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Abstract  

Over-exploitation and wildlife trafficking are one of the main drivers of global loss of 

biodiversity. Wildlife commerce feeds a vast industry, through which thousands of animal and 

plant species, as well as their associated products are commercialized for many purposes, 

including furs, leathers, pets, medicine, food and hunting trophies. The increase of unregulated 

or illegal wildlife commerce has become a major conservation challenge, leading to 

unsustainable wildlife management and to the threatening of already endangered wild species.  

Monitoring wildlife trade, and particularly the commerce of illegally traded products, is quite 

difficult due to the mass amount of existing information and its clandestine nature. With recent 

technological advancements, e-commerce and social medial platforms have become an 

important source for sharing information among interested customers and for selling illegal 

species of wild flora and fauna. Consequently, animal e-commerce, either legal or illegal, has 

grown exponentially on social media networks due to their ease of use and access by an 

increasing number of users. Through social media, wildlife dealers can post pictures and 

information about the available products, thus attracting new clients and selling their 

merchandize through networks of clients crafted through word of mouth and easily found 

products. Tracking the illicit traffic of species on social media is, therefore, a pressing matter.  

Machine learning offers many new opportunities in this regard, helping with the 

development of tools that more quickly and efficiently help with the analysis of large amounts 

of data extracted from social media websites to monitor wildlife transactions. Specifically, the 

advancement of machine learning models and algorithms have brought complementary 

insights to detecting the presence of a species in question among the data pulled from social 

media networks, by automatically examining images, texts and videos shared online.  

The goal of this thesis is twofold. First, it intends to evaluate the state of the art of mammal 

trade in the scientific literature, particularly, it aims to: (1) understand which are the countries 

and continents with the most reported incidences of mammal wildlife trafficking; (2) identify 

which are the most popular mammal species being traded; and (3) assess the main purposes 

and commercialization means (including social media) for mammal trade. Then, it aims to 

understand whether freely available machine learning models can support the identification of 

potential situations of wildlife trade on social media images, using pangolins as a case study. 

Specifically, it aims to understand whether: (4) freely-available machine learning algorithms 

can be developed to support an automated classification of social media photographs in the 

context of potential wildlife trade; (5) which existing machine learning algorithms show the 

highest potential to promote statistically reliable image classifications of potential situations of 

wildlife trade; and, (6) at which point can those algorithms and models be used to identify 
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potentially traded species and their commercialized products. To do so, a machine learning 

architecture was trained using pangolin species as a case study. 

Since 1975, pangolin species (Manis) have been listed in the Appendix II of the Convention 

on International Trade in Endangered Species of Wild Fauna and Flora (CITES), being moved 

since 2016 to CITES Appendix I, prohibiting the international commerce of pangolin species. 

Nonetheless, due to their popular nature, reports show that over a million pangolins have been 

illegally traded globally in the last decade to satisfy the rising consumer demand, particularly 

from Asia.  

In general, our results show that, according to a literature revision there’s a massive gap 

in knowledge when it comes to online illegal wildlife trade, and, thus, a lack of preventive and 

monitorization measures set to fight this pressing conservation topic. Additionally, our practical 

component illustrates that it is possible to train a well performing algorithm to identify pangolin 

species and their tradable parts in social media images. The use and implementation of 

machine learning tools appears to be promising for complementing existing approaches that 

aim at screening and surveying online data for preventing and halting wildlife illegal trade. 

 

  

Keywords: Illegal commerce, digital conservation, transfer learning, online trade, wildlife 

commerce.    
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Resumo  

Sobre-exploração e tráfico de vida selvagem são uns dos fatores principais responsáveis 

pela perda global da biodiversidade. Comércio de vida selvagem alimenta uma grande 

indústria, através da qual milhares de espécies de animais e plantas, tal como os seus 

produtos derivados, são comercializados a fim de várias funcionalidades, incluindo peles e 

couros, animais de estimação, medicina, alimento e troféus de caça. O aumento de comércio 

não regulado ou ilegal de vida selvagem tem-se tornado um grande desafio para a 

conservação, levando a uma gestão insustentável da vida selvagem e à ameaça de extinção 

de espécies já em perigo. 

Monitorizar tráfico de vida selvagem, e particularmente o comércio ilícito de produtos, é 

difícil devido à quantidade enorme de informação disponível e também à sua natureza 

clandestina. Com os recentes avanços tecnológicos, comércio eletrónico e plataformas de 

redes sociais tem-se tornado em uma fonte importante de compartilha de informação entre 

clientes interessados e venda de espécies ilícitas de flora e fauna selvagem. 

Consequentemente, comércio eletrónico de animais, tanto legal como ilegal, tem crescido 

exponencialmente nas redes sociais devido à facilidade de uso e acesso por uma quantidade 

crescente de usuários. Através das redes sociais os traficantes de vida selvagem podem 

partilhar fotografias e informação sobre os produtos disponíveis e, desta forma, atrair novos 

clientes e vender as suas mercadorias por meio de redes de clientes criadas conhecimentos 

e produtos facilmente encontrados. Monitorizar o tráfego ilícito de espécies nas redes sociais 

é, portanto, uma questão urgente.  

A aprendizagem de máquina ou automática oferece novas oportunidades para este caso, 

ajudando no desenvolvimento de ferramentas que irão auxiliar a análise de grandes 

quantidades de dados extraídos das redes sociais a fim de monitorizar transações de vida 

selvagem, mais rapidamente e eficientemente. Especificamente, o avanço nos modelo e 

algoritmos de aprendizagem automática tem trazido perceções complementares à deteção da 

presença de espécies em questão entre os dados extraídos das redes sociais, examinando 

automaticamente as imagens, texto e vídeos partilhados online.  

Esta tese tem dois grandes objetivos. Primeiro, tem como intenção avaliar o estado de 

arte do comércio de mamíferos tendo em conta a literatura científica, particularmente visa a: 

(1) perceber quais são os países e continentes com o maior número de casos de tráfico de 

mamíferos; (2) identificar quais são as espécies de mamíferos mais traficadas; e (3) avaliar a 

finalidade principal, tal como os métodos de comercialização (incluindo as redes sociais) dos 

mamíferos traficados. Para além disso, tem como objetivo perceber se os modelos de 

aprendizagem automática disponíveis conseguem suportar a identificação de casos 
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potenciais de comércio de vida selvagem nas redes sociais, usando o pangolim como caso 

de estudo. Especificamente, tem como objetivo perceber se: (4) os modelos de aprendizagem 

de máquina disponíveis podem ser desenvolvidos para suportar a classificação de imagens 

de fotografias das redes sociais em contexto de comércio de vida selvagem; (5) quais modelos 

já existentes demonstram maior potencial para promover uma classificação de imagens 

estatisticamente significativa de casos potenciais de comércio de vida selvagem; e. (6) até 

que ponto esses modelos podem ser utilizados para identificar espécies traficadas e os seus 

produtos derivados. De forma a realizar estes objetivos, um modelo de aprendizagem de 

máquina foi treino usando pangolins como casos de estudo.   

Desde 1975 que as espécies de pangolins (Manis) estão incluídas no Apêndice II da 

Convenção sobre o Comércio Internacional das Espécies da Fauna e da Flora Silvestres 

Ameaçadas de Extinção (CITES) e, em 2016, foram movidas para o Apêndice I, efetivamente 

proibindo a sua venda internacional. Contudo, devido à sua popularidade, relatórios declaram 

que mais de um milhão de pangolins foram ilegalmente comercializados globalmente durante 

a década passada, de modo a satisfazer a crescente demanda de consumidores do continente 

asiático. 

Em geral, os nossos resultados mostraram que, de acordo com a revisão de literatura, 

existe um enorme vazio no conhecimento, no que toca ao comércio ilegal online de vida 

selvagem, e, desta forma, existe uma falta de medidas e prevenção e monitorização para 

combater este tópico de conservação. O uso e implementação de ferramentas de 

aprendizagem automática parece promissor a fim de complementar abordagens já existentes 

que tem como alvo a triagem e levantamento de dados online de forma a prevenir e parar com 

o comércio de vida selvagem.  

 

  

Palavras-chave: comércio ilegal, conservação digital, transfer learning, comercio online, 

comercio de vida selvagem. 
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Chapter 1  

  

Introduction  

1.1 Biodiversity and wildlife trafficking 

Broadly speaking, biodiversity refers to the diversity of all living beings, including plants, 

animals, fungi and microorganisms on Earth and the communities and ecosystems they are a 

part of (Rosenzweig, 1995). Since the last century, biodiversity has been continually 

endangered, particularly, due to human influence (Ceballos et al., 2010; Díaz et al., 2019). 

Biodiversity loss is one of the most critical environmental problems that threaten ecosystem 

services and, consequently, human well-being (Dirzo et al., 2014; Dirzo & Raven, 2003; 

Maheshwari, 2020). As is seen in the rapid decline of many species, like saiga (Saiga tatarica) 

(Milner-Gulland et al., 2001), pangolins (Manis) (Challender, 2011; Nijman et al., 2016), tigers 

(Panthera tigris) (Walston et al., 2010), Asiatic black bears (Ursus thibetanus) (Foley et al., 

2011), tortoises and freshwater turtles (Horne et al., 2012), among many others (Wyler & 

Sheikh, 2008). 

One of the main drivers of biodiversity’s rapid decline has been illegal wildlife trade (IWT) 

(Barnosky et al., 2011). IWT can be understood as the practice of illicit tracking, trading, 

processing, exploiting, or killing of wildlife, while directly breaking national and international 

laws (Kurland et al., 2017). IWT is a booming business that is estimated to generate between 

9 and 20 billion US dollars, annually (Barber-Meyer, 2010). Thousands of species, including 

elephants, rhinos, pangolins, bears, tigers, turtles, among others, are sold illegally for their 

body parts like pelts, scales, nails, teeth, meat, or as pets (Broad et al., 2014; Nijman, 2010; 

Petrossian et al., 2016).  

International ivory trade was banned in 1989 in response to the emblematic African 

elephant situation, which was by then moved up from the Appendix II to the Appendix I of the 

Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), 

also known as the Washington Convention. Nonetheless, in many countries, like the United 

Kingdom (UK), United States of America (USA), Thailand and Japan, domestic ivory sales are 

still legal and are being sold under a certification as coming from legal stockpiles or antiques 

(Bennett, 2015; Walker & Stiles, 2010). Still, ivory trade is the most profitable section of illegal 

trafficking (Bennett, 2015). For instance, from 2006 and onwards, the increase in economic 

and infrastructure links between Asia and Africa, as well as the boost in East Asia’s increase 

in disposable income, led to the increment in elephant poaching and illegal international trade 
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in ivory (Milliken & Sangalakula, 2010; UNEP, 2013). Since 2007 the ivory trade business has 

doubled and is more than three times greater than it was in 1998 (Cites, 2013).  

Many animal and plant populations have suffered a great decline because of illegal wildlife 

trade. Examples of this trend can be illustrated with the cases of: (1) the African savannah 

elephant (Loxodonta africana africana), which has lost about 76% of individuals between 1985 

and 2010, while the forest elephants (L. a. cyclotis) have suffered a decline of 62% of their 

population between 2002 and 2011 (Bouché et al., 2011; Maisels et al., 2013); (2) the wild 

harvested orchids whose overexploitation and habitat destruction (Subedi et al., 2013) caused 

enormous biodiversity erosion and revenue loss to Nepal (Singh Jalal et al., 2008); (3) and 

organized crime on the high seas supporting illegal fisheries and marine species trade 

(Aceves-Bueno et al., 2021), which led to detrimental effects on pelagic species and 

ecosystems, as well as coastal habitats and ecosystem services that support local 

communities (Aceves-Bueno et al., 2021; Falautano et al., 2018; Ye & Valbo-Jørgensen, 

2012). 

Another activity of illegal wildlife trafficking is pet trade. For this market, the USA are the 

leading buyers, relying on a small group of gatekeepers, launderers that integrate the wild-

caught animals into legal breeding facilities and a limited number of USA intermediaries (Lyons 

& Natusch, 2011; Natusch & Lyons, 2012). An example of illegal pet trade is that of 

Madagascar’s endemic tortoises. The radiated tortoise (Astrochelys radiata), ploughshare 

tortoise (Astrochelys yniphora), spider tortoise (Pyxis arachnoides) and flat-tailed tortoise 

(Pyxis planicauda) are all listed on CITES Appendix I and are characterized as critically 

endangered by the International Union for Conservation of Nature (IUCN) Red List (Leuteritz 

et al., 2005; Leuteritz & Pedrono, 2013; Velosoa et al., 2013). The ploughshare tortoise, 

specifically, is one of the rarest tortoises in the world and studies regarding their population 

size and poaching have been done, asserting the fact that this over-collection practice is 

leading to their populations’ decline (Mandimbihasina et al., 2020). 

Currently, amongst the most trafficked mammal species in the world are pangolins 

(Heinrich et al., 2017). Pangolin species (Manis spp.) have been included in the CITES 

Appendix II and a prohibition on their trade has been set since the year 2016, effectively 

banning all commercial trade for Asian pangolin species (Xu et al., 2016). However, for 

example, in the period between the years 2000 and 2013 it was estimated to have occurred 

over a million of pangolins poached for trading, most of which were destined to clients in China 

and Vietnam (Heinrich et al., 2017). The high demand for all eight species of the Manidae 

family, endemic to South Asia and Central and South Africa (Figure 1), is their biggest threat 

to survival. 
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Pangolins are hunted for consumption, as their meat is considered a luxury food and is also 

used as a source of nourishment for local populations (Gimeno-Gilles et al., 2016; Shairp et 

al., 2016). Their skins are transformed into leathers and their scales are used for ornamental 

purposes and for traditional medicine (Heinrich et al., 2017; Katuwal et al., 2013). Some studies 

have been conducted to evaluate the veracity of the claims that pangolin scales possess 

medicinal qualities and have found them to be simply normal keratinous scales, equal to our 

nails (Chon et al., 2017). These cultural practices have led to a big decline in pangolin 

population size. For example, prior to 2013 there were no registered pangolin shipments over 

500 kg; however, after the middle of the 2010s about 16 ton of pangolin scales and skins 

started being shipped per year, with rising numbers (Shepherd et al., 2017). China has been 

the main destination for the large quantity of shipments of pangolin scales, nevertheless, other 

countries such as Hong Kong, the Netherlands and Vietnam are also main buyers (Figure 2; 

Heinrich et al., 2017). This commercial harvest and trade are firmly suspected to be 

unsustainable and have led to the decline of pangolin populations worldwide over the past 

couple of decades (Cheng et al., 2017; Nijman et al., 2016). 

Figure 1 - World distribution of all eight pangolin species – White-bellied pangolin 
(Phataginus tricuspis), Giant pangolin (Smutsia gigantea), Black-bellied pangolin 
(Phataginus tetradactyla), Ground pangolin (Smutsia temminckii), Chinese pangolin (Manis 
pentadactyla), Philippine pangolin (Manis culionensis), Sunda pangolin (Manis javanica), 
Indian pangolin (Manis crassicaudata). Taken from the Pangolin Crisis Fund website 
(https://www.pangolincrisisfund.org/).  

https://www.pangolincrisisfund.org/
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Southeast Asia, including China’s international borders and parts of Indonesia, has been 

established as a “wildlife trade hotspot”, meaning it is the region with the most incidents of 

wildlife trade (Rural Development, 2008; Sodhi et al., 2004). Recently, with the renewed 

interest in conservation efforts from the government and non-governmental organizations 

(NGOs) as well as the general public, there has been a surge in proposals of new preventive 

and monitorization measures to help prevent illicit commerce (Beastall et al., 2016; United 

Nations Office of Drugs and Crime, 2016; Warchol, 2004). In order to improve the effectiveness 

of conservation interventions, alternative livelihoods, increased authority enforcement, demand 

reduction and incentive-oriented approaches are needed (Phelps et al., 2016). However, the 

study and debate over the conservation field is aggravated by the lack of set frameworks to 

dissect the phenomenon of IWT (South & Wyatt, 2011). There is an increasing need for 

surveying tools that allow monitoring the range of buyers, sellers, transactions, routes, and 

products that compromise the field of IWT (Laird et al., 2011; von Lampe, 2012). 

 

 

 

 

Figure 2 - International trafficking routes for pangolins (2010-2015). All these routes have 
been used five times or more for international trafficking of pangolins and the routes in 
orange have been used in five or six consecutive years. Image taken from (Heinrich et al., 
2017). 
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1.2 Social media and wildlife trade 

Wildlife trade has conventionally been done in physical markets. Nevertheless, with the 

increasing usage of Internet, social media has become a popular channel for both legal and 

illegal wildlife trade (Harrison et al., 2016; Hinsley et al., 2018; Regueira & Bernard, 2012; Rosa 

et al., 2013).  

Initially illegal trade was being conducted mostly on the dark web, which is an assortment 

of anonymous, untraceable networks, due to their encryption methods, specifically designed 

to offer users anonymity (Harrison et al., 2016). It is almost impossible to measure the true size 

of the dark web since most of the information is hidden or blocked. Nevertheless, it is possible 

to communicate and exchange financial resources through this network, allowing for complete 

anonymity and making illegal transactions almost impossible to track (Weimann, 2016).  

A popular example showcasing the usage and difficulty of tracking online networks for 

illegal trade is the Silk Road, which is a known online marketplace for selling illegal articles, 

such as drugs (Pace, 2017). A study from Harrison et al. (2016), surveyed the dark net 

discovering little evidence of illegal wildlife trade. While the results did not show many hits for 

wildlife trade, it could have been related to this anonymous network’s methods of technological 

as well as language encryption (Harrison et al., 2016). On the one hand, such results suggest 

that a regular internet user, might have difficulties finding the products that interest them, since 

the dark web could be too complicated and not user friendly for first time clients, as this 

network’s purpose is not discoverability, on the contrary – it is secrecy (Pace, 2017; Weimann, 

2016).  

On the other hand, with an increasing number of Internet users, ease of navigation and 

lack of authority monitorization, social media networks have been serving as a way to promote 

criminal activity (Patton et al., 2017; Soomro & Hussain, 2019), including illegal wildlife trade 

(Harrison et al., 2016; Xiao et al., 2017; Yu & Jia, 2015). With law enforcement’s slight success 

in controlling and monitoring illegal wildlife trade on e-commerce websites, illicit trade has 

appeared to move to alternative platforms, particularly social media networks (Yu & Jia, 2015). 

Wildlife dealers can use social media’s ease of connection to release photos and information 

pertaining to their products of choice and, thus, attract new customers marketing their 

merchandize to a network of contacts (Di Minin et al., 2018).  

Since 2004, the International Fund for Animal Welfare (IFAW) has been investigating 

wildlife commerce over the Internet, concluding that thousands of wild beings, their products 

and parts are readily available for online sales, although the lack of access to the product and 

the little information displayed about it makes the ability to ascertain the legality very difficult 

(Hastie & McCrea-Steele, 2014). The issue released in 2014, Wanted – Dead or Alive: 

Exposing Online Wildlife Trade (Hastie & McCrea-Steele, 2014) found that out of the 280 
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investigated websites, 3047 online advertisements were regarding ivory, followed by 2509 

broadcasts for reptiles, including turtles and tortoises (Hastie & McCrea-Steele, 2014).  

Furthermore, Feddema et al (2020), conducted a study on the strategies and persuasion 

tactics used by exotic pet vendors, through Facebook (https://www.facebook.com/). This social 

media platform, for example, allows for the users to create private or public groups, many of 

which are possible to be joined by conservationists to directly monitor the content of their posts. 

Since many of these “buy and sell” groups are confined to cities or suburbs, it is feasible to 

observe and analyze the geographical patterns of these commerce instances, allowing for 

conservation programs to be more involved in the online monitoring process (Feddema et al., 

2020). Nonetheless, not all social media websites allow for an easy integration and 

discoverability for authority figures, therefore it is necessary to come up with new ways to help 

in the prevention and monitorization of online (illegal) wildlife trade. 

 

 

1.3 Machine learning for tracking wildlife trade 

With illegal wildlife trade’s recent digital migration and online popularization, new methods 

are necessary to survey and monitor this trade method (Di Minin et al., 2019). Machine learning 

offers many opportunities to analyze and detect large quantities of digital data, thereby helping 

to prevent online illegal deals (Di Minin et al., 2018).  

Machine learning (ML) refers to the set of successful algorithms and models that can 

perform a task without human guidance or at least be specifically programmed to solve it with 

minimum human assistance (Di Minin et al., 2018; Wäldchen & Mäder, 2018). ML allows for 

algorithms to learn from previous data without the help or guidance of humans, turning it into 

a rather automated, fast and efficient process (Loussaief & Abdelkrim, 2018). ML algorithms 

can be trained to detect species or wildlife products that appear in images, videos, or text, 

using audio clues and image or text detection parameters (Guo, 2017).  

ML algorithms, and more specifically deep learning models, can be used in speech to text 

transcription, search engine fine tuning where it has the ability to match the search subject with 

the relevant news, posts, videos and websites, as well as in image classification and object 

detection (Lecun et al., 2015). For visual understanding deep learning models are based on 

artificial neural networks (ANNs), which are based on a set of connected units or nodes named 

artificial neurons that are organized into multiple layers between which the connections only 

occur in the immediately preceding and following layers (Mishra & Srivastava, 2014). ANNs 

can be used for object detection, image classification and for application with unclear data, 

however it cannot be used for instances when the nature of the input and output is familiar 

(Dongare et al., 2012; Harvey & Harvey, 1998).  
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For instance, in a deep learning model, a digital image is presented in the shape of a matrix 

of pixel values, for colored imaged, associated to 3 channels that correspond to the RGB (Red, 

Green, Blue) channels. Then the ANN is divided into layers of neurons, that will receive an 

image as an input, process the information within them, and finally give an output that will 

correspond to the classification of that image (Guo, 2017; Lecun et al., 2015). For training an 

ANN on images, a large dataset of manually labeled information is first required to then allow 

the learning networks to learn how to associate the input with the output. This means that even 

though deep learning algorithms can provide useful information in an automatized way, they 

still require human inputs and validation (Alnajjar, 2021; Di Minin et al., 2019).  

Convolutional neural networks (CNNs) are the most used algorithms when working with 

deep learning techniques for visual imagery (Guo, 2017). CNN architectures have layers of 

convolution and pooling, consisting of neurons which assimilate inputs and produce outputs 

based on weights and biases (Figure 3; Lecun et al., 2015). They are comprised of 

convolutional layers, pooling layers, and a fully connected layer, and by stacking them in 

different ways, different architectures are formed (Saiharsha et al., 2020). The convolutional 

layer is the main building block, consisting of filters that travel through the dataset by selecting 

a specific region at a time, and are then used to extract certain features from that data. The 

pooling layer is used to reduce the chances of overfitting, by taking small portions from the 

convolutional layer and giving out the minimum (min pooling), maximum (max pooling) and 

average (average pooling) of values. The fully connected layers are the last ones to be added, 

as they connect the neurons of preceding layers to neurons of the present layer (Huang et al., 

2017; Simonyan & Zisserman, 2015; Wäldchen & Mäder, 2018).  

 

Figure 3 - Simplified representation of a convolutional network. The outputs of each horizontal 
layer of a CNN applied to an image of a Samoyed dog – bottom left and it’s RGB simplification 
on the bottom right. Each rectangle is a feature map that corresponds to the output for one of 
the learned features. As such information flows bottom up and the lower-level features are 
acting as oriented edge detectors. Image taken from Lecun et al., (2015). 
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With deep learning it becomes potentially possible to infer whether an image of an animal, 

or its derived product, was shared with the intent of being commercialized or for leisure 

purposes, through natural language processing (NLP) and computer vision. NLP is a branch 

of ML that allows an algorithm to process a data set of human language, in the form of voice 

or text, understanding the meaning of that data (Olsson, 2009). As curiosity, NLP algorithms 

grant computer programs the ability to respond to spoken commands in the form of artificial 

intelligence assistants like Siri or Alexa, as well as voice operated GPS systems, translating 

text from one language to another, and summarizing large volumes of text to streamline 

business operations and simplify business processes (Olsson, 2009). Computer vision in its 

turn enables systems to derive meaningful information from digital images and other visual 

inputs (such as videos), acting according to that information (Loussaief & Abdelkrim, 2018). 

Computer vision is used in many fields like industries ranging from utilities and energy to 

manufacturing and automotive, with a growing market. Through deep learning computer vision, 

analyzing specific patterns and recognizing specific objects over large amounts of digital and 

visual data becomes possible (Loussaief & Abdelkrim, 2018). Such is done by breaking images 

down into pixels and giving labels to those images, which is then used by the algorithm to make 

predictions on what is seen in the picture, based on the information collected from previous 

iterations (Mitchell, 2006; Simonyan & Zisserman, 2015).  

Deep learning has been used in many technological fields that aid our online experiences, 

such as web searches, content filtering on social networks, recommendations on e-commerce 

websites and searching browsers (Mjolsness & DeCoste, 2001). An emblematic example is 

the use of deep learning for fire-arm detection in closed-circuit television (CCTV), with the aim 

of detecting potential unsecure actions and threats in daily situations (Kanehisa & Neto, 2019; 

Verma & Dhillon, 2017).  

Through the application of deep learning algorithms, it is also potentially possible to 

investigate human online behavior and possibly present new methods of prevention and 

monitoring of illegal wildlife trade (Di Minin et al., 2018). An example of such possibility can be 

found in Xu et al. (2016), who used machine learning to detect cases of wildlife product sales 

on twitter using unlabeled textual data. The authors found that it is possible to detect groups of 

tweets specific to illegal wildlife trade, outlining a set of policy and technology 

recommendations and challenges to better perform surveillance on social media, and thus 

combat online wildlife trafficking (Xu et al., 2019).  

However, the application of deep learning tools, and specifically of computer vision models 

to survey and detect potential situations of wildlife trade is still in its infancy. 
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1.4 Research objectives and thesis structure 

The goal of this thesis is twofold. First, it intends to evaluate the state of the art of mammal 

trade in the scientific literature, with particular emphasis on the role of social media information 

in this trade. Particularly, it aims to:  

(1) understand which are the countries and continents with the most reported incidences 

of mammal wildlife trafficking,  

(2) identify which are the most popular mammal species being traded; and,  

(3) assess the main purposes and commercialization means (including social media) for 

mammal trade.  

Then, it aims to understand whether freely available machine learning models can support 

the identification of potential situations of wildlife trade on social media images, using pangolins 

as a case study. Specifically, it aims to understand whether:  

(4) freely available machine learning algorithms can be developed to support an automated 

classification of social media photographs in the context of potential wildlife trade;  

(5) which existing machine learning algorithms show the highest potential to promote 

statistically reliable image classifications of potential situations of wildlife trade; and,  

(6) at which point can those algorithms and models be used to identify potentially traded 

species and their commercialized products.  

To do so, this thesis includes five chapters. Chapter 1 functions as a general introduction, 

outlining and giving a brief insight into the context, the motivation, and objectives of this thesis. 

Chapter 2 examines the systematic literature review on animal trafficking by searching, filtering, 

and evaluating the studies found in relation to illegal wildlife commerce. Also, this chapter 

serves as a justification for this thesis, as we showcase the lack of works and subsequent gap 

in knowledge regarding online wildlife trade. Chapter 3 focuses on the validity of a possible 

solution to the rise of online animal commerce, through tracking of images of pangolin species, 

used as a case study, with the help of machine learning algorithms. This chapter demonstrates 

the methodology, results, and their discussion with a conclusion that it is indeed possible to 

identify pangolins, and their tradeable parts, in images using machine learning algorithms 

through pre-trained models and transfer learning, for a more efficient and less time-consuming 

search. Chapter 4 is an overall discussion of all the obtained results, the limitations present 

with this type of study and plans going forward. Finally, Chapter 5 is a consolidation of ideas 

and all the obtained results throughout this project.   
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Chapter 2  

  

Systematic literature review on mammal trafficking 
 

2.1. Background 

Illegal wildlife trade is the process of acquisition, transport, and distribution, either national 

or international, of wildlife – plants, animals, their parts or derivates (Wyler & Sheikh, 2008). 

Trafficked wildlife can include live animals for pet trade, fashion accessories, cultural artifacts, 

hunting trophies, ingredients for traditional medicine, meat for human consumption and other 

products (Wyler & Sheikh, 2008). Wildlife trade is one of the biggest drivers of the decline of 

species and biodiversity (Bennett & Robinson, 2000; Broad et al., 2014; van Uhm, 2016), and 

has been among the most lucrative businesses in the world, making an estimate of 8 to 12 

billion dollars per year (Barber-Meyer, 2010; Rosen & Smith, 2010). There has been a 

resurgence and renewed interest from non-governmental organizations (NGOs), the 

government and the general public, over the past few years, in developing measures for 

preventing and halting illegal wildlife trade. The renewed interest has been partially prompted 

by a rise in consumer demand from Eastern Asia, where there is a big market for ivory, 

pangolins, felines, sharks, and many other species as well as their body parts (Beastall et al., 

2016; United Nations Office of Drugs and Crime, 2016; Warchol, 2004).  

Providing an accurate global assessment of wildlife commerce is tricky since each country 

has its own laws set in order to protect animals, fish and plant life, so to try and facilitate that 

the Convention on International Trade in Endangered Species of Wild Fauna and Flora 

(CITES) grants a framework to regulate international trade (United Nations Office of Drugs and 

Crime, 2016). On the other hand, each country’s focus on domestic species regulation and 

lesser effort in international smuggling monitorization indicates CITES importance, since it 

allows governments to reciprocally protect non-native species by following a conventional set 

of rules (United Nations Office of Drugs and Crime, 2016).   

CITES is a contractual arrangement between countries that contains a list of species 

internationally agreed to be protected globally, leaving poaching and illegal domestic trade to 

stay as matters for national governments. CITES contains three main appendices - I, II and III 

-, which include lists of species and their levels of protection in regard to trading. Specifically, 

Appendix I includes species that are most endangered and threatened with extinction, for which 

international trade is prohibited, except when the purpose of species movements is non- 

commercial, such as for scientific research; Appendix II includes species that are not 
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threatened with extinction but may become so due to over-exploitation, and without proper 

monitorization; finally, Appendix III includes species at the request of an outside party that 

specifies in their regulation and needs the cooperation of extra countries to prevent its illegal 

exploitation. While species lists in Appendices I and II can only be changed by the Conference 

of the Parties, in Appendix III, species lists can be changed at any time and by any party 

unilaterally (CITES, 1997; Draft Framework for Reviewing National Wildlife Trade Policies, 

2007; Simmons et al., 1976; Wijnstekers & Wijnstekers, 2011).  

As CITES focuses on international trade, it leaves domestic trafficking to each country’s 

own responsibility, allowing them to manage CITES-listed species at their own accordance as 

long as they do not leave their borders. This means that poaching and illegal domestic trade 

are not governed by CITES and thus all the governing power stops at ports of entry like airports, 

harbors, and national borders, leaving physical domestic markets and online markets to each 

country to regulate. This regulation is difficult since proving the illegality of a wildlife species or 

product is challenging, considering each countries governmental division and lack of 

communication between smaller municipal authorities and environmental organizations 

(CITES, 1997; Wijnstekers & Wijnstekers, 2011). The disorganization and fragmented 

communication between governmental agencies should be addressed and resolved to better 

settle new issues and disseminate new preventive measures and policies.  

Therefore, a review of published literature is necessary to have a better idea of the state of 

the art regarding wildlife trade. This evaluation is important to know which taxonomic groups 

and geographical patterns are more prioritized, as well as which fields are well researched, 

and which need further analysis. There’s a large focus on physical wildlife trade, neglecting the 

online aspect that has been rising over the past years. Thus, it is crucial to have a defined well 

of information regarding wildlife commerce to understand which aspect needs more attention 

more clearly.  

In this review we evaluate and discuss the current state of literature regarding the illegal 

trafficking and smuggling of animal wildlife. Specifically, we aim to: (1) understand which are 

the countries and continents with the most reported incidences of animal wildlife trafficking, (2) 

identify which are the most popular animal species being traded; and (3) assess the main 

purposes and means for animal trade. Our results are discussed with an emphasis on the 

Internet as an opportunity for online wildlife markets. 
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2.2. Methods 

2.2.1 Methodological overview 

To conduct our literature review, we followed three main steps: (1) preparing the review by 

establishing a question regarding a certain topic, a search strategy, review plan and data 

collection and analysis; (2) searching for studies, filter them through inclusion and exclusion 

criteria and evaluate their relevancy to the research goal and topic (see section 2.2.2); and, (3) 

reviewing the content from the retrieved studies and organizing their information, through a 

quantitative or qualitative analysis, so as to answer the established research question (see 

sections 2.2.3 and 2.2.4). 

 

 

2.2.2 Literature search 

A search of published scientific literature on illegal trafficking was done in Scopus (at: 

https://www.scopus.com/) and ISI Web of Science (at: http://webofknowledge.com/) search 

engines. Twenty unambiguous keywords were used in the search string to reach the largest 

amount of published research. Keywords were obtained from a list of reference papers 

(Kurland et al., 2017; Patel et al., 2015; Pires & Moreto, 2016; Sas-Rolfes et al., 2019; Thomas‐

Walters et al., 2020; Van Uhm & Moreto, 2018; van Uhm & Wong, 2019) with reference to the 

topic at hand (Table 1). The search string used was TITLE-ABS-KEY (“wildlife"  OR  "animal"  

OR  "mammal" )  AND  ( TITLE-ABS-KEY ( "black market"  OR  "black-market" )  OR  ( TITLE-

ABS-KEY ( "commerce"  OR  "trade"  OR  "purchase"  OR  "transaction"  OR  "traffic"  OR  

"trafficking" )  AND  TITLE-ABS-KEY ( "illegal"  OR  "crime"  OR  "illicit"  OR  "illegitimate"  OR  

"banned"  OR  "criminal"  OR  "prohibited" ) ) ). This was done with the intent of including 

several variations for wildlife, with a focus on mammals, as well as variations of illegal trade, 

to find as many publications as possible. TITLE-ABS-KEY searches for titles, abstracts and 

keywords for the specified terms of published research. 

 

Table 1 - Keywords used for searching literature regarding the illegal wildlife trade. 

KEYWORDS 

Wildlife Animal Mammal Black market Commerce 

Trade Purchase Transaction Traffic Trafficking 

Poaching Smuggling Smuggle Illegal Illicit 

Crime Illegitimate Banned Criminal Prohibited 
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The searches were conducted between November 2020 and January 2021. The list of 

papers retrieved by our search was organized in an Excel spreadsheet, and duplicates were 

removed. A total of 4446 unduplicated records were retrieved by the combined search. 

Afterwards, we applied the inclusion and exclusion criteria to the main dataset to eliminate non-

relevant information. Specifically, we excluded records that did not focus on mammals. 

Likewise, we excluded records which did not explicitly explore animal trade. For instance, 

studies focused solely on poaching without exploring trade were not considered. The exclusion 

criteria were first applied by checking the title and abstract of each individual article, and then 

to the full content of each article, resulting in a total number of selected records of 225 

(Appendix I, Figure 4). 

 

 

2.2.3 Literature review 

Each of the 225 records was then fully reviewed and assessed in order to extract 

information on: (1) geographic patterns of mammal trade; (2) taxonomic information of traded 

mammals; (3) products and purposes for trading mammals; and (4) assessment methodologies 

for mammal trade (Figure 4). Firstly, we noted which countries and continents were targeted 

by the studies, as well as what were the exportation and importation routes, if mentioned, per 

country or continent. Then, we analyzed which mammal species and families were studied in 

the selected publications. Next, we marked what were the uses of each species in question 

(e.g., aesthetic, nutritional, for traditional medicine or pet trade). Finally, we reviewed which 

main methodology was followed in the studies (e.g., social surveys, database analysis, reviews 

and commentaries, social media analysis and in-situ observations). 

 

Figure 4 - Flowchart illustrating the literature review process for illegal trafficking of mammal 
wildlife. First a search was done on Scopus and ISI Web of Science using 20 keywords (Table 
1), afterwards the exclusion criteria was applied leading to a total of 225 publications up for 
review. Finally, each individual publication was reviewed to understand which continents and 
countries had more incidences of illegal trafficking searches, what were the main trafficked 
families, the main methodology of the publications and which were the main uses for the species 
in question as well as their derivatives. 
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2.2.4 Data visualization  

The data obtained from the review of our dataset (section 2.2.2) was compiled and 

analyzed in Excel (see Appendix II). A dynamic table was used to generate bar and pie charts 

in relation to the total number of published records per year, for an intuitive descriptive analysis 

of the results. To analyze research methodologies and product usages a pie chart was made, 

for taxonomic patterns a pie chart as well as a bar graph was used when observed with 

geographic patterns. Finally, for geographic patterns pie charts was also used, as well as a 

general world map based on the import/export results per continent. 

 

 

2.3. Results and discussion  

The time span of the set of studies found in our literature search was from 1973 up until 

the end of the year 2020. Interestingly, the first record found in 1973 (Mountfort, 1973) appears 

to have emerged around the same time as the creation of CITES (T. Rosen, 2020). In general, 

there was an increasing tendency of articles per year regarding illegal trafficking, which agrees 

with other observations. 

An integral part of any market system is consumer demand, therefore, to fully understand 

IWT it is necessary to be fully aware of consumer demand and its influence (Sas-Rolfes et al., 

2019; Veríssimo et al., 2020). With the renewed interest in conservation efforts, there has been 

a focus on regulation and law enforcement in an effort to approach the sale and supply side of 

trade, as well as an increase in demand reduction activities (Challender & MacMillan, 2014; 

Veríssimo et al., 2012). The demand reduction activities aim to change the consumer’s 

purchasing behavior in a voluntary manner, through numerous awareness and educational 

campaigns and social marketing (Olmedo et al., 2018; Wallen & Daut, 2018).  

This understanding of consumer’s preference will allow for governmental and non-

governmental environmental agencies to better adapt their policies and realize which 

taxonomic groups and geographic patterns require more attention, in the form of new 

preventive and monitorization measures (Ayling, 2016; Megias et al., 2017). 
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2.3.1 Geographic patterns 

Incidence of studies per continent and country 

 

Our literature review allowed us to observe that Asia was the most popular continent (47% 

of all reviewed records), with China (11%) and Vietnam (6%) as the countries with the most 

published studies on mammal trade (Figures 5 and 6). These values were followed by Africa 

(16%) and South America (16%), with Brazil (6%) and Peru (8%) having the larger number of 

studies, specially focused on domestic exotic pet trade and illegal sales at open markets. Even 

though Central and South America altogether represent the world third largest biodiversity 

hotspot, with plenty of species protected under CITES, there is limited attention, data, and 

funding for conservation efforts in this region (Gluszek et al., 2021). The continued exploitation 

for legal and illegal trade is in dire need of a new approach, low-cost and effective measures 

to prevent the decline of biodiversity (Arias et al., 2020).  

 

 

 

Figure 5 - Percentages of continents among the total analyzed publications. 
Asia is the most common continent (47%), followed by both South America 
and Africa at 16%, then a Global analysis (11%), North America (5%) and 
finally Europe (4%). 
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The topics covered by studies in African countries were poaching and bushmeat, while also 

referencing their high export numbers. While poaching is still a common practice in African 

countries it seems that global ivory prices have peaked and may begin to fall, possibly due to 

the bans of ivory sales (Schlossberg et al., 2020; Sosnowski et al., 2019). 

 

 

Exportation and importation routes among continents and countries 

 

Asia and Africa were the continents with the most exports while China was the country with 

the most recorded international imports (Figure 7). South America mostly focused on domestic 

trade, while USA, and Europe have incidences of imports from both Africa and Asia (Alfino & 

Robert, 2020; Ia, 2011; Schifani & Paolinelli, 2018; Shepherd et al., 2020).  

China stands out as a big buyer country for illegal wildlife products. This is largely due to 

their cultural and religious beliefs, which give importance to traditional methods of medicine 

using products derived from illegally traded species like pangolins, felines, and elephants 

(Hastie & McCrea-Steele, 2014; Jacobs et al., 2019; Morcatty et al., 2020). 

On the other hand, Africa and Asia’s high rates of exportation are linked with high consumer 

demand for a taxonomic group, as is observed for ivory trade and pangolins, as well as the 

area’s poverty levels (Anderson & Jooste, 2013; Challender, 2011; Mainka & Trivedi, 2002; 

Figure 6 - Percentages of countries among the total analyzed publications. China is the most 
mentioned (11%), then Peru (8%) and Brazil and Vietnam (6%). 
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Sosnowski et al., 2019). Therefore, one of the major challenges in mitigating wildlife trade are 

of socioeconomic origin. Population growth, chronic shortage of expertise and funding for 

conservation resources, poverty and corruption are the main reasons for the population’s need 

to resort to poaching and wildlife trade (Sodhi et al., 2004). 

 

 

 

2.3.2 Taxonomic patterns 

Global patterns 

 

Regarding taxonomic patterns, our literature review shows that most studies focused on 

one particular species (77%), with the remaining focusing on two or more species (23%). From 

the 225 publications analyzed in our literature review the most reported family is Elephantidae 

(23%), followed by Rhinocerontidae (17%), Felidae (15%) and Manidae (14%) (Figure 8). 

These results agree with previous research showing ivory and feline pelts as some of the 

biggest commodities in black-markets (Alfino & Robert, 2020; Arias et al., 2020; Permata & 

Wahyuni, 2020). 

 

 

 

 

 

 

 

Figure 7 - Map of exports from Asia and Africa to USA, Europe and specifically China. While South 
America had no published works regarding international trade. 
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Taxonomic patterns per continent 

 

The families studied per continent were diverse, but Elephantidae and Felidae were still 

the most reported in all continents (Figure 9). In Africa, Elephantidae was the most mentioned 

family, and largely due to the great number of publications on poaching and ivory trade (Cooney 

et al., 2017; Hastie & McCrea-Steele, 2014; Underwood et al., 2013). Studies in Asia had a 

larger variety of families, besides Elephantidae as a prominent taxon, Manidae was also largely 

reported and associated to pangolin’s popular uses for traditional medicine and luxury food 

(Cheng et al., 2017; Nijman et al., 2016; Semiadi et al., 2008). In Central America only Felines 

were reported, specifically associated to the high demand of paws, nails, and fur in Mexico 

(Kelly, 2018). Studies in Europe reported largely on Ursidae for fur and claws, Elephantidae 

for ivory, and Canidae for fur and pet trade (Alfino & Robert, 2020; Ambarli et al., 2016; 

Shepherd et al., 2020). In North America there was a high percentage of reported bear trade, 

as well as Cetacea (Ambarli et al., 2016), while in South America, studies mostly reported on 

Figure 8 - Percentages of families among the total analyzed publications. 
Elepahntidae is the most mentioned family (23%), followed by 
Rhinocerontidae (17%), Felidae (15%), Manidae (14%) and Ursidae (9%). 
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Camelidae and Cebidae, mainly due to Cebidae’s role in pet trade (Mainka & Trivedi, 2002; 

McAllister et al., 2009). 

 

 

 

2.3.3 Animal products and uses  

Regarding the reported uses of the traded wildlife, most studies mentioned more than one 

usage per taxonomic family (Figure 10). Aesthetic purposes (35%) were most mentioned, and 

included ornamental, fashion, and cultural motivation for acquiring illegal wildlife and their 

derivatives. Like orchids, which are highly sought out by consumers for their beauty and as a 

hobby (Hinsley et al., 2018; Williams et al., 2018), feline derivatives are also in high demand, 

like paws, teeth, fur, and others, particularly throughout Mexico, Central and South America 

(Gonzalez-Maya et al., 2010; Kelly, 2018).  

Traditional medicine (33%) was another main motivation for the purchase of illegal goods, 

like the rhinoceros’ horn which has had a resurgence due to an urban myth about miracle 

cures, insinuating that it can be used as a treatment for cancer, and also used as an expensive 

detoxicant for hangovers (Broad & Burgess, 2016).  

Nutritional motivation was reported in 26% of studies, particularly covering the use of 

bushmeat or luxury food from pangolins (Nijman et al., 2016; Pantel & Chin, 2009).  

Finally pet trade (6%) was dominated by Hylobatidae (50%) and Canidae (31%) (Grey, 

2012; Nijman et al., 2009; Pavlin et al., 2009). 

Figure 9 - Graphic representation of which families are studied per continent. 
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These results were expected as aesthetic purposes and traditional medicine are the main 

drivers for illegal wildlife trade (Eikelboom et al., 2020; Gao & Clark, 2014; Veríssimo et al., 

2020; Wang et al., 2020), while nutritional motivations are more relevant to domestic trade and 

poaching (Cooney et al., 2017; Maisels et al., 2013; McAllister et al., 2009), and pet trade is 

not researched enough to fully understand its impact and consequences (Burivalova et al., 

2017; Grey, 2012; Mandimbihasina et al., 2020). 

 

 

2.3.4 Data and research approaches  

We found six different types of methodologies used in the reviewed studies to tackle 

mammal trade (Figure 11). Database analysis was the most common one (59%) and included 

the usage of global databases such as from CITES, or national, regional, and local databases 

from shipment, airport, and border patrol seizures documentation, among others (Anderson & 

Jooste, 2013; Reuter & O’Regan, 2017; Runhovde, 2015). Social surveys were also prominent 

in the reviewed literature (26%) and included online or face-to-face questionnaires about 

people’s opinion regarding wildlife trafficking. Some studies also focused on in-situ 

observations in open wildlife markets (6%) (Chow et al., 2014; Warchol et al., 2003), for 

instance to annotate which and how many mammals were placed at physical markets. 

Figure 10 - Percentages of uses among the total analyzed publications. 
Aesthetic (35%) and traditional medicine (33%) were the most common 
usage, followed by nutritional value (26%) and pet trade (6%). 
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Literature reviews and general commentaries (5%) on the subject of mammal trade were also 

found, specifically showcasing possible preventive measures or monitorization methods based 

on policies or previous literatures (Eikelboom et al., 2020; Norconk et al., 2020). Social media 

analysis was the least represented methodological approach (3%), and mostly included studies 

on how low and unutilized this field is faced with the rising popularity of online and social media 

wildlife commerce. 

 

 

 

These results were as expected since most wildlife studies focus on database analysis. 

This focus is so that it is possible to quantify, and therefore, have a specific number when 

reporting the findings to the general public, in order to more easily change the public’s 

perception regarding wildlife traffic (Veríssimo et al., 2020). Public’s perception plays into the 

more efficient decrease of consumer demand of a wildlife product, as well as the government’s 

willingness to implement new policies and preventive measures (Thomas-Walters et al., 2021; 

Veríssimo & Wan, 2019).  

Nonetheless the low results for social media analysis indicate the massive gap in 

knowledge that exists for this new trend. Therefore it is necessary to shift some focus to online 

platforms before wildlife dealers completely dominate social media and make species and 

Figure 11 - Percentages of methodologies among the total analyzed 
publications. The most common methodology was database analysis (59%), 
then social surveys (26%), afterwards in-situ observations (6%), reviews and 
commentaries (5%), social media analysis (3%), and in yellow is forensic 
genetics (1%). 
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product detection almost impossible (Stringham et al., 2021). For that new preventive and 

monitorization measures are needed. Having in mind the large amount of information that is 

available online an efficient and timely process is required to be able to disrupt this online flow 

of illegal trade.  

 

 

2.4 Conclusions 

For this chapter, our goal was to evaluate the state of the art of mammal trade in the 

available published scientific literature. To achieve this goal, we analyzed which countries and 

continents reported the most incidents of mammal wildlife trade, which taxonomic groups were 

the most traded, what were the main purposes of the traded mammals and their products, as 

well as the most utilized methodologies for overseeing studies.  

To conduct the systematic literature review we established a set of keywords to allow us to 

search for studies, filtered and analyzed them in order to review the content through a 

quantitative and qualitative analysis.  

Through this systematic literature review we can conclude that regarding geographic 

patterns Asia was the most popular continent, with the most amount of studies done regarding 

China and Vietnam, followed by Africa and South America, with Brazil and Peru standing out 

among the literature found. This was also supported by Asia and Africa being the most export 

rich continents, with China being the country with the highest amount of demand for wildlife 

products. For taxonomic patterns, Elephantidae and Rhinocerontidae were the most studied 

family with their animal products falling in the most used categories for aesthetic and traditional 

medicine purposes. Finally, we could see that database analysis was the most popular 

methodology approach and there is a big lack of social media analysis. 

These results allowed us to answer our initial question regarding the general state of the 

art for wildlife trade, as well as realize that there is a massive gap in knowledge when it comes 

to online wildlife commerce. For the next chapter we try to address and explore this lack of 

studies, by trying to implement a new measure of tracking instances of wildlife trade occurring 

on social media platforms. 
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Chapter 3  

  

Tracking wildlife trade using machine learning: a 

test case with pangolin species in social media 

images  

  

3.1. Background  

With recent technological advances, the Internet has become one of the biggest 

marketplaces in the world, emerging as an important platform for wildlife commerce and 

allowing for cyberspace criminals to take advantage of more secure and rapid methods of 

communications (Lavorgna, 2014). In most regions worldwide, e-commerce is free, limitless, 

and mostly unregulated, allowing for the creation of opportunities for illegal and criminal 

activities, with easy and anonymous selling and buying transactions (Hastie & McCrea-Steele, 

2014). For example, China has the largest online community in the world, with more than 730 

million users, and their e-commerce platforms have been the main mode of wildlife sales, half 

of it involving ivory trade (Komosny & Mehic, 2018; Yu & Jia, 2015).  

Over the last decade, there has been a shift to trading wildlife in active social media 

platforms, causing a surge in illegal sales (Xiao et al., 2017). Social media platforms allow for 

the sellers to share information and exhibit pictures about wildlife trade products in order to 

attract and interact with potential buyers (Yu & Jia, 2015). The use of these platforms is an 

improvement as opposed to other e-commerce platforms (e.g., e-Bay), since it allows the seller 

to become more selective and private with the buyers, thereby making it hard to track seller-

buyer communications and transactions (Xiao et al., 2017). In fact, most social media platforms 

have privacy setting for users’ profiles, leading to transactions with only recognized or vouched 

for customers (Lavorgna, 2014). 

Despite the former challenges, recent developments in artificial intelligence, such as 

machine learning, have been showing promising opportunities for tracking wildlife sales (Di 

Minin et al., 2018). Machine learning refers to algorithms that can perform a task without human 

guidance while being specifically programed to solve it (Di Minin et al., 2018; Wäldchen & 

Mäder, 2018). Machine learning algorithms have the ability to learn from previous tasks during 

a process called training and later on they perform the previously trained task on a new dataset 

(Mjolsness & DeCoste, 2001). When the training is well performed, machine learning can be 
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highly successful in identification, classification, and detection of image (i.e., computer vision) 

or textual content (i.e., natural language processing) (Wäldchen & Mäder, 2018). Machine 

learning thereby becomes promising for analyzing the content of any digital data e.g., from 

Web pages, personal advertisements, social media content and e-commerce information 

(Abadi et al., 2016; Lecun et al., 2015). Besides wildlife trade, applications of machine learning 

in conservation include, for instance, the analysis of texts (e.g., Twitter posts), images (e.g., 

Facebook photographs) and audio-visual content (e.g., YouTube videos) shared by people 

about ecosystems’ health, invasive alien species or protected/emblematic species (Allain, 

2019; Hausmann et al., 2018).  

Deep learning is a subfield of machine learning that undertakes the learning process of 

high-level abstractions in data using hierarchical architectures, by eliminating the manual task 

of feature extraction and leaving that process and classification to the algorithm (Guo, 2017). 

Deep learning has gained popularity due to its exceedingly increased processing abilities, the 

lowered cost of computing hardware and the considerable strides forward in the machine 

learning algorithms (Jiang et al., 2017). 

Deep learning models come with many advantages when used for image classification. 

Machine learning depends on how good the original data is labeled, while deep learning 

models don’t always need labeling, as neural networks perform well at learning without 

guidelines (Najafabadi et al., 2015; Wäldchen & Mäder, 2018). Another advantage is that for 

fields like language, speech and vision, deep learning consistently produces great results, 

outperforming other alternatives (August et al., 2020; Saiharsha et al., 2020). Nonetheless, this 

algorithm also requires large amounts of data in order to produce more accurate results and 

overfitting is a prevalent problem that can affect the model performance negatively when using 

real time scenarios (Jiang et al., 2017; Rangarajan & Purushothaman, 2020; Wäldchen & 

Mäder, 2018). 

This chapter aims to understand whether freely available machine learning models can 

support the identification of potential situations of wildlife trade on social media images. 

Specifically, it aims to understand whether: (1) freely-available machine learning algorithms 

can be developed to support an automated classification of social media photographs in the 

context of potential wildlife trade; (2) which existing machine learning algorithms show the 

highest potential to promote statistically reliable image classifications of potential situations of 

wildlife trade, and (3) at which point can those algorithms and models be used to identify 

potentially traded species and their commercialized products 

To achieve these goals, we considered pangolin species as our case study, due to its 

endangered status, high trafficking rates and since it is an animal that is getting quite a lot of 

attention due to its initial uncertainty of being a covid-19 virus carrier (Liu et al., 2020; Volpato 

et al., 2020; Zhang et al., 2020). Many pangolin species are endangered, like the White-bellied 

pangolin (Phataginus tricuspis), Giant pangolin (Smutsia gigantea), Chinese pangolin (Manis 
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pentadactyla), Philippine pangolin (Manis culionensis), Sunda pangolin (Manis javanica) and 

Indian pangolin (Manis crassicaudata), according to International Union for Conservation of 

Nature (IUCN) Red List and have been under growing demand in Eastern Asian countries, 

especially China (Gaudin et al., 2009; Pietersen et al., 2014). These animals are found in 

tropical regions, throughout Central and Southern Africa and South Asia, they range from one 

30 centimeters to one meter, tail excluded, with short legs, small ears and a long, worm-like 

tongue used to capture ants, making them nocturnal insectivores (Linnaeus & Heath, 1992). 

However, their main feature is a scaly armor that covers their whole body and tail, except for 

the under surface of the body, formed by overlapping keratinous scales (Spearman, 1967; 

Wang et al., 2016; Yu et al., 2015). 

 

 

 

3.2 Methods 

3.2.1 Methodological overview 

Our methodological framework included three main steps: (1) data acquisition and pre-

processing, (2) model training and (3) model testing. First, we compiled a dataset of images 

with and without pangolins from various sources, followed by a manual process of image 

labeling and resizing. Then, we trained a set of relevant machine learning models, through 

transfer learning, and evaluated their ability to classify images exhibiting pangolins and their 

sellable parts. Finally, we evaluate the performance of those models based on a series of 

matrix and validate the results. 

 

 

3.2.2 Data acquisition 

To start this project, we compiled and organized a large dataset of images containing 

pangolin species and their parts to train the classification models (see section 3.2.3). The 

images were obtained from online databases such as iNaturalist (https://www.inaturalist.org/), 

Google (https://www.google.com/), Flickr (https://www.flickr.com/) and also provided by 

colleagues from Nanjing University, China, Chi Xu and Zixiang Xiao. The extraction of the 

images from iNaturalist and Flickr was done manually: in each platform, we searched for 

general terms pertaining to pangolins, and well as the common name of six pangolin species 

(Table 2) and extracted the corresponding (public) images. The six pangolin species 

considered were: the White-bellied pangolin (Phataginus tricuspis), Giant pangolin (Smutsia 
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gigantea), Chinese pangolin (Manis pentadactyla), Philippine pangolin (Manis culionensis), 

Sunda pangolin (Manis javanica) and Indian pangolin (Manis crassicaudata). 

To facilitate the process of image extraction from Google we adopted the python program 

google-images-download (https://github.com/hardikvasa/google-images-download), which is a 

script that uses keywords or key phrases to then download those results from Google Images. 

We focused on images with pangolins while they were alive in their natural habitats, dead in 

wildlife markets or seizure instances, and their derivatives like scales or full pelts.  Also, as a 

control group, we extracted, using the same python script, images without pangolins in their 

wild habitat and in wildlife markets. For the images without pangolins, a manual search was 

done using the location feature of Google Images to broaden the dataset. The locations chosen 

to widen the search were from the Asian continent as this is the location with the most instances 

of pangolin trafficking – Myanmar, Vietnam, China, Thailand, Singapore, Indonesia, and Laos 

(Cheng et al., 2017; Lim, 2009). 

 

After the image compilation, the dataset underwent a manual verification process of filtering 

and transformation steps, resulting in a total of 2634 images (see Figure 12 for examples), with 

the resolution of 257 and 465 pixels, height, and width respectively. All images were then 

tagged using a Microsoft Excel spreadsheet with their corresponding label according to their 

content: One pangolin (1pan), one specific part or parts of pangolin’s body (1 part), multiple 

pangolins (mulpan), pangolin not in its entirety (mulpart) and no pangolins (np) (Table 3). Each 

label had a specific meaning according to what they displayed in the content: 1pan showed 

one pangolin; 1part showed only a specific part like scales, pelt, teeth, or nails; mulpan showed 

more than one pangolin; mulpart showed as absence of entire pangolins, e.g., cropped pictures 

or close shots of pangolins; and np showed no pangolins, but instead their usual settings (in 

Table 2 - Keywords and key phrases used to extract images from Google using the python 
script google-images-download. 
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the wild or markets), serving as control group. All images were resized, and their corresponding 

labels were transformed into binary class matrices. 

 

Table 3 - Table containing each label, its meaning and how many images were associated with it. 

 

 

 

 

 

 

LABEL CLASSIFICATION TOTAL IMAGES 

1PAN One pangolin 800 

1PART Specific part or parts 14 

MULPAN Multiple pangolins 139 

MULPART Pangolin not in its entirety 72 

NP No pangolins 1057 

Figure 12 - Examples of images extracted from online platforms for each 
label. a) one pangolin (1pan); b) part of a pangolin (1part); c) multiple 
pangolins (mulpan); d) pangolins not in their entirety, cropped or close shots; 
e) no pangolins but instead their usual settings. 
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3.2.3 Model implementation 

Transfer learning 

 

To implement the machine learning models, we used transfer learning. Transfer learning is 

a technique adopted to improve a model by transferring information from a related domain 

(Weiss et al., 2016). It consists of an optimization method used to save time by reducing the 

data collection efforts and achieve better performance (Shu, 2019), being useful for dealing 

with limited training data (Weiss et al., 2016). Transfer learning can be defined as the 

application of a dataset with similar features to the dataset of interest, in order to extract pre-

trained weights necessary for model implementation (Weiss et al., 2016). In our case we used 

the ImageNet database (http://www.image-net.org/) which consists of a large-scale image 

database, with applications in a wide range of areas. It includes more than fourteen million 

annotated images in over 21 thousand categories, making it into an incredibly diverse coverage 

of the digital image world (Mettes et al., 2016). 

 

 

Model training 

 

Five models were selected for the training process: Vgg16 (Simonyan & Zisserman, 2015), 

DenseNet121, DenseNet201 (Huang et al., 2017), EfficientNetB0 and EfficientNetB1 (Tan & 

Le, 2019). Vgg16 is a model composed of a total of 16 layers divided into convolution, max 

pooling and fully connected layers, achieving great performance in the image competition field 

(Qassim et al., 2018). For densely connected convolutional networks (DenseNet), the main 

feature is that each layer connects to every other layer in a feed-forward manner, passing its 

own features to all subsequent layers (Man et al., 2020). EfficientNet tries to achieve more 

efficient results by uniformly scaling resolution, width and depth, while scaling down the model 

(Atila et al., 2021). These models were selected because of their overall adaptability to all kinds 

of datasets making them the most appropriate for this type of study. 

The training process was done using the freely available TensorFlow platform 

(https://www.tensorflow.org/), which is a free and open-source software library that focuses on 

training and inference of deep neural networks (Abadi et al., 2016). Model implementation was 

done through the “Google Colaboratory” or “Colab” website, which is a product from Google 

Research that allows to write and execute arbitrary python code through the browser and is 

especially well suited to machine learning. More technically, Colab is a hosted Jupyter 

notebook service that requires no setup to use, while providing free access to computing 

resources including GPUs (https://colab.research.google.com/notebooks/intro.ipynb).  
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For all five models the optimizer utilized was Adam, due to its efficiency, 

straightforwardness and little memory requirements, making it the best choice for this type of 

study (Kingma & Ba, 2015). Due to the limitations regarding the processing memory available 

in Colab, during the model training the batch size was set to 10, with 100 epochs and learning 

rates of 0.001 and 0.000001. The data was run in five folds, having the five labels in mind, 

therefore each model ran 10 times – one for each fold per learning rate.  

  

 

Model performance 

 

To evaluate the performance of each model, we used the following evaluation metrics 

(Table 4): accuracy (ACC), sensitivity (TPR – true positive rate or recall), specificity (TNR – 

true negative rate) and F1 score (F1, f-score or f-measure), as these are the most utilized and 

analyzed metrics when faced with classification problems (Tharwat, 2018).  Accuracy is the 

closeness of the measurements to a specific value, while specificity measures an algorithm’s 

ability to correctly identify negative results for negative instances. Sensitivity on the other hand, 

measures an algorithm’s ability to correctly identify the positive results for positive instances. 

Finally, F1-score is a measure of a test’s accuracy as it calculates the harmonic mean of the 

precision and recall.  

 

Table 4 - Equations for each of the four performance metrics: TP represents the True Positives, TN the True 
Negatives, FP the False Positives and FN the False Negatives. 

Metrics Equation 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Sensitivity 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-score 
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

These metrics are computed from confusion matrices, which organize observed values (as 

labeled by the user) vs. predicted values (as labeled by the model algorithm), allowing to 

showcase the number of true positives, false positives, true negatives, and false negatives 

(Theckedath & Sedamkar, 2020; Loussaief & Abdelkrim, 2018; Powers, 2020). In our case the 

term positive refers to the presence of pangolins in the images, while negative to their absence 

(Table 5). For each metric, a mean was calculated for each set of five folds per learning rate, 

allowing us to determine which model and learning rate were the best ones. 
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Table 5 - Example of a confusion matrix used to compare the manual and automatic classification of 
extracted pangolin images, where Positives are labels with pangolins (1pan, 1part, mulpan, mulpart) and 
Negatives are labels with no pangolins (np). 

 
Predicted label 

1pan 
(Positive) 

1part (Positive) mulpan (Positive) mulpart (Positive) np (Negative) 

Actual 
label 

1pan (Positive)      

1part (Positive)      

mulpan (Positive)      

mulpart (Positive)      

np (Negative)      
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3.3 Results  and discussion 

The main purpose of this chapter was to investigate whether the adoption of freely 

available machine learning models could allow the identification of pangolin individuals in images 

extracted from social media networks, and, consequently, establish a new way to assist in the 

surveillance and monitoring of potential situations of online illegal trafficking. 

 

 

3.3.1 Detecting pangolin species  

 From the five architectures used in this chapter, DenseNet121 with learning rate of 0.001 

showed the best results, with an accuracy of 81,474 (Figure 13). This was followed by 

DenseNet201, also with learning rate of 0.001 (Accuracy of 81,238) and Vgg16 with a learning 

rate of 0.000001 (Accuracy of 78,332). While EfficientNet had the worst results, both for 

learning rate 0.000001 (EfficientNetB0 had an accuracy of 61,998 and EfficientNetB1 had an 

accuracy of 61,214). Vgg16 had the most consistent means between both learning rates, while 

DenseNet showed the best performance overall for this evaluation metric. These results 

suggest that in 100 classified images, 81 corresponded to the correct pangolin identification, 

or that of pangolins parts. Therefore, the DenseNet models are the most appropriate ones for 

a correct identification, when compared to the manually annotated images. 

 

 

 

 

Figure 13 - Accuracy for the five model performances (Vgg16, DenseNet121, DenseNet201, 
EfficientNetB0 and EfficientNetB1) bearing in mind the two learning rates lr=0.001 and lr=0.000001. 
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In regard to sensitivity (Figure 14), the DenseNet121 with a learning rate 0.001 also had 

the highest result (62,248), followed by DenseNet201 (sensitivity of 60,708 for the same 

learning rate). Again, Vgg16 had the most consistent means between both learning rates, while 

DenseNet performed better and EfficientNet did the worst, both for the lowest learning rate 

(EfficientNetB0 with 38,234 and EfficientNetB1 with 35,108). This means, for DenseNet121, 

for each 100 classified images 62 were positively identified as the correct images of pangolins, 

or their parts. 

 

 

On the other hand, specificity (Figure 15) had the most consistent results across all models, 

which makes sense as the true negatives had only one label associated to them, thus not 

having too many mislabeling instances between the term negative. We can see that once again 

DenseNet121 performed the best for learning rate 0.001 (specificity of 94,628) closely followed 

by DenseNet201 with the same learning rate (94,562). Again, Vgg16 had the most consistent 

means between both learning rates and Efficient Net performed the worst, for the lowest 

learning rate once again (EfficientNetB0 with 87,732 and EfficientNetB1 with 86,94). Specificity 

identifies true negatives for negative instances, therefore the identification of images without 

pangolins was easily done throughout all five models. These results suggest that, for the best 

performing model (DenseNet121), for each 100 classified images 94 were correctly identified 

as not having pangolins.  

 

 

 

 

Figure 14 - Sensitivity for the five model performances (Vgg16, DenseNet121, DenseNet201, 
EfficientNetB0 and EfficientNetB1) bearing in mind the two learning rates lr=0.001 and 
lr=0.000001. 
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Finally, the F1 score (Figure 16) had the best performance with DenseNet121 (63,844) 

closely followed by DenseNet201 (63,544). Vgg16 had the most consistent means between 

learning rates, once again and EfficientNet had the worst results for learning rate 0.000001 

(EfficientNetB0 with 36,904 and EfficientNetB1 34,176). This supports DenseNet121’s overall 

good performance, while EfficientNetB1 has very low values, which is also observed through 

its confusion matrix further ahead, since it showcases many instances of mislabeling.  

 

 

 

Figure 15 - Specificity for the five model performances (Vgg16, DenseNet121, DenseNet201, 
EfficientNetB0 and EfficientNetB1) bearing in mind the two learning rates lr=0.001 and lr=0.000001. 

Figure 16 - F1 score for the five model performances (Vgg16, DenseNet121, DenseNet201, 
EfficientNetB0 and EfficientNetB1) bearing in mind the two learning rates lr=0.001 and lr=0.000001. 
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3.3.2 Tracking tradable pangolin parts  

After analyzing the label classification from the five models, we observe that, in general, 

pictures with pangolins not in their entirety (mulpart) showed the most amount of false positives, 

frequently being mistaken for images with one pangolin (1pan). This would be expected results, 

considering these are the most similar classes of images. Conversely, pictures displaying only 

one pangolin were usually very accurate, as well as images with no pangolins, which is 

expected since pangolins have very distinguishable features like their body shape and scales. 

The similarity between the labels for one pangolin (1pan) and pangolins not in their entirety 

(mulpart), as well as mulpart’s frequent mislabeling could lead us to believe that it is an 

unnecessary label, because it does represent more of the same and there is no pressing need 

for a separation between both.  

Specifically for each model, we could see that for Vgg16 the most accurately labeled 

images were those with no pangolins (np), being more frequently confused with the labeled 

images with pangolins not in their entirety (mulpart). This result can be seen in the image below 

(Figure 17) where we see the algorithm’s label prediction, represented as Predicted label, as 

well as the actual label given manually by us, represented as a vector by Actual label. The 

label for the vectors is identified by a number one in the correct order, therefore: if it is 

represented as [1.0.0.0.0.] that corresponds to the label 1pan; [0.1.0.0.0.] corresponds to the 

label 1part; [0.0.1.0.0.] correlates to the label mulpart; [0.0.0.1.0.] represents the label mulpan 

and [0.0.0.0.1.] corresponds to the label np. 

 

 

 

Figure 17 - Examples of images with I. incorrectly represented labels and II. 
correctly represented labels for the model Vgg16. 
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For the models DenseNet121 and DenseNet201 (Figures 18 and 19) the label best 

identified was, once again, no pangolins (np) as well as one pangolin (1pan), while the label 

with the most incorrect classifications was again, for pangolins not in their entirety (mulpart). 

The latter was frequently confused with images with one pangolin (1pan). With the exception 

of DenseNet201, which also struggles with correctly labeling images with multiple pangolins 

(mulpan), also confusing them with images of one pangolin (1pan). 

 

 

 

EfficientNetB0 and EfficientNetB1 showed the least promising results for our dataset. For 

EfficientNetB0 images with no pangolins (np) were the most correctly labeled, while images 

with multiple pangolins (mulpan) and pangolins not in their entirety (mulpart) showed the most 

instances of mislabeling for images with one pangolin (1pan) (Figure 20). For EfficientNetB1 

images with no pangolins were the most correctly labeled (np), however for all the other labels 

Figure 18 - Examples of images with I. incorrectly represented labels and II. 
correctly represented labels for the model DenseNet121. 

Figure 19 - Examples of images with I. incorrectly represented labels and II. 
correctly represented labels for the model DenseNet201. 
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there was a lot of confusion with that same label (np), resulting in no pangolins (np) being 

labeled most of the time for all labels in general (Figure 21).  

 

 

 

 

 

 

 

 

Figure 20 - Examples of images with I. incorrectly represented labels and II. correctly 
represented labels for the model EfficientNetB0. 

Figure 21 - Examples of images with I. incorrectly represented labels and II. 
correctly represented labels for the model EfficientNetB1. 
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3.3.3 Best performing architectures 

Overall DenseNet121 had a better performance for our targeted dataset of images, closely 

followed by DenseNet201 and Vgg16 (Table 6). EfficientNet does not seem to fit this dataset, 

having the model’s poor performance metrics in mind. 

 

Table 6 - Performance metrics for both learning rates scenarios trained for each model. ACC – Accuracy, 
SEN – Sensitivity, SPEC – Specificity and F1 – F1 score. 

 

lr=0.001 lr=0.000001 

ACC SEN SPEC F1 ACC SEN SPEC F1 

Vgg16 77.346 56.512 93.108 55.97 78.33 53.47 93.74 56.52 

DenseNet121 81.474 62.248 94.628 63.84 77.91 55.23 93.88 56.5 

DenseNet201 81.238 60.708 94.562 63.54 78.19 57.4 93.87 59.38 

EfficientNetB0 75.888 56.09 92.98 56.04 62 38.23 87.73 36.9 

EfficientNetB1 66.418 43.148 88.182 41.33 61.21 35.11 86.94 34.18 

 

Regarding the confusion matrix for the best performing model – DenseNet121, we can see 

that images with no pangolins (np), one pangolin (1pan) and one specific part (1part) showed 

the best results, while multiple pangolins (mulpan) and cropped out pangolins (mulpart) 

showed the worst (Table 7). Mulpan was often confused with the label 1pan (7 times) and 

mulpart was mislabeled as 1pan almost the same amount of times as it got correctly identified 

(23 to 25). 

 

Table 7 - Confusion matrix for DenseNet121.  

 
Labels predicted by the model 

One Pangolin One pangolin part Multiple pangolins Cropped pangolins No pangolins 

Manually 
classified 

labels 

One Pangolin 100 1 3 14 10 

One pangolin part 1 6 1 1 2 

Multiple pangolins 7 1 9 2 4 

Cropped pangolins 23 2 1 25 3 

No pangolins 1 1 1 0 208 
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For DenseNet201 we can see the same result (Table 8). Images with no pangolins, one 

pangolin and one part show the best labeling results, while images with multiple pangolins and 

pangolins not in their entirety showed the largest amount of mislabeling. As we can see for the 

crossover between 2-0 (nine identifications) and 2-2 (seven identifications), meaning that the 

label for multiple pangolins (mulpan) was mislabeled more often for one pangolin (1pan) than 

correctly identified. Same for images with pangolins not in their entirety (mulpart) as their 

correct labeling happened 29 times (3-3), but they got misidentified as one pangolin (1pan) 21 

times (3-0). 

 

Table 8 - Confusion matrix for DenseNet201.  

 
Labels predicted by the model 

One Pangolin One pangolin part Multiple pangolins Cropped pangolins No pangolins 

Manually 
classified 

labels 

One Pangolin 97 0 2 19 9 

One pangolin part 1 5 0 2 2 

Multiple pangolins 9 0 7 2 3 

Cropped pangolins 21 1 0 29 4 

No pangolins 1 0 0 1 209 

 

For the model Vgg16 we got more of the same (Table 9). Once again, the images with no 

pangolins, one pangolin and one specific part got the best results, while images with multiple 

pangolins and pangolins cropped out got the most cases of mislabeling. Both the worst labels 

got incorrectly classified for one pangolin more often than correctly labeled. 

 

Table 9 - Confusion matrix for Vgg16.  

 
Labels predicted by the model 

One Pangolin One pangolin part Multiple pangolins Cropped pangolins No pangolins 

Manually 
classified 

labels 

One Pangolin 89 1 6 13 17 

One pangolin part 2 5 0 1 1 

Multiple pangolins 6 1 5 1 5 

Cropped pangolins 24 2 1 19 8 

No pangolins 1 0 0 0 209 
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Regarding the model EfficientNetB0 we see once gain the same results as the previous 

ones (Table 10). The images with one pangolin, one part and no pangolins appear to be 

correctly labeled, while images with multiple pangolins and pangolins not in their entirety are 

mislabeled often for one pangolin.  

 

Table 10 - Confusion matrix for EfficientNetB0.  

 
Labels predicted by the model 

One Pangolin One pangolin part Multiple pangolins Cropped pangolins No pangolins 

Manually 
classified 

labels 

One Pangolin 92 1 6 14 14 

One pangolin part 2 5 1 1 2 

Multiple pangolins 6 1 7 2 4 

Cropped pangolins 26 2 3 17 6 

No pangolins 4 0 1 2 202 

 

Finally, for EfficientNetB1 we see a large amount of mislabeling for images with no 

pangolins (Table 11). All the labels were identified as np more often than correctly labeled for 

this model. 

 

Table 11 - Confusion matrix for EfficientNetB1.  

 
Labels predicted by the model 

One Pangolin One pangolin part Multiple pangolins Cropped pangolins No pangolins 

Manually 
classified 

labels 

One Pangolin 52 1 3 15 56 

One pangolin part 1 3 0 0 6 

Multiple pangolins 2 0 4 1 13 

Cropped pangolins 12 1 1 16 25 

No pangolins 2 0 0 1 208 

 

These results are compatible with other previous studies, since Vgg16 has also previously 

exhibited good results for image classification (Krishnaswamy & Purushothaman, 2020; Man 

et al., 2020) as well as DenseNet (Huang et al., 2020; Li et al., 2020; Zhong et al., 2020). On 

the other hand, EfficientNet has also produced well performing results in past works, which 

makes It unclear on why for this topic it did not (Alhichri & Alswayed, 2021; Atila et al., 2021; 

Duong et al., 2020). One thing to have in mind is that most past publications that use these 

models for image classification are very recent and most of them focus on cancer research or 

on plant disease research, having a very big gap in knowledge and research published for 

animal image classification. 
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3.4 Conclusion 

The main objective of this chapter was to understand whether machine learning models 

can be utilized to identify situations of wildlife trade on social media images, with pangolins as 

a case study. To achieve this objective, we used the freely available machine learning models 

Vgg16, DenseNet121, DenseNet201, EfficientNetB0 and EfficientNetB1 to understand which 

would be the best performing model, in order to develop an automated classification algorithm 

to identify potentially traded species and their commercialized products.  

For the development of the machine learning algorithm, we compiled a dataset of images 

with and without pangolins, from diverse sources, and manually labeled and resized the 

extracted images. Subsequently we trained the machine learning models mentioned above, 

through transfer learning, evaluating their capability to classify images showcasing pangolins 

and their commercialized parts, as well as the models’ performance metrics. 

Our results showed that it is possible to obtain a well performing model regarding the 

identification of pangolins and their tradeable parts. For our dataset the best performing model 

was DenseNet121, closely followed by DenseNet201, however there are still more studies and 

practice required with different parameters and other models, to fully understand all the 

possibilities this methodology can allow. 
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Chapter 4  

  

Discussion  

Our literature review showcased how Asia was the continent with the most studies 

performed which is expected due to its large customer base. With the recent socio-economic 

development in Asian countries, specifically China there’s been an increase in disposable 

income, which in turned into a surge in illicit wildlife trade (Nijman, 2010). This can easily 

explain the high number of studies done in this continent as researchers try to quantify the 

illegal trades and, in turn, propose new methods of dealing with these occurrences (Chow et 

al., 2014; Foley et al., 2011; Heinrich et al., 2016; H. Zhang et al., 2015). 

Regarding the taxonomic patterns the combined percentage of Elephantidae and 

Rhinocerontidae (40%) demonstrates how prevalent ivory trade still is (Burn et al., 2011). Even 

facing the recent ban on ivory trade its illegal commerce is still being committed as African 

poachers depend on it as their main source of income, while customers still consider it a 

commodity and status symbol (Bennett, 2015; Sas-Rolfes et al., 2019). Manidae and Felidae 

are on almost equal grounds due to both being used mostly for aesthetic and traditional 

medicine purposes, with pangolins used for their scales and meat, while felines are killed for 

their pelts, nails and teeth (Kelly, 2018; Volpato et al., 2020). Which is supported by the results 

showcasing which are the main uses for animal product, revealing that aesthetic purposes and 

traditional medicine are the main uses for animals and their derivatives.   

Transnational trade has grown and continues to grow at a far greater rate than our collective 

ability to regulate it, leading to the laundering of illicit merchandise, this includes wildlife 

products which need new effective and cost friendly ways to protect the threatened species 

and our planet’s biodiversity (United Nations Office of Drugs and Crime, 2016). Wildlife crimes 

have low priority on the law enforcement agenda as most governments consider it an 

environmental issue, thus these investigations are generally sparce and scarce (Ratchford et 

al., 2008). The substantial gap in the literature regarding the types of criminal opportunities the 

Internet offers, and illegal wildlife trade done through online platforms, and, more specifically, 

social media shows that there’s a deficit of openly available tools that can be used to help track 

illicit commerce (Ratchford et al., 2008; Wu, 2007). 

Even though our main purpose with this literature review was to get a general idea of the 

state of the art regarding illegal wildlife trade, it was still important to see the main data and 

research approaches to reveal the secondary purpose of this project. The lack of studies 

regarding online wildlife trade exposed the giant gap in knowledge regarding this booming 
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trade opportunity, and, therefore, justified the need for new measures to be implemented in 

order to try and monitor and prevent these business deals. 

 

 

4.1 Tracking online wildlife traffic through machine learning 

After an initial analysis we could see that the results were very promising, specifically for 

both DenseNet and Vgg16 architectures, while the low performance of EfficientNet could be 

due to overfitting caused by our relatively small dataset, which was due to GoogleColab’s small 

RAM availability not permitting the fulfillment of data augmentation.  

DenseNet combines other networks’ advantages to alleviate the vanishing gradient 

problem in deep neural networks by ensuring the maximum information flow between layers. 

A possible explanation for DenseNet’s good performance is its ability to concatenate features 

from different layers, strengthening their propagation and feature re-usage, while also having 

narrow layers, and thus needing less parameters to train. All these characteristics make 

DenseNet into the easiest and most efficient to train classification algorithm (Man et al., 2020). 

It would also be interesting to use other models like ResNet (Targ et al., 2016), GoogLeNet 

(Szegedy et al., 2015) and AlexNet (Krizhevsky et al., 2017), considering these are also used 

in image classification problems with good results.  

 

 

4.2 Research limitations and further prospects 

This is not to say that this methodology does not have its limitations. As previously 

mentioned, our main goal is to find out whether this methodology is possible to apply on images 

extracted from social media. If we pose a hypothetical scenario and decide that it is possible 

for the algorithm to identify pangolins in a random dataset of images extracted from a social 

media network, we still must face other issues before we are 100% certain that we got a lead 

for a criminal seller. This is because often times people take and post pictures however and of 

whoever they want to. Solely from the detection of a pangolin we cannot be sure whether that 

picture was posted for leisure or for an illegal activity, meaning that we will need additional 

information in the form of tags or the text in the image’s description, the comments or the 

original poster’s (OP) account itself (Dorwart et al., 2020).  

Additionally, most social media platforms have a privacy setting. This means that the seller 

can restrict access to their account only to trusted customers, whether through going private 

or utilizing the blocking feature (Hastie & McCrea-Steele, 2014). It is also important to keep in 

mind that for public accounts, many sales could be initiated in the comments, publicly, but then 
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moved to direct messages (DMs) for an easier means of communication, but also for more 

privacy (Xu et al., 2020).  

Going forward, we want to continue testing the algorithm to find out if it is possible to apply 

this tracking method to other species. From these preliminary results we could assume that it 

is, therefore, we will soon have a more efficient and less time-consuming way of dealing with 

this new problem. Our only issue will be thinking of how to implement this into a proper new 

preventive measure that will not be ignored by the government and will be acted upon. 
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Chapter 5  

 

Conclusion  

Illegal trafficking has suffered a massive rise in utilization on online platforms over the past 

few years, mainly because of social media network’s rise in popularity due to its anonymity and 

ease of use. For this thesis our main goal was to evaluate the state of the art of mammal trade in 

the available scientific literature, with a focus on geographic patterns, taxonomic groups, the uses 

for the traded animals and their parts, and the methodologies most commonly utilized for wildlife 

trade studies. And to understand if freely available machine learning models can be useful for 

identifying potential situations of wildlife trade on social media images, adopting pangolins as a 

case study, as well as which models show the highest potential for this task. This practical 

component was achieved through a manual compilation of images with and without pangolins, 

their resizing, and subsequent use for model training, through transfer learning.  

 The systematic literature review regarding wildlife trade showed Asia’s, and particularly 

China’s, large role in wildlife commerce, with a focus on the most trafficked taxonomic groups, 

such as Elephantidae, Manidae and Felidae. It was also possible to see a massive gap in 

knowledge when it comes to online wildlife trade which is concerning considering the large role it 

has been playing in the illegal trade industry. Additionally, the practical component allowed us to 

realize that it is possible to train an already available model to identify images with and without 

pangolins. The best performing model was DenseNet121, closely followed by DenseNet201, as 

these showed the best results for their respective performance metrics and correctly labeled the 

images.  

Therefore, social media mining and the development of machine learning models that can 

aid in the identification of trafficked species is an important step into finding possible solutions for 

this rising problem. By making the tracking process of illegally trafficked species automated, and 

thus, more efficient and less time consuming, it will be possible to propose a new measure of 

management and monitorization by identifying instances of online sales through detecting the 

individuals in question.  
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Appendix I  

Table 1 – Information reviewed from studies extracted from Scopus and ISI Web of Knowledge with the following set of keywords and search string: TITLE-ABS-
KEY (“wildlife"  OR  "animal"  OR  "mammal" )  AND  ( TITLE-ABS-KEY ( "black market"  OR  "black-market" )  OR  ( TITLE-ABS-KEY ( "commerce"  OR  "trade"  
OR  "purchase"  OR  "transaction"  OR  "traffic"  OR  "trafficking" )  AND  TITLE-ABS-KEY ( "illegal"  OR  "crime"  OR  "illicit"  OR  "illegitimate"  OR  "banned"  
OR  "criminal"  OR  "prohibited" ) ) ). For a preliminary review the authors, title, year and DOI (when available) were annotated. 
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Appendix II  

Table 1 – Data reviewed and categorized from the systematic literature review of articles extracted from Scopus and ISI Web of Knowledge, regarding mammal 
illegal wildlife trade. This information was categorized into taxonomic groups per order, family, genera and common name, as well as the number of species 
reviewed; the study location per continent, country and scale of analysis (whether global, single country or multiple countries); per country and continent of 
importation and exportation; the uses for the traded mammals or their derived products; and the methodology used during the studies. 
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