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Abstract

Throughout the years, technological developments have been hand in hand with innovations in the
music field, helping artists tap into their creativity with new and modern tools. Today, a single
computer can be used as the only instrument in a professional musician’s tool rack.

In the early 2000s, Web 2.0 was an essential factor for the widespread of content online,
which quickly helped the emergence of public databases, where music producers and artists can
search for and download audio samples. These audio samples, commonly known as loops, are
short segments of audio, around 15 to 30 seconds, and are repeated to create a rhythmic sequence.
Artists are no longer tied to the tedious process of recording live instruments, and can now browse
through these databases to find the perfect loop. Exploring and listening through these extensive
musical archives can be a very time-consuming task, especially if the user wishes to search for a
specific audio sample that is similar or will complement and be rhythmically compatible with a
pre-selected one.

Developments in the field of Music Information Retrieval (MIR) have helped tackle this chal-
lenge, with the assist of computational methods that can decode an audio signal into meaningful
audio descriptors that are essential for the indexation and navigation of these large databases, as
they provide contextual information about the signal through different levels of abstraction.

By looking at musical structures as mathematical objects, this research project aims to retrieve
metrics for the similarity of musical rhythms from musical audio signals, advancing a novel pro-
totype for rhythmic compatibility that will help analyse and quantify the retrieved information and
suggest a way to navigate and create expressive musical results.

The main goal is to create a visualization tool for rhythmic compatibility from musical audio in
a 2-dimensional topology space, which in the future, will ultimately lead to the development of a
music performance application for the recombination and retrieval of compatible musical rhythms
from audio samples.

In this dissertation, we analyse a multi-track database composed and performed by profes-
sional musicians and artists. The analysis is computed using methods for the rhythmic analysis of
audio content, Rhythmic Patterns (RP), Rhythmic Histograms (RH) and Beat Spectrum (BS). RH
is better at discriminating rhythmic patterns and for that reason, it was the method used in the pro-
totype. The developed prototype uses Uniform Manifold Approximation and Projection (UMAP)
to reduce the dimensions of the data generated in order to visualize audio loop databases.

Keywords: Musical audio signal, Rhythmic compatibility, Sound computing, Music Information
Retrieval, Music Analysis
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Resumo

Ao longo dos anos, a tecnologia tem vindo a evoluir a par e passo com as inovações no ramo da
música, o que ajuda os artistas a explorar a sua criatividade com ferramentas novas e modernas.
Atualmente, um computador pode ser o único instrumento na bagagem de um músico profissional.

No início dos anos 2000, a Web 2.0 ajudou à disseminação de conteúdo online, o que ajudou
ao aparecimento de bases de dados públicas, onde produtores musicais e artistas podem encontrar
e descarregar loops de áudio. Estes loops de áudio são curtos segmentos de áudio entre 15 a 30
segundos, e são repetidas de maneira a formar uma sequência rítmica. Os artistas deixam assim de
estar presos à necessidade de ter que gravar os instrumentos ao vivo, podendo explorar estas bases
de dados para encontrar o loop perfeito. Explorar e ouvir estes arquivos musicais pode-se tornar
numa tarefa bastante demorada, especialmente se o utilizador quiser encontrar um loop específico
que seja semelhante ou vá complementar e ser ritmicamente compatível com um pré-selecionado.

Os desenvolvimentos ocorridos na área de Recuperação de Informação Musical ajudam a re-
solver este desafio, com a ajuda de métodos computacionais que permitem descodificar um sinal
de áudio em descritores relevantes, os quais são essenciais para a indexação e navegação destas
grandes bases de dados, pois fornecem informações sobre o sinal que permitem interpretá-lo sob
diferentes níveis de abstração.

Ao interpretar estruturas musicais como objetos matemáticos, esta dissertação procura recu-
perar métricas para a similaridade de ritmos a partir de um sinal de áudio musical, e desenvolvir
um protótipo de compatibilidade rítmica que ajude na análise e quantificação da informação recu-
perada e apresente uma maneira de navegar e criar resultados musicalmente expressivos.

O objetivo principal é a criação de um ferramenta de visualisação para compatibilidade rítmica
de áudio musical num espaço topológico bidimensional, a partir do qual no futuro, será desen-
volvido uma aplicação para performance musical que irá recombinar e recuperar ritmos musicais
compatíveis a partir de loops de áudio.

Nesta dissertação, é analisada uma base de dados multi-pista, escrita e tocada por músicos e
artistas profissionais. A análise é calculada usando métodos para a análise rítmica do sinal de áu-
dio, Rhythmic Patterns (RP), Rhythmic Histograms (RH) e Beat Spectrum (BS). O RH é melhor a
discriminar padrões rítmicos e por essa razão, foi o método usado no protótipo. O protótipo desen-
volvido usa Uniform Manifold Approximation and Projection (UMAP) para reduzir as dimensões
dos dados gerados para a criação da visualização da base de dados de loops de áudio.

Keywords: Sinal de áudio musical, Compatibilidade rítmica, Computação sonora, Recuperação
de Informação Musical, Análise musical
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“Computers aren’t just a lifeless, cold object,
but rather a musical instrument that you can familiarize with .”

A. G. Cook
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Chapter 1

Introduction

1.1 Context

Ever since the boom of Web 2.0 in the early 2000s, the amount of user-created content made

available on the internet has increased immensely [65, 55]. The propagation of content online has

led to the creation and imminent emergence of collections of musical content, which have proven

to be popular within professional studio environments and personal music libraries. These audio

collections can become rather large, which can make the process of exploring these databases a

very time-consuming task.

Most music repositories today, restrict the search of their content through query-based retrieval

of the database, through textual search, which finds items based on their metadata information, or

current and more advanced systems which support search through audio queries, like the example

of Shazam [61].

While professional music production has gradually been shifting from the live recording of

musical instruments in a studio environment to the use of musical audio samples from these li-

braries [15], the lack of efficient retrieval methods so artists and producers can easily explore them

is noticeable.

1.2 Motivation

Current methods used in the organisation of extensive musical collections are mostly textual.

Metadata delivers information of music files which includes song title, artist name, release date,

and musical genre [43, 42]. However, even this metadata information can be wrong or not readily

available, which in turn, will lead to unreliable query results or in the latter situation, the inability

to browse the database.

1



2 Introduction

The ability to search and organise musical archives by similarity or even compatibility is some-

thing regarding the research area of Music Information Retrieval (MIR), which has made immense

progress in recent years by finding solutions that help solve this challenge. Approaches by MIR

include content-based analyses that help in the retrieval of audio descriptors. These descriptors can

capture significant audio features such as tempo, beat, pitch, and timbre. These features are essen-

tial for the tasks we are trying to solve, such as the organisation of musical content by similarity

and the grouping into categories.

1.3 Objectives

The aim of this project is the development of a visualization tool for the representation of rhythmic

compatibility, which allows the user to navigate intuitively and visually through large musical

databases. Upon this work and the developed prototype, further work will include the development

an application that lets users create new musical content from their personal sample libraries.

With that in mind, we are able to remark some objectives for this dissertation as the following

list:

• Development of a visualization tool for rhythmic compatibility retrieval from musical audio

in a topology space, departing from rhythmic similarity metrics and techniques. The basis of

the topology is a 2-dimensional space based on the information driven from the application

of the common periodicity representing musical rhythm.

• Understand the best representation for musical audio rhythmic activations as a time-series

from multiple audio descriptions (e.g., novelty function, spectral flux from magnitude, phase

and complex domain, high-frequency content, etc.)

• Quantify emergent behaviours with well-established statistical mechanics techniques to un-

derstand the intrinsic attributes of the space in existing multi-track musical datasets from

symbolic and audio manifestations.

• Develop novel compositional design frameworks central to networks of interconnected rhyth-

mic representations that will be the basis to support future music performance applications

for the recombination of musical rhythms from audio.

1.4 Structure

This dissertation is structured into five chapters. In Chapter 1, a brief introduction will be given

about the proposal for this dissertation, contextualising the reader and explaining the motivation

for this project and its objectives. Chapter 2 is where we present the current state-of-the-art, doing

a literature review on the concept of rhythm and presenting the current techniques that can repre-

sent it from symbolic and audio manifestations. We elaborate on how similarity can be measured
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through feature-based and transformation-based distance metrics and finally present some applica-

tions for the navigation and visualisation of rhythmic spaces. Chapter 3 will explain how rhythmic

compatibility can be systematically assessed and reviewed, while analysing the behaviour of com-

mon metrics for rhythmic similarity when applied at scale in a database. Chapter 4 will showcase

how multi-dimensional similarity metrics data at scale can be mapped into a two-dimensional

topology space, and reviewed based on the analysis developed in Chapter 3. This chapter will

also go over the developed prototype used for mapping this data. Finally, in Chapter 5 we will

give some concluding remarks based on what was presented in the previous chapters and mention

future work that could originate from the developed prototype.

1.5 Publication

The initial research for this dissertation and resulting state-of-the-art analysis led to the submission

and pre-publication of a collaborative research paper [17] titled:

• Diogo Cocharro, Gilberto Bernardes, Gonçalo Bernardo, and Cláudio Lemos. A review of

musical rhythm representation and (dis)similarity in symbolic and audio domains. 2021.

Throughout the development of this dissertation, a second collaborative research paper [40]

was developed titled:

• Cláudio Lemos, Diogo Cocharro and Gilberto Bernardes. A review of musical rhythm rep-

resentation and (dis)similarity in symbolic and audio domains. 2021.

The data generated throughout the dissertation was key to write the second research paper,

which will be further explored in Chapter 3.
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Chapter 2

Rhythm Representation and Metrics for
the Similarity in Musical Audio: A
State-Of-The-Art Review

2.1 Rhythm

Rhythm is a concept people tend to associate with music. Gustafson [31] states the importance

of rhythm not only to music but for other fields and areas, giving the example of how rhythm can

be observed through the description of the movement of a painter or the undulating hills on the

horizon.

Over the years, many authors have tried to give their own proposal for a definition behind this

concept that most people are familiar with. While Cooper and Meyer [18] give a broader definition

of rhythm, “To study rhythm is to study all of music. Rhythm both organises, and is itself organised

by, all the elements which create and shape musical processes”. Lowe [46] puts it as simple as

“The term Rhythm is constantly erroneously applied. It has only one true meaning in music–the

number of bars in a phrase.”. Even earlier definitions can be found, going back to Ancient Greek

where Plato [59] implied that “Rhythm is ordered movement”.

As noted by Eschman in [22], “The literature on Rhythm is voluminous” and there is not a

real consensus on the actual definition of rhythm, leading to a diversity of takes on the term from

different authors, causing confusion on what its actual meaning.

In his work, London [45] remarks the importance of rhythm to the musical domain, supported

by Meyer’s claim denoting rhythm as being one of two 1 primary parameters of the musical struc-

1Meyer [53] specifies pitch as the second essential musical structure

5
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ture. London finds that by specifying the rhythmic organisation of a musical piece, we can capture

its essential structure. While alterations in instrumentation, orchestration or dynamics can be pre-

sented as a different arrangement of the same musical work, changes in rhythm result in a new

piece.

Musical rhythm is often described as the temporal aspects of music [77], assuming different

representations in a score, measured from a live performance or just existing through the percep-

tion of the person that is listening.

The disposition of musical notes in a musical sheet can be analysed alongside their duration

and rhythmic patterns, which is what rhythm is concerned with [45]. When notes are more or

less regular, it can lead to the listener having a perception of beat or tempo, a phenomenon that

happens in a frequency range below the human hearing [16].

When listening to a musical piece, the listener can tap their feet along with it. In musical

genres such as pop and rock, there are constant and strong regularities, commonly referred to in

literature [67] as pulses 2. Going beyond popular music, we can find intricate musical pieces where

these regularities can suddenly change. In the first movement of Beethoven’s Pathetique sonata,

the slow opening reappears later in the piece, just after a fast main section. While this process

is natural to us, almost an intuitive response while listening to music, transferring the process of

automatic rhythm estimation to the machine can be quite challenging.

Zapata [77] divides musical rhythm into five components: beat, tempo, meter, timing, and

grouping, which we detail next.

2.1.1 Beat

Beat can be a collection of events and accents in music characterised by the perception that lis-

teners get while tapping their feet. Temperley [68] lists six cues agreed upon researchers for beat

finding:

1. for beats to coincide with note onsets,

2. for beats to coincide with longer notes,

3. for regularity of beats,

4. for beats to align with the beginning of musical phrases,

5. for beats to align with points of harmonic change,

6. for beats to align with the onsets of repeating melodic patterns.

2.1.2 Tempo

Tempo relates to beat as being the frequency rate at which pulses occur, and it is measured by

beats per minute (BPM) [29], a term commonly used by musicians when referring to the speed of

2In this thesis, the pulse felt by the listeners will be referred as beat
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a song. As mentioned above, the perception that listeners experience from the beat, can translate

into the rate at which they would tap along with the music, but as noted by Lapidaki [39] this

perception can vary from listener to listener. These variations can occur due to the listener’s age,

musical training, musical preferences, and the context in which the music is being listened to.

However, these differences in perception are not just random variations, but somewhat different

ways the listener is focusing on the beat and can be quantifiable as ratios [11]. Ultimately, the

tempo of a musical piece depends on the listener’s perception of what the beat is. While listener 1

might count the tempo as ‘one and two and three and four and’ (Figure 2.1.a), listener 2 can count

it as ‘one two three four one two three four’(Figure 2.1.b).

Figure 2.1: Two different ways the same beat can be perceived by different listeners.

2.1.3 Meter

In their work The Generative Theory of Tonal Music [41], Lerdahl and Jackendoff define meter as

the metrical structure of a musical piece based on the coexistence of a collection of regularities

that can span from shorter to longer time divisions. These regularities alternate between stronger

and weaker pulses in the music, making it easier for them to be differentiated from each other.

In turn, it is easier to find the strongest meter, one that is more accentuated, making the process

of meter perception as simple as finding and filtering through musical accents in order to retrieve

rhythmical periodicities.

2.1.4 Timing

Timing can tell us when events occur, by giving us a picture of the temporal representation. Tem-

poral deviations can lead to expressive timing, that can manifest in a musical performance with

tempo changes, event shifts or swing factors [77]. These factors provide musical genres with a

sense of syncopation, swing, expressive performance and groove [19].

In [38], Kendall and Carterette were able to demonstrate successfully how listeners would

pick up these expressive timing deviations from performers, on a variety of musical instruments.

The most interesting take from this research was that there was no difference in timing perception

results from musicians and non-musicians participants.
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These concepts will be important later in this thesis, when we discuss how can two instruments

in the same musical piece have different rhythmic patterns, each giving a different groove feeling

to the listener and still be rhythmically compatible with each other.

2.1.5 Grouping

In [41], Lerdahl and Jackendoff clarify the elements that compose the rhythmic structure of music

and make a clear distinction between the concepts of meter and grouping. While, as noted above in

Section 2.1.3, meter is the alternation between stronger and weaker pulses, grouping is concerned

as to how music is organised and segmented at different scales and (phrase structure) [16, 77]

and over specified durations, making it a hierarchical property of musical structures. Further-

more, although the two concepts of meter and grouping are theoretically independent, Lerdahl and

Jackendoff find in their work that there is a relationship between the two, manifested in musical

arrangements by the alignment of the stronger pulses with grouping boundaries.

In [69], Todd compares meter and grouping to the time- and frequency-domains, making the

analogy of meter corresponding to the frequency and grouping to wavelength.

2.2 Rhythmic Representations

When encoding rhythm, we have to take in consideration that the way we choose to represent

music is going to influence its composition, observation, as well as the way it can be understood or

analysed [35]. In [33], Hewlett and Selfridge-Field remark the importance of musical information

into constructing a model for the measurement of rhythmic similarity.

Manifestations of music can either occur in the symbolic or sub-symbolic domains. In this

section, we are going to analyse and present two different forms of retrieving rhythmic information

from both symbolic and audio-form musical manifestations.

2.2.1 Rhythmic Representation from Symbolic Manifestations

In the symbolic domain, rhythmic information is represented explicitly, which in turn, makes

the process of extracting this information much more straightforward. From symbolic manifesta-

tions, rhythm can be encoded into two different methods: formal strings and geometric represen-

tations.

In Sections 2.2.1.1 and 2.2.1.2, we will review the computational methods that best help rep-

resent symbolic information. Figures 2.2 and 2.3 help demonstrate the two types of symbolic

representations. Formal strings adopt binary symbols for rhythm representation and geometric

representations use text symbols and graphics to translate rhythm.

2.2.1.1 Formal Strings
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Figure 2.2: Formal Strings representations of the Clave Son rhythm, a typical rhythmic pattern
used in Cuban music, represented here in 1 in its atomic beat divisions. a) Binary notation. b)
Interval-Length Representation.

Using binary symbols, we can translate note onsets into 1 and silent intervals into 0, resulting

in a binary string of ones and zeros [44]. In [66], Sethares claims the binary notation to be one

of the simplest ways to represent rhythm. The resulting string will be composed of a sequence of

values indicating the pulse’s activity or silence, where the length of this sequence represents the

duration of the rhythm being represented.

The Interval-Length Representation (ILR) is a numerical notation which aims at representing

the duration of intervals between the onset times of consecutive notes, commonly known as inter-

onset intervals (IOI) [75]. In [71], while Toussaint indicates the compactness and ease-of-use of

ILR as an advantage, he also mentions how the temporal dimension of the interval’s relative dura-

tions can get lost by not being easily observed. ILR is further expanded into two visual displays of

rhythm based on the histogram representation that Gustafson proposes in [31], adjacent-interval-

spectrum (AIS) and temporal elements displayed as squares (TEDAS). Gustafson points out that

the two parameters being used in this 2-dimensional representations should be time-based.

2.2.1.2 Geometric Representations

Visual iterations of the binary notation have since appeared, including the box notation and the

Time Unit Box System (TUBS). The box notation uses texts symbols to represent rhythm. Similar

to the ones and zeros from binary notation, this notation uses an X to represent an active pulse

and a hyphen or dot to represent silence. TUBS enhances both notations by translating a rhythmic

sequence into sequences of square boxes. While a black box represents a note onset, an empty box

represents silence [44, 75].

Departing from the ILR representation mentioned in Section 2.2.1.1, AIS is a spectrum-based

representation of IOIs resulting into a 2-dimensional plot, where the sequences of intervals are

mapped into the Y-axis, while the temporal information of rhythmic patterns gets lost in the X-

axis. TEDAS tries to solve this problem by combining both ILR and AIS and expanding the active

pulses information into the X-axis. In TEDAS, rhythmic information from IOIs is represented as
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Figure 2.3: Geometric representations of the Clave Son rhythm (1). a) Box notation. b) Time Unit
Box System. c) Adjacent-Interval-Spectrum. d) Temporal Elements Displayed As Squares. e)
Chronotonic Chain. f) Convex Polygon.

square-shaped boxes. The expanded information retrieved from the X-axis can further indicate the

temporal index of the pulse and the relative durations between onset events.
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Hoffman-Engl presents in [35] another geometric representation that exposes the same rhyth-

mic information as TEDAS. The Chronotonic Chain results from connected points representing

atomic beats. A rhythm gets broken down into its smallest unit, a 16th note, which Hoffman-Engl

refers to as atomic beats. Each atomic beat will get assigned a y-coordinate based on its IOI.

Finally, all the points are connected into polygonal curves that form the chronotonic chains.

The Convex Polygon was presented by Toussaint in [70], where he imagines a clock divided

into 16 time units instead of the typical 12, where each vertex represents a pulse of a cyclic

rhythmic pattern. The Convex Polygon introduces a more realistic cyclic representation since

the first vertex coincides with the last vertex, something that others representations such as the

Chronotonic Chain lack since these two beats are distant from each other.

2.2.2 Rhythmic Representation from Audio Manifestations

Audio feature extraction has been one of the most important research areas inside the field of Music

Information Retrieval, aiming at the analysis of audio signals in order to extract meaningful infor-

mation which then gets translated into descriptors that can be understood by the computer [54].

Unlike symbolic manifestations where information is readily available, in the audio realm, this

rhythmic information is implicitly encoded so that new challenges arise to access the same infor-

mation. A simple example demonstrating these challenges is the detection and transcription of

polyphonic sounds, where multiple sounds are being played simultaneously.

Roads [64] splits rhythmic description into three levels of abstraction: low-level, mid-level

and high-level. In Section 2.2.2.1, we are going to review techniques of feature extractions based

on physical characteristics of the audio signal. Section 2.2.2.2 introduces the perceptual impact of

the audio manifestations, where extraction techniques try to describe the properties of the audio

signal based on human perception [2]. We will not be reviewing high-level rhythmic description

techniques since these abstract in a cognitive way, extracting information such as musical style and

genre. For that reason, in this dissertation, we will be focusing on low- and mid-level representa-

tions of rhythmic description, as these techniques analyse the signal formally and rhythmically.

2.2.2.1 Low-level Representation of Rhythmic Description

At a low level, the audio descriptor analysis can capture rhythmic descriptors and categorise

them through energy and spectral changes. The main goal at this level is to locate these sudden

changes in the audio signal characterised by the beginning of transient regions, which Bello [3]

describes as a sudden burst of energy or a change in the short-time spectrum of the signal. For

the most part, an increase in the signal’s amplitude envelope will usually indicate the occurrence

of an onset. In some situations, multiple note onsets can occur without a change of the amplitude

envelope. For example, when a violinist plays slurred notes in a single down bow, it results in a

pitch change, while the amplitude stays at the same level.
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An onset is composed of three different regions: the attack onset, the actual onset and its

transient. The attack will occur when there is a sudden increase in energy, which corresponds to

the build-up of the amplitude envelope. A transient occurs right at the beginning of a musical tone

and is characterised by a short and high amplitude noise-like sound component typically followed

by a dampening of the sound and slow decay of energy. An onset refers to the single instant at

which the transient starts.

Figure 2.4: a) Waveform of a single note being played. b) Resulting amplitude envelope corre-
sponding of an onset,.

Novelty functions can extract low-level information from an audio signal by detecting changes

in properties from said signal such as energy and spectral content. In this section, we will take a

look at the two different types of novelty functions, energy-based and spectral-based. Even though

both types perform at a low-level of abstraction, each one will give better and more accurate results

in different situations.

When playing a single note on a synthesiser, the performer creates a sudden increase in energy

in the audio signal. Transforming the signal into an energy function can give information about

local energy levels for each time instance. Subsequently, by getting the difference of two consecu-

tive energy values from the first function, we will have the derivative of the local energy function,

from which only the positive values are kept since we are interested in sudden energy increases.
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For the mentioned example above of the violin, we need to use a spectral-based novelty func-

tion. Since there is no sudden burst of energy, but rather a change in the pitch of the notes being

played, this may be captured across the frequency domain. Looking at the signal’s short-time

spectrum can not only help overcome this challenge but even more complicated ones such as

polyphonic note onset events. Spectral-based novelty functions aim at converting the audio signal

into a time-frequency representation followed by the analysis of the frequency domain content to

detect changes. This method works in the same way as energy-based novelty functions, but instead

of looking at the energy values, the difference between consecutive spectral vectors is computed,

resulting in the spectral flux [3].

2.2.2.2 Mid-level Representation of Rhythmic Description

The low-level audio features analysed in Section 2.2.2.1, reveal the positions of note onsets

occurrences through local maxima from the novelty functions and are the stepping-stone for the

computation of periodicity functions 3, crucial for the subsequent detection of mid-level features

such as tempo and beat [28].

Mid-level audio features try to approximate to perceptual properties known by human lis-

teners [78] (e.g. pitch, loudness, rhythm, and harmonicity) while revealing the same level of

information as symbolic representations. Richards [63] states that some strategies exist that can

be combined to integrate human perception in the processing of the audio signal, through the use

of perceptually relevant features which help characterise different aspects of the audio content.

Multiple periodicity functions have been proposed by different authors, such as the auto-

correlation function [20] and beat spectrum [23]. Each function differs on the attributes it focus

on and the way the information is presented. In this section, we will review the Rhythmic Patterns

function, also known as Fluctuation Patterns, from which the metrics for rhythmic compatibility

proposed in Chapter 3 will evolve from.

Rhythmic Patterns [58, 57, 62, 42] is a matrix representation of fluctuations in different fre-

quencies on critical bands to the human’s listening range, that describes rhythm as amplitude

modulations. The two-stage extraction process of the Rhythmic Patterns starts by grouping the

frequency bands by loudness sensation, which is computed using a Short-time Fourier Transform.

The resulting spectrum is then transformed into a time-invariant 24 critical Bark bands represen-

tation based on the modulation frequency, achieved by applying a second Fourier transform. The

Rhythmic Patterns function is then able to capture recurring rhythmic patterns in the individual

critical bands. If, for example, there is an occurrence of a high amplitude at the modulation fre-

quency of 2 Hz in the resulting matrix, that indicates the presence of a rhythm with 120 BPM [42].

To the human listener, the notion of rhythm ends at about 15 Hz 4. For that reason, in the Rhythmic

Patterns, only information up to ho 10 Hz is considered [42].

3A sequence of note onset times detected by low-level novelty functions is computed into IOIs, revealing the rhyth-
mic structure’s periodicity.

4Equivalent to 900 BPM.
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The Rhythmic Histogram feature [43] is used to represent the general rhythmic information

of an audio track throughout all bands. The information is not stored per critical band but rather

the sum of the magnitudes from each modulation frequency bin, which form the final histogram

of rhythmic energy per modulation frequency. The histogram is composed of 60 bins that reflect

the modulation frequencies between the same range of 0 and 10 Hz.

Figure 2.5: Corresponding Rhythmic Patterns and Rhythmic Histogram functions for a) classical
music ("Blue Danube Waltz" by Johann Strauß) and b) rock music ("Go With The Flow" by The
Queens Of The Stone Age) [42].

In Figure 2.5, both the Rhythmic Patterns matrix and the Rhythmic Histogram are presented

for two different tracks. The first is a classical piece titled "Blue Danube Waltz" by Johann Strauß,

while the second track is a song by the rock band Queens of the Stone Age titled "Go With

The Flow". The analysis of the Rhythmic Patterns matrices show a prominent rhythm in (b) at

the modulation frequency of 5.34 Hz, most likely indicating the bass guitar’s presence, in (a),

we cannot detect a clean and distinctive band presence, but rather a blob in the lower region of

the modulation frequencies, which is a typical indication of classical pieces [42]. Analysing the

Rhythmic Histograms, the histogram corresponding to the Queens of The Stone Age track clearly

shows a peak at 5.34 Hz, while the classical piece stays predominantly at the lower modulation

frequencies, indicating less energy typical of classical music.

Tempo estimation and beat tracking describe mid-level rhythmic representation which capture

the predominant local pulse as described in Section 2.1. Both are measured as a single value,

typically expressed as beats per minute. In classical music, standard tempo markings range from

grave at around 30 BPM to prestissimo measuring at 200 BPM. Estimating the global tempo of a
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musical track can be a challenge when there are fluctuations throughout the song. Current state-

of-the-art methods perform well in commercial genres with strong and accentuated regular beats,

such as pop and rock music. In Figure 2.6, a tempo estimation technique is applied to a drum

loop, resulting in evenly spaced out red lines that align with the onsets of the audio signal. Tempo

estimation and beat tracking can get more challenging in classical music which is characterised

by the alternation between music markings and is typically a non-percussive musical genre [51].

Recent researchers have found progress on the use of deep learning algorithms for tempo detection

and beat tracking, showing excellent results for music with no drums presence [27].

Figure 2.6: Global tempo estimation of a drum loop.

2.3 Similarity

In [35], Hofmann suggests that while at first the interest in melodic and rhythmic similarity may

seem unmotivated and unprovoked, this issue starts gaining importance when we look at the innu-

merous amount of contexts in the musical field where the metrics for similarity may be applied.

Hofmann offers some examples such as: a) a composer trying to produce a variation to a musical

piece, b) an ethnomusicologist trying to classify the melody of a song, c) a music teacher trying to

evaluate how close to the original song a student’s performance is, e) a court judge trying to make

a final decision on a copyright infringement legal case, and finally, relevant to our dissertation, d)

a user trying to navigate a musical database while querying for a specific melody.

The process of measuring the similarity of two different rhythms is a fundamental problem

in computational music theory [70]. When picking a similarity metric for comparing a pair of

rhythms, we should take into consideration how the rhythm is represented. These metrics are

guided by what should be measured in the rhythm and how it should be measured. Toussaint

presents in [70] two different approaches to rhythm similarity; 1) Feature-based Distance Metrics

compare the number of common attributes between two rhythms, while 2) Transformation-based

Distance Metrics compute the necessary effort to transform one rhythm into another. Both metrics

will be reviewed in Sections 2.3.1 and 2.3.2.
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2.3.1 Feature-based Distance Metrics

Feature-based Distance Metrics are computational methods that compare the number of rhyth-

mic aspects that two different rhythms have in common. In this section, we will review two

methods: the Hamming Distance and the Euclidean Interval.

2.3.1.1 Hamming Distance

The Hamming distance, dH , was proposed by Richard Hamming in [32] and is a natural measure

of dissimilarity between two binary sequences. It analyses the number of indexes in the two

strings where the values do not match. Some researchers have preferred to compute the number

of matching values when the interest is to calculate similarity [52].

Each rhythm is represented by a vector X = (x1,x2, ...,xn) where xn represents the pulse in a

similar way to the binary notation presented in Section 2.2.1.1. When a note is played at index i,

xn = 1, when there is silence xn = 0.

The Hamming Distance between two rhythms X = (x1,x2, ...,xn) and Y = (y1,y2, ...,yn) is

given by the following equation:

dH(X ,Y ) =
n

∑
i=1
|xi− yi| (2.1)

Toussaint [70] does not recommend the use of this metric for the problem of rhythmic sim-

ilarity, since it only measures the occurrence of a mismatch and not the displacement of this

dissimilarity. Bookstein et al. [10] propose their approach to this metric called the Fuzzy Ham-

ming Distance. This new metric tries to overcome the limitations present in the original proposal

by Richard Hamming, by accounting not only the shift of onsets but also insertions and dele-

tions [72].

2.3.1.2 Euclidean Interval Vector Distance

The Euclidean Interval Vector Distance, dE , is a better approach than the Hamming Distance for

measuring rhythmic similarity since it takes advantage of the inter-onset intervals representation.

Rhythms are represented by a vector of numbers characterising the IOIs, in X = (x1,x2, ...,xn)

where xn = i is the number of vertices skipped by the ith convex polygon edge, counting from

vertex 0. [70].

With this metric, the dissimilarity between two different rhythms X = (x1,x2, ...,xn) and Y =

(y1,y2, ...,yn) can be calculated with:

dE(X ,Y ) =

√
n

∑
i=1

(xi− yi)2 (2.2)

The Euclidean distance can be further applied to the similarity and categorisation of rhythms,

which is helpful when organising rhythms in classes through the use of clustering algorithms [21].
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2.3.2 Transformation-based Distance Metrics

The Feature-based metrics presented in the previous section, do not consider displacements in

the metrical or temporal structure of the rhythm. Transformation-based metrics solve this issue by

computing the distance that it takes to alter one rhythm into another. This section will present the

Swap Distance and the Chronotonic Distance.

2.3.2.1 Swap Distance

The swap distance, dswap, computes the minimum swaps necessary to convert one rhythm into

another, taking a binary rhythm representation as input. In [75], Toussaint considers this metric as

being equivalent to the minimum value of the sum of distances 5 travelled by all the onsets during

the transformation. For an effective transformation, the swap distance requires the two rhythms to

be composed of the same amount of pulses, and its computation is only possible by interchanging

adjacent elements.

For example, consider rhythms X = [x - x - x x - x - x - x] and Y = [x - x x - x x - x - x -]

with the same length. The i-th onset of X must travel a certain distance to reach the i-th onset of Y.

When i = 1, that distance is 0, since the first onsets of both X and Y have an index of 0. For i = 3,

that distance is 1, because while the third onset of X has an index of 4, the third onset of Y has an

index of 3. We can now compute vectors U and V that store the indexes at which the i-th onset of

X and Y occurr. The result is U = (1,3,5,6,8,10,12) and V = (1,3,4,6,7,9,11). The difference

between ui and vi is the necessary distance to bring those two onsets into alignment.

After computing vectors U and V, we can calculate the swap distance of rhythms X and Y

using the following formula:

dswap(U,V ) =
k

∑
i=1
|ui− vi| (2.3)

2.3.2.2 Chronotonic Distance

In [35], Hofmann-Engl considers the chronotonic chains representation, previously presented in

Section 2.2.1.2, as being a vector of atomic units [70]. A weighted Euclidean distance is computed

on the corresponding chronotonic vectors of two different rhythms to calculate their similarity.

Considering the chronotonic chains representation as a function, opens the possibility for the

use of distance functions, which have been previously used for pattern recognition [73]. When

given two probability density functions f1(x) and f2(x), we can measure the distance between

the two. One technique is the discrimination information, dKL, also known as Kullback-Liebler

divergence, and is computed by the following function:

dKL =
∫

f1(x) log
f1(x)
f2(x)

dx (2.4)

5These distances are measured as the number of pulses.
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Toussaint [74] proposes the Kolmogorov variational distance, dK , closely related to the Kullback-

Liebler divergence:

dK =
∫
| f1(x)− f2(x)|dx (2.5)

Figure 2.7 shows an original rhythm and a variant rhythm are presented in the Chronotonic

Chains representation. The grey area represents what is measured by the Kolmogorov variational

distance, or area-difference between the two Chronotonic Chains.

Figure 2.7: Chronotonic Distance [70].

This approach includes a mechanism presented in [35] that transforms one chronotonic chain

into another while adopting this strategy to help measure the similarity between the two rhythms

corresponding to each chain. Similarly with the Swap Distance, the Chronotonic Distance expects

the two rhythms to be of the same length. However, as shown in [35], if the two rhythms have

different lengths, the chronotonic chain corresponding to the shorter rhythm can be extended until

it matches the longer chain.

2.4 Spatial Representation and Visualisation of Rhythmic Informa-
tion

Once similarity is computed within a musical database, it is in our best interest to organise this

information in groups so that we can explore it intuitively. This section will analyse the work

of Gärdenfors [24], that explores the idea of a conceptual space for rhythmic information. We

will also present some applications for navigation and visualisation of this information, Islands of

Music, EarGram and MixMash. The three applications are similar to what we intend to develop at

the end of this dissertation, and we will explain how these two differentiate from our proposal.

2.4.1 Conceptual Spaces

In [24], Gärdenfors finds that the symbolic representation as shown in Section 2.2.1 approach

may not the best suit for the computation of rhythmic similarity, claiming that it models and
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explains problems at different levels of abstraction. He then resumes proposing an intermediate

representation that is geometrically based but is framed as a conceptual space.

The proposal in [24] consists of a framework for conceptual spaces that aims at solving the

problems not tackled by the symbolic approach, being complementary to this representation, even

though in the author’s opinion, symbolic representation lessens the value of rhythmic similarity.

Similarity is only represented by rules or axioms and an explicit representation of symbols, which

produce similarity values [24, 36].

In his work, Gärdenfors gives the following definition of concepts: “a set of regions in a num-

ber of domains together with an assignment of salience weights to the domains and information

about how the regions in different domains are correlated.”. He proceeds to make the distinction

between concepts and properties. While the first is modelled by several domains, the latter is only

modelled by one. Concepts are linked together with the idea of rhythmic similarity, as they group

objects with similar traits in clusters, acting as a rhythmic similarity classifier.

2.4.2 Navigation and Visualisation in Rhythmic Spaces

In this section, we will analyse different proposals that help visualise and navigate rhythmic infor-

mation in intuitive ways. The applications we are going to present are Islands of Music, EarGram

and MixMash.

2.4.2.1 Islands of Music

Pampalk proposes in his thesis a new way to visualise and navigate through musical collec-

tions [57] called Islands of Music.

In this graphical interface, geographical maps are used as a metaphor where musical genres

get represented as islands and elevations in the land such as mountains and hills represent sub-

genres. Similar genres are placed close together and may even be connected by a land passage if

the similarity value is high. Genres that are perceptually different are separated by sea.

A musical database is placed on the map according to genre or musical and rhythmic attributes.

Mountains and hills are labelled with these attributes, as seen in Figure 2.8, which helps the user

to navigate the database better.

Pampalk initially developed Islands of Music for the exploration of unknown musical collec-

tions, but its purpose can extend to other use cases. For example, the interface can help users

discover new music, organise their personal music collection or simply be used as an interface for

a digital music library.

2.4.2.2 EarGram

EarGram is an open-source application developed by Bernardes [5, 6] in Pure Data (PD) for the

interactive exploration of musical databases and creative sonic creation with real-time concate-

native sound synthesis (CSS) techniques. The system collects information from the audio signal

through data mining capabilities that reveal musical patterns and temporal organizations [5, 6]. It
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Figure 2.8: Islands of Music interface [57].

presents the collected information in a user-friendly interface that helps the use of this application

for its creative intention.

Bernardes presents four different generative strategies that automatically rearrange and explore

the database of audio snippets into musically and sonically coherent creative output: infiniteMode,

shuffMeter, soundscapeMap and spaceMap. The four modes help the user explore a wide range of

musical applications, such as the automatic generation of soundscapes, remix of an original song

and mashups [7].

EarGram displays the retrieved information in a two-dimensional space, providing an intuitive

way for the user to understand intrinsic perceptual qualities from a collection of sounds, which are

used to organise the database into clusters.

2.4.2.3 MixMash

Departing from Bernardes et al. [4] proposal of the harmonic mixing techniques for musical

mashups, MixMash [47, 48] is an interactive application that guides the user into the creation

of musical mashups based on cross-modal associations between the analysis of musical content

analysis and further visualisation in a two-dimensional space.

MixMash tries to overcome a few design limitations identified in [4] by proposing a new

method for interactive visualisation of audio attributes such as timbral similarity, harmonic com-

patibility, the density of note onsets and spectral region. Each track is represented as a node in
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Figure 2.9: EarGram interface [5, 6].

Figure 2.10: MixMash interface [47, 48].

a force-directed graph, in which the edge connections represent the harmonic compatibility. The

intuitive visual language, as presented in Figure 2.10, is used to promote the user’s creativity when

creating musical mashups.
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2.4.3 Rhythm Spaces

In [25], Daniel Gómez-Marín et al. present rhythm spaces as metaphors to visualize and interact

with rhythms by taking advantage of previous research made on alternatives low-dimensional

music spaces, music cognition, and also music interaction made possible with intelligent musical

agents.

In the developed paper, the team focuses on symbolic sequences and how this rhythmic infor-

mation can be organized into low-dimensional spaces, in order for this data to be grasped by the

reader, while also acting as a way to organize it into clusters and generate music. These tools can

be the backbone for the next generation of music creation applications, where currently creativity

is limited to unidimensional orderings such as drop-down menus in drum-loop creation tools (e.g.,

Logic Pro’s Drum Machine Designer or Ableton’s Drum Rack).

Through the analysis of state-of-the-art systems based on the transformation of symbolic rep-

resentations and audio loops [37, 56] and computational approaches based in neural networks and

genetic algorithms [13], Daniel Gómez-Marín et al.’s goal is to create a system that can become

an essential tool used for music production, where producers are able to browse and get a sense of

rhythmic patterns occurring in their own collection of audio loops.

Daniel Gómez-Marín et al. demark that a tool for this context should be able to maintain its

low dimension, so it is intuitive for the user to browse through the musical data, and keep closeness

when similar rhythmic patterns are occurring, while separate opposite patterns. In Figure 2.11, the

team maps out a collection of different rhythmic patterns and musical styles (e.g., soul, hip-hop,

garage, house) .

Figure 2.11: A rhythm space obtained from a similarity metric maps out a collection of different
patterns and styles [25]

Finally, the authors agree on the fact that automatically representing drum spaces is possible,

from a mathematical perspective, in two different ways:
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• In the best case scenario, where the developed metrics can achieve a good prediction at

polyphonic similarity, the low dimensional rhythm space will directly inherit the essential

relations between audio loops that were calculated by the distances.

• In the case where metrics are not fully precise, users could still take advantage of the re-

sulting space as a way of exploring the collection, where only some regions would reveal

themselves useful for the analysis at hand.

2.4.4 Visualizing multidimensional musical data

In [14], Nadia Carvalho et al. propose and detail a new way to encode, analyse and model Iberian

Folk music. The research not only brings awareness to a genre that can get forgotten in the dig-

ital age, but creates a tool for the navigation and retrieval of musical content from the database

generated.

The research adopts two algorithms for the visualization step:

1. t-distributed Stochastic Neighbor Embedding (t-SNE) is a statistical method proposed by

Laurens van der Maaten [76] based on Sam Roweis and Geoffrey Hinton previous work

in [34]. This new method reduces high-dimensional data into a two- or three-dimensional

map, applying a location in the map to each data point. By using a dimension reduction

technique, it is able to compress and model the high-dimensional data where similar data is

represented by points close in distance.

2. Uniform Manifold Approximation and Projection (UMAP) [50] uses a very similar process

to t-SNE, while assuming that the data received as input is distributed in an uniform way.

In Figure 2.12, Nadia Carvalho et al. present the results given by the two methods (t-SNE

and UMAP) when applied on the database created for the research. The UMAP provides a more

precise way of organizing the clusters when compared to the representation given out by t-SNE.

The database also has annotations for the country of origin (Portugal or Spain). UMAP clearly

puts each country’s songs into precise clusters, while t-SNE presents some fuzzy results, where

songs that should be present in the left cluster, get moved to the right cluster.
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Figure 2.12: t-SNE (a) and UMAP (b) 2D visualizations of the database. Points with closer spatial
locations denote songs that share the same country. The points’ colors map the respective song
according to their Genre (red: Corro, blue: Cuna). [14]



Chapter 3

Understanding Cross-Genre Rhythmic
Audio Compatibility

The current chapter is based on a paper [40] which the author co-authored. The contents used on

this chapter are solely from the author.

In [12], Nardelli compares the abstraction of musical structures as mathematical objects as

being one of the great accomplishments in contemporary music theory and computer music fields.

These musical structures range from just simple notes, to complex melodies, chords, harmonic

and rhythmic progressions. From this starting point, this project will aim at unveiling metrics for

the similarity and compatibility of musical rhythms from musical audio manifestations.

The process for the development of our application will start by understanding rhythmic pat-

terns from previously existing music, through the analysis of multi-track datasets. These datasets

by being multi-track have the advantage of including the individual tracks for each instrument

separate from each other, which will help us compute similarity distances between each and every

track. This calculations will help us develop a prototype for the analysis of rhythmic compatibility

to be applied at databases at scale.

In this chapter, we will go through a proposal on understanding rhythmic compatibility when

systematically assessing the behaviour of common rhythmic similarity metrics previously ex-

plained in Section 2.2.2.2. The metrics are applied to musical examples at scale, which have

been composed and performed by real-life musicians and artists.

We also try to unveil levels of rhythmic similarity across multiple instrument families and

musical genres, and discuss the conceptual difference between similarity and compatibility, one of

the main challenges in repurposing musical audio [26].

25
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Finally, we aim to apply the collected results in supporting creative music composition appli-

cations that rely on the analysis of audio content.

In Figure 3.1, we provide an overview of the full system and how we retrieve the audio analysis

data from the database. We compute three prominent audio rhythmic similarity metrics - rhythmic

patterns (RP) [58, 57, 62, 42, 30], rhythmic histograms (RH) [43, 30] and beat spectrum (BS) [23,

60] - on a multi-track audio dataset of multiple musical genres. The dataset selected for this

research is MedleyDB [9], which is a dataset of annotated and royalty-free multi-track recordings

curated specifically for the support of research regarding melody and rhythmic extraction. This

database includes 122 songs from 8 generic genres 1

Rhythmic Similarity 
across stems	
• Beat Spectrum	
• Rhythmic Histogram

Rhythmic Compatibility 
by Instrumentation	
• electric, percussion, 
strings, voices, winds

Rhythmic Compatibility by 
Genre	
• Singer/Songwriter (22), Rock 
(20), Pop (10), Musical Theater
(4), World/Folk (18), Jazz (11), 
Electronic/Fusion (13), 
Classical (22)

Time-Scale Rhythmic 
Compatibility	
• Full-stem, Windowed

MedleyDB 1.0	
• 122 Songs 
across 8 genres 
and 5 instrument 
families

Figure 3.1: Overview of the computation methods [40]

First, we calculate RP, RH, and BS metrics across all stems 2 from all songs, and the distances

between these metrics for stems per song. Then, we compute global statistic, median and inter-

quartile range (IQR), per each distance metric. Moreover, the above similarity metrics are applied

throughout the database at two different time scales to inspect the potential impact of the similarity

metrics between full songs and short-time windowed analysis. Results ought to unveil the typical

values for rhythmic compatibility in professional musical production scenarios.

This chapter is structure as follows. In Section 3.1 we will give a brief explanation of how

this study was proceeded. Section 3.2 will present the MedleyDB database in more detail. Finally,

Sections 3.3 and 3.4 will detail the rhythmic similarity metrics and describe the computational

methods adopted for the statistical analysis.

1The dataset includes 9 genres in total, but due to the Rap genre having an unbalanced number of 2 examples when
compared to other genres (4 to 22 songs), we decided to exclude this genre.

2a subset of one or more raw tracks created during the recording of one instrument
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3.1 Assessing rhythmic compatibility

To empirically assess the rhythmic compatibility of the dataset, three different levels of analy-

sis were set:

1. pair-wise instrument family categories

2. musical genre

3. time scale

We then inspect multiple rhythmic similarity metrics across different instrument families and

genres. This study unfolds in three main tasks:

1. the computation of rhythmic representations (RP, RH, BS) for each stem

2. the annotation of each dataset stem by an instrument family (electric, percussion, strings,

voices, winds)

3. the computation of statistics on rhythmic similarity per instrument family categories and

genres at two different time scales (full songs and short windows analysis)

3.2 Dataset

We analyzed 122 songs from the MedleyDB 1.0 database [9] which span across 8 musical

genres: classical (22), electronic/fusion (13), jazz (13), musical theater (4), pop (10), rock (20),

singer/songwriter (22), world/folk (18).

The dataset includes audio files, metadata and annotations for each song. The audio content

includes the raw unprocessed multi-track stems for each individual instruments and a final mix

of the song, which is equivalent to its original release version, when all instruments are mixed

down into the final track. All audio files are recorded at a 44.1 kHz sampling rate, 16-bit depth in

stereo, except for the raw tracks, which were only made available in mono. Metadata files include

information per each song such as artist, composer, genre, instrumentation, included files, and if

there’s any audio bleed or spill occurring throughout the stems. Annotations provide information

per track and stem regarding its instrument and pitch content, by including the fundamental fre-

quency ( f0) of the melody. Since this study is analysing rhythmic information, these files were not

used.

This study adopts the MedleyDB stems, which the dataset considers as a subset of one or

more raw tracks created during recordings for one instrument, e.g., drum set or a multi-mic piano

processed into a stereo track after applying effects and panning. In a multi-instrument recording,

the occurrence of bleed or spill from other instruments might happen. Stems in the database



28 Understanding Cross-Genre Rhythmic Audio Compatibility

which include the recordings of an entire ensemble, labeled as Main System, were disregarded

from analysis.

Before the analysis, every stem is mixed to mono and annotated according to its instrumental

family, adopting the taxonomy proposed by the MedleyDB team in [8]. The following set of

instrumental families were adopted in our analysis: electric (e), percussion (p), strings (s), voices

(v), and winds (w). For example, a piano would be categorized under the strings label, while

a drum set would be labeled as percussion. The imposed reduction from instrument labels to

instrument family aims to reduce the number of conditions under study while loosely assume that

instruments that are categorized in the same instrumental family, behave the same and perform the

same rhythmic function within a musical structure.

3.3 Rhythmic Similarity Metrics

We adopt three prominent descriptors to represent the rhythmic content of each stem track:

RP [57], RH [43] and BS [23] from which similarity is computed. Next, we detail each of these

representations, their interpretation, computation, and the distance metric adopt to calculate their

similarity.

Rhythmic Histograms [43] represents the rhythmic information of musical audio as ampli-

tude modulations. It derives from Rhythmic Patterns [58, 57, 62, 42], a matrix representation of

fluctuations in different frequencies on critical bands of the human’s listening range. Their fun-

damental difference is that Rhythmic Histograms accumulates all frequency bands onto a single

bin, resulting in a vector of 60 frequency modulation bins in the [0, 10] Hz range.3 The main

difference between Rhythmic Histograms instead of the most common Rhythmic Patterns is to

minimization of timbral or spectral content information in further similarity computation. RH

adopts a two-stage extraction process. First, it groups the frequency bands by loudness sensation,

using a short-time Fourier transform. The resulting spectral representation is then transformed

into a time-invariant 24 critical Bark bands modulation frequency spectrum by applying a second

Fourier transform. High amplitudes values in the RH denote a recurrent periodicity in the musical

audio. For example, a modulation frequency of 2 Hz indicates the presence of periodicity with

120 BPM [42].

Beat Spectrum is an audio representation for acoustic self-similarity presented in [23], com-

puted from pairwise spectral similarity distances to characterize rhythmic and temporal structure

over time. Musical audio with repetitive rhythmic and highly structured content will perform

stronger within this analysis, revealing peaks at the time occurrence of repetitions. Peaks in the

BS will be aligned with major rhythmic components occurring in the audio signal, inferring that

they will correspond to rhythmic periodicity when these peaks are periodic. The BS makes a

clear distinction between tempo and rhythm since different rhythm styles occurring at the same

3The human cognition of rhythm ends exists below 15 Hz, roughly equivalent to 900 BPM. To this end, Rhythmic
Histograms only considers frequencies up to 10 Hz [42].
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tempo will perform differently. The BS is computed from the audio signal in three steps. First,

we parametrize the audio content by a short-window spectral analysis (e.g., using mel-frequency

cepstral coefficients). Second, we compute a (squared) distance matrix of all pairwise distances

across the musical structure spectral representations. Third, we find the BS periodicities in the

resulting matrix by diagonal sums or auto-correlation.

We adopt cosine distance to compute rhythmic similarity of RH and BS representations, thus

disregarding their weight or magnitude and rather capturing the peak alignments in both functions,

while RP uses the euclidean distance.

Figure 3.2: Respective Rhythmic Patterns, Rhythmic Histogram and Beat Spectrum representa-
tions for the first ten seconds of a) a voice stem and b) a percussion stem from the pop song
’Bounty’ by Steven Clark
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In figure 3.2, we show the RP, RH and BS for the first ten seconds of two different stems

from Steven Clark’s ’Bounty.’ The stem a) is vocal, and stem b) is percussive. The RP and

RH representations for the percussive stem indicate clear peaks at frequencies of 18 and 36 Hz,

whereas the vocal stem denotes less rhythmic periodicity content, concentrating most of its energy

at lower modulation frequencies. In the BS representation, we note the equal-spacing peaks in the

percussive stem plot at both multiples of the tempo. In the vocal BS plot, we cannot infer any

structural repetitions across time, as no equal-spacing peaks exist.

3.4 Computational Methods

We computed the RP, RH and BS for all analysed stems of the Medley DB 1.0 database using

the Rhythm Pattern Audio Feature Extractor [30] and REPET [60] libraries, respectively. Two

time-scale analysis were applied to compute the RP, RH and BS representations per each stem: full

stem and windowed stem. Full stem comprises one unique vector describing the rhythmic content

across the duration of the entire stem. Windowed stem comprises of an array of different analysis

vectors per stem, resulting from consecutive sequences of 2 18 = 262144 samples 4, roughly about

6 seconds long.

Similarity values across each stem per song are then computed using cosine (RH, BS) and

euclidean (RP) distances at the two time-scales under analysis. Full stem similarity results in a

single similarity value per pairwise stem comparison, and windowed stem similarity result is a list

of similarity values per pairwise stem comparison.

To assess the rhythmic similarity across instrument families per genre, we compute typical

values from the resulting rhythmic similarity and adopt global statistic indicators. Median and

inter-quartile range (IQR) 5 are adopted for full stem statistics. It results in distances matrices

for each RP, RH and BS across different instrument families per genre. A total of 8 genres * 2

similarity metrics * 2 statistical indicators = 48 matrices are computed. Figure 3.3 is an example

matrix computed for the Pop genre using the Rhythmic Histograms metric. The top row represent

the inter-quartile range distances while the bottom row represents the median distances. In the

left column, the full stem analysis are displayed while the right column show the windowed stem

analysis. Higher median values denote a smaller degree of stem similarity across or within a

certain instrumental family. It should be noted that more than one stem per instrument family can

exist in one song, therefore distances between similar families can result in values above zero.

Higher IQR values denote a greater degree of similarity dispersion, roughly meaning a greater

degree of rhythmic interaction modalities.

By inspecting the degree of rhythmic similarity per genre, irrespective of each instrumental

family, we are able to aggregate all similarity per full stem genre and apply the non-paired and

non-parametric Mann-Whitney U test. The result p values inform the statistical significance of

4a sample rate of 44.1 kHz is adopted throughout this whole study
5the difference between the 25 th and the 75 th percentiles of the sequence of values
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Figure 3.3: Matrix with the Rhythmic Histograms results in the Pop genre

the central tendency difference between the two sets of similarity values. The same statistical test

is adopted is adopted to understand the impact of time scale in the resulting rhythmic similarity

metrics across the full stem and windowed stem. Ultimately, the results of the latter ought to

inform us of the importance and diversity across multiple hierarchies. To be able to reject the null

hypothesis, the value of p < 0.05 and p < 0.01 are adopted to denote statistically significance and

highly significant significance, respectively.

3.5 Data and results

The statistical analysis across instrumental family per genre produces a large collection of data,

and for that reason we attach this complementary material in appendices B, C, and D.

Across all genres, we first identified typical range values of pairwise similarities, which ought

to characterize the minimum and maximum values of rhythmic compatibility for the RP, RH and

BS similarity. To avoid outliers, minimum and maximum correspond to the 25 th and 75 th per-

centiles, respectively. RP values range from 0.002 (classical genre, between eletric and winds

families) to 3.862 (musical theater. percussion and voices), RH values range from 0.002 (classi-

cal, between electric and winds) to 0.354 (musical-theater, percussion and voices) and BS values
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range from 0.1 (jazz, electric and electric) to 0.881 (classical, percussion and voices).

Beat Spectrum Rhythmic Histogram Rhythmic Patterns
Genre Min. Instr. Max. Instr. Min. Instr. Max. Instr. Min. Instr. Max. Instr.
Classical 0,172 w-w 0,881 p-v 0,002 e-w 0,277 e-p 0.002 e-w 0.538 e-s
Electronic/Fusion 0,287 p-p 0,404 e-e 0,038 p-p 0,345 s-s 0.501 p-p 1.495 e-e
Jazz 0,100 e-e 0,542 p-w 0,023 w-w 0,278 v-w 0.769 e-s 1.268 e-w
Musical 0,172 p-p 0,572 p-v 0,060 s-v 0,354 p-v 1.003 s-v 3.862 p-v
Pop 0,191 s-s 0,541 p-p 0,021 v-v 0,279 v-w 0.381 e-s 0.976 p-p
Rock 0,220 e-s 0,492 s-v 0,098 e-e 0,173 p-v 0.539 e-s 1.522 p-p
Singer/Songwriter 0,222 v-w 0,462 p-v 0,056 v-v 0,254 v-w 0.380 e-w 0.860 p-p
World/Folk 0,128 s-s 0,638 p-p 0,005 v-v 0,195 e-e 0.402 e-e 1.424 p-w

Table 3.1: Scope of rhythmic compatibility between genres, expressed by the minimum and max-
imum median ranges and respective pairwise instrument family for full windowed analysis.

Beat Spectrum Rhythmic Histogram Rhythmic Patterns
Genre Min. Instr. Max. Instr. Min. Instr. Max. Instr. Min. Instr. Max. Instr.
Classical 0.178 p-p 0.448 e-e 0.032 e-e 0.260 e-p 0.011 e-e 0.721 e-s
Electronic/Fusion 0.310 p-p 0.403 p-s 0.153 p-p 0.353 s-s 1.006 s-s 2.164 p-s
Jazz 0.186 s-s 0.536 p-w 0.066 s-s 0.231 p-w 1.074 s-v 1.697 e-p
Musical 0.121 v-v 0.501 p-v 0.152 p-p 0.464 p-v 1.719 s-v 4.441 p-v
Pop 0.125 s-s 0.476 p-p 0.067 v-v 0.261 e-w 0.552 s-w 1.100 v-w
Rock 0.082 e-s 0.395 p-p 0.055 v-v 0.250 p-v 0.799 e-s 1.746 p-s
Singer/Songwriter 0.117 e-e 0.430 p-p 0.121 v-v 0.242 p-v 0.612 e-e 1.166 w-w
World/Folk 0.074 v-v 0.592 p-w 0.032 v-v 0.253 p-w 0.456 e-w 2.033 p-w

Table 3.2: Scope of rhythmic compatibility between genres, expressed by the minimum and max-
imum median ranges and respective pairwise instrument family for windowed stems analysis

Beat Spectrum Rhythmic Histogram Rhythmic Patterns
Genre Min. Instr. Max. Instr. Min. Instr. Max. Instr. Min. Instr. Max. Instr.
Classical 0.020 p-v 0.482 p-p 0.045 e-e 0.403 e-p 0.015 e-p 0.765 p-w
Electronic/Fusion 0.034 s-w 0.307 e-e 0.056 p-s 0.248 e-e 0.089 p-w 1.177 e-w
Jazz 0.062 e-e 0.284 w-w 0.018 w-w 0.266 s-s 0.187 w-w 0.779 s-s
Musical 0.087 s-v 0.188 e-p 0.087 e-e 0.229 e-p 0.172 p-v 0.963 e-v
Pop 0.035 v-w 0.350 e-e 0.025 s-s 0.190 e-e 0.245 s-s 0.897 e-p
Rock 0.160 v-v 0.333 e-p 0.093 p-s 0.227 s-v 0.202 e-s 1.495 e-p
Singer/Songwriter 0.002 w-w 0.536 p-w 0.028 w-w 0.316 v-w 0.197 w-w 0.832 v-v
World/Folk 0.031 v-v 0.600 e-p 0.002 v-v 0.224 e-e 0.133 v-v 1.509 s-w

Table 3.3: Scope of rhythmic compatibility between genres, expressed by the minimum and max-
imum inter-quartile ranges and respective pairwise instrument family for full windowed analysis

In the upper median range, the percussive instruments family takes the center stage appearing

in most of the pairwise comparisons between the remaining instrumental families. On the contrary,

in the lower median range, we predominantly find electric, strings, and voice families. The IQR

results from the BS analysis from the BS analysis reveal more dispersion across all genres by the

percussion and electric families, whilst voices, winds, and strings are predominantly towards the

lower range. The RP and RH results show greater variance in IQR than BS.
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Beat Spectrum Rhythmic Histogram Rhythmic Patterns
Genre Min. Instr. Max. Instr. Min. Instr. Max. Instr. Min. Instr. Max. Instr.
Classical 0.250 s-v 0.415 e-w 0.180 p-v 0.478 e-p 0.462 p-v 1.290 e-s
Electronic/Fusion 0.174 s-s 0.307 p-p 0.128 p-p 0.244 s-s 0.239 s-s 1.549 e-e
Jazz 0.153 p-v 0.310 p-s 0.059 e-s 0.254 v-w 0.502 e-e 1.260 p-v
Musical 0.095 p-p 0.269 s-v 0.079 v-v 0.278 e-p 0.261 p-p 1.692 v-v
Pop 0.220 s-s 0.493 s-w 0.175 v-w 0.300 s-w 0.291 s-s 1.956 p-w
Rock 0.196 e-s 0.418 s-v 0.130 p-s 0.247 v-v 0.431 e-s 1.640 v-v
Singer/Songwriter 0.218 e-e 0.480 p-w 0.096 s-s 0.312 v-w 0.542 e-e 1.505 v-w
World/Folk 0.120 s-s 0.524 e-e 0.021 v-v 0.345 e-w 0.265 v-v 1.967 p-p

Table 3.4: Scope of rhythmic compatibility between genres, expressed by the minimum and max-
imum inter-quartile ranges and respective pairwise instrument family for windowed stem analysis

Tables 3.1, 3.2, 3.3 and 3.4 summarize the minimum and maximum median and inter-quartile

range values, respectively, per full or windowed analysis, and also per genre.

Figures 3.4, 3.5 and 3.6 show the statistical significance (p values from the Mann-Whitney U

test) for genre and time scale comparisons. A single (*) and double (**) asterisk symbol denote

statistical significance and highly statistical significance. From the resulting analysis, we verify

that RH can better discriminate genres using rhythmic patterns from pairwise stem differences,

as it presents highly statistical significant results for most paired genres. Overall, the time scale

analysis between full and windowed stems result in statistical significant across all pairwise com-

parisons. Therefore, the time scale in rhythmic similarity implies important differences in the

analysis.

It’s important to demark the fact that for RH and BS, the cosine distance is adopted, and no

magnitude differences are considered. Two noticeable exceptions occur for the Musical and Rock

genres in the RH and BS, respectively.

The first steps taken during this data analysis are important towards the understanding of rhyth-

mic compatibility from the empirical data generated. Typical rhythmic compatibility values lie in

the [0.002, 0.354] range for Rhythmic Histograms, [0.002, 3.862] for Rhythmic Patterns and [0.1,

0.881] for Beat Spectrum.

We are able to verify that RH outperforms both RP and BS in discriminating genres and that

rhythmic compatibility using RP, RH and BS distances is statistically significant for different time

scale analysis (full song and short windows).
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Figure 3.4: Statistical significance between a) RP, b) RH and c) BS full-stem analysis for pairwise
genre rhythmic similarity. Color indicates the p value and a single (*) and double (**) asterisk
symbols denote statistic significance and highly statistical significance.
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Figure 3.5: Statistical significance between a) RP, b) RH and c) BS windowed stem analysis for
pairwise genre rhythmic similarity. Color indicates the p value and a single (*) and double (**)
asterisk symbols denote statistic significance and highly statistical significance.
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Figure 3.6: Statistical significance between a) RP, b) RH and c) BS time scale analysis (full versus
windowed) and genre. Full-stem are in the horizontal axis and windowed in the vertical axis. Color
indicates the p value and a single (*) and double (**) asterisk symbols denote statistic significance
and highly statistical significance.



Chapter 4

Mapping rhythmic information in a 2D
topology space

In this section, we are going to explore the prototype developed for mapping rhythmic informa-

tion in a two-dimensional space. The main overview of the prototype’s workflow is as described in

Figure 4.1. We start by feeding the application audio loop databases, which then get the RH com-

puted for all the audio files included in it. Finally, the RH data is visualized in a two-dimensional

plot provided by the UMAP dimension reduction algorithm.

Compute RH for all
audio files

Multiple audio
loop databases UMAP visualization

Figure 4.1: Overview of the developed prototype.

4.1 Prototype for rhythmic compatibility retrieval

Our prototype was developed in a Python environment to take use of plotting and visualization

libraries such as Matplotlib and UMAP, respectively.

The prototype initiates by opening a window where the user can drag-and-drop first-level

directories and audio files, as seen in Figure 4.2. When prompted, the prototype will go through

all the directories and files added to the list, to try and find all the WAV audio files available. Only

WAV files are selected since it is the only audio formatted accepted by the REPET library [60].
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Figure 4.2: Prototype UI where the user can drag and drop folders and files containing audio loops.

Based on the conclusions reached in Chapter 3 and its 24 dimensions 1, we decided to only

use the RH metric for the two-dimensional visual representation of databases.

For our prototypes tests, we used the following audio loop databases:

1. Harmonic C is a database composed of various instrumental loops in the key of C. The loops

fall under different BPM and can run from orchestral synth stabs to a retro synth arpeggio.

2. Drums is composed of simple and complex rhythmic drum loops playing at 120BPM 2

3. Samples is an assorted library composed by instrumental loops in different keyes and BPM

In all the databases mentioned, the loops are very short, where the longest loop can time at

around 15 seconds. The databases audio loop sizes are 202, 170 and 33 loops respectively.

For each loop, the Rhythmic Histograms are calculated and stored in an array that is given as

input data. Besides the data, UMAP also receives four parameters [49]:

1. n_neighbors, controls the way the algorithm balances local data structure versus global data

structure, by constraining the size of the neighborhood UMAP will look at when detecting

data patterns.

2. min_dist, will effect how tight can nearby points be packed together, and the minimum

threshold distance set for that effect. Lower values on this parameter will lead to the creation

of more clusters.

3. n_components allows to user to select the dimension space of the reduction algorithm.

1The 24 dimensions of the RH are already reduced from the RP’s 24x60 matrix
2corresponding to a frequency of 2Hz
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4. metric, the last parameter is to set the distance metric will be using when analysing the

provided data. UMAP allows a variety of distance metrics such as euclidean, manhattan,

cosine, correlation, and hamming.

For our data, we did some experiences and found the following parameter values to give the

best results:

n_neighbors = 10,min_dist = 0.01,n_components = 2,metric = cosine

.

Figures 4.3, 4.4, 4.5, and 4.6 present results given by the UMAP algorithm when given

different combinations of audio loop databases. In Figure 4.3, we added a dotted circle to represent

the typical rhythmic distances as discovered in Chapter 3. Dots representing individual audio loops

inside a circle would be perceived as rhythmic compatible.

4.2 Topological visualisation

After the prototype was ready, we were able to start testing using the three databases mentioned in

Section 4.1. We decided to use four different combinations of input data to help differentiate and

understand the results given by UMAP.

The first combination was using all the three databases (harmonic, drums, and samples) and

the results can be seen in Figure 4.3. By analysing the image, we cannot detect immediate clusters

appearing, besides the fuzzy cluster showing up at the bottom of the plot.

In Figure 4.4, we remove the Samples database, which could have been adding noise to the

other two databases, for the fact that it is composed of miscellaneous audio loops not in any

particular key or BPM. The results given by UMAP start showing in fact more detailed clusters,

but still unorganized and fuzzy.

It is only when we isolate the databases, harmonic and drums, in Figures 4.5 and 4.6 respec-

tively, when we can detect in fact more clearer and defined clusters.

Figure 4.5 shows the results for the Harmonic database only, and as we can confirm by looking

at the plot, isolating the audio samples to a specific source does in fact give better results. The

clusters for the harmonic loops are much more detailed than the previous two figures (4.3 and 4.4)

and even though the clusters may appear a bit fuzzy, we can start retrieving rhythmic patterns just

by looking at the plot.

Finally, Figure 4.6, displaying the results for the drums database, gives out the best results. We

can detect fully clear and well defined clusters throughout the whole plot, without any noticeable

presence of noise.

The results for the Samples database were not presented here due to the small size of it. By

analysing the figures, we can reach the conclusion that UMAP visualization results are clearer

when the databases given as input are isolated.
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Figure 4.3: UMAP results for all databases (harmonic, drums and samples)

Figure 4.4: UMAP results for harmonic and drums databases
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Figure 4.5: UMAP results for harmonic database

Figure 4.6: UMAP results for drums database
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Chapter 5

Conclusions

5.1 Summary

In this dissertation, we present a prototype for the visualization and navigation of multidimensional

rhythmic data in a two-dimensional topology space.

This application was developed using the conclusions reached in Chapter 3 by analysing the

MedleyDB database and understanding common rhythmic distances in mainstream genres.

This prototype will serve as the base work for a more complex plugin which we will describe

in Section 5.3.

5.2 Contributions

To be able to achieve the work developed throughout this dissertation, the main contributions are

as follows:

• MedleyDB is a multi-track dataset of songs performed by professional musicians. It was a

fundamental resource for the progress of this dissertation, as its annotated database helped

understand normal rhythmic distances in mainstream genres.

• REpeating Pattern Extraction Technique (REPET), a simple and fast Python library for ex-

tracting the repeating background from the non-repeating foreground in an audio mix. While

this is the main purpose of this library, we only used the function that computes the Beat

Spectrum (BS) on an audio file.

• Rhythm Pattern music feature extractor Python library to extract semantic features from

audio files. We used the Rhythmic Patterns (RP) and Rhythmic Histograms (RH) extractor

functions, and the plot functions for both RP and RH.
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• Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP-Learn)

is a Python library that takes advantege of the UMAP algorithm. We use UMAP-Learn on

the development phase of our prototype to cluster and visualize the RH data from the user’s

audio loop databases.

5.3 Future Work

The work developed throughout this dissertation is intended to be ground zero for a variety of

applications intended to be used for creative output. The main idea would be the creation of a Max

for Live device 1(Figure 5.1) for direct interaction with the Ableton Live DAW.

Using this plugin, artists and producers could interact directly with their personal audio loop

databases without leaving the production environment they are already familiarized with.

With the Max for Live device ready, this could be further exported into other DAWs such as

Logic Pro and ProTools, by turning the plugin into a VST, in order to be compatible with every

DAW available.

1A Max 4 Live device is a plugin developed in the Cycling Max environment and is exclusively compatible with
Ableton Live
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Figure 5.1: Example Max for Live device interacting with Ableton Live. [1]
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Appendix A

Code

1 import numpy as np

2 import scipy

3 import repet

4 import rp

5 import rp_plot

6 import os

7 import yaml

8 import matplotlib.pyplot as plt

9 import matplotlib.ticker as tckr

10 from matplotlib.ticker import StrMethodFormatter

11 import csv

12 import glob

13 import plotly.graph_objects as go

14 import plotly.offline as pyo

15 import umap.umap_ as umap

16 import umap as umap_plt

17 import sys, os

18 from PyQt5.QtWidgets import QApplication, QMainWindow, QListWidget, QListWidgetItem

, QPushButton

19 from PyQt5.QtCore import Qt, QUrl

20

21 MEDLEY_DB = ’~/Desktop/MedleyDB/’

22 AUDIO = ’Audio/’

23 METADATA = ’Metadata/’

24 SAMPLES = ’Samples/’

25 DATA = ’Data/’

26 FEATURES = ’Features/’

27 DISTANCES = ’Distances/’

28 HEATMAPS = ’Heat Maps/’

29 CSVs = ’CSVs/’

30 MATRICES = ’Matrices/’

31 SORTED = ’Sorted/’

32 NPZ = ’.npz’

47
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33 PNG = ’.png’

34 CSV = ’.csv’

35 TXT = ’.txt’

36 TAXONOMY = ’taxonomy.yaml’

37 SAMPLING_WINDOW = pow(2,18)

38 FAMILIES = [’electric’, ’percussion’, ’strings’, ’voices’, ’winds’]

39 GENRES = [’Classical’, ’Electronic/Fusion’, ’Jazz’, ’Musical Theatre’, ’Pop’, ’Rap’

, ’Rock’, ’Singer/Songwriter’, ’World/

Folk’]

40 RP = ’rp’

41 RH = ’rh’

42 BS = ’bs’

43 FULL = ’full’

44 WINDOW = ’window’

45 IQR = ’iqr’

46 MEDIAN = ’median’

47

48 def get_songs(genre):

49 ’’’

50 Gets list of songs in MedleyDB database

51 Returns:

52 list (arr): List of MedleyDB’s songs

53 ’’’

54

55 list = os.listdir(os.path.expanduser(f’{MEDLEY_DB}{AUDIO}’))

56 list = [song for song in list if os.path.isdir(os.path.expanduser(f’{MEDLEY_DB}

{AUDIO}{song}’))]

57 list = [song for song in list if get_song_genre(song) == genre]

58 list = sorted(list)

59

60 return list

61

62 def get_metadata_location(song):

63 ’’’

64 Gets the absolute path of a song’s metadata file

65 Parameters:

66 song (str): Song title

67 Returns:

68 path (str): Absolute path of the song’s metadata file

69 ’’’

70

71 path = os.path.expanduser(f’{MEDLEY_DB}{METADATA}{song}_METADATA.yaml’)

72

73 return path

74

75 def get_stem_location(song, stem):

76 ’’’

77 Gets the absolute path of a stem’s wav file from a specific song

78 Parameters:
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79 song (str): Song title

80 stem (int): Stem number

81 Returns:

82 path (str): Absolute path of the stem from a song

83 ’’’

84

85 path = os.path.expanduser(f’{MEDLEY_DB}{AUDIO}{song}/{song}_STEMS/{song}_STEM_{

stem:02d}.wav’)

86

87 return path

88

89 def get_song_metadata(song):

90 ’’’

91 Gets the song’s complete metadata

92 Parameters:

93 song (str): Song title

94 Returns:

95 data (arr): Complete metadata

96 ’’’

97

98 with open(get_metadata_location(song), ’r’) as stream:

99 try:

100 data = yaml.safe_load(stream)

101 except yaml.YAMLError as exc:

102 print(exc)

103

104 return data

105

106 def get_song_genre(song):

107 ’’’

108 Gets the song’s genre

109 Parameters:

110 song (str): Song title

111 Returns:

112 genre (str): Song genre

113 ’’’

114

115 metadata = get_song_metadata(song)

116 genre = metadata[’genre’]

117

118 return genre

119

120 def get_stem_instrument(metadata, stem):

121 ’’’

122 Gets the instrument of a stem

123 Parameters:

124 metadata (array): Song metadata

125 stem (int): Stem number

126 Returns:
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127 instrument (int): Stem’s instrument

128 ’’’

129

130 if not isinstance(metadata[’stems’][f’S{stem:02d}’][’instrument’], list):

131 instrument = metadata[’stems’][f’S{stem:02d}’][’instrument’]

132 else:

133 instrument = metadata[’stems’][f’S{stem:02d}’][’instrument’][0]

134

135 return instrument

136

137 def get_stems_array(metadata):

138 ’’’

139 Gets a boolean array that excludes stems that should not be analysed (Main

System and Unlabeled)

140 Parameters:

141 metadata (array): Song metadata

142 Returns:

143 stems (array): Boolean stem array

144 ’’’

145

146 stems = []

147

148 for i in range(len(metadata[’stems’])):

149 instrument = get_stem_instrument(metadata, i+1)

150

151 if instrument != ’Main System’ and instrument != ’Unlabeled’:

152 stems.append(False)

153 else:

154 stems.append(True)

155

156 return stems

157

158 def get_stem_number(stems_array, stem_index):

159 ’’’

160 Corrects the index of a stem by skipping over the Main System and Unlabeled

stems

161 Parameters:

162 stems_array (array): Boolean stems array

163 stem_index (int): Current stem index

164 Returns:

165 stem_number (int): New stem number

166 ’’’

167

168 stem_number = [i for i, n in enumerate(stems_array) if n == False][stem_index]

+ 1

169

170 return stem_number

171

172 def load_stems(song, metadata):
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173 ’’’

174 Loads the stem files of a song

175 Parameters:

176 song (str): Song title

177 metadata (array): Song metadata

178 Returns:

179 audio_signals (arr): Array with the audio signals of the song’s

stems

180 sampling_frequencies (arr): Array with the sampling frequencies of

the song’s stems

181 ’’’

182

183 audio_signals, sampling_frequencies = [], []

184

185 for i in range(len(metadata[’stems’])):

186 instrument = get_stem_instrument(metadata, i+1)

187

188 if instrument != ’Main System’ and instrument != ’Unlabeled’:

189 audio_signal, sampling_frequency = repet.wavread(get_stem_location(song

, i+1))

190 audio_signals.append(audio_signal)

191 sampling_frequencies.append(sampling_frequency)

192

193 return audio_signals, sampling_frequencies

194

195 def get_instruments_family():

196 ’’’

197 Creates a dictionary that returns an instruments family when called (e.g.

taxonomy[’kick drum’] = ’

percussion’)

198 Returns:

199 taxonomy (dict): MedleyDB taxonomy dictionary

200 ’’’

201

202 with open(os.path.expanduser(f’{MEDLEY_DB}{TAXONOMY}’), ’r’) as stream:

203 try:

204 data = yaml.safe_load(stream)

205 except yaml.YAMLError as exc:

206 print(exc)

207

208 taxonomy = {}

209

210 for i in data:

211 for j in data[i]:

212 taxonomy[j] = i

213

214 return taxonomy

215

216 def calculate_rp_rh(audio_signals, sampling_frequencies):
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217 ’’’

218 Calculates Rhythmic Patterns and Rhythmic Histogram for a song

219 Parameters:

220 audio_signals (arr): Array with the audio signals of the song’s

stems

221 sampling_frequencies (arr): Array with the sampling frequencies of

the song’s stems

222 Returns:

223 rhythmic_patterns_histogram (arr): Array with the calculated

Rhythmic Patterns and

Rhythmic Histogram

224 ’’’

225

226 rhythmic_patterns_histogram = []

227

228 for audio_signal, sampling_frequency in zip(audio_signals, sampling_frequencies

):

229 rhythmic_patterns_histogram.append(rp.rp_extract(audio_signal,

sampling_frequency, extract_rp =

True, extract_rh = True))

230

231 return rhythmic_patterns_histogram

232

233 def calculate_bs(audio_signals, sampling_frequencies):

234 ’’’

235 Calculates Beat spectrum for a song

236 Parameters:

237 audio_signals (arr): Array with the audio signals of the song’s

stems

238 sampling_frequencies (arr): Array with the sampling frequencies of

the song’s stems

239 Returns:

240 beat_spectrum (arr): Array with the calculated Beat Spectrum

241 ’’’

242

243 beat_spectrum = []

244

245 for audio_signal, sampling_frequency in zip(audio_signals, sampling_frequencies

):

246 beat_spectrum.append(beat_spectrum_fx(audio_signal, sampling_frequency))

247

248 return beat_spectrum

249

250 def plot_bs(beat_spectrum):

251 ’’’

252 Plots the beat spectrum

253 Parameters:

254 beat_spectrum (arr): Beat spectrum array

255 ’’’
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256

257 xrange = range(0, beat_spectrum.shape[0])

258 plt.plot(xrange, beat_spectrum)

259 # plot_index = range(0, int(beat_spectrum.shape[0]/44100), 60)

260 # plot_base = np.array(plot_index)

261 # bpm = np.around(plot_base * 60, 0).astype(int) # integer for legend

262 # plt.xticks(plot_index, bpm)

263 plt.ylabel(’Beat spectrum’)

264 plt.xlabel(’time [s]’)

265 plt.show()

266 return

267

268 def plot_rp(rp):

269 ’’’

270 Plots the rhythmic patterns

271 Parameters:

272 rp (arr): Rhythmic Patterns array

273 ’’’

274

275 rp_plot.plotrp(rp)

276 return

277

278 def plot_rh(rh):

279 ’’’

280 Plots the rhythmic histogram

281 Parameters:

282 rh (arr): Rhythmic Histogram array

283 ’’’

284

285 rp_plot.plotrh(rh, False)

286 return

287

288 def beat_spectrum_fx(audio_signal, sampling_frequency):

289 ’’’

290 Calculates the beat spectrum of an audio file

291 Parameters:

292 audio_signal (int): Audio signal of the wav file

293 sampling_frequency (int): Sampling frequency of the wav file

294 Returns:

295 beat_spectrum (arr): Beat spectrum of the audio file

296 ’’’

297

298 # get the number of samples and channels in the audio signal

299 number_samples, number_channels = np.shape(audio_signal)

300

301 # set STFT parameters

302 stft_ms = 0.04

303 stft_pow = 2
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304 window_length = pow(stft_pow, int(np.ceil(np.log2(stft_ms * sampling_frequency)

)))

305 window_function = scipy.signal.hamming(window_length, sym=False)

306 step_length = int(window_length / 2)

307

308 # derive the number of time frames

309 number_times = (int(np.ceil(((number_samples + 2 * int(np.floor(window_length /

2))) - window_length) / step_length)

) + 1)

310

311 # initialize the STFT

312 audio_stft = np.zeros((window_length, number_times, number_channels), dtype=

complex)

313

314 # loop over the channels from the signal

315 for i in range(number_channels):

316 # compute the STFT of the current channel

317 audio_stft[:, :, i] = repet._stft(audio_signal[:, i], window_function,

step_length)

318

319 # derive the magnitude spectrogram with the DC component and without the

mirrored frequencies

320 audio_spectrogram = abs(audio_stft[0 : int(window_length / 2) + 1, :, :])

321

322 # compute the beat spectrum of the spectrograms averaged over the channels

323 beat_spectrum = repet._beatspectrum(np.power(np.mean(audio_spectrogram, axis=2)

, 2))

324

325 return beat_spectrum

326

327 def save_features(song, rhythmic_patterns_histogram, beat_spectrum, window_number =

None):

328 ’’’

329 Saves features data (rp, rh, bs)

330 Parameters:

331 song (str): Song title

332 rhythmic_patterns_histogram (array): RP and RH array

333 beat_spectrum (array): BS array

334 window_number (int): Window slice index

335

336 ’’’

337

338 if not os.path.exists(os.path.expanduser(f’{MEDLEY_DB}{DATA}’)):

339 os.makedirs(os.path.expanduser(f’{MEDLEY_DB}{DATA}’))

340

341 if not os.path.exists(os.path.expanduser(f’{MEDLEY_DB}{DATA}{FEATURES}’)):

342 os.makedirs(os.path.expanduser(f’{MEDLEY_DB}{DATA}{FEATURES}’))

343
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344 if not os.path.exists(os.path.expanduser(f’{MEDLEY_DB}{DATA}{FEATURES}{song}’))

:

345 os.makedirs(os.path.expanduser(f’{MEDLEY_DB}{DATA}{FEATURES}{song}’))

346

347 np.savez_compressed(os.path.expanduser(f’{MEDLEY_DB}{DATA}{FEATURES}{song}/{

song}{"" if window_number is None

else "_" + str(window_number+1)}’),

348 rp_rh_array = np.array(rhythmic_patterns_histogram, dtype="object"),

349 bs_array = np.array(beat_spectrum, dtype="object")

350 )

351

352 return

353

354 def save_distances(genre, rp_full_distances, rp_window_distances, rh_full_distances

, rh_window_distances, bs_full_distances,

bs_window_distances):

355 ’’’

356 Saves genres distance data (rp_full, rh_window, rh_full, rh_window, bs_full

, bs_window)

357 Parameters:

358 genre (str): Genre

359 rp_full_distances (array): Calculated RP full distances

360 rp_window_distances (array): Calculated RP window distances

361 rh_full_distances (array): Calculated RH full distances

362 rh_window_distances (array): Calculated RH window distances

363 bs_full_distances (array): Calculated BS full distances

364 bs_window_distances (array): Calculated BS window distances

365

366 ’’’

367

368 if not os.path.exists(os.path.expanduser(f’{MEDLEY_DB}{DATA}’)):

369 os.makedirs(os.path.expanduser(f’{MEDLEY_DB}{DATA}’))

370

371 if not os.path.exists(os.path.expanduser(f’{MEDLEY_DB}{DATA}{DISTANCES}’)):

372 os.makedirs(os.path.expanduser(f’{MEDLEY_DB}{DATA}{DISTANCES}’))

373

374 np.savez_compressed(os.path.expanduser(f’{MEDLEY_DB}{DATA}{DISTANCES}{genre.

replace("/", "_")}’),

375 rp_full_array = np.array(rp_full_distances, dtype="object"),

376 rp_window_array = np.array(rp_window_distances, dtype="object"),

377 rh_full_array = np.array(rh_full_distances, dtype="object"),

378 rh_window_array = np.array(rh_window_distances, dtype="object"),

379 bs_full_array = np.array(bs_full_distances, dtype="object"),

380 bs_window_array = np.array(bs_window_distances, dtype="object"),

381 )

382

383 return

384

385 def analyse_genre(genre):



56 Code

386 ’’’

387 Analyses features for songs of a genre

388 Parameters:

389 genre (str): Genre name

390 ’’’

391

392 songs = get_songs(genre)

393

394 print(f’Analysing {genre} songs’)

395

396 for song in songs:

397 analyse_song(song)

398

399 return

400

401 def analyse_song(song):

402 ’’’

403 Analyses features for one song (full and window)

404 Parameters:

405 song (str): Song title

406 ’’’

407

408 metadata = get_song_metadata(song)

409 audio_signals, sampling_frequencies = load_stems(song, metadata)

410

411 print(f’Analysing {song}’)

412

413 # Analyse full song

414

415 print(f’Analysing full song’)

416 analyse(song, audio_signals, sampling_frequencies)

417

418 # Analyse windows

419

420 parts = int(np.shape(audio_signals)[1]/SAMPLING_WINDOW)

421 audio_signals = np.array(audio_signals)

422

423 for window_number in range(parts):

424 print(f’Analysing window {window_number+1}/{parts}’)

425 analyse(song, audio_signals, sampling_frequencies, window_number)

426

427 return

428

429 def analyse(song, audio_signals, sampling_frequencies, window_number = None):

430 ’’’

431 Analyses features (rp, rh, bs) of audio signals

432 Parameters:

433 song (str): Song title

434 audio_signals (array): Audio signals of a song
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435 sampling_frequencies (array): Sampling frequencies of a song

436 window_number (int): Window slice index

437 ’’’

438

439 if window_number is not None:

440 audio_signals = audio_signals[0:, SAMPLING_WINDOW*window_number:

SAMPLING_WINDOW*(window_number+1)

, 0:]

441

442 rhythmic_patterns_histogram = calculate_rp_rh(audio_signals,

sampling_frequencies)

443 beat_spectrum = calculate_bs(audio_signals, sampling_frequencies)

444

445 save_features(song, rhythmic_patterns_histogram, beat_spectrum, window_number)

446

447 return

448

449 def calculate_genre_distances(genre):

450 ’’’

451 Calculate distances for songs of a genre

452 Parameters:

453 genre (str): Genre name

454 ’’’

455

456 songs = get_songs(genre)

457 taxonomy = get_instruments_family()

458

459 rp_full_distances, rp_window_distances = create_empty_nested_list(5),

create_empty_nested_list(5)

460 rh_full_distances, rh_window_distances = create_empty_nested_list(5),

create_empty_nested_list(5)

461 bs_full_distances, bs_window_distances = create_empty_nested_list(5),

create_empty_nested_list(5)

462

463 print(f’Calculating {genre} distances’)

464

465 for song in songs:

466 metadata = get_song_metadata(song)

467 stems_array = get_stems_array(metadata)

468 number_stems = stems_array.count(False)

469

470 print(f’Calculating {song} distances’)

471

472 # Calculate full song

473

474 print(f’Calculating full song distances’)

475

476 loaded = np.load(os.path.expanduser(f’{MEDLEY_DB}{DATA}{FEATURES}{song}/{

song}{NPZ}’), allow_pickle=True)
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477

478 for i in range(number_stems):

479 if i + 1 == number_stems:

480 break

481

482 for j in range(i+1, number_stems):

483 index1, index2 = get_matrix_indexes(metadata, stems_array, taxonomy

, i, j)

484

485 rp_full_distances[index1][index2].append(scipy.spatial.distance.

euclidean(loaded[’

rp_rh_array’][i][’rp’],

loaded[’rp_rh_array’][j][

’rp’]))

486 rh_full_distances[index1][index2].append(scipy.spatial.distance.

cosine(loaded[’

rp_rh_array’][i][’rh’],

loaded[’rp_rh_array’][j][

’rh’]))

487 bs_full_distances[index1][index2].append(scipy.spatial.distance.

cosine(loaded[’bs_array’]

[i], loaded[’bs_array’][j

]))

488

489 # Calculate windows

490

491 parts = len(glob.glob(os.path.expanduser(f’{MEDLEY_DB}{DATA}{FEATURES}{song

}/{song}_*{NPZ}’)))

492

493 for window_number in range(parts):

494 print(f’Calculating window {window_number+1}/{parts} distances’)

495

496 loaded = np.load(os.path.expanduser(f’{MEDLEY_DB}{DATA}{FEATURES}{song}

/{song}_{window_number+1}{NPZ

}’), allow_pickle=True)

497

498 for i in range(number_stems):

499 if i + 1 == number_stems:

500 break

501

502 for j in range(i+1, number_stems):

503 index1, index2 = get_matrix_indexes(metadata, stems_array,

taxonomy, i, j)

504

505 rp_window_distances[index1][index2].append(scipy.spatial.

distance.euclidean(

loaded[’rp_rh_array’]

[i][’rp’], loaded[’
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rp_rh_array’][j][’rp’

]))

506 rh_window_distances[index1][index2].append(scipy.spatial.

distance.cosine(

loaded[’rp_rh_array’]

[i][’rh’], loaded[’

rp_rh_array’][j][’rh’

]))

507 bs_window_distances[index1][index2].append(scipy.spatial.

distance.cosine(

loaded[’bs_array’][i]

, loaded[’bs_array’][

j]))

508

509 save_distances(genre, rp_full_distances, rp_window_distances, rh_full_distances

, rh_window_distances,

bs_full_distances,

bs_window_distances)

510

511 return

512

513 def generate_family_distances_heatmap(genre, feature, show, saveImage, saveCSV):

514 ’’’

515 Creates distance heatmaps by instrumentation

516 Parameters:

517 genre (str): Genre name

518 feature (str): Feature (RP, RH, BS) name

519 show (boolean): Show plot

520 saveImage (boolean): Save plot as an image

521 saveCSV (boolean): Save matrix as a CSV

522 ’’’

523

524 loaded = np.load(os.path.expanduser(f’{MEDLEY_DB}{DATA}{DISTANCES}{genre.

replace("/", "_")}{NPZ}’),

allow_pickle=True)

525

526 full_iqr, full_median = calculate_stat([[[k for k in j if k == k]for j in i]

for i in loaded[f’{feature}

_full_array’]])

527 window_iqr, window_median = calculate_stat([[[k for k in j if k == k]for j in i

] for i in loaded[f’{feature}

_window_array’]])

528

529 results = [[full_iqr, full_median], [window_iqr, window_median]]

530

531 if show or saveImage:

532 plt.rc(’figure’, figsize=(13, 10))

533

534 fig, axs = plt.subplots(2, 2)
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535 fig.suptitle(f’{genre} ({feature})’, fontsize=16)

536

537 for window_index, window_size in enumerate([’Full’, ’Window’]):

538 for stat_index, stat in enumerate([’IQR’, ’Median’]):

539

540 im, cbar = create_heatmap(np.array(results[window_index][stat_index

]), FAMILIES, FAMILIES,

axs[stat_index,

window_index], cmap="YlGn

", cbarlabel=f’{

window_size}: {genre}_{

feature}_{stat}’)

541

542 texts = annotate_heatmap(im, valfmt="{x:.4f} t")

543

544 axs[0,0].set(ylabel=’IQR’)

545 axs[1,0].set(xlabel=’FULL’, ylabel=’MEDIAN’)

546 axs[1,1].set(xlabel=’WINDOW’)

547

548 if show:

549 plt.show()

550

551 if saveImage:

552 plt.savefig(os.path.expanduser(f’{MEDLEY_DB}{DATA}{HEATMAPS}{genre.replace

("/", "_")}_{feature}{PNG}’))

553

554 if saveCSV:

555 for window_index, window_size in enumerate([’full’, ’window’]):

556 for stat_index, stat in enumerate([’iqr’, ’median’]):

557 with open(os.path.expanduser(f’{MEDLEY_DB}{DATA}{HEATMAPS}{genre.

replace("/", "_")}_{

feature}_{window_size}_{

stat}{CSV}’), ’w’,

newline=’’) as file:

558 current = results[window_index][stat_index]

559 writer = csv.writer(file)

560 writer.writerow([’x’, ’electric’, ’percussion’, ’strings’, ’

voices’, ’winds’])

561 writer.writerow([’electric’, current[0][0], current[0][1],

current[0][2],

current[0][3],

current[0][4]])

562 writer.writerow([’percussion’, None, current[1][1], current[1][

2], current[1][3],

current[1][4]])

563 writer.writerow([’strings’, None, None, current[2][2], current[

2][3], current[2][4]]

)



Code 61

564 writer.writerow([’voices’, None, None, None, current[3][3],

current[3][4]])

565 writer.writerow([’winds’, None, None, None, None, current[4][4]

])

566

567 return

568

569 def calculate_stat(matrix):

570 ’’’

571 Calculates iqr and median for a matrix

572 Parameters:

573 matrix (arr): Distance matrix

574 Returns:

575 iqr (arr): IQR matrix

576 iqr (arr): Median matrix

577 ’’’

578

579 iqr = [[0 for _ in range(5)] for i in range(5)]

580 median = [[0 for _ in range(5)] for i in range(5)]

581

582 for i in range(5):

583

584 for j in range(i, 5):

585 iqr[i][j] = scipy.stats.iqr(matrix[i][j-i])

586 median[i][j] = np.median(matrix[i][j-i])

587

588 iqr = mirror_matrix(iqr)

589 median = mirror_matrix(median)

590

591 return iqr, median

592

593 def mirror_matrix(matrix):

594 ’’’

595 Mirrors upper triangle to the lower triangle of the matrix

596 Parameters:

597 matrix (arr): Distance matrix

598 Returns:

599 iqr (arr): Mirrored matrix

600 ’’’

601

602 matrix_size = len(matrix)

603 mirror = matrix

604

605 for i in range(matrix_size):

606 if i + 1 == matrix_size:

607 break

608

609 for j in range(i+1, matrix_size):

610 mirror[j][i] = mirror[i][j]
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611

612 return mirror

613

614 def get_matrix_indexes(metadata, stems_array, taxonomy, i, j):

615 ’’’

616 Gets the first and second index for the distances by instrumentation matrix

of two different stems

617 Parameters:

618 metadata (arr): Song metadata

619 stems_array (arr): Stems boolean array

620 taxonomy (dict): MedleyDB taxonomy dictionary

621 i (int): stem 1 index

622 j (int): stem 2 index

623 Returns:

624 index1 (int): stem 1 matrix index

625 index2 (int): stem 2 matrix index

626 ’’’

627

628 stem1 = get_stem_number(stems_array, i)

629 stem2 = get_stem_number(stems_array, j)

630

631 family1 = taxonomy[get_stem_instrument(metadata, stem1)]

632 family2 = taxonomy[get_stem_instrument(metadata, stem2)]

633

634 index1 = FAMILIES.index(min(family1, family2))

635 index2 = FAMILIES.index(max(family1, family2)) - index1

636

637 return index1, index2

638

639 def create_empty_nested_list(size):

640 ’’’

641 Creates a empty nested list of size size x size

642 Parameters:

643 size (int): List size

644 Returns:

645 list (arr): Created nested list

646 ’’’

647

648 list = [[] for _ in range(size)]

649

650 for i in range(size):

651 list[i] = [[] for _ in range(size-i)]

652

653 return list

654

655 def create_heatmap(data, row_labels, col_labels, ax=None,

656 cbar_kw={}, cbarlabel="", **kwargs):

657 """

658 Create a heatmap from a numpy array and two lists of labels.
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659 Parameters

660 ----------

661 data

662 A 2D numpy array of shape (N, M).

663 row_labels

664 A list or array of length N with the labels for the rows.

665 col_labels

666 A list or array of length M with the labels for the columns.

667 ax

668 A ‘matplotlib.axes.Axes‘ instance to which the heatmap is plotted. If

669 not provided, use current axes or create a new one. Optional.

670 cbar_kw

671 A dictionary with arguments to ‘matplotlib.Figure.colorbar‘. Optional.

672 cbarlabel

673 The label for the colorbar. Optional.

674 **kwargs

675 All other arguments are forwarded to ‘imshow‘.

676 """

677

678 if not ax:

679 ax = plt.gca()

680

681 # windows

682 mask = np.tri(data.shape[0], k=-1)

683

684 # genres

685 # mask = np.zeros((data.shape[0], data.shape[1]))

686

687 # Additional mask for Mann-Whitney U rank

688 for i in range(data.shape[0]):

689 for j in range(data.shape[1]):

690 if(data[i][j] >= 0.05):

691 mask[i][j] = 1

692

693 data = np.ma.array(data, mask=mask)

694

695 # Plot the heatmap

696 im = ax.imshow(data, **kwargs)

697

698 # Create colorbar

699 cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)

700 cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom")

701

702 # We want to show all ticks...

703 ax.set_xticks(np.arange(data.shape[1]))

704 ax.set_yticks(np.arange(data.shape[0]))

705 # ... and label them with the respective list entries.

706 ax.set_xticklabels(col_labels)

707 ax.set_yticklabels(row_labels)
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708

709 # Let the horizontal axes labeling appear on top.

710 ax.tick_params(top=True, bottom=False,

711 labeltop=True, labelbottom=False)

712

713 # Rotate the tick labels and set their alignment.

714 plt.setp(ax.get_xticklabels(), rotation=-30, ha="right",

715 rotation_mode="anchor")

716

717 # Turn spines off and create white grid.

718 for edge, spine in ax.spines.items():

719 spine.set_visible(False)

720

721 ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True)

722 ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True)

723 ax.grid(which="minor", color="w", linestyle=’-’, linewidth=3)

724 ax.tick_params(which="minor", bottom=False, left=False)

725

726 return im, cbar

727

728

729 def annotate_heatmap(im, data=None, valfmt="{x:.2f}",

730 textcolors=["black", "white"],

731 threshold=None, **textkw):

732 """

733 A function to annotate a heatmap.

734 Parameters

735 ----------

736 im

737 The AxesImage to be labeled.

738 data

739 Data used to annotate. If None, the image’s data is used. Optional.

740 valfmt

741 The format of the annotations inside the heatmap. This should either

742 use the string format method, e.g. or be a

743 ‘matplotlib.ticker.Formatter‘. Optional.

744 textcolors

745 A list or array of two color specifications. The first is used for

746 values below a threshold, the second for those above. Optional.

747 threshold

748 Value in data units according to which the colors from textcolors are

749 applied. If None (the default) uses the middle of the colormap as

750 separation. Optional.

751 **kwargs

752 All other arguments are forwarded to each call to ‘text‘ used to create

753 the text labels.

754 """

755

756 if not isinstance(data, (list, np.ndarray)):
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757 data = im.get_array()

758

759 # Normalize the threshold to the images color range.

760 if threshold is not None:

761 threshold = im.norm(threshold)

762 else:

763 threshold = im.norm(data.max())/2.

764

765 # Set default alignment to center, but allow it to be

766 # overwritten by textkw.

767 kw = dict(horizontalalignment="center",

768 verticalalignment="center")

769 kw.update(textkw)

770

771 # Get the formatter in case a string is supplied

772 if isinstance(valfmt, str):

773 valfmt = tckr.StrMethodFormatter(valfmt)

774

775 # Loop over the data and create a ‘Text‘ for each "pixel".

776 # Change the text’s color depending on the data.

777 texts = []

778 for i in range(data.shape[0]):

779 for j in range(data.shape[1]):

780 kw.update(color=textcolors[int(im.norm(data[i, j]) < threshold)])

781 text = im.axes.text(j, i, valfmt(data[i, j], None) if j >= i else ’’,

**kw)

782 # text = im.axes.text(j, i, valfmt(data[i, j], None), **kw)

783 # if not j >= i:

784 # text = im.axes.text(j, i, ’’, **kw)

785 # if 0 <= data[i, j] < 0.01:

786 # text = im.axes.text(j, i, ’**’, **kw)

787 # elif 0.01 <= data[i, j] < 0.05:

788 # text = im.axes.text(j, i, ’*’, **kw)

789 # else:

790 # text = im.axes.text(j, i, ’’, **kw)

791 texts.append(text)

792

793 return texts

794

795 def generate_genres_p_value_heatmap(feature, window, show = False):

796 ’’’

797 Creates p values heatmaps by genres for one window size

798 Parameters:

799 feature (str): Feature (RP, RH, BS) name

800 window (str): Window size (full, widnow)

801 show (boolean): Show plot

802 ’’’

803

804 distances = [[] for _ in range(len(GENRES))]



66 Code

805 results = [[0 for _ in range(len(GENRES))] for i in range(len(GENRES))]

806

807 for genre in range(len(GENRES)):

808 loaded = np.load(os.path.expanduser(f’{MEDLEY_DB}{DATA}{DISTANCES}{GENRES[

genre].replace("/", "_")}{NPZ}’),

allow_pickle=True)

809

810 loaded = loaded[f’{feature}_{window}_array’]

811

812 for i in range(len(loaded)):

813 for j in range(len(loaded[i])):

814 distances[genre].extend(loaded[i][j])

815

816 for i in range(len(results)):

817 for j in range(len(results[i])-i):

818 statistic, pvalue = scipy.stats.mannwhitneyu(distances[i], distances[j+

i])

819 results[i][j+i] = pvalue

820

821 plt.rc(’figure’, figsize=(13, 10))

822

823 fig, axs = plt.subplots(1)

824 fig.suptitle(f’Mann-Whitney rank ({feature}_{window})’, fontsize=16)

825

826 im, cbar = create_heatmap(np.array(results), GENRES, GENRES, axs, cmap="YlGn_r"

)

827

828 texts = annotate_heatmap(im, valfmt="{x:.4f} t")

829

830 if show:

831 plt.show()

832

833 return

834

835 def generate_genres_windows_p_value_heatmap(feature, show = False):

836 ’’’

837 Creates p values heatmaps by genres for both window sizes

838 Parameters:

839 feature (str): Feature (RP, RH, BS) name

840 show (boolean): Show plot

841 ’’’

842

843 distances_full = [[] for _ in range(len(GENRES))]

844 distances_window = [[] for _ in range(len(GENRES))]

845 results = [[0 for _ in range(len(GENRES))] for i in range(len(GENRES))]

846

847 for genre in range(len(GENRES)):
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848 loaded = np.load(os.path.expanduser(f’{MEDLEY_DB}{DATA}{DISTANCES}{GENRES[

genre].replace("/", "_")}{NPZ}’),

allow_pickle=True)

849

850 loaded_full = loaded[f’{feature}_full_array’]

851

852 for i in range(len(loaded_full)):

853 for j in range(len(loaded_full[i])):

854 distances_full[genre].extend(loaded_full[i][j])

855

856

857 loaded_window = loaded[f’{feature}_window_array’]

858

859 for i in range(len(loaded_window)):

860 for j in range(len(loaded_window[i])):

861 distances_window[genre].extend(loaded_window[i][j])

862

863 for i in range(len(results)):

864 for j in range(len(results[i])):

865 statistic, pvalue = scipy.stats.mannwhitneyu(distances_full[i],

distances_window[j])

866 results[i][j] = pvalue

867

868 plt.rc(’figure’, figsize=(13, 10))

869

870 fig, axs = plt.subplots(1)

871 fig.suptitle(f’Mann-Whitney rank ({feature} - full x window)’, fontsize=16)

872

873 im, cbar = create_heatmap(np.array(results), GENRES, GENRES, axs, cmap="YlGn_r"

)

874

875 texts = annotate_heatmap(im, valfmt="{x:.4f} t")

876

877 if show:

878 plt.show()

879

880 return

881

882 def plot_stem(song, stem, feature):

883 ’’’

884 Plots the feature of a song stem

885 Parameters:

886 song (str): Song title

887 stem (int): Stem number

888 feature (str): Feature (RP, RH, BS) name

889 ’’’

890 audio_signal, sampling_frequency = repet.wavread(get_stem_location(song, stem))

891

892 if feature == RP:
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893 rhythmic_patterns = rp.rp_extract(audio_signal, sampling_frequency,

extract_rp = True)

894 plot_rp(rhythmic_patterns[’rp’])

895 elif feature == RH:

896 rhythmic_histogram = rp.rp_extract(audio_signal, sampling_frequency,

extract_rh = True)

897 plot_rh(rhythmic_histogram[’rh’])

898 elif feature == BS:

899 beat_spectrum = beat_spectrum_fx(audio_signal, sampling_frequency)

900 plot_bs(beat_spectrum)

901

902 def sort_heatmaps(genre, feature, window_size, stat):

903 ’’’

904 Sorts calculated heatmaps by instrumentation into a new CSV with the

following structure [stat_1_value

, instrument_1, instrument_1,

stat_2_value], where stat_1_value

is the value being sorted in

ascending order

905 Parameters:

906 genre (str): Genre name

907 feature (str): Feature (RP, RH, BS) name

908 window_size (str): Window size (full, window)

909 stat (str): Stat 1 name (iqr, median)

910 ’’’

911

912 iqr_array, median_array, data1, data2, results = [], [], [], [], []

913

914 with open(os.path.expanduser(f’{MEDLEY_DB}{DATA}{HEATMAPS}{CSVs}{MATRICES}{

genre.replace("/", "_")}_{feature}_{

window_size}_{IQR}{CSV}’)) as csvfile

:

915 reader = csv.reader(csvfile)

916 for row in reader:

917 iqr_array.append(row)

918

919 with open(os.path.expanduser(f’{MEDLEY_DB}{DATA}{HEATMAPS}{CSVs}{MATRICES}{

genre.replace("/", "_")}_{feature}_{

window_size}_{MEDIAN}{CSV}’)) as

csvfile:

920 reader = csv.reader(csvfile)

921 for row in reader:

922 median_array.append(row)

923

924 iqr_array = np.array(iqr_array)[1:,1:]

925 median_array = np.array(median_array)[1:,1:]

926 data1 = iqr_array if stat == IQR else median_array

927 data2 = median_array if stat == IQR else iqr_array

928
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929 for i in range(len(data1)):

930 for j in range(len(data1[i])-i):

931 results.append((data1[i][j+i], FAMILIES[i], FAMILIES[i+j], data2[i][j+i

]))

932

933 results = sorted(results, key = lambda x: x[0])

934

935 with open(os.path.expanduser(f’{MEDLEY_DB}{DATA}{HEATMAPS}{CSVs}{SORTED}{genre.

replace("/", "_")}_{feature}_{

window_size}_{stat}{CSV}’), ’w’,

newline=’’) as file:

936 writer = csv.writer(file)

937 writer.writerow((stat, ’instrument 1’, ’instrument 2’, IQR if stat ==

MEDIAN else MEDIAN))

938 for i in results:

939 writer.writerow(i)

940

941 return

942

943 def generate_main_csv():

944 ’’’

945 Creates a CSV with all genres, features, windows and stats

946 ’’’

947

948 data = []

949

950 for genre in GENRES:

951 for feature in [RP, RH, BS]:

952 for window in [FULL, WINDOW]:

953 with open(os.path.expanduser(f’{MEDLEY_DB}{DATA}{HEATMAPS}{CSVs}{

SORTED}{genre.replace

("/", "_")}_{feature}_{

window}_{IQR}{CSV}’)) as

csvfile:

954 reader = csv.reader(csvfile)

955 for row in reader:

956 if row[0] != ’iqr’:

957 row.append(genre)

958 row.append(feature)

959 row.append(window)

960 data.append(row)

961

962 with open(os.path.expanduser(f’{MEDLEY_DB}{DATA}{HEATMAPS}{CSVs}main{CSV}’), ’w

’, newline=’’) as file:

963 writer = csv.writer(file)

964 writer.writerow([’iqr’, ’instrument1’, ’instrument2’, ’median’, ’genre’, ’

feature’, ’window’])

965 for row in data:

966 writer.writerow(row)
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967

968 return

969

970 class ListBoxWidget(QListWidget):

971 def __init__(self, parent=None):

972 super().__init__(parent)

973 self.setAcceptDrops(True)

974 self.resize(600, 600)

975

976 def dragEnterEvent(self, event):

977 if event.mimeData().hasUrls:

978 event.accept()

979 else:

980 event.ignore()

981

982 def dragMoveEvent(self, event):

983 if event.mimeData().hasUrls():

984 event.setDropAction(Qt.CopyAction)

985 event.accept()

986 else:

987 event.ignore()

988

989 def dropEvent(self, event):

990 if event.mimeData().hasUrls():

991 event.setDropAction(Qt.CopyAction)

992 event.accept()

993

994 links = []

995 for url in event.mimeData().urls():

996 # https://doc.qt.io/qt-5/qurl.html

997 if url.isLocalFile():

998 links.append(str(url.toLocalFile()))

999 else:

1000 links.append(str(url.toString()))

1001 self.addItems(links)

1002 else:

1003 event.ignore()

1004

1005 class AppDemo(QMainWindow):

1006 def __init__(self):

1007 super().__init__()

1008 self.resize(1200, 600)

1009

1010 self.listbox_view = ListBoxWidget(self)

1011

1012 self.btn = QPushButton(’Start plot’, self)

1013 self.btn.setGeometry(850, 400, 200, 50)

1014 self.btn.clicked.connect(lambda: self.umap_scatter())

1015
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1016 def getItems(self):

1017 items = []

1018 for x in range(self.listbox_view.count()):

1019 items.append(self.listbox_view.item(x).text())

1020 return items

1021

1022 def umap_scatter(self):

1023

1024 samples = []

1025

1026 for path in self.getItems():

1027 if os.path.isdir(os.path.expanduser(path)):

1028 samples_list = os.listdir(os.path.expanduser(path))

1029 samples_list = [path + song for song in samples_list if song.

endswith(’.wav’)]

1030 samples_list = sorted(samples_list)

1031 samples.extend(samples_list)

1032 elif os.path.isfile(os.path.expanduser(path)) and path.endswith(’.wav’)

:

1033 samples.append(path)

1034

1035 audio_signals, sampling_frequencies = [], []

1036

1037 for i in range(len(samples)):

1038 audio_signal, sampling_frequency = repet.wavread(os.path.expanduser(

samples[i]))

1039

1040 if np.shape(audio_signal)[0] >= 262144:

1041 audio_signals.append(audio_signal)

1042 sampling_frequencies.append(sampling_frequency)

1043

1044 data = calculate_rp_rh(audio_signals, sampling_frequencies)

1045 rh_data = []

1046

1047 for i in range(len(audio_signals)):

1048 rh_data.append(data[i][’rh’])

1049

1050 fig = plt.figure()

1051 fit = umap.UMAP(

1052 n_neighbors = 15,

1053 min_dist = 0.01,

1054 n_components = 2,

1055 metric=’cosine’

1056 )

1057 umap_res = fit.fit_transform(rh_data)

1058

1059 ax = fig.add_subplot(111)

1060 ax.scatter(umap_res[:, 0], umap_res[:, 1])

1061
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1062 plt.show()

1063

1064 if __name__ == ’__main__’:

1065

1066 # methods used to generate data

1067

1068 # analyse_genre(’Pop’)

1069

1070 # calculate_genre_distances(’Pop’)

1071

1072 # for genre in GENRES:

1073 # for feature in [RP, RH, BS]:

1074 # generate_family_distances_heatmap(genre, feature, False, False, True)

1075

1076 # generate_genres_p_value_heatmap(RH, WINDOW, True)

1077

1078 # generate_genres_windows_p_value_heatmap(RH, True)

1079

1080 # plot_stem(’StevenClark_Bounty’, 5, BS)

1081

1082 # for genre in GENRES:

1083 # for feature in [RP, RH, BS]:

1084 # for window in [FULL, WINDOW]:

1085 # for stat in [IQR, MEDIAN]:

1086 # sort_heatmaps(genre, feature, window, stat)

1087

1088 # application

1089

1090 app = QApplication(sys.argv)

1091

1092 demo = AppDemo()

1093 demo.show()

1094

1095 sys.exit(app.exec_())



Appendix B

Rhythmic Patterns

B.1 Full window stem analysis

B.1.1 Classical

Instrument 1 Instrument 2 Median IQR

percussion voices 0.0 0.0

voices winds 0.0 0.0

electric percussion 0.0155610285436777 0.0150630379475371

electric electric 0.0 0.2263363681988202

strings strings 0.1974384812474462 0.2314022421161702

electric winds 0.0024769704079286 0.3515754724330122

electric strings 0.538348312948561 0.4762954875232341

percussion strings 0.2669434707097612 0.4817964053393617

winds winds 0.4956891865656954 0.506157397985748

percussion percussion 0.0163015231515015 0.5643591046638512

strings voices 0.2076545497681873 0.6246696723750136

strings winds 0.2785566450514535 0.7278110742046313

percussion winds 0.3651049827614006 0.7649724895502195

electric voices

voices voices

73
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B.1.2 Electronic/Fusion

Instrument 1 Instrument 2 Median IQR

strings strings 0.8471075273314546 0.0

percussion winds 0.789415039722784 0.0891447946819183

percussion percussion 0.501039098665326 0.4318623787758511

percussion strings 1.3785989529807037 0.5266963280779182

strings winds 0.9898763278252134 0.7108451320806798

electric percussion 1.331972458225962 0.7890785321114975

electric strings 1.2282805357517677 0.9753091548772216

electric electric 1.4954272274488258 1.120675270905218

electric winds 1.3152597316807086 1.176694248822456

electric voices

percussion voices

strings voices

voices voices

voices winds

winds winds

B.1.3 Jazz

Instrument 1 Instrument 2 Median IQR

percussion voices 0.9361574863896373 0.0

voices winds 0.9361574863896373 0.0

winds winds 0.9074343151481276 0.1873094656750688

electric percussion 1.2322283608690476 0.2742880870607331

electric electric 1.150882623662822 0.3018284598453549

strings voices 0.806358876347041 0.3243048896823629

percussion winds 1.257395907919284 0.3475993957814955

electric strings 0.7686026788065365 0.4895551612235381

electric winds 1.2684923782682134 0.5002234116482129

strings winds 1.1051805806000328 0.5524115012674198

percussion strings 0.7814668257127946 0.6464519909774816

strings strings 0.8403803909305847 0.7790747073707055

electric voices

percussion percussion

voices voices
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B.1.4 Musical Theatre

Instrument 1 Instrument 2 Median IQR

percussion percussion 2.3503347747723 0.0

voices voices 2.574817360336036 0.0

percussion voices 3.861786008123509 0.1723750684736691

electric electric 2.1786447773741795 0.4986738767463294

strings voices 1.0028518542078566 0.550714269973613

electric percussion 2.5796471365257374 0.5946466076089134

electric voices 3.362637219555637 0.9631873863955668

electric strings

electric winds

percussion strings

percussion winds

strings strings

strings winds

voices winds

winds winds

B.1.5 Pop

Instrument 1 Instrument 2 Median IQR

strings winds 0.0 0.0

strings strings 0.4781561454666431 0.2454208645692842

strings voices 0.4822523721509801 0.2943576124838427

electric strings 0.3812809358637726 0.3163235175242551

voices winds 0.4184537064496189 0.3186235841916887

electric winds 0.5411397269023275 0.3548839969105775

voices voices 0.4393655512934354 0.3693975303239916

electric voices 0.5097281343555853 0.5201875781270704

electric electric 0.5053304897647672 0.5638823507400303

percussion voices 0.8628306530410201 0.5998970521078836

percussion strings 0.5801563791719229 0.6652855772131667

percussion winds 0.7705449884643261 0.7274752828236535

percussion percussion 0.9761284873678896 0.8011754086144981

electric percussion 0.6472624548935012 0.8973066444042781

winds winds



76 Rhythmic Patterns

B.1.6 Rock

Instrument 1 Instrument 2 Median IQR

electric strings 0.5394036831057101 0.2017558619466202

electric electric 0.6611348379136464 0.4861616030125387

electric voices 0.7449646411344303 0.6442444052740494

strings voices 0.7624901553843382 0.993254547681894

percussion voices 1.1272986317454916 1.0443210634759832

percussion strings 0.9657211206473468 1.2580855781708666

voices voices 0.0 1.2827619467727454

percussion percussion 1.5223111665428657 1.3050213081811175

electric percussion 1.2231505418477742 1.4946159015972484

electric winds

percussion winds

strings strings

strings winds

voices winds

winds winds

B.1.7 Singer/Songwriter

Instrument 1 Instrument 2 Median IQR

winds winds 0.5767761536652342 0.1966136948912991

strings strings 0.6343087849960829 0.302876582890455

strings winds 0.4033360779883623 0.3358300796688155

electric strings 0.4738132243623206 0.4054625781566633

electric electric 0.4279633336430531 0.451527109512205

percussion strings 0.6205828128491804 0.4763246159467673

percussion winds 0.7394193283670673 0.5070694645860598

electric percussion 0.4947725396080875 0.5432003337055119

electric voices 0.3990955660323217 0.5453046157995567

electric winds 0.3801624587739349 0.556855768871089

strings voices 0.4742727385230508 0.5572265164714858

percussion percussion 0.8595370789661951 0.6484162454633589

percussion voices 0.5428990759501952 0.7707884951316821

voices winds 0.3963621857221962 0.7961339123934488

voices voices 0.4749117161893334 0.8322322347654185
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B.1.8 World/Folk

Instrument 1 Instrument 2 Median IQR

winds winds 0.0 0.0

voices voices 0.4579732438154719 0.1328869335222671

percussion winds 1.4241848502569052 0.1491024832854024

electric electric 0.4022114156645625 0.4189745801741759

electric winds 0.0 0.4189745801741759

electric percussion 1.213381184039927 0.5129404912671964

electric strings 0.4189745801741759 0.8449452709252021

strings strings 1.036673495581185 0.9616026258058687

percussion strings 1.3115269191491603 1.0115634237085964

percussion percussion 1.0977597321454675 1.1988689880414158

strings winds 1.005968170048499 1.509286206686167

electric voices

percussion voices

strings voices

voices winds

B.2 Windowed stem analysis

B.2.1 Classical

Instrument 1 Instrument 2 Median IQR

percussion voices 0.0 0.4621131933779906

voices winds 0.0 0.5496506477216082

strings voices 0.2189797335687294 0.6532622177358958

percussion percussion 0.1785741753651623 0.6978515911088199

strings strings 0.3345700778088076 0.7837029301351033

percussion strings 0.307307649739341 0.7909789934591447

strings winds 0.3641332600940313 0.8379134663560867

percussion winds 0.2676491657744274 0.841826593767996

winds winds 0.4270104125950045 0.9103693741325956

electric electric 0.0107526392542068 0.9596989885926286

electric percussion 0.4425315770261221 0.9689316366069816

electric winds 0.1874054358861331 1.20783634403079

electric strings 0.7208174661075885 1.2896105261227346

electric voices

voices voices
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B.2.2 Electronic/Fusion

Instrument 1 Instrument 2 Median IQR

strings strings 1.0060833240247136 0.2393210464064626

percussion winds 1.6083904742485338 0.783564101292213

percussion strings 2.16441999695111 0.9144146032759988

percussion percussion 1.3754458211975966 1.152608832919353

strings winds 2.0122187210814784 1.165977123187293

electric percussion 1.992418588469603 1.217747011332834

electric winds 1.921688999500156 1.387462840890641

electric strings 2.0001719966931786 1.4509767741136392

electric electric 1.9790511759482223 1.548850097743618

electric voices

percussion voices

strings voices

voices voices

voices winds

winds winds

B.2.3 Jazz

Instrument 1 Instrument 2 Median IQR

electric electric 1.3541924297403287 0.5015730419543274

winds winds 1.428408506836818 0.513177610918834

electric strings 1.5491382019293836 0.5882123660307017

percussion strings 1.10566283661232 0.5944693020898413

strings strings 1.3168417865837805 0.7003823818129649

electric percussion 1.6972442903602911 0.7230462994989955

percussion winds 1.6348653204712191 0.7316690731743565

electric winds 1.6442914918157254 0.783278131105517

strings winds 1.6128504303580835 0.7841666176701827

strings voices 1.073608978800202 1.0597295122857844

voices winds 1.3075701992567856 1.0651089447535518

percussion voices 1.08427642083017 1.2603227970905055

electric voices

percussion percussion

voices voices
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B.2.4 Musical Theatre

Instrument 1 Instrument 2 Median IQR

percussion percussion 2.753421720111425 0.2609135499968911

percussion voices 4.44091108228621 0.4800457170029846

electric electric 2.216911737975396 0.4875120001249895

electric voices 4.108641883461537 1.1376257454794456

strings voices 1.718827120847119 1.140122579492828

electric percussion 2.625945102915365 1.284098941464888

voices voices 3.26554343308437 1.692026590239195

electric strings

electric winds

percussion strings

percussion winds

strings strings

strings winds

voices winds

winds winds

B.2.5 Pop

Instrument 1 Instrument 2 Median IQR

strings strings 0.6492341212351977 0.2906497321148148

electric strings 0.6686165198695325 0.385976905332771

strings voices 0.817737252787195 0.5260997446461824

percussion strings 0.7822681923453696 0.5658051839806558

voices voices 0.7080503691139989 0.7366374271242659

electric electric 0.722079066605307 0.7561889517844431

electric voices 0.7884339390316408 0.7712449880221897

electric winds 0.7868335511260214 0.9796618957503412

voices winds 1.1002161568298772 0.9861028681149324

electric percussion 0.769991234816764 1.0329953170071495

percussion voices 1.0367689188096123 1.0685683379393842

strings winds 0.5517257872650613 1.0882726141932753

percussion percussion 0.95388517191628 1.1533969445903236

percussion winds 1.07445574451538 1.9563319569586457

winds winds
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B.2.6 Rock

Instrument 1 Instrument 2 Median IQR

electric strings 0.7994165712937558 0.4313992012348306

electric electric 0.9439670120935558 0.6124737032045477

electric voices 1.0671262058222777 0.9245690189064896

electric percussion 1.3165826564495076 1.1025528286379704

percussion voices 1.578732521866831 1.1477942751149162

percussion percussion 1.6465727647659143 1.1810975052646806

percussion strings 1.7464814922491487 1.3201345861410938

strings voices 0.8203932515974548 1.473264915177413

voices voices 0.8125566687921656 1.6398023498567054

electric winds

percussion winds

strings strings

strings winds

voices winds

winds winds

B.2.7 Singer/Songwriter

Instrument 1 Instrument 2 Median IQR

electric electric 0.6119762943248241 0.5420690386054134

electric strings 0.6509021749121181 0.5993808966538321

strings strings 0.8140481484760924 0.6222200573660539

percussion strings 0.7370128846140138 0.6803310238370585

electric percussion 0.6392742399832936 0.7381954199720907

electric voices 0.6789772006655321 0.7677294667987095

strings voices 0.7682887770045914 0.7731624692657747

percussion winds 1.1237114928395298 0.900446942729761

percussion percussion 0.8136266159864853 0.9313008653628512

percussion voices 0.7720254002253356 0.9694175698713088

voices voices 0.6623159434483056 0.987094421772598

electric winds 0.6983962536001862 1.0684761064376245

strings winds 0.8330973323466416 1.2331721689337645

winds winds 1.16578100200309 1.4439896446203933

voices winds 1.05315907573605 1.5047277266265224
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B.2.8 World/Folk

Instrument 1 Instrument 2 Median IQR

voices voices 1.1210641656381988 0.2652805493832839

winds winds 0.0 0.4616469994132335

percussion winds 2.032652910107922 0.6638220134122492

electric winds 0.4560598484382023 0.6639554207599625

electric electric 0.5091291468658559 0.7763300358035011

strings strings 1.153112490201111 0.9646442263263376

electric percussion 1.739143360434568 1.0196324963398933

electric strings 0.8402289231747981 1.1960454602068478

strings winds 0.898310933556285 1.2210987847548291

percussion strings 1.3993454365951523 1.331950319361594

percussion percussion 1.1625244576009528 1.9666658230462648

electric voices

percussion voices

strings voices

voices winds
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Appendix C

Rhythmic Histograms

C.1 Full window stem analysis

C.1.1 Classical

Instrument 1 Instrument 2 Median IQR

percussion voices 0.0 0.0

voices winds 0.0 0.0

electric electric 0.0 0.0449984043359558

winds winds 0.0401851272205177 0.1579474002198712

electric winds 0.0022247840634176 0.1862234787380952

electric strings 0.2116737946894145 0.1917067455062225

percussion percussion 0.0380156132391277 0.2011670589816445

percussion winds 0.09685503567469 0.2437403599627653

strings winds 0.1484243744302222 0.2877868759820329

percussion strings 0.1783085476142377 0.2915709463582242

strings voices 0.0112297878366678 0.2951291527756006

strings strings 0.0561805246691273 0.3132010390911582

electric percussion 0.2770428683399515 0.4031340302189433

electric voices

voices voices

83
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C.1.2 Electronic/Fusion

Instrument 1 Instrument 2 Median IQR

strings strings 0.3448663459419216 0.0

percussion strings 0.1408991844311652 0.0564657734502656

percussion percussion 0.037646275751244 0.0660055861089574

percussion winds 0.1509777237236846 0.0672334494506026

strings winds 0.1225578787420649 0.0832656981890669

electric strings 0.1456775855408131 0.1208493441427755

electric winds 0.144443931497845 0.1284704404215746

electric percussion 0.1542727567815493 0.172007184888018

electric electric 0.2056226483604087 0.2483086514987641

electric voices

percussion voices

strings voices

voices voices

voices winds

winds winds

C.1.3 Jazz

Instrument 1 Instrument 2 Median IQR

percussion voices 0.2779029352697539 0.0

voices winds 0.2779029352697539 0.0

winds winds 0.0227402273535169 0.0182961613358726

electric strings 0.0314920274363003 0.0201228958927013

percussion winds 0.1716424291368614 0.0457514043460923

electric electric 0.087497019841242 0.056555013123609

electric percussion 0.0897606525311717 0.0819196413571327

strings winds 0.101828914156402 0.1152642487793129

electric winds 0.1388503317602502 0.1370952930319692

percussion strings 0.0670487249922782 0.1820519716722791

strings voices 0.1850174160029902 0.2020656307903222

strings strings 0.0983800936224432 0.2658893495943176

electric voices

percussion percussion

voices voices
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C.1.4 Musical Theatre

Instrument 1 Instrument 2 Median IQR

percussion percussion 0.0633810661291762 0.0

voices voices 0.1692859484636668 0.0

electric electric 0.2468790628509208 0.0870985882272483

percussion voices 0.3543448588506659 0.0976663143921891

strings voices 0.0598519939202125 0.1140760741116917

electric voices 0.1135501632793665 0.1246854211837031

electric percussion 0.2509342020496166 0.2285236164583637

electric strings

electric winds

percussion strings

percussion winds

strings strings

strings winds

voices winds

winds winds

C.1.5 Pop

Instrument 1 Instrument 2 Median IQR

strings winds 0.0 0.0

strings strings 0.0406580744064454 0.0246066987411866

voices winds 0.2793517632240263 0.0311459017637678

percussion winds 0.2618013235968497 0.0374514640881761

strings voices 0.0607587119141813 0.0621925538699075

electric winds 0.2413121948232184 0.1196042026643656

percussion strings 0.1808107556210725 0.1289847811686102

voices voices 0.0208852684517739 0.1404011576517361

percussion voices 0.2379748142935399 0.1591967787235212

electric percussion 0.2040172770785004 0.1615906496665868

percussion percussion 0.2002401147356791 0.1796529560634363

electric strings 0.0897085082362449 0.1815360287102735

electric voices 0.0885065870805887 0.1864111468496726

electric electric 0.1421214109221821 0.1901204946250084

winds winds
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C.1.6 Rock

Instrument 1 Instrument 2 Median IQR

percussion strings 0.1454799344520303 0.0930597002044714

electric voices 0.1174550976680469 0.1224822346072658

electric percussion 0.1515840013628205 0.1224910115878794

electric electric 0.0976866342498445 0.133447056517287

percussion percussion 0.17175046383888 0.1518249184206807

percussion voices 0.1731139616172717 0.1541085726414011

voices voices 0.0 0.1808445647916876

electric strings 0.1195893868173058 0.1816088082387426

strings voices 0.1157546403062891 0.2270064266148925

electric winds

percussion winds

strings strings

strings winds

voices winds

winds winds

C.1.7 Singer/Songwriter

Instrument 1 Instrument 2 Median IQR

winds winds 0.2422978975094911 0.0283473630934736

strings strings 0.1768478483759346 0.0841555888751253

percussion winds 0.1683510065735599 0.1183566474635944

electric strings 0.1415341651743371 0.1475028378519283

percussion percussion 0.2110738020362873 0.1479967160156772

strings voices 0.1250509248431908 0.1534739642890812

percussion strings 0.1946331551665611 0.1540095732101506

strings winds 0.1171558823721972 0.1728795465377078

electric electric 0.1153637056167362 0.1777314020123365

electric voices 0.1136087470776989 0.1970378466690267

electric winds 0.1376189731829781 0.2078613010469566

electric percussion 0.1983574907478098 0.2171645152733909

percussion voices 0.2315340955948685 0.2573935572304056

voices voices 0.0563564031904201 0.3075267084997894

voices winds 0.2540570024954454 0.3159795307683642



C.2 Windowed stem analysis 87

C.1.8 World/Folk

Instrument 1 Instrument 2 Median IQR

winds winds 0.0 0.0

voices voices 0.0045405226461243 0.0016384621192513

electric percussion 0.1611682610320174 0.026708452415958

percussion winds 0.1611682610320174 0.0310379133137465

strings strings 0.0358508295915953 0.0556787304830995

strings winds 0.0427986285936122 0.061372780952824

percussion strings 0.1714758901523908 0.0673911032299946

percussion percussion 0.1230709512582338 0.1230709512582338

electric strings 0.0241813272554028 0.1779298971173445

electric winds 0.0 0.2167266936369561

electric electric 0.1949695004690947 0.2243281499735601

electric voices

percussion voices

strings voices

voices winds

C.2 Windowed stem analysis

C.2.1 Classical

Instrument 1 Instrument 2 Median IQR

percussion voices 0.0 0.1801697799037577

electric strings 0.2588821975991879 0.2814008610644439

electric electric 0.0320813659054321 0.2843762810092747

electric winds 0.1025325611001406 0.3148724257956614

winds winds 0.0521081167617382 0.3234016489630652

voices winds 0.0 0.3525593354047696

strings strings 0.1188944132133014 0.3614334270000284

strings voices 0.0610390853771858 0.3756749016543803

percussion winds 0.092063727565788 0.3795688011858951

percussion percussion 0.0634338623079095 0.3846295888540689

percussion strings 0.1672948118403657 0.3866992232402907

strings winds 0.1543494601790265 0.3874271746834639

electric percussion 0.2599625629632499 0.4778490288024554

electric voices

voices voices
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C.2.2 Electronic/Fusion

Instrument 1 Instrument 2 Median IQR

percussion percussion 0.1530578937655629 0.1279349088449112

percussion strings 0.2232005877275373 0.1412672044697417

strings winds 0.2048259413458819 0.1456097022598051

electric winds 0.2291175766639013 0.1591861149890516

percussion winds 0.2288397729380372 0.1603127065353083

electric percussion 0.2161948066700195 0.1706943026673129

electric strings 0.232044568611065 0.183373184056681

electric electric 0.2659260529604445 0.2239484384386552

strings strings 0.3528743020980116 0.2444535077671301

electric voices

percussion voices

strings voices

voices voices

voices winds

winds winds

C.2.3 Jazz

Instrument 1 Instrument 2 Median IQR

electric strings 0.0979717779278862 0.0586489017129578

electric percussion 0.1277288030711531 0.0865168332960955

electric electric 0.1686524348451619 0.1162057433468289

strings winds 0.190897613833444 0.1300980972792084

percussion strings 0.0657918924137915 0.1350914814455349

winds winds 0.1048378907913946 0.1456306381094271

percussion winds 0.2310328408000824 0.1477773051558177

electric winds 0.1996505365279083 0.1511025346548208

strings strings 0.0655163737930055 0.1855133356980604

strings voices 0.1806032087757292 0.2214581545683016

percussion voices 0.1474610398575644 0.2357266193646768

voices winds 0.2115024423592474 0.2535486234344573

electric voices

percussion percussion

voices voices
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C.2.4 Musical Theatre

Instrument 1 Instrument 2 Median IQR

voices voices 0.1704047712117571 0.0793779128293276

electric voices 0.2004221049619012 0.1223758425046044

strings voices 0.2173428505044549 0.1486668614768024

electric electric 0.2476132837486623 0.1558109136251142

percussion percussion 0.152235430991572 0.1896850570133629

percussion voices 0.4636067927031348 0.2538162661135202

electric percussion 0.317390959673905 0.2778954831965613

electric strings

electric winds

percussion strings

percussion winds

strings strings

strings winds

voices winds

winds winds

C.2.5 Pop

Instrument 1 Instrument 2 Median IQR

voices winds 0.2344104842748223 0.1751366446031688

percussion percussion 0.2584154563887018 0.1840234484493645

percussion strings 0.2151253682585329 0.1894306519060237

electric strings 0.1771198347107504 0.195873166349147

strings strings 0.1400047855771958 0.1963214233792641

electric percussion 0.2336680087539078 0.1969594658270302

electric electric 0.187153421674845 0.2000263882682882

percussion voices 0.2536163024959101 0.2246426749947677

strings voices 0.1908537364823523 0.2250331350071232

electric voices 0.1909052326147143 0.2257045460521739

voices voices 0.0672135432966916 0.2747570255178551

electric winds 0.2606361167916394 0.2751435113632862

percussion winds 0.2351264150419437 0.2880414156300919

strings winds 0.2248659977057909 0.3004696087157057

winds winds
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C.2.6 Rock

Instrument 1 Instrument 2 Median IQR

percussion strings 0.1847950038906671 0.1302958645251121

percussion voices 0.2500907570596318 0.1338799333062

electric percussion 0.1981227945563357 0.1546826815970115

percussion percussion 0.2304508006293319 0.1570877779369165

electric strings 0.1349463768157545 0.1605895972351058

electric electric 0.1480400519105976 0.161889488011706

electric voices 0.1766136137056219 0.1850623161351685

strings voices 0.1593861579492115 0.1984232959084139

voices voices 0.0549392227192976 0.2469784853564129

electric winds

percussion winds

strings strings

strings winds

voices winds

winds winds

C.2.7 Singer/Songwriter

Instrument 1 Instrument 2 Median IQR

strings strings 0.2107585251737765 0.0956867508285814

percussion strings 0.2037832023249303 0.178020901251208

electric strings 0.1799011881826798 0.1796601483740364

strings voices 0.206764705753967 0.1884910552899602

percussion winds 0.2059980319963995 0.1963726201966615

electric percussion 0.2176929263825182 0.2082088230289477

electric electric 0.1788349677305958 0.2358298360031591

percussion percussion 0.2273239242671507 0.2398672845069022

strings winds 0.1768531363647272 0.246145772374728

electric voices 0.2048778830609736 0.2530782173846944

percussion voices 0.2420806034764483 0.2539914328940703

electric winds 0.1668948155324139 0.2601843881443998

winds winds 0.2162200080507323 0.2778170844016964

voices voices 0.1209381937058586 0.3089315014682178

voices winds 0.158320351877923 0.3121507653698753
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C.2.8 World/Folk

Instrument 1 Instrument 2 Median IQR

voices voices 0.0317580826497802 0.0210061236902936

winds winds 0.0 0.065669047210759

strings winds 0.0626850118398215 0.1230215041827156

strings strings 0.1086502357087317 0.1240875206383562

electric percussion 0.2403991077737278 0.1360099032598557

percussion strings 0.2204093930211723 0.1641529392428666

percussion winds 0.2530267303859891 0.1849144980592858

electric strings 0.1570955528676618 0.2131147895977286

percussion percussion 0.1627372095229429 0.251847735105665

electric electric 0.1685643585552104 0.2784921400032396

electric winds 0.1645778496376954 0.3451874594757529

electric voices

percussion voices

strings voices

voices winds
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Appendix D

Beat Spectrum

D.1 Full window stem analysis

D.1.1 Classical

Instrument 1 Instrument 2 Median IQR

percussion voices 0.8814334527328331 0.0199589918083579

voices winds 0.6275391722653556 0.0463238302118829

strings voices 0.6034116369267515 0.1639938235982005

electric percussion 0.4796700361125901 0.1765482384615473

winds winds 0.1724344243475404 0.1907176858216969

strings winds 0.29723249364805 0.2241483880937388

percussion winds 0.3197444189472944 0.2634884947488032

electric electric 0.5904163206027633 0.2885076817095022

strings strings 0.3363130822293538 0.3080017570994642

percussion strings 0.3987331520747512 0.3127557660631858

electric strings 0.4989497490149192 0.3251810910456595

electric winds 0.4471340027980235 0.3632090909206009

percussion percussion 0.3531628590018463 0.4816217867570512

electric voices

voices voices
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D.1.2 Electronic/Fusion

Instrument 1 Instrument 2 Median IQR

strings strings 0.3666669319089931 0.0

strings winds 0.3087457821994755 0.0341889676172316

percussion winds 0.3427781102181041 0.1101403445945287

percussion strings 0.3080600482967804 0.1840167209793737

electric winds 0.325452862733506 0.2102095365995812

electric strings 0.3499306706657292 0.2584864932833084

percussion percussion 0.2867733280894862 0.2620760341098798

electric percussion 0.3065487876869499 0.2869875445037635

electric electric 0.4037840631473234 0.3071472734056404

electric voices

percussion voices

strings voices

voices voices

voices winds

winds winds

D.1.3 Jazz

Instrument 1 Instrument 2 Median IQR

percussion voices 0.2427038562416703 0.0

voices winds 0.2874314513543708 0.0

electric electric 0.0995650910470605 0.0618815752621635

strings voices 0.3246046861437598 0.1025257114076577

strings winds 0.2217245904584863 0.127808434528005

electric percussion 0.2949563287724219 0.156191392334986

electric winds 0.3945460864191295 0.1858028660035532

strings strings 0.1300268590708198 0.2067036526553294

percussion winds 0.5419334699003676 0.2123090965297342

percussion strings 0.3894356605142833 0.2382844099108306

electric strings 0.2926824003546584 0.2626684477207761

winds winds 0.1269484862664848 0.2835550741868541

electric voices

percussion percussion

voices voices
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D.1.4 Musical Theatre

Instrument 1 Instrument 2 Median IQR

percussion percussion 0.1718240842652977 0.0

voices voices 0.1810184798102884 0.0

strings voices 0.3991127889310372 0.0865244165273967

electric electric 0.2016076139531598 0.1202813277820299

electric voices 0.3497110243890743 0.1390029139989222

percussion voices 0.5716424569067353 0.1788036601971447

electric percussion 0.4842112593047114 0.1884709269248227

electric strings

electric winds

percussion strings

percussion winds

strings strings

strings winds

voices winds

winds winds

D.1.5 Pop

Instrument 1 Instrument 2 Median IQR

strings winds 0.330256632903477 0.0

voices winds 0.2898890918353003 0.0350839399475848

strings strings 0.1905089933785082 0.073584285890041

percussion percussion 0.5407942582096636 0.0863544020979336

voices voices 0.2398752699676553 0.1569191825944265

percussion voices 0.4887279394176481 0.1853934052228906

strings voices 0.254632829010997 0.1930612736179412

electric winds 0.4089255310670547 0.2154106192753121

percussion winds 0.3892184225477559 0.2220912214303206

electric voices 0.3286697499840544 0.2304885825045379

electric strings 0.2998579887997557 0.303754585665408

electric percussion 0.4151851965072956 0.3039483633513359

percussion strings 0.4398437401364913 0.323365203615734

electric electric 0.2857545612840517 0.3501392217238072

winds winds



96 Beat Spectrum

D.1.6 Rock

Instrument 1 Instrument 2 Median IQR

voices voices 0.2387586234241281 0.1603176196193056

strings voices 0.4916206269772892 0.2046845605098747

electric strings 0.2199754423489212 0.2083519027147758

percussion percussion 0.3238111659694204 0.2408828932422316

percussion voices 0.4458698593032 0.2459357711534263

electric voices 0.3624724423440551 0.2592246497362245

percussion strings 0.3873809415857812 0.2745181147153108

electric electric 0.2397991152248316 0.3066459611386474

electric percussion 0.2822608133013385 0.3328947961858882

electric winds

percussion winds

strings strings

strings winds

voices winds

winds winds

D.1.7 Singer/Songwriter

Instrument 1 Instrument 2 Median IQR

winds winds 0.4121948974342662 0.0018007220168291

strings strings 0.2868365092197837 0.0849845923193608

voices winds 0.2218225098880601 0.0905852279463187

electric winds 0.2689185502963097 0.1789977595672307

electric voices 0.3297537833024849 0.1839600868437469

voices voices 0.2760793722462693 0.2106823296789537

percussion voices 0.461695616393485 0.2351359182257038

strings voices 0.3443558062409076 0.2568870117388347

electric electric 0.2318464841711795 0.2989009177557874

strings winds 0.2773543950525299 0.3017880193165022

electric percussion 0.3700602491435258 0.315230276552212

electric strings 0.2705597805760777 0.3450455031315722

percussion strings 0.3633413840689413 0.3475811214090823

percussion percussion 0.4194535570095235 0.4248563579052434

percussion winds 0.2402945561189582 0.5358241697116739
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D.1.8 World/Folk

Instrument 1 Instrument 2 Median IQR

voices voices 0.1437221114976652 0.031493210163555

winds winds 0.1553225517534661 0.0609848107402151

electric winds 0.4090957336556335 0.0949559412831774

strings strings 0.1279609953301874 0.1203027341846362

percussion winds 0.4556431312339109 0.121100395627855

percussion percussion 0.6380300633317362 0.1463988913492344

electric strings 0.3278687390811312 0.2267910779988417

strings winds 0.203479005357631 0.249602996349566

electric electric 0.4826479853197017 0.4431591858866065

percussion strings 0.4934708112087574 0.4845311243216633

electric percussion 0.2659476556159903 0.5998248693885387

electric voices

percussion voices

strings voices

voices winds

D.2 Windowed stem analysis

D.2.1 Classical

Instrument 1 Instrument 2 Median IQR

strings voices 0.247238472755282 0.2499845207184224

strings strings 0.2009598788017023 0.2779627334540293

percussion voices 0.2449720817406388 0.2954581086334786

percussion strings 0.3079084495226455 0.2984994447034951

voices winds 0.1795771489420632 0.3005670935644928

strings winds 0.2816001952935888 0.3065085072768764

electric percussion 0.3854275566944323 0.3186463481246954

percussion winds 0.3481090173079078 0.3190657465885481

percussion percussion 0.1776973174606138 0.3230806699193782

winds winds 0.1791715916254323 0.3260817761031257

electric electric 0.4482873658598877 0.3427078842091012

electric strings 0.2925649132540056 0.3700070927031043

electric winds 0.2609153247650393 0.4154245854389389

electric voices

voices voices
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D.2.2 Electronic/Fusion

Instrument 1 Instrument 2 Median IQR

strings strings 0.323681093450467 0.1741815339830399

percussion winds 0.390125075924774 0.208723484089314

electric percussion 0.3720508763518159 0.2590107312137978

electric winds 0.3556742799646182 0.2611194961090236

percussion strings 0.4027071931217371 0.2662410214307139

strings winds 0.378739010566409 0.2716919157501273

electric electric 0.3826802405521433 0.2854899767737374

electric strings 0.3919075090693074 0.2999537708768326

percussion percussion 0.3102351541835237 0.3067218617056552

electric voices

percussion voices

strings voices

voices voices

voices winds

winds winds

D.2.3 Jazz

Instrument 1 Instrument 2 Median IQR

percussion voices 0.413825966923565 0.1532048152376904

strings strings 0.1864254472230065 0.187252095574129

strings voices 0.365039719024043 0.1884800113109381

electric strings 0.2502721060247933 0.1925289345132552

strings winds 0.2917015493361939 0.2046529820698475

percussion winds 0.5361895843462385 0.2047098149756541

electric electric 0.2364639127605172 0.2121533421386086

voices winds 0.2928070091976067 0.2201776642454075

electric percussion 0.3647681315862419 0.2247888204952193

electric winds 0.4010857227718424 0.2625092077709372

winds winds 0.2272980026016466 0.2721189743017561

percussion strings 0.3988760237776072 0.3097699573597975

electric voices

percussion percussion

voices voices
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D.2.4 Musical Theatre

Instrument 1 Instrument 2 Median IQR

percussion percussion 0.2376379855074618 0.0948092966457941

voices voices 0.1212886692696906 0.1099109722249814

percussion voices 0.5011610598391594 0.11186043466435

electric voices 0.2893369045768056 0.1227152693374869

electric electric 0.2329383313824334 0.1509258450236287

electric percussion 0.4654650628448886 0.2271338257242168

strings voices 0.4336703231724159 0.2688957494359713

electric strings

electric winds

percussion strings

percussion winds

strings strings

strings winds

voices winds

winds winds

D.2.5 Pop

Instrument 1 Instrument 2 Median IQR

strings strings 0.1246143804698286 0.2202896745563018

electric strings 0.1620800184366855 0.2494249575545062

strings voices 0.2320257981966419 0.2641705569070928

electric electric 0.1493318802247706 0.2674274269672554

electric winds 0.1389441259868215 0.2852204043997119

voices winds 0.2882393248021209 0.3068272666290691

electric voices 0.2473875303622678 0.3095918254737542

percussion voices 0.3994366261979108 0.316812480469208

voices voices 0.1546122760507499 0.3283054801563754

percussion percussion 0.4761179472014795 0.3428102071438335

percussion strings 0.3199102672021232 0.3842936611178106

electric percussion 0.3495479509309117 0.3943089575235469

percussion winds 0.3074261265726062 0.4546743607456586

strings winds 0.2205745521942765 0.4925215051019872

winds winds
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D.2.6 Rock

Instrument 1 Instrument 2 Median IQR

electric strings 0.0820370951973075 0.1956590651405659

electric electric 0.1242125927984618 0.222189568974638

percussion percussion 0.3948788601124923 0.2612768339318448

percussion voices 0.3937479282752408 0.2844682075880272

percussion strings 0.3164721657105997 0.2931714562885995

electric percussion 0.3249455998837695 0.2993526654406703

electric voices 0.2721919406012131 0.3597615575738049

voices voices 0.1442906837366585 0.4155675860906906

strings voices 0.3915552937644917 0.4179327530441099

electric winds

percussion winds

strings strings

strings winds

voices winds

winds winds

D.2.7 Singer/Songwriter

Instrument 1 Instrument 2 Median IQR

electric electric 0.117487850977241 0.2184669663692517

strings strings 0.2113827854527659 0.2212305211101528

electric winds 0.1567546300720601 0.2249116092351396

electric strings 0.1374138141043554 0.2271658608004003

strings winds 0.1807459376091351 0.2311696597946221

winds winds 0.1687982944925509 0.2810401641465938

strings voices 0.2766663708015502 0.3146574414491131

voices winds 0.2745127356818532 0.3402246799674938

electric voices 0.2401753328610791 0.3524317431880498

percussion strings 0.3309935303259546 0.3604549085113415

voices voices 0.1941727364321372 0.3777505730367052

percussion voices 0.4207574189567894 0.3984565074135773

percussion percussion 0.4303678551070395 0.4006577610046351

electric percussion 0.3407429343989802 0.4273658387011625

percussion winds 0.3368147348469695 0.479769300021619
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D.2.8 World/Folk

Instrument 1 Instrument 2 Median IQR

voices voices 0.0735375666689234 0.1095478435546599

winds winds 0.1867699778235564 0.1494353861667034

strings strings 0.2302595957618168 0.1956237863674957

percussion winds 0.592125600304306 0.1969461679650997

strings winds 0.2274365560373265 0.2175197817020806

electric winds 0.252677820199104 0.247742949368767

percussion strings 0.3723844871302938 0.2651117363987192

electric strings 0.2455727249618196 0.2759400604158251

percussion percussion 0.4514860799851928 0.324155295882484

electric percussion 0.4052802211523432 0.370863512971767

electric electric 0.2727733664817235 0.5241205713728313

electric voices

percussion voices

strings voices

voices winds
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