations along the stream 

network, in both the upstream and downstream directions (Anastácio et al., 2015; 

Bernardo et al., 2011). Dispersal overland may also occur in at least P. clarkii (Cruz & 

Rebelo, 2007; Ramalho & Anastácio, 2015), but its contribution to range expansion in 

the study area is unknown. 

4.2.2 Crayfish survey 

We visited 167 50-m stream reaches (hereafter sites) providing a homogeneous 

coverage of the Sabor catchment during the summer of 2012 (June 13 to July 15, and 

August 28 to September 15; Figure 4.). At sites where there was flowing water or isolated 

pools, we estimated the presence/absence of crayfish using a single anode electrofishing 
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gear, always operated by the same person (MF), and following standard procedures 

outlined in Ferreira et al. (2016). One additional researcher with a net was always present 

to pick up stunned crayfishes. After identification, all individuals were eliminated following 

national regulations for invasive species. The presence of crayfish in dry stream 

stretches was not assessed, though they may be able to persist therein by burrowing in 

soft sediments (Gherardi et al., 2011; Guan, 1994). Therefore, distribution modelling 

focused on crayfish that are active in the water during the dry summer season. Although 

this could potentially underestimate the true crayfish distribution, we believe this was not 

a serious issue, because incidental observations throughout the year suggest that 

crayfish are actually absent from headwater streams drying out in summer (Mário 

Ferreira and Lorenzo Quaglietta, Unpublished Data).  

4.2.3 Environmental and spatial data 

To model crayfish distribution, we used three potentially influential environmental 

variables (Capinha et al., 2013; Capinha & Anastácio, 2011; Moreira et al., 2015) that 

can be easily extracted from topographic online maps, and could thus be used to 

extrapolate the species distribution models to the entire watershed. Strahler’s stream 

order was used as a proxy for habitat size and heterogeneity (Ferreira et al., 2016; 

Hughes et al., 2011), and it was extracted from CCM2 (Catchment Characterization and 

Modelling database), which is based on a 100-m resolution digital elevation model (DEM) 

(Vogt et al., 2007). Elevation and slope at each site were also estimated from information 

available in CCM2. We did not use climate variables, because they were often highly 

correlated with the topographic variables, and the range of conditions within the study 

area was well within the much wider climate niches of both species (Capinha et al., 2013; 

Capinha & Anastácio, 2011). All variables were screened for potential outliers and 

influential points.  

Spatial data necessary for geostatistical modelling was obtained in a Geographic 

Information System (GIS) using the Sabor watershed network extracted from CCM2 and 

the layer of sampling locations. Estimates included the Euclidean and hydrologic 

distances (total and downstream hydrologic distances) between every pair of sampling 

sites (Peterson & Ver Hoef, 2010). We also estimated the watershed area draining to 

each site to be used in tail-up models (see below). Estimates were made using the 

Spatial Tools for the Analysis of River Systems (STARS) toolbox version 2.0.0 (Peterson 

& Ver Hoef, 2014) for ArcGIS 10.2 (ESRI, 2011).  
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Figure 4.1- Map of the Sabor watershed (NE Portugal) and its location in the Iberian Peninsula, showing the spatial distribution of the sites 

visited, the sites sampled using electrofishing, and the sites where each crayfish species was detected. 
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4.2.4 Geostatistical modelling 

To visualise spatial dependencies along the stream network, we built empirical 

semivariograms depicting how semivariance in species presence/absence between 

pairs of sampling sites changed in relation to the hydrologic distances separating them 

(Torgegrams), considering either flow-connected or flow-unconnected sites (Peterson et 

al., 2013). The distribution (presence/absence) of each crayfish was then modelled in 

relation to environmental variables using a logistic function, with spatial autocorrelation 

specified through a full covariance mixture-model in the random component (Ver Hoef & 

Peterson, 2010). Therefore, the model incorporated spatial dependencies represented 

by tail-up (TU), tail-down (TD) and Euclidean (EUC) models. To deal with confluences in 

tail-up models, the spatial weights to allocate the moving-average function between 

upstream segments were based on watershed areas (e.g. Ver Hoef et al., 2006; Ver 

Hoef & Peterson, 2010).  

For each species, model building followed a two-step procedure (Peterson & Ver Hoef, 

2010). First, we selected the environmental component while maintaining constant the 

spatial component, which included exponential tail-up, linear-with-sill tail-down, and 

Gaussian Euclidean spatial covariance functions. We tested all combinations of 

environmental variables and their interaction terms, and selected in each case the model 

with the lowest root-mean-squared-prediction error (RMSPE) estimated through leave-

one-out cross-validation (Frieden et al., 2014; Peterson & Ver Hoef, 2010; Ver Hoef et 

al., 2006; Ver Hoef & Peterson, 2010). Interactions were only specified when the main 

effects were also included in the model. We then built the spatial component while 

maintaining the best environmental model selected in the previous step. We tested all 

combinations of spatial components, using exponential, spherical, Gaussian and Cauchy 

functions as alternatives for the Euclidean model, and exponential, linear-with-sill, 

spherical and Mariah functions as alternatives for the tail-up and tail-down models (Ver 

Hoef & Peterson, 2010). We selected the best function for each spatial component based 

on the minimization of RMSPE criterion, and kept the three components in the model to 

allow estimates of the proportion of variation explained by each one. Besides this full 

“spatial/environmental model”, we also built a pure “environmental model” based on a 

simple logistic regression, and a pure “spatial model”, including in each case the 

variables and functions selected in model building. The discrimination ability of each 

model was estimated using the area under the receiver operating characteristic curve 

(AUC) (e.g., Václavík & Meentemeyer, 2009), and Cohen’s kappa using species 

prevalence as the threshold for predicted presences (Titus et al., 1984). 



FCUP 
Modelling biodiversity patterns and processes to 
support conservation in stream networks 

117 

Ch4 

 
We performed all analyses in the R version 3.1.2 (R Core Team, 2014) and the SSN 

(Spatial Stream Networks) packages (Ver Hoef et al., 2014), and used ArcGIS 10.2 for 

mapping (ESRI, 2011). AUC was computed using the package pROC (Robin et al., 

2011), and Cohen’s kappa was computed using the package irr (Gamer et al., 2012). 

 

4.2.5 Species distribution mapping 

The Sabor stream network was divided in 1716 segments, which were used as a basis 

to predict the distribution of each crayfish using the species distribution models (Ferreira 

et al., 2016). For each segment, we extracted the environmental variables, the area of 

the watershed discharging into the segment, and the in-stream and Euclidean distances 

to every other segment. Prediction of the probability of each species being present in 

each segment was then computed using universal kriging (Cressie, 1993). Maps of 

species potential distribution across the watershed were then produced, using the 

prevalence of each species as the threshold for separating segments with predicted 

presence or absence. Maps were built using either the “spatial/environmental model” or 

the “environmental model”, to assess whether considering the spatial network structure 

improved the species distribution mapping. 

 

4.3 Results 

From the 167 visited sites, 87 had flowing water or isolated pools and were thus sampled 

for crayfish (Figure 4.1). From these, we detected P. clarkii at 41 (46.1%) and P. 

leniusculus at 16 (18.0%) sites. Visual analysis of Torgegrams indicated that there were 

spatial dependencies in species occurrences along the stream network, as suggested 

by the patterns of change in semivariance between sites in relation to the hydrologic 

distances separating them (Figure 4.2). For P. clarkii, there was a rapid and nearly linear 

increase in semivariance with distance between flow-connected sites, levelling off at 

about 30km, while semivariance between flow-unconnected sites was generally much 

smaller and it increased slowly with distance between sites. For P. leniusculus, the 

torgegrams showed much less marked patterns than for P. clarkii, though semivariance 

was also smaller between flow-unconnected than flow-connected sites. 
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Figure 4.2 - Torgegrams describing spatial dependencies in the distribution (presence/absence) of Procambarus clarkii and 

Pacifastacus leniusculus along the stream network of the Sabor watershed (NE Portugal). The graphs show changes in semivariance 

between sampling sites in relation to the hydrologic distances separating them, considering either flow-connected (black circles) or 

flow-unconnected (grey circles) sites. The size of circles is proportional to the number of pairs of sites used to estimate the 

semivariance. 

Table 4.1 - Parameter estimates and summary statistics for the environmental component of crayfish distribution models in the Sabor 

watershed (NE Portugal). For each species we present the parameter estimates for the pure environmental, the pure spatial, and 

the spatial/environmental models. For each variable included in the best model, we provide the regression coefficient (Coef.), the 

standard error of the estimate (SE), the corresponding t- and P-values. For each model, we also provide the area under the receiver 

operating characteristic curve (AUC), and the Cohen’s kappa (k). 

Models Variables Coef. SE 
t-
values 

P-
values 

AUC k 

Procambarus clarkii                

  Environmental  Intersect -6.71 0.88 -7.60 <0.001 0.86 0.45 

  Stream order  1.35 0.20 6.78 <0.001     

  Spatial Intersect -1.12 0.18 -6.23 <0.001 0.98 0.63 

  Spatial/Environmental Intersect -5.52 1.11 -4.97 <0.001 0.96 0.84 

  Stream order  1.15 0.20 5.83 <0.001     

Pacifastacus leniusculus                

  Environmental Intersect -0.97 2.61 -0.37 0.711 0.78 0.32 

  Stream order  -0.76 0.52 -1.46 0.147     

  Elevation -0.01 0.00 -2.32 0.022     

  
Stream order × 
Elevation 

0.00 0.01 3.44 <0.001     

  Spatial Intersect -2.25 0.26 -8.51 <0.001 0.90 0.22 

  Spatial/Environmental Intersect -0.14 1.25 -0.11 0.912 0.82 0.38 

  Stream order  -0.53 0.26 -2.05 0.042     

  Elevation -0.01 0.01 -2.90 0.004     

  
Stream order × 
Elevation 

0.00 0.00 3.67 <0.001     
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In model building, the environmental component with the lowest RMSPE for P. clarkii 

included only the positive effect of stream order on the probability of species occurrence 

(Table 4.1, Table 4.S1). The environmental component for P. leniusculus included 

stream order, elevation, and their interaction term (Table 4.1, Table 4.S2), indicating that 

the probability of occurrence increased in higher order streams at higher elevation (Table 

4.1, Figure 4.3). Regarding the spatial component, the best covariance structure for P. 

clarkii included a tail-up linear-with-sill function and a Euclidean spherical function (Table 

4.2, Table 4.S3). The model with the three spatial components included also a tail-down 

linear-with-sill function, and it was very close to the best considering the RMSPE criterion 

(Table 4.2, Table 4.S3). The range of the tail-up (31.8km) and Euclidean (188.2km) 

components were similar in both models, and much smaller than the range estimated for 

Table 4.2 - Comparison of mixture models relating the probability of occurrence of two crayfish species to 

environmental and spatial components. The models shown represent the best model fit for each mixture 

type based on the root mean square prediction error (RMSPE). Models are Euclidean (EUC), tail-up (TU) 

and tail-down (TD), and they were tested using exponential, spherical, Gaussian and Cauchy functions as 

alternatives for EUC, and exponential, linear-with-sill, spherical and Mariah functions as alternatives for TU 

and TD.  

Mixture Model 1 Model 2 Model 3 RMSPE 

Procambarus clarkii         

  Nonspatial    3.081 

  Spatial     

    TU Linear-sill   3.004 

    TD Linear-sill   2.798 

    EUC Cauchy   2.378 

    TU/TD Linear-sill Linear-sill  2.356 

    TU/EUC Linear-sill Spherical  2.235 

    TD/EUC Mariah Spherical  2.336 

    TU/TD/EUC Linear-sill Linear-sill Spherical 2.237 

Pacifastacus leniusculus     

  Nonspatial    3.005 

  Spatial     

    TU Mariah   3.079 

    TD Mariah   2.324 

    EUC Exponential   1.623 

    TU/TD Mariah Linear-sill  1.826 

    TU/EUC Mariah Gaussian  1.595 

    TD/EUC Exponential Gaussian  1.412 

    TU/TD/EUC Linear-sill Spherical Cauchy 1.424 
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the tail-down component (627.4km). For P. leniusculus, the best spatial model included 

a tail-down exponential function, and a Euclidean Gaussian function (Table 4.2). The full 

autocovariance mixture model was also the second best, including a tail-up linear-with-

sill-function, a tail-down spherical function, and a Euclidean Cauchy function (Table 

4.2,Table 4.S4). The range estimate for the tail-up component was very small (1.4km), 

while those of the tail-down (634.8-645.93km) and Euclidean (371.1km) components 

were very large.  

For both crayfish species, the model combining environmental and spatial components 

outperformed both the pure environmental and the pure spatial model, in terms of 

variance explained, AUC and Cohen’s kappa (Table 4.1 and Table 4.3). In the 

spatial/environmental model, the environmental component always explained less 

variance than the spatial component (Table 4.3). The full covariance mixture model for 

P. clarkii accounted for about half the variance in species presence/absence, of which 

about 41% corresponded to tail-up spatial dependencies, another 25% to Euclidean 

spatial dependencies, and 34% to environmental variables (Table 4.3).  The predictive 

accuracy of the model was very satisfactory, as measured using either AUC or Cohen’s 

kappa (Table 4.1). For P. leniusculus, the full mixture model accounted for almost all 

variance, most of which (64%) corresponding to the tail-up component, and the rest by 

Table 4.3 - Percentage of variance accounted for by models relating the probability of two crayfish species to 

environmental and spatial components. For each species we present the values for the model including only 

environmental variables (nonspatial), for the spatial/environmental model minimising the root mean square 

prediction error (Best model), and for the full mixture spatial/environmental model (Full covariance mixture). 

Separate percentages are provided for the Euclidean (EUC), tail-up (TU) and tail-down (TD) components of 

the spatial model. The nugget is the variation unexplained in models. 

a Given the very small range estimated (1.4km), this component was acting like a nugget effect. 

  Spatial      

  Environmental TU TD EUC Nugget 

Procambarus clarkii           

  Nonspatial 21.8 - - - 78.2 

  Best model 17.1 20.8 - 13 49.2 

  Full covariance mixture 17.1 20.8 
≈ 

0.0 
12.8 49.3 

Pacifastacus leniusculus           

  Nonspatial 16.2 - - - 83.8 

  Best model 10.8 - 
≈ 

0.0 
26 63.2 

  Full covariance mixture 11 63.0a 0.2 24.5 1.3 
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the Euclidean (25%) and environmental (11%) components. However, the very small 

range estimated for the tail-up component (1.4km) indicates that autocorrelation was 

essentially zero between all sampling sites, so this component is acting like a nugget 

effect. Predictive accuracy was reasonable when measured through AUC, but low when 

measured using Cohen’s kappa (Table 4.1). 

The distribution models based solely on 

environmental variables produced poor 

results for the potential distribution of 

both species, while improving markedly 

when considering the spatial 

component (Figure 4.4). For P. clarkii, 

the environmental model correctly 

predicted a continuous distribution 

along the mid and lower reaches of the 

Sabor river, but it produced many false 

absences along the main tributaries. In 

contrast, the environmental/spatial 

model predicted a distribution much 

closer to that observed, highlighting a 

continuous occurrence in the main river 

and large tributaries. The environmental 

model for P. leniusculus also predicted a distribution much restricted than that observed, 

while the environmental/spatial model produced a larger distribution that was closer to 

that observed. However, this model missed sections of river where the species was 

detected, while predicting a far more continuous distribution than that observed.  

4.4 Discussion 

Our study found that the occurrence of P. clarkii and P. leniusculus in a Mediterranean 

stream network was strongly related to environmental variables such as stream order 

and elevation, but also that species distributions appeared strongly shaped by spatial 

processes. Actually, we found that spatial dependencies accounted for a larger 

proportion of variation in species occurrences than environmental variables, and that 

disregarding spatial effects seemed to strongly underestimate potential species 

distributions. These general patterns were observed for both species, though model 

performance was much lower for the species with a more restricted and patchy 

Figure 4.3 - Response curves estimated from a logistic 

mixed model relating the probability of occurrence of 

Pacifastacus leniusculus to environmental variables, 

describing the interaction effect between stream order and 
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distribution (P. leniusculus), than for the species with a larger a more continuous 

distribution (P. clarkii). Overall, our results point out the importance of considering both 

environmental and spatial effects when modelling the distribution of invasive aquatic 

organisms, and stress the need to specify spatial dependencies representing the 

dendritic network structure of stream ecosystems. 

4.4.1 Environmental effects 

The only variable included in the environmental model for P. clarkii was stream order, 

indicating that probability of occurrence increased from the headwaters to the large 

streams and the main river. This is in line with previous studies suggesting that this 

species often occurs in lowland rivers, with lower slopes, larger width, slower flowing 

waters, abundant aquatic vegetation and finer sediments (e.g., Anastácio et al., 2015; 

Cruz & Rebelo, 2007; Moreira et al., 2015), which often are associated with high-order 

streams (Allan & Castillo, 2007). On the other hand, absence from low order streams 

(i.e., small tributaries) was probably a consequence of these drying out in summer 

(Ferreira et al., 2016), and so they were not occupied by active crayfish at the time of 

sampling. The pure environmental model correctly predicted the extent of species 

distribution in the main Sabor river, but it underestimated considerably the extent of 

occurrence in its main tributaries. This could be a consequence of this study using only 

a limited set of environmental variables, thereby failing to fully identify the habitat 

conditions required by the species. It is also possible, however, that the distribution in 

the tributaries was strongly influenced by spatial processes associated with expansion 

from the core distribution in the main river (Bernardo et al., 2011), thereby confounding 

the operation of environmental drivers (see below).  

In the case of P. leniusculus, the environmental model included the interactive effects of 

stream order and elevation, suggesting that the species prefers high-order streams at 

higher elevation, while being absent from lowland high-order streams. This is in line with 

previous studies suggesting that the species is highly adapted to mountain rivers, where 

it prefers riffle habitats with abundant riparian vegetation (Anastácio et al., 2015; Rallo & 

García-Arberas, 2002). However, the species was absent from the small, lower order 

streams, possibly because the headwaters of the Sabor watershed generally dry out in 

summer (Ferreira et al., 2016). The pure environmental model provided a relatively crude 

picture of the species distribution, producing both false absences and false presences. 

This may be a consequence, at least partly, of the relatively small number of presences 

detected in our study (16), which can cause problems in logistic models (Vittinghoff & 
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McCulloch, 2007). In alternative, this may be a consequence of the species being still in 

rapid expansion from several points of introduction (Bernardo et al., 2011; Amilcar 

Teixeira, personal communication), and thus remaining out of equilibrium with the 

environmental conditions. Whatever the mechanisms, these results suggest that the 

distribution of both species in stream networks may be poorly predicted by purely 

environmental models. 

Figure 4.4 - Maps of potential distribution of Procambarus clarkii and Pacifastacus leniusculus in the river Sabor 

watershed (NE Portugal), predicted from either simple environmental models (left panels), or models including 

both environmental and spatial components (right panels). The threshold for predicted presences was set equal 

to the observed prevalence of each species. 
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4.4.2 Spatial effects 

The models of both species greatly improved when autocovariance functions accounting 

for spatial processes were considered. For P. clarkii, there was a particularly strong tail-

up component, suggesting that although presences were spatially autocorrelated along 

streams, the prevalence of the species can vary widely between stream branches just 

above a confluence. This result, in combination with the spatial distribution pattern 

inferred from the environmental/spatial model, is compatible with the idea that the 

species expands in an invasion front that moves upstream from the lowland sections of 

the main river. However, expansion may advance primarily through some stream 

branches, possibly corresponding to higher order streams, as underlined by the 

environmental model, while colonization may be slower or do not occur in other 

branches, possibly the smaller tributaries. Previous studies in the Sabor watershed have 

indeed shown a progressive upstream expansion (Bernardo et al., 2011), and 

radiotracking revealed that individual crayfish have the ability to move considerably in 

the upstream direction (up to 250m in half day; Anastácio et al., 2015). In contrast to our 

results, previous studies found that P. clarkii occurrences were spatially autocorrelated 

only up to about 2-2.5 km (Cruz & Rebelo, 2007; Siesa et al., 2011), which is much 

smaller than the 30km range estimated in our study. This may be due to differences in 

habitat characteristics, with previous studies largely focusing on naturally disconnected 

waterbodies such as ponds and small lakes, where dispersal may be more difficult than 

in a continuous stream network such as that of our study area. 

The model for P. clarkii also included a significant Euclidean component, but the 

underlying mechanism was unclear. However, the large range estimated (190km) 

suggests that spatial autocorrelation was mainly due to broad scale distribution trends, 

rather than small scale processes. This may be a consequence of the topology of the 

watershed, as the species was consistently absent in zones occupied by headwater 

streams, while it was present in three waterlines that run parallel and at short distance 

to each other. These circumstances probably determined a positive relation between 

occupancy status and straight-line distances between sites, albeit with no ecological 

meaning. It could not be ruled out, however, that the Euclidean pattern was at least partly 

due to the effect of an unmeasured, spatially-structured environmental variable, though 

it is uncertain what this variable might be as all the area is within the climate niche of the 

species (Capinha et al., 2013). It is also unlikely that the Euclidean component reflected 

colonisations occurring by individuals moving through terrestrial habitats. Although this 

process has been described for P. clarkii inhabiting lowland habitats (Cruz & Rebelo, 
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2007; Ramalho & Anastácio, 2015), it is unlikely that it contributed much to species 

expansion in a dry and mountainous area such as ours, where dispersal overland would 

imply long movements across very dry habitats and steep slopes.  

The spatial models developed for P. leniusculus differed considerably and were generally 

poorer than those of P. clarkii. Furthermore, there appeared to be some model instability, 

as shown by the full covariance mixture model, where the tail-up component acted like 

a nugget effect, with a range estimate (1.4km) that was smaller than the typical distance 

between nearest sites (5km). Nevertheless, it is noteworthy that there were spatial 

dependencies described by the Euclidean component, which explained over twice the 

variation in P. leniusculus distribution as the environmental component. As for P. clarkii, 

the large range estimated for the Euclidean component (370km) suggests that it 

described primarily broad scale trends in species distribution, rather than small scale 

processes. Including the spatial component improved the performance of the pure 

environmental model, but even so the predictive ability of the best environmental/spatial 

model was low, with a large number of false presences and absences. These patterns 

are probably a consequence of the low number of presences detected for this species, 

as noted for the environmental component, but they may also result from its patchy 

distribution, which was possibly caused by multiple introductions followed by progressive 

expansions that are still far from complete. This likely affected both environmental and 

spatial relationships, because the species was likely absent from sites with adequate 

environmental conditions, while the spatial dependencies were inconsistent, possibly 

due to the spatial scattering of the introductions. As this species is still rapidly spreading 

in the study area (Anastácio et al., 2015; Bernardo et al., 2011; Amilcar Teixeira, 

personal communication), we expect that the spatial distribution will keep changing for 

some more time, eventually reaching a stable pattern corresponding to the equilibrium 

with environmental conditions. In the meantime, we predict that sites that were identified 

in our study as false absences will soon be occupied, and that the species will 

progressively occupy most, if not all larger streams at higher elevation.  

4.4.3 Distribution modelling of invasive species across stream 

networks 

Our study adds to recent research showing the importance of explicitly accounting for 

dendritic spatial structures when modelling the distribution of physical and ecological 

processes across stream networks, and the value of geostatistical tools to undertake 
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such modelling (Mcguire et al., 2014; Peterson et al., 2013). Also, our study provides 

novel insights on the application of this approach to invasive species, whose distribution 

modelling is affected by a specific set of challenging processes such as non-equilibrium 

with environmental conditions and highly dynamic distribution patterns (De Marco, 

Alexandre, et al., 2008; Václavík & Meentemeyer, 2012). First, our results reinforce the 

idea that that both environmental and spatial processes need to be incorporated to 

predict the distribution of invasive species (De Marco, Alexandre, et al., 2008; Siesa et 

al., 2011; Václavík & Meentemeyer, 2012). Second, we confirmed that Euclidean 

distances are insufficient to incorporate spatial structure in distribution models for 

invasive stream organisms, as they may fail to account for their strongly constrained 

dispersal along waterlines and may produce biased and biologically meaningless results 

(Altermatt, 2013; Filipe et al., 2010; Peterson et al., 2013). Third, considering the tail-up 

autocovariance function may be generally recommended when testing for spatial 

dependencies, as it accounts for biological meaningful ecological processes such as 

connectivity along flow-connected waterlines (Carrara et al., 2012). Finally, geospatial 

models such as those applied here may improve inferences on the invasion processes 

of aquatic organisms from distribution data (e.g., Siesa et al., 2011; Václavík & 

Meentemeyer, 2012), by accounting for biologically more meaningful spatial 

dependencies along waterlines, though careful interpretation of results is required. Care 

should particularly be taken when dealing with species at the early stages of invasion, 

as it was the case of P. leniusculus in our study, where a small number of occurrences 

and a very fragmented distribution may produce models that are difficult to interpret. 

Overall, we suggest that geostatistical modelling across stream networks provides an 

important addition to the toolbox of researchers interested in biological invasions of 

aquatic organisms, which may contribute to address this global environmental problem 

by helping to understand driving mechanisms and to predict future distributions (Strayer, 

2010). 
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4.6 Supplementary material 

Table 4.S1 - Summary of the variable selection procedure for models relating the probability of occurrence of Procambarus 

clarkii and environmental variables. We tested all combinations of variables and their interaction terms, indicating for each 

candidate model the variables included and the root mean square prediction error (RMSPE). Models are ranked according 

to their RMSPE 

Model rank Formula RMSPE 

1 Stream order 2.2967 

2  Stream order + Slope 2.4248 

3  Stream order + Elevation x Slope 2.4847 

4  Stream order x Slope 2.6526 

5  Stream order x Slope + Elevation 2.6903 

6  Stream order + Elevation + Slope 2.6989 

7  Stream order x Elevation x Slope 2.9117 

8  Stream order x Elevation 3.5527 

9  Stream order + Elevation 3.8612 

10  Elevation x Slope 4.3464 

11  Stream order x Elevation + Slope 6.4626 

12  Elevation 10.4346 

13  Elevation + Slope 12.7393 

14  Slope 13.7309 

15 Intercept 18.2796 
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Table 4.S2 - Summary of the variable selection procedure for models relating the probability of occurrence of Pacifastacus 

leniusculus and environmental variables. We tested all combinations of variables and their interaction terms, indicating 

for each candidate model the variables included and the root mean square prediction error (RMSPE). Models are ranked 

according to their RMSPE. 

Model Rank Variables RMSPE 

1 Stream order x Elevation 1.6177 

2 Stream order x Elevation + Slope 2.0767 

3 Elevation x Slope 2.8515 

4 Stream order + Elevation x Slope 3.9787 

5 Stream order + Elevation 4.1513 

6 Stream order + Elevation + Slope 4.1578 

7 Stream order x Elevation x Slope 4.9630 

8 Slope 5.2188 

9 Stream order x Slope + Elevation 5.9410 

10 Stream order x Slope 9.6485 

11 Stream order 15.9638 

12 Elevation + Slope 21.9376 

13 Intercept 39.9514 

14 Stream order + Slope 486.3754 

15 Elevation 1.97x1034 
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Table 4.S3 - Summary of the selection of the mixture covariance model for Procambarus clarkii. Alternative candidate 

models included combinations of the Euclidean (EUC), tail-up (TU), and tail-down (TD) spatial components, which were 

tested using exponential, spherical, Gaussian and Cauchy functions as alternatives for EUC, and exponential, linear-with-

sill, spherical and Mariah functions as alternatives for TU and TD. For each candidate model, we indicate the spatial 

components and functions tested, and the corresponding root mean square prediction error (RMSPE). Models are ranked 

according to their RMSPE. 

Model rank Variance Components RMSPE 

1 Linear-sill (TU) + Spherical (EUC) 2.2351 

2 Linear-sill (TU) + Linear-sill (TD) + Spherical (EUC) 2.2371 

3 Linear-sill (TU) + Mariah (TD) + Spherical (EUC) 2.2377 

4 Linear-sill (TU) + Spherical (TD) + Spherical (EUC) 2.2377 

5 Linear-sill (TU) + Exponential (TD) + Spherical (EUC) 2.2378 

6 Spherical (TU) + Linear-sill (TD) + Gaussian (EUC) 2.2398 

7 Spherical (TU) + Spherical (EUC) 2.2417 

8 Spherical (TU) + Mariah (TD) + Spherical (EUC) 2.2418 

9 Spherical (TU) + Spherical (TD) + Spherical (EUC) 2.2419 

10 Spherical (TU) + Linear-sill (TD) + Spherical (EUC) 2.2419 

11 Linear-sill (TU) + Mariah (TD) + Exponential (EUC) 2.2432 

12 Linear-sill (TU) + Mariah (TD) + Gaussian (EUC) 2.2441 

13 Linear-sill (TU) + Spherical (TD) + Gaussian (EUC) 2.2443 

14 Linear-sill (TU) + Linear-sill (TD) + Gaussian (EUC) 2.2445 

15 Exponential (TU) + Linear-sill (TD) + Spherical (EUC) 2.2457 

16 Exponential (TU) + Spherical (EUC) 2.2459 

17 Exponential (TU) + Spherical (TD) + Spherical (EUC) 2.2460 

18 Exponential (TU) + Mariah (TD) + Spherical (EUC) 2.2460 

19 Linear-sill (TU) + Mariah (TD) + Cauchy (EUC) 2.2471 

20 Linear-sill (TU) + Spherical (TD) + Cauchy (EUC) 2.2472 

21 Linear-sill (TU) + Exponential (TD) + Cauchy (EUC) 2.2473 
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22 Linear-sill (TU) + Linear-sill (TD) + Cauchy (EUC) 2.2473 

23 Spherical (TU) + Mariah (TD) + Exponential (EUC) 2.2497 

24 Linear-sill (TU) + Linear-sill (TD) + Exponential (EUC) 2.2582 

25 Linear-sill (TU) + Exponential (TD) + Exponential (EUC) 2.2584 

26 Spherical (TU) + Spherical (TD) + Gaussian (EUC) 2.2612 

27 Spherical (TU) + Mariah (TD) + Gaussian (EUC) 2.2613 

28 Mariah (TU) + Spherical (EUC) 2.2616 

29 Mariah (TU) + Spherical (TD) + Spherical (EUC) 2.2616 

30 Mariah (TU) + Linear-sill (TD) + Spherical (EUC) 2.2618 

31 Mariah (TU) + Exponential (TD) + Spherical (EUC) 2.2618 

32 Spherical (TU) + Exponential (EUC) 2.2638 

33 Linear-sill (TU) + Exponential (EUC) 2.2671 

34 Spherical (TU) + Linear-sill (TD) + Exponential (EUC) 2.2793 

35 Spherical (TU) + Spherical (TD) + Exponential (EUC) 2.2796 

36 Exponential (TU) + Linear-sill (TD) + Gaussian (EUC) 2.2967 

37 Exponential (TU) + Mariah (TD) + Gaussian (EUC) 2.2968 

38 Exponential (TU) + Exponential (TD) + Gaussian (EUC) 2.3003 

39 Linear-sill (TU) + Exponential (TD) + Gaussian (EUC) 2.3072 

40 Exponential (TU) + Linear-sill (TD) + Exponential (EUC) 2.3114 

41 Exponential (TU) + Mariah (TD) + Exponential (EUC) 2.3155 

42 Spherical (TU) + Exponential (TD) + Spherical (EUC) 2.3185 

43 Spherical (TU) + Exponential (TD) + Exponential (EUC) 2.3243 

44 Exponential (TU) + Exponential (TD) + Spherical (EUC) 2.3312 

45 Spherical (TU) + Exponential (TD) + Gaussian (EUC) 2.3332 

46 Mariah (TD) + Spherical (EUC) 2.3360 

47 Spherical (TU) + Exponential (TD) + Cauchy (EUC) 2.3361 

48 Exponential (TU) + Exponential (EUC) 2.3398 
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49 Exponential (TU) + Spherical (TD) + Exponential (EUC) 2.3481 

50 Exponential (TU) + Exponential (TD) + Exponential (EUC) 2.3490 

51 Linear-sill (TU) + Linear-sill (TD) 2.3559 

52 Mariah (TU) + Spherical (TD) + Gaussian (EUC) 2.3622 

53 Spherical (TU) + Linear-sill (TD) 2.3657 

54 Mariah (TU) + Mariah (TD) + Cauchy (EUC) 2.3724 

55 Mariah (TU) + Exponential (TD) + Cauchy (EUC) 2.3725 

56 Mariah (TU) + Linear-sill (TD) + Cauchy (EUC) 2.3726 

57 Mariah (TU) + Spherical (TD) + Cauchy (EUC) 2.3726 

58 Mariah (TU) + Cauchy (EUC) 2.3727 

59 Linear-sill (TD) + Cauchy (EUC) 2.3775 

60 Cauchy (EUC) 2.3776 

61 Exponential (TD) + Cauchy (EUC) 2.3777 

62 Exponential (TU) + Exponential (TD) + Cauchy (EUC) 2.3785 

63 Exponential (TU) + Linear-sill (TD) + Cauchy (EUC) 2.3785 

64 Exponential (TU) + Spherical (TD) + Cauchy (EUC) 2.3786 

65 Exponential (TU) + Mariah (TD) + Cauchy (EUC) 2.3787 

66 Exponential (TU) + Cauchy (EUC) 2.3787 

67 Spherical (TD) + Cauchy (EUC) 2.3807 

68 Mariah (TU) + Mariah (TD) + Exponential (EUC) 2.3833 

69 Mariah (TU) + Exponential (TD) + Exponential (EUC) 2.3834 

70 Mariah (TU) + Spherical (TD) + Exponential (EUC) 2.3834 

71 Mariah (TU) + Exponential (EUC) 2.3835 

72 Mariah (TU) + Linear-sill (TD) + Exponential (EUC) 2.3836 

73 Exponential (TU) + Linear-sill (TD) 2.3869 

74 Mariah (TD) + Cauchy (EUC) 2.3972 

75 Spherical (TU) + Mariah (TD) + Cauchy (EUC) 2.3988 
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76 Spherical (TU) + Linear-sill (TD) + Cauchy (EUC) 2.3988 

77 Spherical (TU) + Spherical (TD) + Cauchy (EUC) 2.3989 

78 Spherical (TU) + Cauchy (EUC) 2.3991 

79 Linear-sill (TU) + Cauchy (EUC) 2.3996 

80 Exponential (EUC) 2.4059 

81 Exponential (TD) + Exponential (EUC) 2.4062 

82 Linear-sill (TD) + Exponential (EUC) 2.4062 

83 Spherical (TD) + Exponential (EUC) 2.4063 

84 Linear-sill (TD) + Spherical (EUC) 2.4162 

85 Mariah (TD) + Exponential (EUC) 2.4165 

86 Spherical (TD) + Gaussian (EUC) 2.4178 

87 Linear-sill (TU) + Spherical (TD) + Exponential (EUC) 2.4205 

88 Mariah (TU) + Linear-sill (TD) 2.4491 

89 Linear-sill (TD) + Gaussian (EUC) 2.4550 

90 Spherical (EUC) 2.5191 

91 Spherical (TD) + Spherical (EUC) 2.5191 

92 Exponential (TD) + Spherical (EUC) 2.5192 

93 Mariah (TU) + Exponential (TD) + Gaussian (EUC) 2.5457 

94 Mariah (TU) + Gaussian (EUC) 2.5460 

95 Mariah (TU) + Mariah (TD) + Gaussian (EUC) 2.5460 

96 Mariah (TU) + Linear-sill (TD) + Gaussian (EUC) 2.5460 

97 Gaussian (EUC) 2.5594 

98 Exponential (TD) + Gaussian (EUC) 2.5597 

99 Exponential (TU) + Spherical (TD) + Gaussian (EUC) 2.5610 

100 Exponential (TU) + Gaussian (EUC) 2.5614 

101 Mariah (TD) + Gaussian (EUC) 2.5617 

102 Mariah (TU) + Mariah (TD) + Spherical (EUC) 2.5750 
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103 Linear-sill (TU) + Gaussian (EUC) 2.5804 

104 Spherical (TU) + Gaussian (EUC) 2.5805 

105 Spherical (TU) + Spherical (TD) 2.5944 

106 Exponential (TU) + Spherical (TD) 2.5962 

107 Linear-sill (TU) + Spherical (TD) 2.6050 

108 Mariah (TU) + Exponential (TD) 2.7734 

109 Linear-sill (TD) 2.7982 

110 Exponential (TU) + Exponential (TD) 2.8062 

111 Spherical (TD) 2.8989 

112 Linear-sill (TU) + Exponential (TD) 2.9410 

113 Exponential (TD) 2.9629 

114 Linear-sill (TU) 3.0039 

115 Linear-sill (TU) + Mariah (TD) 3.0040 

116 Mariah (TU) + Mariah (TD) 3.0174 

117 Mariah (TU) + Spherical (TD) 3.0184 

118 Mariah (TD) 3.0237 

119 Spherical (TU) 3.0285 

120 Spherical (TU) + Exponential (TD) 3.0285 

121 Spherical (TU) + Mariah (TD) 3.0285 

122 Nugget 3.0813 

123 Exponential (TU) 3.0929 

124 Exponential (TU) + Mariah (TD) 3.0930 

125 Mariah (TU) 3.2350 
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Table 4.S4 - Summary of the selection of the mixture covariance model for Pacifastacus leniusculus. Alternative candidate 

models included combinations of the Euclidean (EUC), tail-up (TU), and tail-down (TD) spatial components, which were 

tested using exponential, spherical, Gaussian and Cauchy functions as alternatives for EUC, and exponential, linear-with-

sill, spherical and Mariah functions as alternatives for TU and TD. For each candidate model, we indicate the spatial 

components and functions tested, and the corresponding root mean square prediction error (RMSPE). Models are ordered 

according to their RMSPE. a The model with the Cauchy EUC component alone did not converge. 

Model rank Variance Components RMSPE 

1 Exponential (TD) + Gaussian (EUC) 1.4116 

2 Linear-sill (TU) + Spherical (TD) + Cauchy (EUC) 1.4238 

3 Spherical (TD) + Cauchy (EUC) 1.4346 

4 Linear-sill (TU) + Linear-sill (TD) + Cauchy (EUC) 1.5283 

5 Mariah (TU) + Linear-sill (TD) + Cauchy (EUC) 1.5285 

6 Exponential (TD) + Spherical (EUC) 1.5329 

7 Mariah (TU) + Exponential (TD) + Gaussian (EUC) 1.5332 

8 Linear-sill (TD) + Spherical (EUC) 1.5338 

9 Linear-sill (TU) + Exponential (TD) + Gaussian (EUC) 1.5442 

10 Linear-sill (TD) + Gaussian (EUC) 1.5499 

11 Mariah (TU) + Linear-sill (TD) + Gaussian (EUC) 1.5622 

12 Spherical (TD) + Gaussian (EUC) 1.5628 

13 Exponential (TU) + Exponential (TD) + Cauchy (EUC) 1.5800 

14 Exponential (TD) + Cauchy (EUC) 1.5804 

15 Mariah (TU) + Spherical (TD) + Gaussian (EUC) 1.5938 

16 Mariah (TU) + Gaussian (EUC) 1.5947 

17 Linear-sill (TU) + Spherical (TD) + Gaussian (EUC) 1.5992 

18 Mariah (TU) + Mariah (TD) + Gaussian (EUC) 1.6085 

19 Spherical (TU) + Gaussian (EUC) 1.6132 

20 Spherical (TU) + Exponential (TD) + Gaussian (EUC) 1.6136 

21 Linear-sill (TU) + Exponential (TD) + Exponential (EUC) 1.6166 
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22 Exponential (TU) + Linear-sill (TD) + Gaussian (EUC) 1.6177 

23 Exponential (TU) + Gaussian (EUC) 1.6184 

24 Linear-sill (TD) + Cauchy (EUC) 1.6189 

25 Exponential (TU) + Mariah (TD) + Gaussian (EUC) 1.6195 

26 Exponential (TU) + Exponential (TD) + Exponential (EUC) 1.6222 

27 Exponential (TU) + Exponential (TD) + Gaussian (EUC) 1.6223 

28 Linear-sill (TD) + Exponential (EUC) 1.6224 

29 Linear-sill (TU) + Linear-sill (TD) + Gaussian (EUC) 1.6225 

30 Exponential (EUC) 1.6234 

31 Spherical (TD) + Exponential (EUC) 1.6236 

32 Linear-sill (TU) + Mariah (TD) + Gaussian (EUC) 1.6238 

33 Linear-sill (TU) + Gaussian (EUC) 1.6274 

34 Spherical (TU) + Spherical (TD) + Gaussian (EUC) 1.6347 

35 Mariah (TU) + Cauchy (EUC) 1.6360 

36 Mariah (TD) + Spherical (EUC) 1.6369 

37 Linear-sill (TU) + Exponential (TD) + Cauchy (EUC) 1.6402 

38 Mariah (TU) + Mariah (TD) + Cauchy (EUC) 1.6457 

39 Exponential (TU) + Spherical (TD) + Cauchy (EUC) 1.6458 

40 Spherical (TU) + Linear-sill (TD) + Gaussian (EUC) 1.6493 

41 Exponential (TU) + Mariah (TD) + Cauchy (EUC) 1.6557 

42 Linear-sill (TU) + Cauchy (EUC) 1.6578 

43 Exponential (TU) + Linear-sill (TD) + Cauchy (EUC) 1.6585 

44 Spherical (TU) + Spherical (TD) + Cauchy (EUC) 1.6627 

45 Spherical (TU) + Mariah (TD) + Cauchy (EUC) 1.6630 

46 Spherical (TU) + Exponential (TD) + Cauchy (EUC) 1.6658 

47 Spherical (TU) + Linear-sill (TD) + Cauchy (EUC) 1.6775 

48 Spherical (TU) + Mariah (TD) + Gaussian (EUC) 1.7084 
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49 Exponential (TU) + Cauchy (EUC) 1.7219 

50 Spherical (TU) + Spherical (TD) + Spherical (EUC) 1.7299 

51 Mariah (TD) + Exponential (EUC) 1.7301 

52 Spherical (TD) + Spherical (EUC) 1.7371 

53 Mariah (TU) + Spherical (EUC) 1.7565 

54 Mariah (TU) + Exponential (TD) + Spherical (EUC) 1.7619 

55 Mariah (TU) + Mariah (TD) + Spherical (EUC) 1.7670 

56 Linear-sill (TU) + Mariah (TD) + Cauchy (EUC) 1.7684 

57 Linear-sill (TU) + Linear-sill (TD) + Spherical (EUC) 1.7688 

58 Mariah (TU) + Spherical (TD) + Spherical (EUC) 1.7713 

59 Mariah (TU) + Linear-sill (TD) + Spherical (EUC) 1.7811 

60 Exponential (TU) + Linear-sill (TD) + Spherical (EUC) 1.8049 

61 Exponential (TU) + Mariah (TD) + Spherical (EUC) 1.8131 

62 Exponential (TU) + Spherical (EUC) 1.8160 

63 Exponential (TU) + Spherical (TD) + Spherical (EUC) 1.8176 

64 Exponential (TD) + Exponential (EUC) 1.8212 

65 Mariah (TU) + Linear-sill (TD) 1.8258 

66 Exponential (TU) + Exponential (TD) + Spherical (EUC) 1.8336 

67 Spherical (TU) + Exponential (TD) + Exponential (EUC) 1.8348 

68 Linear-sill (TU) + Mariah (TD) + Spherical (EUC) 1.8361 

69 Spherical (TU) + Mariah (TD) + Spherical (EUC) 1.8368 

70 Linear-sill (TU) + Spherical (TD) + Spherical (EUC) 1.8526 

71 Mariah (TU) + Exponential (EUC) 1.8604 

72 Exponential (TU) + Linear-sill (TD) + Exponential (EUC) 1.8609 

73 Mariah (TU) + Linear-sill (TD) + Exponential (EUC) 1.8748 

74 Mariah (TU) + Exponential (TD) + Exponential (EUC) 1.8749 

75 Spherical (TU) + Exponential (TD) + Spherical (EUC) 1.8758 
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76 Mariah (TU) + Mariah (TD) + Exponential (EUC) 1.8778 

77 Spherical (TU) + Linear-sill (TD) + Spherical (EUC) 1.8820 

78 Spherical (TU) + Spherical (EUC) 1.8861 

79 Exponential (TU) + Spherical (TD) + Exponential (EUC) 1.9200 

80 Spherical (TU) + Linear-sill (TD) + Exponential (EUC) 1.9377 

81 Mariah (TU) + Spherical (TD) + Exponential (EUC) 1.9414 

82 Linear-sill (TU) + Mariah (TD) + Exponential (EUC) 1.9491 

83 Linear-sill (TU) + Exponential (EUC) 1.9608 

84 Exponential (TU) + Mariah (TD) + Exponential (EUC) 1.9631 

85 Linear-sill (TU) + Exponential (TD) + Spherical (EUC) 1.9922 

86 Linear-sill (TU) + Spherical (TD) + Exponential (EUC) 1.9998 

87 Spherical (TU) + Spherical (TD) + Exponential (EUC) 2.0028 

88 Mariah (TU) + Spherical (TD) + Cauchy (EUC) 2.0503 

89 Mariah (TU) + Spherical (TD) 2.0768 

90 Mariah (TD) + Gaussian (EUC) 2.0972 

91 Spherical (TU) + Mariah (TD) + Exponential (EUC) 2.1856 

92 Linear-sill (TU) + Spherical (TD) 2.2904 

93 Mariah (TD) 2.3243 

94 Mariah (TD) + Cauchy (EUC) 2.3259 

95 Gaussian (EUC) 2.8031 

96 Linear-sill (TU) + Exponential (TD) 2.8065 

97 Spherical (TU) + Exponential (EUC) 2.8244 

98 Exponential (TD) 2.8246 

99 Spherical (EUC) 2.8828 

100 Spherical (TD) 2.9130 

101 Spherical (TU) + Cauchy (EUC) 2.9604 

102 Linear-sill (TD) 2.9637 
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103 Mariah (TU) + Exponential (TD) + Cauchy (EUC) 2.9740 

104 Mariah (TU) + Mariah (TD) 2.9981 

105 Nugget 3.0054 

106 Exponential (TU) + Spherical (TD) + Gaussian (EUC) 3.0361 

107 Exponential (TU) + Exponential (TD) 3.0401 

108 Exponential (TU) + Exponential (EUC) 3.0404 

109 Spherical (TU) + Linear-sill (TD) 3.0614 

110 Linear-sill (TU) + Spherical (EUC) 3.0700 

111 Linear-sill (TU) + Linear-sill (TD) + Exponential (EUC) 3.0722 

112 Mariah (TU) 3.0785 

113 Mariah (TU) + Exponential (TD) 3.0786 

114 Exponential (TU) + Linear-sill (TD) 3.0887 

115 Exponential (TU) + Mariah (TD) 3.0903 

116 Exponential (TU) 3.0904 

117 Exponential (TU) + Spherical (TD) 3.0906 

118 Linear-sill (TU) + Linear-sill (TD) 3.1012 

119 Spherical (TU) 3.1017 

120 Spherical (TU) + Spherical (TD) 3.1018 

121 Spherical (TU) + Mariah (TD) 3.1018 

122 Linear-sill (TU) + Mariah (TD) 3.1018 

123 Spherical (TU) + Exponential (TD) 3.1019 

124 Linear-sill (TU) 3.1044 
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Chapter 5 – Combining geostatistical and biotic 

interactions modelling to predict amphibian refuges 

under crayfish invasion across dendritic stream 

networks 

 

Mário Mota-Ferreira, Pedro Beja 
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Abstract 

Aim: Biological invasions are pervasive in freshwater ecosystems, often causing native 

species to contract into areas that remain largely free from invasive species impacts. Predicting 

the location of such ecological refuges is challenging, because they are shaped by the habitat 

requirements of native and invasive species, their biotic interactions, and the spatial and 

temporal invasion patterns. Here we investigated the spatial distribution and environmental 

drivers of refuges from invasion in river systems, by considering biotic interactions in 

geostatistical models accounting for stream network topology. We focused on Mediterranean 

amphibians negatively impacted by the invasive crayfishes Procambarus clarkii and 

Pacifastacus leniusculus.  

Location: River Sabor, NE Portugal 

https://doi.org/10.1111/ddi.13047
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Methods: We surveyed amphibians at 168 200-m stream stretches in 2015. Geostatistical 

models were used to relate the probabilities of occurrence of each species to environmental 

and biotic variables, while controlling for linear (Euclidean) and hydrologic spatial 

dependencies. Biotic interactions were specified using crayfish probabilities of occurrence 

extracted from previously developed geostatistical models. Models were used to map the 

distribution of potential refuges for the most common amphibian species, under current 

conditions and future scenarios of crayfish expansion. 

Results: Geostatistical models were produced for eight out of 10 species detected, of which 

five species were associated with lower stream orders and only one species with higher stream 

orders. Six species showed negative responses to one or both crayfish species, even after 

accounting for environmental effects and spatial dependencies. Most amphibian species were 

found to retain large expanses of potential habitat in stream headwaters, but current refuges 

will likely contract under plausible scenarios of crayfish expansion. 

Main conclusions: Incorporating biotic interactions in geostatistical modelling provides a 

practical and relatively simple approach to predict present and future distributions of refuges 

from biological invasion in stream networks. Using this approach, our study shows that stream 

headwaters are key amphibian refuges under invasion by alien crayfish. 

5.1 Introduction 

Biological invasions are pervasive in freshwater ecosystems, where they are major drivers of 

native species declines (Strayer, 2010; Walsh et al., 2016). Addressing this threat is 

challenging, because once fully established the control of invasive species is often nearly 

impossible, which limits the management options to protect native species. In some 

circumstances, the impacts of biological invasions may be partly offset by the presence of 

ecological refuges, which are habitats where a species can retreat, persist in for up to a few 

decades, and eventually expand from under changing environmental conditions (Davis et al., 

2013). Such refuges correspond to freshwater habitats unsuitable for invasive species, or 

areas where their spread is prevented by physical barriers such as waterfalls or culverts (Kerby 

et al., 2005; Rahel, 2013). Refuges may thus allow the persistence of at least some remnant 

populations of native species (e.g., Chapman et al., 1996; Grabowski et al., 2009; Habit et al., 

2010; Radinger et al., 2019), making it a priority to understand where, why and how refuges 

can contribute to species conservation under biological invasion. 

Species distribution models (SDM) incorporating biotic interactions provide a simple framework 

to quantify how one or more species influence the distribution of others (e.g., Wisz et al., 2013), 
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making them useful to predict the location and drivers of refuges from invasions. A 

straightforward approach is to take the distribution patterns of invasive species together with 

abiotic variables to model the occurrence of native species, and then use the ensuing models 

to predict the distribution of refuges under current and future invasion scenarios (Araújo & 

Luoto, 2007; Wisz et al., 2013). One problem is that SDMs for geographical range prediction 

assume equilibrium between species distribution and the environment, which is unwarranted 

when modelling range contractions by native species in face of biological invasion (De Marco 

et al., 2008; Elith et al., 2010; Václavík et al., 2012). A native species may occur in areas that 

will latter become unsuitable due to the expansion of an invasive species, or it may eventually 

be able to coexist only temporarily with the invasive species due to time-lags in negative 

impacts (Crooks, 2005). In either case, SDMs built using snapshots of species distributions 

may overestimate the extent of refuges, eventually misdirecting conservation efforts towards 

areas where native species persistence is unlikely. 

Incorporating predictors describing spatial autocorrelations in invasive species occurrences to 

account for unmeasured dispersal and colonization processes may help mitigating, albeit not 

solving, problems associated with non-equilibrium conditions in SDMs (De Marco et al., 2008; 

Filipe et al., 2017; Václavík et al., 2012). For alien species invading river ecosystems, SDMs 

can be improved using geostatistical models accounting for spatial dependencies in physical 

and ecological processes across stream networks (Filipe et al., 2017; Lois et al., 2015; Lois & 

Cowley, 2017). These models are similar to conventional mixed models, with species 

occurrence modelled in relation to environmental variables using a logistic function, and spatial 

autocorrelation considered in the random errors (Peterson et al., 2013; Peterson & Ver Hoef, 

2010; Ver Hoef et al., 2006; Ver Hoef & Peterson, 2010). The latter are specified as a mixture 

of covariance functions representing the strength of influence between sites as a function of 

their (i) straight-line (Euclidean) distances calculated overland; (ii) hydrologic distances (i.e., 

distances along the waterlines) representing flow-connected relations (tail-up models); and (iii) 

hydrologic distances irrespective of flow connection (tail-down models) (Ver Hoef & Peterson, 

2010). This approach can easily incorporate biotic interactions by including predictors 

describing the occurrence or abundance of potentially interacting species in the fixed 

component (Lois et al., 2015; Lois & Cowley, 2017). Another possibility is to develop a 

geostatistical model for the invasive species itself, and then use the fitted response (i.e., the 

probability of occurrence) in the native species model. This should be useful for predicting the 

location of refuges, as it would consider not only the current distribution of the invasive species, 

but also suitable areas that will eventually be colonised during the expansion process. 
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This study investigates the location and environmental drivers of refuges in dendritic stream 

networks, combining biotic interactions and geostatistical modelling to predict their spatial 

distribution under current and future scenarios of invasive species expansion.  We focused on 

interactions between amphibians and the exotic crayfish Procambarus clarkii and Pacifastacus 

leniusculus in the Iberian Peninsula, where there are no native crayfish (Clavero et al., 2016). 

These crayfishes are among the most widespread and damaging aquatic invaders (Lodge et 

al., 2012; Twardochleb et al., 2013), which have expanded widely in Iberia since the 1970s 

due to multiple introductions for commercial purposes and subsequent natural dispersal 

(Bernardo et al., 2011; Clavero, 2016; Gutiérrez-Yurrita et al., 1999). Invasive crayfish predate 

on amphibian eggs and larvae (Axelsson et al., 1997; Cruz, Pascoal, et al., 2006; Cruz & 

Rebelo, 2005; Gamradt & Kats, 1996), and seem to have strong negative impacts on native 

amphibian populations in Iberian waters (Cruz et al., 2008; Cruz, Pascoal, et al., 2006; Cruz, 

Rebelo, et al., 2006) and elsewhere (Ficetola et al., 2011). The main amphibian refuges are 

probably temporary ponds far from permanent waters (Beja & Alcazar, 2003; Cruz, Rebelo, et 

al., 2006; Ferreira & Beja, 2013), where crayfish cannot persist (Cruz & Rebelo, 2007). 

Refuges may also exist in small and intermittent Mediterranean streams, which often hold rich 

amphibian communities (de Vries & Marco, 2017) and where crayfishes are usually absent 

(e.g., Cruz & Rebelo, 2007; Filipe et al., 2017; Gil-Sánchez & Alba-Tercedor, 2002). To 

investigate amphibian refuges from crayfish invasion, we (i) made a detailed survey of 

amphibian occurrence in a Mediterranean watershed; (ii) developed geostatistical models 

relating the occurrence of each amphibian species to environmental variables, the probabilities 

of crayfish occurrence (Filipe et al., 2017) and spatial dependencies; and predicted the spatial 

distribution of refuges under (iii) current and (iv) future scenarios of crayfish expansion. Our 

study can help improve conservation strategies for amphibians negatively affected by crayfish 

invasions, and more generally it provides a framework for identifying refuges from biological 

invasions in dendritic stream networks.  

5.2 Methods 

5.2.1 Study area 

The study was conducted in the river Sabor watershed (NE Portugal; N41º090–42º000, 

W7º150–6º150; Figure 5.S1 in the supplementary figures). Human population is low (8.5 to 

28.7 inhabitants/km2; https://www.pordata.pt/Municipios) following a process of land 

abandonment since the 1970s (Azevedo et al., 2011). Land cover is dominated by extensive 

agriculture and pastureland, forest plantations, and natural vegetation (Caetano et al., 2018; 

https://www.pordata.pt/Municipios
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Hoelzer, 2003). A large proportion of the watershed is included in the Natura 2000 network 

(Costa et al., 2007). The watershed covers a wide range of elevations (100–1500 m above sea 

level), total annual precipitation (443–1163 mm), and mean annual temperature (6.9–15.6 Cº). 

The climate is Mediterranean, with precipitation concentrated in October–March and virtually 

none in June–August. Most small streams dry out or become reduced to a series of 

disconnected pools during the dry months, though the main watercourse and the largest 

tributaries are permanent (Ferreira et al., 2016). Two large hydroelectric reservoirs were built 

and filled just before this study, but otherwise the river is largely free-flowing. Crayfish were 

first reported in the Sabor watershed in the 1990s, with P. clarkii probably introduced by local 

people, while P. leniusculus was introduced in 1994 by Spanish authorities (Bernardo et al., 

2011). P. clarkii is far more widespread than P. leniusculus, but both species seem to still be 

spreading, possibly through natural dispersal along the stream network (Anastácio et al., 2015; 

Bernardo et al., 2011). 

5.2.2 Study design 

The study was designed to obtain a comprehensive snapshot of stream-dwelling amphibian 

distributions, considering  both species such as Iberian frog (Rana iberica) and Iberian green 

frog (Pelophylax perezi) that occupy streams during their entire life cycle, and species such as 

fire salamander (Salamandra salamandra) and midwife toads (Alytes obstetricans and A. 

cisternasii) that have both terrestrial and aquatic phases, occupying streams mostly during the 

breeding and larval development periods. To adequately cover all species, surveys 

encompassed the main environmental gradients represented in the watershed, and they were 

carried out monthly during one year to account for differences in activity peaks and breeding 

phenology across species (e.g., Diaz-Paniagua, 1992; Ferreira & Beja, 2013). Yet, because it 

was logistically unfeasible to sample a sufficiently large number of sites each month, the 

sampling effort was distributed over the year, with different sites sampled in different months. 

Considering these constraints, we initially selected >200 potential sampling sites, based on 

previous studies (Ferreira et al., 2016; Filipe et al., 2017; Quaglietta et al., 2018) and new field 

surveys. Sites were constrained to cover all Strahler stream orders and to be at >1km from 

each other. All sites were in wadable stream reaches (water depth < 1.20) to facilitate 

amphibian surveys. From the overall set of potential sampling sites, we selected each month 

a subset of 30 sites, following a stratified random procedure to guarantee that comparable 

environmental conditions were covered each month, and thus avoiding space x time 

interactions. To do this, we divided the Sabor watershed in three sub-basins (Figure 5.S1), 

and randomly selected each month two sites of each Strahler stream order represented in 
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each sub-basin. A total of 168 sites were surveyed (Figure 5.S1), with each site visited at most 

twice, except sites in higher orders that were visited more often because they were relatively 

scarce in the watershed. The river network, sub-basins and stream orders were obtained from 

CCM 2.1 (Catchment Characterization and Modelling database; Vogt et al., 2007)Vogt et al., 

2007). A detailed workflow of the procedures used to analyse the data is provided in the 

Supplementary Methods: Workflow detailing the methodological procedures in the 

supplementary materials. 

5.2.3 Field sampling 

Sampling was carried out monthly in 2015, except in May due to logistic constraints. At each 

sampling site and date, a 200-m stream reach was thoroughly surveyed for amphibians, 

including both adults and larvae. The survey was conducted by two observers walking slowly 

along the banks or wading in shallow water along the stream. Observers used dip nets to 

collect aquatic larvae and adults, and they systematically searched the stream banks for 

terrestrial adults, using torches where necessary to survey cavities and other shaded areas. 

All amphibians found were identified to species level in situ and released thereafter. In a few 

cases, small unidentified larvae were preserved and identified in the laboratory. During 

surveys, crayfish were also recorded and identified to species, and all individuals collected 

were eliminated following guidelines established by the Portuguese biodiversity conservation 

agency.  

5.2.4 Environmental and spatial variables 

Sampling sites were characterised using variables potentially affecting the distribution of 

stream-dwelling amphibians that could be extracted from digital maps (e.g., Cruz & Rebelo, 

2007; de Vries & Marco, 2017), making it possible to predict species distributions across the 

entire watershed in relation to potential expansions of crayfish ranges. Each site was 

characterised using four environmental variables (elevation [Alt], total annual precipitation 

[Prec], Strahler’s stream order [SO] and the probability of water presence during the dry season 

[Water]) and two variables describing the potential for biotic interactions between amphibians 

and either P. clarkii [Pclar] or P. leniusculus [Plen) (Cruz, Rebelo, et al., 2006; de Vries & 

Marco, 2017). We also included a multiplicative interaction between elevation and Strahler’s 

stream order (SOxAlt), which was used to distinguish between small streams in the lowlands 

and small streams in mountain areas. Initially we also considered other climatic variables, but 

they were discarded because of strong correlations with precipitation and/or elevation. 
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Although features of the surrounding landscape are known to affect stream-dwelling 

amphibians (Ficetola et al., 2011; Riley et al., 2005), these were not considered because 

preliminary analysis showed very minor effects of land cover variables in our study area, 

possibly due to the dominance of natural vegetation and low-intensity land uses that are 

generally suitable for amphibians. Furthermore, adding land cover variables often caused 

model instability and convergence problems, possibly due to redundancies with other 

environmental variables already included in the models.  

All variables were computed in a Geographic Information System (GIS) using ArcGis (ESRI, 

2016). Elevation was taken from a DEM built from 1:25,000 topographic maps as in Ferreira 

et al. (2016). Total annual precipitation was extracted from WordClim 2 with a 30’ (≈ 1km) 

resolution (Fick & Hijmans, 2017). Strahler’s stream order was used as a proxy for habitat size 

and heterogeneity (Ferreira et al., 2016; Hughes et al., 2011), and it was extracted from CCM 

2.1, which is based on a 100-m resolution digital elevation model (DEM) (Vogt et al., 2007). 

The probability of water presence in the dry period was used because many Mediterranean 

amphibian species are associated with temporary water bodies (Beja & Alcazar, 2003; de Vries 

& Marco, 2017; Ferreira & Beja, 2013), and it was extracted from a model developed in a 

previous study (Ferreira et al., 2016). Variables describing biotic interactions were specified 

considering the probability of occurrence of either P. clarkii or P. leniusculus, extracted from a 

previous geostatistical modelling of crayfish distribution in the Sabor watershed (Filipe et al., 

2017). These models were built using electrofishing data collected on 167 sites in summer 

2012, and they showed that crayfish distributions were mainly associated with stream order, 

elevation and spatial dependencies across the stream network (Filipe et al., 2017). The models 

had reasonable predictive accuracy, for both P. clarkii (AUC=0.963) and P. leniusculus 

(AUC=0.823). Probabilities derived from distribution models were used instead of the actual 

crayfish presences/absences recorded at sampling sites, in order to project the distribution of 

each species across the entire watershed, as well as to build scenarios of future crayfish 

expansion. All variables were standardized to have a mean of zero and a standard deviation 

of one to improve the interpretability of model coefficients (Schielzeth, 2010), and we screened 

for outliers and influential points that might bias coefficient estimates. 

Spatial data necessary to account for spatial autocorrelation (see below) were obtained in a 

GIS using the Sabor watershed stream network extracted from CCM2.1 (Vogt et al., 2007), 

and the layer of survey sites. Estimates included the Euclidean and hydrologic distances (total 

and downstream hydrologic distances) between every pair of sampling sites (Peterson & Ver 

Hoef, 2010). To deal with confluences in tail-up models (see below), we also estimated 

watershed areas to weight the relative influence of the branching upstream segments (e.g. 
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Peterson & Ver Hoef, 2010). Spatial estimates were made using the Spatial Tools for the 

Analysis of River Systems (STARS) toolbox version 2.0.0 (Peterson & Ver Hoef, 2014) for 

ArcGIS 10.5 (ESRI, 2016). 

5.2.5 Distribution modelling 

Distribution models (SDM) were developed considering for each species only the occurrence 

data from the sampling months encompassing its aquatic phase, and thus the periods when 

the species is detectable during stream surveys (Table 5.S1 in the supplementary tables). For 

instance, we considered data from all sampling months for R. iberica and P. perezi, because 

they are largely aquatic and strongly attached to stream habitats all year round, while we only 

considered data from April-November and October-April for A. obstetricans and S. 

Salamandra, respectively, corresponding to their aquatic phases. This approach aimed at 

avoiding false negatives caused by species not using potentially suitable stream habitats 

during the terrestrial phase. 

For each species, we developed three logistic models relating its presence/absence to either 

(i) only environmental predictors, (ii) only biotic predictors or (ii) environmental + biotic 

predictors, and a (iv) geostatistical distribution model (Peterson et al., 2013). The logistic 

models were used to evaluate how considering biotic interactions affected species perceived 

responses to environmental variables, and as preliminary steps in geostatistical model 

building. The geostatistical model for each species included a fixed component corresponding 

to a logistic function linking its probability of occurrence to environmental and biotic predictors, 

and random components accounting for spatial dependencies in the stream network (Peterson 

et al., 2013; Peterson & Ver Hoef, 2010; Ver Hoef et al., 2006; Ver Hoef & Peterson, 2010). 

As random components we considered the Euclidean model, assuming that spatial 

dependencies among sites can occur overland, and the tail-up and tail-down covariance 

models, assuming that spatial dependencies can also occur along the hydrological network 

independently of flow and/or only between flow connected sites, respectively (Peterson & Ver 

Hoef, 2010).  

To build the logistic models for each set of predictors and species, we considered all 

combinations of predictors of each set and retained for inference the best subset model 

minimising AIC (Murtaugh, 2009). Autocorrelation in model residuals was visualised using 

Torgegrams, depicting how semivariance in the residuals of the best logistic models between 

pairs of sampling sites changed in relation to their hydrologic distances (Peterson et al., 2013). 

In Torgegrams, increasing semivariance reflects declining spatial dependency between points. 

The fixed component of the geostatistical model for each species was then built considering 
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the predictors included in the best environmental + biotic logistic model. The structure of the 

random components was assessed using the residuals of the environmental + biotic model 

following Quaglietta et al. (2018), by testing all combinations of alternative functions available 

in the R package ‘SSN’ (Ver Hoef et al., 2014) for the Euclidean and the hydrologic 

autocovariance functions, and retaining the model structure minimising AIC. We then 

combined the variables selected for the fixed component with the best spatial structure to build 

the final model for each species. In all logistic models and in the fixed component of the 

geostatistical model, we considered significance level for individual predictors at P<0.10, to 

reduce the likelihood of type II errors and thus the probability of missing true negative effects 

of crayfish invasion.  

The crayfish models previously developed by Filipe et al. (2017) were validated with 

presence/absence data from the 2015 survey, using the area under the receiver operating 

curve (AUC) (Allouche et al., 2006). Discrimination ability of amphibian models was estimated 

using predictions obtained by the “leave-one-out” cross validation method, considering the 

overall prediction success, the AUC, Cohen’s kappa and the true skill statistics (TSS) (Allouche 

et al., 2006; Václavík et al., 2012). Prediction success was estimated using prevalence as the 

threshold for predicted presences (Liu et al., 2005). All analyses were carried out in R (R Core 

Team, 2017), using MuMIn (Barton, 2016), ‘SSN’ (Ver Hoef et al., 2014) and ‘modEvA’ 

(Barbosa et al., 2016) packages. 

5.2.6 Distribution mapping under current and future scenarios 

To map the predicted distribution of each amphibian species under current conditions, we 

projected the distribution models on the stream network of the entire Sabor watershed. First, 

we divided the stream network into segments of a maximum length of 1000 meters using 

ArcGIS desktop (ESRI, 2016), and we extracted the value of environmental variables from the 

centroid of each segment. We then predicted the probability of each species occurring in the 

segment using universal kriging within the ‘SSN’ package (Ver Hoef et al., 2014).  We 

considered segments occupied if the predicted occupancy probability was above the species 

prevalence threshold (Liu et al., 2005). 

To simulate how crayfish expansion might affect amphibians, we changed the value of 

variables describing biotic interactions assuming a two, three and five-fold increase of the 

relative risk (Rr) of each crayfish species occurring at each site, using as baseline the 

predictions from the geostatistical models of Filipe et al. (2017). The relative risk was defined 

as the odds ratio of the probabilities of crayfish occurrence under future and current conditions, 

where odds are the ratio of the probability of occurrence and the probability of absence. The 
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probability of occurrence at each site under each scenario of future crayfish expansion was 

then computed using the expression,  

𝑝′𝑖
(1 − 𝑝′𝑖)

𝑝𝑖
(1 − 𝑝𝑖)

= 𝑅𝑟 <=> 𝑝′𝑖 =
𝑅𝑟. 𝑝𝑖

1 + 𝑝𝑖(𝑅𝑟 − 1)
, 𝑓𝑜𝑟𝑅𝑟 = {2,3,5} 

Equation 5.1 

where 𝑝𝑖 and 𝑝′𝑖 are the probabilities of crayfish occurrence at present and in the future at site 

i. We considered 16 different invasion scenarios, assuming changes in the distribution of each 

crayfish species at a time, and both crayfish species simultaneously. These scenarios of 

crayfish expansion were built considering empirical observations showing that both species 

are still expanding in the watershed (Bernardo et al., 2011), and assume that populations will 

expand from the areas currently occupied and will progressively colonise streams with habitat 

conditions most suitable for each species based on Filipe et al. (2017). Although this is a 

simplistic model, it can still provide approximate indications on potential amphibian refuges 

under crayfish expansion. 

Future distributions of each amphibian species were predicted using either the non-spatial 

environmental + biotic logistic model or the spatial geostatistical model, which reflect different 

assumptions on range change processes (Record et al., 2013). The non-spatial model 

assumes that amphibian distributions will change along with changes in crayfish occurrence, 

irrespective of amphibian current distributions. However, spatial structure is still implicit in 

predictions, because probabilities of crayfish occurrence across the dendritic stream network 

were themselves predicted using geostatistical models (Filipe et al., 2017). In the geostatistical 

model, spatial random effects act to draw the projected distributions back toward the observed 

distribution used to calibrate the model (Record et al., 2013). Therefore, the current and future 

distributions will be similar, unless there are strong negative effects of biotic interactions. 

Prediction of future distributions were only made for amphibian species showing significant 

negative effects of crayfish occurrence. We did not consider climate change effects due to 

uncertainties regarding how climate will change in our relatively small area and how crayfish 

and amphibians will respond to such changes, though this should be the subject of further 

research due to potential interactions between climate change and biological invasion (Hulme, 

2017). 
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5.3 Results 

We detected a total of 10 amphibian species, the most widespread (>20% of sites) of which 

were P. perezi (69%), S. salamandra (28%), and R. iberica (26%) (Table 5.S1). The frogs 

Discoglossus galganoi and Hyla molleri were excluded from further analysis because they 

occurred at just one and two sites, respectively. P. clarkii and P. leniusculus were detected at 

28% and 22% of sites surveyed for amphibians, with the models of Filipe et al. (2017) 

successfully predicting the presence/absence of each species (P. clarkii: AUC= 0.96; P. 

leniusculus; AUC = 0.92; Figure 5.S2). 

Models including only environmental effects showed significant negative effects of stream 

order on the probability of occurrence of A. cisternasii, R. iberica, Lissotriton boscai, S. 

salamandra and Triturus marmoratus, and positive effects on P. perezi (Table 5.1). Altitude 

was negatively related to A cisternasii, and positively so with A. obstetricans and R. iberica. 

Significant interactions between stream order and altitude were found for A. cisternasii and R. 

iberica, indicating in both cases that negative effects of stream order were weaker at higher 

elevations. Precipitation was negatively related to A cisternasii, and positively so with A. 

obstetricans, R. iberica, and S. salamandra. The probability of a stream segment retaining 

water in summer showed a negative relation with P. perezi and a positive relation with R. 

iberica. Models including only biotic interactions showed significantly negative relations 

between P. clarkii and A. obstetricans, R. iberica, L. boscai, S. salamandra and T. marmoratus 

(Table 5.). P. leniusculus was negatively related to A. cisternasii and S. salamandra, and 

positively to P. perezi. Bufo spinosus was the only species showing no significant 

environmental or biotic effects. 

When combining environmental and biotic variables (Table 5.1), the effects of biotic 

interactions were retained for all species except P. perezi, while the type and significance of 

environmental effects often changed considerably. For L. boscai, S. salamandra and T.  

marmoratus, only the negative effects of P. clarkii were retained in the best model. For R. 

iberica, the combined model highlighted a negative effect of P. leniusculus and stream order, 

and a positive effect of the probability of water presence. For A. obstetricans, there was a 

negative effect of P. clarkii and a positive effect of water presence, while for A. cisternasii there 

were negative effects of P. leniusculus and precipitation, and an interaction between stream 

order and elevation suggesting that the species was most likely to occur in higher stream 

orders at higher elevation, and the reverse at lower elevations. 
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Table 5.1 - Parameter estimates and summary statistics for models relating the probability of occurrence of amphibian species to variables describing environmental effects and biotic interactions in the Sabor watershed (NE 

Portugal). For each species we provide four different models incorporating (i) environmental variables (Env); (ii) biotic interactions (Bio); (iii) environmental variables + biotic interactions (Env/Bio); and (iv) environmental 

variables + biotic interactions + spatial dependencies across stream networks (Full). Variables included were: elevation (Alt), total annual precipitation (Prec), Strahler’s stream order (SO), the water presence probability 

(Water), and the probability of the presence of either Procambarus clarkii (Pclar) or Pacifastacus leniusculus (Plen). We also included a multiplicative interaction between elevation and stream order (SOxAlt). For each model 

we provide the regression coefficient estimates (B), their standard errors (SE) and P-values, and three measures of model predictive ability:  area under the receiver operating curve (AUC), Cohen’s kappa and true skill 

statistics (TSS). Species observed prevalence was used as the treshold to compute Cohen’s kappa, and the true skill statistics 

Species/  Intercept   Alt   Prec   SO   Water   SOxAlt   Pclar   Plen         

models B (SE) P B (SE) P B (SE) P B (SE) P B (SE) P B (SE) P B (SE) P B (SE) P AUC Kappa TSS 

Alytes 
cisternasii 

                     

  Env -2.04 (0.27) 0.00 -1.23 (0.31) 0.00 -0.57 (0.32) 0.07 -1.00 (0.29) 0.00 -  -  -  -  0.72 0.23 0.36 

  Bio -1.76 (0.23) 0.00 -  -  -  -  -  0.36 (0.23) 0.12 -0.66 (0.33) 0.05 0.45 0.24 0.39 

  Env + Bio -1.80 (0.32) 0.00 -1.09 (0.31) 0.00 -0.90 (0.36) 0.01 1.06 (0.7) 0.13 -  1.25 (0.46) 0.01 -  -2.15 (0.78) 0.01 0.75 -0.02 
-

0.05 

  Full -1.31 (0.78) 0.09 -0.12 (0.44) 0.79 -0.64 (0.55) 0.24 0.88 (0.63) 0.17 -   1.08 (0.49) 0.03 -   -1.11 (0.64) 0.08 0.82 0.26 0.44 

Alytes 
obstetricans 

                                      

  Env -1.64 (0.26) 0.00 0.67 (0.39) 0.09 0.51 (0.24) 0.04 -0.07 (0.31) 0.82 -   0.79 (0.37) 0.03 -   -   0.66 0.15 0.26 

  Bio -2.57 (0.68) 0.00 -   -   -   -   -   -2.20 (1.16) 0.06 -   0.53 0.14 0.31 

  Env + Bio -3.83 (1.41) 0.01 -   -   -   0.60 (0.31) 0.06 -   -4.73 (2.55) 0.07 -   0.66 0.12 0.26 

  Full -1.65 (0.31) 0.00 -   -   -   0.07 (0.28) 0.8 -   -0.36 (0.24) 0.14 -   0.8 0.27 0.48 

Pelophylax 
perezi 

                     

  Env 0.89 (0.18) 0.00 -  -  1.39 (0.53) 0.01 -0.89 (0.48) 0.06 -  -  -  0.57 0.11 0.13 

  Bio 0.85 (0.18) 0.00 -  -    -  -  -  0.49 (0.20) 0.02 0.52 0.12 0.14 

  Env + Bio 0.89 (0.18) 0.00 -  -  1.39 (0.53) 0.01 -0.89 (0.48) 0.06 -  -  -  0.57 0.11 0.13 

  Full 0.87 (0.28) 0.00 -   -   1.29 (0.62) 0.04 -0.71 (0.54) 0.19 -   -   -   0.68 0.17 0.21 

Rana 
iberica 

                                      

  Env -1.42 (0.27) 0.00 1.44 (0.51) 0.01 0.62 (0.25) 0.02 -1.83 (1.08) 0.09 1.61 (0.85) 0.06 0.79 (0.55) 0.15 -   -   0.83 0.46 0.52 

  Bio -3.22 (0.95) 0.00 -   -   -   -   -   -4.54 (1.63) 0.01 -   0.66 0.34 0.5 

  Env + Bio -4.81 (2.56) 0.06 -   -   -3.25 (1.02) 0.00 4.69 (0.84) 0.00 -   -6.27 (4.83) 0.2 -2.05 (0.93) 0.03 0.89 0.58 0.65 

  Full -1.74 (0.69) 0.01 -   -   -1.61 (0.61) 0.01 2.62 (0.65 0.00 -   -0.91 (0.48) 0.06 -1.87 (0.62) 0.00 0.91 0.61 0.68 
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Table 5.1 – (Cont.) 

Species/  Intercept   Alt   Prec   SO   Water   SOxAlt   Pclar   Plen         

models B (SE) P B (SE) P B (SE) P B (SE) P B (SE) P B (SE) P B (SE) P B (SE) P AUC Kappa TSS 

Lissotriton 
boscai 

                     

  Env -2.39 (0.32) 0.00 -  -  -1.11 (0.34) 0 -  -  -  -  0.61 0.16 0.38 

  Bio -5.34 (1.8) 0.00 -  -  -  -  -  -6.37 (2.99) 0.03 -  0.64 0.12 0.29 

  Env + Bio -5.34 (1.8) 0.00 -  -  -  -  -  -6.37 (2.99) 0.03 -  0.64 0.12 0.29 

  Full -5.34 (1.8) 0.00 -   -   -   -   -   -6.37 (2.99) 0.03 -   0.64 0.11 0.29 

Salamandra                                       

  Env -1.31 (0.25) 0.00 -   0.38 (0.21) 0.07 -1.28 (0.3) 0.00 -   -   -   -   0.78 0.39 0.46 

  Bio -1.62 (0.39) 0.00 -   -   -   -   -   -1.19 (0.63) 0.06 -1.09 (0.44) 0.01 0.77 0.35 0.43 

  Env + Bio -1.62 (0.39) 0.00 -   -   -   -   -   -1.19 (0.63) 0.06 -1.09 (0.44) 0.01 0.77 0.35 0.43 

  Full -2.34 (1.78) 0.19 -   -   -   -   -   -2.12 (2.7) 0.43 -0.84 (0.55) 0.13 0.83 0.4 0.5 

Triturus 
marmoratus 

                     

  Env -1.96 (0.27) 0.00 -  -  -0.92 (0.29) 0.00 -  -  -  -  0.59 0.14 0.28 

  Bio -3.42 (1.10) 0.00 -  -  -  -  -  -3.65 (1.9) 0.05 -  0.59 0.2 0.43 

  Env + Bio -3.42 (1.10) 0.00 -  -  -  -  -  -3.65 (1.9) 0.05 -  0.59 0.2 0.43 

  Full -2.60 (0.85) 0.00 -   -   -   -   -   -2.22 (1.31) 0.09 -   0.66 0.04 0.08 
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Figure 5.1 - Maps showing the observed presences/absences of four amphibian species in the river Sabor watershed (NE 

Portugal) in 2015, and their potential distributions predicted from geostatistical models combining environmental effects, biotic 

interactions and spatial dependencies across the dendritic stream network. The threshold for predicted presences was set 

equal to the observed prevalence of each species  
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Figure 5.2 - Maps of potential distributions of four amphibian species under the worst case scenario of future crayfish 

expansion in the river Sabor watershed (NE Portugal). The scenario was built considering a five-fold increase in the 

relative risk of crayfish occurrence (both P. clarkii and P. leniusculus) at each stream segment in relation to the baseline 

scenario corresponding to the predicted distribution of each species in 2012 (Filipe et al., 2017). In each map we indicate 

the waterlines where potential habitat will remain available (suitable habitat), and those where potential habitat will be 

lost (lost habitat) in relation to the baseline scenario. Maps were produced using predictions from either spatial or non-

spatial (i.e. including only environmental effects and biotic interactions) models. 
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Figure 5.2 – (Cont) 
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Torgegrams suggested the occurrence of spatial dependencies in model residuals among 

flow-connected sites for R. iberica, L. boscai, S. salamandra and T. marmoratus, while spatial 

dependencies for flow-unconnected sites were apparent for S. salamandra and, particularly, 

A. cisternasii (Figure 5.S3). The tail-up component was included in the best covariance 

structure for A. obstetricans, R. iberica, and S. salamandra, and the Euclidean component was 

included in the best models for A. cisternasii, P. perezi, L. boscai, S. salamandra and T. 

marmoratus (Table 5.2). The tail down component was only included in the best model for R. 

iberica. Overall, the spatial components accounted for a much larger amount of explained 

variation than the environmental + biotic effects (Table 5.2), and thus the full models showed 

the best performance in terms of AUC, Coehen’s Kappa and TSS (Table 5.). The AUC of the 

full models was reasonable ( 0.80-0. 91) for A. cisternasii, A. obstetricans, R. iberica, and S. 

salamandra, but it was low for the other species (0.64-0.68) (Table 5.), which were thus not 

considered to map predicted distributions.  

From a total of 1,468 km of waterlines in the Sabor watershed, the maps of predicted 

distributions based on the geostatistical models combining environmental, biotic and spatial 

predictors indicated that the species with most potential habitat was S. salamandra (64.6% of 

total stream length), followed by A. obstetricans (51.0%), A. cisternasii (48.4%) and R. iberica 

(38.9%) (Figure 5.1). S. salamandra occurred in lower order streams throughout the basin, 

while both Alytes species were widespread in lower and middle order streams, with A. 

    Spatial           Nugget 

Species 
Environment 
+ Biotic 

Tail 
Up 

  
Tail 
Down 

  Euclidean     

Alytes 
cisternasii 

3.7 -   -   32.2 (Gaussian) 64.1 

Alytes 
obstetricans 

1.6 98.4 (Epanech) -  -   0.0 

Pelophylax 
perezi 

4.4 -  -  31 (Cauchy) 64.6 

Rana 
iberica 

9.9 27.5 (Mariah) 30 (Spherical) -  32.6 

Lissotriton 
boscai 

2.8 -  -   0.0 (Spherical) 97.2 

Salamandra 
salamandra 

3.9 17.7 (Spherical) -  0.28 (Gaussian) 50.9 

Triturus 
marmoratus 

1.9 -   -   0.22 (Gaussian) 76.6 

 

Table 5.2 - Covariance structure selected for the geostatistical models of each species, indicating the percentage of variation 

accounted by the fixed and each spatial component of the final models. For each spatial component we indicate the function 

used to specify the covariance structure. 
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cisternasii occurring primarily in the south and southeast and A. obstetricans in the north and 

northwest (Figure 5.1). R. iberica was largely restricted to lower order streams in more 

mountainous areas of the north and northwest. The distributions of these species correspond 

to streams with low probability of occurrence of both invasive crayfish, but that were predicted 

to be progressively colonised under the invasion scenarios (Figure 5.S4 and Figure 5.S5). 

Expansion of crayfish through the stream network was predicted to decrease the length of 

potential stream habitat for amphibians, with each species becoming progressively more 

confined to first and second order streams (Figure 5.2, Table 5.S2). Predictions using spatial 

models suggested that the length of habitat of A. cisternasii will decline up to about 30% due 

to the expansion of P. leniusculus, while a reduction of about 7% was predicted for A. 

obstetricans due to the expansion of P. clarkii. The potential habitat for R. iberica and S. 

salamandra were expected to decline by about 20%, due to the joint expansion of P. 

leniusculus and P. clarkii. Non-spatial models predicted even larger declines for A. cisternasii 

(up to 69.9%), A. obstetricans (51.3%) and R. iberica (53.9%), but not as much for S. 

salamandra (24.1%) (Figure 5.2, Table 5.S2). For the latter species, there were upstream 

areas in the far north that were predicted to be occupied by the non-spatial model but not by 

the spatial model (Figure 5.2), suggesting that environmentally suitable habitats may remain 

unoccupied due to spatial processes.  

5.4 Discussion 

Our study showed the value of combining geostatistical and biotic interactions modelling to 

quantify the spatial consequences of biological invasions on native species in dendritic stream 

networks, and to predict the spatial distribution of ecological refuges under current and future 

invasion scenarios. Using this approach, we confirmed the strongly negative interactions 

between invasive crayfish and amphibians (Cruz, Pascoal, et al., 2006; Cruz, Rebelo, et al., 

2006; Ficetola et al., 2011; Riley et al., 2005), while advancing previous knowledge by showing 

that such interactions are causing marked range contractions at the watershed scale in many 

species, and that this effect may intensify in the future under plausible scenarios of crayfish 

expansion. Moreover, our results show that stream headwaters (i.e., stream orders 1 and 2; 

Finn et al., 2011) represent key refuges from crayfish invasion for many amphibian species, 

as these streams dry out for more or less extended periods during the dry season (Ferreira et 

al., 2016) and are thus expected to remain largely free from crayfish impacts (Cruz & Rebelo, 

2007; Filipe et al., 2017). Overall, our study reinforces the conservation importance of stream 

headwaters in the Mediterranean region, which are increasingly perceived to play key roles as 

refuges from biological invasions and other human-mediated disturbances, both for 
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amphibians (de Vries & Marco, 2017) and other vulnerable species (Quaglietta et al., 2018; 

Sousa et al., 2019). Our approach may be applied to other aquatic species, with major 

implications for conservation and management by permitting a better identification of areas 

acting as ecological refuges under biological invasion.  

5.4.1 Study limitations  

Although our study had some limitations, it is unlikely that they affected our main conclusions 

in any significant way. One potential problem is that we sampled streams from first to sixth 

orders, and it may be argued that the prevalence of amphibian species may be underestimated 

in larger streams due to lower detectability. Although this can be addressed by modelling 

occupancy while controlling for detectability (e.g., MacKenzie et al., 2006), this was not 

possible in our case because occupancy-detection models accounting for hydrological tail-up 

and tail-down spatial dependencies have yet to be developed. To deal with this problem, we 

have surveyed only wadable streams and increased the sampling effort in larger streams, 

which should have contributed to achieve comparable detectability across stream orders. This 

is supported by the higher prevalence of P. perezi and the crayfish P. clarkii in higher than 

lower orders, which suggest that we did not miss species known to occur in larger streams 

(Cruz, Rebelo, et al., 2006; Filipe et al., 2017). Moreover, species distribution patterns 

observed in our study were consistent with those of others focusing on stream-dwelling 

amphibians in Iberia (Cruz, Rebelo, et al., 2006; de Vries & Marco, 2017), thereby suggesting 

that they were not artefacts shaped by sampling biases. Another potential problem is that 

amphibian models were based on large scale variables, while ignoring local drivers such as 

the structure and composition of riparian vegetation, the land uses surrounding streams and 

water quality (Crawford & Semlitsch, 2007; Guzy et al., 2018; Riley et al., 2005). Missing these 

variables might have reduced the predictive ability of our models, but we believe that the 

variables considered are relevant to investigate large scale distribution patterns, as observed 

for instance in other species modelled in the Sabor watershed (Ferreira et al., 2016; Filipe et 

al., 2017; Quaglietta et al., 2018). Nevertheless, while our models should be informative to 

understand broad changes in amphibian distributions in relation to crayfish invasion, they may 

be less useful to predict whether a given species will be present at any given site, which may 

be strongly affected by more local environmental conditions.  
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5.4.2 Effects of biotic interaction and environmental effects on amphibian 

distributions  

The negative responses of amphibians to invasive crayfish observed in the Sabor watershed 

were comparable to those reported elsewhere (Cruz, Pascoal, et al., 2006; Cruz, Rebelo, et 

al., 2006; Gamradt et al., 1997; Gamradt & Kats, 1996; Girdner et al., 2018; Nyström et al., 

2001, 2002). However, impacts of P. leniusculus are reported here for the first time in Iberia, 

though this crayfish was already associated with local amphibian declines in Sweden (Nyström 

et al., 2001, 2002). We also confirmed that crayfish impacts seem to be particularly strong on 

urodela (salamander and newts), possibly because their eggs and larvae are highly vulnerable 

to introduced predators (Cruz, Rebelo, et al., 2006; Gamradt et al., 1997; Gamradt & Kats, 

1996; Girdner et al., 2018). Mediterranean amphibians may be especially vulnerable to crayfish 

because many species are adapted to live in water bodies that dry out in summer and are 

naturally free from fish and other large predators (e.g., Beja & Alcazar, 2003; Ferreira & Beja, 

2013), and thus may be less adapted to cope with crayfish predation than species living in 

permanent waters (Cruz, Rebelo, et al., 2006; Nunes et al., 2011). This is supported by the 

lack of negative effects on P. perezi, which is known to thrive in permanent waters where 

predators are abundant (Beja & Alcazar, 2003; Cruz, Rebelo, et al., 2006; Ferreira & Beja, 

2013). We also found no negative effects on B. spinosus, which is widespread in permanent 

waters and seems to be less vulnerable to predators due to its toxic eggs and larvae (Cruz & 

Rebelo, 2005), though a previous study reported negative impacts of P. clarkii (Cruz, Rebelo, 

et al., 2006). In contrast, we found negative impacts on A. cisternasii, which is associated with 

more permanent water bodies and was found previously to be unaffected by crayfish (Cruz, 

Rebelo, et al., 2006). However, that study was carried out in an area where only P. clarkii 

occurred, while in our study we only found significant negative effects for P. leniusculus, 

suggesting that impacts may differ among crayfish species. P. leniusculus also showed strong 

negative effects on R. iberica, possibly because this species occurs primarily in mountainous 

streams largely unsuitable for P. clarkii (Filipe et al., 2017). These results suggest that invasion 

by multiple crayfish species may be more serious than invasion by a single species, by 

increasing the types of habitats invaded (Filipe et al., 2017) and the number of species 

vulnerable to predation.  

Although our study showed that many amphibian species were associated with stream 

headwaters, different species occurred in different areas, probably due to differences in 

ecological requirements. For instance, environmental models suggested that while both A. 

cisternasii and A. obstetricans were mainly found in lower and middle stream orders, the former 

favoured areas with lower precipitation at low elevation, while the reverse was found for the 
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latter. This probably explains their largely parapatric distributions in the study area, as 

observed at broader spatial scales (Reino et al., 2017). Models for R. iberica also confirmed 

their preference for small permanently flowing streams in mountainous areas (Bosch et al., 

2006; Rodríguez-Prieto & Fernández-Juricic, 2005). Many of these environmental effects, 

however, were lost from the best models, or became non-significant, once biotic interactions 

were included. In some cases, there were also changes in the significant environmental 

effects, with for instance the selection of permanently flowing waters by A. obstetricans only 

becoming apparent after controlling for the effects of P. clarkii. These results support the idea 

that the two exotic crayfish are key drivers constraining amphibian distributions in our study 

area, limiting the range of environmental conditions where they can be found. 

5.4.3 The role of spatial dependencies across the stream network  

Incorporating spatial covariance structure greatly enhanced the distribution models, with both 

Euclidean and hydrologic distances often included in the best models. The Euclidean 

component was important for A. cisternasii, P. perezi, S. salamandra and T. marmoratus, 

suggesting that adjacent streams have more similar occupancy status than streams farther 

apart, which may be due to the dispersal of individuals overland (e.g., Semlitsch, 2008) or 

similarities regarding unmeasured spatially-structured environmental variables (e.g., land 

cover/land uses). Euclidean effects may be particularly important in species associated with 

headwaters, because nearby streams may be flow-unconnected and at long hydrologic 

distances from each other. The tail-up component was important for A. obstetricans, R. iberica 

and S. salamandra, which may be a consequence of flow-connected sites having similar 

environmental conditions, but also of similarities in occupancy status due for instance to 

downstream drift of larvae or their active swimming upstream. The tail-down component was 

only important for R. iberica, possibly reflecting dispersal movements along the waterlines 

irrespective of flow, as this is a species strongly attached to riverine habitats during the adult 

and larval stages, and may have low dispersal ability overland as suggested by the lack of the 

Euclidean component.  

In the full mixed models, spatial dependencies accounted for a far greater proportion of 

variation in species occurrences than the fixed component, as observed in other studies using 

geostatistical tools (Filipe et al., 2017; Lois et al., 2015; Lois & Cowley, 2017; Quaglietta et al., 

2018). This was probably because the fixed component was specified using variables that are 

spatially structured, either Euclidean (e.g. precipitation, elevation) or hydrologic (e.g., stream 
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order), and thus their effects were reduced after considering spatial dependencies. It is worth 

noting, however, that variables describing biotic interactions generally remained significant in 

the full models, further emphasizing their importance. The fixed component would probably 

have had a larger share of the explained variation, probably contributing to the overall 

predictive power of the models, if we had considered variables describing more local 

environmental conditions that are known to affect stream-dwelling amphibians (e.g., Crawford 

& Semlitsch, 2007; Guzy et al., 2018; Riley et al., 2005). Future studies combining drivers 

operating at landscape and local scales should thus be developed, which would likely improve 

predictions on potentially favourable areas across the watershed.  

5.4.4 Predicting amphibian refuges under crayfish invasion 

Despite the limited explanatory power of the spatial distribution models, the mapping of 

predicted distributions clearly showed that further crayfish expansions will likely result in 

amphibian range contractions, with populations becoming progressively more encroached in 

lower order streams. This could be inferred quantitatively for four species with geostatistical 

models with sufficient predictive ability (A. cisternasii, A. obstetricans, R. perezi and S. 

salamandra), but will probably occur also for the other two species showing negative 

associations with crayfish occurrence (L. boscai and T. marmoratus) in ours and other studies 

(Cruz, Rebelo, et al., 2006). The non-spatial models (i.e., including only environment + biotic 

interactions) predicted even stronger declines in the availability of potential habitats, 

particularly for A. cisternasii, A. obstetricans and R. iberica. This is because spatial models 

anchor model predictions to the current distribution of each species, and thus may be regarded 

as conservative because they add inertia against abrupt changes in distribution driven by 

environmental factors (Record et al., 2013). In contrast, the non-spatial models are only driven 

by changes in crayfish occurrence irrespective of the spatial structure in current amphibian 

distribution, thereby disregarding possible spatially structured population processes shaping 

amphibian species distributions (Record et al., 2013). Therefore, we expect that the extent of 

range contractions will be somewhere in-between the predictions of spatial and non-spatial 

models, which may thus be substantial for A. cisternasii (up to 30.6-69.6%), A. obstetricans 

(6.8%-51.3%) and R. iberica (20.6%-53.9%), though only moderate to S. salamandra (22.3-

24.1%). The consequences of such changes for population persistence should be evaluated 

in future studies, as it is likely that the risk of local extinctions will be high for small and isolated 

populations confined to headwater streams. 
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5.4.5 Conservation and management implications 

Invasion by alien crayfish is a major cause of concern for amphibian conservation (e.g., Cruz, 

Pascoal, et al., 2006; Cruz, Rebelo, et al., 2006; Gamradt et al., 1997; Gamradt & Kats, 1996; 

Girdner et al., 2018; Nyström et al., 2001, 2002). Addressing this problem is challenging, 

because once established invasive crayfish populations are virtually impossible to eradicate, 

and thus remediation of ecosystems invaded by crayfish have met very limited success 

(Gherardi et al., 2011; Stebbing et al., 2014). Furthermore, many invasive crayfish species are 

still expanding within and across watersheds (e.g., Bernardo et al., 2011; Kouba et al., 2014), 

and so the problem is likely to get worse in the future. In this context, our study suggests that 

stream headwaters may be critical for the persistence of many stream-dwelling amphibian 

species, at least in the Mediterranean region, as they often hold diverse amphibian 

communities (de Vries & Marco, 2017) and are likely to provide refuges with minimal or no 

crayfish impacts (Filipe et al., 2017). These headwaters correspond not only to small order 

streams in mountainous areas, as those inhabited for instance by A. obstetricans and R. 

perezi, but also small temporary streams at lower elevation, which seem to be preferred by 

species such as A. cisternasii. Overall, therefore, headwater streams should be regarded as 

priority targets for conservation, requiring the preservation of habitat conditions compatible 

with amphibian persistence. Although the ecological requirements of stream-dwelling 

amphibians are poorly known in the Iberian Peninsula (de Vries & Marco, 2017), it is likely that 

conservation efforts should target preserving water quality, natural flow regimes, well-

developed riparian vegetation and suitable terrestrial habitats (e.g., Crawford & Semlitsch, 

2007; Guzy et al., 2018; Riley et al., 2005). Furthermore, efforts should be made to avoid the 

colonisation of headwater refuges by invasive crayfish such as P. leniusculus, which is fast 

expanding into new areas (Anastácio et al., 2015; Bernardo et al., 2011), and may be able to 

colonise mountainous headwater streams inhabited by endemic amphibians such as R. iberica 

(Filipe et al., 2017). This would require monitoring crayfish populations in key amphibian 

refuges, which should be used to trigger careful management programs if the risk of negative 

impacts become unacceptably high, involving for instance the implementation of control or 

eradication programs, and/or the introduction of physical barriers to crayfish dispersal 

(Gherardi et al., 2011; Sousa et al., 2019; Stebbing et al., 2014). Although such conservation 

measures may require considerable efforts and may only be applicable in some areas, 

maintaining stream headwaters free of invasive crayfish should have major conservation 

benefits for a range of endangered species (de Vries & Marco, 2017; Quaglietta et al., 2018; 

Sousa et al., 2019) and for aquatic biodiversity in general (Finn et al., 2011; Meyer et al., 2007). 
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5.5 Conclusions 

Under biological invasion, many native species are becoming confined to refuges where 

invasive species are still absent or scarce, and thus may hold remnant populations of high 

conservation value (e.g., Chapman et al., 1996; Grabowski et al., 2009; Habit et al., 2010; 

Radinger et al., 2019). This study provides a framework to predict the location and 

environmental drivers of such refuges, using geostatistical tools to model native species 

responses to exotic species while controlling for environmental effects and spatial 

dependencies across dendritic stream networks (Filipe et al., 2017; Peterson et al., 2013). This 

approach is relatively simple and can be used where only snapshot surveys on the occurrence 

patterns of native and invasive species are available, though it can be easily extended to deal 

with data on distributional dynamics (Quaglietta et al., 2018) and additional complexities such 

as climate change (Peterson et al., 2013). This framework may be generally useful to 

understand the distributional consequences of interactions between native and invasive 

species, providing information on the location of potential refuges where conservation efforts 

should concentrate, and on management actions required to enhance the persistence of 

remnant populations within refuges. 
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needed to repeat all analysis using the SSN package. The raw data on amphibian occurrences 

are available from the authors upon request. 
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5.7 Supplementary Material 

 

Supplementary Methods: Workflow detailing the methodological 

procedures 

 

# Pre-processing of geographical river basin data: 

The catchment of the river Sabor and its river segments were extracted from the Catchment 

Characterisation and Modelling (CCM) river network database (Vogt et al., 2007), available 

from the web page: http://ccm.jrc.ec.europa.eu/.  

In ArcGIS, we clipped the Sabor river basin using the CATCHMENTS shapefile: 

We selected the Sabor river catchment polygons using the tool Select by Attributes using the 

expression - "WSO6_ID" = 442389, and then we exported the selected elements to a new 

shape file; 

We used the new shape file to select the river segments using the tool Select by Location, and 

then we exported the selected elements to a new shape file. 

To generate the points for model predictions, we split the stream network in segments with a 

maximum length of 1000 meters: 

We used the Generate Points Along Lines tool, which is available in the Data management 

toolbox under "sampling". We then set to 1000 meters the specific distance between points 

along the lines; 

We used the points from the previous step to split the stream network using the Split Line at 

Point tool, which is in the Data Management toolbox under "Features";  

We computed the segments centroids of the split segments using the Feature to Point tool, 

under the same toolbox. 

  

http://ccm.jrc.ec.europa.eu/
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# Environmental variables 

We characterized each point sampled for amphibians and each point used to predict 

amphibian distributions using four environmental variables: elevation [Alt], total annual 

precipitation [Prec], Strahler’s stream order [SO] and the probability of water presence during 

the dry season [Water]. We also used two variables describing the potential for biotic 

interactions between amphibians and either Procambarus clarkii [Pclar] or Pacifastacus 

leniusculus [Plen]. 

We estimated elevation [alt] from a DEM with a 10-meter resolution built from digitalized 

1:25,000 topographic maps. 

We extracted total annual precipitation [Prec] from WordClim 2 data set  with a 30’ (≈ 1km) 

resolution (Fick & Hijmans, 2017) available at http://worldclim.org/version2; 

We took Strahler’s stream order [SO] from the CCM 2.1 data set. 

We computed the probability of each stream segment holding water in the summer [Water] 

based in 189 site observations in 2012 in previous study (Ferreira et al., 2016). 

As biotic variables we used the probability of P. clarkii [Pclar] or P. leniusculus [Plen] occurring 

in stream segments, estimated from the geostatistical distribution models computed by Filipe 

et al. (2017), which were based on electrofishing data collected on 167 sites in 2012. 

To extract variables values for each point described in [4]: 

For variables in raster formats (Alt and Prec), we used the Extract Multi Values to Points, in 

the Spatial Analyst Tools, under “Extraction”; 

For variables in vector format (SO, Water, Pclar and Plen), we used the Spatial Join tool, in 

the Analysis Tools toolbox under “Overlay”. 

Before analysis, the values of all variables were standardised to zero mean and unit standard 

deviation, by subtracting each value from the overall mean of the observed sites and divide by 

their standard deviation.  

 

  

http://worldclim.org/version2
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# Simulation of crayfish expansion 

We used the geostatistical models of crayfish distribution provided by Filipe et al. (2017) to 

simulate the potential expansion of Procambarus clarkii and Pacifastacus leniusculus across 

the Sabor watershed. Simulations were based on the idea that expansion of a species will 

occur towards stream reaches where its probability of occurrence is estimated to be higher by 

the model. In practice, this was implemented by raising the probability of occurrence estimated 

at a given site assuming increases in the relative risk (Rr) of the species occurring at that site. 

The relative risk was defined as the odds ratio of the probabilities of crayfish occurrence under 

future and current conditions, where odds are the ratio of the probability of occurrence and the 

probability of absence. Given a relative risk, Rr, the new probability of occurrence under an 

expansion scenario is computed by applying the expression: 

𝑝′𝑖
(1 − 𝑝′𝑖)

𝑝𝑖
(1 − 𝑝𝑖)

= 𝑅𝑟 <=> 𝑝′𝑖 =
𝑅𝑟. 𝑝𝑖

1 + 𝑝𝑖(𝑅𝑟 − 1)
, 𝑓𝑜𝑟𝑅𝑟 = {2,3,5} 

where pi and p'i are the probabilities of crayfish occurrence at present and in the future at site 

i.  

Using the expression in [12], we simulated for each species three expansion scenarios, 

corresponding to two, three and five-fold increases of the relative risk (Rr). We also considered 

the isolate and joint effects of expansion of just one or both species, respectively, 

corresponding to the 16 scenarios provided in Table 5.Sa.  

Table 5.Sa: Summary of crayfish expansion scenarios analysed in this study 

Relative Risk Scenarios 

Pacifastacus leniusculus 

1x 2x 3x 5x 

P
ro

c
a
m

b
a
ru

s
 c

la
rk

ii 

1x C1L1 C1L2 C1L3 C1L5 

2x C2L1 C2L2 C2L3 C2L5 

3x C3L1 C3L2 C3L3 C3L5 

5x C5L1 C5L2 C5L3 C5L5 
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# STARS processing 

To produce the files to analyse in R with SSN, we used STARS, a toolbox for ArcGIS package 

available at: https://www.fs.fed.us/rm/boise/AWAE/projects/SSN_STARS/software_data.html.  

We followed the tutorial provided by the authors of the STAR toolbox.  In each step, we will 

refer the number the section in the tutorial between brackets. The tutorial is available at: 

https://www.fs.fed.us/rm/boise/AWAE/projects/SSN_STARS/downloads/STARS/STARS_tuto

rial_2.0.7.pdf. 

We imported the Sabor river shapefile produced in step [2.b] into a Landscape Network 

geodatabase (LSN file) using the Polyline to Landscape Network tool under “Pre-processing” 

(section 7). Because the CCM 2.1 dataset is a topologically correct river network, we did not 

need to check topological errors (section 8).  

We used watershed areas to weight the relative influence of the branching upstream 

segments. We accumulated the attribute CATCHEMENT of CCM2.1 in the stream network 

using the Accumulate Values Downstream tool under “calculate” (section 12). 

To incorporate the observations and all the predictions point sets, we used the Snap Points to 

Landscape Network tool. Because the locations of the observed sites were taken on the field, 

we had to set a search radius (100 meters) and manually check if the sites were snapped in 

the right location on the stream network. This was not needed for predictions as these points 

were generated on the stream network (section 14). 

We assigned the accumulated watershed area computed in step [17] to observed and 

predictions points, using Watershed Attributes tool (section 15). 

We computed the distance between the outlet and: 

each stream segment (Upstream Distance – Edges tool); 

each point (observed sites and prediction points; Upstream Distance – Sites tool). 

(section 16) 

To compute the spatial weights needed to fit the spatial model, we: 

Calculated the segment proportional influence related to accumulated watershed area 

(Segment PI tool) (section 17). 

Calculated the additive function in: 

Stream segments (Additive Function – Edges); 

https://www.fs.fed.us/rm/boise/AWAE/projects/SSN_STARS/software_data.html
https://www.fs.fed.us/rm/boise/AWAE/projects/SSN_STARS/downloads/STARS/STARS_tutorial_2.0.7.pdf
https://www.fs.fed.us/rm/boise/AWAE/projects/SSN_STARS/downloads/STARS/STARS_tutorial_2.0.7.pdf
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Sites (observed and predictions; Additive Function – Sites). 

(section 18) 

Because the set of observed sites is different for each species, we repeated the previous 

process and exported a SSN file for each species. In each SSN file there is a representation 

the topology of the Sabor stream network, spatial data to build the geostatistical models 

(observations and variables), and spatial data to make predictions (16 crayfish expansion 

scenarios). All SSN files are together with the R scripts and associated files (see Tables 5.Sb 

and 5.Sc) are available in Dryad (https://doi.org/10.5061/dryad.mw6m905tb), and they can be 

used to repeat all analysis in R using the SSN package (section 19). 
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Table 5.Sb: List of R scripts and SSN files available in Dryad (https://doi.org/10.5061/dryad.mw6m905tb) 

and that can be used to repeat all analysis in R using the SSN package. 

Name Description 

Script.R R script with instructions for model selection and prediction. 

start.rdata R data file with objects to facilitate model selection and prediction (table 

3). 

lsnAc.ssn SSN file with site observations of Alytes cisternasii in the Sabor river 

basin, variables for model building and selection, and 16 crayfish 

expansion scenarios.  

lsnAo.ssn SSN file with site observations of Alytes obstetricans in the Sabor river 

basin, variables for model building and selection, and 16 crayfish 

expansion scenarios. 

lsnBs.ssn SSN file with site observations of Bufo spinosus in the Sabor river basin, 

variables for model building and selection, and 16 crayfish expansion 

scenarios. 

lsnLb.ssn SSN file with site observations of Lissontriton boscai in the Sabor river 

basin, variables for model building and selection, and 16 crayfish 

expansion scenarios. 

lsnPp.ssn SSN file with site observations of Pelophylax perezi in the Sabor river 

basin, variables for model building and selection, and 16 crayfish 

expansion scenarios. 

lsnRi.ssn SSN file with site observations of Rana iberica in the Sabor river basin, 

variables for model building and selection, and 16 crayfish expansion 

scenarios. 

lsnSs.ssn SSN file with site observations of Salamandra in the Sabor river basin, 

variables for model building and selection, and 16 crayfish expansion 

scenarios. 

lsnTm.ssn SSN file with site observations of Triturus marmoratus in the Sabor river 

basin, variables for model building and selection, and 16 crayfish 

expansion scenarios. 
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Table 5.Sc: List of R objects available through Dryad (https://doi.org/10.5061/dryad.mw6m905tb) and that 

can be used together with SSN files and R scripts (Table B) to repeat all analysis in R using 

the SSN package. 

Name Description 

CorMdls A list with the 180 possible spatial structures that can be fitted in function 

glmssn of the package SSN. 

Sps A character vector with species abbreviations for use in loops. 

Sps.sh A shorter character vector with species abbreviations for use in loops. 

 

# Model building in R using the SSN package 

To carry out the statistical analysis we produced an R script that is provided in 

Amphibians&Crayfish.zip available in Dryad (https://doi.org/10.5061/dryad.mw6m905tb). This 

script can run properly, without any editing, if the .zip file is extracted to a drive named “C” in 

Windows. We inserted in the script a reference to each step of this document. 

We fitted the geostatiscal models using the SSN package (Ver Hoef et al., 2014). For model 

selection we used the MuMIn package (Barton, 2016). To handle the spatial data in R we used 

the rgdal package (Bivand et al., 2019). We computed model evaluation metrics using the 

modEvA package (Barbosa et al., 2016). 

We imported the SSN file and computed the distance matrix. We also extracted the table with 

species observations and variables to a spatial data frame object. 

We built 3 sets of saturated logistic regression models (full models) with all available variables:  

Environmental variables (i.e., Alt, Prec, SO and Water); 

Biotic variables (i.e., Pclar and Plen); 

Environmental + Biotic. 

We fitted all possible combination of variables with the dredge function (Barton, 2016) and 

selected the configuration with the lowest AICc for the 3 sets of models (best models). 

For the best Environmental + Biotic model, we extracted the residuals and computed the 

empirical semivariogram (Torgegram). 

https://doi.org/10.5061/dryad.mw6m905tb
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Using the glmssn function (Ver Hoef et al., 2014), we fitted all possible spatial structures to the 

best Environmental + Biotic model residuals. We retained the spatial structure that minimized 

the AICc. This step can take about one hour for each species. 

Using the glmssn function, we built the Environmental, Biotic, and Environmental + Biotic 

model using the variable configurations selected in step [27]. We computed model residuals 

using leave-one-out cross-validation procedure (Ver Hoef et al., 2014). With the AUC and 

threshMeasures functions (Barbosa et al., 2016) we computed the AUC, Koen’s Kappa, and 

true skill statistics (TSS) using the prevalence as a threshold. 

We built the Environmental + Biotic + Spatial model by combining the variable configuration of 

the Environmental + Biotic model selected in step [27] with spatial structure that best fitted the 

residuals selected in step [29]. We then computed model residuals using leave-one-out cross-

validation procedure (Ver Hoef et al., 2014). With the AUC and threshMeasures function 

(Barbosa et al., 2016) we computed the AUC, Koen’s Kappa, and true skill statistics (TSS) 

using the prevalence as a threshold. 

 

# Predicting species occurrences under current and simulated crayfish expansion scenarios 

We used the models produced in the previous steps, together with the 16 crayfish expansion 

scenarios (Table S1), to predict the distributions of each amphibian species at present and in 

the future. For each species and expansion scenario, probabilities of species occurrence 

produced by the models were transformed into estimated presences/absences using current 

prevalence as the threshold for species presence. 

A first set of estimated distributions was produced using the Environmental + Biotic models 

built in step [30], thereby excluding the spatial (geostatistical) component (i.e., step [29]). This 

involved the following procedure:  

We imported each of the prediction points produced in step [11] using the function 

importPredpts and created downstream hydrologic distances matrices between points using 

the createDistMat function. 

We used the predict.glmssn function to predict for each of the set of predictions points. 

We transformed the predictions values from the logit scale to the probabilistic scale. 

We assigned presence to the stream segment under the current scenario if the predicted value 

is higher than the observed prevalence calculated on step [33]. 
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Predictions of species distributions were estimated using exactly the same procedure as in 

[33] using the Environmental + Biotic + Spatial models built in step [31]. 

We saved an .rdata file for each species. For each species, we manually exported to a point 

shapefile using the writeOGR function the predicted occurrences for each of the 16 expansion 

scenario for Spatial and Non-Spatial models (8 species x 2 models x 16 scenarios = 256 

shapefiles). 

 

# Mapping predicted species distributions under current and simulated crayfish expansion 

scenarios 

We combined the predictions in the point shapefiles with the splitted stream network we had 

produced in step [3] using the Spatial Join tool, in the Analysis Tools toolbox under “Overlay” 

on ArcGis. 

For the species where the models achieved a good discrimination ability (AUC >= 0.80), we 

mapped the distribution of amphibians refuges by combining the scenario with no increase in 

the relative risk of crayfish occurrence (the base scenario, “C1L1”) with the most extreme 

scenario of crayfish invasion (“C5L5”): 

We classified stream segments with predicted absences in both scenarios as unsuitable 

habitat; 

We classified stream segments with predicted presences in both scenarios as suitable habitat 

held under the most extreme scenario of crayfish invasion; 

We classified stream segments with predicted presences in the base scenario (“C1L1”) and 

predicted absences in the extreme scenario as suitable habitat that will possible be lost under 

crayfish invasion; 
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Supplementary Tables 

Table 5.S1 - Amphibian species detected in surveys carried out in the Sabor watershed (NE Portugal) in January-December 2015. 

For each species we indicate the family, number of sites where it was detected (S), number of sites used in distribution modelling 

(N) and observed prevalence (S/N). We also report the number of sites where it was detected in each sampling month. Data from 

months highlighted in grey were used to build the geostatistical distribution models. 

        Month                     

Species S N S/N Jan Feb Mar Apr Jun Jul Ago Set Oct Nov Dec 

ANURA                        

Alytes 

cisternasii 
27 168 0.2 2 4 3 5 3 3 0 1 6 6 1 

Alytes 

obstetricans 
23 145 0.2 0 0 1 4 2 11 3 2 1 2 1 

Discoglossus 

galganoi 
1 - - 0 0 1 0 0 0 0 0 0 0 0 

Bufo 

spinosus 
14 134 0.1 0 0 2 3 5 2 0 3 0 0 0 

Hyla molleri 2 - - 0 0 0 0 2 1 0 0 0 0 0 

Pelophylax 

perezi 
116 168 0.7 5 14 20 23 24 24 18 19 16 14 5 

Rana iberica 43 168 0.3 3 6 6 8 8 4 7 6 6 12 2 

URODELA                        

Lissotriton 

boscai 
19 160 0.1 1 2 0 6 0 4 3 1 0 6 1 

Salamandra 

salamandra 
40 142 0.3 5 5 12 6 2 0 1 0 5 10 8 

Triturus 

marmuratus 
23 152 0.2 0 1 1 2 6 7 6 3 0 0 0 

 

  



FCUP 
Modelling biodiversity patterns and processes to 
support conservation in stream networks 

186 

Ch5 

 
Table 5.S2 - Percentage decline in the length of streams available for each amphibian species, in relation to expansion scenarios 

for the crayfish Procambarus clarkii (Pc) or Pacifastacus leniusculus (Pl), or both. Future distributions were estimated considering 

two (2x), three (3x), and five-fold (5x) increases in the odds ratio of the probabilities of crayfish occurrence under future and current 

conditions, where odds are the ratio of the probability of occurrence and the probability of absence (see the main text and Figs. 

5.S3 and 5.S4 for details). 

 Full Model   Environment + Biotic Model 

 Pl (1x) Pl (2x) Pl (3x) Pl (5x)   Pl (1x) Pl (2x) Pl (3x) Pl (5x) 

Alytes cisternasii 

Pc (1x) 0.0 16.3 23.6 30.6  Pc (1x) 0.0 34.7 54.9 69.6 

Pc (2x) 0.0 16.3 23.6 30.6  Pc (2x) 0.0 34.7 54.9 69.6 

Pc (3x) 0.0 16.3 23.6 30.6  Pc (3x) 0.0 34.7 54.9 69.6 

Pc (5x) 0.0 16.3 23.6 30.6  Pc (5x) 0.0 34.7 54.9 69.6 

Alytes obstetricans 

Pc (1x) 0.0 0.0 0.0 0.0  Pc (1x) 0.0 0.0 0.0 0.0 

Pc (2x) 2.6 2.6 2.6 2.6  Pc (2x) 22.5 22.5 22.5 22.5 

Pc (3x) 4.2 4.2 4.2 4.2  Pc (3x) 39.1 39.1 39.1 39.1 

Pc (5x) 6.8 6.8 6.8 6.8  Pc (5x) 51.3 51.3 51.3 51.3 

Rana iberica 

Pc (1x) 0.0 8.6 15.4 19.6  Pc (1x) 0.0 15.8 32.3 44.4 

Pc (2x) 2.3 9.7 16.0 19.7  Pc (2x) 9.5 24.7 39.1 47.5 

Pc (3x) 3.7 10.1 16.5 19.9  Pc (3x) 16.0 35.9 43.7 50.0 

Pc (5x) 5.5 11.9 17.4 20.6  Pc (5x) 31.2 45.7 49.6 53.9 

Salamandra salamandra 

Pc (1x) 0.0 5.3 8.9 14.1  Pc (1x) 0.0 5.0 8.5 18.5 

Pc (2x) 3.3 7.2 10.3 15.7  Pc (2x) 0.6 5.7 9.5 20.3 

Pc (3x) 5.1 9.4 13.0 18.6  Pc (3x) 2.2 6.8 11.6 22.9 

Pc (5x) 10.1 14.1 17.4 22.3  Pc (5x) 4.9 9.4 12.4 24.1 
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Supplementary Figures 

 

 

Figure 5.S1 - Map of the study area showing The Sabor watershed (NE Portugal) and the sites sampled for 

amphibians in January-December 2015. The watershed is divided in three sub-basins that were used to set the 

stratified sampling design. 
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Figure 5.S2 - Receiver operating characteristic (ROC) curve and the area under the curve (AUC) values 

for the geostatistical model of Filipe et al. (2017) for Procambarus clarkii and Pacifastacus leniusculus, 

respectively, using observations recorded collected by the authors during the transects sampled in 

2015. Model performance was computed using the modEvA package in R (Barbosa et al. 2018). 
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Figure 5.S3 - Torgegrams showing spatial dependencies in the residuals of models relating the probability of amphibian 

occurrence to variables reflecting environmental factors and biotic interactions (Table 1). Spatial dependencies are 

quantified as the semivariance in model residuals between either flow connected or flow unconnected sites, in relation 

to the hydrologic distances separating such sites. An increase in semivariance with lag distance is a signal of spatial 

autocorrelation. 
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Figure 5.S4 - Predicted distribution of Procambarus clarkii across the Sabor watershed (NE Portugal) at present and under 

different invasion scenarios, estimated using the geostatistical model of Filipe et al. (2017). Future distributions were estimated 

considering two, three, and five-fold increases in the relative (Rr) risk of crayfish occurrence at each stream segment in relation 

to the baseline scenario corresponding to the predicted distribution of each species in 2012 (Filipe et al., 2017). See the main 

text for details. 
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Figure 5.S5 - Predicted distribution of Pacifastacus leniusculus across the Sabor watershed (NE Portugal) at present and under 

different invasion scenarios, estimated using the geostatistical model of Filipe et al. (2017). Future distributions were estimated 

considering two, three, and five-fold increases in the relative risk of crayfish occurrence at each stream segment in relation to the 

baseline scenario corresponding to the predicted distribution of each species in 2012 (Filipe et al., 2017). See the main text for 

details. 
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Abstract 

Aim: Understanding temporal changes in aquatic communities is essential to address the 

freshwater biodiversity crisis. In particular, it is important to understand the patterns and drivers 

of spatial variation in local community dynamics, generalising temporal trends from discrete 

locations to entire landscapes that are the main focus of management. Here we present a 

framework for producing spatially continuous views of community dynamics, focusing on stream 

fish affected by hydropower development. 

Location: River Sabor, NE Portugal 

Methods: We sampled stream fish at thirty sites between 2012 and 2019. Community trajectory 

analysis was used to quantify the directionality and velocity of community change, and the 

geometric resemblance of community trajectories between sites. Geostatistical models for 

https://doi.org/10.1111/ddi.13189
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stream networks were used to relate metrics describing community dynamics to environmental 

variables, while controlling for Euclidean and hydrologic spatial dependencies, and to map 

spatial variation in community dynamics across the watershed. 

Results: Trajectories in multivariate space underlined strong temporal dynamics, with local 

communities deviating and returning to previous states, but without evidence for directional 

changes. Accordingly, directionality values were low and not consistently affected by 

environmental variables. The velocity of community change varied markedly across the 

watershed and it was strongly affected by stream order and elevation, with faster changes 

observed in lowland streams draining into hydroelectric reservoirs and with a high proportion of 

exotic species. Pairwise distances between community trajectories were strongly related to 

hydrologic and environmental distances between sites. 

Main conclusions: Local stream fish communities were in a loose equilibrium across the 

watershed, but they fluctuated at a faster rate closer to a hydroelectric reservoir. Integrating 

community trajectory analysis and geostatistical modelling provides a relatively simple 

framework to understand how, where and why temporal community dynamics vary across 

dendritic stream networks, and to visualise spatial patterns of community change over time in 

relation to anthropogenic impacts.  

6.1 Introduction 

In freshwater ecosystems, biological communities are changing worldwide due to multiple 

anthropogenic pressures (Albert et al., 2020; Reid et al., 2019). These changes involve for 

instance species extinctions, defaunation and taxonomic homogenization, which tend to occur 

faster at smaller spatial scales, but then scale-up to entire watersheds, regions and even 

continents (Magalhães et al., 2007; Matthews & Marsh-Matthews, 2016, 2017; Villéger et al., 

2011; Zbinden, 2020). Therefore, much effort has been devoted to understanding where, how 

and why local freshwater biological communities change over time, usually through studies 

conducted for extended periods at a number of discrete locations (e.g., Baranov et al., 2020; 

Bêche et al., 2009; Erős et al., 2020; Jourdan et al., 2018; Matthews & Marsh-Matthews, 2016). 

However, relatively few studies have investigated the patterns and drivers of spatial variation in 

the temporal dynamics of local community, though this would be important to generalize patterns 

from particular sites to landscapes and regions that are the main focus of management (Erős & 

Lowe, 2019; Hugueny et al., 2010; Schlosser, 1991; Wiley et al., 1997). Therefore, it is essential 

to provide conservation and water agencies with spatially continuous views of community 
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dynamics, thereby contributing to assess anthropogenic impacts and to prioritize management 

action (Cid et al., 2020; Fausch et al., 2002). 

Changes in local biological communities may result from extinctions or colonizations affecting 

species richness and composition, and from variations in species abundances (Grossman et al., 

1990; Magalhães et al., 2007; Matthews & Marsh-Matthews, 2017). Moreover, changes may 

follow distinct temporal patterns, being for instance gradual or saltatory, or reflecting variations 

around loose equilibria, shifts between alternative stable states or gradual directional transitions 

away from initial community structures (Collins, 2000; DeAngelis et al., 1985; Matthews & 

Marsh-Matthews, 2017). These changes can be quantified using relatively simple metrics, such 

as Kendall’s coefficient of concordance to estimate constancy in species rank abundances, or 

the coefficient of variation to estimate variability in species abundances (Grossman et al., 1990). 

However, these measures do not reveal patterns in temporal change, which have often been 

inferred by visual examination of trajectories in a chosen space of community resemblance 

(Magalhães et al., 2007; Matthews et al., 2013). Based on this idea, De Cáceres et al. (2019) 

developed an analytical framework for describing and comparing community trajectories, with 

their geometric properties providing information on the level and type of community dynamics. 

For instance, the lengths and speed of trajectories can be used to quantify how much the 

community changes over time and whether changes are gradual or abrupt, while direction can 

quantify whether changes are directional or not (De Cáceres et al., 2019). Moreover, the 

temporal convergence/divergence of trajectories at pairs of sites can be used to quantify 

whether communities are varying in synchrony or converging/diverging from each other (De 

Cáceres et al., 2019). All these metrics can be used to model spatial patterns in community 

dynamics. 

To generalize a community dynamics metric obtained at discrete locations to a spatially 

continuous surface, it is necessary to find variables that (i) are correlated with variation in that 

metric and (ii) can be easily mapped at the landscape scale. This may be difficult when 

community dynamics reflect mainly idiosyncratic variations in local conditions (Erős & Lowe, 

2019; Matthews & Marsh-Matthews, 2017), which are hard to extrapolate at larger spatial scales. 

However, generalization is possible when community dynamics are affected by large scale 

gradients, such as for instance the upstream-downstream gradients in rivers, or gradients 

related to sources of human disturbance (Gavioli et al., 2019; Gorman & Karr, 1978; Milardi et 

al., 2019; Schlosser, 1987). Moreover, local dynamics can be influenced by spatial connectivity 

associated for instance with the topology of stream networks, anthropogenic barriers and habitat 



FCUP 
Modelling biodiversity patterns and processes to 
support conservation in stream networks 

198 

Ch6 

 
fragmentation (Cañedo-Argüelles et al., 2020; Crabot et al., 2020; Erős & Lowe, 2019; Hugueny 

et al., 2010), as it affects meta-community mass effects mediated by dispersal (Heino et al., 

2015; Tonkin et al., 2018), as well as the spread of invasive species (Filipe et al., 2017; Gavioli 

et al., 2019; Milardi et al., 2019; Mota‐Ferreira & Beja, 2020). Therefore, spatial modelling of 

community dynamics requires establishing relations with environmental variables predicting 

variation in dynamics metrics, and accounting for spatial variables reflecting the effects of 

connectivity. In the case of rivers, recently developed geostatistical models provide a convenient 

framework to undertake such modelling exercise, as they account for the complex topology of 

spatial relations in dendritic networks (Peterson et al., 2013), integrating (Euclidean) spatial 

dependencies that occur overland, as well as (hydrological) spatial dependencies along the river 

network and the effects of flow connection (Peterson & Ver Hoef, 2010; Ver Hoef & Peterson, 

2010).  

Here we combine community trajectory analysis (De Cáceres et al., 2019) and geostatistical 

modelling (Peterson et al., 2013) to understand and map spatial patterns of community temporal 

dynamics in dendritic stream networks. We focused on stream fish communities (sensu 

Matthews & Marsh-Matthews, 2017) in a watershed where a hydroelectric development was 

built and started operating during the study (Jackson, 2011; Santos et al., 2017). We expected 

communities to be more unstable and eventually undergoing directional changes in lotic reaches 

close to hydroelectric reservoirs, mainly due to the spread of exotic species (Santos et al., 2017). 

To test this idea, we used data from stream fish monitoring carried out at 30 sites, encompassing 

from the construction phase (2012-2014), through the filling of the reservoir (2014-15), to the 

operation phase (2015-19), and we (i) described community variation in terms of species 

composition, richness and abundances; (ii) quantified dynamics in terms of the velocity and 

directionality of community change; (iii) modelled community trajectory metrics in relation large 

scale ecological gradients (e.g., stream order, elevation), interannual variation in local 

environmental conditions (e.g., water flow and depth), and the prevalence of exotic species; (iv) 

investigated spatial patterns in community change in relation to environmental and spatial 

factors; and (v) developed predictive geostatistical models accounting for large scale ecological 

gradients and spatial dependencies to produce spatially continuous maps of community 

dynamics.  
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6.2 Methods 

6.2.1 Study area 

The study was conducted in NE Portugal, in the River Sabor watershed (N41°09′–42°00′, 

W7°15′–6°15′; Figure 1), encompassing a wide range of variation in elevation (100–1500 m 

above sea level), annual precipitation (443–1163 mm), and mean annual temperature (6.9–15.6 

°C). Climate is Mediterranean, with precipitation largely concentrated in October–March, and 

virtually none in hot summer months (June–August). Flow regime is highly seasonal, with most 

headwater streams drying out or being reduced to pools in summer, while the main watercourse 

and the largest tributaries are permanent. Two hydroelectric dams (Feiticeiro: 181 ha; Baixo 

Sabor: 2 820 ha) located near the mouth of the River Sabor started to be built in 2009, with the 

main reservoir filling in autumn/winter of 2014/2015 (Jackson, 2011; Santos et al., 2017). The 

Sabor watershed and its fish communities are more thoroughly described by Ferreira et al. 

(2016) and Santos et al. (2017). 

6.2.2 Fish sampling 

As part of a preliminary fish survey (Ferreira et al., 2016), a total of 184 sites thoroughly covering 

the Sabor watershed were visited in the summer of 2012, of which 30 were selected for long 

term monitoring (Figure 6.1). Sites were stream reaches 50-m long and 10.0± 5.9m [Mean±SD] 

(range: 1.5 – 30.0 m) wide, located at a nearest distance of 11,162 ±4,430m (6,186 – 26,204 m) 

from each other, and representing the main ecological gradients across the watershed (Ferreira 

et al., 2016). A relatively small sampling reach was chosen because (i) we were interested in 

investigating how local community dynamics varied across the watershed, (ii) communities are 

more dynamic at finer spatial grains (Zbinden, 2020), and (iii) previous studies demonstrated 

this reach length to be adequate for capturing responses of Mediterranean stream fish 

communities to environmental fluctuations (Magalhães et al., 2007). Sites were sampled 

annually from 2012 to 2019 in June-July (Table 6.S1), when reduced water flows favoured 

sampling efficiency, but before the peak summer drought when harsh conditions might cause 

high fish mortality. Each reach was electrofished by the same operator (MMF) using procedures 

detailed in Ferreira et al. (2016), with consistent effort and methods at each site over the years. 

Reaches were electrofished for 15 to 25 minutes, with longer surveys in wider and deeper 

streams to enhance detectability of all species in the local fish communities (Ferreira et al., 

2016). Fish were identified to species level, measured for total length, and returned alive to the 

stream. Sampling was conducted under license from the Instituto da Conservação da Natureza 

e Florestas, which required individuals of exotic species to be euthanized.  
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Figure 6.1 - Map of sites sampled for fish in 2012-2019 in the Sabor watershed (NE Portugal). 
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6.2.3 Environmental and spatial variables 

Each sampling site was characterised using five large scale variables retrieved from digital maps 

(mean elevation [Alt], maximum slope [Slope], altitudinal gradient [Alt_Grad], Strahler’s stream 

order [SO], and annual precipitation [Prec]), which have already been used in predictive species 

distribution modelling  in the Sabor watershed (Ferreira et al., 2016; Filipe et al., 2017; Mota‐

Ferreira & Beja, 2020; Quaglietta et al., 2018). These variables were extracted using the CCM 

2.1 database (Vogt et al., 2007), following procedures detailed in Table 6.S2 in Supporting 

Information. We only used precipitation extracted from WORLDCLIM (Hijmans et al., 2005), 

because climatic variables tend to be highly intercorrelated and correlated with physiography 

(e.g., elevation). Sites were also characterized at the local scale, using the coefficients of 

variation (CV) of stream width [Width_cv] and depth [Depth_cv], and water velocity [Vel_cv], 

which were estimated in the field following procedures detailed in Table 6.S2. We used CV 

rather than mean values, because we wanted to evaluate how community dynamics was 

affected by interannual variation in local conditions, and because mean values were correlated 

with landscape variables such as stream order. To account for the possibility of biological 

invasions increasing community variability (Erős et al., 2020), we computed the proportion of 

exotic fish species at each site [Exot] (Table 6.S2). 

Spatial data necessary to account for spatial autocorrelation (see below) were obtained in a GIS 

using the stream network extracted from CCM2.1, and the layer of sampling sites. Estimates 

included the Euclidean and hydrologic distances (total and downstream hydrologic distances) 

between each pair of sites (Peterson & Ver Hoef, 2010). To deal with confluences in tail-up 

models (see below), we also estimated catchment areas to weight the relative influence of the 

branching upstream segments (e.g. Peterson & Ver Hoef, 2010). Spatial estimates were made 

using the package “riverdist” (Tyers, 2017) in R, and the Spatial Tools for the Analysis of River 

Systems (STARS) toolbox version 2.0.0 (Peterson & Ver Hoef, 2014) for ArcGIS 10.2 (ESRI, 

2016). 

6.2.4 Community trajectory analysis and modelling  

Community temporal variation was quantified using the Community Trajectory Analysis (CTA) 

framework (De Cáceres et al., 2019), implemented in “vegclust” (De Cáceres et al., 2010). 

Preliminary analyses were carried out considering community variation in terms of either species 

composition (i.e., presence/absence) or abundances, considering or not size (i.e., length) 

structure (De Cáceres et al., 2013). Results were very similar across analyses, so we present 

only the results based on fish abundances, without size structure. We used counts of each 
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species at each site and year instead of species densities, because the later can be driven by 

changes in fish numbers, habitat area, or both (Magalhães et al., 2007). In all analysis, we 

excluded fish <5 cm, often corresponding to young of the year (yoy), because they were poorly 

sampled and their recruitment to the fishing gear might be strongly influenced by the timing of 

sampling in relation to fish spawning. 

CTA considers community dynamics as trajectories in a given space of community resemblance, 

using trajectories as objects to be analysed and compared based on their geometry (De Cáceres 

et al., 2019). Analysis started by using the Bray-Curtis dissimilarity index (Legendre & Legendre, 

2012) to compute the distance matrix among the states (observations) of the community. Using 

this matrix, we performed a Principal Coordinates Analysis (PCoA; Legendre & Legendre, 2012), 

and we projected the trajectory of each site in the biplot formed by the first two axis retrieved by 

the PCoA. We then computed (i) the mean velocity of community change (i.e., the mean length 

of trajectories between consecutive years divided by the number of observation years minus 

one); (ii) the directionality of each trajectory; and (iii) the pairwise distances between community 

trajectories. The mean velocity measured how fast the community changed during the study 

period, while directionality was used to assess whether the community changed over time 

following a directional pattern or otherwise showed cyclic or random patterns. The pairwise 

dissimilarity in trajectories was used to understand whether spatial patterns in community 

temporal variation were associated to spatial environmental patterns and spatial autocorrelation.  

To quantify the environmental factors driving temporal community change, we first used 

generalized linear models (GLM) with Gaussian errors and identity link, to relate the mean 

velocity and directionality of trajectories to environmental variables. Pairwise scatterplots were 

visualized to check for potential outliers and influential points. We found that the single site of 

order 6 was a potential influential point, and so it was combined with order 5 sites in a single 

category. We then screened the pairwise relationships between dependent and predictor 

variables, considering both linear and non-linear relations using orthogonal polynomials of 

second degree. More complex relations (i.e., higher order polynomials) were not considered 

because of relatively small sample sizes. In subsequent multivariate model building, we 

considered for each predictor either the linear or polynomial terms that provided the best fit to 

the data, judged considering the adjusted R-squared and the Akaike Information Criteria 

corrected for small sample sizes (AICc). We then screened all combinations of predictors for 

each dependent variable and, in each case, we retained as best model the combination of 

predictors minimizing AICc (Murtaugh, 2009).  

We also modelled variation in pairwise distances between community trajectories as a function 

of environmental and spatial distances between sites. First, we computed environmental 
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pairwise distances considering all standardized environmental variables, which were 

summarized using the symmetric multidimensional scaling implemented in “smacof” (De Leeuw 

& Mair, 2009). Then, we computed Mantel correlograms to assess the scale of spatial 

dependencies in community trajectories and environmental conditions (Legendre et al., 2015), 

using “vegan” (Oksanen et al., 2012). Finally, we computed a multiple linear regression on 

distance matrices (MRM; Lichstein, 2007) with “ecodist” (Goslee & Urban, 2007) and 100 000 

permutations, using combinations of environmental and spatial distances between sites, and 

retaining the model with the largest R2. MRM was used, despite the pitfalls of Mantel-based 

approaches, because these are still considered adequate to analyse dissimilarity matrices, and 

interpretation was made considering potential problems such as inflated Type I errors (Legendre 

et al., 2015). All analysis were performed using R software (R Core Team, 2019). 

6.2.5 Geostatistical modelling and mapping 

We used geostatistical modelling to relate variables describing community dynamics to both 

environmental and spatial predictors, considering the spatial structure of dendritic stream 

networks (Peterson et al., 2013; Peterson & Ver Hoef, 2010; Ver Hoef et al., 2006; Ver Hoef & 

Peterson, 2010). These geostatistical models are similar to conventional linear mixed models, 

with specification in random errors of spatial dependencies as functions of either straight-line 

distances (Euclidean model) between sites, hydrologic distances between sites connected by 

the water flow (tail-up model), or hydrologic distances irrespective of water flow connection (tail-

down model). The fixed component corresponded to the best linear models (GLM) developed 

in previous analysis for the mean velocity and directionality. The random component was 

specified considering the full autocovariance structure, which provides the greatest flexibility for 

representing multiple types of autocorrelation simultaneously (Ver Hoef & Peterson, 2010). To 

select the best autocovariance function for each spatial component, we tested all combinations 

of functions for the models including the three spatial components and selected the one 

minimising AICc. 

To map spatial variation in community dynamics, we projected the mean velocity and 

directionality of community change predicted from the geostatistical models on the stream 

network of the entire Sabor watershed. First, we divided the stream network into segments of a 

maximum length of 1000 meters using ArcGIS desktop (ESRI, 2016), and we extracted the value 

of environmental variables from the centroid of each segment. We then predicted the values of 

the metrics in each segment using universal kriging within the ‘SSN’ package (Ver Hoef et al., 

2014).  
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6.3 Results 

6.3.1 Overall assemblage patterns 

From 2012 to 2019, we sampled 16,733 fishes with total length >5cm from 14 species, of which 

six were native and eight were exotic (Table 6.). Nearly 90% of the fish caught belonged to just 

four native (Luciubarbus bocagei, Squalius carolitertii, Pseudochondrostoma duriense, Squalius 

alburnoides) and two exotic (Lepomis gibbosus, Gobio lozanoi) species with individual catches 

>5%. Another four species accounted for >1% of catches each (Achondrostoma sp., Salmo 

truta, Cobitis paludica, and Alburnus alburnus), while the remaining four species (Gambusia 

holbrooki, Micropterus salmoides, Rutilus rutilus, Carassius auratus) were scarce. There was 

wide variation across sites in total species richness (3.9 ± 1.7 [mean± SD], range: 2-9) and in 

mean catches per year (7.0 ± 6.3 to 183.5 ± 123.4) (Table 6.S1).  

 

  

Figure 6.2 - Temporal variation in annual fish catches (2012-2019) in the Sabor watershed (NE Portugal). From the 14 species recorded, 

four were captured in very small numbers (N<50 individuals each) and are not represented (see Table 6.1). 
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a The species is native in to the Iberian Peninsula, but it was considered exotic in our study area based on Doadrio et al. (2011); but 

see Sánchez-Hernández et al. (2018) 

b The species was listed as Achondrostoma arcasii by Ferreira et al. (2016) but probably belongs to an undescribed species (Robalo 

et al., 2006) 

Table 6.1 - Fish species recorded through electrofishing in the River Sabor watershed (NE Portugal) between 2012 and 2019. For 

each species we indicate its status in the region (native [N] vs. exotic [E] status, the total, mean (± SD), range and coefficient of 

variation (CV) of number of individuals > 5 cm collected per year, the percentage of sites where it was detected (% Sites) and the 

percentage of years (% Years) when it was detected. 

    Counts     
% 

Sites 
%Years 

Family/Species Status Total Mean±SD (Range) CV 
(n=30) (n=8) 

Cobitidae       

  Cobitis paludica Ea 412 51.5±29.9 (14-112) 0.6 33.30% 100.00% 

Cyprinidae       

  Achondrostoma sp. b N 738 92.2 ± 102.5 (32-328) 1.1 33.30% 100.00% 

  Alburnus alburnus E 176 22 ± 28.2 (2-86) 1.3 26.70% 100.00% 

  Carassius auratus E 1 0.1 ± 0.3 (0-1) 2.8 3.30% 12.50% 

  Gobio lozanoi E 1,401 
175.1 ± 147.4        

(25-454) 
0.8 43.30% 100.00% 

  Luciobarbus bocagei N 3,717 
464.6 ± 131.7  

(274-657) 
0.3 80.00% 100.00% 

  Pseudochondrostoma 
duriense 

N 2,841 
355.1 ± 157.4  

(178-608) 
0.4 80.80% 100.00% 

  Rutilus rutilus E 2 0.2 ± 0.7 (0-2) 2.8 3.30% 12.50% 

  Squalius alburnoides N 1,977 247.1 ± 60 (171-351) 0.2 73.30% 100.00% 

  Squalius carolitertii N 3,218 
402.2 ± 162.7 

 (205-624) 
0.4 90.00% 100.00% 

Salmonidae       

 Salmo truta N 447 55.8 ± 27.4 (17-99) 0.5 33.30% 100.00% 

Centrarchidae       

  Lepomis gibbosus E 1,748 
218.5 ± 178.9 

 (68-515) 
0.8 56.60% 100.00% 

  Micropterus salmoides E 5 0.6 ± 1.7 (0-5) 2.8 6.70% 12.50% 

Poeciliidae       

  Gambusia holbrooki E 50 6.2 ± 8 (0-21) 1.3 16.70% 75.00% 

TOTAL CATCHES  16,733 
2,091.6 ± 744.3 

(1259-3206) 
0.4   

SPECIES RICHNESS  14 11.1 ± 0.6 (10-12) 0.1   
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6.3.2 Changes in species richness and fish catches 

The annual number of species recorded in the Sabor watershed remained essentially constant 

at 10-12 species, but the number of individuals captured (i.e., fish catches) varied widely (Table 

6., Figure 6.2). Variability over time, as measured by the coefficient of variation, was highest 

(CV >1) for rare species (Mean catch per year < 100 individuals) such as C. auratus, R. rutilus, 

G. holbrooki, A. alburnus and Achondrostoma sp. Pearson correlations with sampling year 

indicated no consistent temporal trends in species richness (r = 0.05, P = 0.915), overall catches 

(r = -0.10, P = 0.822) and catches of native (r = -0.36, P = 0.389) and exotic species (r = 0.35, 

P = 0.400). Temporal trends in catches of individual species were negative for S. trutta (r = -

0.80, P = 0.016), positive for A. alburnus (r = 0.69, P = 0.054) and non-significant for all the other 

(-0.577 < r < 0.579, P >0.10). 

6.3.4 Community trajectories 

The fish community trajectories represented in the PCoA biplot indicated major variations across 

sites, albeit without obvious temporal patterns (Figure 6.3). There was no visual evidence for 

directional changes, with communities deviating and later returning to previous states. This was 

supported by the small directionality values (0.33 ± 0.04, which varied little (0.25-0.43) across 

the watershed. In univariate analysis for directionality, the best relations were mostly linear, but 

there were quadratic relations for elevation, stream order and the CV of water depth 

(Supplementary Table 6.S3). However, all relations were weak and statistically non-significant. 

The best multivariate model (Supplementary Table 6.S4), included a weak U-shaped effect of 

elevation, suggesting slightly higher directionality at the lowest and highest elevations, and 

showed a slightly increase in directionality along with slope (Table 6., Figure 6.4a). 

The velocity of community change at each site varied between 0.29 and 0.89 (0.54 ± 0.15). In 

univariate analysis, the best relations were always linear, except for the quadratic relation with 

stream order (Supplementary Table 6.S3). Some univariate effects were statistically significant, 

with mean velocity declining linearly with elevation, and showing quadratic relations with stream 

order, with faster changes in 3rd orders and smaller in 2nd, 4th and particularly 5/6th order streams, 

and with the proportion of exotics, with increases up to about 0.8 and levelling off or slightly 

declining thereafter. The best multivariate model accounted for 61% of variation, showing faster 

changes at lower elevation irrespective of stream order, while at any given elevation the velocity 

of change increased from 5th to 3rd orders, while declining again slightly in 2nd order streams 

(Table 6., Figure 6.4b; Supplementary Table 6.S5). 
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Mantel correlograms showed that pairwise distances between community trajectories were 

significantly related to Euclidean distances up to about 15 km, and to hydrologic distances up to 

about 30 km (Figure 6.S1). Environmental and spatial distances were also related to each other, 

albeit weakly (Figure 6.S2). The best MRM model (F = 137.018, P < 0.001) accounted for 39% 

of variation in community trajectories between sites, underlining significant effects of 

environmental (coefficient = 1.6x10-6; P < 0.001) and hydrologic distances (coefficient = 0.051, 

P < 0.001). 

 

  

Figure 6.3 - Temporal fish community trajectories at 30 sites sampled in the Sabor watershed (NE Portugal) in the period 2012-2019, 

represented in the first two axis of a Principal Coordinate Analysis. PCoA was performed on a distance matrix computed with Bray-Curtis 

index on the matrix of fish catches per species, site, and year. Trajectories are indicated using arrows and, for clarity, sites sampled at 

second (2); third (3); fourth (4); and fifth and sixth (5) stream orders are represented separately. Different coulors in each panel represent 

trajectories observed at different sampling sites. 
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Figure 6.4 - Trend lines (± standard errors) describing the relations inferred from models (Table 2) relating 

the directionality of community change to elevation for three levels of maximum slope (percentiles 10%, 

50% and 90%) (A), and the mean velocity of community change to elevation for each stream order (B). 
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Table 6.2 - Summary results of the best AICc models explaining variation in mean 

velocity of community change, directionality and pairwise distances between 

community trajectories. For the intercept and each variable in each model we provide 

the regression coefficient, the standard error of the coefficient estimate, and the 

corresponding t- and P-values. 

  Estimates Std. Error t P 

Directionality  (R2 = 0.37, F3,26 = 5.064, P < 0.001) 

Intercept 0.364 0.05 7.254 <0.001*** 

Elevation -4.8x10-4 1.8x10-4 -2.605 0.015* 

Elevation2 4.8x10-7 1.7x10-7 2.814 0.009** 

Slope 1.3x10-3 4.4x10-4 2.942 0.007** 

Mean velocity  (R2 = 0.61, F3,26 = 13.584, P < 0.001) 

(Intercept) 0.364 0.248 1.467 0.154 

Elevation -5.1x10-4 1.2x10-4 -4.313 <0.001*** 

Stream Order 0.367 0.139 2.646 0.014* 

Stream Order 2 -0.062 0.019 -3.242 0.003** 

 

Table 6.3 - Partitioning of the proportion of explained variation by geostatistical linear mixed models relating community directionality 

and mean velocity of change to environmental variables while accounting for spatial random effects. Spatial components: TU = Tail-

up; TD = Tail-down; Eucl = Euclidean. 

  Spatial         
Community Dynamics 
metrics 

TU TD EUCL Environmental Nugget 

Directionality Residual standard error: 0.119; Generalized R2: 0.41   

  Proportion 0.06 ≈ 0 0.54 0.41 ≈ 0 

  Function Linear with Sill Mariah Gaussian   

  Range (km) 28.3 71.6 367.4   

  Sill 1.4x10-3 6.8x10-8 1.3X10-2   

Mean velocity Residual standard error: 0.256; Generalized R2: 0.27   

  Proportion 0.08 0.65 ≈ 0 0.27 ≈ 0 

  Function Spherical Epanech Exponential     

  Range (km) 16.5 490.7 201.2     

  Sill 7.1x10-3 5.8x10-2 4.9x10-7     
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6.3.5 Spatial variation in community dynamics 

The geostatistical model explained about 40% of variation in community directionality (Table 

6.3). Most explained variation was accounted for by the environmental model (0.41), Euclidean 

effects (0.54) and, to a much lesser extent, the tail-up effects (0.06). The long range of the 

Euclidean structure (367.4 km) suggested a large-scale gradient across the watershed, while 

the range of the tail-up model (28.3 km) pointed out spatial dependencies between flow-

connected sites over relatively small distances. The spatial projection of model predictions 

produced a map showing that directionality was always low, with minor spatial variation across 

the watershed (Figure 6.5a).  

Regarding the mean velocity of community change, the geostatistical model explained close to 

30% of its variation across the watershed (Table 6.3), most of which was accounted for by the 

environmental model (0.27), tail-down effects (0.65) and, to a much lesser extent, tail-up effects 

(0.08). The long tail-down range (490.7 km) suggested large-scale spatial dependencies along 

Figure 6.5 - Maps showing variation across the Sabor watershed of the directionality (A) and mean velocity (B) of fish community change, 

based on geostatistical models with fixed and random components described in Tables 2 and 3. 
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the hydrologic network irrespective of flow connection, while the short range of the tail-up model 

(16.5 km) pointed out spatial dependencies over short distances between flow-connected sites. 

The spatial projection of model predictions showed wide variation in the velocity of community 

change across the watershed, with highest values in small streams at lower elevation and 

draining directly into the hydroelectric infrastructure. In the main course of the Sabor, mean 

velocity was higher immediately upstream of the main reservoir and declined further upstream. 

The two main tributaries of the Sabor (Maçãs and Angueira), showed a much higher velocity of 

community change than the main river (Figure 6.5b). 

6.4 Discussion 

Our study shows that combining robust descriptors of community change with state-of-the-art 

geostatistical modelling contributes to understanding and predicting where, how, and why the 

dynamics of local communities vary across stream networks. We found that local fish 

communities varied widely over the years, but there was no evidence for directional changes, 

pointing out a state of loose equilibrium (sensu Matthews et al., 2013) across the watershed. 

However, there was much spatial variation in the velocity of community changes, which were 

strongly influenced by environmental gradients associated with elevation and stream order. The 

spatial patterns of local community dynamics appeared to be affected also by stream network 

topology, given the strong influence of hydrological spatial dependencies. Mapping of 

community dynamics highlighted faster changes in lowland streams affected by hydroelectric 

development and exotic species. Overall, our framework helps to generalise community 

dynamics from discrete locations to entire watersheds, providing spatial information needed for 

freshwater ecosystem assessment and management (Cid et al., 2020; Fausch et al., 2002).  

6.4.1 Temporal drivers of local community change 

As in other Mediterranean-type streams (Bêche et al., 2009; Magalhães et al., 2007), fish 

communities in the Sabor watershed were highly dynamic, with temporal changes involving 

mainly fluctuations in species abundances, while much less variation was found in species 

composition and richness. The high dynamism observed was probably affected by the scale at 

which the study was conducted, as communities tend to show far more marked changes at the 

local than at the watershed or regional scales (Magalhães et al., 2007; Zbinden, 2020). 

However, community dynamics were probably also driven by strong environmental fluctuations 

during the study period, particularly the occurrence of extreme droughts that strongly affect 

stream fish survival and recruitment (Lennox et al., 2019; Magalhães et al., 2003, 2007; 
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Matthews & Marsh-Matthews, 2017). High fish mortality probably occurred during severe 

droughts in the summers of 2012, 2015 and 2017 (Parente et al., 2019), eventually causing the 

major declines in fish abundances in 2013, 2016 and 2018, respectively. Moreover, fish 

communities take time to recover after environmental extremes (Bêche et al., 2009; Matthews 

et al., 2013; Resh et al., 2013), which may have contributed further to the variability observed. 

The spread of exotic species may also have affected community dynamics, due to temporal 

changes in their own prevalence and abundance, but also due to eventual negative effects on 

native species (Erős et al., 2020; Gavioli et al., 2019; Milardi et al., 2019; Zanden et al., 2015). 

This is supported by faster changes in sites with higher proportion of exotic species, and by the 

high coefficients of variation in the abundance of exotic species when compared to most native 

species. Finally, random sampling variation may have contributed to the fluctuations observed, 

though this was minimized through preliminary testing and optimization of sampling 

methodologies (Ferreira et al., 2016), and by having the same operator applying a constant 

sampling effort at every site in every year. Therefore, we are confident that the temporal patterns 

observed are unlikely to result from methodological artefacts. Overall, the local community 

dynamics recorded in our study seem to be comparable to that reported elsewhere for 

Mediterranean-type stream fish (Bêche et al., 2009; Magalhães et al., 2007), but also other 

aquatic organisms (Bêche et al., 2009; Crabot et al., 2020), suggesting that the patterns 

observed may apply to other study systems. 

6.4.2 Patterns and environmental drivers of spatial variation in community 

dynamics 

Despite the temporal changes observed, there was no evidence for directional community 

dynamics at any sampling site, suggesting that local fish communities were in a loose 

equilibrium (Matthews et al., 2013; Matthews & Marsh-Matthews, 2016). This view was 

supported by consistently small directionality values estimated at sampling sites across the 

watershed, as well as by the community trajectories in multivariate space, which deviated and 

returned to previous states, following either gradual or abrupt steps (De Cáceres et al., 2019). 

Moreover, the significant relations between directionality and environmental variables were 

weak and difficult to interpret ecologically, possibly reflecting spurious correlations. Comparable 

patterns have already been described in stream fish communities (Matthews et al., 2013; 

Matthews & Marsh-Matthews, 2016), including in Mediterranean streams facing extreme 

droughts and floods (Magalhães et al., 2007), and are in line with the view that communities 

often exist in a dynamic temporal equilibrium (Collins, 2000; DeAngelis et al., 1985). However, 
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the patterns may be considered unexpected given the major anthropogenic changes affecting 

the Sabor watershed, including the building of a large hydroelectric infrastructure and the 

increasing spread of exotic species, including fish (Santos et al., 2017) and crayfish (Filipe et 

al., 2017). This may be because the study period was too short to capture community trends, 

as most exotic species were already present in the watershed at the start of our study (Ferreira 

et al., 2016), and probably not enough time elapsed for the new dams causing major shifts in 

species composition in nearby lotic areas. This is supported by observations regarding three 

exotic species potentially spreading from reservoirs (Ribeiro & Veríssimo, 2014; Vinyoles et al., 

2007), one of which has been steadily increasing in abundance since 2015 (A. alburnus), while 

two others only started to be detected towards the end of the study period (M. salmoides and R. 

rutilus). Directional changes may thus happen in the future, most likely associated with 

increasing prevalence and abundance of exotic species (Gavioli et al., 2019; Milardi et al., 2019).  

The velocity of local community changes varied widely across the watershed. This spatial 

variation was strongly related to structural landscape features such as stream order and 

elevation, while factors associated with interannual variability in local environmental conditions 

did not show measurable influences. The effect of stream order might be expected, as it reflects 

strong longitudinal gradients along rivers in for instance water discharge, and habitat size and 

heterogeneity (Hughes et al., 2011), which are strong drivers of ecological processes (Vannote 

et al., 1980) and the distribution of organisms (Harrel et al., 1967; Paller, 1994; Platts, 1979), 

including in the study area (Ferreira et al., 2016; Filipe et al., 2017; Mota-Ferreira & Beja, 2020; 

Quaglietta et al., 2018). We found that changes were fast in 2nd order streams, still a little faster 

in 3rd order streams, and then velocity declined in larger order streams. This is in line with studies 

suggesting higher temporal changes in fish communities in headwaters than further downstream 

(Schlosser, 1987), though other studies suggest that longitudinal gradients in stream fish 

community dynamics may vary across watersheds depending on local environmental conditions 

(Matthews & Marsh-Matthews, 2017). The later was supported by our study, because the 

observed joint effect of stream order and elevation implied that there were communities in lower 

order streams at high elevation that varied slower than those in higher order streams at low 

elevation. Reasons for these patterns are not completely clear, but it is noteworthy that lower 

orders at high elevation correspond to cold water mountain streams with species poor 

communities dominated by S. trutta, which may be relatively stable over time. In contrast, lower 

orders at low elevation generally correspond to warm water streams with richer communities 

dominated by cyprinids and exotics, which during the dry summer months are often reduced to 

a series of disconnected pools, and thus where fish communities may vary widely from year to 

year in association with droughts and floods (Bêche et al., 2009; Magalhães et al., 2007). Other 

possibility is that elevation acted as a surrogate for increasing human disturbance in the 
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lowlands driving higher variability in fish communities, which may be mediated by the increasing 

prevalence and abundance of exotic species (Erős et al., 2020; Gavioli et al., 2019; Gorman & 

Karr, 1978; Milardi et al., 2019). This idea is supported by the positive relation observed between 

the proportion of exotic fish and community variability, and by the inverse relation between the 

prevalence of exotic crayfish and elevation also found in the watershed (Filipe et al., 2017). 

However, in multivariate models the effect of elevation was retained but not that of exotic 

species, possibly because the former may capture the effect of the later, and account in addition 

for unmeasured ecological processes driving community dynamics. Overall, the velocity of 

community change appeared to be mainly associated with large scale proxies, possibly 

reflecting spatial gradients in more local ecological processes such as biological invasions, 

which would require further clarification. 

6.4.3 Spatial dependencies in community temporal dynamics 

The patterns of community temporal change were also related to spatial dependencies, with 

more similar community trajectories in sites closer to each other, either overland (Euclidean) or 

along the waterlines (hydrologic). The effects of Euclidean distances were significant up to about 

15 km, and possibly reflected similarity between sites in environmental conditions influencing 

community trajectories. For instance, sites close to each other are likely to be more similar than 

those farther apart in environmental conditions driven for instance by elevation, which was 

related to the velocity and, to a lesser degree, the directionality of community change. Hydrologic 

spatial dependencies were significant up to about 30 km and may be a consequence of 

similarities between sites associated for instance to stream order and elevation, and to 

unmeasured spatially structured environmental factors (Legendre & Legendre, 2012). In 

addition, however, hydrologic spatial dependencies were probably also influenced by mass 

effects (Heino et al., 2015), with fish dispersal among neighbouring locations homogenizing 

species composition and synchronizing population fluctuations (Erős & Lowe, 2019; Hugueny 

et al., 2010; Tonkin et al., 2018). For instance, fish dispersal from larger streams to headwaters 

may contribute to reduce community fluctuations in the later (Matthews & Marsh-Matthews, 

2017). Also, dispersal of exotic fish species across the watershed may contribute to biotic 

homogenization, and to similarities in community fluctuations in sites nearby (Gavioli et al., 2019; 

Milardi et al., 2019). 

The geostatistical models further supported the importance of spatial effects and allowed a finer 

examination of their contribution to community dynamics. In the case of directionality, there were 

only marked Euclidean effects, with a long range, suggesting influences driven by large scale 

spatial gradients overland. This effect should be interpreted with care, given the low values of 
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directionality and its low variability across the watershed. Regarding the velocity of community 

change, spatial dependencies also explained a large share of variability, with a strong 

contribution of the tail-down model and a minor contribution of the tail-up model. This is in line 

with the idea that the tail-down model captures spatial dependencies associated with organisms 

that can move actively both up and downstream, while the tail-up model mainly reflects spatial 

dependencies resulting from the passive drift of materials or organisms downstream (Peterson 

et al., 2013). This, together with the observation that tail-down effects were strong even after 

accounting for the variable reflecting spatially structured variation in environmental conditions 

along the stream network (i.e., stream order), further suggest that spatial variation in the velocity 

of community change was affected by movement of individuals along the waterlines. Overall, 

our results support the idea that fish community dynamics is strongly affected by spatial 

dependencies and the topology of the stream network (Erős & Lowe, 2019; Hugueny et al., 

2010; Tonkin et al., 2018).   

6.4.4 Mapping community temporal dynamics to guide management  

Mapping of community dynamics highlighted areas across the watershed where larger changes 

seem to be occurring, some of which may be associated to anthropogenic pressures. In the 

case of directionality, mapping showed little variation across the watershed, suggesting that at 

least until now the construction and operation of the Baixo Sabor Hydroelectric Infrastructure 

did not disrupt the loose equilibrium of fish communities, as there was no evidence for streams 

closer to the reservoirs showing more directional changes than streams elsewhere in the 

watershed. It should be noted, however, that our study only encompassed four years after the 

filling of the larger reservoir, and so it cannot be ruled out that directional changes will become 

apparent in the long term. The velocity of community change varied across the watershed, with 

some evidence for faster changes occurring in streams draining into the reservoirs, and in the 

Sabor river immediately upstream of the reservoir. This suggests that the presence of large 

reservoirs may be increasing fish community instability in surrounding lotic environments, 

through for instance the spread of exotic species (Santos et al., 2017). Notwithstanding, the 

highest velocity of community change was found in a small watershed (Vilariça) that does not 

drain into the Baixo Sabor reservoirs. This watershed is affected by a number of anthropogenic 

pressures, draining into another large dam downstream of Baixo Sabor, flowing through an area 

of intensive agriculture, and being subject to habitat management interventions (Boavida et al., 

2018), all of which may have contribute to fast community changes. Overall, the spatially 

continuous mapping of temporal community dynamics provided a visual representation of the 
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type and spatial extent of anthropogenic impacts on stream fish communities, which would have 

been more difficult to perceive otherwise.  

6.5 Conclusions 

Freshwater biological communities are rapidly changing worldwide due to direct and indirect 

anthropogenic pressures, making it critical to understand how, where and why such changes 

are occurring (Albert et al., 2020; Reid et al., 2019). Our study combining community trajectory 

analysis (De Cáceres et al., 2019) and geostatistical modelling (Peterson et al., 2013) 

contributes to address these issues, by offering a relatively simple and flexible framework to 

spatially generalize data on community dynamics collected at discrete sampling locations. Using 

this framework, we were able to show that local dynamics were affected by larger scale 

processes operating within the stream network, including both environmental gradients and 

spatial processes mediated by network topology (Erős & Lowe, 2019). Moreover, we produced 

maps that helped visualizing community changes across the stream network, and that 

highlighted the effects of a new hydroelectric development in nearby lotic systems. We suggest 

that our framework may be widely useful to freshwater ecologists aiming to understand spatial 

variation in local community dynamics under anthropogenic change, while providing a tool for 

managers to make spatially continuous predictions of community temporal dynamics that can 

be used in bioassessment and mitigation of anthropogenic impacts on freshwater ecosystems 

(Cid et al., 2020; Fausch et al., 2002). 
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6.7 Supplementary Material 

Supplementary Tables 

Table 6.S1 - Summary statistics of fish communities sampled at 30 sites in the Sabor watershed, between 2012-2019. For each site 

we indicate the number of years when sampling was conducted, the species richness and the mean catches per year (total, native 

and exotic species). 

    Species richness Catches     

Sites Years Total Natives Exotics 
Mean total 

(SD) 
Mean natives 

(SD) 
Mean exotics 

(SD) 

S_Ang2 7 5 4 1 40.8 (48.7) 31.4 (34.7) 9.4 (16.9) 

S_Ang4 8 6 4 2 76.1 (50.1) 49.5 (41.5) 26.6 (24.2) 

S_Ang5 8 7 4 3 52.6 (44.2) 43.6 (40.7) 9 (15.4) 

S_Ang6 8 7 4 3 120.6 (112.1) 58.3 (56.4) 62.4 (80.2) 

S_Az3 8 6 4 2 50.5 (52) 32 (31.9) 18.5 (22.1) 

S_Az6 8 3 2 1 10.9 (9.9) 10.3 (9.8) 0.6 (1.1) 

S_B3 8 3 3 0 23.3 (15.6) 23.3 (15.6) 0.0 (0.0) 

S_I1 7 5 3 2 65.1 (70.9) 53 (57.6) 12.1 (23.2) 

S_Ig3 8 4 4 0 37.8 (16.9) 37.8 (16.9) 0.0 (0.0) 

S_M01 8 7 5 2 33.5 (17.5) 28.1 (12.6) 5.4 (7.2) 

S_M03 8 6 4 2 60.3 (32.7) 45.9 (22.3) 14.4 (16.5) 

S_M07 8 7 6 1 70.6 (69.6) 11.9 (17.6) 58.8 (72.4) 

S_M09 8 7 6 1 109.6 (57.9) 101.5 (58.8) 8.1 (7.3) 

S_M11 8 6 6 0 52.1 (79.2) 52.1 (79.2) 0.0 (0.0) 

S_M12 7 3 3 0 7.0 (6.3) 7.0 (6.3) 0.0 (0.0) 

S_M13 3 7 3 4 26.6 (40.0) 20.0 (31.5) 6.6 (10.5) 

S_O1 8 4 4 0 34.1 (33.3) 34.1 (33.3) 0.0 (0.0) 

S_V3 8 9 3 6 130.0 (86.8) 63.0 (54.0) 67 (57.2) 

S_V6 8 8 3 5 10.5 (8.3) 3.9 (5.5) 6.6 (5.1) 

S_V8 6 5 3 2 63.9 (164.6) 33.3 (83.0) 30.6 (81.8) 

S_VM1 8 5 4 1 54.8 (60.2) 53.1 (57.4) 1.6 (3.4) 

S_Z3 8 6 4 2 28.6 (13.8) 24.9 (12.9) 3.8 (4.8) 

S01 8 7 3 4 100.4 (30.5) 68.4 (23.4) 32 (30.3) 

S12 8 8 4 4 183.5 (123.4) 144.0 (96.1) 39.5 (36.2) 

S15 8 8 4 4 136.9 (60.0) 127.6 (61.5) 9.3 (5.8) 

S19 8 6 4 2 176.9 (102.1) 176.8 (102.3) 0.1 (0.4) 

S20 8 6 4 2 143.1 (45.3) 142.6 (45.3) 0.5 (1.1) 

S22 8 6 5 1 125.3 (59.7) 125.3 (59.7) 0.0 (0.0) 

S23 8 5 5 0 49.1 (18.6) 49.1 (18.6) 0.0 (0.0) 

S25 8 2 2 0 17.3 (13.5) 17.3 (13.5) 0.0 (0.0) 

Total 8 14 6 8 2091.6 (744.3) 1668.8 (530.6) 422.9 (319.8) 
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Table 6.S2 - Description and summary statistics (mean ± SD, range) of environmental variables used to characterize the 30 stream reaches sampled for fish in the Sabor watershed, between 2012 

and 2019. Variables with coefficient of variation (Width_cv, Depth_cv, and Vel_cv) were computed by dividing the standard deviation by the mean of the annual measurements. 

Variable (abbreviation, 

unit) 
Estimation Mean (SD) Range 

Large scale variables    

Altitudinal gradient  

(Alt_Grad, %) 

The altitudinal gradient measured as percentage difference of the elevation of the upstream and downstream nodes of the 

river segment taken from a 100-meters digital elevation model, built using the CCM 2.1 geodatabase (Vogt et al., 2007) 
0.9 (1.0) 0.1 - 5.5 

Elevation (Alt, m) 
The average of the elevation of the catchment of the segment taken from a 100-meters digital elevation model, built using the 

CCM 2.1 geodatabase (Vogt et al., 2007) 
558.5 (159.5) 141.3 - 904.0 

Slope (Slope, %) 
The maximum slope (in percentage) present in the catchment of the segment computed from a 100-meters digital elevation 

model, built using the CCM 2.1 geodatabase (Vogt et al., 2007) 
53.6 (15.2) 27.7 - 84.0 

Stream order (SO) The segment Strahler’s stream order, taken from the CCM 2.1 geodatabase (Vogt et al., 2007) 3.5 (1.0) 2.0 - 5.0 

Precipitation (Prec, mm) 
The long-term average annual precipitation of the catchment of the segment taken from the WORLDCLIM 2 database (Fick & 

Hijmans, 2017) and the CCM 2.1 geodatabase (Vogt et al., 2007) 
679.3 (55.5) 597.4 - 806.0 

Local variables    

Coefficient of variation of 

stream width (Width_cv) 

The wetted width at a site was computed each year by averaging measurements taken at four equally spaced transversal 

segments along the 50‐m sampling reach. Annual values were then averaged across years, and the interannual coefficient of 

variation (SD/Mean) of stream width was estimated. 

0.22 (0.12) 0.06 - 0.58 

Coefficient of variation of 

stream depth (Depth_cv) 

Stream depth at a site was computed each year by averaging measurements taken at 25%, 50%, and 75% of the length of 

four equally spaced transversal segments along the 50‐m sampling reach. Only one measurement was taken in segments 

<3m wide. Annual values were then averaged across years, and the interannual coefficient of variation (SD/Mean) of stream 

depth was estimated. 

0.29 (0.12) 0.07 - 0.64 

Coefficient of variation of 

water velocity (Vel_cv) 

Water velocity at a site was computed each year by averaging measurements taken at 25%, 50%, and 75% of the length of 

four equally spaced transversal segments along the 50‐m sampling reach. Only one measurement was taken in segments 

<3m wide. Annual values were then averaged across years, and the interannual coefficient of variation (SD/Mean) of stream 

depth was estimated. 

1.38 (0.55) 0.68 - 2.82 

Exotic species    

Proportion of exotic 

species (Exot) 

Ratio between the total number of individuals from exotic species captured during the study at a site and the total number of 

individuals of all species captured at that site. 
0.22 (0.24) 0.00 – 0.83 
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Table 6.S3 - Summary results of univariate analysis screening for the presence of linear (L; y = bo + b1X) or quadratic (Q; y = bo + 

b1X + b2X
2) relations between variables describing fish community dynamics (directionality and mean velocity) and environmental 

variables. Analysis involved generalized linear models with Gaussian errors and identity link. Quadratic relations were evaluated 

using orthogonal polynomials of second degree. For each test we provide the F- statistics and the P-value for the overall significance 

of the model, the adjusted R-squared (R2) and the AICc. The relations used to build the multivariate models are shaded in grey. 

Abbreviations are given in Table 6.S2.  

  Directionality       Mean Velocity     

  
F-
statistic 

P R2 AICc   
F-
statistic 

P R2 AICc 

Landscape 
variables 

                  

Alt_Grad (L) 0.14 0.72 -0.03 -99.05   0.40 0.53 -0.02 -22.97 

Alt_Grad (Q) 0.40 0.67 -0.04 -97.79   0.98 0.39 0.00 -22.64 

Elev (L) 0.26 0.62 -0.03 -99.18   5.07 0.03 0.12 -27.53 

Elev (Q) 2.89 0.07 0.12 -102.72   2.51 0.10 0.09 -25.66 

Prec (L) 0.18 0.67 -0.03 -99.10   0.00 0.95 -0.04 -22.55 

Prec (Q) 0.60 0.56 -0.03 -98.21   0.04 0.96 -0.07 -20.63 

SO (L) 1.01 0.32 0.00 -99.97   7.05 0.01 0.17 -29.28 

SO (Q) 1.42 0.26 0.03 -99.90   6.10 0.01 0.26 -31.72 

Slope (L) 2.70 0.11 0.06 -101.67   2.58 0.12 0.05 -25.19 

Slope (Q) 1.30 0.29 0.02 -99.67   1.24 0.30 0.02 -23.19 

Local variables                   

Depth_cv (L) 0.39 0.54 -0.02 -99.32   0.09 0.77 -0.03 -22.64 

Depth_cv (Q) 1.29 0.29 0.02 -99.63   0.05 0.96 -0.07 -20.64 

Vel_cv (L) 2.63 0.12 0.05 -101.60   2.55 0.12 0.05 -25.16 

Vel_cv (Q) 1.28 0.30 0.02 -99.62   1.84 0.18 0.05 -24.37 

Width_cv (L) 0.13 0.72 -0.03 -99.05   1.06 0.31 0.00 -23.66 

Width_cv (Q) 0.35 0.71 -0.05 -97.68   0.88 0.43 -0.01 -22.44 

Exotic species                   

Exot (L) 0.83 0.37 -0.01 -99.78   9.04 0.01 0.22 -30.94 

Exot (Q) 0.41 0.67 -0.04 -97.81   5.48 0.01 0.24 -30.76 
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Table 6.S4 - Ranking of alternative candidate models relating the directionality of community change to environmental variables. 

For each alternative model we indicate the variables included (Abbreviations provided in Table 6.S2), the degrees of freedom of the 

model (df), its log-likelihood (logLik), the Alaike Information Criteria corrected for small sample sizes (AICc), the difference between 

the AICc of the model and the AICc of the best model (delta), and the Akaike weight (weight). Only models with Delta AIC < 4 are 

shown. 

Model df logLik AICc delta weight 

Alt (Q) + Slope 5 57.72 -102.90 0.00 0.06 

Alt (Q) + SO(Q) 6 59.01 -102.40 0.56 0.05 

Slope + Vel_cv 4 55.85 -102.10 0.84 0.04 

Alt (Q) + Slope + Vel_cv 6 58.72 -101.80 1.15 0.04 

Alt (Q) 4 55.36 -101.10 1.81 0.03 

Alt_Grad + Alt (Q) + Slope 6 58.38 -101.10 1.82 0.03 

Alt (Q) + Prec + Slope 6 58.37 -101.10 1.84 0.02 

Slope 3 53.84 -100.70 2.19 0.02 

Vel_cv 3 53.80 -100.70 2.26 0.02 

Alt (Q) + Slope + Exot 6 58.06 -100.50 2.47 0.02 

NULL 2 52.45 -100.50 2.47 0.02 

Alt (Q) + Prec + Slope + Vel_cv 7 59.75 -100.40 2.54 0.02 

Alt (Q) + SO(Q) + Prec 7 59.62 -100.10 2.79 0.02 

Alt_Grad + Slope + Vel_cv 5 56.26 -100.00 2.92 0.01 

Alt_Grad + Alt (Q) + Slope + Vel_cv 7 59.55 -100.00 2.93 0.01 

Alt (Q) + Prec 5 56.24 -100.00 2.95 0.01 

Alt (Q) + Slope + Width_cv 6 57.79 -99.90 3.00 0.01 

Alt (Q) + SO (Q) + Width_cv 7 59.45 -99.80 3.13 0.01 

Alt_Grad + Alt (Q) + SO (Q) 7 59.26 -99.40 3.50 0.01 

Alt (Q) + SO (Q) + Slope 7 59.24 -99.40 3.54 0.01 

Slope + Width_cv + Vel_cv 5 55.93 -99.40 3.58 0.01 
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Model df logLik AICc delta weight 

Alt (Q) + Vel_cv 5 55.91 -99.30 3.62 0.01 

Slope + Vel_cv + Exot 5 55.90 -99.30 3.63 0.01 

Prec + Slope + Vel_cv 5 55.87 -99.20 3.70 0.01 

Alt (Q) + Exot 5 55.78 -99.10 3.88 0.01 

Alt (Q) + Prec + Slope + Exot 7 59.07 -99.00 3.89 0.01 

Alt (Q) + SO (Q) + Exot 7 59.05 -99.00 3.93 0.01 

Alt_Grad + Alt (Q) + Slope + Exot 7 59.04 -99.00 3.95 0.01 

Alt (Q) + Slope + Depth_cv (Q) 7 59.04 -99.00 3.95 0.01 

Alt (Q) + SO (Q) + Vel_cv 7 59.03 -99.00 3.97 0.01 
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Table 6.S5 - Ranking of alternative candidate models relating the mean velocity of community change to environmental variables. 

For each alternative model we indicate the variables included (Abbreviations provided in Table 6.S2), the degrees of freedom of the 

model (df), its log-likelihood (logLik), the Alaike Information Criteria corrected for small sample sizes (AICc), the difference between 

the AICc of the model and the AICc of the best model (delta), and the Akaike weight (weight). Only models with Delta AIC < 4 are 

shown. 

Model df logLik AICc delta weight 

Alt + SO (Q) 5 25.55 -38.60 0.00 0.10 

Alt + SO (Q) + Slope 6 27.09 -38.50 0.07 0.10 

SO (Q) + Exot (Q) 6 26.94 -38.20 0.38 0.09 

Alt + SO (Q) + Prec 6 26.24 -36.80 1.77 0.04 

Alt + SO (Q) + Vel_cv 6 26.14 -36.60 1.96 0.04 

Alt + SO (Q) + Exot (Q) 7 27.83 -36.60 2.04 0.04 

Alt + SO (Q) + Prec + Slope 7 27.82 -36.60 2.05 0.04 

Alt + SO (Q) + Width_cv 6 25.79 -35.90 2.68 0.03 

Alt_Grad + Alt + SO (Q) 6 25.71 -35.80 2.83 0.03 

Alt + SO (Q) + Depth_cv 6 25.64 -35.60 2.96 0.02 

Alt_Grad + SO (Q) + Exot (Q) 7 27.23 -35.40 3.23 0.02 

Alt + SO (Q) + Slope + Width_cv 7 27.21 -35.30 3.27 0.02 

Alt + SO (Q) + Slope + Vel_cv 7 27.17 -35.30 3.34 0.02 

Alt + SO (Q) + Slope + Depth_cv 7 27.12 -35.20 3.45 0.02 

SO (Q) + Slope + Exot (Q) 7 27.11 -35.10 3.48 0.02 

Alt_Grad + Alt + SO (Q) + Slope 7 27.10 -35.10 3.50 0.02 

SO (Q) + Width_cv + Exot (Q) 7 27.01 -34.90 3.66 0.02 

SO (Q) + Prec + Exot (Q) 7 26.94 -34.80 3.82 0.02 

SO (Q) + Vel_cv + Exot (Q) 7 26.94 -34.80 3.82 0.02 

SO (Q) + Depth_cv + Exot (Q) 7 26.94 -34.80 3.82 0.02 
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Supplementary Figures 

 

 

  

Figure 6.S1 - Mantel correlograms showing variations in the correlations between pairwise distances in community 

trajectories and spatial distances, considering either Euclidean or hydrologic distances. Black squares indicate 

statistically significant correlations at P < 0.05. 
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Figure 6.S2 - Mantel correlograms showing variations in the correlations between pairwise environmental and spatial distances 

between sites, considering either Euclidean or hydrologic distances. Black squares indicate statistically significant correlations at P 

< 0.05. 

 

 

Supplementary references 

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global 

land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 

Vogt, J., Soille, P., De Jager, A., Rimavičiūtė, E., Mehl, W., Foisneau, S., Bódis, K., Dusart, J., Paracchini, 

M. L., Haastrup, P., & Bamps, C. (2007). A pan-European River and Catchment Database. 

https://doi.org/10.2788/35907 

 

  



FCUP 
Modelling biodiversity patterns and processes to 
support conservation in stream networks 

230 

Ch6 

 
 

  



FCUP 
Modelling biodiversity patterns and processes to 
support conservation in stream networks 

231 

Ch7 

 
 

 

 

 

Chapter 7 – General discussion  



FCUP 
Modelling biodiversity patterns and processes to 
support conservation in stream networks 

232 

Ch7 

 
  



FCUP 
Modelling biodiversity patterns and processes to 
support conservation in stream networks 

233 

Ch7 

 

Chapter 7 – General discussion  

 

7.1 In a nutshell  

This thesis advances the development of methodologies to model biodiversity patterns and 

processes in stream networks, at both species and community levels. Each methodology was 

developed as an answer to a particular challenge that arises when analysing data collected on 

stream-dwelling organisms. In chapter 3, we presented a novel framework to deal with imperfect 

detectability by using Time-to-first-detection instead of repeated surveys. A novelty of this 

framework is that time to detection doesn’t have to be known precisely, requiring only a lower 

and an upper bond. To account for spatial autocorrelation (SAC) in data from streams networks, 

we presented two approaches. In chapter 3, we include two autocovariance terms in the 

hierarchical model to account for SAC in the probability of stream fish presence conditional to 

the probability of the stream segment holding water. In chapters 4, 5, and 6, we used 

geostatistical models specifically designed for taking into account the spatial structure of stream 

networks. In these models, SAC is partitioned into three components: one component based on 

Euclidean distances, and two based on hydrological distances, of which one for sites connected 

by water flow, and the other irrespectively of flow. In chapter 4, we presented a framework to 

model invasive species in stream networks, especially in the early stages of invasion where 

spatial processes may be more relevant than environmental filters. In chapter 5, we used the 

output of chapter 4 to assess the distribution of refuge habitats for species displaced by the 

invasive species. In chapter 6, we developed a novel framework to analyse the temporal 

dynamics of species communities with geomodelling, thereby producing a continuous spatial 

view of communities dynamics across an entire river network. Although the approaches and 

frameworks described in this thesis were developed to answer particular questions when 

analysing data for our study systems, these tools can have a broader scope in their application. 

They can be useful for researchers aiming to study the biodiversity patterns and processes in 

stream networks, at both species and community levels, and also to provide crucial data for an 

informed planning and management actions. 
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7.2 Challenges of spatial distribution modelling in dendritic networks 

Species distribution models have become very popular methods to assess the spatial 

distribution and habitat requirements of species for different applications, from pure academic 

purposes to conservation and management. While the framework is similar across the terrestrial, 

marine and freshwater realms, constructing a link between species records and environmental 

conditions, each realm has its unique challenges (Domisch et al., 2015). Domisch et al. (2015) 

identified three challenges inherent to modelling species distribution in streams networks: (1) 

the spatial configuration in terms of the hierarchical structure of catchments and dendritic stream 

networks; (2) obtaining relevant and spatially continuous environmental predictors along the 

stream network; and (3) species detectability and thus the challenge of obtaining freshwater 

species occurrence data along the stream network. In this thesis, we investigate mainly the role 

of the stream network structure and the impact of imperfect detectability, but also take into 

account the quality of the predictors.  

The sampling of streams and rivers is complex as the organism are rarely available for direct 

observation (Domisch et al., 2015; Ferreira et al., 2016). The failure to detect a species when 

present is a very common source of bias for SDM’s (Domisch et al., 2015; Guillera-Arroita et al., 

2014; Lobo et al., 2010), and may result from several factors like species abundances and traits, 

habitat characteristics, and sampling site selection and methodology (Einoder et al., 2018; 

Ferreira & Beja, 2013; Mazerolle et al., 2007). Ignoring or assuming a constant imperfect 

detectability, even in standard methodologies like electrofishing, may result in spurious 

conclusions even for little variation in the detection probability (Gwinn et al., 2016; Hangsleben 

et al., 2013). Although there are methods to account for imperfect detectability (e.g.: MacKenzie 

et al., 2002), these methods are based on repeated sampling and so they are often disregarded 

by freshwater researchers as resource intensive (Gwinn et al., 2016 but see Beesley et al., 

2014; Dextrase et al., 2014; Som et al., 2018; Sullivan et al., 2019). Time-to-first-detection 

models, as the model we developed for chapter 3, are a cost-effective alternative by modelling 

the observations as a continuous process (Ferreira et al., 2016; Garrard et al., 2008, 2013). 

The hierarchical model we developed to model fish distribution in chapter 3 included three 

levels: we used Bayesian equivalent to autologistic regressions (Augustin et al., 1996; Bardos 

et al., 2015; Besag, 1974; Gumpertz et al., 1997; Hoeting et al., 2000) to model water presence 

in the stream channel that would allow fish dwelling, and the probability of fish presence 

(occupancy) conditional on the water presence. Using the interval censored time-to-first-

detection, we modelled time to detection of the species, conditional on presence, regarding local 

variables. The model structure is summarised in fig 7.1. The water and the fish presence was 
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modelled in regard to landscape variables, and to account for spatial autocorrelation we included 

an autoregression term in both. To construct this term, we used hydrological distances to define 

the network of neighbours using a cut-off threshold that would remove spatial correlation, 

assessed through Moran’s I correlograms (Legendre & Legendre, 2012). This approach is 

straightforward and can be used to account for SAC in Bayesian hierarchical modelling applied 

to stream networks, but it can be computationally intense, particularly the covariance matrix 

inversion and model extrapolation (Ver Hoef et al., 2018). 

Besides the computation burden of autologistic models, Bayesian hierarchical modelling can be 

a daunting task for beginners and non-statisticians, albeit it does allow great flexibility of 

modelling processes and patterns (Kéry, 2010; Kéry & Royle, 2016). For the more common 

modelling applications in rivers, Ver Hoef et al. (2006) proposed a new class of geostatistical 

models: spatial stream network models (SSNM). SSNM are a framework to deal with SAC in 

stream networks that take into account the dendritic structure and the direction of flow (Peterson 

& Ver Hoef, 2010; Ver Hoef & Peterson, 2010). Similar to traditional glm, SSNM relates a given 

Figure 7.1  - Structure for the hierarchical model developed for chapter 3 
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response variable to co-variables, but in the random component includes up to three 

autocovariate functions to account for spatial dependencies based on Euclidean and hydrologic 

distances among sites, both with and without flow connection (Isaak et al., 2014; Peterson & 

Ver Hoef, 2010; Ver Hoef & Peterson, 2010). These models were included in the package SSN 

(Ver Hoef et al., 2014) for the popular statistical program R (R Core Team, 2019), and can be 

used for most types of stream survey data (Isaak et al., 2014). In previous studies, SSNM were 

used to model water physic-chemistry properties (Garreta et al., 2009), fish density (Isaak et al., 

2017), the distribution of desmans (Quaglietta et al., 2018), and the genetic diversity of willow 

trees (Rodríguez-González et al., 2019), among other applications. In this thesis, we used 

SSNM to model the distribution of invasive crayfish (chapter 4) and the distribution of refuge 

habitat for amphibians (chapter 5), as well as the spatial variation in the temporal dynamics of 

fish communities (chapter 6).  

7.3 Modelling expanding distributions of invasive species and their 

consequences 

SDM’s are an essential tool in the study of invasive biology (Franklin, 2013; Guisan et al., 2013; 

Rodríguez et al., 2007; Srivastava et al., 2019). SDM’s have been used to identify areas under 

the risk of biological invasions (Capinha et al., 2011; Hortal et al., 2010; Jiménez-Valverde et 

al., 2011); predict the distribution of invasive species in newly invaded areas (Capinha & 

Anastácio, 2011); assess the factors associated with colonization success (Capinha et al., 

2012); measure the impact on native species (Ficetola et al., 2011); and select possible areas 

for conservation actions (Préau et al., 2020).  

The assumption of equilibrium between organisms and their environment is a standard working 

postulate in SDM’s that is seldom met, particularly for species that are expanding their range 

like invasive species (De Marco et al., 2008; Guisan & Thuiller, 2005; Václavík & Meentemeyer, 

2012). SDM’s calibrated with records from initials stages of an invasion are likely to yield less 

accurate and robust predictions and under-represent the potential invaded range (Václavík & 

Meentemeyer, 2012). 

For aquatic, or semi-aquatic, species invading river systems, the dendritic structure of the 

stream network will constrain the patterns of the expansion from initial founder populations, with 

individuals dispersing up and downstream and progressively colonizing favourable habitats 

across the stream network (Bernardo et al., 2011; Bronnenhuber et al., 2011; Hein et al., 2011). 

To model these species, geostatistical models based on Euclidean distances alone are not 
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enough, and the spatial structure of the stream network should be taken into account (Peterson 

& Ver Hoef, 2010; Ver Hoef & Peterson, 2010). 

The spatial stream network models (SSNM), proposed by Ver Hoef et al. (2006) as a framework 

to deal with SAC in stream networks that take into account the dendritic structure and the 

direction of flow are an obvious choice to model the distribution of invasive species in river 

systems. In chapter 4, we describe the distribution of two invasive crayfish using SSNM’s. The 

spatial components greatly improved model performance, evidencing that the distribution of 

these invasive crayfish was more of a product of spatial process than environmental filtering. 

Biotic interactions play an important role in shaping the species distributions, and failing to 

account for them may affect the power and sensibility of SDM’s (Araújo & Luoto, 2007; Wisz et 

al., 2013). There are several tools proposed to account for and to incorporate biotic interactions 

into SDM’s, but a straightforward approach is to use the distribution of a species as a predictor 

in the distribution of another (Wisz et al., 2013). This approach makes no assumptions about 

the nature of the biotic relation, just a suspicion of an ecological link between species is required. 

As invasive species spread through a landscape, they cause several impacts to native species, 

mainly through competition and predation/herbivory, that may result in species extinctions, but 

the most common outcome is a modification in the species range (Bellard et al., 2016; Genovesi 

et al., 2015; Pyšek et al., 2017). At least at the landscape level, the persistence of native species 

may be assured by the presence of ecological refuges2, patches of habitat where biota can 

retreat, persist, and eventually expand following more favourable conditions (Davis et al., 2013). 

These refuges may be patches of habitat that are unsuitable for invasive species or areas where 

invasive species have not reached due to distance, physical barriers or lagging in the expansion. 

Identifying the distribution and the environmental drivers of these refuges is of conservation 

concern, particularly for species threatened by invasive species. 

In chapter 5, to predict the distribution of amphibian ecological refuges under the invasion by 

two species of crayfish, we produced SDM’s where we included, as predictor variables, the 

probability of presence of the two invasive crayfish computed in chapter 4. We used the outputs 

of the models from chapter 4 instead of actual observations to facilitate the spatial extrapolation 

of the models to an entire watershed. We found that the refuges of amphibians are located 

                                                

2 Not to be confounded with evolutionary refugia. Evolutionary refugia and ecological refuges differ mainly 
in the spatial-temporal scale, while ecological refuges operate a landscape scale and in a short time 
frame, typically up to a few decades, the evolutionary refugia operates at continental and millennium scale 
(Davis et al., 2013; Keppel et al., 2012) 
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mainly in the headwaters and that under plausible expansion scenarios of the crayfish species, 

these refuges are likely to contract in the future. 

The remediation of freshwater ecosystems invaded by alien species, particularly crayfish, is 

difficult, expensive and has met limited success (Gherardi et al., 2011; Stebbing et al., 2014). 

As such, is essential to identify the distribution of refuge habitats, focus on their conservation, 

monitoring the spread of the alien species, and plan and execute management actions to 

prevent the invasion of refuges. 

7.4 Modelling temporally dynamic ecological processes in stream 

networks 

Ecological communities change through space and time in response to a variety of biotic and 

abiotic factors, but this variability may not translate to instability (Collins, 2000). In the absence 

of disturbance, communities can alternate, stochastically, between stable states or vary around 

a loose equilibrium without a discernible direction of change (Collins, 2000; Jones et al., 2017; 

Matthews et al., 2013; Renner et al., 2014), and can be stable even at geological scale (Blanco 

et al., 2021). Nonetheless, communities may change to new states of equilibrium, slowly if 

tracking subtle changes in the environment, or shift abruptly when environmental drivers 

approach certain thresholds (Bestelmeyer et al., 2011; Drake et al., 2020; Scheffer et al., 2001). 

To understand the dynamic in the ecological communities and detect shifts in the ecological 

states, it is crucial to establish long term monitoring programs (Matthews & Marsh-Matthews, 

2017). As such, much effort has been devoted to understanding how biological communities 

change over time, particularly in freshwater ecosystems, usually through studies conducted for 

extended periods at discrete locations (e.g. Baranov et al., 2020; Bêche et al., 2009; Erős et al., 

2020; Jourdan et al., 2018; Matthews & Marsh-Matthews, 2016). To use this accumulated 

knowledge in conservation and management, it is necessary to develop metrics that reflect the 

temporal dynamics of the communities and extrapolate these metrics to the landscape level, 

which in river systems may not be straightforward. 

Several metrics have been proposed to quantify temporal changes in biological communities, 

like Kendall’s coefficient of concordance to estimate constancy in species rank abundances or 

the coefficient of variation to estimate variability in species abundances (Grossman et al., 1990). 

Yet, these metrics reflect only partly, and yet, they do not reflect the temporal patterns of 

communities’ dynamics. These patterns have been, traditionally, inferred by visual inspection of 

the plotted trajectories of the communities in a chosen resemblance space (e.g. Magalhães et 

al., 2007; Matthews et al., 2013). Borrowing techniques from trajectory analysis, De Cáceres et 
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al. (2019) proposed an analytical framework to describe and compare the trajectories of 

communities using their geometric properties. For instance, length and speed of the trajectories 

reflects how fast and how much is the community changing, and if the change is more or less 

progressive or abrupt. On the other hand, the angles between trajectory segments and overall 

directionality of the trajectory, quantifies if the change in the communities are directional or not 

(De Cáceres et al., 2019). 

In chapter 6, we used the community trajectory analysis framework to study stream fish data 

collected in 30 locations on the Sabor river basin, between 2012 and 2019. We computed the 

mean velocity and the overall directionality of change of the fish community, and used the SSNM 

framework (Peterson et al., 2013) to relate these metrics to environmental drivers and 

extrapolate the community dynamics to the entire watershed. We did not find any evidence of 

directionality in the temporal change of the fish communities in the Sabor watershed, supporting 

the hypothesis that these communities exist in a loose equilibrium. However, the rate of change 

in the communities of stream fishes varied with stream order, and it was higher at sites with 

lower elevation. After we extrapolated and plotted this metric, we were able to identify that faster 

changes were associated to streams draining into the hydroelectric reservoir. These streams 

are probably under increased stress from the reservoir, due to alterations of the flow regime 

and/or expansion of alien species from the reservoir (R. M. B. Santos et al., 2017). 

For the conservation and management of riverine ecosystems, it is essential a continuous view 

of the entire landscape (“Riverscape”) to understand how the processes among species and 

their habitats interact at different scales (Fausch et al., 2002). The frameworks such as the one 

we developed in chapter 6 are useful to extrapolate data collected at discrete locations into a 

continuous spatial view of the community dynamics, which can be used by managers and 

conservationist to identify streams under anthropogenic pressures and to plan mitigation 

actions. 

7.5 Stream network biodiversity modelling as an essential tool for 

conservation 

There is an increasing demand for species distribution models to support conservation decision 

making (Guisan et al., 2013). SDM’s can be useful in several stages of the decision process, 

e.g. identify conservation issues, help define objectives, evaluating consequences of possible 

alternative actions, and assessing trade-offs between benefits and costs of such actions (Guisan 

et al., 2013). SDM’s should be of particular usefulness to generalize our observations made on 

discrete parts of streams to a continuous view of the watershed wide patterns, and thus 
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enhancing our understanding of the functioning of riverine ecosystems as a continuous system 

(Fausch et al., 2002; Vannote et al., 1980). 

Failure to detect a species when a species is present, is, arguably, the most common source of 

bias in datasets used to produce SDM’s (Guillera-Arroita, 2017). Not accounting for imperfect 

detectability affects model performance (Lahoz-Monfort et al., 2014), may compromise the 

range estimation (Comte & Grenouillet, 2013; Kéry et al., 2013) and thus affect our ability to 

understand the environmental drivers of the species distribution (Guillera-Arroita et al., 2014; 

MacKenzie et al., 2006). There have been several applications of occupation-detection models 

to the conservation of river ecosystems, e.g.; evaluating the potential of sites to receive re-

introduction of endangered fish species (Dextrase et al., 2014; Lamothe et al., 2019), 

determining environmental flows for fish (Gwinn et al., 2016), detecting invasive species (Britton 

et al., 2011), determine environmental drivers for crayfish (Magoulick et al., 2017), estimating 

the effort needed to survey freshwater mussels (Reid, 2016), and electrofishing efficiency (Reid 

& Haxton, 2017). 

Spatial autocorrelation (SAC) can be defined as the property of the majority of ecological 

datasets where two observations taken at nearby locations are more similar (positive 

autocorrelation) or less similar (negative correlation) than expected to occur by random 

processes (Legendre, 1993). As most statistical techniques for producing SDM’s assume 

independence among observations, SAC can be a source of bias increasing the probability of 

type 1 error (Diniz-Filho et al., 2003; Legendre, 1993; Record et al., 2013; Václavík & 

Meentemeyer, 2012), i.e. with SAC it’s possible to be more confident in a presence and that 

presence may be false. While there are several tools to account for SAC in SDM’s (Dormann et 

al., 2007), the dendritic nature rivers calls for more applied solutions such as the class of 

geostatistical models known as SSNM (Peterson et al., 2013; Peterson & Ver Hoef, 2010). 

SDM’s that account for SAC should be of particular relevance when dealing with species whose 

distribution is more related to spatial processes than environmental filters such as invasive 

species. 

Biotic interactions can be another source of mismatch between the real and the predicted 

distribution of a species. Biotic interaction can shape distributions through several processes, 

e.g. exclusion due to competition (Hewitt, 1999), apex predator induced cascading effects (Estes 

et al., 2011), emerging diseases introduced by exotic species (Gherardi, 2007) or global 

commerce (Fisher & Garner, 2020), and these interactions can shape the distribution of species 

at different scales (Araújo & Luoto, 2007; Wisz et al., 2013). There are several techniques to 

incorporate biotic interactions (review by Wisz et al., 2013), but a straightforward approach, 

when a link between species is known or suspected, is to include the distribution patterns of a 
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species as a predictor in the SDM of other species (Mota‐Ferreira & Beja, 2020; Wisz et al., 

2013). This approach has been used particularly to assess how species will adapt to climate 

changes (Araújo & Luoto, 2007; Preston et al., 2008; Schweiger et al., 2010), and it has been 

demonstrated to increase model performance (Meier et al., 2010). 

Management of stream networks is usually planned at the river basin scale, and as such it is 

important to develop frameworks that allow the extrapolation of the community dynamics 

observed at discrete segments of rivers to a continuous spatial view of the entire river basin 

(Mota‐Ferreira et al., 2021). This is particularly relevant because current biomonitoring methods 

usually assume that communities are stable and are the result of environmental filters with no 

regard to stochastic and dispersion processes (Cid et al., 2020). The community trajectory 

analysis framework (CTA, De Cáceres et al., 2019) allows for researchers and managers that 

are monitoring communities that may persist in a state of loose equilibrium (Collins, 2000; 

Matthews et al., 2013; Matthews & Marsh-Matthews, 2017) to assess the impact of 

environmental disturbances and/or anthropogenic stressors. 

7.6 Conclusions and future research 

In this thesis, we explored several methodological approaches to modelling the distribution of 

organisms in stream networks. Although we used particular faunal groups, the approaches 

developed in this thesis can have a broader application to other groups of organisms associated 

with river systems, particularly if the distribution is heavily dependent on spatial processes. The 

methods presented in this thesis should be useful for researchers and managers dealing with 

data collected in discrete locations along streams, and aiming to obtain a general view of 

biodiversity patterns and dynamics across a stream network. 

Like every scientific work, during the elaboration of this thesis many questions could be further 

asked and are worth pursuing in the future. The modelling of other groups of organisms with 

particular relevance in the riverine ecosystems could also be addressed with some of the tools 

we developed for this thesis. There are also extensions and modifications to our approaches 

that might be considered. 

The interval censored time-to-first-detection model that we developed in chapter 3 is a 

particularly flexible tool. When used with exponential survival model and constant interval size, 

the interval censored time-to-first-detection model is the mathematical equivalent of the removal 

sampling design framework in occupation detection modelling (MacKenzie et al., 2006 and 

check the proof in appendix 3.S2 of chapter 3). But the survival exponential model is the 

simplest of the parametric survival models and assumes a constant rate of events (e. g. 
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detections in time-to-first-detection models), a more complex model may be fitted in this 

framework (e.g. Weibull model, Kleinbaum & Klein, 2012). More, the interval censored time-to-

first-detection model may be used with uneven sampling times/intervals providing a framework 

to account for imperfect detectability when is impossible to ascertain the precise time of 

detection of the target species. Another application of time-to-first-detection models could be to 

model the amount of any positive quantity needed to observe some event of interest, e. g. 

distance-to-detection in transects or the amount of water volume need to be filtered for eDNA 

monitoring. 

One logical extension of the SSNM framework is to combine it with occupation-detection 

modelling. Such model will have to be implemented in a software that allows the construction of 

tailored models such as the programs for Bayesian inference like WinBUGS (Lunn et al., 2000) 

or Jags (Plummer, 2003), because the other software packages used to implement such 

models, as the stand-alone Presence (Hines, 2006) and Unmarked for R (Fiske & Chandler, 

2011) for occupancy-detection and the SSN package (Ver Hoef et al., 2014) for SSNM models, 

currently do not have this option. While the occupancy-detection models have been extensively 

adapted into the Bayesian framework (e.g. Ferreira et al., 2016; Ferreira & Beja, 2013; R. A. L. 

Santos et al., 2018), the SSNM adaptation is less straightforward due to its complexity and 

computational intensity of inverting large covariance matrices (Santos-Fernandez et al., 2021; 

Ver Hoef et al., 2018). To our knowledge, the first adaptation of the SSNM was proposed by 

Santos-Fernandez et al. (2021) in a pre-print. Combining the two frameworks should be feasible 

although the resulting model would be very complex, with many latent parameters to be 

estimated and would require a significant amount of high quality data to avoid identifiability 

issues. 

Euclidean distances alone are not appropriated to build SDM’s for species associated with river 

ecosystems due to the dendritic nature of stream networks (Peterson et al., 2007; Peterson & 

Ver Hoef, 2010; Ver Hoef & Peterson, 2010). In this thesis, we used two approaches to deal 

with SAC in stream networks, but there are more. Blanchet et al. (2008) proposed a modification 

of Moran’s eigenvector maps to model species distributions with SAC resulting from an 

asymmetric process along a gradient or a directed network such as a stream network called 

asymmetric eigenvector maps. This method would also have the potential to be combined with 

occupancy-detection modelling in a Bayesian hierarchical model. 

In chapter 5, we identified stream segments that can act as refuges for amphibian species under 

an invasion by exotic crayfish. The next step would be a systematic selection and prioritization 

of the most important refuges to ensure the resilience of the amphibian populations in the Sabor 

river basin (Margules & Pressey, 2000). Such selection should take into account the connectivity 
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among populations, and the structure and seasonality of the stream network (Hermoso et al., 

2012, 2013). Bernardo et al. (2011) reported the expansion speed for the invasive crayfish in 

the Sabor basin. Confirming these values would allow us to create a time frame for managers 

to plan and execute actions to halt crayfish expansion and conserve the remaining amphibians’ 

refuges. 

Mediterranean amphibian species are known to use the aquatic habitat at different periods 

(Diaz-Paniagua, 1992; Ferreira & Beja, 2013; Jakob et al., 2003; Richter-boix et al., 2006), with 

some species also using the aquatic habitats in different periods at different locations (Caetano 

& Castanet, 1993; Caetano & Leclair Jr., 1999). With the possibility of the amphibian species 

varying the usage of the stream network through space and time, accounting for the phenology 

in SDM’s would be of interest to understand the patterns and drivers of amphibian aquatic usage. 

In chapter 6, we used the velocity of change and overall directionality, some geometric 

properties of the trajectory of the Sabor fish communities, to infer about the stress posed by a 

large infrastructure. Under the community trajectory analysis (De Cáceres et al., 2019) it would 

be possible to derive other properties like the variation in the speed of change in communities 

(aka acceleration). We found that communities more close to the hydroelectric dam near the 

mouth of the Sabor river presented a higher rate of change than communities located further. 

Using acceleration, we could assess if the rate of change is increasing or even if it varied after 

the filling of the dam. Following a BACI logic (Smith, 2014), estimating acceleration in the change 

of communities could be an important assessment in putative impacts. 

In chapter 5 we assumed a putative negative biotic interaction between the invasive crayfish 

and amphibians that was largely supported by the literature, and in chapter 6 we describe the 

dynamics of the community but refrained to infer about the nature of the interactions among 

species. Biotic interactions are important drivers of species distribution (Wisz et al., 2013), but 

it is challenging to infer biotic interactions from observational data alone (Blanchet et al., 2020; 

Dormann et al., 2018). There are several tools to account for biotic interactions, most of them 

implies a priori knowledge of the nature of the interaction and usually are restrain among pair of 

species and symmetric interactions (Wisz et al., 2013). Porto & Beja (2021) proposed a new 

framework with a simultaneous system of equations for species modelling while accounting for 

asymmetric interaction networks in a community. The occurrence of each species is modelled 

as a function of measured and unmeasured environmental factors and the potential occurrence 

of every other species in the community (Porto & Beja, 2021). This framework would help 

understand the dynamics of freshwater species and combined with an appropriated framework, 

make predictions about species co-occurrence across the watershed. 
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In summary, the distribution of species in stream networks is a result of multiple processes, from 

environmental filters to spatial processes at work at different scales (Domisch et al., 2015). 

These properties and the nature of stream dwelling species make the application of SDM’s in 

riverine ecosystems particularly challenging (Olden et al., 2010). The main aim of this thesis 

was to tackle some of these challenges and to contribute to the understanding of the drivers that 

govern the distribution of species in stream networks, which is key knowledge for the 

conservation of these ecosystems (Geist, 2011). It is essential that we regard the riverine 

ecosystems as a continuous system (Fausch et al., 2002; Vannote et al., 1980) and not be 

limited by our observations made at discrete locations. We encourage researchers and 

managers to regard SDM’s as part of the scientific process that structures our observations, 

knowledge, and assumptions, using an abstraction of reality with a formal description of the 

elements and their relations to enhance our understanding of these particular ecosystems 

(Wang & Grant, 2019a, 2019b).  
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